Technical brochure

Solenoid valves

EVRA 3 → 40 and EVRAT 10 → 20
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Approvals</td>
<td>3</td>
</tr>
<tr>
<td>Technical data</td>
<td>3</td>
</tr>
<tr>
<td>Ordering</td>
<td>4</td>
</tr>
<tr>
<td>Flanges</td>
<td>5-6</td>
</tr>
<tr>
<td>Liquid capacity</td>
<td>7</td>
</tr>
<tr>
<td>Suction vapour capacity</td>
<td>8-9</td>
</tr>
<tr>
<td>Hotgas capacity</td>
<td>10-15</td>
</tr>
<tr>
<td>Construction/ Function</td>
<td>16</td>
</tr>
<tr>
<td>Material specification</td>
<td>17</td>
</tr>
<tr>
<td>Dimensions and weight</td>
<td>18-19</td>
</tr>
</tbody>
</table>
Technical brochure
Solenoid valves, type EVRA 3 to 40 and EVRAT 10 to 20

Introduction

EVRA is a direct or servo operated solenoid valve for liquid, suction and hot gas lines with ammonia or fluorinated refrigerants.

EVRA valves are supplied complete or as separate components, i.e. valve body, coil and flanges can be ordered separately.

EVRAT is an assisted lift, servo operated solenoid valve for liquid, suction and hot gas lines with ammonia and fluorinated refrigerants.

EVRAT is specially designed to open - and stay open - at a pressure drop of 0 bar. The EVRAT solenoid valve is thus suitable for use in all plant where the required opening differential pressure is 0 bar.

EVRAT is available as components, i.e. valve body, flanges and coil must be ordered separately.

EVRAT 10, 15 and 20 all have spindle for manual operation.

Approval

DNV, Det Norske Veritas, Norway
IT Polski Rejestr Statków, Poland
MR, Maritime Register of Shipping, Russia
Pressure Equipment Directive (PED) (97/23/EC) (EVRA 32 and 40 CE marked according to PED)
UL listed with GP coils

Technical data

Refrigerants

R 717 (NH₃), R 22, R 134a, R 404A, 410 A, R 744 (CO₂), R 502 etc.

Temperature of medium

−40 → +105°C.

Max. 130°C during defrosting.

<table>
<thead>
<tr>
<th>Type</th>
<th>Opening differential pressure with standard coil (Δp bar)</th>
<th>Temperature of medium</th>
<th>Max. working pressure PB bar</th>
<th>kv-value ¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min. 10 W a.c. 21 12 W a.c. 20 W d.c.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVRA 3</td>
<td>0.00 21 25 14 −40 → 105 42 0.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVRA 10</td>
<td>0.05 21 25 18 −40 → 105 42 1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVRA 15</td>
<td>0.05 21 25 16 −40 → 105 42 1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVRA 10</td>
<td>0.05 21 25 16 −40 → 105 42 1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVRA 15</td>
<td>0.05 21 25 16 −40 → 105 42 2.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVRA 20</td>
<td>0.05 21 25 13 −40 → 105 42 4.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVRA 25</td>
<td>0.05 21 25 13 −40 → 105 42 4.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVRA 32</td>
<td>0.20 21 25 14 −40 → 105 42 12.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVRA 40</td>
<td>0.20 21 25 14 −40 → 105 42 25.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹) The kv value is the water flow in m³/h at a pressure drop across valve of 1 bar, ρ = 1000 kg/m³.

²) MOPD for media in gas form is approx. 1 bar greater.

³) For a.c. only

⁴) For a.c. / d.c.

<table>
<thead>
<tr>
<th>Type</th>
<th>Rated capacity ¹) [kW]</th>
<th>Liquid</th>
<th>Suction vapour</th>
<th>Hot gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>R717</td>
<td>R22 R134a R404A</td>
<td>R717</td>
<td>R22 R134a R404A</td>
<td>R717 R22 R134a R404A</td>
</tr>
<tr>
<td>EVRA 3</td>
<td>21.8 4.6 4.3 3.2</td>
<td>6.5</td>
<td>2.1 1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>EVRA/T 10</td>
<td>142.0 30.2 27.8 21.1</td>
<td>9.0</td>
<td>3.4 2.5</td>
<td>3.1 42.6 13.9 11.0 11.3</td>
</tr>
<tr>
<td>EVRA/T 15</td>
<td>256.0 54.4 50.1 38.0</td>
<td>16.1 6.2 4.4 5.5</td>
<td>76.7 24.9 19.8 20.3</td>
<td></td>
</tr>
<tr>
<td>EVRA/T 20</td>
<td>426.0 90.6 83.5 63.3</td>
<td>26.9 10.3 7.3 9.2</td>
<td>128.0 41.5 32.9 33.9</td>
<td></td>
</tr>
<tr>
<td>EVRA 25</td>
<td>947.0 201.0 186.0 141.0</td>
<td>59.7 22.8</td>
<td>16.3</td>
<td>204.0 284.0 92.3 73.2 75.3</td>
</tr>
<tr>
<td>EVRA 32</td>
<td>1515.0 322.0 297.0 225.0</td>
<td>95.5 36.5 26.1 32.6</td>
<td>454.0 148.0 117.0 120.0</td>
<td></td>
</tr>
<tr>
<td>EVRA 40</td>
<td>2368.0 503.0 464.0 351.0</td>
<td>149.0 57.0 40.8 51.0</td>
<td>710.0 231.0 183.0 188.0</td>
<td></td>
</tr>
</tbody>
</table>

1) Rated liquid and suction vapour capacity is based on evaporating temperature tₑ = −10°C, liquid temperature ahead of valve tₐ = +25°C, and pressure drop across valve Δp = 0.15 bar.

2) Rated hot gas capacity is based on condensing temperature tᶜ = +40°C, pressure drop across valve Δp = 0.8 bar, hot gas temperature t₉ = +65°C, and subcooling of refrigerant Δt₀₂₃ = 4 K.
Technical brochure
Solenoid valves type EVRA 3 to 40 and EVRAT 10 to 20

Ordering

<table>
<thead>
<tr>
<th>Code no.</th>
<th>Type</th>
<th>Connection</th>
<th>10 W coil with terminal box</th>
<th>Code no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>032F3102</td>
<td>EVRA 3</td>
<td>032F3103</td>
<td>032F6207</td>
<td>032F6208</td>
</tr>
<tr>
<td>032F6212</td>
<td>EVRA 10</td>
<td>032F6213</td>
<td>032F6217</td>
<td>032F6218</td>
</tr>
<tr>
<td>032F6222</td>
<td>EVRA 20</td>
<td>032F6223</td>
<td>032F6226</td>
<td>032F6225</td>
</tr>
</tbody>
</table>

Complete valves without flanges

<table>
<thead>
<tr>
<th>Code no.</th>
<th>Type</th>
<th>Connection</th>
<th>10 W coil with terminal box</th>
</tr>
</thead>
<tbody>
<tr>
<td>032F3102</td>
<td>EVRA 3</td>
<td>032F3103</td>
<td>032F6207</td>
</tr>
<tr>
<td>032F6212</td>
<td>EVRA 10</td>
<td>032F6213</td>
<td>032F6217</td>
</tr>
<tr>
<td>032F6222</td>
<td>EVRA 20</td>
<td>032F6223</td>
<td>032F6226</td>
</tr>
</tbody>
</table>

1) Valve body with gaskets, bolts and 10 W a.c. coil. Please specify code no., voltage and frequency. Voltage and frequency can also be given in the form of an appendix number, see table “Appendix numbers”, under EVR.

Separate valve bodies

<table>
<thead>
<tr>
<th>Code no.</th>
<th>Type</th>
<th>Connection</th>
<th>Required coil type</th>
<th>Code no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>032F6210</td>
<td>EVRA 10</td>
<td>032F6214</td>
<td>a.c./d.c.</td>
<td>032F6210</td>
</tr>
<tr>
<td>032F6211</td>
<td>EVRAT 10</td>
<td>032F6215</td>
<td>a.c./d.c.</td>
<td>032F6214</td>
</tr>
<tr>
<td>032F6216</td>
<td>EVRA 15</td>
<td>032F6217</td>
<td>a.c./d.c.</td>
<td>032F6215</td>
</tr>
<tr>
<td>032F6220</td>
<td>EVRAT 15</td>
<td>032F6218</td>
<td>a.c./d.c.</td>
<td>032F6216</td>
</tr>
<tr>
<td>032F6221</td>
<td>EVRA 20</td>
<td>032F6222</td>
<td>a.c./d.c.</td>
<td>032F6220</td>
</tr>
<tr>
<td>032F6219</td>
<td>EVRAT 20</td>
<td>032F6223</td>
<td>a.c./d.c.</td>
<td>032F6221</td>
</tr>
<tr>
<td>032F6225</td>
<td>EVRA 25</td>
<td>032F6226</td>
<td>a.c./d.c.</td>
<td>032F6219</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code no.</th>
<th>Type</th>
<th>Connection</th>
<th>Code no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>032F3102</td>
<td>EVRA 3</td>
<td>032F3103</td>
<td>032F6207</td>
</tr>
<tr>
<td>032F6212</td>
<td>EVRA 10</td>
<td>032F6213</td>
<td>032F6217</td>
</tr>
<tr>
<td>032F6222</td>
<td>EVRA 20</td>
<td>032F6223</td>
<td>032F6226</td>
</tr>
</tbody>
</table>

Valves without manual operation

<table>
<thead>
<tr>
<th>Code no.</th>
<th>Type</th>
<th>Connection</th>
<th>Required coil type</th>
<th>Code no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>032F3102</td>
<td>EVRA 3</td>
<td>032F3103</td>
<td>032F6207</td>
<td>032F6208</td>
</tr>
<tr>
<td>032F6212</td>
<td>EVRA 10</td>
<td>032F6213</td>
<td>032F6217</td>
<td>032F6218</td>
</tr>
<tr>
<td>032F6222</td>
<td>EVRA 20</td>
<td>032F6223</td>
<td>032F6226</td>
<td>032F6225</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code no.</th>
<th>Type</th>
<th>Connection</th>
<th>Butt weld connection</th>
<th>DIN</th>
<th>ANSI</th>
<th>Code no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>032F6210</td>
<td>EVRA 10</td>
<td>032F6214</td>
<td>a.c./d.c.</td>
<td>032F6210</td>
<td></td>
<td></td>
</tr>
<tr>
<td>032F6211</td>
<td>EVRAT 10</td>
<td>032F6215</td>
<td>a.c./d.c.</td>
<td>032F6214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>032F6216</td>
<td>EVRA 15</td>
<td>032F6217</td>
<td>a.c./d.c.</td>
<td>032F6215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>032F6220</td>
<td>EVRAT 15</td>
<td>032F6218</td>
<td>a.c./d.c.</td>
<td>032F6216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>032F6221</td>
<td>EVRA 20</td>
<td>032F6222</td>
<td>a.c./d.c.</td>
<td>032F6220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>032F6219</td>
<td>EVRAT 20</td>
<td>032F6223</td>
<td>a.c./d.c.</td>
<td>032F6221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>032F6225</td>
<td>EVRA 25</td>
<td>032F6226</td>
<td>a.c./d.c.</td>
<td>032F6225</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code no.</th>
<th>Type</th>
<th>Code no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>032F6210</td>
<td>EVRA 10</td>
<td>032F6214</td>
</tr>
<tr>
<td>032F6211</td>
<td>EVRAT 10</td>
<td>032F6215</td>
</tr>
<tr>
<td>032F6212</td>
<td>EVRA 15</td>
<td>032F6216</td>
</tr>
<tr>
<td>032F6213</td>
<td>EVRAT 15</td>
<td>032F6218</td>
</tr>
<tr>
<td>032F6216</td>
<td>EVRA 20</td>
<td>032F6217</td>
</tr>
<tr>
<td>032F6217</td>
<td>EVRAT 20</td>
<td>032F6218</td>
</tr>
<tr>
<td>032F6220</td>
<td>EVRA 25</td>
<td>032F6221</td>
</tr>
<tr>
<td>032F6221</td>
<td>EVRAT 25</td>
<td>032F6222</td>
</tr>
</tbody>
</table>

Separate valve bodies with butt weld connections

<table>
<thead>
<tr>
<th>Code no.</th>
<th>Type</th>
<th>Code no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>032F6210</td>
<td>EVRA 10</td>
<td>032F6214</td>
</tr>
<tr>
<td>032F6211</td>
<td>EVRAT 10</td>
<td>032F6215</td>
</tr>
<tr>
<td>032F6212</td>
<td>EVRA 15</td>
<td>032F6216</td>
</tr>
<tr>
<td>032F6213</td>
<td>EVRAT 15</td>
<td>032F6218</td>
</tr>
<tr>
<td>032F6216</td>
<td>EVRA 20</td>
<td>032F6217</td>
</tr>
<tr>
<td>032F6217</td>
<td>EVRAT 20</td>
<td>032F6218</td>
</tr>
<tr>
<td>032F6220</td>
<td>EVRA 25</td>
<td>032F6219</td>
</tr>
<tr>
<td>032F6221</td>
<td>EVRAT 25</td>
<td>032F6220</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code no.</th>
<th>Type</th>
<th>Code no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>032F6210</td>
<td>EVRA 10</td>
<td>032F6214</td>
</tr>
<tr>
<td>032F6211</td>
<td>EVRAT 10</td>
<td>032F6215</td>
</tr>
<tr>
<td>032F6212</td>
<td>EVRA 15</td>
<td>032F6216</td>
</tr>
<tr>
<td>032F6213</td>
<td>EVRAT 15</td>
<td>032F6218</td>
</tr>
<tr>
<td>032F6216</td>
<td>EVRA 20</td>
<td>032F6217</td>
</tr>
<tr>
<td>032F6217</td>
<td>EVRAT 20</td>
<td>032F6218</td>
</tr>
<tr>
<td>032F6220</td>
<td>EVRA 25</td>
<td>032F6219</td>
</tr>
<tr>
<td>032F6221</td>
<td>EVRAT 25</td>
<td>032F6220</td>
</tr>
</tbody>
</table>

Valves with manual operation

<table>
<thead>
<tr>
<th>Code no.</th>
<th>Type</th>
<th>Code no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>032F3102</td>
<td>EVRA 3</td>
<td>032F3103</td>
</tr>
<tr>
<td>032F6212</td>
<td>EVRA 10</td>
<td>032F6213</td>
</tr>
<tr>
<td>032F6222</td>
<td>EVRA 20</td>
<td>032F6223</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code no.</th>
<th>Type</th>
<th>Code no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>032F3102</td>
<td>EVRA 3</td>
<td>032F3103</td>
</tr>
<tr>
<td>032F6212</td>
<td>EVRA 10</td>
<td>032F6213</td>
</tr>
<tr>
<td>032F6222</td>
<td>EVRA 20</td>
<td>032F6223</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code no.</th>
<th>Type</th>
<th>Code no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>032F3102</td>
<td>EVRA 3</td>
<td>032F3103</td>
</tr>
<tr>
<td>032F6212</td>
<td>EVRA 10</td>
<td>032F6213</td>
</tr>
<tr>
<td>032F6222</td>
<td>EVRA 20</td>
<td>032F6223</td>
</tr>
</tbody>
</table>

Coils

See “Coils for solenoid valves”, RD.3J.E3.02.

Accessories

Strainer FA for direct mounting, see “FA”, RD.6C.A3.02.

Flanges, see the following pages.

Example

EVRA 15 complete valve with terminal box, 220 V, 50 Hz, code no. 032F6218 + ¾ in. weld flange set, code no. 027N1120.

Example

EVRA 15 valve body with manual operation, code no. 032F6215 + ¾ in. weld flange set, code no. 027N1120 + coil with terminal box, 220 V, 50 Hz, code no. 018F6701.
Ordering (continued)

Tongue/ tongue flange sets
version 1.3

Used for:
EVRA 3, EVRA/T 10, EVRA/T 15
Each code no. includes two flanges

Separate flange gaskets,
ID 22 x OD 32 x 1.0 mm
(ID 0.866 x OD 1.260 x 0.039 in.);
Code no. 020-2133 (40 stk.), must be ordered separately

Butt welding DIN (2448)
Tongue flange sets

<table>
<thead>
<tr>
<th>Connection</th>
<th>D</th>
<th>D</th>
<th>d1</th>
<th>d1</th>
<th>d2</th>
<th>d2</th>
<th>L</th>
<th>L</th>
<th>L</th>
<th>L</th>
<th>L</th>
<th>L</th>
<th>Code no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>in.</td>
<td>mm</td>
<td>in.</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>10 1/4</td>
<td>18</td>
<td>0.709</td>
<td>10</td>
<td>0.394</td>
<td>14</td>
<td>0.551</td>
<td>32.5</td>
<td>1.280</td>
<td>3</td>
<td>0.118</td>
<td>6</td>
<td>0.236</td>
<td>027N1112</td>
</tr>
<tr>
<td>15 1/2</td>
<td>22</td>
<td>0.866</td>
<td>14</td>
<td>0.551</td>
<td>17</td>
<td>0.669</td>
<td>32.5</td>
<td>1.280</td>
<td>3</td>
<td>0.118</td>
<td>6</td>
<td>0.236</td>
<td>027N1115</td>
</tr>
<tr>
<td>20 3/8</td>
<td>27</td>
<td>1.063</td>
<td>19</td>
<td>0.748</td>
<td>22</td>
<td>0.866</td>
<td>32.5</td>
<td>1.280</td>
<td>3</td>
<td>0.118</td>
<td>6</td>
<td>0.236</td>
<td>027N1120</td>
</tr>
</tbody>
</table>

Butt welding ANSI B 36.10
Tongue flange sets

<table>
<thead>
<tr>
<th>Connection</th>
<th>D</th>
<th>D</th>
<th>d1</th>
<th>d1</th>
<th>d2</th>
<th>d2</th>
<th>L</th>
<th>L</th>
<th>L</th>
<th>L</th>
<th>L</th>
<th>L</th>
<th>Code no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>in.</td>
<td>mm</td>
<td>in.</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>10 1/4</td>
<td>17.1</td>
<td>0.673</td>
<td>10.7</td>
<td>0.421</td>
<td>10.7</td>
<td>0.421</td>
<td>32.5</td>
<td>1.280</td>
<td>3</td>
<td>0.118</td>
<td>6</td>
<td>0.236</td>
<td>027N2020</td>
</tr>
<tr>
<td>15 1/2</td>
<td>21.3</td>
<td>0.839</td>
<td>13.9</td>
<td>0.547</td>
<td>13.9</td>
<td>0.547</td>
<td>32.5</td>
<td>1.280</td>
<td>3</td>
<td>0.118</td>
<td>6</td>
<td>0.236</td>
<td>027N2021</td>
</tr>
<tr>
<td>20 3/8</td>
<td>26.9</td>
<td>1.059</td>
<td>18.9</td>
<td>0.744</td>
<td>18.9</td>
<td>0.744</td>
<td>32.5</td>
<td>1.280</td>
<td>3</td>
<td>0.118</td>
<td>6</td>
<td>0.236</td>
<td>027N2022</td>
</tr>
</tbody>
</table>

Socket welding (B 16.11)
Tongue flange sets

<table>
<thead>
<tr>
<th>Connection</th>
<th>D</th>
<th>D</th>
<th>d1</th>
<th>d1</th>
<th>d2</th>
<th>d2</th>
<th>L</th>
<th>L</th>
<th>L</th>
<th>L</th>
<th>L</th>
<th>L</th>
<th>Code no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>in.</td>
<td>mm</td>
<td>in.</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>10 1/4</td>
<td>26</td>
<td>1.024</td>
<td>12.5</td>
<td>0.492</td>
<td>17.8</td>
<td>0.701</td>
<td>32.5</td>
<td>1.280</td>
<td>3</td>
<td>0.118</td>
<td>10</td>
<td>0.394</td>
<td>027N2010</td>
</tr>
<tr>
<td>15 1/2</td>
<td>31.6</td>
<td>1.244</td>
<td>15.8</td>
<td>0.622</td>
<td>22</td>
<td>0.866</td>
<td>32.5</td>
<td>1.280</td>
<td>3</td>
<td>0.118</td>
<td>10</td>
<td>0.394</td>
<td>027N2011</td>
</tr>
</tbody>
</table>

FPT internal thread, NPT (ANSI / ASME B 1.20.1)
Tongue flange sets

<table>
<thead>
<tr>
<th>Connection</th>
<th>D</th>
<th>D</th>
<th>d1</th>
<th>d1</th>
<th>d2</th>
<th>d2</th>
<th>L</th>
<th>L</th>
<th>L</th>
<th>L</th>
<th>L</th>
<th>L</th>
<th>Code no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>in.</td>
<td>mm</td>
<td>in.</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>10 1/4</td>
<td>26</td>
<td>1.024</td>
<td>14.3</td>
<td>0.563</td>
<td>18.0</td>
<td>0.701</td>
<td>32.5</td>
<td>1.477</td>
<td>3</td>
<td>0.118</td>
<td>10</td>
<td>0.394</td>
<td>027G1005</td>
</tr>
<tr>
<td>15 1/2</td>
<td>31.6</td>
<td>1.244</td>
<td>17.8</td>
<td>0.701</td>
<td>18.0</td>
<td>0.701</td>
<td>32.5</td>
<td>1.477</td>
<td>3</td>
<td>0.118</td>
<td>10</td>
<td>0.394</td>
<td>027G1006</td>
</tr>
</tbody>
</table>

Solder DIN (2856)
Tongue flange sets

<table>
<thead>
<tr>
<th>Connection</th>
<th>D</th>
<th>D</th>
<th>d1</th>
<th>d1</th>
<th>d2</th>
<th>d2</th>
<th>L</th>
<th>L</th>
<th>L</th>
<th>L</th>
<th>L</th>
<th>L</th>
<th>Code no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>in.</td>
<td>mm</td>
<td>in.</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>16 5/8</td>
<td>21</td>
<td>0.827</td>
<td>13</td>
<td>0.512</td>
<td>16</td>
<td>0.630</td>
<td>29.5</td>
<td>2.122</td>
<td>3</td>
<td>0.118</td>
<td>15</td>
<td>0.591</td>
<td>027L1116</td>
</tr>
<tr>
<td>22 7/8</td>
<td>27</td>
<td>1.063</td>
<td>19</td>
<td>0.748</td>
<td>22.1</td>
<td>0.869</td>
<td>29.5</td>
<td>1.161</td>
<td>3</td>
<td>0.118</td>
<td>22</td>
<td>0.866</td>
<td>027L1122</td>
</tr>
</tbody>
</table>

Solder ANSI B 16.22
Tongue flange sets

<table>
<thead>
<tr>
<th>Connection</th>
<th>D</th>
<th>D</th>
<th>d1</th>
<th>d1</th>
<th>d2</th>
<th>d2</th>
<th>L</th>
<th>L</th>
<th>L</th>
<th>L</th>
<th>L</th>
<th>L</th>
<th>Code no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>in.</td>
<td>mm</td>
<td>in.</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>1/4 5/32</td>
<td>21</td>
<td>0.827</td>
<td>13</td>
<td>0.512</td>
<td>15.9</td>
<td>0.626</td>
<td>29.5</td>
<td>1.161</td>
<td>3</td>
<td>0.118</td>
<td>20.5</td>
<td>0.807</td>
<td>027L1117</td>
</tr>
<tr>
<td>3/8 5/32</td>
<td>27</td>
<td>1.063</td>
<td>19</td>
<td>0.748</td>
<td>22.2</td>
<td>0.874</td>
<td>29.5</td>
<td>1.161</td>
<td>3</td>
<td>0.118</td>
<td>22</td>
<td>0.866</td>
<td>027L1123</td>
</tr>
</tbody>
</table>
Ordering (continued)

Tongue/ tongue flange sets version 3

Used for EVRA/T 20, EVRA 25

Each code no. includes two flanges.

Separate flange gaskets, ID 29 x OD 39 x 1.5 mm (ID 1.142 x OD 1.535 x 0.059 in.)

Butt welding DIN (2448)

Tongue flange sets

<table>
<thead>
<tr>
<th>Connection</th>
<th>D</th>
<th>D</th>
<th>d₁</th>
<th>d₂</th>
<th>d₃</th>
<th>L</th>
<th>L</th>
<th>L₁</th>
<th>L₂</th>
<th>Code no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm in.</td>
<td>mm</td>
<td>mm</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>20 1/4</td>
<td>27</td>
<td>1.063</td>
<td>19</td>
<td>0.748</td>
<td>22</td>
<td>0.866</td>
<td>35</td>
<td>1.378</td>
<td>3</td>
<td>0.118</td>
</tr>
<tr>
<td>25 1</td>
<td>34</td>
<td>1.339</td>
<td>26</td>
<td>1.024</td>
<td>28</td>
<td>1.102</td>
<td>37.5</td>
<td>1.476</td>
<td>3</td>
<td>0.118</td>
</tr>
<tr>
<td>32 1/4</td>
<td>43</td>
<td>1.693</td>
<td>26</td>
<td>1.024</td>
<td>37</td>
<td>1.457</td>
<td>37.5</td>
<td>1.476</td>
<td>3</td>
<td>0.118</td>
</tr>
</tbody>
</table>

Butt welding ANSI B 36.10

Tongue flange sets

<table>
<thead>
<tr>
<th>Connection</th>
<th>D</th>
<th>D</th>
<th>d₁</th>
<th>d₂</th>
<th>d₃</th>
<th>L</th>
<th>L</th>
<th>L₁</th>
<th>L₂</th>
<th>Code no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm in.</td>
<td>mm</td>
<td>mm</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>20 1/4</td>
<td>26.9</td>
<td>1.059</td>
<td>18.9</td>
<td>0.744</td>
<td>18.9</td>
<td>0.744</td>
<td>33</td>
<td>1.299</td>
<td>3</td>
<td>0.118</td>
</tr>
<tr>
<td>25 1</td>
<td>33.7</td>
<td>1.327</td>
<td>24.5</td>
<td>0.965</td>
<td>24.5</td>
<td>0.965</td>
<td>37.5</td>
<td>1.476</td>
<td>3</td>
<td>0.118</td>
</tr>
<tr>
<td>32 1/4</td>
<td>42.4</td>
<td>1.669</td>
<td>26</td>
<td>1.024</td>
<td>32.6</td>
<td>1.283</td>
<td>37.5</td>
<td>1.476</td>
<td>3</td>
<td>0.118</td>
</tr>
</tbody>
</table>

Socket welding ANSI (B 16.11)

Tongue flange sets

<table>
<thead>
<tr>
<th>Connection</th>
<th>D</th>
<th>D</th>
<th>d₁</th>
<th>d₂</th>
<th>d₃</th>
<th>L</th>
<th>L</th>
<th>L₁</th>
<th>L₂</th>
<th>Code no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm in.</td>
<td>mm</td>
<td>mm</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>20 1/4</td>
<td>37.4</td>
<td>1.472</td>
<td>21</td>
<td>0.827</td>
<td>27.4</td>
<td>1.079</td>
<td>33</td>
<td>1.299</td>
<td>3</td>
<td>0.118</td>
</tr>
<tr>
<td>25 1</td>
<td>45.6</td>
<td>1.795</td>
<td>26.6</td>
<td>1.047</td>
<td>34.1</td>
<td>1.343</td>
<td>33</td>
<td>1.299</td>
<td>3</td>
<td>0.118</td>
</tr>
</tbody>
</table>

FPT internal thread, NPT (ANSI / ASME B 1.20.1)

Tongue flange sets

<table>
<thead>
<tr>
<th>Connection</th>
<th>D</th>
<th>D</th>
<th>d₁</th>
<th>d₂</th>
<th>d₃</th>
<th>L</th>
<th>L</th>
<th>L₁</th>
<th>L₂</th>
<th>Code no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm in.</td>
<td>mm</td>
<td>mm</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>20 1/4</td>
<td>37.4</td>
<td>1.472</td>
<td>23</td>
<td>0.906</td>
<td>1/2"-14 NPT</td>
<td>1/2"-14 NPT</td>
<td>33</td>
<td>1.299</td>
<td>3</td>
<td>0.118</td>
</tr>
<tr>
<td>25 1</td>
<td>45.6</td>
<td>1.795</td>
<td>29</td>
<td>1.142</td>
<td>1"-11.5 NPT</td>
<td>1"-11.5 NPT</td>
<td>33</td>
<td>1.299</td>
<td>3</td>
<td>0.118</td>
</tr>
</tbody>
</table>

Soldering DIN (2856)

Tongue flange sets

<table>
<thead>
<tr>
<th>Connection</th>
<th>D</th>
<th>D</th>
<th>d₁</th>
<th>d₂</th>
<th>d₃</th>
<th>L</th>
<th>L</th>
<th>L₁</th>
<th>L₂</th>
<th>Code no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm in.</td>
<td>mm</td>
<td>mm</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>34</td>
<td>1.338</td>
<td>19</td>
<td>0.748</td>
<td>22</td>
<td>0.866</td>
<td>32</td>
<td>1.260</td>
<td>4</td>
<td>0.157</td>
</tr>
<tr>
<td>28</td>
<td>34</td>
<td>1.338</td>
<td>26</td>
<td>1.024</td>
<td>28</td>
<td>1.102</td>
<td>34</td>
<td>1.338</td>
<td>4</td>
<td>0.157</td>
</tr>
</tbody>
</table>

Soldering ANSI B 16.22

Tongue flange sets

<table>
<thead>
<tr>
<th>Connection</th>
<th>D</th>
<th>D</th>
<th>d₁</th>
<th>d₂</th>
<th>d₃</th>
<th>L</th>
<th>L</th>
<th>L₁</th>
<th>L₂</th>
<th>Code no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm in.</td>
<td>mm</td>
<td>mm</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>34</td>
<td>1.338</td>
<td>19</td>
<td>0.748</td>
<td>22.2</td>
<td>0.874</td>
<td>32</td>
<td>1.260</td>
<td>4</td>
<td>0.157</td>
</tr>
<tr>
<td>1/2"</td>
<td>34</td>
<td>1.338</td>
<td>26</td>
<td>1.024</td>
<td>28.6</td>
<td>1.126</td>
<td>34</td>
<td>1.338</td>
<td>4</td>
<td>0.157</td>
</tr>
</tbody>
</table>
Technical brochure

Solenoid valves, type EVRA 3 to 40 and EVRAT 10 to 20

Capacity

<table>
<thead>
<tr>
<th>Type</th>
<th>Liquid capacity Qe kW at pressure drop across valve</th>
<th>∆p bar 0.1</th>
<th>∆p bar 0.2</th>
<th>∆p bar 0.3</th>
<th>∆p bar 0.4</th>
<th>∆p bar 0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVRA 3</td>
<td>17.8</td>
<td>25.1</td>
<td>30.8</td>
<td>35.6</td>
<td>39.8</td>
<td></td>
</tr>
<tr>
<td>EVRA/T 10</td>
<td>116.0</td>
<td>164.0</td>
<td>201.0</td>
<td>232.0</td>
<td>259.0</td>
<td></td>
</tr>
<tr>
<td>EVRA/T 15</td>
<td>209.0</td>
<td>295.0</td>
<td>362.0</td>
<td>418.0</td>
<td>467.0</td>
<td></td>
</tr>
<tr>
<td>EVRA/T 20</td>
<td>348.0</td>
<td>492.0</td>
<td>603.0</td>
<td>696.0</td>
<td>778.0</td>
<td></td>
</tr>
<tr>
<td>EVRA 25</td>
<td>773.0</td>
<td>1093.0</td>
<td>1340.0</td>
<td>1547.0</td>
<td>1729.0</td>
<td></td>
</tr>
<tr>
<td>EVRA 32</td>
<td>1237.0</td>
<td>1749.0</td>
<td>2144.0</td>
<td>2475.0</td>
<td>2766.0</td>
<td></td>
</tr>
<tr>
<td>EVRA 40</td>
<td>1933.0</td>
<td>2734.0</td>
<td>3349.0</td>
<td>3867.0</td>
<td>4322.0</td>
<td></td>
</tr>
</tbody>
</table>

R 717 (NH₃)

<table>
<thead>
<tr>
<th>Type</th>
<th>Qe kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVRA 3</td>
<td>3.8</td>
</tr>
<tr>
<td>EVRA/T 10</td>
<td>24.7</td>
</tr>
<tr>
<td>EVRA/T 15</td>
<td>44.4</td>
</tr>
<tr>
<td>EVRA/T 20</td>
<td>73.9</td>
</tr>
<tr>
<td>EVRA 25</td>
<td>165.0</td>
</tr>
<tr>
<td>EVRA 32</td>
<td>263.0</td>
</tr>
<tr>
<td>EVRA 40</td>
<td>411.0</td>
</tr>
</tbody>
</table>

R 22

<table>
<thead>
<tr>
<th>Type</th>
<th>Qe kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVRA 3</td>
<td>3.8</td>
</tr>
<tr>
<td>EVRA/T 10</td>
<td>24.7</td>
</tr>
<tr>
<td>EVRA/T 15</td>
<td>44.4</td>
</tr>
<tr>
<td>EVRA/T 20</td>
<td>73.9</td>
</tr>
<tr>
<td>EVRA 25</td>
<td>165.0</td>
</tr>
<tr>
<td>EVRA 32</td>
<td>263.0</td>
</tr>
<tr>
<td>EVRA 40</td>
<td>411.0</td>
</tr>
</tbody>
</table>

R 134a

<table>
<thead>
<tr>
<th>Type</th>
<th>Qe kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVRA 3</td>
<td>3.5</td>
</tr>
<tr>
<td>EVRA/T 10</td>
<td>22.7</td>
</tr>
<tr>
<td>EVRA/T 15</td>
<td>40.9</td>
</tr>
<tr>
<td>EVRA/T 20</td>
<td>68.2</td>
</tr>
<tr>
<td>EVRA 25</td>
<td>152.0</td>
</tr>
<tr>
<td>EVRA 32</td>
<td>243.0</td>
</tr>
<tr>
<td>EVRA 40</td>
<td>379.0</td>
</tr>
</tbody>
</table>

R 404A

<table>
<thead>
<tr>
<th>Type</th>
<th>Qe kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVRA 3</td>
<td>2.6</td>
</tr>
<tr>
<td>EVRA/T 10</td>
<td>17.2</td>
</tr>
<tr>
<td>EVRA/T 15</td>
<td>31.0</td>
</tr>
<tr>
<td>EVRA/T 20</td>
<td>51.7</td>
</tr>
<tr>
<td>EVRA 25</td>
<td>115.0</td>
</tr>
<tr>
<td>EVRA 32</td>
<td>184.0</td>
</tr>
<tr>
<td>EVRA 40</td>
<td>287.0</td>
</tr>
</tbody>
</table>

Correction factors

When sizing valves, the plant capacity must be multiplied by a correction factor depending on liquid temperature tₙ ahead of valve/evaporator.

When the corrected capacity is known, the selection can be made from the table.

<table>
<thead>
<tr>
<th>tₙ°C</th>
<th>−10</th>
<th>0</th>
<th>+10</th>
<th>+20</th>
<th>+25</th>
<th>+30</th>
<th>+40</th>
<th>+50</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 717 (NH₃)</td>
<td>0.84</td>
<td>0.88</td>
<td>0.92</td>
<td>0.97</td>
<td>1.0</td>
<td>1.03</td>
<td>1.09</td>
<td>1.16</td>
</tr>
<tr>
<td>R 22, R 134a</td>
<td>0.76</td>
<td>0.81</td>
<td>0.88</td>
<td>0.96</td>
<td>1.0</td>
<td>1.05</td>
<td>1.16</td>
<td>1.31</td>
</tr>
<tr>
<td>R 404A</td>
<td>0.70</td>
<td>0.76</td>
<td>0.84</td>
<td>0.94</td>
<td>1.0</td>
<td>1.07</td>
<td>1.24</td>
<td>1.47</td>
</tr>
</tbody>
</table>
Technical brochure
Solenoid valves type EVRA 3 to 40 and EVRAT 10 to 20

Capacity (continued)

Suction vapour capacity Q_e, kW

<table>
<thead>
<tr>
<th>Type</th>
<th>Pressure drop across valve Δp, bar</th>
<th>Suction vapour capacity Q_e, kW at evaporating temperature t_e, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-40</td>
<td>-30</td>
</tr>
<tr>
<td>EVRA/T 10</td>
<td>0.1</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>4.5</td>
</tr>
<tr>
<td>EVRA/T 15</td>
<td>0.1</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>8.0</td>
</tr>
<tr>
<td>EVRA/T 20</td>
<td>0.1</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>12.1</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>13.4</td>
</tr>
<tr>
<td>EVRA 25</td>
<td>0.1</td>
<td>22.6</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>26.7</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>29.8</td>
</tr>
<tr>
<td>EVRA 32</td>
<td>0.1</td>
<td>36.2</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>42.7</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>47.7</td>
</tr>
<tr>
<td>EVRA 40</td>
<td>0.1</td>
<td>56.5</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>66.8</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>74.5</td>
</tr>
</tbody>
</table>

R 717 (NH₃)

Capacities are based on liquid temperature $t_l = +25°C$ ahead of evaporator.
The table values refer to the evaporator capacity and are given as a function of evaporating temperature t_e and pressure drop Δp across valve. Capacities are based on dry, saturated vapour ahead of valve. During operation with superheated vapour ahead of valve, the capacities are reduced by 4% for each 10 K superheat.

Correction factors
When sizing valves, the evaporator capacity must be multiplied by a correction factor depending on liquid temperature t_l ahead of expansion valve. When the corrected capacity is known, the selection can be made from the table.

<table>
<thead>
<tr>
<th>t_l °C</th>
<th>-10</th>
<th>0</th>
<th>+10</th>
<th>+20</th>
<th>+25</th>
<th>+30</th>
<th>+40</th>
<th>+50</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 717 (NH₃)</td>
<td>0.84</td>
<td>0.88</td>
<td>0.92</td>
<td>0.97</td>
<td>1.0</td>
<td>1.03</td>
<td>1.09</td>
<td>1.16</td>
</tr>
<tr>
<td>R 22</td>
<td>0.76</td>
<td>0.81</td>
<td>0.88</td>
<td>0.96</td>
<td>1.0</td>
<td>1.05</td>
<td>1.16</td>
<td>1.31</td>
</tr>
</tbody>
</table>
Technical brochure

Solenoid valves, type EVRA 3 to 40 and EVRAT 10 to 20

Capacity

(continued)

<table>
<thead>
<tr>
<th>Type</th>
<th>Pressure drop across valve</th>
<th>Suction vapour capacity Q_e kW at evaporating temperature t_e °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Δp bar</td>
<td>-40</td>
</tr>
<tr>
<td>EVRA/T 10</td>
<td>0.1</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>1.1</td>
</tr>
<tr>
<td>EVRA/T 15</td>
<td>0.1</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>2.0</td>
</tr>
<tr>
<td>EVRA/T 20</td>
<td>0.1</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>3.3</td>
</tr>
<tr>
<td>EVRA 25</td>
<td>0.1</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>7.3</td>
</tr>
<tr>
<td>EVRA 32</td>
<td>0.1</td>
<td>9.3</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>10.6</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>11.7</td>
</tr>
<tr>
<td>EVRA 40</td>
<td>0.1</td>
<td>14.5</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>16.5</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>18.3</td>
</tr>
</tbody>
</table>

R 404A

<table>
<thead>
<tr>
<th>Type</th>
<th>Pressure drop across valve</th>
<th>Suction vapour capacity Q_e kW at evaporating temperature t_e °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Δp bar</td>
<td>-40</td>
</tr>
<tr>
<td>EVRA/T 10</td>
<td>0.1</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>1.6</td>
</tr>
<tr>
<td>EVRA/T 15</td>
<td>0.1</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>2.8</td>
</tr>
<tr>
<td>EVRA/T 20</td>
<td>0.1</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>4.6</td>
</tr>
<tr>
<td>EVRA 25</td>
<td>0.1</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>10.3</td>
</tr>
<tr>
<td>EVRA 32</td>
<td>0.1</td>
<td>12.3</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>14.6</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>16.5</td>
</tr>
<tr>
<td>EVRA 40</td>
<td>0.1</td>
<td>19.3</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>22.9</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>25.8</td>
</tr>
</tbody>
</table>

Correction factors

When sizing valves, the evaporator capacity must be multiplied by a correction factor depending on liquid temperature t_l ahead of expansion valve. The corrected capacity is known, the selection can be made from the table.

<table>
<thead>
<tr>
<th>t_l °C</th>
<th>−10</th>
<th>0</th>
<th>+10</th>
<th>+20</th>
<th>+25</th>
<th>+30</th>
<th>+40</th>
<th>+50</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 134A</td>
<td>0.76</td>
<td>0.81</td>
<td>0.88</td>
<td>0.96</td>
<td>1.0</td>
<td>1.05</td>
<td>1.16</td>
<td>1.31</td>
</tr>
<tr>
<td>R 404A</td>
<td>0.70</td>
<td>0.76</td>
<td>0.84</td>
<td>0.94</td>
<td>1.0</td>
<td>1.07</td>
<td>1.24</td>
<td>1.47</td>
</tr>
</tbody>
</table>
Capacity

(continued)

<table>
<thead>
<tr>
<th>Type</th>
<th>Pressure drop across valve</th>
<th>Evaporating temp $t_e = -10^\circ\text{C}$, Hot gas temp $t_h = t_c + 25^\circ\text{C}$, Subcooling $\Delta t_{\text{sub}} = 4\text{K}$</th>
<th>Condensing temperature $t_c^\circ\text{C}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Δp bar</td>
<td>$+20$</td>
<td>$+30$</td>
</tr>
<tr>
<td>EVRA 3</td>
<td>0.1</td>
<td>1.8</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>2.6</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>3.8</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>5.1</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>7.4</td>
<td>8.3</td>
</tr>
<tr>
<td>EVRA/T 10</td>
<td>0.1</td>
<td>12.0</td>
<td>13.4</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>17.1</td>
<td>19.0</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>24.5</td>
<td>27.1</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>34.0</td>
<td>39.0</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>48.5</td>
<td>53.8</td>
</tr>
<tr>
<td>EVRA/T 15</td>
<td>0.1</td>
<td>21.7</td>
<td>24.1</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>30.8</td>
<td>34.2</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>44.1</td>
<td>48.8</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>61.2</td>
<td>70.3</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>87.4</td>
<td>96.9</td>
</tr>
<tr>
<td>EVRA/T 20</td>
<td>0.1</td>
<td>36.1</td>
<td>40.1</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>51.4</td>
<td>57.0</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>73.5</td>
<td>81.3</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>102.0</td>
<td>117.0</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>146.0</td>
<td>161.0</td>
</tr>
<tr>
<td>EVRA 25</td>
<td>0.1</td>
<td>80.2</td>
<td>89.1</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>114.0</td>
<td>127.0</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>163.0</td>
<td>181.0</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>227.0</td>
<td>260.0</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>324.0</td>
<td>358.0</td>
</tr>
<tr>
<td>EVRA 32</td>
<td>0.1</td>
<td>128.0</td>
<td>143.0</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>183.0</td>
<td>203.0</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>261.0</td>
<td>289.0</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>362.0</td>
<td>416.0</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>518.0</td>
<td>574.0</td>
</tr>
<tr>
<td>EVRA 40</td>
<td>0.1</td>
<td>201.0</td>
<td>223.0</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>286.0</td>
<td>317.0</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>408.0</td>
<td>452.0</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>566.0</td>
<td>650.0</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>809.0</td>
<td>897.0</td>
</tr>
</tbody>
</table>

An increase in hot gas temperature t_h of 10 K, based on $t_h = t_c + 25^\circ\text{C}$, reduces valve capacity approx. 2% and vice versa.

A change in evaporating temperature t_e changes valve capacity; see correction factor table below.

Correction factor

When sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t_e.

<table>
<thead>
<tr>
<th>$t_e,^\circ\text{C}$</th>
<th>-40</th>
<th>-30</th>
<th>-20</th>
<th>-10</th>
<th>0</th>
<th>+10</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 717 (NH$_3$)</td>
<td>0.89</td>
<td>0.91</td>
<td>0.96</td>
<td>1.0</td>
<td>1.06</td>
<td>1.10</td>
</tr>
</tbody>
</table>
Capacity (continued)

<table>
<thead>
<tr>
<th>Type</th>
<th>Pressure drop across valve</th>
<th>Hot gas capacity $Q_h\ kW$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\Delta p\ \text{bar}$</td>
<td>Evaporating temp. $t_e = -10 °C$. Hot gas temp. $t_h = t_c + 25 °C$. Subcooling $\Delta t_{\text{sub}} = 4K$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Condensing temperature $t_c °C$</td>
</tr>
</tbody>
</table>

R 22

<table>
<thead>
<tr>
<th></th>
<th>0.1</th>
<th>0.2</th>
<th>0.4</th>
<th>0.8</th>
<th>1.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVRA 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>0.68</td>
<td>0.72</td>
<td>0.76</td>
<td>0.78</td>
<td>0.79</td>
</tr>
<tr>
<td>0.2</td>
<td>0.97</td>
<td>1.0</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>0.4</td>
<td>1.4</td>
<td>1.5</td>
<td>1.5</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>0.8</td>
<td>1.9</td>
<td>2.0</td>
<td>2.1</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>1.6</td>
<td>2.7</td>
<td>2.9</td>
<td>3.0</td>
<td>3.1</td>
<td>3.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0.1</th>
<th>0.2</th>
<th>0.4</th>
<th>0.8</th>
<th>1.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVRA/T 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>4.4</td>
<td>4.7</td>
<td>4.9</td>
<td>5.1</td>
<td>5.2</td>
</tr>
<tr>
<td>0.2</td>
<td>6.3</td>
<td>6.7</td>
<td>7.0</td>
<td>7.2</td>
<td>7.3</td>
</tr>
<tr>
<td>0.4</td>
<td>9.0</td>
<td>9.6</td>
<td>10.0</td>
<td>10.3</td>
<td>10.4</td>
</tr>
<tr>
<td>0.8</td>
<td>12.4</td>
<td>13.2</td>
<td>13.9</td>
<td>14.7</td>
<td>14.9</td>
</tr>
<tr>
<td>1.6</td>
<td>17.5</td>
<td>18.6</td>
<td>19.6</td>
<td>20.2</td>
<td>20.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0.1</th>
<th>0.2</th>
<th>0.4</th>
<th>0.8</th>
<th>1.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVRA/T 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>8.0</td>
<td>8.5</td>
<td>8.9</td>
<td>9.2</td>
<td>9.3</td>
</tr>
<tr>
<td>0.2</td>
<td>11.4</td>
<td>12.1</td>
<td>12.6</td>
<td>13.0</td>
<td>13.2</td>
</tr>
<tr>
<td>0.4</td>
<td>16.3</td>
<td>17.2</td>
<td>18.0</td>
<td>18.5</td>
<td>18.7</td>
</tr>
<tr>
<td>0.8</td>
<td>22.3</td>
<td>23.1</td>
<td>24.9</td>
<td>26.5</td>
<td>26.8</td>
</tr>
<tr>
<td>1.6</td>
<td>31.5</td>
<td>33.5</td>
<td>35.2</td>
<td>36.4</td>
<td>36.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0.1</th>
<th>0.2</th>
<th>0.4</th>
<th>0.8</th>
<th>1.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVRA/T 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>13.3</td>
<td>14.1</td>
<td>14.8</td>
<td>15.3</td>
<td>15.5</td>
</tr>
<tr>
<td>0.2</td>
<td>19.0</td>
<td>20.1</td>
<td>21.0</td>
<td>21.7</td>
<td>22.0</td>
</tr>
<tr>
<td>0.4</td>
<td>27.1</td>
<td>28.7</td>
<td>30.0</td>
<td>30.9</td>
<td>31.2</td>
</tr>
<tr>
<td>0.8</td>
<td>37.1</td>
<td>38.4</td>
<td>41.5</td>
<td>44.2</td>
<td>44.6</td>
</tr>
<tr>
<td>1.6</td>
<td>52.5</td>
<td>55.9</td>
<td>58.6</td>
<td>60.6</td>
<td>61.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0.1</th>
<th>0.2</th>
<th>0.4</th>
<th>0.8</th>
<th>1.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVRA 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>29.6</td>
<td>31.4</td>
<td>32.9</td>
<td>34.0</td>
<td>34.4</td>
</tr>
<tr>
<td>0.2</td>
<td>42.1</td>
<td>44.6</td>
<td>46.7</td>
<td>48.2</td>
<td>48.8</td>
</tr>
<tr>
<td>0.4</td>
<td>60.2</td>
<td>63.8</td>
<td>66.6</td>
<td>68.6</td>
<td>69.4</td>
</tr>
<tr>
<td>0.8</td>
<td>82.5</td>
<td>87.9</td>
<td>92.3</td>
<td>98.2</td>
<td>99.2</td>
</tr>
<tr>
<td>1.6</td>
<td>117.0</td>
<td>124.0</td>
<td>130.0</td>
<td>135.0</td>
<td>137.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0.1</th>
<th>0.2</th>
<th>0.4</th>
<th>0.8</th>
<th>1.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVRA 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>47.4</td>
<td>50.2</td>
<td>52.6</td>
<td>54.4</td>
<td>55.0</td>
</tr>
<tr>
<td>0.2</td>
<td>67.4</td>
<td>71.4</td>
<td>74.7</td>
<td>77.1</td>
<td>78.1</td>
</tr>
<tr>
<td>0.4</td>
<td>96.3</td>
<td>102.0</td>
<td>107.0</td>
<td>110.0</td>
<td>111.0</td>
</tr>
<tr>
<td>0.8</td>
<td>132.0</td>
<td>140.0</td>
<td>148.0</td>
<td>157.0</td>
<td>159.0</td>
</tr>
<tr>
<td>1.6</td>
<td>187.0</td>
<td>199.0</td>
<td>209.0</td>
<td>216.0</td>
<td>219.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0.1</th>
<th>0.2</th>
<th>0.4</th>
<th>0.8</th>
<th>1.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVRA 40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>74.0</td>
<td>78.5</td>
<td>82.3</td>
<td>85.0</td>
<td>86.0</td>
</tr>
<tr>
<td>0.2</td>
<td>105.0</td>
<td>112.0</td>
<td>117.0</td>
<td>121.0</td>
<td>122.0</td>
</tr>
<tr>
<td>0.4</td>
<td>151.0</td>
<td>159.0</td>
<td>167.0</td>
<td>172.0</td>
<td>174.0</td>
</tr>
<tr>
<td>0.8</td>
<td>206.0</td>
<td>222.0</td>
<td>231.0</td>
<td>246.0</td>
<td>248.0</td>
</tr>
<tr>
<td>1.6</td>
<td>291.0</td>
<td>310.0</td>
<td>326.0</td>
<td>337.0</td>
<td>342.0</td>
</tr>
</tbody>
</table>

Correction factor

When sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t_e. The correction factor table below:

<table>
<thead>
<tr>
<th>$t_e °C$</th>
<th>-40</th>
<th>-30</th>
<th>-20</th>
<th>-10</th>
<th>0</th>
<th>+10</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 22</td>
<td>0.90</td>
<td>0.94</td>
<td>0.97</td>
<td>1.00</td>
<td>1.05</td>
<td></td>
</tr>
</tbody>
</table>

An increase in hot gas temperature t_h of 10 K, based on $t_h = t_c + 25°C$, reduces valve capacity approx. 2% and vice versa.

A change in evaporating temperature t_e changes valve capacity; see correction factor table below.

© Danfoss A/S (AC-SMC/MWA), 11 - 2010
Type

<table>
<thead>
<tr>
<th>Type</th>
<th>Pressure drop across valve</th>
<th>Hot gas capacity $Q_h \ kW$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\Delta p \ \text{bar}$</td>
<td>Hot gas capacity $Q_h \ kW$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Evaporating temp. $t_e = 10^\circ C$, Hot gas temp. $t_h = t_c + 25^\circ C$, Subcooling $\Delta t_{sub} = 4 \text{K}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Condensing temperature $t_c \ ^\circ C$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+20</td>
</tr>
<tr>
<td>EVRA 3</td>
<td>0.1</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>2.2</td>
</tr>
<tr>
<td>EVRA/T 10</td>
<td>0.1</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>9.9</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>14.3</td>
</tr>
<tr>
<td>EVRA/T 15</td>
<td>0.1</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>12.6</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>17.9</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>25.7</td>
</tr>
<tr>
<td>EVRA/T 20</td>
<td>0.1</td>
<td>10.6</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>15.1</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>21.0</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>29.8</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>42.8</td>
</tr>
<tr>
<td>EVRA 25</td>
<td>0.1</td>
<td>23.6</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>33.6</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>46.6</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>66.2</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>95.2</td>
</tr>
<tr>
<td>EVRA 32</td>
<td>0.1</td>
<td>37.6</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>53.8</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>74.7</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>106.0</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>152.0</td>
</tr>
<tr>
<td>EVRA 40</td>
<td>0.1</td>
<td>58.8</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>84.1</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>117.0</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>166.0</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>238.0</td>
</tr>
</tbody>
</table>

An increase in hot gas temperature t_h of 10 K, based on $t_h = t_c + 25^\circ C$, reduces valve capacity approx. 2% and vice versa.

A change in evaporating temperature t_e changes valve capacity; see correction factor table below.

Correction factor

When sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t_e.

<table>
<thead>
<tr>
<th>$t_e^\circ C$</th>
<th>−40</th>
<th>−30</th>
<th>−20</th>
<th>−10</th>
<th>0</th>
<th>+10</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 134a</td>
<td>0.88</td>
<td>0.92</td>
<td>0.98</td>
<td>1.0</td>
<td>1.04</td>
<td>1.08</td>
</tr>
</tbody>
</table>

Technical brochure Solenoid valves type EVRA 3 to 40 and EVRAT 10 to 20

12 DKRCI.PD.BM0.B2.02 - 520H0120 © Danfoss A/S (AC-SMC/MWA), 11 - 2010
Capacity (continued)

Hot gas capacity \(Q_h \) kW

<table>
<thead>
<tr>
<th>Type</th>
<th>Pressure drop across valve</th>
<th>Condensing temperature (t_c) °C</th>
<th>Hot gas capacity (Q_h) kW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\Delta p) bar</td>
<td>+20</td>
<td>+30</td>
</tr>
<tr>
<td>EVRA 3</td>
<td>0.1</td>
<td>0.62</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.87</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>1.2</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>2.4</td>
<td>2.5</td>
</tr>
<tr>
<td>EVRA/T 10</td>
<td>0.1</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>5.7</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>8.1</td>
<td>8.2</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>11.1</td>
<td>11.4</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>15.7</td>
<td>16.0</td>
</tr>
<tr>
<td>EVRA/T 15</td>
<td>0.1</td>
<td>7.3</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>10.2</td>
<td>10.4</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>14.6</td>
<td>14.8</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>20.1</td>
<td>20.4</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>28.3</td>
<td>28.8</td>
</tr>
<tr>
<td>EVRA/T 20</td>
<td>0.1</td>
<td>12.1</td>
<td>12.3</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>17.1</td>
<td>17.3</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>24.4</td>
<td>24.7</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>33.4</td>
<td>34.0</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>47.1</td>
<td>48.0</td>
</tr>
<tr>
<td>EVRA 25</td>
<td>0.1</td>
<td>26.8</td>
<td>27.4</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>37.9</td>
<td>38.4</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>54.2</td>
<td>54.9</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>74.2</td>
<td>75.6</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>105.0</td>
<td>107.0</td>
</tr>
<tr>
<td>EVRA 32</td>
<td>0.1</td>
<td>43.0</td>
<td>43.8</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>60.6</td>
<td>61.4</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>86.7</td>
<td>87.8</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>119.0</td>
<td>121.0</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>167.0</td>
<td>171.0</td>
</tr>
<tr>
<td>EVRA 40</td>
<td>0.1</td>
<td>67.0</td>
<td>68.5</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>94.8</td>
<td>96.0</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>136.0</td>
<td>137.0</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>186.0</td>
<td>189.0</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>262.0</td>
<td>266.0</td>
</tr>
</tbody>
</table>

An increase in hot gas temperature \(t_h \) of 10 K, based on \(t_h = t_c + 25°C \), reduces valve capacity approx. 2% and vice versa.

A change in evaporating temperature \(t_e \) changes valve capacity; see correction factor table below.

Correction factor

When sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature \(t_e \).

<table>
<thead>
<tr>
<th>(t_e) °C</th>
<th>-40</th>
<th>-30</th>
<th>-20</th>
<th>-10</th>
<th>0</th>
<th>+10</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 404A</td>
<td>0.86</td>
<td>0.88</td>
<td>0.93</td>
<td>1.0</td>
<td>1.03</td>
<td>1.07</td>
</tr>
</tbody>
</table>
Technical brochure

Solenoid valves type EVRA 3 to 40 and EVRAT 10 to 20

Capacity

(continued)

<table>
<thead>
<tr>
<th>Type</th>
<th>Hot gas temperature $t_\text{g}^\circ\text{C}$</th>
<th>Condensing temperature $t_\text{c}^\circ\text{C}$</th>
<th>Hot gas capacity G_h kg/s at pressure drop across valve Δp bar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>EVRA 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVRA T 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVRA T 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVRA T 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVRA 25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVRA 32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVRA 40</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R 717 (NH₃)

<table>
<thead>
<tr>
<th>Type</th>
<th>Hot gas temperature $t_\text{g}^\circ\text{C}$</th>
<th>Condensing temperature $t_\text{c}^\circ\text{C}$</th>
<th>Hot gas capacity G_h kg/s at pressure drop across valve Δp bar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>EVRA 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVRA T 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVRA T 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVRA T 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVRA 25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVRA 32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVRA 40</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R 22

<table>
<thead>
<tr>
<th>Type</th>
<th>Hot gas temperature $t_\text{g}^\circ\text{C}$</th>
<th>Condensing temperature $t_\text{c}^\circ\text{C}$</th>
<th>Hot gas capacity G_h kg/s at pressure drop across valve Δp bar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>EVRA 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVRA T 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVRA T 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVRA T 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVRA 25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVRA 32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVRA 40</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An increase in hot gas temperature t_g of 10 K reduces valve capacity approx. 2% and vice versa.
Hot gas capacity G_h kg/s

<table>
<thead>
<tr>
<th>Type</th>
<th>Varmgas-temperatur t_h °C</th>
<th>Kondense-ringstem. t_k °C</th>
<th>Varmgaskapacitet G_h kg/s ved trykfaldet i ventilen Δp bar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>EVRA 3</td>
<td>+25</td>
<td>0.007</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>+35</td>
<td>0.009</td>
<td>0.012</td>
</tr>
<tr>
<td>EVRA/T 10</td>
<td>+25</td>
<td>0.048</td>
<td>0.067</td>
</tr>
<tr>
<td></td>
<td>+35</td>
<td>0.055</td>
<td>0.071</td>
</tr>
<tr>
<td></td>
<td>+45</td>
<td>0.096</td>
<td>0.113</td>
</tr>
<tr>
<td>EVRA/T 15</td>
<td>+25</td>
<td>0.261</td>
<td>0.305</td>
</tr>
<tr>
<td></td>
<td>+35</td>
<td>0.480</td>
<td>0.563</td>
</tr>
<tr>
<td></td>
<td>+45</td>
<td>0.789</td>
<td>0.913</td>
</tr>
</tbody>
</table>

An increase in hot gas temperature t_h of 10 K reduces valve capacity approx. 2% and vice versa.
Design\nFunction

4. Coil
16. Armature
18. Valve plate / Pilot valve plate
20. Earth terminal
24. Connection for flexible steel hose
28. Gasket
29. Pilot orifice
30. O-ring
31. Piston ring
36. DIN plug
40. Terminal box
43. Valve cover
44. O-ring
45. Valve cover gasket
48. Flange gasket
49. Valve body
51. Cover / Threaded plug
53. Manual operation spindle
59. Strainer
73. Equalization hole
74. Main channel
75. Pilot channel
76. Compression spring
80. Diaphragm/Servo piston
82. Support washer
83. Valve seat
84. Main valve plate

EVRA solenoid valves are designed on two different principles:

1. Direct operation
2. Servo operation

1. Direct operation

EVRA 3 is direct operated. The valve opens direct for full flow when the armature (16) moves up into the magnetic field of the coil. This means that the valve operates with a min. differential pressure of 0 bar. The teflon valve plate (18) is fitted direct on the armature (16).

Inlet pressure acts from above on the armature and the valve plate. Thus, inlet pressure, spring force and the weight of the armature act to close the valve when the coil is currentless.

2. Servo operation

EVRA/T 10 → 20 are servo operated piston valves.

The valves are closed with currentless coil. The servo piston (80) with main valve plate (84) closes against the valve seat (83) by means of the differential pressure between inlet and outlet side of the valve, the force of the compression spring (76) and possibly the piston weight.

When current to the coil is switched on, the pilot orifice (29) opens. This relieves the pressure on the piston spring side of the valve. The differential pressure will then open the valve.

The minimum differential pressure needed for full opening of the valves is 0.2 bar.

When current is applied to the coil the armature is drawn up into the magnetic field and opens the pilot orifice. This relieves the pressure above the diaphragm, i.e. the space above the diaphragm becomes connected to the outlet side of the valve. The differential pressure between inlet and outlet sides then presses the diaphragm away from the main orifice and opens it for full flow. Therefore a certain minimum differential pressure is necessary to open the EVRA valve and keep it open. For differential pressure 0 bar use EVRAT valves.

For EVRA 10 → 20 valves this differential pressure is 0.05 bar.

When current is switched off, the pilot orifice closes. Via the equalization holes (73) in the diaphragm, the pressure above the diaphragm then rises to the same value as the inlet pressure and the diaphragm closes the main orifice.

EVRA 25, 32 and 40 are servo operated piston valves.

The valves are closed with currentless coil. The servo piston (80) with main valve plate (84) closes against the valve seat (83) by means of the differential pressure between inlet and outlet side of the valve, the force of the compression spring (76) and possibly the piston weight.

When current to the coil is switched on, the pilot orifice (29) opens. This relieves the pressure on the piston spring side of the valve. The differential pressure will then open the valve.

The minimum differential pressure needed for full opening of the valves is 0.2 bar.
Material Specification

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Solenoid valves</th>
<th>Material</th>
<th>Analysis</th>
<th>Mat.no.</th>
<th>W.no.</th>
<th>ISO</th>
<th>EN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Valve body</td>
<td>EVRA 3</td>
<td>Free-cutting steel</td>
<td>11MnPb30</td>
<td>10277-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EVRA/T 10/15/20</td>
<td>Cast-iron</td>
<td>GJS-400-18-LT</td>
<td></td>
<td>1563</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Armature tube</td>
<td>EVRA 3/10/15/20</td>
<td>Stainless steel</td>
<td>X2CrNi19-11</td>
<td>10088</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Flange</td>
<td>EVRA/T 3/10/15/20</td>
<td>Steel</td>
<td>S235JR2</td>
<td>10025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Gasket</td>
<td>EVRA 3</td>
<td>Aluminium</td>
<td>AI 99.5</td>
<td>10210</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EVRA/T 10/15/20</td>
<td>Rubber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Gasket</td>
<td>EVRA/T 3/10/15/20</td>
<td>asbestos-free</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Armature tube nut</td>
<td>EVRA 3/10/15/20</td>
<td>Stainless steel</td>
<td>X8CrNi518-9</td>
<td>10088</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Cover</td>
<td>EVRA/T 10/15/20</td>
<td>Cast-iron</td>
<td>GJS-400-18-LT</td>
<td>1563</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Cover/thread plug</td>
<td>EVRA/T 10/15/20</td>
<td>Free-cutting steel</td>
<td>11SMnPb30</td>
<td>10277-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Gasket</td>
<td>EVRA/T 10/15/20</td>
<td>Aluminium</td>
<td>AI 99.5</td>
<td>10210</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Bolts</td>
<td>EVRA/T 10/15/20</td>
<td>Stainless steel</td>
<td>A2-70</td>
<td>3506</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Valve seat</td>
<td>EVRA/T 10/15/20</td>
<td>Teflon (PTFE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Material Specification

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Solenoid valves</th>
<th>Material</th>
<th>Analysis</th>
<th>Mat.no.</th>
<th>W.no.</th>
<th>ISO</th>
<th>EN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Valve body</td>
<td>EVRA 25/32/40</td>
<td>Cast-iron</td>
<td>GJS-400-18-LT</td>
<td>1563</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Armature tube nut</td>
<td>EVRA 25/32/40</td>
<td>Stainless steel</td>
<td>X8CrNi518-9</td>
<td>10088</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Armature tube</td>
<td>EVRA 25/32/40</td>
<td>Stainless steel</td>
<td>X2CrNi19-11</td>
<td>10088</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Flange</td>
<td>EVRA 25</td>
<td>Steel</td>
<td>S235JR2</td>
<td>10025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EVRA 32/40</td>
<td>Steel</td>
<td>P285QH</td>
<td></td>
<td>10222-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Gasket</td>
<td>EVRA 25/32/40</td>
<td>Aluminium</td>
<td>AI 99.5</td>
<td>10210</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EVRA 32/40</td>
<td>asbestos-free</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Gasket</td>
<td>EVRA 25</td>
<td>Rubber</td>
<td>Cr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Cover/thread plug</td>
<td>EVRA 25</td>
<td>Free-cutting steel</td>
<td>11SMnPb30</td>
<td>10277-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EVRA 32/40</td>
<td>Stainless steel</td>
<td>X5CrNi17-10</td>
<td></td>
<td>10088</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Gasket</td>
<td>EVRA 25</td>
<td>Rubber</td>
<td>CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Bolts</td>
<td>EVRA 25</td>
<td>Stainless steel</td>
<td>A2-70</td>
<td>3506</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Cover</td>
<td>EVRA 25</td>
<td>Cast-iron</td>
<td>GJS-400-18-LT</td>
<td>1563</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Bolts</td>
<td>EVRA 25/32/40</td>
<td>Stainless steel</td>
<td>A2-70</td>
<td>3506</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Valve seat</td>
<td>EVRA 25</td>
<td>Teflon (PTFE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dimensions and weight

<table>
<thead>
<tr>
<th>Type</th>
<th>H₁</th>
<th>H₂</th>
<th>H₃</th>
<th>H₄</th>
<th>L</th>
<th>L₁</th>
<th>L₁,max.</th>
<th>B</th>
<th>B₁ max.</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>kg</td>
</tr>
<tr>
<td>EVRA 3</td>
<td>84</td>
<td>19</td>
<td>124</td>
<td>65</td>
<td></td>
<td></td>
<td>75</td>
<td>80</td>
<td>68</td>
<td>1.2</td>
</tr>
<tr>
<td>EVRA/T 10</td>
<td>22</td>
<td>100</td>
<td>81</td>
<td>130</td>
<td>68</td>
<td>85</td>
<td></td>
<td>80</td>
<td>68</td>
<td>1.7</td>
</tr>
<tr>
<td>EVRA/T 15</td>
<td>100</td>
<td>81</td>
<td>130</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>68</td>
<td>1.8</td>
</tr>
<tr>
<td>EVRA/T 20</td>
<td>110</td>
<td>77</td>
<td>155</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td>96</td>
<td>68</td>
<td>2.7</td>
</tr>
</tbody>
</table>

1) With coil, without flanges

Weight of coil
- 10 W: approx. 0.3 kg
- 12 and 20 W: approx. 0.5 kg

Weight of flange set
- For EVRA 3, 10 and 15: 0.6 kg
- For EVRA 20: 0.9 kg
Dimensions and weight (continued)

<table>
<thead>
<tr>
<th>Type</th>
<th>(H_1)</th>
<th>(H_2)</th>
<th>(H_3)</th>
<th>(H_4)</th>
<th>(L)</th>
<th>(L_1) max.</th>
<th>(B)</th>
<th>(B_{\text{max}})</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>10 W</td>
<td>12 W</td>
<td>20 W</td>
<td>mm</td>
</tr>
<tr>
<td>EVRA 25</td>
<td>46</td>
<td>141</td>
<td>78</td>
<td>162</td>
<td>92</td>
<td>75</td>
<td>95</td>
<td>68</td>
<td>3.0</td>
</tr>
<tr>
<td>EVRA 32</td>
<td>47</td>
<td>115</td>
<td>53</td>
<td>175</td>
<td></td>
<td>75</td>
<td>80</td>
<td>68</td>
<td>4.0</td>
</tr>
<tr>
<td>EVRA 40</td>
<td>47</td>
<td>115</td>
<td>53</td>
<td>175</td>
<td></td>
<td>75</td>
<td>80</td>
<td>68</td>
<td>4.0</td>
</tr>
</tbody>
</table>

1) With coil, without flanges

- **Weigh of coil**
 - 10 W: approx. 0.3 kg
 - 12 and 20 W: approx. 0.5 kg

- **Weight of flange set**
 - For EVRA 25: 0.9 kg