INDEX

- **Document code:** DPD01614A
 Date: 1.7.2014

1. **CONTENTS OF THE DELIVERY**

2. **INSTALLATION**
 - 2.1 Optic fibre cable, signal listing and connections
 - 2.2 Cable bushing diameters
1. CONTENTS OF THE DELIVERY

Figure 1. Contents of the IP 54 control box delivery

1. IP54 control box
2. IP54 cable entry grommet plates
3. Grease for the grommet plates
4. Screws (4x10)
5. Plastic pins
2. INSTALLATION

These instructions guide you through the installation of the IP54 control box that you have purchased for your FR12, FR14, FI12, FI14, CH64 or CH74 size frequency converter.

1. IP54 control box bottom plate with starcoupler board

2. Connect the fibre optic cables. Push carefully the cables into the cellfoam bushings

3. Each fibre optic cable has a number 1...8 and 11...18 marked on the cable shield at both cable ends. Connect each cable to the connectors marked with the same number on the starcoupler board. The list of the optic signals can be found in chapter 2.1

4. Connect the 24 V cable and lead it through the bushing as shown in the figure.

5. Close the cover by pushing it carefully down so that the D-connector connects thoroughly.

6. Attach the cover with four screws (tightening torque 1.5 nm)

7. Apply a thin layer of grease to the cellfoam washers

8. Push the cellfoam washer into the guides in the enclosure.

9. Open the bushing for the cable. Pull away the right size of piece according to the cable size (in this figure 8 mm).
10. Push the cable to the bushing. Make sure that the cellfoam surrounds the cable tightly.

11. Attach the cable to the washer with a plastic binder.

12. Apply some grease to the upper cellfoam washer and push it to its place.

13. Attach the seal around the RS485 connector.

14. Attach the cover plate with four screws.

15. Seal the holes with a piece of tape and attach the RS485 cable.

16. Push the plastic pins to the unused cable entries.
2.1 Optic fibre cable, signal listing and connections

Star coupler board on control unit

- H6: Trip signal from power module 1
- H7: VaconBus data from ASIC 1 to control board
- H6: VaconBus data from control board to ASIC 1
- H5: ADC synchronization, power module 1
- H4: Phase W control, power module 1
- H3: Phase V control, power module 1
- H2: Phase U control, power module 1
- H1: Gate control enable, power module 1
- H18: Trip signal from power module 2
- H17: VaconBus data from ASIC 2 to control board
- H16: VaconBus data from control board to ASIC 2
- H15: ADC synchronization, power module 2
- H14: Phase W control, power module 2
- H13: Phase V control, power module 2
- H12: Phase U control, power module 2
- H11: Gate control enable, power module 2
- H23: Feedback phase W
- H22: Feedback phase V
- H21: Feedback phase U

Terminals on ASIC board of power module 1

- H1: Gate control enable
- H2: Phase U control
- H3: Phase V control
- H4: Phase W control
- H5: ADC synchronization
- H6: VaconBus data from control board to ASIC
- H7: VaconBus data from ASIC to control board

Terminals on FB board of power module 1

- H10: Trip signal
- H11: Feedback phase U
- H12: Feedback phase V
- H13: Feedback phase W

Terminals on ASIC board of power module 2

- H1: Gate control enable
- H2: Phase U control
- H3: Phase V control
- H4: Phase W control
- H5: ADC synchronization
- H6: VaconBus data from control board to ASIC
- H7: VaconBus data from ASIC to control board

Terminals on FB board of power module 2

- H10: Trip signal

Figure 2. Internal fibre cable connections
2.2 Cable bushing diameters

Figure 3. Cable bushing diameter