ENGINEERING

Guide d'utilisation

VLT® Refrigeration Drive FC 103 110-800 kW, Enclosures D9h-D10h and E5h-E6h

Table des matières

1	Intr	roduction	8
	1.1	Ressources supplémentaires	8
	1.2	Version de manuel	8
	1.3	Homologations et certifications	8
	1.4	Mise au rebut	9
2	Séc	curité	10
	2.1	Symboles de sécurité	10
	2.2	Personnel qualifié	10
	2.3	Précautions de sécurité	11
3	Vue	e d'ensemble des produits	13
	3.1	Utilisation prévue	13
	3.2	Qu'est-ce qu'un variateur en armoire ?	13
	3.3	Emplacement des options dans un variateur en armoire	16
	3.4	Identification du variateur	19
		3.4.1 Identification du variateur et de ses options	19
		3.4.2 Identification des tailles de boîtier	20
		3.4.3 Identification de code d'option	21
	3.5	Dimensionnements puissance et dimensions des boîtiers D9h–D10h et E5h–E6h	25
	3.6	Compartiment de commande et panneau de commande local	26
		3.6.1 Vue d'ensemble du compartiment de commande	26
		3.6.2 Porte de compartiment de commande	27
		3.6.3 Panneau de commande local (LCP)	28
		3.6.4 Menu du LCP	30
4	Inst	tallation mécanique	32
	4.1	Outils requis	32
	4.2	Éléments fournis	32
	4.3	Expédition fractionnée	33
	4.4	Stockage	33
	4.5	Environnement de fonctionnement	33
		4.5.1 Vue d'ensemble de l'environnement d'exploitation	33
		4.5.2 Gaz dans l'environnement d'exploitation	34
		4.5.3 Poussière dans l'environnement d'exploitation	34
	4.6	Conditions de l'installation	34
	4.7	Critères de refroidissement	35
	4.8	Débits d'air nominaux	35
	4.9	Levage du variateur	37
	4.10	Combinaison de plusieurs armoires en cas d'expédition fractionnée	38

	4.11	Installa	tion du variateur en armoire	40
		4.11.1	Création d'une entrée pour les câbles	40
		4.11.2	Installation du variateur avec option de refroidissement par canal de ventilation arrière	41
		4.11.3	Fixation de la ou des armoires au sol	41
5	Inst	allatio	n électrique	43
	5.1		nes de sécurité	43
	5.2		tion conforme aux critères CEM	44
	5.3		a de câblage pour variateurs en armoire D9h et D10h	47
	5.4		a de câblage pour variateurs en armoire E5h et E6h	48
	5.5		nces croisées de schéma de câblage	49
	5.6		ux de câbles en cas d'expédition fractionnée	50
	3.0	5.6.1	Raccordement de faisceaux de câbles	50
		5.6.2	Faisceaux de câbles D10h	51
		5.6.3	Faisceau de câbles E5h	55
		5.6.4	Faisceau de câbles E6h	61
	 5.7		e du compartiment de commande	67
	J./	5.7.1	Précautions de sécurité	67
		5.7.2	Vue intérieure du compartiment de commande	68
		5.7.3	Bornes de commande	69
		5.7.4	Bornes de relais	71
		5.7.5	Bornes de carte d'option	
		5.7.6	Vue d'ensemble du câblage des options	
	 5.8		dement des câbles du moteur, secteur et de terre	81
	3.0	5.8.1	Considérations relatives au câblage de puissance et à la mise à la terre	81
		5.8.2	Raccordement au secteur	83
		5.8.3	Raccordement du module variateur au moteur	87
		5.8.4	Raccordement du filtre sinus au moteur	89
		5.8.5	Raccordement du filtre dU/dt au moteur	91
		5.8.6	Raccordement à la terre	93
	 5.9		tion de fusibles en amont	94
		5.9.1	Calibres de fusible recommandés pour une installation conforme à CEI	94
		5.9.2	Calibres de fusible recommandés pour une installation conforme à UL	95
	5.10		ion du fonctionnement du moteur	97
	5.11		on du signal d'entrée de tension/courant	97
	5.12		uration de la communication série RS485	98
	5.13		uration du filtre harmonique passif (PHF)	99
	5.14		uration du filtre dU/dt	99
	5.15		uration du filtre sinus	99
	5.16		uration avec disjoncteur	100
	5.17		e de Safe Torque Off (STO)	100
		9	T-7 S-7	

6	List	te de vé	rification avant le démarrage	101
7	Mis	se en se	rvice	103
	7.1	Mise so	us tension du variateur	103
	7.2	Prograr	mmation du variateur	103
		7.2.1	Vue d'ensemble des paramètres	103
		7.2.2	Navigation parmi les différents paramètres	104
		7.2.3	Exemple de programmation pour une application en boucle ouverte	104
		7.2.4	Saisie des informations du système	106
		7.2.5	Configuration de l'optimisation automatique de l'énergie	106
		7.2.6	Configuration de l'adaptation automatique au moteur	107
	7.3	Tests av	ant le démarrage du système	107
		7.3.1	Tests de rotation moteur	107
	7.4	Réglage	e des paramètres	108
		7.4.1	Vue d'ensemble du réglage des paramètres	108
8	Exe	mples	de configuration de câblage	109
	8.1	Exempl	es d'applications	109
		8.1.1	Configuration de câblage pour l'adaptation automatique au moteur (AMA)	109
		8.1.2	Configuration de câblage pour l'adaptation automatique au moteur (AMA) sans borne 27	110
		8.1.3	Configuration de câblage : vitesse	110
		8.1.4	Configuration de câblage : Signal de retour	113
		8.1.5	Configuration de câblage : marche/arrêt	115
		8.1.6	Configuration de câblage : Marche/arrêt	118
		8.1.7	Configuration de câblage : Réinitialisation d'alarme externe	121
		8.1.8	Configuration de câblage : RS485	121
		8.1.9	Configuration de câblage : thermistance du moteur	121
		8.1.10	Câblage de régénération	122
		8.1.11	Configuration de câblage pour une commande de relais avec contrôleur logique avancé	123
		8.1.12	Configuration de câblage : compresseur	123
		8.1.13	Configuration de câblage : ventilateurs ou pompes uniques ou multiples	124
		8.1.14	Configuration de câblage : groupe de compresseurs	126
9	Ma	intenar	nce, diagnostic et dépannage	128
	9.1	Messag	es d'état	128
		9.1.1	Vue d'ensemble des messages d'état	128
		9.1.2	Messages d'état – Mode d'exploitation	128
		9.1.3	Messages d'état – Emplacement de la référence	129
		9.1.4	Messages d'état – État d'exploitation	129
	9.2	Mainte	nance et service	131
	9.3	Avertis	sements et alarmes	132
	9.4 Dépannage			158

Spé	cification	ons	162
10.1	Donnée	s électriques	162
	10.1.1	Données électriques, 380–480 V CA	162
	10.1.2	Données électriques, 525-695 V CA	165
10.2	Aliment	ation secteur	170
10.3	Puissand	ce et données du moteur	170
	10.3.1	Puissance du moteur (U, V, W)	170
	10.3.2	Caractéristique de couple	171
10.4	Conditio	ons ambiantes	171
10.5	Câbles c	de commande	171
10.6	Entrée/s	sortie de commande et données de commande	172
	10.6.1	Carte de commande, communication série USB	172
	10.6.2	Borne STO XD2.19 (la borne XD2.19 est en logique PNP fixe)	172
	10.6.3	Carte de commande, sortie 24 V CC	172
	10.6.4	Carte de commande, sortie +10 V CC	172
	10.6.5	Sorties digitales	173
	10.6.6	Entrées digitales	173
	10.6.7	Entrées codeur/impulsions	174
	10.6.8	Caractéristiques de contrôle	174
	10.6.9	Sorties relais	174
	10.6.10	Sortie analogique	175
	10.6.11	Carte de commande, communication série RS485	175
	10.6.12	Performance de la carte de commande	175
	10.6.13	Entrées analogiques	175
10.7	Spécifica	ations du filtre	176
	10.7.1	Spécifications du filtre harmoniques passif	176
	10.7.2	Spécifications de la réactance de ligne	177
	10.7.3	Spécifications du filtre dU/dt	177
	10.7.4	Spécifications du filtre sinus	179
10.8	Fusibles	s et disjoncteurs	179
	10.8.1	Types de fusibles	179
	10.8.2	Fusibles d'armoire	180
	10.8.3	Sectionneurs fusibles	181
	10.8.4	Sectionneurs non fusibles	182
	10.8.5	Fusibles de contacteur	183
	10.8.6	Disjoncteurs à boîtier moulé	185
10.9	Dimensi	ions du boîtier	186
	10.9.1	Dimensions du socle	186
	10.9.2	Dimensions du variateur en armoire D9h	186
•••	10.9.3	Dimensions du variateur en armoire D10h	187
	10.9.4	Dimensions du variateur en armoire E5h	188
	10.9.5	Dimensions du variateur en armoire E6h	189

Guide d'utilisation | VLT® Refrigeration Drive FC 103

Table des matières

10	10.10 Circulation de l'air dans le boîtier			
10	10.11 Couples de serrage nominaux		190	
11 A	nn	exe		192
11	1.1	Conven	ntions	192
11	1.2	Abrévia	ations	192
11	1.3	Réglage	es des paramètres par défaut selon International/North America (Amérique Nord)	194
11	1.4	Réglage	e des paramètres requis suivant les options du variateur	195
11	1.5	Schéma	as fonctionnels	196
11	1.6	Pertes o	de l'option de puissance d'entrée	199
		11.6.1	Pertes de contacteur	199
		11.6.2	Pertes de sectionneur fusible	200
		11.6.3	Pertes de sectionneur non fusible	201
		11.6.4	Pertes du disjoncteur	202
		11.6.5	Pertes de filtre harmonique passif	203
		11.6.6	Pertes de filtre dU/dt	204
		11.6.7	Pertes de filtre sinus	205

1 Introduction

1.1 Ressources supplémentaires

D'autres ressources sont disponibles pour bien comprendre les fonctions avancées et la programmation des variateurs.

- Le guide de programmation offre de plus amples détails sur la gestion des paramètres et donne de nombreux exemples d'applications.
- Le manuel de configuration détaille les possibilités et les fonctionnalités pour configurer des systèmes de contrôle de moteurs.
- Le manuel d'utilisation de la fonction Safe Torque Off contient les spécifications, les exigences et les consignes d'installation de la fonction Safe Torque Off.
- Des publications et des manuels supplémentaires sont disponibles auprès de Danfoss.

Voir https://www.danfoss.com/en/search/?filter=type%3Adocumentation.

1.2 Version de manuel

Ce manuel est régulièrement révisé et mis à jour. Toutes les suggestions d'amélioration sont les bienvenues.

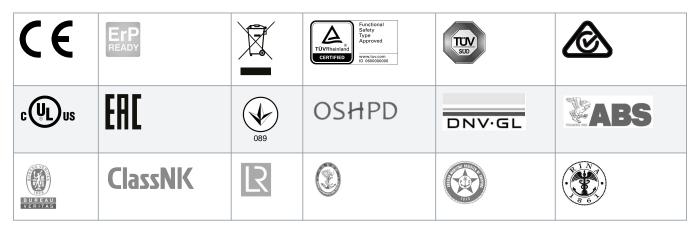

La langue d'origine de ce manuel est l'anglais.

Tableau 1: Version de manuel et de logiciel

Version	Remarques	Version logicielle
M0017202	Première version	2.33

1.3 Homologations et certifications

La liste suivante est une sélection des homologations et certifications possibles pour les variateurs Danfoss :

Les homologations et certifications spécifiques au variateur en armoire sont indiquées sur la plaque signalétique du variateur. Pour plus d'informations, veuillez contacter un représentant ou partenaire local de Danfoss.

8 | Danfoss A/S © 2018.10 AQ123456789012fr-000101 / 130R0881

Introduction

Exigence de sauvegarde de la capacité thermique

Ce variateur en armoire est conforme aux exigences de sauvegarde de la capacité thermique des normes UL 508C et UL 61800-5-1. Il est homologué UL conformément aux normes UL508A et CSA 14. Pour plus d'informations sur les exigences de sauvegarde de la capacité thermique UL 508C, se reporter à la section Protection thermique du moteur du manuel de configuration du produit.

REMARQUE

LIMITE FRÉQUENCE DE SORTIE

Compte tenu des réglementations sur le contrôle d'exportation, la fréquence de sortie du variateur est limitée à 590 Hz. Pour les demandes dépassant les 590 Hz, contacter Danfoss.

Conformité à ADN

Pour plus d'informations sur la conformité à l'accord européen relatif au transport international des marchandises dangereuses par voies de navigation intérieures (ADN), se reporter à la section *Installation conforme à ADN* dans le *manuel de configuration* du produit.

1.4 Mise au rebut

Ne pas jeter d'équipement contenant des composants électriques avec les ordures ménagères. Un tel équipement doit être collecté séparément conformément aux règlementations locales en vigueur.

2 Sécurité

2.1 Symboles de sécurité

Les symboles suivants sont utilisés dans ce manuel :

🛕 DANGER 🛕

Indique une situation dangereuse qui, si elle n'est pas évitée, entraînera des blessures graves ou le décès.

▲ AVERTISSEMENT ▲

Indique une situation dangereuse qui, si elle n'est pas évitée, peut entraîner des blessures graves ou le décès.

A ATTENTION A

Indique une situation dangereuse qui, si elle n'est pas évitée, peut entraîner des blessures superficielles à modérées.

REMARQUE

Indique un message de dégâts matériels.

2.2 Personnel qualifié

Pour assurer un fonctionnement en toute sécurité et sans problème de l'unité, cet équipement ne peut être transporté, stocké, assemblé, installé, programmé, mis en service, entretenu et mis hors service que par un personnel qualifié aux compétences éprouvées.

Les personnes aux compétences éprouvées :

- sont des ingénieurs électriciens qualifiés ou des personnes ayant été formées par des ingénieurs électriciens qualifiés et possédant l'expérience adéquate pour exploiter des dispositifs, des systèmes, une installation ou des machines conformément aux lois et règlementations pertinentes ;
- maîtrisent les réglementations de base concernant la santé et la sécurité, et la prévention des accidents ;
- ont lu et compris les consignes de sécurité fournies dans tous les manuels fournis avec l'unité, en particulier les instructions données dans le manuel d'utilisation de l'unité;
- ont une bonne connaissance des normes générales et spécialisées applicables à l'application spécifique.

10 | Danfoss A/S © 2018.10 AQ123456789012fr-000101 / 130R0881

2.3 Précautions de sécurité

A AVERTISSEMENT A

MANQUE DE SENSIBILISATION À LA SÉCURITÉ

Ce document donne d'importantes informations sur la façon d'éviter les blessures et les dommages causés à l'équipement ou au système concerné. Les ignorer peut entraîner des risques de blessures graves ou mortelles, ou de dommages importants à l'équipement.

- Veiller à bien comprendre les dangers et les mesures de sécurité liés à l'application concernée.

▲ AVERTISSEMENT **▲**

TEMPS DE DÉCHARGE

Le variateur contient des condensateurs de circuit intermédiaire et, en cas d'options de filtre d'entrée, des condensateurs et bobines d'induction supplémentaires. Ces composants peuvent rester chargés même lorsque le variateur n'est pas alimenté. Une haute tension peut être présente même lorsque les voyants d'avertissement sont éteints.

Le non-respect du temps d'attente spécifié après la mise hors tension avant un entretien ou une réparation peut entraîner le décès ou des blessures graves.

- Arrêter le moteur.
- Déconnecter le secteur CA, les moteurs à magnétisation permanente et les alimentations à distance du circuit intermédiaire, y compris les batteries de secours, les alimentations sans interruption et les connexions du circuit intermédiaire à d'autres variateurs.
- Attendre que les condensateurs soient complètement déchargés. Le temps d'attente minimal est spécifié dans le tableau Temps de décharge et est également indiqué sur la plaque signalétique située sur le dessus du variateur.
- Avant tout entretien ou toute réparation, utiliser un vérificateur d'absence de tension approprié pour s'assurer que les condensateurs sont complètement déchargés.

Tableau 2: Temps de décharge

Tension [V]	Temps d'attente minimum (minutes)	
	20	40
380-480	110–315 kW (150–450 HP)	355–560 kW (500–750 HP)
525-690	110-400 kW (125-400 HP)	450–800 kW (450–950 HP)

A AVERTISSEMENT A

HAUTE TENSION

Les variateurs de fréquence contiennent des tensions élevées lorsqu'ils sont alimentés par le réseau CA. Le non-respect de la réalisation de l'installation, du démarrage et de la maintenance par du personnel qualifié peut entraîner la mort ou des blessures graves.

L'installation, le démarrage et la maintenance ne doivent être effectués que par du personnel qualifié.

▲ AVERTISSEMENT **▲**

DÉMARRAGE IMPRÉVU

Lorsque le variateur est relié au secteur CA, à l'alimentation CC ou à la répartition de la charge, le moteur peut démarrer à tout moment, ce qui peut entraîner la mort, des blessures graves ou des dégâts matériels. Le moteur peut être démarré en actionnant un commutateur externe, un ordre du bus de terrain, un signal de référence d'entrée à partir du LCP ou du LOP, par commande à distance à l'aide du logiciel de programmation MCT 10 ou suite à la suppression d'une condition de panne.

- Appuyer sur [Off] sur le LCP avant de programmer les paramètres.
- Débrancher le variateur du secteur si la sécurité des personnes l'exige, afin d'éviter un démarrage imprévu du moteur.
- Vérifier que le variateur, le moteur et tout équipement entraîné soient prêts à fonctionner.

▲ AVERTISSEMENT ▲

RISQUE DE COURANT DE FUITE

Les courants de fuite dépassent 3,5 mA. Si le variateur n'est pas correctement mis à la terre, cela peut causer des blessures graves ou mortelles.

- Vérifiez que l'équipement a bien été mis à la terre par un installateur électrique certifié.

A AVERTISSEMENT A

MACHINES TOURNANTES

Tout contact avec les arbres tournants et les matériels électriques peut entraîner des blessures graves voire mortelles.

- L'installation, le démarrage et la maintenance doivent être effectués par du personnel qualifié uniquement.
- Veiller à ce que tous les travaux électriques soient conformes aux réglementations électriques locales et nationales.
- Suivre les procédures décrites dans ce manuel.

A ATTENTION A

SURFACES CHAUDES

Le variateur contient des composants métalliques qui restent chauds même après la mise hors tension du variateur. Le non-respect du symbole de température élevée (triangle jaune) sur le variateur peut entraîner des brûlures graves.

- Garder à l'esprit que les composants internes, tels que les jeux de barres, peuvent être extrêmement chauds même après la mise hors tension du variateur.
- Ne pas toucher les zones extérieures qui sont indiquées par le symbole de température élevée (triangle jaune). Ces zones sont chaudes lorsque le variateur est en cours d'utilisation et juste après sa mise hors tension.

▲ ATTENTION ▲

DANGER DE PANNE INTERNE

Une panne interne dans le variateur peut entraîner des blessures graves si le variateur n'est pas correctement fermé.

- Avant d'appliquer de la puissance, s'assurer que tous les caches de sécurité sont en place et fermement fixés.

12 | Danfoss A/S © 2018.10 AQ123456789012fr-000101 / 130R0881

3 Vue d'ensemble des produits

3.1 Utilisation prévue

REMARQUE

LIMITE FRÉQUENCE DE SORTIE

Compte tenu des réglementations sur le contrôle d'exportation, la fréquence de sortie du variateur est limitée à 590 Hz. Pour les demandes dépassant les 590 Hz, contacter Danfoss.

Le variateur en armoire est un contrôleur de moteur électronique qui convertit l'entrée de secteur CA en une sortie de forme d'onde CA variable. La fréquence et la tension de la sortie sont régulées pour contrôler la vitesse ou le couple du moteur. En fonction de la configuration, le variateur peut être utilisé dans des applications autonomes ou intégré à un plus vaste système ou une plus grande installation. Le variateur en armoire est destiné à :

- réguler la vitesse du moteur en réagissant au signal de retour du système ou à des ordres distants venant de contrôleurs externes;
- fournir une protection du moteur contre la surcharge;
- surveiller le système et l'état du moteur ;
- réduire les harmoniques et augmenter le facteur de puissance à l'aide du filtre harmonique passif en option ou par la réactance de ligne ;
- réduire le bruit acoustique du moteur et protéger l'isolation du moteur à l'aide des filtres de sortie en option ;
- réduire le courant de paliers et la tension d'arbre à l'aide du filtre de mode commun en option ;
- réduire le bruit électromagnétique haute fréquence dans les câbles du moteur à l'aide du filtre dU/dt en option ;
- fournir une sortie sinusoïdale à l'aide du filtre sinus en option.

Le variateur en armoire est conçu pour des environnements résidentiels, industriels et commerciaux conformément aux lois et normes locales. Ne pas utiliser ce variateur dans des applications qui ne sont pas conformes aux conditions d'exploitation et aux environnements spécifiés.

REMARQUE

INTERFÉRENCES RADIOÉLECTRIQUES

Dans un environnement résidentiel, ce produit peut être source d'interférences radioélectriques.

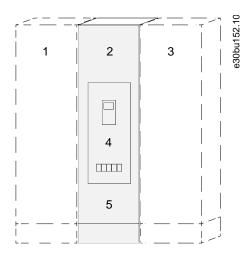
- Prenez des mesures de limitation supplémentaires.

3.2 Qu'est-ce qu'un variateur en armoire?

Le variateur en armoire est une armoire IP21/54 (NEMA 1/12) intégrant un variateur IP20 (châssis protégé) pour former la base du système. Il existe 4 modèles de variateur en armoire avec divers dimensionnements puissance.

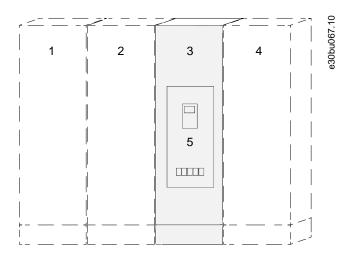
• Modèle D9h : 110–160 kW (125–250 HP)

Modèle D10h: 200–400 kW (250–450 HP)


Modèle E5h: 355–630 kW (450–650 HP)

Modèle E6h: 500–800 kW (650–950 HP)

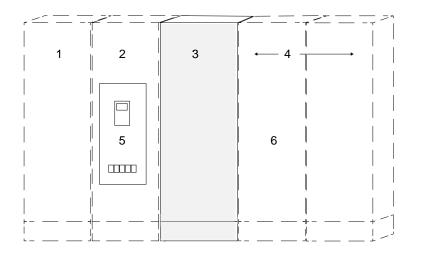
Le variateur en armoire est disponible avec diverses options de puissance et divers filtres d'entrée et de sortie afin de créer un variateur sur mesure en usine. Certaines options et certains filtres entraînent l'installation d'armoires supplémentaires à gauche ou à droite de



l'armoire de variateur. Ces armoires en option sont représentées par des lignes pointillées, alors que l'armoire de variateur est représentée en gris.

- 1 Armoire de filtre d'entrée (filtre harmonique passif ou réactance de ligne)
- 2 Armoire de variateurs
- 3 Armoire de filtre sinus
- 4 Compartiment de commande
- 5 Options de puissance d'entrée (1)

Illustration 1: Configurations possibles d'un variateur en armoire D9h


- 1 Armoire de filtre d'entrée (filtre harmonique passif ou réactance de ligne)
- 2 Armoire d'options de puissance d'entrée (1)
- 3 Armoire de variateur

Le boîtier D9h ne nécessite aucune armoire d'options de puissance d'entrée – les options de puissance d'entrée se trouvent dans l'armoire de variateur.

- 4 Armoire de filtre sinus
- 5 Compartiment de commande

Illustration 2: Configurations possibles d'un variateur en armoire D10h

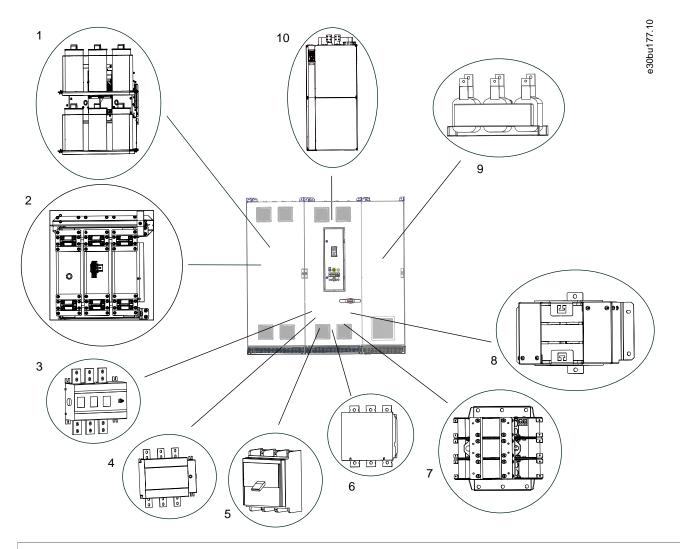
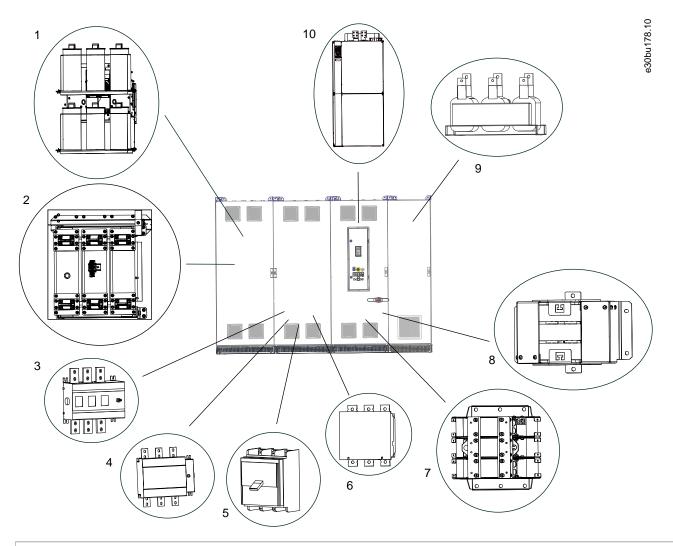

- 1 Armoire de filtre d'entrée (filtre harmonique passif ou réactance de ligne)
- 2 Armoire d'options de puissance d'entrée
- 3 Armoire de variateur
- 4 Armoire de filtre sinus
- 5 Compartiment de commande
- 6 Armoire de filtre dU/dt

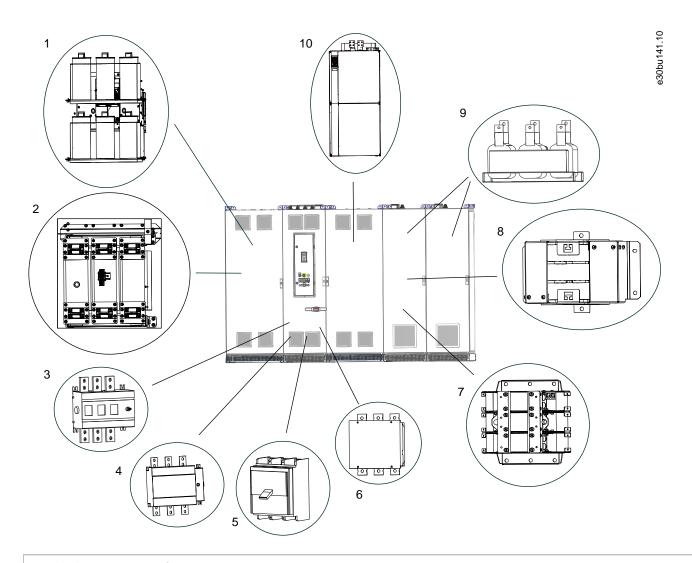
Illustration 3: Configurations possibles d'un variateur en armoire E5h ou E6h

Si plus d'une option de puissance d'entrée est commandée, le variateur en armoire D10h nécessite une armoire d'options de puissance d'entrée. Sinon, l'option de puissance d'entrée unique est placée en dessous du compartiment de commande dans l'armoire de variateur.


3.3 Emplacement des options dans un variateur en armoire

- 1 Filtre harmonique passif (PHF)
- 2 Réactance de ligne
- 3 Sectionneur non fusible
- 4 Sectionneur fusible
- 5 Disjoncteur à boîtier moulé (MCCB)
- **6** Contacteur
- 7 Filtre dU/dt
- 8 Filtre de mode commun
- 9 Filtre sinus
- 10 Module variateur (dépendant de la puissance)

Illustration 4: Représentation visuelle d'un boîtier D9h et emplacements des options disponibles



- 1 Filtre harmonique passif (PHF)
- 2 Réactance de ligne
- 3 Sectionneur non fusible
- 4 Sectionneur fusible
- 5 Disjoncteur à boîtier moulé (MCCB)
- 6 Contacteur
- 7 Filtre dU/dt
- 8 Filtre de mode commun
- 9 Filtre sinus
- 10 Module variateur (dépendant de la puissance)

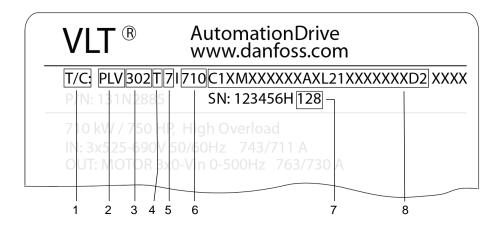
Illustration 5: Représentation visuelle d'un boîtier D10h et emplacements des options disponibles

- 1 Filtre harmonique passif (PHF)
- 2 Réactance de ligne
- 3 Sectionneur non fusible
- 4 Sectionneur fusible
- 5 Disjoncteur à boîtier moulé (MCCB)
- 6 Contacteur
- 7 Filtre dU/dt
- 8 Filtre de mode commun
- 9 Filtre sinus
- 10 Module variateur (dépendant de la puissance)

Illustration 6: Représentation visuelle d'un boîtier E5h/E6h et emplacements des options disponibles

3.4 Identification du variateur

3.4.1 Identification du variateur et de ses options


Context:

La taille du boîtier et les options spécifiques sont mentionnées dans ce guide à chaque fois que les procédures ou les composants diffèrent en fonction du variateur et de ses options. Procéder comme suit pour identifier le variateur en armoire :

Procédure

- 1. Identifier le code de type (T/C) sur la plaque signalétique. La plaque signalétique se trouve à l'extérieur du variateur près de la grille inférieure ou à l'intérieur de la porte d'armoire renfermant le compartiment de commande.
- 2. Déterminer le type de boîtier en obtenant les informations suivantes à partir du code de type :
 - A Groupe de produits et série de variateur (caractères 1 à 6).
 - B Tension nominale (caractère 8).
 - C Modèle/dimensionnement puissance (caractères 10 à 12).
- 3. Se reporter à table 3 et utiliser le numéro de modèle et la tension nominale pour trouver la taille de boîtier.
- 4. Obtenir les codes d'option suivants à partir du code de type.
 - A Filtre harmonique (caractère 7).
 - B Frein (caractère 15).
 - C Secteur (caractères 16 à 17).
 - D Filtre de sortie (caractère 18).
 - E Armoire vide supplémentaire (caractère 19).
 - F Arrivée des câbles (caractère 20).
 - **G** Refroidissement par canal de ventilation arrière (caractère 22).
 - H Fonction auxiliaire (caractères 22 à 23).
 - I Options montées sur la porte (caractères 28 à 29).
- 5. À l'aide des codes d'option, se reporter à 3.4.3 Identification de code d'option pour identifier les options installées.

Exemple:

Code de type.

30hi139 10

- **2** Groupe de produits (PLV = variateur en armoire)
- 3 Série de variateur
 - 102 = VLT[®] HVAC Drive
 - 202 = VLT® AQUA Drive
 - 302 = VLT® AutomationDrive
- 4 Option filtre harmonique
- 5 Tension secteur
 - 4 = 380-480 V
 - 5 = 380-500 V
 - 6 = 525-690 V
- 6 Modèle/dimensionnement puissance
- 7 Date de fabrication (ssa, où ss = la semaine et a = le dernier chiffre de l'année)
- 8 Codes d'option

Illustration 7: Utilisation de la plaque signalétique pour trouver la taille de boîtier et les options installées

3.4.2 Identification des tailles de boîtier

Tableau 3: Modèle par tension de variateur

Modèle	Taille de boîtier (380–480 V)	Taille de boîtier (525–690 V)
N110	D9h	D9h
N132	D9h	D9h
N160	D9h	D9h
N200	D10h	D10h
N250	D10h	D10h
N315	D10h	D10h
N355	E5h	-
N400	E5h	D10h
N450	E5h	E5h
N500	E6h	E5h
N560	E6h	E5h
N630	-	E5h
N710	-	E6h
N800	-	E6h

3.4.3 Identification de code d'option

Tableau 4: Codes d'option filtre harmonique

Position de caractère	Code d'option	Description
7	Т	Aucune
	Α	Filtre actif
	Р	Filtre passif, THDi=5 %, 50 Hz
	Н	Filtre passif, THDi=8 %, 50 Hz
	L	Filtre passif, THDi=5 %, 60 Hz
	U	Filtre passif, THDi=8 %, 60 Hz

Tableau 5: Codes d'option de freinage

Position de caractère	Code d'option	Description
15	X	Pas d'IGBT frein
	В	IGBT frein
	Т	Safe Torque Off
	U	IGBT frein + Safe Torque Off

Tableau 6: Codes d'option secteur

Position de caractère	Code d'option	Description
16–17	MX	Aucune
	M1	Sectionneur fusible
	M2	Sectionneur non fusible
	M3	Disjoncteur (MCCB)
	M4	Contacteur
	M5	Réactance de ligne CA
	M6	Fusibles
	MA	Sectionneur fusible + contacteur
	МВ	Sectionneur non fusible + contacteur
	MC	Réactance CA + sectionneur fusible
	MD	Réactance CA + sectionneur fusible + contacteur
	ME	Réactance CA + sectionneur non fusible
	MF	Réactance CA + disjoncteur (MCCB)
	MG	Réactance CA + contacteur
	МН	Réactance CA + sectionneur non fusible + contacteur

Tableau 7: Codes d'option de filtre de sortie

Position de caractère	Code d'option	Description
18	X	Aucune
	D	dU/dt
	S	Sinus
	С	Mode commun
	1	Mode commun + dU/dt
	2	Mode commun + sinus

Tableau 8: Codes d'option d'armoire supplémentaire

Position de caractère	Code d'option	Description
19	X	Aucune
	4	400 mm (15,8 po), côté gauche
	6	600 mm (23,6 po), côté gauche
	A	400 mm (15,8 po), côté droit
	В	600 mm (23,6 po), côté droit

Tableau 9: Codes d'option d'alimentation de câbles

Position de caractère	Code d'option	Description
20	X	Bas
	Т	Haut
	L	Secteur en haut, moteur en bas
	M	Secteur en bas, moteur en haut

Tableau 10: Codes d'alimentation auxiliaire

Position de caractère	Code d'option	Description
21	X	Aucune alimentation
	1	230 V CA externe
	2	230 V CA interne
	4	230 V CA interne + 24 V CC interne
	5	230 V CA externe + 24 V CC interne
	6	120 V CA externe
	7	120 V CA interne
	8	120 V CA interne + 24 V CC interne
	9	120 V CA externe + 24 V CC interne

22 | Danfoss A/S © 2018.10 AQ123456789012fr-000101 / 130R0881

Tableau 11: Codes d'option de refroidissement par canal de ventilation arrière

Position de caractère	Code d'option	Description
22	X	Entrée basse, sortie haute
	1	Entrée arrière, sortie arrière
	С	Entrée arrière, sortie haute
	D	Entrée basse, sortie arrière
	N	Aucune

Tableau 12: Codes d'option de fonction auxiliaire

Position de car- actère	Code d'option	Description
23–24	XX	Pas d'options auxiliaires
	A1	Prise CA + éclairage d'armoire
	A2	Bornes d'E/S étendues
	A3	Réchauffage d'armoire
	A4	Commande réchauffage moteur
	A5	Contrôleur d'isolement
	AA	Prise CA + éclairage d'armoire + bornes d'E/S étendues
	AB	Prise CA + éclairage d'armoire + réchauffage d'armoire
	CA	Prise CA + éclairage d'armoire + commande réchauffage moteur
	AD	Prise CA + éclairage d'armoire + contrôleur d'isolement
	AE	Prise CA + éclairage d'armoire + bornes d'E/S étendues + réchauffage d'armoire
	AF	Prise CA + éclairage d'armoire + bornes d'E/S étendues + commande réchauffage moteur
	AG	Prise CA + éclairage d'armoire + bornes d'E/S étendues + contrôleur d'isolement
	AH	Prise CA + éclairage d'armoire + bornes d'E/S étendues + réchauffage d'armoire + commande réchauffage moteur
	Al	Prise CA + éclairage d'armoire + bornes d'E/S étendues + réchauffage d'armoire + contrôleur d'isolement
	AJ	Prise CA + éclairage d'armoire + bornes d'E/S étendues + commande réchauffage moteur + contrôleur d'isolement
	AK	Prise CA + éclairage d'armoire + bornes d'E/S étendues + réchauffage d'armoire + commande réchauffage moteur + contrôleur d'isolement
	AL	Prise CA + éclairage d'armoire + réchauffage d'armoire + commande réchauffage moteur
	AM	Prise CA + éclairage d'armoire + réchauffage d'armoire + contrôleur d'isolement
	AN	Prise CA + éclairage d'armoire + réchauffage d'armoire + commande réchauffage moteur + contrôleur d'isolement
	AO	Prise CA + éclairage d'armoire + commande réchauffage moteur + contrôleur d'isolement
	AP	Bornes d'E/S étendues + réchauffage d'armoire
	AQ	Bornes d'E/S étendues + commande réchauffage moteur
	AR	Bornes d'E/S étendues + contrôleur d'isolement
	AS	Bornes d'E/S étendues + réchauffage d'armoire + commande réchauffage moteur
	AT	Bornes d'E/S étendues + réchauffage d'armoire + contrôleur d'isolement
	AU	Bornes d'E/S étendues + réchauffage d'armoire + commande réchauffage moteur + contrôleur d'isolement
	AV	Bornes d'E/S étendues + commande réchauffage moteur + contrôleur d'isolement
	AW	Réchauffage d'armoire + commande réchauffage moteur
	AX	Réchauffage d'armoire + contrôleur d'isolement
	AY	Réchauffage d'armoire + commande réchauffage moteur + contrôleur d'isolement
	AZ	Commande réchauffage moteur + contrôleur d'isolement

Tableau 13: Codes d'options montées sur porte

Position de car- actère	Code d'op- tion	Description
28–29	XX	Aucune
	D1	Voyants et bouton Reset
	D2	Contacteur d'arrêt d'urgence + bouton-poussoir d'urgence
	D3	STO avec bouton-poussoir d'urgence (aucune sécurité fonctionnelle)
	D4	STO/SS1 avec bouton-poussoir d'urgence + vitesse limite de sécurité (codeur TTL)
	D5	STO/SS1 avec bouton-poussoir d'urgence + vitesse limite de sécurité (codeur HTL)
	DA	Voyants et bouton Reset + contacteur d'arrêt d'urgence et bouton-poussoir d'urgence
	DB	Voyants et bouton Reset + STO avec bouton-poussoir d'urgence (aucune sécurité fonctionnelle)
	DC	Voyants et bouton Reset + STO/SS1 avec bouton-poussoir d'urgence + vitesse limite de sécurité (codeur TTL)
	DE	Voyants et bouton Reset + STO/SS1 avec bouton-poussoir d'urgence + vitesse limite de sécurité (codeur HTL)

3.5 Dimensionnements puissance et dimensions des boîtiers D9h–D10h et E5h–E6h

Tableau 14: Dimensionnements puissance et dimensions des boîtiers D9h–D10h et E5h–E6h (configurations standard)

Variateur en armoire	D9h	D10h	E5h	E6h
Puissance nominale à 380-480 V [kW (HP)]	110–160 (150– 250)	200–315 (300– 450)	355–450 (500– 600)	500–560 (650–750)
Puissance nominale à 525-690 V [kW (HP)]	110–160 (125– 200)	200–400 (250– 400)	450–630 (450– 650)	710–800 (750–950)
Indice de protection	IP21 (NEMA 1)/ IP54 (NEMA 12)	IP21 (NEMA 1)/ IP54 (NEMA 12)	IP21 (NEMA 1)/ IP54 (NEMA 12)	IP21 (NEMA 1)/IP54 (NEMA 12)
Armoire de variateur	D9h	D10h	E5h	E6h
Hauteur [mm (po)] (1)	2 100 (82,7)	2 100 (82,7)	2 100 (82,7)	2 100 (82,7)
Largeur [mm (po)] (2)	400 (15,8)	600 (23,6)	600 (23,6)	800 (31,5)
Profondeur [mm (po)]	600 (23,6)	600 (23,6)	600 (23,6)	600 (23,6)
Poids [kg (lb)] (2)	280 (617)	355 (783)	400 (882)	431 (950)
Armoire de filtre d'entrée	D9h	D10h	E5h	E6h
Hauteur [mm (po)] (1)	2 100 (82,7)	2 100 (82,7)	2 100 (82,7)	2 100 (82,7)
Largeur [mm (po)]	400 (15,8)	400 (15,8)/600 (23,6)	600 (23,6)	600 (23,6)/800 (31,5)
Profondeur [mm (po)]	600 (23,6)	600 (23,6)	600 (23,6)	600 (23,6)
Poids [kg (lb)]	410 (904)	410 (904)/530 (1168)	530 (1168)	530 (1168)/955 (2105)
Armoire d'options de puissance d'entrée	D9h	D10h	E5h	E6h

Variateur en armoire	D9h	D10h	E5h	E6h
Hauteur [mm (po)] ⁽¹⁾	_	2 100 (82,7)	2 100 (82,7)	2 100 (82,7)
Largeur [mm (po)]	_	600 (23,6)	600 (23,6)	600 (23,6)
Profondeur [mm (po)]	_	600 (23,6)	600 (23,6)	600 (23,6)
Poids [kg (lb)]	_	380 (838)	380 (838)	380 (838)
Armoire de filtre sinus	D9h	D10h	E5h	E6h
Hauteur [mm (po)] ⁽¹⁾	2 100 (82,7)	2 100 (82,7)	2 100 (82,7)	2 100 (82,7)
Largeur [mm (po)]	600 (23,6)	600 (23,6)	1 200 (47,2)	1 200 (47,2)
Profondeur [mm (po)]	600 (23,6)	600 (23,6)	600 (23,6)	600 (23,6)
Poids [kg (lb)]				
Armoire de filtre dU/dt	D9h	D10h	E5h	E6h
Hauteur [mm (po)] ⁽¹⁾	_	-	2 100 (82,7)	2 100 (82,7)
Largeur [mm (po)] (3)	_	-	400 (15,8)	400 (15,8)
Profondeur [mm (po)]	_	-	600 (23,6)	600 (23,6)
Poids [kg (lb)]	_	-	240 (529)	240 (529)
Armoire d'entrée/sortie des câbles par le haut	D9h	D10h	E5h	E6h
Hauteur [mm (po)] ⁽¹⁾	2 100 (82,7)	2 100 (82,7)	2 100 (82,7)	2 100 (82,7)
Largeur [mm (po)] (3)	400 (15,8)	400 (15,8)	400 (15,8)	400 (15,8)
Profondeur [mm (po)]	600 (23,6)	600 (23,6)	600 (23,6)	600 (23,6)
Poids [kg (lb)]	164 (362)	164 (362)	164 (362)	164 (362)

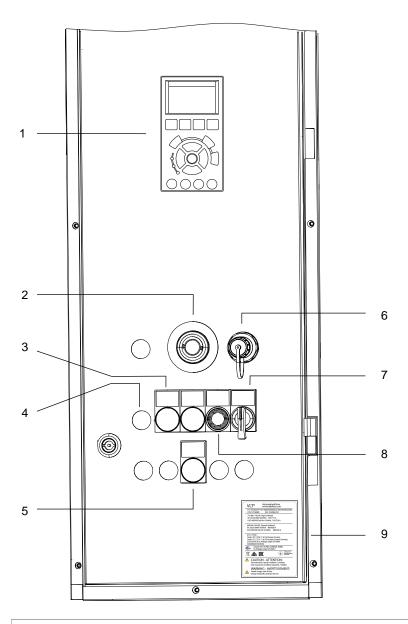
La hauteur de l'armoire inclut un socle standard de 100 mm (3,9 po). Un socle de 200 mm (7,9 po) ou 400 mm (15,8 po) est proposé en option.

3.6 Compartiment de commande et panneau de commande local

3.6.1 Vue d'ensemble du compartiment de commande

Le compartiment de commande est un espace autonome auquel il est possible d'accéder sans ouvrir le boîtier du variateur. Il contient les éléments suivants :

- panneau de commande local (LCP);
- bornes pour cartes d'option;
- composants auxiliaires en option et câblage associé;
- bornes de raccordement internes ;
- bornes de câblage de commande ;
- plaque signalétique du produit ;
- boutons et voyants (sur la porte extérieure).


² Sans options

³ Les boîtiers E5h et E6h contiennent 2 armoires de filtre sinus. La largeur indiquée est la largeur totale des deux armoires.

Pour des descriptions du câblage et des bornes, voir 5.7.2 Vue intérieure du compartiment de commande.

3.6.2 Porte de compartiment de commande

30hi1472 40

- 1 Panneau de commande local (LCP)
- 2 Bouton-poussoir d'urgence
- 3 Voyant de défaut
- 4 Voyant de fonctionnement
- 5 Voyant de défaut d'isolement
- 6 Emplacement USB

- **7** 0–1 Commutateur de démarrage
- 8 Bouton Reset
- 9 Plaque signalétique

Illustration 8: Porte extérieure du compartiment de commande (montrée avec toutes les options)

3.6.3 Panneau de commande local (LCP)

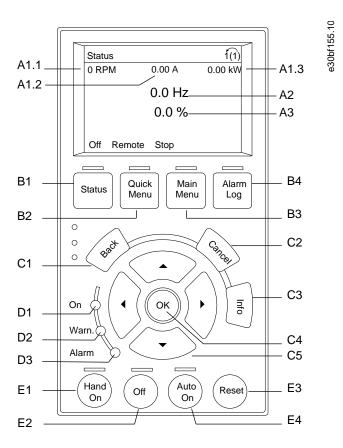


Illustration 9: Panneau de commande local graphique (LCP)

A. Zone d'affichage

Chaque lecture d'affichage a un paramètre qui lui est associé. Voir <u>table 15</u>. L'information affichée sur le LCP peut être personnalisée pour des applications spécifiques. Se reporter à Mon Menu personnel dans la section Menu du LCP.

Tableau 15: Zone d'affichage du LCP

Numéro	Paramètre	Réglage par défaut
A1.1	Paramètre 0-20 Display Line 1.1 Small (Affich. ligne 1.1 petit)	ReferenceSpeed [%] (Vit. réf. [%])
A1.2	Paramètre 0-21 Display Line 1.2 Small (Affich. ligne 1.2 petit)	Motor current [A] (Courant moteur [A])
A1.3	Paramètre 0-22 Display Line 1.3 Small (Affich. ligne 1.3 petit)	Power [kW] (Puissance [kW])
A2	Paramètre 0-23 Display Line 2 Large (Affich. ligne 2 grand)	Frequency [Hz] (Fréquence [Hz])

28 | Danfoss A/S © 2018.10 AQ123456789012fr-000101 / 130R0881

Numéro	Paramètre	Réglage par défaut
A3	Paramètre 0-24 Display Line 3 Large (Affich. ligne 3 grand)	kWh counter (Compteur kWh)

B. Touches de menu

Les touches de menu servent à l'accès aux menus, à la configuration des paramètres, à la navigation parmi les modes d'affichage d'état lors du fonctionnement normal et à la visualisation des données de la mémoire des défauts.

Tableau 16: Touches de menu du LCP

Numéro	Touche	Fonction
B1	Status	Indique les informations d'exploitation.
B2	Quick Menu	Permet d'accéder aux paramètres pour des réglages de base. Fournit également les étapes d'application détaillées. Se reporter à Mode menu rapide dans la section Menu du LCP.
В3	Main Menu	Permet d'accéder à tous les paramètres. Se reporter à Mode menu principal dans la section Menu du LCP.
B4	Alarm Log	Affiche une liste des avertissements actuels et les 10 dernières alarmes.

C. Touches de navigation

Les touches de navigation servent à programmer des fonctions et à déplacer le curseur à l'écran. Elles peuvent aussi permettre de commander la vitesse en mode local (Hand). La luminosité de l'affichage peut être réglée en appuyant sur [Status] et [$^{\perp}$]/[$^{\neg}$].

Tableau 17: Touches de navigation du LCP

Numéro	Touche	Fonction
C1	Back	Renvoie à l'étape ou à la liste du niveau précédent de la structure de menu.
C2	Cancel	Annule la dernière modification ou commande tant que le mode d'affichage n'a pas été modifié.
C3	Info	Donne une définition de la fonction affichée.
C4	ОК	Donne accès aux groupes de paramètres ou active une option.
C5	[△][▷][▽][◁]	Navigue entre les options du menu.

D. Voyants

Les voyants identifient l'état du variateur et fournissent une notification visuelle des conditions d'avertissement ou de panne.

Tableau 18: Voyants du LCP

Numéro	Voyant	Couleur	Fonction
D1	On	Vert	S'allume lorsque le variateur est alimenté par la tension secteur ou une alimentation externe 24 V.
D2	Warn.	Jaune	S'allume lorsque les conditions d'avertissement sont actives. Un texte s'affiche pour identifier le problème.
D3	Alarm	Rouge	S'allume pendant une condition de panne. Un texte s'affiche pour identifier le problème.

E. Touches d'exploitation et Reset

Les touches d'exploitation se trouvent en bas du panneau de commande local.

Tableau 19: Touches d'exploitation du LCP et Reset

Numéro	Touche	Fonction
E1	[Hand On]	Démarre le variateur en commande locale. Un signal d'arrêt externe via une entrée de commande ou la communication série annule la commande locale [Hand On].
E2	Off	Arrête le moteur, mais ne coupe pas la tension appliquée au variateur.
E3	Reset	Réinitialise le variateur manuellement après qu'une panne a été corrigée.
E4	Auto On	Met le système en mode d'exploitation à distance afin qu'il puisse répondre à un ordre de démarrage externe par les bornes de commande ou par communication série.

3.6.4 Menu du LCP

Menus rapides

Le mode *Menus rapides* propose une liste de menus servant à configurer et à utiliser le variateur. Sélectionner le mode *Menus rapides* en appuyant sur la touche [Quick Menus]. L'affichage correspondant apparaît sur l'écran du LCP.

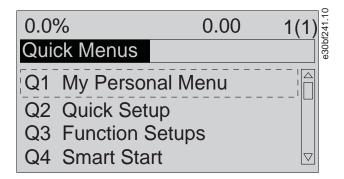


Illustration 10: Affichage du menu rapide

Q1 Mon menu personnel

Le menu personnel permet de définir ce qui apparaît dans la zone d'affichage. Se reporter à 3.6.3 Panneau de commande local (LCP). Ce menu peut aussi afficher jusqu'à 50 paramètres préprogrammés. Ces 50 paramètres sont saisis manuellement au paramètre 0-25 My Personal Menu (Mon menu personnel).

Q2 Config. rapide

Les paramètres disponibles dans Q2 Config. rapide comportent les données de base du système et du moteur qui sont toujours nécessaires à la configuration du variateur. Voir <u>7.2.4 Saisie des informations du système</u> pour les étapes de configuration.

Q3 Régl. fonction

Les paramètres disponibles dans Q3 Régl. fonction contiennent les données des fonctions de ventilateur, de compresseur et de pompe. Le menu comporte également les paramètres d'affichage du LCP, des vitesses digitales prédéfinies, de mise à l'échelle des références analogiques, des applications en boucle fermée zone unique et multizones.

Q4 Configuration intelligente

Q4 Configuration intelligente guide l'utilisateur parmi les réglages types des paramètres utilisés pour configurer l'une des trois applications suivantes :

- Frein mécanique
- Convoyeur
- Pompe/ventilateur

La touche [Info] permet d'accéder aux informations d'aide relatives à des sélections, réglages et messages.

O5 Modif. effectuées

Sélectionner Q5 Modif. effectuées pour obtenir des informations concernant :

- les 10 dernières modifications ;
- les modifications apportées depuis le réglage par défaut.

Q6 Enregistrements

Utiliser Q6 Enregistrements pour rechercher une erreur. Sélectionner Enregistrements pour obtenir des informations concernant les lignes d'affichage. Les informations apparaissent sous forme graphique. Seuls les paramètres sélectionnés entre le *paramètre 0-20 Display Line 1.1 Small* (Affich. ligne 1.1 petit) et le *paramètre 0-24 Display Line 3 Large* (Affich. ligne 3 grand) peuvent être visualisés. Il est possible de mémoriser jusqu'à 120 exemples à des fins de référence ultérieure.

Tableau 20: Exemples de paramètre dans Enregistrements

Q6 Enregistrements			
Paramètre 0-20 Display Line 1.1 Small (Affich. ligne 1.1 petit)	Reference [%] (Réf. %)		
Paramètre 0-21 Display Line 1.2 Small (Affich. ligne 1.2 petit)	Motor Current [A] (Courant moteur [A])		
Paramètre 0-22 Display Line 1.3 Small (Affich. ligne 1.3 petit)	Power [kW] (Puissance [kW])		
Paramètre 0-23 Display Line 2 Large (Affich. ligne 2 grand)	Frequency (Fréquence)		
Paramètre 0-24 Display Line 3 Large (Affich. ligne 3 grand)	kWh Counter (Compteur kWh)		

Menu principal

Le mode Menu principal est utilisé pour :

- · répertorier tous les groupes de paramètres disponibles pour le variateur et les options de variateur ;
- · modifier les valeurs des paramètres.

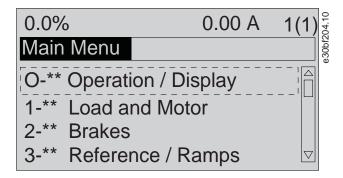
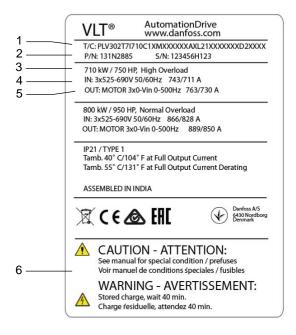


Illustration 11: Affichage du menu principal

4 Installation mécanique


4.1 Outils requis

- Poutre en I et crochets prévus pour soulever le poids du variateur. Se reporter à la section Dimensionnements puissance, poids et dimensions.
- Grue ou autre dispositif de levage pour mettre l'unité en place.
- Perceuse avec foret de 10 ou 12 mm.
- Mètre-ruban.
- Diverses tailles de tournevis cruciformes et plats.
- Clé avec douilles métriques (7-17 mm).
- · Extensions pour clé.
- Tournevis Torx (T25 et T50).
- · Poinçon pour tôle pour plaque d'entrée de câble.

4.2 Éléments fournis

Les éléments fournis peuvent varier en fonction de la configuration du produit.

- Vérifier que les éléments fournis et les informations disponibles sur la plaque signalétique correspondent à ceux de la confirmation de la commande.
- Vérifier visuellement l'emballage et le variateur pour s'assurer de l'absence de dommages dus à une mauvaise manipulation pendant le transport. Signaler tout dommage auprès du transporteur. Conserver les pièces endommagées à des fins de clarification

1 Code de type

2 Référence et numéro de série

3 Dimensionnement puissance

e30bu138.10

- 4 Tension, fréquence et courant d'entrée (à basse/haute tension)
- 5 Tension, fréquence et courant de sortie (à basse/haute tension)
- 6 Temps de décharge

Illustration 12: Exemple de plaque signalétique de produit pour boîtier E6h (version CEI à gauche, version UL à droite)

REMAROUE

GARANTIE

Le retrait de la plaque signalétique du variateur est susceptible d'entraîner une perte de garantie.

4.3 Expédition fractionnée

Selon les options commandées avec un variateur en armoire, le variateur peut se composer de 5 armoires et mesurer 3 400 mm (134 po) de largeur, ce qui peut être difficile à transporter et manipuler. Dans les cas où un variateur en armoire mesure plus de 1 800 mm (71 po) de largeur, les armoires sont séparées et expédiées dans plusieurs cartons. Toutes les fixations nécessaires au réassemblage sont fournies à la livraison. Pour réassembler une expédition fractionnée, se reporter à <u>4.10 Combinaison de plusieurs armoires en cas d'expédition fractionnée</u> et à <u>5.6.1 Raccordement de faisceaux de câbles</u>.

4.4 Stockage

Stocker le variateur dans un endroit sec. Garder l'équipement étanche dans son emballage jusqu'à l'installation. Se reporter à la section Conditions ambiantes pour la température ambiante recommandée.

Aucun réveil périodique des condensateurs (charge du condensateur) n'est nécessaire pendant le stockage tant qu'il ne dure pas plus de 12 mois.

4.5 Environnement de fonctionnement

4.5.1 Vue d'ensemble de l'environnement d'exploitation

Dans des environnements exposés à des liquides, à des particules ou à des gaz corrosifs en suspension dans l'air, s'assurer que la protection nominale IP/NEMA de l'équipement correspond à l'environnement d'installation. Se reporter à la section Conditions ambiantes.

REMARQUE

CONDENSATION

L'humidité peut se condenser sur les composants électroniques et provoquer des courts-circuits.

- Éviter toute installation dans des endroits exposés au gel.
- Installer un réchauffage d'armoire optionnel lorsque le variateur est plus froid que l'air ambiant.
- Le fonctionnement en mode veille réduit le risque de condensation tant que la dissipation de puissance maintient le circuit au sec.

REMARQUE

CONDITIONS AMBIANTES EXTRÊMES

Des températures hautes ou basses compromettent la performance et la longévité de l'unité.

- Ne pas utiliser dans des environnements où la température ambiante dépasse 55 °C (131 °F).
- Le variateur peut fonctionner à des températures allant jusqu'à -10 °C (14 °F). Cependant, le fonctionnement correct à charge nominale est garanti à 0 °C (32 °F) ou plus uniquement.
- Fournir une climatisation supplémentaire pour l'armoire ou le site d'installation lorsque la température dépasse les limites de température ambiante.

4.5.2 Gaz dans l'environnement d'exploitation

Les gaz agressifs, tels que le sulfure d'hydrogène, le chlore ou l'ammoniac, peuvent endommager les composants électriques et mécaniques. L'unité utilise des cartes de circuit tropicalisées pour réduire les effets des gaz agressifs.

Pour connaître les classes et les spécifications des classes de tropicalisation conformes, se reporter à la section Conditions ambiantes.

4.5.3 Poussière dans l'environnement d'exploitation

Lors de l'installation du variateur dans des environnements poussièreux, veiller à ce que de la poussière ne s'accumule pas sur les éléments suivants :

- composants électroniques;
- dissipateur de chaleur;
- ventilateurs.

Maintenance périodique

Lorsque la poussière s'accumule sur les composants électroniques, elle crée une couche d'isolation. Cette couche réduit la capacité de refroidissement des composants, ils deviennent ainsi plus chauds. L'environnement plus chaud diminue la durée de vie des composants électroniques. La poussière peut également s'accumuler sur les pales du ventilateur et causer un déséquilibre qui empêchera le ventilateur de refroidir l'unité correctement. L'accumulation de poussière peut aussi endommager les paliers du ventilateur et entraîner une panne précoce de celui-ci.

Pour plus d'informations, se reporter à la section Maintenance et entretien.

4.6 Conditions de l'installation

REMARQUE

SURCHAUFFE

Toute mauvaise installation peut entraîner une surchauffe et une réduction de la performance.

Installer le variateur conformément aux exigences d'installation et de refroidissement.

- Placer l'unité le plus près possible du moteur. Pour la longueur de câble du moteur maximale, voir 10.5 Câbles de commande.
- Assurer la stabilité de l'unité en la montant sur une surface solide.
- Veiller à ce que l'emplacement d'installation soit suffisamment résistant pour supporter le poids de l'unité.
- S'assurer que l'espace autour de l'unité permet un refroidissement adéquat. Voir 10.10 Circulation de l'air dans le boîtier.
- Garantir que l'accès est suffisant pour ouvrir la porte.
- Garantir l'entrée du câble par le bas.

4.7 Critères de refroidissement

REMARQUE

SURCHAUFFE

Toute mauvaise installation peut entraîner une surchauffe et une réduction de la performance.

- Installer le variateur conformément aux critères d'installation et de refroidissement.
- S'assurer qu'un dégagement en haut et en bas est prévu pour le refroidissement. Exigence relative au dégagement : 225 mm (9 po).
- Prévoir un débit d'air suffisant. Voir 4.8 Débits d'air nominaux.
- Le déclassement doit être envisagé pour des températures comprises entre 45 °C (113 °F) et 50 °C (122 °F) et une altitude de 1 000 m (3 300 pi) au-dessus du niveau de la mer. Consulter le manuel de configuration spécifique du produit pour des renseignements détaillés.

Le variateur en armoire, à l'exception de l'armoire d'options de puissance d'entrée, utilise un concept de refroidissement par canal de ventilation arrière qui élimine l'air utilisé pour refroidir le dissipateur de chaleur. Environ 90 % de la chaleur du canal arrière du variateur est évacuée. Grâce à une option de refroidissement par canal de ventilation arrière, l'air de refroidissement peut être amené dans la pièce où est installé le variateur, et évacué de celle-ci.

4.8 Débits d'air nominaux

Tableau 21: Débits d'air nominaux pour boîtier D9h

Armoire	Canal de ventilation arrière [m³/h (cfm)]	Ventilateur supérieur de mod- ule variateur [m³/h (cfm)]	Ventilateur de porte d'armoire [m³/h (cfm)]
PHF/réactance de ligne	450 (265)	_	_
Variateur	420 (250)	102 (60)	150 (90)
dU/dt	-	-	-
Sinus	900 (530)	-	-
Entrée supérieure/sortie supérieure	-	-	-

Tableau 22: Débits d'air nominaux pour boîtier D10h

Armoire	Canal de ventilation arrière [m³/h (cfm)]	Ventilateur supérieur de module variateur [m³/h (cfm)]	Ventilateur de porte d'ar- moire [m³/h (cfm)]
PHF/réactance de ligne	450 (265)	-	-
Options d'entrée	-	-	510 (310)

Armoire	Canal de ventilation arrière [m³/h (cfm)]	Ventilateur supérieur de module variateur [m³/h (cfm)]	Ventilateur de porte d'ar- moire [m³/h (cfm)]
Variateur	840 (500)	204 (120)	315 (185)
dU/dt	_	-	-
Sinus	900 (530)	_	_
Entrée supérieure/sortie supérieure	-	-	-

Tableau 23: Débits d'air nominaux pour boîtier E5h

Armoire	Canal de ventilation arrière [m³/h (cfm)]	Ventilateur supérieur de module variateur [m³/h (cfm)]	Ventilateur de porte d'armoire [m³/h (cfm)]
PHF/réactance de ligne	765 (450)	_	_
Options d'entrée	-	-	510 (310)
Variateur	994 (585)	595 (350)	335 (200)
dU/dt	665 (392)	-	-
Sinus	2 x 900 (530)	-	-
Entrée supérieure/sortie supérieure	-	-	-

Tableau 24: Débits d'air nominaux pour boîtier E6h

Armoire	Canal de ventilation arrière [m³/h (cfm)]	Ventilateur supérieur de module variateur [m³/h (cfm)]	Ventilateur de porte d'armoire [m³/h (cfm)]
PHF/réactance de ligne	1285 (755)	_	_
Options d'entrée	-	-	510 (310)
Variateur	1053–1206 (620–710)	629 (370)	430 (255)
dU/dt	665 (392)	-	-
Sinus	2 x 900 (530)	-	-
Entrée supérieure/sortie supérieure	-	-	_

4.9 Levage du variateur

▲ AVERTISSEMENT **▲**

POIDS LOURD

Le variateur est lourd. Le non-respect des réglementations de sécurité locales en matière de levage de poids lourds peut entraîner la mort, des blessures graves ou des dégâts matériels.

- S'assurer que l'équipement de levage est en état de fonctionner.
- Vérifier le poids du variateur et veiller à ce que l'équipement de levage puisse soulever le poids en toute sécurité.
- Veiller à ce que l'angle de la partie supérieure du variateur au câble de levage soit d'au moins 65°.
- Tester le levage du variateur sur environ 610 mm (24 po) pour vérifier le centre de gravité du point de levage. Repositionner le point de levage si l'unité n'est pas de niveau.
- Ne jamais marcher sous des charges suspendues.

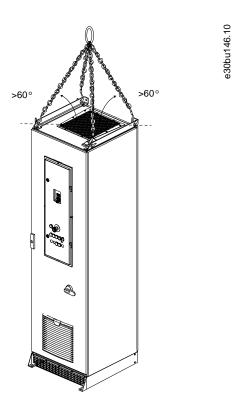
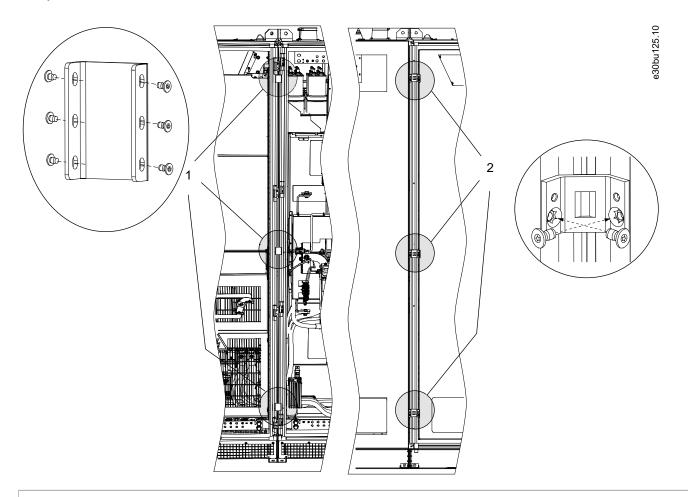


Illustration 13: Méthode de levage recommandée



4.10 Combinaison de plusieurs armoires en cas d'expédition fractionnée

Procédure

- 1. Veiller à ce que les armoires soient dans le bon ordre et les placer côte à côte. Pour connaître le bon ordre, se reporter à 3.2 Qu'est-ce qu'un variateur en armoire ?.
- 2. Fixer les armoires les unes aux autres :
 - A Retirer le panneau arrière Rittal de chaque armoire.
 - B Fixer les faces arrière des armoires les unes aux autres à l'aide des supports arrière. Voir illustration 14.
 - C Fixer les faces avant des armoires les unes aux autres à l'aide des supports avant. Voir illustration 14.
 - D Fixer les œillets de levage à la partie supérieure des armoires. Voir <u>illustration 15</u>.
 - E Relier les barres de mise à la terre à l'aide de l'élément de connecteur (voir l'élément grisé dans illustration 16).

Exemple:

- 1 Supports avant
- 2 Supports arrière

Illustration 14: Points de fixation des supports pour armoires

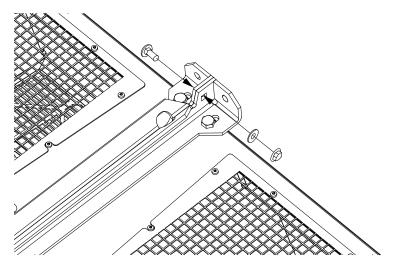


Illustration 15: Raccordement de l'œillet de levage entre les armoires

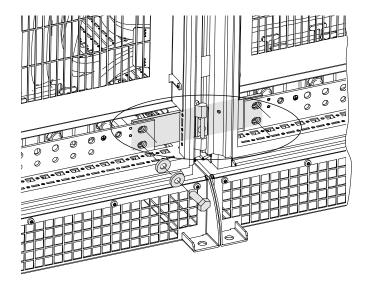


Illustration 16: Raccordement de la barre de mise à la terre entre les armoires

4.11 Installation du variateur en armoire

4.11.1 Création d'une entrée pour les câbles

Procédure

- 1. Localiser les armoires qui contiennent les bornes de raccordement moteur et alimentation CA
- 2. Ouvrir les portes de l'armoire et retirer les éventuelles protections placées sur les bornes.
- 3. Créer les ouvertures de câble.
 - Pour les versions CEI, couper les ouvertures de passe-fil juste assez pour faire passer les câbles.
 - Pour les versions UL, couper ou percer des ouvertures dans la plaque d'entrée de câble et installer des conduits UL adaptés, conformément au secteur et aux sections de câble du moteur.
- 4. Terminer les blindages correctement.
 - Utiliser les presse-étoupes métalliques pour terminer les blindages de câble de sortie.
 - Utiliser les colliers flexibles pour raccorder les blindages. Pour certaines configurations, Danfoss fournit les colliers flexibles.

Exemple:

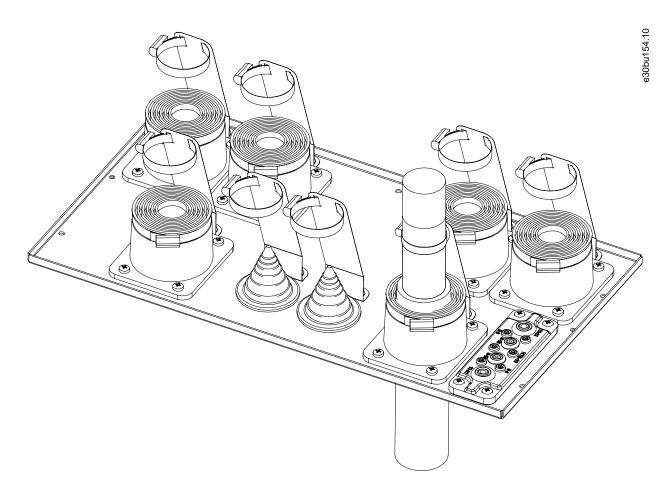


Illustration 17: Installation des câbles du moteur et secteur à travers une plaque d'entrée de câble IP54 (version CEI)

4.11.2 Installation du variateur avec option de refroidissement par canal de ventilation arrière

Procédure

- 1. Sélectionner une zone où installer le boîtier. Ne pas installer le boîtier dans un espace hermétique. Le variateur reçoit environ 5–10 % d'air d'admission de l'avant de l'armoire.
- 2. Mesurer les ouvertures de gaine à l'arrière des armoires et créer des ouvertures correspondantes dans le mur où le boîtier sera installé.
- 3. Si le variateur en armoire est configuré avec un réchauffage d'armoire, connecter le câble d'alimentation du réchauffage d'armoire aux bornes correctes dans le compartiment de commande. Se reporter à 5.7.2 Vue intérieure du compartiment de commande.
- 4. Déplacer le boîtier près du mur en alignant les gaines du boîtier sur les ouvertures dans le mur.
- 5. Veiller à former un joint hermétique entre la gaine et l'ouverture du mur.

Exemple:

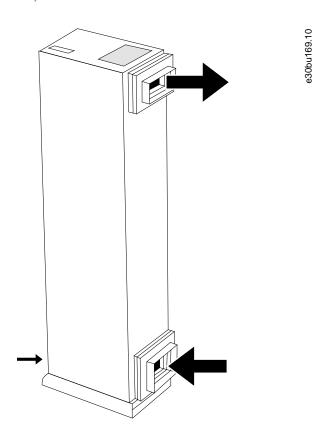
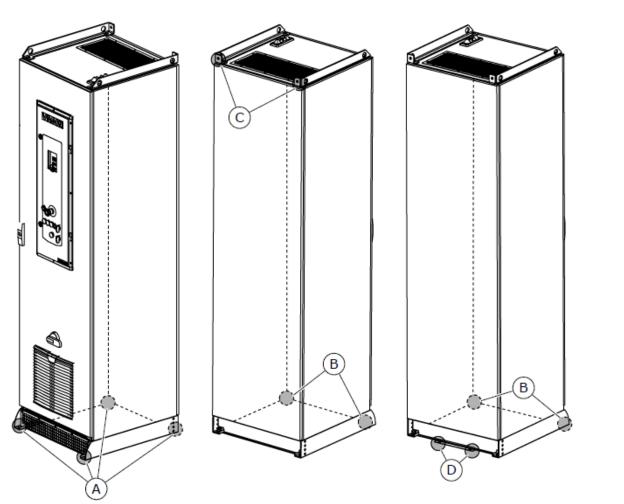


Illustration 18: Circulation d'air dans l'armoire avec option de canal de ventilation arrière (brides d'adaptation de gaine non fournies avec l'option)

4.11.3 Fixation de la ou des armoires au sol


Context:

Il existe 3 méthodes pour fixer l'armoire au sol :

- Utiliser les 4 points de fixation à la base du socle.
- Utiliser les 2 points de fixation au niveau de la base avant du socle et les 2 points de fixation supérieurs au niveau arrière de l'armoire.
- Pour utiliser le support de fixation, le fixer tout d'abord au sol en faisant coulisser le bord du socle d'armoire en dessous du support de fixation. Fixer ensuite les 2 trous de fixation à la base avant du socle.

Exemple:

- A Les 4 points de fixation à la base du socle
- B Les 2 points de fixation au niveau de la base avant du socle
- C Les 2 points de fixation au niveau du côté supérieur arrière de l'armoire
- D Les 2 points de fixation dans le support de fixation

Illustration 19: Points de fixation de l'armoire

e30

5 Installation électrique

5.1 Consignes de sécurité

Voir 2.3 Précautions de sécurité pour connaître les avertissements de sécurité généraux.

REMAROUE

APPLICATIONS À MOTEURS MULTIPLES

Pour assurer une protection contre les surcourants, un équipement de protection supplémentaire tel qu'une protection thermique du moteur ou une protection contre les courts-circuits entre le variateur et le moteur est requis pour les applications à moteurs multiples.

REMARQUE

CARACTÉRISTIQUES ET TYPES DE CÂBLES

L'ensemble du câblage doit être conforme aux réglementations nationales et locales en matière de sections de câble et de température ambiante. Pour les connexions de l'alimentation, un fil de cuivre prévu pour 75 °C (167 °F) minimum est recommandé.

▲ AVERTISSEMENT ▲

TENSION INDUITE

La tension induite des câbles moteur de sortie acheminés ensemble peut charger les condensateurs de l'équipement, même lorsque l'équipement est hors tension et verrouillé. Le fait de ne pas acheminer les câbles du moteur de sortie séparément ou de ne pas utiliser de câbles blindés peut entraîner le décès ou des blessures graves.

- Acheminer séparément les câbles du moteur de sortie.
- Utiliser des câbles blindés.

A AVERTISSEMENT A

RISQUE DE CHOC ÉLECTRIQUE

Le variateur peut entraîner un courant CC dans le conducteur PE. Si un relais de protection différentielle (RCD) de type B n'est pas utilisé, il se peut que le RCD ne fournisse pas la protection prévue, ce qui peut entraîner la mort ou des blessures graves.

 Lorsqu'un RCD est utilisé comme protection contre les chocs électriques, seul un dispositif de type B est autorisé du côté alimentation.

A ATTENTION **A**

SURCHARGE MOTEUR

Le réglage par défaut ne prévoit pas de protection contre la surcharge du moteur. Pour le marché nord-américain, la fonction ETR assure la protection de classe 20 contre la surcharge du moteur, en conformité avec NEC. En l'absence de réglage de la fonction ETR, la protection du moteur contre la surcharge n'est pas assurée et des dommages matériels peuvent survenir en cas de surchauffe du moteur.

- Activer la fonction ETR en réglant le *paramètre 1-90 Motor Thermal Protection* (Protect. thermique mot.) sur *ETR trip* (Alarme ETR) ou *ETR warning* (Avertissement ETR).

5.2 Installation conforme aux critères CEM

Pour obtenir une installation conforme aux critères CEM, veiller à bien suivre toutes les instructions concernant l'installation électrique.

Ne pas oublier d'effectuer ce qui suit :

- En cas d'utilisation de relais, de câbles de commande, d'une interface signal, d'un bus de terrain ou d'un frein, raccorder le blindage au boîtier aux deux extrémités. Si le chemin de mise à la terre présente une impédance élevée, est bruyant ou est porteur de courant, rompre le raccordement du blindage à 1 extrémité pour éviter des boucles de courant à la terre.
- Réacheminer les courants vers l'unité à l'aide d'une plaque de montage métallique. Assurer un bon contact électrique à partir de la plaque de montage en serrant solidement les vis de montage sur le châssis du variateur.
- Utiliser des câbles blindés pour les câbles de puissance du moteur. Il est aussi possible d'utiliser des câbles de moteur non blindés au sein d'un conduit métallique.
- Veiller à utiliser des câbles du moteur et de la résistance de freinage aussi courts que possible pour réduire le niveau d'interférences émises par le système dans son ensemble.
- Éviter de placer les câbles du moteur et de la résistance de freinage à côté de câbles sensibles aux perturbations.
- Pour les lignes de communication et de commande, suivre les normes du protocole de communication spécifique. Par exemple, pour la connexion USB, il convient d'utiliser des câbles blindés, mais pour la connexion RS485/Ethernet, des câbles UTP blindés ou non blindés peuvent être utilisés.
- S'assurer que toutes les connexions de borne de commande sont certifiées à très basse tension de protection (PELV).

REMARQUE

EXTRÉMITÉS BLINDÉES TORSADÉES (QUEUES DE COCHON)

Les extrémités blindées torsadées (queues de cochon) augmentent l'impédance du blindage à des fréquences élevées, ce qui réduit l'effet du blindage et accroît le courant de fuite.

- Utiliser des étriers de blindage intégrés au lieu d'extrémités blindées torsadées.

REMARQUE

CÂBLES BLINDÉS

Si ni câbles blindés ni conduits métalliques ne sont utilisés, l'unité et l'installation ne satisfont pas aux limites réglementaires relatives aux niveaux d'émission de radiofréquence (RF).

REMARQUE

INTERFÉRENCES CEM

Toute mauvaise séparation des câblages de l'alimentation, du moteur et de commande risque de provoquer une baisse de la performance ou un comportement inattendu.

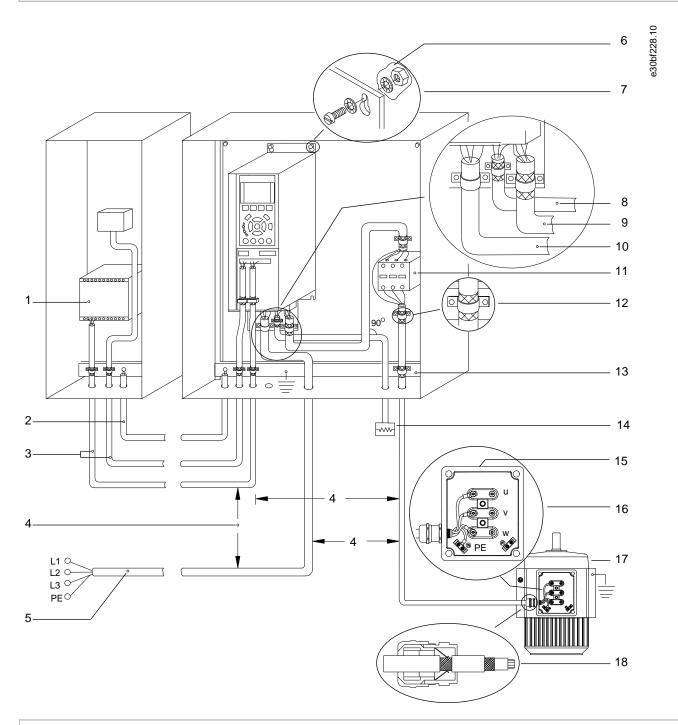
- Utiliser des câbles blindés pour le câblage du moteur et le câblage de commande.
- Prévoir au moins 200 mm (7,9 po) de séparation entre l'entrée secteur, les câbles du moteur et les câbles de commande.

REMARQUE

INSTALLATION À HAUTE ALTITUDE

Il existe un risque de surtension. L'isolation entre les composants et les pièces critiques peut s'avérer insuffisante et ne pas satisfaire aux exigences PELV.

- Utiliser des dispositifs de protection externe ou une isolation galvanique. Pour les installations au-dessus de 2 000 m (6 500 pi) d'altitude, contacter Danfoss concernant la conformité PELV (très basse tension de protection).

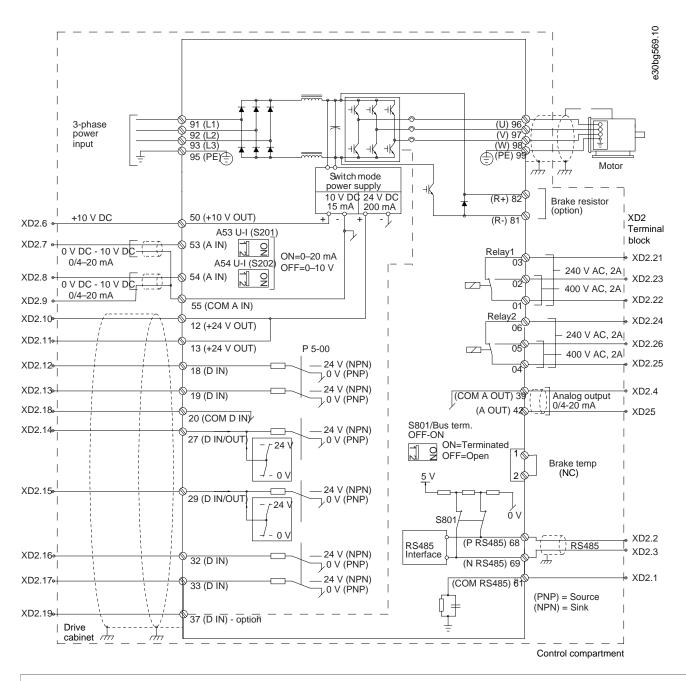

44 | Danfoss A/S © 2018.10 AQ123456789012fr-000101 / 130R0881

REMARQUE

CONFORMITÉ PELV (TRÈS BASSE TENSION DE PROTECTION)

Éviter les électrocutions en utilisant une alimentation électrique de type PELV et en respectant les réglementations PELV locales et nationales.

1 Contrôleur logique programmable (PLC)

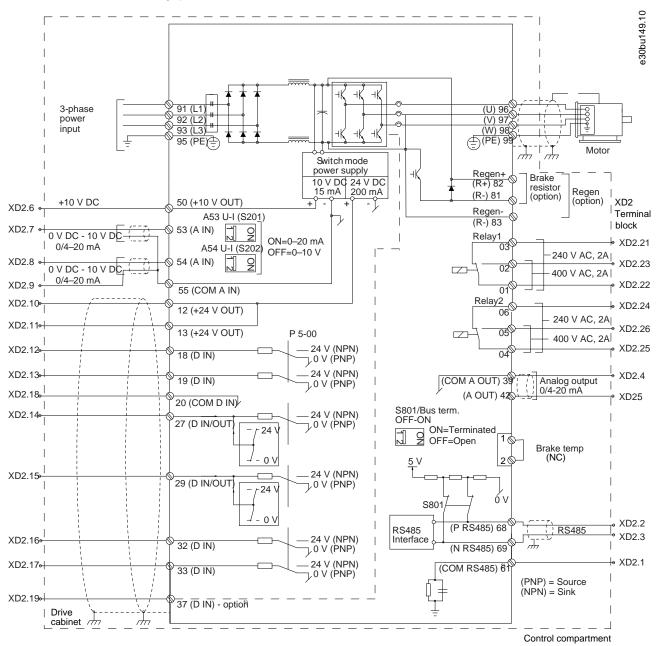


- 2 Câble d'égalisation de 16 mm² (6 AWG) minimum
- 3 Câbles de commande
- 4 Au moins 200 mm (7,9 po) entre les câbles de commande, du moteur et secteur
- 5 Alimentation secteur
- 6 Surface nue (non peinte)
- 7 Rondelles éventail
- 8 Câble de la résistance de freinage (blindé)
- 9 Câble du moteur (blindé)
- 10 Câble secteur (non blindé)
- 11 Contacteur de sortie, etc.
- 12 Isolation de câble dénudée
- 13 Barre omnibus de mise à la terre commune. Respecter les réglementations nationales et locales relatives à la mise à la terre d'armoire.
- 14 Résistance de freinage
- 15 Boîtier métallique
- 16 Raccordement au moteur
- 17 Moteur
- 18 Presse-étoupe CEM

Illustration 20: Exemple d'installation conforme aux exigences CEM

5.3 Schéma de câblage pour variateurs en armoire D9h et D10h

1 La borne 37 (en option) est utilisée pour la fonction Safe Torque Off. Pour obtenir les instructions d'installation, se reporter au manuel d'utilisation de la fonction Safe Torque Off de la série VLT® FC.


Illustration 21: Schéma de câblage de base pour boîtiers D9h et D10h

5.4 Schéma de câblage pour variateurs en armoire E5h et E6h

1 La borne 37 (en option) est utilisée pour la fonction Safe Torque Off. Pour obtenir les instructions d'installation, se reporter au manuel d'utilisation de la fonction Safe Torque Off de la série VLT® FC.

Illustration 22: Schéma de câblage pour boîtiers E5h et E6h

5.5 Références croisées de schéma de câblage

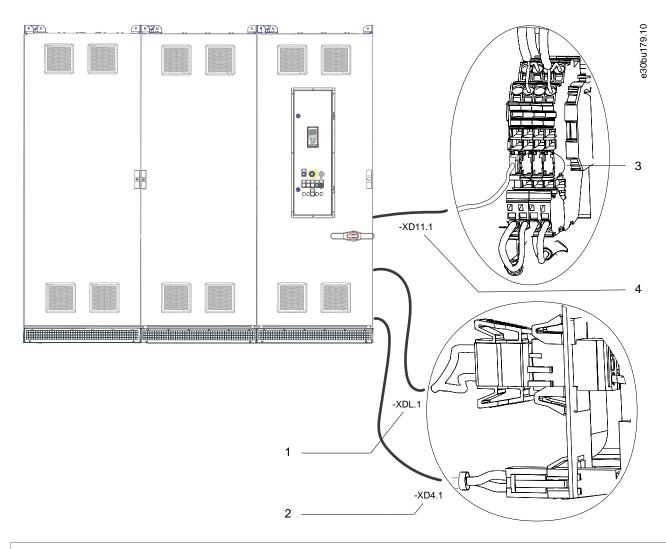
- 1 Bornes accessibles par l'utilisateur (compartiment de commande)
- 2 Bornes de communication série (module variateur)
- 3 Bornes d'entrée/sortie analogique (module variateur)

- 4 Bornes d'entrée/sortie digitale (module variateur)
- 5 Bornes de relais (module variateur)

Illustration 23: Références croisées de communication série, entrée/sortie digitale, entrée/sortie analogique et bornes de relais

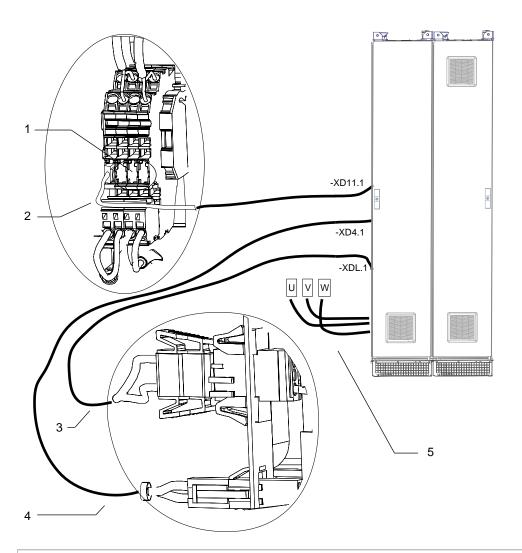
5.6 Faisceaux de câbles en cas d'expédition fractionnée

5.6.1 Raccordement de faisceaux de câbles


Context:

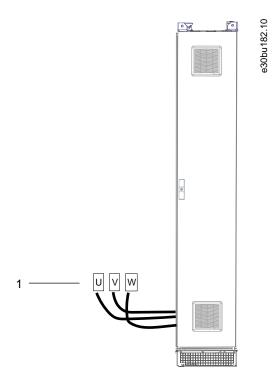
Procédure

- Connecter les faisceaux de câbles en fonction du fractionnement du variateur en armoire. Chaque faisceau de câbles dans le variateur en armoire est étiqueté. Se reporter aux illustrations dans cette section pour connaître les descriptions et noms des étiquettes.
 - A Connecter le faisceau de câbles d'alimentation du ventilateur.
 - **B** Connecter le faisceau de protection thermique.
 - C Le cas échéant, connecter les faisceaux de contacteur du PHF.
 - D Le cas échéant, connecter le faisceau du réchauffage d'armoire.
- 2. Connecter les câbles du filtre de sortie. Se reporter aux illustrations de cette section.
 - L'option de filtre sinus comporte un ensemble de câbles pour chaque filtre sinus. L'une des extrémités de chaque câble est déjà connectée au filtre, et l'autre extrémité est regroupée en faisceau dans l'armoire de filtre sinus. Connecter les extrémités de câble libres du filtre sinus aux bornes du moteur dans l'armoire de variateur.
 - Dans l'option de filtre dU/dt, les câbles de filtre libres sont regroupés en faisceau à l'intérieur de l'armoire de filtre dU/dt. Connecter les extrémités de câble libres aux bornes du moteur dans l'armoire de variateur.
- 3. Connecter les câbles du filtre d'entrée. Se reporter aux illustrations de cette section.
 - Pour l'option de filtre harmonique passif (PHF), les câbles de filtre sont regroupés en faisceau dans l'armoire de filtre d'entrée. Connecter tout d'abord les extrémités de câble libres du PHF (R/S/T) aux bornes correspondantes dans l'armoire d'options de puissance d'entrée. Connecter ensuite les extrémités de câble libres du PHF (L1R/L2S/L3T) aux bornes R/S/T dans l'armoire de variateur.
 - Pour l'option de réactance de ligne, les câbles de réactance de ligne sont regroupés en faisceau dans l'armoire de filtre d'entrée. Connecter tout d'abord les extrémités de câble libres de la réactance de ligne (R/S/T) aux bornes correspondantes dans l'armoire d'options de puissance d'entrée. Connecter ensuite les extrémités de câble libres de la réactance de ligne (L1R/L2S/L3T) aux bornes R/S/T dans l'armoire de variateur.


5.6.2 Faisceaux de câbles D10h

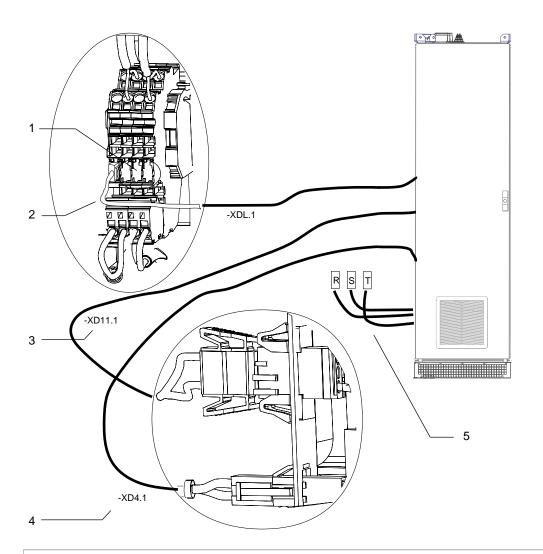
- 1 Faisceau de circuit intermédiaire vers l'alimentation du ventilateur dans l'armoire de filtre de sortie
- 2 Faisceau d'alimentation de réchauffage d'armoire vers l'armoire de filtre de sortie
- 3 Raccordements de bornes supplémentaires
- 4 Faisceau de câbles de protection thermique vers l'armoire de filtre de sortie

Illustration 24: Raccordements électriques en cas d'expédition fractionnée (armoire de filtre d'entrée + armoire d'options de puissance d'entrée + armoire de variateur D10h)



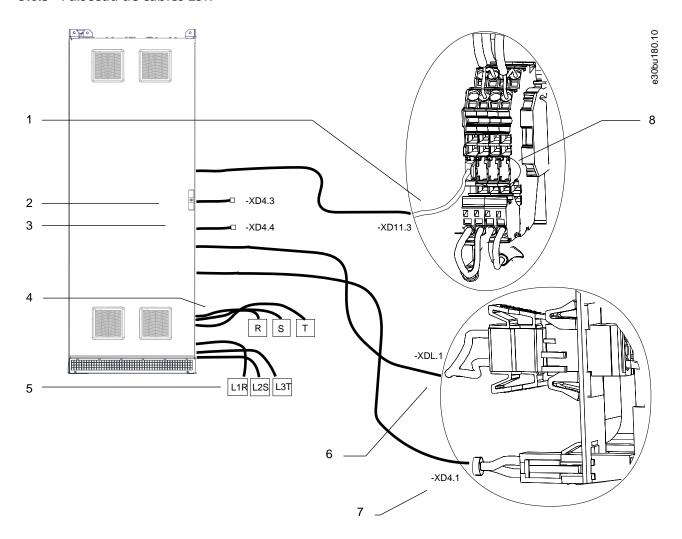
- 1 Raccordements de bornes supplémentaires
- 2 Faisceau de câbles de protection thermique vers l'armoire de variateur
- 3 Faisceau de circuit intermédiaire vers l'alimentation du ventilateur dans l'armoire de variateur
- 4 Faisceau d'alimentation de réchauffage d'armoire vers l'armoire de variateur
- 5 Câbles du moteur (U/V/W) vers les bornes du moteur (U/V/W) dans l'armoire de variateur

Illustration 25: Raccordements électriques en cas d'expédition fractionnée (armoire dU/dt + armoire de sortie des câbles par le haut)



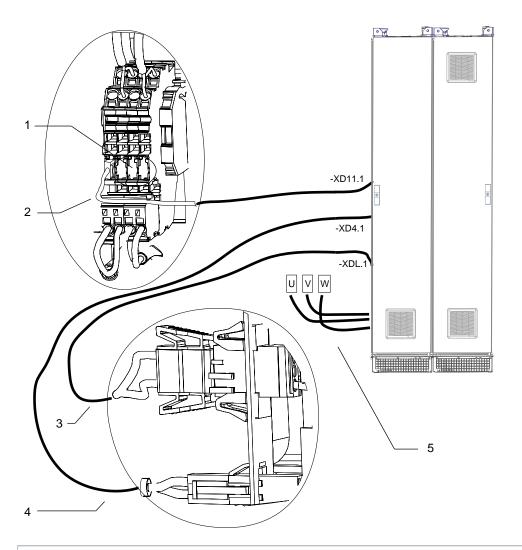
1 Câbles du moteur (U/V/W) vers les bornes du moteur (U/V/W) dans l'armoire de variateur

Illustration 26: Raccordements électriques en cas d'expédition fractionnée (armoire de sortie des câbles par le haut)



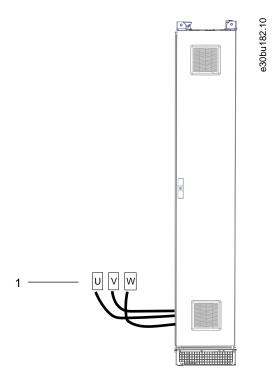
- 1 Raccordements de bornes supplémentaires
- 2 Faisceau de câbles de protection thermique vers l'armoire de variateur
- 3 Faisceau de circuit intermédiaire vers l'alimentation du ventilateur dans l'armoire de variateur
- Faisceau d'alimentation de réchauffage d'armoire vers l'armoire de variateur
- 5 Câbles du moteur (U/V/W) vers les bornes du moteur (U/V/W) dans l'armoire de variateur

Illustration 27: Raccordements électriques en cas d'expédition fractionnée (armoire de filtre sinus D10h)


5.6.3 Faisceau de câbles E5h

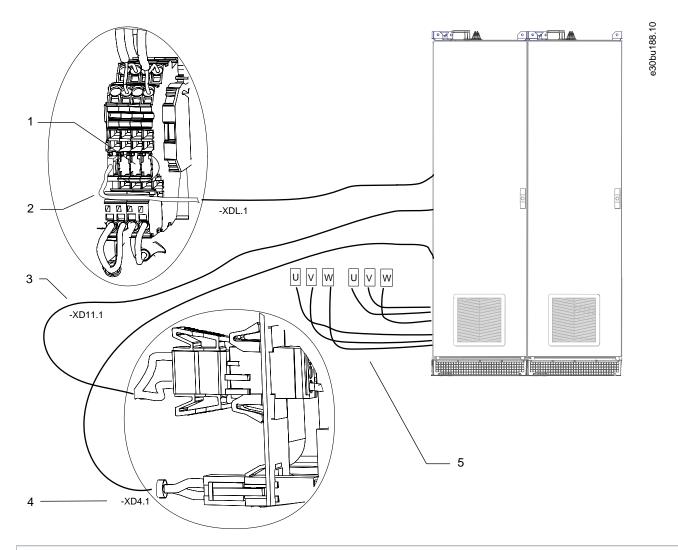
- 1 Faisceau de câbles de protection thermique vers l'armoire d'options de puissance d'entrée
- 2 Faisceau d'alimentation de contacteur de PHF 1 vers l'armoire d'options de puissance d'entrée (uniquement avec l'option de PHF)
- 3 Faisceau d'alimentation de contacteur de PHF 2 vers l'armoire d'options de puissance d'entrée (uniquement avec l'option de PHF)
- 4 Câbles de borne d'entrée (R/S/T) vers les bornes de secteur (R/S/T) dans l'armoire d'options de puissance d'entrée
- 5 Câbles de borne de sortie (L1R/L2S/L3T) vers les bornes de secteur (R/S/T) dans l'armoire de variateur
- 6 Faisceau de circuit intermédiaire vers l'alimentation du ventilateur dans l'armoire d'options de puissance d'entrée
- 7 Faisceau d'alimentation de réchauffage d'armoire vers l'armoire d'options de puissance d'entrée
- 8 Raccordements de bornes supplémentaires

Illustration 28: Raccordements électriques en cas d'expédition fractionnée (armoire de filtre d'entrée)



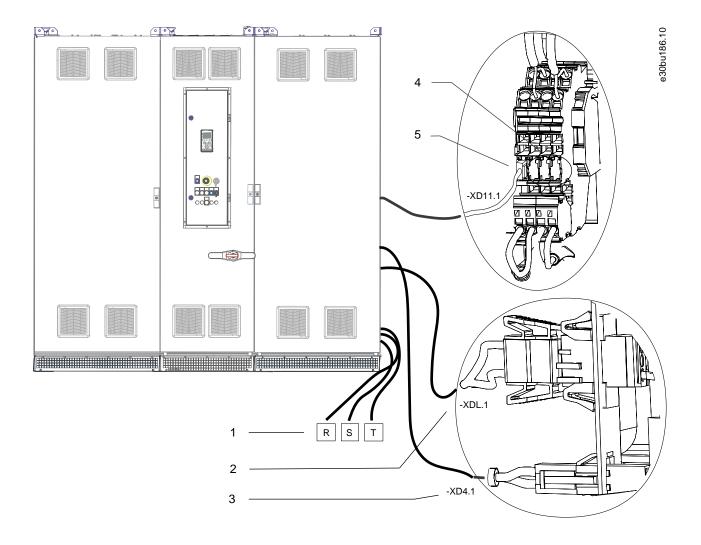
- 1 Raccordements de bornes supplémentaires
- Faisceau de câbles de protection thermique vers l'armoire de variateur
- 3 Faisceau de circuit intermédiaire vers l'alimentation du ventilateur dans l'armoire de variateur
- Faisceau d'alimentation de réchauffage d'armoire vers l'armoire de variateur
- 5 Câbles du moteur (U/V/W) vers les bornes du moteur (U/V/W) dans l'armoire de variateur

Illustration 29: Raccordements électriques en cas d'expédition fractionnée (armoire dU/dt + armoire de sortie des câbles par le haut)



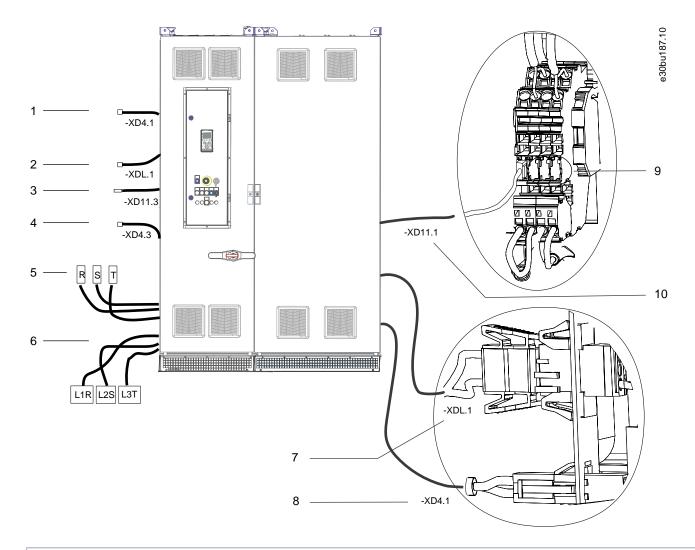
1 Câbles du moteur (U/V/W) vers les bornes du moteur (U/V/W) dans l'armoire de variateur

Illustration 30: Raccordements électriques en cas d'expédition fractionnée (armoire de sortie des câbles par le haut)



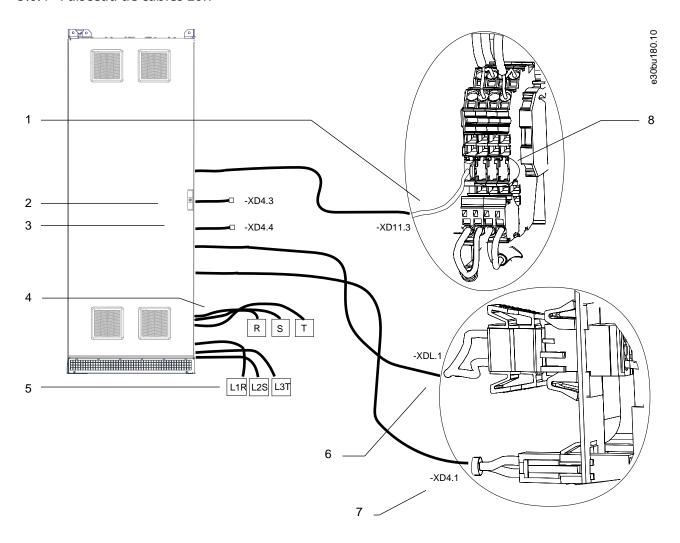
- 1 Raccordements de bornes supplémentaires
- 2 Faisceau de câbles de protection thermique vers l'armoire de variateur
- 3 Faisceau de circuit intermédiaire vers l'alimentation du ventilateur dans l'armoire de variateur
- 4 Faisceau d'alimentation de réchauffage d'armoire vers l'armoire de variateur
- 5 Câbles du moteur (U/V/W) vers les bornes du moteur (U/V/W) dans l'armoire de variateur

Illustration 31: Raccordements électriques en cas d'expédition fractionnée (armoires de filtre sinus E5h/E6h)



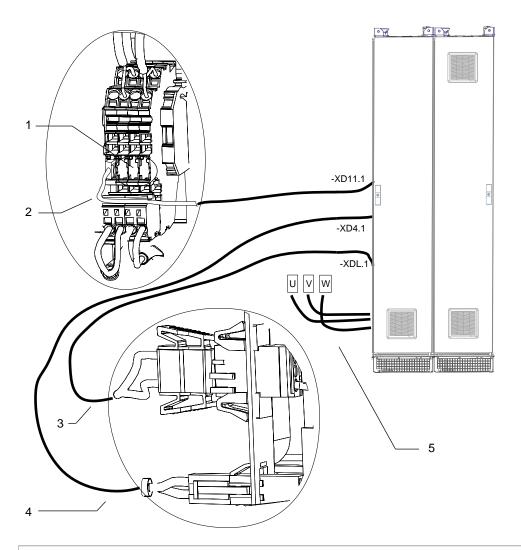
- 1 Câbles du moteur (U/V/W) vers les bornes du moteur (U/V/W) dans l'armoire de filtre de sortie
- 2 Faisceau de circuit intermédiaire vers l'alimentation du ventilateur dans l'armoire de filtre de sortie
- 3 Faisceau d'alimentation de réchauffage d'armoire vers l'armoire de filtre de sortie
- 4 Raccordements de bornes supplémentaires
- 5 Faisceau de câbles de protection thermique vers l'armoire de filtre de sortie

Illustration 32: Raccordements électriques en cas d'expédition fractionnée (armoire de filtre d'entrée + armoire d'options de puissance d'entrée + armoire de variateur E5h)



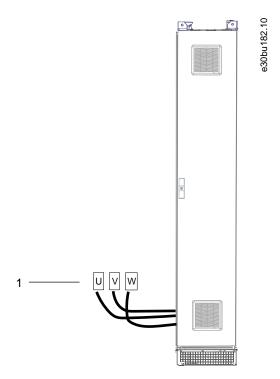
- 1 Faisceau d'alimentation de réchauffage d'armoire vers l'armoire de filtre d'entrée
- 2 Faisceau de circuit intermédiaire vers l'alimentation du ventilateur dans l'armoire de filtre d'entrée
- 3 Faisceau de protection thermique vers l'armoire de filtre d'entrée
- 4 Faisceau d'alimentation de contacteur de PHF 1 vers l'armoire de filtre d'entrée (uniquement avec l'option de PHF)
- 5 Câbles secteur (R/S/T) vers les bornes d'entrée (R/S/T) dans l'armoire de filtre d'entrée
- 6 Câbles secteur (L1R/L2S/L3T) vers les bornes de sortie (L1R/L2S/L3T) dans l'armoire de filtre d'entrée
- 7 Faisceau de circuit intermédiaire vers l'alimentation du ventilateur vers l'armoire de filtre de sortie
- 8 Faisceau d'alimentation de réchauffage d'armoire vers l'armoire de filtre de sortie
- 9 Raccordements de bornes disponibles
- 10 Faisceau de câbles de protection thermique vers l'armoire de filtre de sortie

Illustration 33: Raccordements électriques en cas d'expédition fractionnée (armoire d'options de puissance d'entrée + armoire de variateur E5h)


5.6.4 Faisceau de câbles E6h

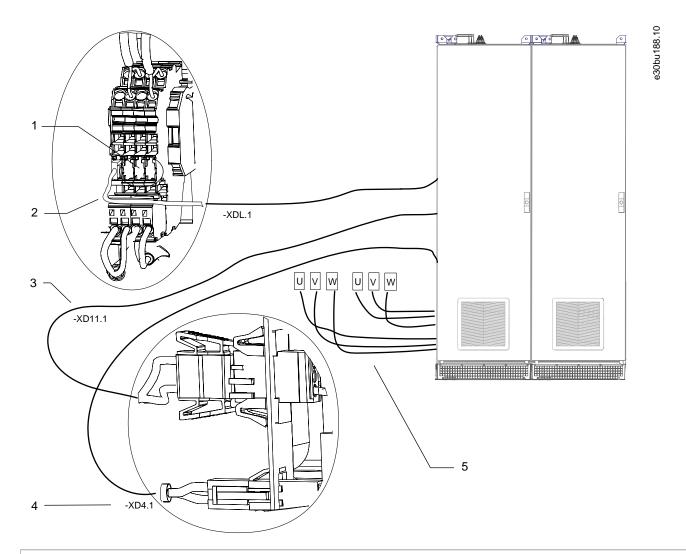
- 1 Faisceau de câbles de protection thermique vers l'armoire d'options de puissance d'entrée
- 2 Faisceau d'alimentation de contacteur de PHF 1 vers l'armoire d'options de puissance d'entrée (uniquement avec l'option de PHF)
- 3 Faisceau d'alimentation de contacteur de PHF 2 vers l'armoire d'options de puissance d'entrée (uniquement avec l'option de phe)
- 4 Câbles de borne d'entrée (R/S/T) vers les bornes de secteur (R/S/T) dans l'armoire d'options de puissance d'entrée
- 5 Câbles de borne de sortie (L1R/L2S/L3T) vers les bornes de secteur (R/S/T) dans l'armoire de variateur
- 6 Faisceau de circuit intermédiaire vers l'alimentation du ventilateur dans l'armoire d'options de puissance d'entrée
- 7 Faisceau d'alimentation de réchauffage d'armoire vers l'armoire d'options de puissance d'entrée
- 8 Raccordements de bornes supplémentaires

Illustration 34: Raccordements électriques en cas d'expédition fractionnée (armoire de filtre d'entrée)



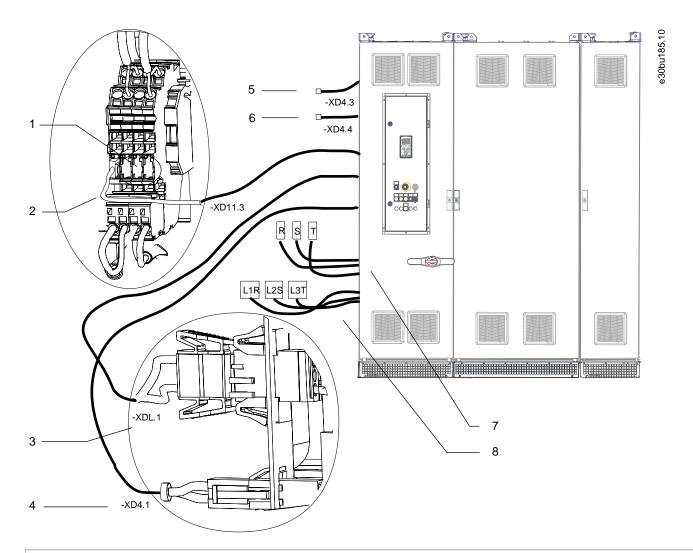
- 1 Raccordements de bornes supplémentaires
- 2 Faisceau de câbles de protection thermique vers l'armoire de variateur
- 3 Faisceau de circuit intermédiaire vers l'alimentation du ventilateur dans l'armoire de variateur
- Faisceau d'alimentation de réchauffage d'armoire vers l'armoire de variateur
- 5 Câbles du moteur (U/V/W) vers les bornes du moteur (U/V/W) dans l'armoire de variateur

Illustration 35: Raccordements électriques en cas d'expédition fractionnée (armoire dU/dt + armoire de sortie des câbles par le haut)



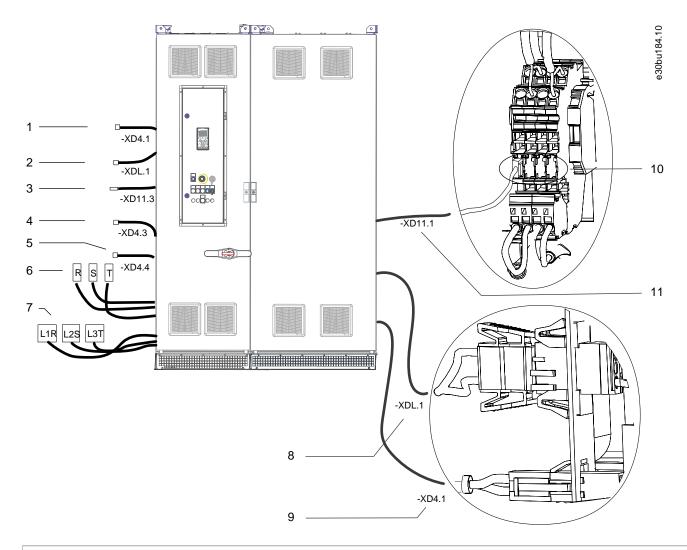
1 Câbles du moteur (U/V/W) vers les bornes du moteur (U/V/W) dans l'armoire de variateur

Illustration 36: Raccordements électriques en cas d'expédition fractionnée (armoire de sortie des câbles par le haut)



- 1 Raccordements de bornes supplémentaires
- 2 Faisceau de câbles de protection thermique vers l'armoire de variateur
- 3 Faisceau de circuit intermédiaire vers l'alimentation du ventilateur dans l'armoire de variateur
- 4 Faisceau d'alimentation de réchauffage d'armoire vers l'armoire de variateur
- 5 Câbles du moteur (U/V/W) vers les bornes du moteur (U/V/W) dans l'armoire de variateur

Illustration 37: Raccordements électriques en cas d'expédition fractionnée (armoires de filtre sinus E5h/E6h)



- 1 Raccordements de bornes supplémentaires
- 2 Faisceau de câbles de protection thermique vers l'armoire de filtre d'entrée
- 3 Faisceau de circuit intermédiaire vers l'alimentation du ventilateur dans l'armoire de filtre d'entrée
- 4 Faisceau d'alimentation de réchauffage d'armoire vers l'armoire de filtre d'entrée
- 5 Faisceau d'alimentation de contacteur de PHF 1 vers l'armoire de filtre d'entrée (uniquement avec l'option de PHF)
- 6 Faisceau d'alimentation de contacteur de PHF 2 vers l'armoire de filtre d'entrée (uniquement avec l'option de PHF)
- 7 Câbles secteur (R/S/T) vers les bornes d'entrée (R/S/T) dans l'armoire de filtre d'entrée
- 8 Câbles secteur (L1R/L2S/L3T) vers les bornes de sortie (L1R/L2S/L3T) dans l'armoire de filtre d'entrée

Illustration 38: Raccordements électriques en cas d'expédition fractionnée (armoire d'options de puissance d'entrée + armoire de variateur E6h + armoire de sortie des câbles par le haut)

- 1 Faisceau d'alimentation de réchauffage d'armoire vers l'armoire de filtre d'entrée
- 2 Faisceau de circuit intermédiaire vers l'alimentation du ventilateur vers l'armoire de filtre d'entrée
- 3 Faisceau de câbles de protection thermique dans l'armoire de filtre d'entrée
- 4 Faisceau d'alimentation de contacteur de PHF 1 vers l'armoire de PHF (uniquement avec l'option de PHF)
- 5 Faisceau d'alimentation de contacteur de PHF 2 vers l'armoire de PHF (uniquement avec l'option de PHF)
- 6 Câbles secteur R, S, T vers les bornes d'entrée (R/S/T) dans l'armoire de filtre d'entrée
- 7 Câbles secteur (L1R/L2S/L3T) vers les bornes de sortie (L1R/L2S/L3T) dans l'armoire de filtre d'entrée
- 8 Faisceau de circuit intermédiaire vers l'alimentation du ventilateur dans l'armoire de filtre de sortie
- 9 Faisceau d'alimentation de réchauffage d'armoire vers l'armoire de filtre de sortie
- 10 Raccordements de bornes disponibles
- 11 Faisceau de câbles de protection thermique vers l'armoire de filtre de sortie

Illustration 39: Raccordements électriques en cas d'expédition fractionnée (armoire d'options de puissance d'entrée + armoire de variateur E6h)

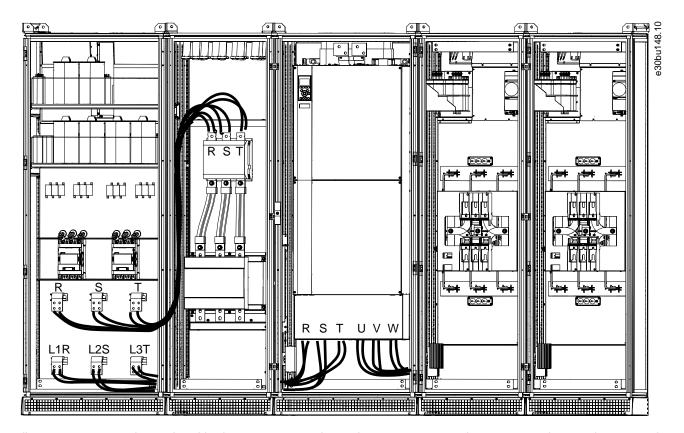
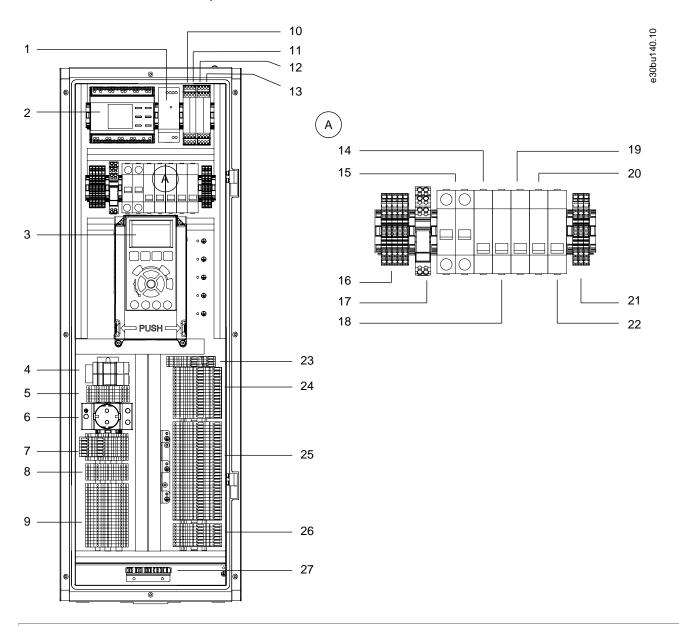


Illustration 40: Raccordement des câbles du moteur et secteur (l'exemple montre une armoire de PHF + armoire d'options de puissance d'entrée + armoire de variateur E6h + armoires de filtre sinus)

5.7 Câblage du compartiment de commande

5.7.1 Précautions de sécurité

▲ AVERTISSEMENT **▲**


HAUTE TENSION

Le sectionneur secteur ne coupe pas l'alimentation de la tension externe. Si l'alimentation de tension externe n'est pas coupée avant de toucher tout composant dans le compartiment de commande, cela peut entraîner la mort ou des blessures graves.

- L'installation, le démarrage et la maintenance du variateur doivent être effectués uniquement par du personnel qualifié.
- Couper l'alimentation de tension externe.

Danfoss

5.7.2 Vue intérieure du compartiment de commande

- 1 Alimentation 24 V CC (-TB7)
- 2 Contrôleur d'isolement (-BE1)
- 3 Panneau de commande local (LCP). Voir 3.6.3 Panneau de commande local (LCP).
- 4 Borniers RJ45 1 et 2 (-RJ45_1 et RJ45_2)
- 5 Ensemble de bornier de protection (-XD11)
- 6 Sortie de prise (-XD10)
- 7 Bornier de circuit de commande de contacteur (-XD0)
- 8 Bornier de réchauffage d'armoire (-XD4)

9	Bornier client/bornier d'option C0 (-XDW)
10	Relais indicateur d'arrêt thermique, armoire d'options de puissance d'entrée (-KFJ.1)
11	Relais indicateur d'arrêt thermique, armoire de filtre de sortie (-KFJ.2)
12	Relais indicateur d'arrêt thermique, armoire de filtre d'entrée (-KFJ.3)
13	Relais du contacteur de connexion/déconnexion des condensateurs de PHF (-QAF)
14	MCB de protection d'alimentation +24 CC (-FC7)
15	MCB de protection de circuit CA (-FC6)
16	Bornier de circuit de distribution CA (-XD1)
17	Relais auxiliaire pour réchauffage (-QAM)
18	Disjoncteur de protection de circuit de commande de contacteur (-FC10)
19	Disjoncteur de protection de sortie de prise/éclairage d'armoire (-FCC)
20	Disjoncteur de protection de circuit de réchauffage d'armoire (-FCE)
21	Bornier de circuit de distribution CC (-XD3)
22	Disjoncteur de protection de circuit de réchauffage moteur (-FCN)
23	Ensemble de bornier d'alimentation de ventilateur CA (-XDY)
24	Ensemble de bornier d'option C2 (-XDF)
25	Bornier E/S de base et ensemble de bornier de carte d'option A, B, D (-XD2)

Illustration 41: Disposition de l'intérieur du compartiment de commande avec toutes les options

5.7.3 Bornes de commande

26 Ensemble de bornier de composants de porte (-XDJ)

27 Bride de mise à la terre pour la terminaison de blindage des fils.

Tableau 25: Bornes de communication série

Borne XD2	Paramètre	Réglage par dé- faut	Description	
1	-	_	Filtre RC intégré pour blindage de câble. À utiliser uniquement pour raccorder le blindage en cas de problèmes de CEM.	
2	Groupe de paramètres 8-3* FC Port Settings (Réglage Port FC)	-	Interface RS485. Un commutateur (BUS TER.) est prévu sur la carte de commande pour la résistance de terminaison du bus. Voir l'illustration 5.22.	
3	Groupe de paramètres 8-3* FC Port Settings (Réglage Port FC)	-		

Tableau 26: Descriptions des bornes d'entrée/sortie digitale

Borne XD2	Paramètre	Réglage par défaut	Description	
10, 11	-	+24 V CC	Tension d'alimentation 24 V CC des entrées digitales et des transformateurs externes. Le courant de sortie maximal est de 200 mA pour toutes les charges de 24 V.	
12	Paramètre 5-10 Terminal 18 Digital Input (E.digit.born.18)	[8] Start (Démarrage)	Entrées digitales.	
13	Paramètre 5-11 Terminal 19 Digital Input (E.digit.born.19)	[10] Reversing (Inversion)		
16	Paramètre 5-14 Terminal 32 Digital Input (E.digit.born.32)	[0] No operation (Inac- tif)		
17	Paramètre 5-15 Terminal 33 Digital Input (E.digit.born.33)	[0] No operation (Inac- tif)		
14	Paramètre 5-12 Terminal 27 Digital Input (E.digit.born.27)	[2] Coast inverse (Lâchage)	Pour entrée ou sortie digitale. Le réglage par défaut est Entrée.	
15	Paramètre 5-13 Terminal 29 Digital Input (E.digit.born.29)	[14] JOG (Jogging)		
18	-	_	Borne commune pour les entrées digitales et potentiel de 0 V pour l'alimentation 24 V.	
19	-	STO	Lorsque la fonctionnalité STO en option n'est pas utilisée, un cavalier est nécessaire entre la borne 10 (ou 11) et la borne 19. Cela permet au variateur de fonctionner avec les valeurs de programmation par défaut.	

Tableau 27: Descriptions des bornes d'entrée/sortie analogique

Borne XD2	Paramètre	Réglage par défaut	Description
4	-	_	Commun pour la sortie analogique.
5	Paramètre 6-50 Terminal 42 Out- put (S.born.42)	[0] No operation (In-actif)	Sortie analogique programmable. 0-20 mA ou 4-20 mA à un maximum de 500 Ω .
6	-	+10 V DC (+10 V CC)	Tension d'alimentation analogique de 10 V CC pour un potentiomètre ou une thermistance. 15 mA maximum.
7	Groupe de paramètres 6-1* Ana- log Input 1 (Entrée ANA 1)	Référence	Entrée analogique. Pour tension (V) ou courant (mA).
8	Groupe de paramètres 6-2* Ana- log Input 2 (Entrée ANA 2)	Signal de retour	
9	-	-	Commun pour l'entrée analogique.

70 | Danfoss A/S © 2018.10 AQ123456789012fr-000101 / 130R0881

5.7.4 Bornes de relais

Tableau 28: Descriptions des bornes de relais

Borne XD2	Paramètre	Réglage par défaut	Description
21, 22, 23	Paramètre 5-40 Function Relay [0] (Fonction relais [0])	[0] No operation (Inactif)	Sorties relais type C. Pour tension CA ou CC.
24, 25, 26	Paramètre 5-40 Function Relay [1] (Fonction relais [1])	[0] No operation (Inactif)	

5.7.5 Bornes de carte d'option

Les cartes d'option élargissent les fonctions des variateurs et fournissent une grande diversité d'interfaces avec les systèmes d'automatisation. Lorsque les cartes d'option sont spécifiées dans le code de type, elles sont montées aux emplacements A, B, C et D de la carte de commande dans le module variateur. Le câblage de carte d'option est acheminé vers un bornier dans le compartiment de commande. Pour plus de détails, se reporter au manuel d'installation/d'utilisation de chaque carte d'option.

REMARQUE

INSTALLATION DE CARTE D'OPTION

Si la carte d'option est commandée en même temps que le variateur en utilisant le code de type, l'usine installe la carte d'option et son câblage. Si l'option est commandée séparément, il incombe au client d'installer la carte d'option et les extensions de câblage dans le compartiment de commande.

Tableau 29: Raccordements des bornes de l'option A

Borne de la carte d'option	Borne correspondante dans le compartiment de commande
1	XD2.40
2	XD2.41
3	XD2.42
4	XD2.43
5	XD2.44

Tableau 30: Raccordements des bornes de l'option B

Borne de la carte d'option	Borne correspondante dans le compartiment de commande
1	XD2.46
2	XD2.47
3	XD2.48
4	XD2.49
5	XD2.50
6	XD2.51
7	XD2.52

Borne de la carte d'option	Borne correspondante dans le compartiment de commande
8	XD2.53
9	XD2.54
10	XD2.55
11	XD2.56
12	XD2.57

Tableau 31: Raccordements des bornes de l'option C1

Borne de la carte d'option	Borne correspondante dans le compartiment de commande
X46.1	XDF.1
X46.2	XDF.2
X46.3	XDF.3
X46.4	XDF.4
X46.5	XDF.5
X46.6	XDF.6
X46.7	XDF.7
X46.8	XDF.8
X46.9	XDF.9
X46.10	XDF.10
X46.11	XDF.11
X46.12	XDF.12
X46.13	XDF.13
X46.14	XDF.14
X58.1	XDF.15
X58.2	XDF.16
X45.1	XDF.17
X45.2	XDF.18
X45.3	XDF.19
X45.4	XDF.20
X47.1	XDF.21
X47.2	XDF.22
X47.3	XDF.23
X47.4	XDF.24
X47.5	XDF.25
X47.6	XDF.26
X47.7	XDF.27

Borne de la carte d'option	Borne correspondante dans le compartiment de commande
X47.8	XDF.28
X47.9	XDF.29
X47.10	XDF.30
X47.11	XDF.31
X47.12	XDF.32

Tableau 32: Raccordements des bornes de l'option D

Borne de la carte d'option	Borne correspondante dans le compartiment de commande
35	XD2.28
36	XD2.29

5.7.6 Vue d'ensemble du câblage des options

5.7.6.1 Bornes d'alimentation auxiliaire

Tableau 33: Codes d'alimentation auxiliaire

Position de caractère	Code d'option	Description
21	1	230 V CA externe
	5	230 V CA externe + 24 V CC interne
	6	120 V CA externe
	9	120 V CA externe + 24 V CC interne

L'option de borne d'alimentation auxiliaire fournit une alimentation de tension externe à la borne –XD1.1. L'alimentation externe doit être protégée contre les courts-circuits. La puissance de l'alimentation externe dépend d'autres options d'armoire sélectionnées.

Illustration 42: Bornes d'alimentation auxiliaire CA

A AVERTISSEMENT A

HAUTE TENSION

Le sectionneur secteur ne coupe pas l'alimentation de la tension externe. Si l'alimentation de tension externe n'est pas coupée avant de toucher tout composant dans le compartiment de commande, cela peut entraîner la mort ou des blessures graves.

- Couper l'alimentation de tension externe.
- L'installation, le démarrage et la maintenance du variateur doivent être effectués uniquement par du personnel qualifié.

5.7.6.2 Transformateur de tension auxiliaire

Tableau 34: Codes d'alimentation auxiliaire

Position de caractère	Code d'option	Description
21	2	230 V CA interne
	4	230 V CA interne + 24 V CC interne
	7	120 V CA interne
	8	120 V CA interne + 24 V CC interne

Le transformateur de tension auxiliaire est une option installée en interne qui permet l'alimentation à partir du secteur. Si le variateur en armoire est spécifié avec un sectionneur à fusibles, l'alimentation du transformateur de tension auxiliaire est prise entre le variateur et le sectionneur à fusibles. Cette configuration permet de couper la tension de commande à l'aide du commutateur principal.

Le transformateur comporte plusieurs prises côté primaire pour la plage standard de tensions auxquelles le variateur fonctionne. Le câblage d'usine par défaut se connecte à la prise à la tension la plus élevée du côté primaire, et les réglages de défaut pour la borne - FC4 sont définis en conséquence. Le client peut modifier la prise à condition que la tension correcte soit appliquée et que le disjoncteur magnéto-thermique soit réglé en conséquence.

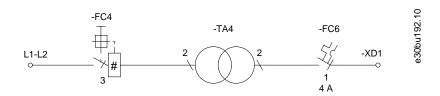


Illustration 43: Bornes de transformateur de tension auxiliaire

REMAROUE

PANNE DE COMPOSANT AUXILIAIRE

Une tension ou installation de prise incorrecte entraînera la panne d'autres composants auxiliaires dans le compartiment de commande.

- Lors du branchement du transformateur, veiller à appliquer la tension correcte pour le variateur.
- Choisissez les bonnes prises de réglage sur le transformateur, ainsi que les bons réglages de la protection électrique.

5.7.6.3 Alimentation externe +24 V CC

Tableau 35: Codes d'alimentation auxiliaire

Position de caractère	Code d'option	Description
21	4	230 V CA interne + 24 V CC interne
	5	230 V CA externe + 24 V CC interne
	8	120 V CA interne + 24 V CC interne
	9	120 V CA externe + 24 V CC interne

L'option d'alimentation externe 24 V CC permet de raccorder d'autres options auxiliaire à une alimentation 24 V CC dans le compartiment de commande.

74 | Danfoss A/S © 2018.10 AQ123456789012fr-000101 / 130R0881

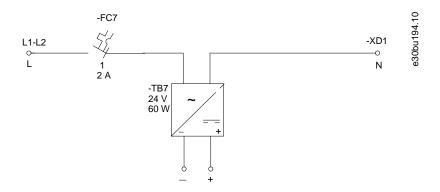


Illustration 44: Bornes d'alimentation externe 24 V CC

5.7.6.4 Prise client CA

Tableau 36: Codes d'option de fonction auxiliaire

Position de caractère	Code d'option	Description
23–24	A1	Prise CA + éclairage d'armoire
	AA	Prise CA + éclairage d'armoire + bornes d'E/S étendues
	AB	Prise CA + éclairage d'armoire + réchauffage d'armoire
	CA	Prise CA + éclairage d'armoire + commande réchauffage moteur
	AD	Prise CA + éclairage d'armoire + contrôleur d'isolement
	AE	Prise CA + éclairage d'armoire + bornes d'E/S étendues + réchauffage d'armoire
	AF	Prise CA + éclairage d'armoire + bornes d'E/S étendues + commande réchauffage moteur
	AG	Prise CA + éclairage d'armoire + bornes d'E/S étendues + contrôleur d'isolement
	AH	Prise CA + éclairage d'armoire + bornes d'E/S étendues + réchauffage d'armoire + commande réchauffage moteur
	Al	Prise CA + éclairage d'armoire + bornes d'E/S étendues + réchauffage d'armoire + contrôleur d'isolement
	AJ	Prise CA + éclairage d'armoire + bornes d'E/S étendues + commande réchauffage moteur + contrôleur d'isolement
	AK	Prise CA + éclairage d'armoire + bornes d'E/S étendues + réchauffage d'armoire + commande réchauffage moteur + contrôleur d'isolement
	AL	Prise CA + éclairage d'armoire + réchauffage d'armoire + commande réchauffage moteur
	AM	Prise CA + éclairage d'armoire + réchauffage d'armoire + contrôleur d'isolement
	AN	Prise CA + éclairage d'armoire + réchauffage d'armoire + commande réchauffage moteur + contrôleur d'isolement
	AO	Prise CA + éclairage d'armoire + commande réchauffage moteur + contrôleur d'isolement

La prise permet d'alimenter des outils de mesure, un équipement ou un ordinateur. La prise est de type CEE 7/3 (« Schuko », type F) ou NEMA 5-15 mis à la terre (type B). La tension par défaut est de 230 V CA (version CEI) et de 115 V CA (version UL). Lors de l'utilisation

d'une alimentation externe, la puissance de sortie maximum est de 450 VA (version CEI) et de 230 VA (version UL). Lors de l'utilisation d'une alimentation de transformateur, la puissance de sortie maximum est de 200 VA pour les deux versions.

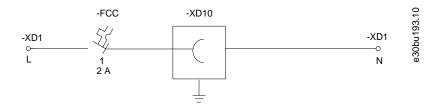


Illustration 45: Bornes de prise client CA

5.7.6.5 Bornes d'E/S étendues

Tableau 37: Codes d'option de fonction auxiliaire

Position de caractère	Code d'option	Description
23–24	A2	Bornes d'E/S étendues
	AA	Prise CA + éclairage d'armoire + bornes d'E/S étendues
	AE	Prise CA + éclairage d'armoire + bornes d'E/S étendues + réchauffage d'armoire
	AF	Prise CA + éclairage d'armoire + bornes d'E/S étendues + commande réchauffage moteur
	AG	Prise CA + éclairage d'armoire + bornes d'E/S étendues + contrôleur d'isolement
	AH	Prise CA + éclairage d'armoire + bornes d'E/S étendues + réchauffage d'armoire + commande réchauffage moteur
	Al	Prise CA + éclairage d'armoire + bornes d'E/S étendues + réchauffage d'armoire + contrôleur d'isolement
	AJ	Prise CA + éclairage d'armoire + bornes d'E/S étendues + commande réchauffage moteur + contrôleur d'isolement
	AK	Prise CA + éclairage d'armoire + bornes d'E/S étendues + réchauffage d'armoire + commande réchauffage moteur + contrôleur d'isolement
	AP	Bornes d'E/S étendues + réchauffage d'armoire
	AQ	Bornes d'E/S étendues + commande réchauffage moteur
	AR	Bornes d'E/S étendues + contrôleur d'isolement
	AS	Bornes d'E/S étendues + réchauffage d'armoire + commande réchauffage moteur
	AT	Bornes d'E/S étendues + réchauffage d'armoire + contrôleur d'isolement
	AU	Bornes d'E/S étendues + réchauffage d'armoire + commande réchauffage moteur + contrôleur d'isolement
	AV	Bornes d'E/S étendues + commande réchauffage moteur + contrôleur d'isolement

L'option de borne d'E/S étendue compte 25 bornes de commande (-XDW) dans le compartiment de commande, lesquelles peuvent être utilisées par le client. Si le variateur en armoire est configuré avec une carte d'option C1 quelconque, le bornier -XDW est utilisé pour le câblage de la carte d'option C1.

76 | Danfoss A/S © 2018.10 AQ123456789012fr-000101 / 130R0881

5.7.6.6 Réchauffage d'armoire

Tableau 38: Codes d'option de fonction auxiliaire

Position de caractère	Code d'option	Description
23–24	A3	Réchauffage d'armoire
	AB	Prise CA + éclairage d'armoire + réchauffage d'armoire
	AE	Prise CA + éclairage d'armoire + bornes d'E/S étendues + réchauffage d'armoire
	АН	Prise CA + éclairage d'armoire + bornes d'E/S étendues + réchauffage d'armoire + commande réchauffage moteur
	Al	Prise CA + éclairage d'armoire + bornes d'E/S étendues + réchauffage d'armoire + contrôleur d'isolement
	AK	Prise CA + éclairage d'armoire + bornes d'E/S étendues + réchauffage d'armoire + commande réchauffage moteur + contrôleur d'isolement
	AL	Prise CA + éclairage d'armoire + réchauffage d'armoire + commande réchauffage moteur
	AM	Prise CA + éclairage d'armoire + réchauffage d'armoire + contrôleur d'isolement
	AN	Prise CA + éclairage d'armoire + réchauffage d'armoire + commande réchauffage moteur + contrôleur d'isolement
	AP	Bornes d'E/S étendues + réchauffage d'armoire
	AS	Bornes d'E/S étendues + réchauffage d'armoire + commande réchauffage moteur
	AT	Bornes d'E/S étendues + réchauffage d'armoire + contrôleur d'isolement
	AU	Bornes d'E/S étendues + réchauffage d'armoire + commande réchauffage moteur + contrôleur d'isolement
	AW	Réchauffage d'armoire + commande réchauffage moteur
	AX	Réchauffage d'armoire + contrôleur d'isolement
	AY	Réchauffage d'armoire + commande réchauffage moteur + contrôleur d'isolement

L'option réchauffage d'armoire augmente la température interne de l'armoire au-dessus de la température ambiante, ce qui empêche la condensation dans l'armoire. Chaque armoire comporte 1 réchauffage d'armoire. Le réchauffage est auto-régulé. L'alimentation externe est reliée à la borne -XD1.1. Lorsque le variateur n'est pas en état de marche, le relais de commande +QAM change l'alimentation aux bornes de sortie (-XD4). Lorsque le variateur est en état de marche, le relais de commande coupe l'alimentation du réchauffage d'armoire La fonction est désactivée lorsque le disjoncteur –FCE est ouvert.

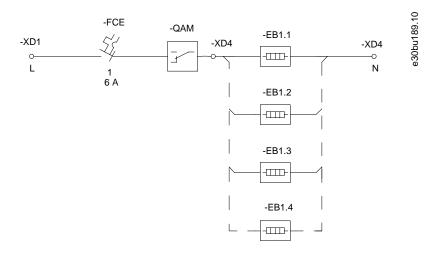


Illustration 46: Bornes du réchauffage d'armoire

5.7.6.7 Commande réchauffage moteur

Tableau 39: Codes d'option de fonction auxiliaire

Position de caractère	Code d'option	Description
23–24	A4	Commande réchauffage moteur
	CA	Prise CA + éclairage d'armoire + commande réchauffage moteur
	AF	Prise CA + éclairage d'armoire + bornes d'E/S étendues + commande réchauffage moteur
	АН	Prise CA + éclairage d'armoire + bornes d'E/S étendues + réchauffage d'armoire + commande réchauffage moteur
	AJ	Prise CA + éclairage d'armoire + bornes d'E/S étendues + commande réchauffage moteur + contrôleur d'isolement
	AK	Prise CA + éclairage d'armoire + bornes d'E/S étendues + réchauffage d'armoire + commande réchauffage moteur + contrôleur d'isolement
AL		Prise CA + éclairage d'armoire + réchauffage d'armoire + commande réchauffage moteur
	AN	Prise CA + éclairage d'armoire + réchauffage d'armoire + commande réchauffage moteur + contrôleur d'isolement
	AO	Prise CA + éclairage d'armoire + commande réchauffage moteur + contrôleur d'isolement
	AQ	Bornes d'E/S étendues + commande réchauffage moteur
	AS	Bornes d'E/S étendues + réchauffage d'armoire + commande réchauffage moteur
	AU	Bornes d'E/S étendues + réchauffage d'armoire + commande réchauffage moteur + contrôleur d'isolement
	AV	Bornes d'E/S étendues + commande réchauffage moteur + contrôleur d'isolement
	AW	Réchauffage d'armoire + commande réchauffage moteur
	AY	Réchauffage d'armoire + commande réchauffage moteur + contrôleur d'isolement
	AZ	Commande réchauffage moteur + contrôleur d'isolement

L'option réchauffage moteur permet de commander l'alimentation de la résistance anti-condensation du moteur. L'alimentation externe 24 V CC est reliée à la borne -XD1.1 dans la partie inférieure de l'armoire. Lorsque le variateur n'est pas en état de marche, le relais de commande +QAM change l'alimentation externe aux bornes de sortie -XDN. Lorsque le variateur est en état de marche, le relais de commande coupe l'alimentation externe du réchauffage moteur La fonction est désactivée lorsque le disjoncteur –FCN est ouvert.

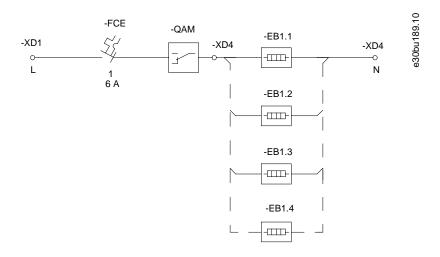


Illustration 47: Commande réchauffage moteur (résistance non fournie)

5.7.6.8 Contrôleur d'isolement

Tableau 40: Codes d'option de fonction auxiliaire

Position de caractère	Code d'option	Description
23–24	A5	Contrôleur d'isolement
	AD	Prise CA + éclairage d'armoire + contrôleur d'isolement
	AG	Prise CA + éclairage d'armoire + bornes d'E/S étendues + contrôleur d'isolement
	Al	Prise CA + éclairage d'armoire + bornes d'E/S étendues + réchauffage d'armoire + contrôleur d'isolement
	AJ	Prise CA + éclairage d'armoire + bornes d'E/S étendues + commande réchauffage moteur + contrôleur d'isolement
	AK	Prise CA + éclairage d'armoire + bornes d'E/S étendues + réchauffage d'armoire + commande réchauffage moteur + contrôleur d'isolement
AM	AM	Prise CA + éclairage d'armoire + réchauffage d'armoire + contrôleur d'isolement
	AN	Prise CA + éclairage d'armoire + réchauffage d'armoire + commande réchauffage moteur + contrôleur d'isolement
	AO	Prise CA + éclairage d'armoire + commande réchauffage moteur + contrôleur d'isolement
	AR	Bornes d'E/S étendues + contrôleur d'isolement
	AT	Bornes d'E/S étendues + réchauffage d'armoire + contrôleur d'isolement
	AU	Bornes d'E/S étendues + réchauffage d'armoire + commande réchauffage moteur + contrôleur d'isolement
	AV	Bornes d'E/S étendues + commande réchauffage moteur + contrôleur d'isolement
	AX	Réchauffage d'armoire + contrôleur d'isolement
	AY	Réchauffage d'armoire + commande réchauffage moteur + contrôleur d'isolement
	AZ	Commande réchauffage moteur + contrôleur d'isolement

L'option contrôleur d'isolement surveille les défauts d'alimentation et d'isolement sur un réseau d'alimentation IT à l'aide d'un contrôleur d'isolement situé dans le compartiment de commande.

5.7.6.9 Voyants et boutons Reset

Tableau 41: Codes d'options montées sur porte

Position de car- actère	Code d'op- tion	Description
28–29	D1	Voyants et bouton Reset
	DA	Voyants et bouton Reset + contacteur d'arrêt d'urgence et bouton-poussoir d'urgence
	DB	Voyants et bouton Reset + STO avec bouton-poussoir d'urgence (aucune sécurité fonctionnelle)
	DC	Voyants et bouton Reset + STO/SS1 avec bouton-poussoir d'urgence + vitesse limite de sécurité (codeur TTL)
	DE	Voyants et bouton Reset + STO/SS1 avec bouton-poussoir d'urgence + vitesse limite de sécurité (codeur HTL)

L'option de voyant et bouton Reset comporte des voyants sur la porte du compartiment de commande indiquant les états de marche et de défaut du variateur de fréquence. La porte présente également un bouton pour le reset du variateur.

5.7.6.10 Contacteur d'arrêt d'urgence

Tableau 42: Codes d'options montées sur porte

Position de caractère	Code d'option	Description
28–29	D2	Contacteur d'arrêt d'urgence + bouton-poussoir d'urgence
	DA	Voyants et bouton Reset + contacteur d'arrêt d'urgence et bouton-poussoir d'urgence

L'option contacteur d'arrêt d'urgence utilise un contacteur d'entrée pour couper le variateur du secteur. Si le bouton-poussoir d'arrêt d'urgence se trouvant sur la porte du compartiment de commande est enfoncé, cela ouvre le circuit de commande du contacteur d'entrée.

5.7.6.11 STO avec bouton-poussoir d'urgence sur la porte

Tableau 43: Codes d'options montées sur porte

Position de caractère	Code d'option	Description
28–29	D3	STO avec bouton-poussoir d'urgence (aucune sécurité fonctionnelle)
	DB	Voyants et bouton Reset + STO avec bouton-poussoir d'urgence (aucune sécurité fonctionnelle)

Cette option permet d'utiliser la fonction STO (Safe Torque Off) via un bouton-poussoir d'urgence monté sur la porte du compartiment de commande. Les bornes de commande de la carte de commande sont étendues depuis l'intérieur du module variateur et acheminées vers l'ensemble de bornier -XD2 dans le compartiment de commande. Le bouton-poussoir d'urgence est raccordé entre les bornes -XD2.10 et -XD2.19.

Si le bouton-poussoir d'urgence est activé, cela empêche l'unité de générer la tension requise pour faire tourner le moteur. L'option propose :

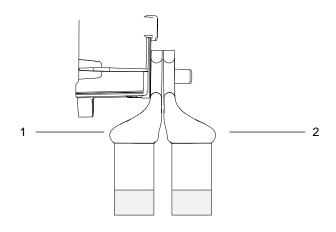
- Safe Torque Off (STO) selon la norme EN CEI 61800-5-2;
- catégorie d'arrêt 0 selon la norme EN 60204-1.

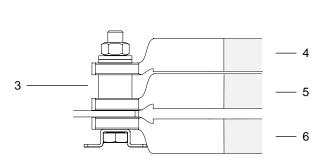
5.8 Raccordement des câbles du moteur, secteur et de terre

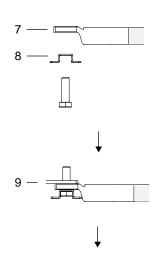
5.8.1 Considérations relatives au câblage de puissance et à la mise à la terre

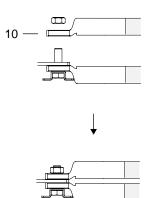
Raccordement du moteur et du secteur

- Dimensionner les câbles selon le courant d'entrée du variateur. Pour les sections de câble maximales, consulter la section Données électriques.
- Respecter les réglementations locales et nationales pour les sections de câble.
- Respecter les exigences de câblage spécifiées par le fabricant du moteur.
- Des caches amovibles pour câbles du moteur ou des panneaux d'accès sont prévus sur le socle des unités IP21/IP54 (NEMA 1/ NEMA 12)
- Ne pas câbler un dispositif de démarrage ou à pôles commutables (p. ex. un moteur Dahlander ou un moteur à bagues à induction) entre le variateur et le moteur.


e30bu151.10


Mise à la terre


- Mettre le variateur à la terre conformément aux normes et directives en vigueur.
- Utiliser un fil de terre séparé pour l'alimentation d'entrée, la puissance du moteur et le câblage de commande.
- Ne pas mettre à la terre plusieurs variateurs en guirlande.
- Raccourcir au maximum les liaisons de mise à la terre.
- Respecter les exigences de câblage spécifiées par le fabricant du moteur.
- Section de câble minimum : 10 mm² (6 AWG) (ou 2 fils de terre nominaux à la terminaison séparée).
- Serrer les bornes conformément aux informations figurant dans 10.11 Couples de serrage nominaux.


Installation conforme aux critères CEM

Se reporter à <u>5.2 Installation conforme aux critères CEM</u>.

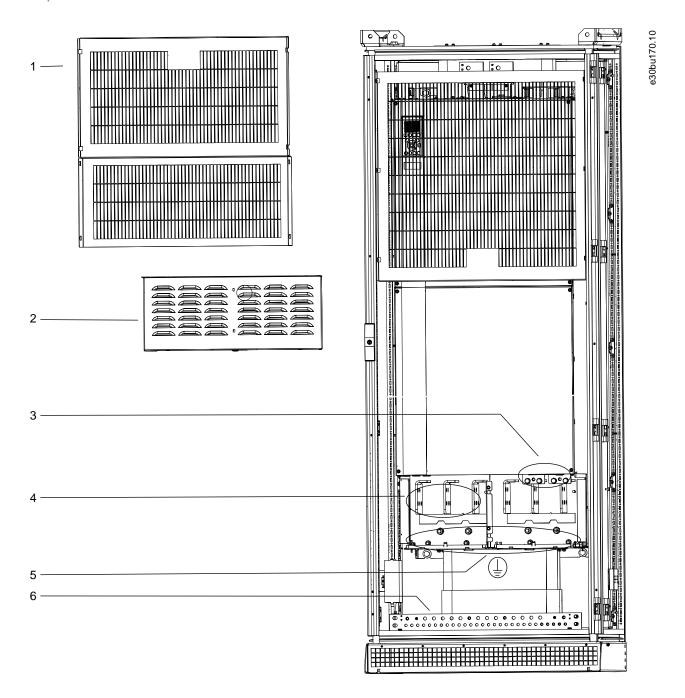
- 1 Câble 1
- 2 Câble 2
- 3 Douille de connexion
- 4 Câble 1
- 5 Câble 2

- 6 Câble 3
- 7 Cosse de câble 1
- 8 Porte-boulon sur le connecteur
- 9 Connecteur de borne
- 10 Cosse de câble 2

Illustration 48: Différentes méthodes de raccordement de plusieurs câbles à 1 borne

5.8.2 Raccordement au secteur

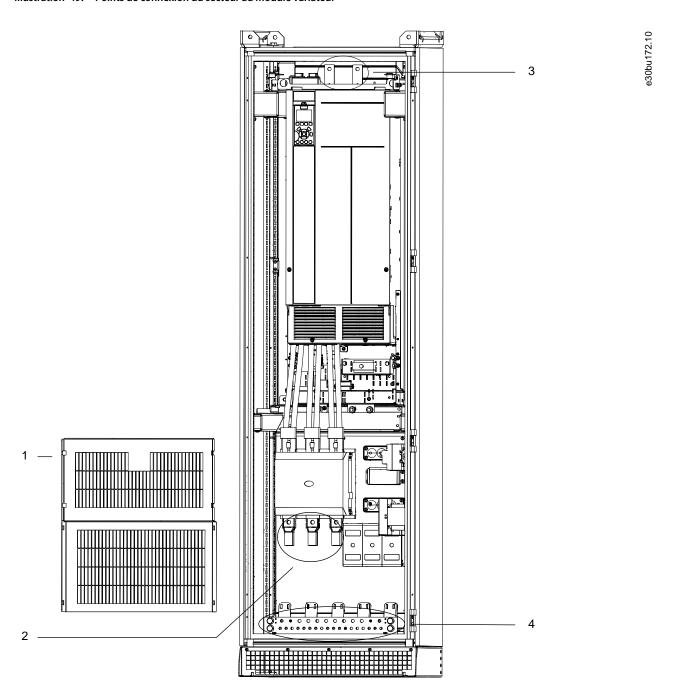
Context:


Si le variateur en armoire n'est pas configuré avec une option de filtre d'entrée ou de puissance d'entrée, raccorder le secteur au module variateur. Sinon, raccorder le secteur à l'option de puissance d'entrée.

Procédure

- 1. Dénuder une section de l'isolation extérieure du câble.
- 2. Fixer un presse-étoupe/une cosse de câble à l'extrémité du câble dénudé.
- 3. Créer un raccordement électrique entre le blindage de câble et la terre en fixant le fil dénudé sous l'étrier de serrage.
- 4. Relier le fil de terre à la borne de mise à la terre la plus proche conformément aux instructions de mise à la terre fournies dans <u>5.8.6</u> Raccordement à la terre.
- 5. Relier les câbles de puissance d'entrée CA triphasée aux bornes R (L1), S (L2) et T (L3).
- **6.** Lorsque l'alimentation provient d'une source secteur isolée (secteur IT ou triangle isolé de la terre) ou d'un secteur TT/TN-S avec triangle mis à la terre, s'assurer que le *paramètre 14-50 RFI Filter* (Filtre RFI) est réglé sur [0] Off (Inactif) afin d'éviter tout dommage au circuit intermédiaire et de réduire les courants à effet de masse.
- 7. Serrer les bornes conformément aux spécifications indiquées dans 10.11 Couples de serrage nominaux.

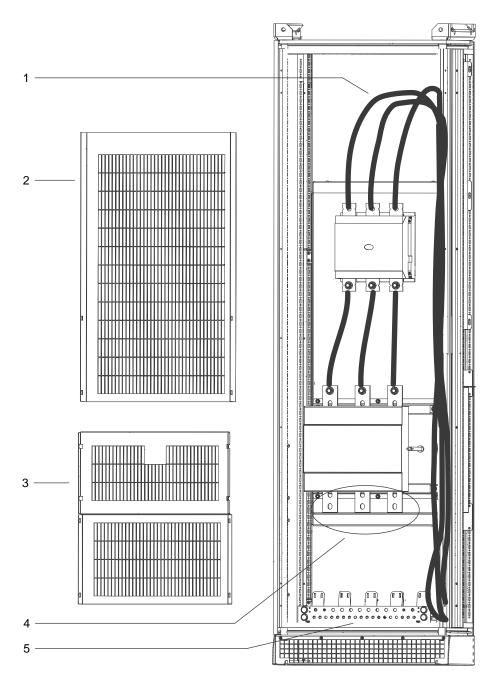
Exemple:


- 1 Écran d'armoire (inférieur)
- 2 Protection borniers
- 3 Bornes de freinage et répartition de la charge
- 4 Bornes de secteur
- 5 Bornes de mise à la terre

84 | Danfoss A/S © 2018.10

6 Barre de mise à la terre

Illustration 49: Points de connexion du secteur au module variateur



- l Écran d'armoire (inférieur)
- 2 Bornes de puissance d'entrée (option de contacteur illustrée)
- **3** Bornes CC

4 Barre de mise à la terre

Illustration 50: Points de connexion du secteur à l'option de puissance d'entrée (variateur en armoire configuré sans armoire d'options de puissance)

- Câbles d'usine raccordant le contacteur aux bornes d'entrée du variateur
- 2 Écran d'armoire (supérieur)
- 3 Écran d'armoire (inférieur)

e30bu173.10

- 4 Bornes de puissance d'entrée (option de sectionneur illustrée)
- 5 Barre de mise à la terre

Illustration 51: Points de connexion du secteur à l'option de puissance d'entrée (variateur en armoire configuré avec armoire d'options de puissance)

5.8.3 Raccordement du module variateur au moteur

Procédure

- 1. Dénuder une section de l'isolation extérieure du câble.
- 2. Fixer un presse-étoupe/une cosse de câble à l'extrémité du câble dénudé.
- 3. Créer un raccordement électrique entre le blindage de câble et la terre en fixant le fil dénudé sous l'étrier de serrage.
- 4. Relier le fil de terre à la borne de mise à la terre la plus proche conformément aux instructions de mise à la terre fournies dans <u>5.8.6</u> Raccordement à la terre.
- 5. Relier les câbles du moteur CA triphasés aux bornes U (T1), V (T2) et W (T3).
- 6. Serrer les bornes conformément aux spécifications indiquées dans 10.11 Couples de serrage nominaux.

Exemple:

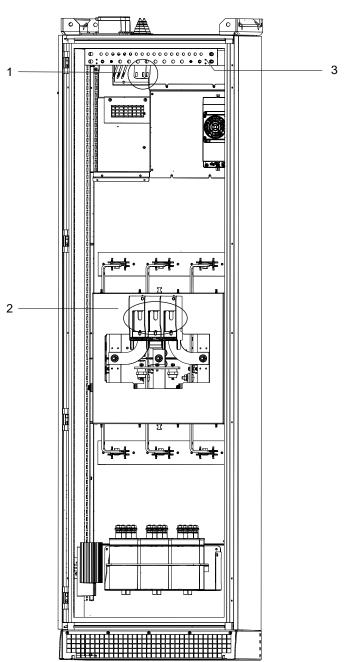
- 1 Écran d'armoire (inférieur)
- 2 Bornes CC
- 3 Protection borniers
- 4 Bornes du moteur
- 5 Bornes de terre sur le module variateur

88 | Danfoss A/S © 2018.10

6 Barre de mise à la terre

Illustration 52: Points de connexion du module variateur au moteur

5.8.4 Raccordement du filtre sinus au moteur


Procédure

- 1. Dénuder une section de l'isolation extérieure du câble.
- 2. Fixer un presse-étoupe/une cosse de câble à l'extrémité du câble dénudé.
- 3. Créer un raccordement électrique entre le blindage de câble et la terre en fixant le fil dénudé sous l'étrier de serrage.
- **4.** Relier le câble de terre à la borne de mise à la terre la plus proche conformément aux instructions de mise à la terre fournies dans 5.8.6 Raccordement à la terre.
- 5. Relier le câble du moteur CA triphasé aux bornes U, V et W du filtre sinus.
 - Si le variateur en armoire comprend 1 armoire de filtre sinus, acheminer 1 ensemble de câbles du moteur jusqu'à l'armoire.
 - Si le variateur en armoire comprend 2 armoires de filtre sinus, acheminer 2 ensembles de câbles du moteur, un pour chaque armoire de filtre sinus.

REMARQUE

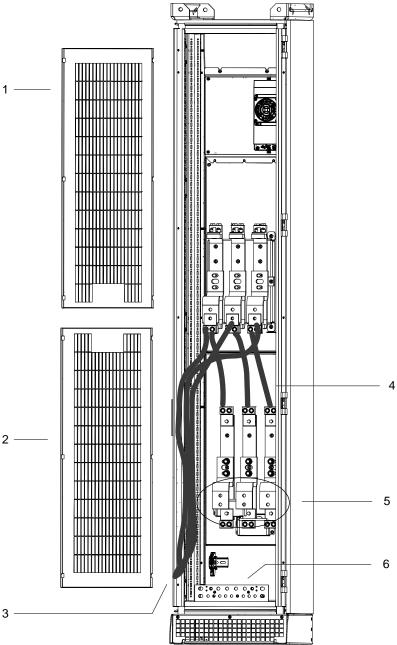
- Chaque armoire de filtre sinus doit présenter le même nombre de câbles de phase moteur et ils doivent être en nombre pair (par exemple, 2, 4, 6 ou 8). Un seul câble n'est pas autorisé. Les câbles doivent être de longueur égale.
- 6. Serrer les bornes conformément aux spécifications indiquées dans 10.11 Couples de serrage nominaux.

Exemple:

- 1 Bornes du bus CC
- 2 Bornes du moteur
- 3 Barre de mise à la terre

Illustration 53: Points de connexion du filtre sinus au moteur

30bu176.10


5.8.5 Raccordement du filtre dU/dt au moteur

Procédure

- 1. Dénuder une section de l'isolation extérieure du câble.
- 2. Fixer un presse-étoupe/une cosse de câble à l'extrémité du câble dénudé.
- 3. Créer un raccordement électrique entre le blindage de câble et la terre en fixant le fil dénudé sous l'étrier de serrage.
- 4. Relier le câble de terre à la borne de mise à la terre la plus proche conformément aux instructions de mise à la terre fournies dans 5.8.6 Raccordement à la terre.
- 5. Relier le câblage du moteur CA triphasé aux bornes dU/dt U (T1), V (T2) et W (T3).
- 6. Serrer les bornes conformément aux spécifications indiquées dans 10.11 Couples de serrage nominaux.

Exemple:

- 1 Écran d'armoire (supérieur)
- 2 Écran d'armoire (inférieur)
- 3 Câbles de puissance installés en usine provenant du module variateur
- 4 Câbles installés en usine
- 5 Bornes du moteur

30bu175.10

6 Barre de mise à la terre

Illustration 54: Points de connexion du filtre dU/dt au moteur

5.8.6 Raccordement à la terre

Context:

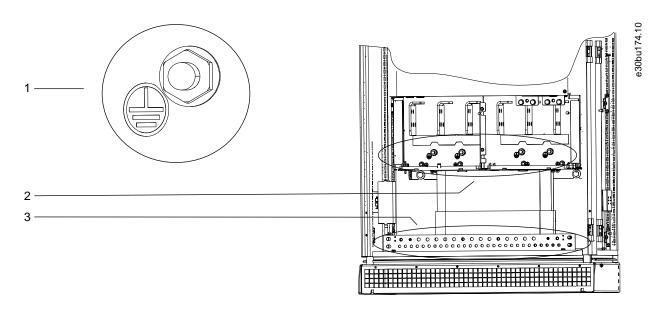
A AVERTISSEMENT A

RISQUE DE COURANT DE FUITE

Les courants de fuite dépassent 3,5 mA. Si le variateur n'est pas correctement mis à la terre, cela peut causer des blessures graves ou mortelles.

- Vérifiez que l'équipement a bien été mis à la terre par un installateur électrique certifié.

REMARQUE


ÉGALISATION DE POTENTIEL

Il y a un risque de surtensions/transitoires lorsque le potentiel de la terre entre le variateur et le système de commande est différent.

- Installer des câbles d'égalisation entre les composants du système. Section de câble recommandée : 16 mm² (5 AWG).
- 1. Dénuder une section de l'isolation extérieure du câble.
- 2. Fixer un presse-étoupe/une cosse de câble à l'extrémité du câble dénudé.
- 3. Relier le câble de terre à la borne de mise à la terre la plus proche.
- 4. Serrer les bornes conformément aux spécifications indiquées dans 10.11 Couples de serrage nominaux.

Exemple:

- 1 Symbole indiquant les bornes de mise à la terre
- 2 Points de mise à la terre sur le module variateur
- 3 Barre de mise à la terre (fournie dans chaque armoire)

Illustration 55: Points de connexion de mise à la terre

5.9 Installation de fusibles en amont

5.9.1 Calibres de fusible recommandés pour une installation conforme à CEI

Tableau 44: Calibres de fusible recommandés pour une installation conforme à CEI, 380-480 V

Modèle de variateur	P/N fusible	Taille de fusible	Courant nominal [A]	Courant de court-cir- cuit minimum [kA]	Calibre de fusible max- imum F1 [A]	Calibre de fusible minimum [V]	Type F1
N110K	Mersen NH1GG50V250	1	250	6,8	250	500	gG/gL
N132	Mersen NH2GG50V315	2	315	7	315	500	gG/gL
N160	Mersen NH2GG50V355	2	355	8,5	355	500	gG/gL
N200	Mersen NH3GG50V425	3	425	10	425	500	gG/gL
N250	Mersen NH3AGG50V630	3	630	13	630	500	gG/gL
N315	Mersen NH3AGG50V630	3	630	13	630	500	gG/gL
N355	Mersen NH4GG50V800	4	800	18	800	500	gG/gL
N400	Mersen NH4GG50V1000	4	1000	25	1000	500	gG/gL
N450	Mersen NH4GG50V1000	4	1000	25	1000	500	gG/gL

Modèle de variateur	P/N fusible	Taille de fusible	Courant nominal [A]	Courant de court-cir- cuit minimum [kA]	Calibre de fusible max- imum F1 [A]	Calibre de fusible minimum [V]	Type F1
N500	Mersen NH4GG50V1000	4	1000	25	1000	500	gG/gL
N560	Mersen NH4GG50V1250	4	1250	33	1250	500	gG/gL

Tableau 45: Calibres de fusible recommandés pour une installation conforme à CEI, 525-690 V

Modèle de variateur	P/N fusible	Taille de fusible	Courant nominal [A]	Courant de court-cir-cuit minimum [kA]	Calibre de fusible max- imum F1 [A]	Calibre de fusible min- imum [V]	Type F1
N110	Mersen NH2GG69V250	2	250	6,5	250	690	gG/gL
N132	Mersen NH2GG69V250	2	250	6,5	250	690	gG/gL
N160K	Mersen NH2GG69V250	2	250	6,5	250	690	gG/gL
N200	Mersen NH2GG69V315	2	315	7,5	315	690	gG/gL
N250	Mersen NH3GG69V355	3	355	8,5	355	690	gG/gL
N315	Mersen NH3GG69V425	3	425	9,5	425	690	gG/gL
N400	Mersen NH3GG69V500	3	500	12	500	690	gG/gL
N450	Mersen NH3GG69V500	3	500	12	500	690	gG/gL
N500	Mersen NH4GG69V630	4	630	14	630	690	gG/gL
N560	Mersen NH4GG69V800	4	800	19	800	690	gG/gL
N630	Mersen NH4GG69V800	4	800	19	800	690	gG/gL
N710	ABB OFAA4GG1000	4	1000	25	1000	690	gG/gL
N800	ABB OFAA4GG1000	4	1000	25	1000	690	gG/gL

5.9.2 Calibres de fusible recommandés pour une installation conforme à UL

Les valeurs du tableau sont calculées à l'aide de facteurs de correction pour une condition d'exploitation ambiante de 40 °C (104 °F) et de câbles présentant une isolation nominale minimum de 90 °C (194 °F).

L'homologation UL est valable pour une tension d'entrée maximum de 600 V. Selon UL508A, le courant nominal de court-circuit (SCCR) est le suivant :

- Les variateurs en armoire avec option de sectionneur fusible ou de sectionneur fusible et contacteur présentent un SCCR de 65 kA à la tension nominale.
- Les variateurs en armoire avec appareil de commutation seul (option de contacteur de ligne seul ou sectionneur non fusible seul) ont un SCCR de 5 kA, mais peuvent arriver à 65 kA si des fusibles de classe recommandée sont utilisés en amont.
- Les variateurs en armoire avec l'option disjoncteur (MCCB) ont une valeur nominale d'interruption de 65 kA pour 380–480 V, et de 50 kA pour 525–690 V.

Tableau 46: Calibres de fusible recommandés pour une installation conforme à UL, 380-480 V

Modèle de variateur	P/N fusible	Courant maximum [A]	Courant de coupure [A]	Courant coupé limité [A]	Calibre de fu- sible maxi- mum F1 [A]	Calibre de fusible mini- mum [V]	Classe F1
N110	Mersen A4J300	300	4000	9000	300	500	Classe J
N132	Mersen A4J350	350	4600	10000	350	500	Classe J
N160	Mersen A4J400	400	5000	10400	400	500	Classe J
N200	Mersen A4J500	500	8000	11500	500	500	Classe J
N250	Mersen A4J600	600	9000	12000	600	500	Classe J
N315	Mersen AABY750	750	11500	28000	750	500	Classe J
N355	Mersen A4BY800	800	12000	28000	800	500	Classe J
N400	Mersen A4BY1000	1000	15000	35000	1000	500	Classe J
N450	Mersen A4BY1000	1000	15000	35000	1000	500	Classe J
N500	Mersen A4BY1000	1100	18500	42000	1100	500	Classe J
N560	Mersen A4BY1200	1200	19000	42000	1200	500	Classe J

Tableau 47: Calibres de fusible recommandés pour une installation conforme à UL, 525-690 V

Modèle de variateur	P/N fusible	Courant maximum [A]	Courant de coupure [A]	Courant coupé limité [A]	Calibre de fu- sible maxi- mum F1 [A]	Calibre de fusible mini- mum [V]	Classe F1
N110	Mersen A4J300	175	2400	5400	175	600	Classe L
N132	Mersen A4J350	200	2700	6	200	600	Classe L
N160	Mersen A4J400	250	3200	7500	250	600	Classe L
N200	Mersen A4J500	350	4600	10000	350	600	Classe L
N250	Mersen A4J600	400	5000	10400	400	600	Classe L
N315	Mersen AABY750	500	8000	11500	500	600	Classe L
N400	Mersen A4BY800	600	9000	12000	600	600	Classe L
N450	Mersen A4BY1000	600	9000	12000	600	600	Classe L
N500	Mersen A4BY1000	650	11500	28000	750	600	Classe L
N560	Mersen A4BY1200	750	11500	28000	750	600	Classe L
N6300	Mersen A4BY1200	800	12000	28000	800	600	Classe L
N710	Mersen A4BY1200	1000	15000	35000	1000	600	Classe L
N800	Mersen A4BY1200	1100	18500	42000	1100	600	Classe L

5.10 Activation du fonctionnement du moteur

Context:

Si la ligne d'état en bas du LCP affiche AUTO A DISTANCE ROUE LIBRE, l'unité est prête à fonctionner, mais il lui manque un signal d'entrée sur la borne XD2.14 du compartiment de commande. La borne d'entrée digitale XD2.14 est conçue pour recevoir un ordre de verrouillage externe de 24 V CC qui permet au variateur de fonctionner avec les valeurs de programmation par défaut.

REMARQUE

ÉQUIPEMENT OPTIONNEL INSTALLÉ EN USINE

Ne pas retirer le câblage installé en usine à la borne XD2.14. Si le variateur ne fonctionne pas, se reporter à la documentation concernant l'équipement optionnel relié à la borne XD2.14.

Procédure

 Si aucun dispositif de verrouillage n'est utilisé, installer un cavalier de type instantané (WAGO 2002-433) entre la borne XD2.11 et XD2.14 du compartiment de commande. Ce cavalier fournit un signal 24 V interne sur la borne XD2.14. Le variateur est prêt à fonctionner.

5.11 Sélection du signal d'entrée de tension/courant

Context:

Les bornes d'entrées analogiques XD2.7 et XD2.8 dans le compartiment de commande permettent de régler le signal d'entrée de tension (0-10 V) ou de courant (0/4-20 mA).

- Borne XD2.7 : signal de référence de vitesse en boucle ouverte (voir le *paramètre 16-61 Terminal 53 Switch Setting* (Réglage de commutateur de borne 53)).
- Borne XD2.8 : signal de retour en boucle fermée (voir le *paramètre 16-63 Terminal 54 Switch Setting* (Réglage de commutateur de borne 54)).

Procédure

- 1. Mettre le variateur hors tension.
- 2. Retirer le LCP (panneau de commande local).
- 3. Retirer tout équipement facultatif couvrant les commutateurs.
- 4. Régler les commutateurs A53 et A54 pour sélectionner le type de signal (U = tension, I = courant).

Exemple:

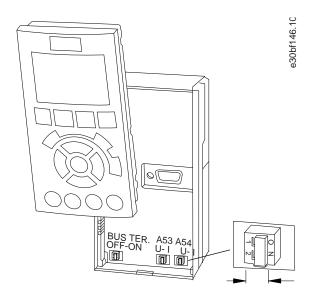


Illustration 56: Emplacement des commutateurs A53 et A54

5.12 Configuration de la communication série RS485

5.12.1 Configuration de la communication série RS485

Procédure

- 1. Raccorder le câblage de la communication série RS485 aux bornes (+) XD2.2 et (-) XD2.3.
 - Utiliser un câble de communication série blindé.
 - Mettre le câblage correctement à la terre. Se reporter à <u>5.8.6 Raccordement à la terre</u>.
- 2. Sélectionner le type de protocole au paramètre 8-30 Protocol (Protocole).
- 3. Sélectionner l'adresse du variateur au paramètre 8-31 Address (Adresse).
- 4. Sélectionner la vitesse de transmission au paramètre 8-32 Baud Rate (Vitesse de transmission).

Exemple:

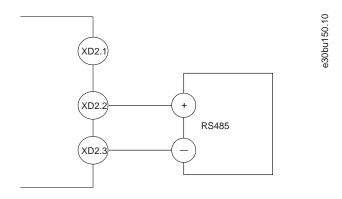


Illustration 57: Raccordement du câblage RS485

98 | Danfoss A/S © 2018.10

5.13 Configuration du filtre harmonique passif (PHF)

Context:

REMARQUE

DOMMAGES MATÉRIELS

Si les réglages corrects ne sont pas utilisés, cela peut entraîner une surchauffe du variateur de fréquence, et endommager le variateur de fréquence et ses environs.

- Vérifier que la valeur du paramètre 5-02 Terminal 29 Mode (Mode born.29) est réglée sur [1] Output (Sortie).
- Vérifier que la valeur du paramètre 5-31 Terminal 29 (Borne 29) est réglée sur [188] AHF Capacitor Connect (Connex° condens. AHF).

Procédure

- 1. Régler le paramètre 5-02 Terminal 29 Mode (Mode born.29) sur [1] Output (Sortie).
- 2. Régler le paramètre 5-31 Terminal 29 (Borne 29) sur [188] AHF Capacitor Connect (Connex° condens. AHF).

5.14 Configuration du filtre dU/dt

Context:

REMARQU<u>E</u>

DOMMAGES MATÉRIELS

Si les réglages corrects ne sont pas utilisés pour les boîtiers D9h et D10h, cela peut entraîner une surchauffe du variateur de fréquence, et endommager le variateur de fréquence et ses environs.

- Pour les boîtiers D9h et D10h, vérifier que la valeur du paramètre 14-52 Fan Control (Cmd ventil.) est réglée sur [3] 100% (100%). Il n'est pas nécessaire que les boîtiers E5h et E6h utilisent le réglage à 100%.

Procédure

1. Régler le paramètre 14-52 Output Filter (Filtre de sortie) sur [3] 100% (100 %).

5.15 Configuration du filtre sinus

Context:

REMARQUE

DOMMAGES MATÉRIELS

Si les réglages corrects ne sont pas utilisés, cela peut entraîner une surchauffe du variateur de fréquence, et endommager le variateur de fréquence et ses environs.

- Vérifier que la valeur du paramètre 14-55 Output Filter (Filtre de sortie) correspond au type de filtre de sortie utilisé.

Procédure

1. Régler le paramètre 14-55 Output Filter (Filtre de sortie) sur [1] Sine-wave (Sinus).

5.16 Configuration avec disjoncteur

Le disjoncteur à boîtier moulé (MCCB) propose les réglages d'arrêt suivants :

- Protection contre les surcharges (L). Le variateur s'arrête en cas de surcharge, avec un arrêt à retard à temps long inverse, conformément à la norme CEI 60947-2 (I2t=k).
- Protection contre les courts-circuits avec retard (S). Le variateur s'arrête en cas de court-circuit, avec un arrêt à retard à temps long inverse (I2t=k ON) ou à un temps d'arrêt constant (I2t=k OFF).
- Protection instantanée contre les courts-circuits (I). Le variateur s'arrête immédiatement en cas de court-circuit. La fonction d'arrêt (L) est toujours disponible, et (S) ou (I) peut être sélectionné par le commutateur DIP [S/I] sur l'unité d'arrêt du disjoncteur.

Des réglages d'usine par défaut sont prévus pour les fonctions L et I.

- Le réglage de surcourant (L) est réglé à 100 % de 1,5 fois le courant nominal en surcharge élevée du variateur (I₁).
- Le retard (t1) est sélectionné à 12 s pendant 6 fois l₁.
- Le réglage d'arrêt instantané en cas de court-circuit (I) est respecté. L'arrêt en cas de court-circuit avec retard (S) est ignoré avec les réglages d'usine.
- Le réglage d'arrêt instantané en cas de court-circuit (I) est réglé à 300 % du courant nominal en surcharge normale du variateur (I₃).
- Le réglage neutre (N) est de 100 %.
- La fréquence d'exploitation est réglée à 50 Hz en usine.

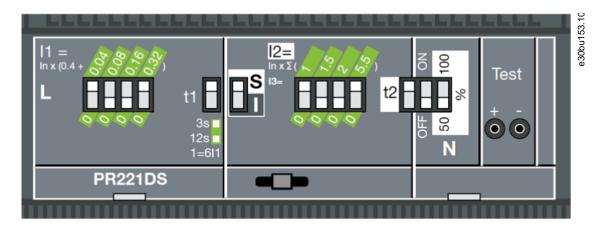


Illustration 58: Réglages d'usine par défaut du disjoncteur (MCCB)

5.17 Câblage de Safe Torque Off (STO)

La fonction Safe Torque Off (STO) est un composant du système de contrôle de la sécurité. La fonction STO empêche l'unité de générer la tension requise pour faire tourner le moteur. Pour activer la fonction STO, un câblage supplémentaire du variateur est nécessaire. Se reporter au manuel d'utilisation de la fonction Safe Torque Off de la série VLT° FC.

6 Liste de vérification avant le démarrage

6.1 Liste de vérification avant le démarrage

Moteur

- Contrôler la continuité du moteur en mesurant les valeurs en ohms aux bornes U-V (96-97), V-W (97-98) et W-U (98-96).
- · Contrôler que la tension d'alimentation correspond bien à la tension du variateur et du moteur.

Commutateurs

Vérifier que les paramètres du commutateur et du sectionneur sont réglés correctement.

Équipement auxiliaire

- Rechercher les équipements auxiliaires, commutateurs, sectionneurs ou fusibles d'entrée/disjoncteurs qui se trouvent du côté de la puissance d'entrée du variateur ou du côté sortie du moteur. S'assurer qu'ils sont prêts pour une exploitation à plein régime.
- Vérifier la fonction et l'installation des capteurs utilisés pour transmettre un signal de retour au variateur.
- Retirer les condensateurs de correction du facteur de puissance du moteur.
- · Ajuster les consensateurs de correction du facteur de puissance du côté secteur et s'assurer qu'ils sont protégés par une self.

Acheminement des câbles/fils

• Vérifier que les câbles du moteur, les câbles de freinage (le cas échéant) et les câbles de commande sont séparés, blindés ou placés dans 3 conduits métalliques distincts pour obtenir une isolation contre les interférences haute fréquence.

Câblage de commande

- Rechercher d'éventuels fils cassés ou endommagés et des branchements desserrés.
- Vérifier que le câblage de commande est isolé du câblage forte puissance pour l'immunité au bruit.
- · Vérifier la source de tension des signaux si nécessaire.
- Utiliser un câble blindé ou à paire torsadée.
- Vérifier que le blindage est correctement terminé.

Câble de puissance d'entrée et de sortie

- · Rechercher d'éventuelles connexions desserrées.
- Vérifier que les câbles du moteur et secteur passent par des conduits ou des câbles blindés séparés.

Mise à la terre

- Veiller à utiliser une mise à la terre correcte. La mise à la terre vers un conduit ou le montage du panneau arrière sur une surface métallique n'est pas considéré comme une mise à la terre adaptée.
- Vérifier que les mises à la terre sont correctes, étanches et exemptes d'oxydation.

Fusibles et disjoncteurs

- Vérifier que les fusibles et les disjoncteurs sont adaptés.
- Vérifier que tous les fusibles sont correctement insérés et en bon état.
- Vérifier que tous les disjoncteurs (le cas échéant) sont en position ouverte.

Dégagement pour le refroidissement

- Rechercher d'éventuels obstacles dans le circuit de circulation d'air.
- Veiller à ce que le dégagement en haut et en bas du variateur soit d'au moins 225 mm (9 po) pour assurer une circulation adéquate de l'air.

Conditions ambiantes

• Vérifier que les critères des conditions ambiantes sont respectés. Voir la section Conditions ambiantes.

Intérieur du variateur

- Vérifier que l'intérieur de l'unité est exempt de saletés, de particules métalliques, d'humidité et de corrosion.
- Vérifier qu'aucun des outils utiles à l'installation n'est resté à l'intérieur de l'unité.
- Pour les boîtiers ayant une protection nominale IP20/Châssis, vérifier que l'unité est montée sur une surface métallique non peinte.

Vibration

- S'assurer que l'unité est montée solidement ou que des supports amortisseurs sont utilisés, si nécessaire.
- Rechercher tout niveau de vibrations inhabituel.

7 Mise en service

7.1 Mise sous tension du variateur

Context:

Avant de mettre le variateur sous tension, vérifier que le variateur et tous les équipements liés sont prêts à fonctionner. Se reporter à la liste de vérification avant le démarrage.

▲ AVERTISSEMENT ▲

DÉMARRAGE IMPRÉVU

Lorsque le variateur est relié au secteur CA, à l'alimentation CC ou à la répartition de la charge, le moteur peut démarrer à tout moment, ce qui peut entraîner la mort, des blessures graves ou des dégâts matériels. Le moteur peut être démarré en actionnant un commutateur externe, un ordre du bus de terrain, un signal de référence d'entrée à partir du LCP ou du LOP, par commande à distance à l'aide du logiciel de programmation MCT 10 ou suite à la suppression d'une condition de panne.

- Appuyer sur [Off] sur le LCP avant de programmer les paramètres.
- Débrancher le variateur du secteur si la sécurité des personnes l'exige, afin d'éviter un démarrage imprévu du moteur.
- Vérifier que le variateur, le moteur et tout équipement entraîné soient prêts à fonctionner.

REMARQUE

SIGNAL MANQUANT

Si la ligne d'état en bas du LCP affiche AUTO A DISTANCE ROUE LIBRE ou si l'alarme 60, External interlock (Verrouillage ext.) apparaît, cela indique que l'unité est prête à fonctionner, mais qu'il lui manque un signal d'entrée, par exemple sur la borne 27.

Voir 5.10 Activation du fonctionnement du moteur pour plus de détails.

Procédure

- 1. S'assurer que la tension d'entrée est équilibrée avec une marge de 3 %. Si ce n'est pas le cas, corriger le déséquilibre de la tension d'entrée avant de continuer. Répéter la procédure après avoir corrigé la tension.
- 2. S'assurer que le câblage des équipements optionnels est adapté aux exigences de l'installation.
- 3. Veiller à ce que tous les dispositifs de l'opérateur soient réglés sur la position OFF.
- 4. Fermer et fixer tous les couvercles et toutes les portes du variateur.
- 5. Mettre l'unité sous tension, mais ne pas démarrer le variateur. Pour les unités munies d'un sectionneur, utiliser la position ON pour mettre le variateur sous tension.

7.2 Programmation du variateur

7.2.1 Vue d'ensemble des paramètres

Les paramètres incluent différents réglages servant à configurer et à utiliser le variateur et le moteur. Ces réglages des paramètres sont programmés dans le panneau de commande local (LCP) à l'aide de différents menus du LCP. Pour de plus amples informations sur les paramètres, consulter le guide de programmation.

Une valeur par défaut est attribuée à chacun de ces paramètres en usine, mais ils peuvent être configurés en fonction de chaque application. Chaque paramètre a un nom et un numéro qui restent les mêmes quel que soit le mode de programmation.

En mode Menu principal, les paramètres sont répartis en groupes. Le premier chiffre du numéro de paramètre (en partant de la gauche) indique le numéro de groupe de paramètres. Le groupe de paramètres est ensuite divisé en sous-groupes, si nécessaire. Par exemple :

Tableau 48: Exemple de hiérarchie de groupe de paramètres

Exemple	Description
0-** Operation/Display (Fonction./Affichage)	Groupe de paramètres
0–0* Basic Settings (Réglages de base)	Sous-groupe de paramètres
Paramètre 0-01 Language (Langue)	Paramètre
Paramètre 0-02 Motor Speed Unit (Unité vit. mot.)	Paramètre
Paramètre 0-03 Regional Settings (Réglages régionaux)	Paramètre

7.2.2 Navigation parmi les différents paramètres

Utiliser les touches suivantes du LCP pour naviguer parmi les paramètres.

- Appuyer sur [▲] [▼] pour défiler vers le haut ou le bas.
- Appuyer sur [◄] [▶] pour se déplacer d'un espace vers la droite ou la gauche de la virgule décimale lors de la modification d'une valeur de paramètre décimale.
- Appuyer sur [OK] pour accepter la modification.
- Appuyer sur [Cancel] pour ignorer le changement et quitter le mode de modification.
- Appuyer deux fois sur [Back] pour revenir à l'écran d'état.
- Appuyer sur [Main Menu] une fois pour revenir au menu principal.

7.2.3 Exemple de programmation pour une application en boucle ouverte

Context:

Cette procédure, utilisée pour configurer une application typique en boucle ouverte, programme le variateur pour recevoir un signal de commande analogique de 0-10 V CC sur la borne d'entrée 53. Le variateur répond en fournissant une sortie de 20-50 Hz au moteur, proportionnelle au signal d'entrée (0-10 V CC = 20-50 Hz). Les branchements de câbles utilisés permettant la configuration du dispositif externe sont indiqués dans <u>illustration 59</u>.

104 | Danfoss A/S © 2018.10

Procédure

- 1. Appuyer sur [Quick Menu].
- 2. Sélectionner Q3 Régl. fonction et appuyer sur [OK].
- 3. Sélectionner Régl. données par. et appuyer sur [OK].
- 4. Sélectionner Q3-2 Régl.boucl.ouverte et appuyer sur [OK].
- 5. Sélectionner Q3-21 Référence analogique et appuyer sur [OK].
- 6. Sélectionner le *paramètre 3-02 Minimum Reference* (Réf. min.). Régler la référence interne minimum du variateur sur 0 Hz et appuyer sur [OK].
- 7. Sélectionner le *paramètre 3-03 Maximum Reference* (Référence max.). Régler la référence interne maximum du variateur sur 60 Hz et appuyer sur [OK].
- **8.** Sélectionner le *paramètre 6-10 Terminal 53 Low Voltage* (Ech.min.U/born.53). Régler la référence de tension externe minimum sur la borne 53 à 0 V et appuyer sur [OK].
- 9. Sélectionner le *paramètre 6-11 Terminal 53 High Voltage* (Ech.max.U/born.53). Régler la référence de tension externe maximum sur la borne 53 à 10 V et appuyer sur [OK].
- 10. Sélectionner le *paramètre 6-14 Terminal 53 Low Ref./Feedb. Value* (Val.ret./Réf.bas.born. 53). Régler la référence de vitesse minimum sur la borne 53 à 20 Hz et appuyer sur [OK].
- 11. Sélectionner le *paramètre 6-15 Terminal 53 High Ref./Feedb. Value* (Val.ret./Réf.haut.born. 53). Régler la référence de vitesse maximum sur la borne 53 à 50 Hz et appuyer sur [OK].
 - → Avec un dispositif externe fournissant un signal de commande de 0-10 V raccordé à la borne 53 du variateur, le système est maintenant prêt à fonctionner.

REMARQUE

ÉTAT DE CONFIGURATION

Lorsque la barre de défilement à droite de l'écran arrive en bas, la procédure est finie.

Exemple:

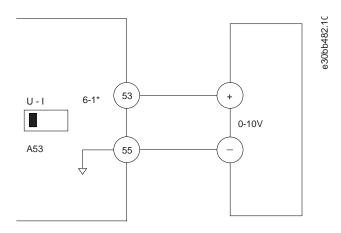


Illustration 59: Exemple de câblage d'un dispositif externe fournissant un signal de commande 0-10 V

7.2.4 Saisie des informations du système

Context:

Pour saisir les informations de base du système dans le variateur, suivre les étapes ci-après. Les réglages des paramètres recommandés sont prévus à des fins de démarrage et de vérification. Les réglages de l'application peuvent varier.

Bien que ces étapes supposent l'utilisation d'un moteur à induction, un moteur à magnétisation permanente peut être utilisé. Pour plus d'informations sur les types de moteur spécifiques, se reporter au guide de programmation du produit.

REMARQUE

TÉLÉCHARGER LE LOGICIEL

Pour une mise en service via un PC, installer le logiciel de programmation VLT* Motion Control Tool MCT 10. Une version de base, convenant à la plupart des applications, est disponible au téléchargement. Une version avancée, qui peut mettre en service plusieurs variateurs à la fois, peut être commandée.

- Voir https://www.danfoss.com/en/service-and-support/downloads/?sort=title_asc&filter=download-type%3Dtools.

Procédure

- 1. Appuyer sur [Main Menu] sur le LCP.
- 2. Sélectionner 0-** Operation/Display (Fonction./Affichage) et appuyer sur [OK].
- 3. Sélectionner 0–0* Basic Settings (Réglages de base) et appuyer sur [OK].
- 4. Sélectionner le paramètre 0-03 Regional Settings (Réglages régionaux) et appuyer sur [OK].
- 5. Sélectionner [0] International ou [1] North America (Amérique Nord) en fonction et appuyer sur [OK]. (Cela modifie les réglages par défaut de plusieurs paramètres de base.)
- 6. Appuyer sur [Quick Menu] sur le LCP, puis sélectionner 02 Quick Setup (Config. rapide).
- 7. Au besoin, modifier les réglages des paramètres suivants. Les données du moteur se trouvent sur la plaque signalétique du moteur.
 - A Paramètre 0-01 Language (Langue) (English (Anglais))
 - B Paramètre 1-20 Motor Power [kW] (Puissance moteur [kW]) (4.00 kW (4,00 kW))
 - C Paramètre 1-22 Motor Voltage (Tension moteur) (400 V)
 - D Paramètre 1-23 Motor Frequency (Fréquence moteur) (50 Hz)
 - E Paramètre 1-24 Motor Current (Courant moteur) (9.00 A (9,00 A))
 - F Paramètre 1-25 Motor Nominal Speed (Vit.nom.moteur) (1420 RPM (1 420 tr/min))
 - G Paramètre 5-12 Terminal 27 Digital Input (E.digit.born.27) (Coast Inverse (Lâchage))
 - H Paramètre 0-01 Language (Langue) (0.000 RPM (0,000 tr/min))
 - I Paramètre 3-03 Maximum Reference (Réf. max.) (1500.000 RPM (1 500,000 tr/min))
 - J Paramètre 3-41 Ramp 1 Ramp up Time (Temps accél. rampe 1) (3.00 s (3,00 s))
 - K Paramètre 3-42 Ramp 1 Ramp Down Time (Temps décél. rampe 1) (3.00 s (3,00 s))
 - L Paramètre 3-13 Reference Site (Emplacement réf.) (Linked to Hand/Auto (Mode hand/auto))
 - M Paramètre 1-29 Automatic Motor Adaptation (AMA) (Adaptation auto. au moteur (AMA)) (Off (Désactivé))

7.2.5 Configuration de l'optimisation automatique de l'énergie

Context:

La fonction d'optimisation automatique de l'énergie (AEO) est une procédure qui minimise la tension du moteur, réduit la consommation d'énergie, la chaleur et le bruit.

Procédure

- 1. Appuyer sur [Main Menu].
- 2. Sélectionner 1-** Load and Motor (Charge et moteur) et appuyer sur [OK].
- 3. Sélectionner 1-0* General Settings (Réglages généraux) et appuyer sur [OK].
- 4. Sélectionner le paramètre 1-03 Torque Characteristics (Caract.couple) et appuyer sur [OK].
- 5. Sélectionner [2] Auto Energy Optim CT (Optim.AUTO énergie CT) ou [3] Auto Energy Optim VT (Optim.AUTO énergie VT) et appuyer sur [OK].

7.2.6 Configuration de l'adaptation automatique au moteur

Context:

L'adaptation automatique au moteur est une procédure qui optimise la compatibilité entre le variateur et le moteur.

Le variateur construit un modèle mathématique du moteur pour la régulation du courant de sortie du moteur. La procédure teste également l'équilibre des phases d'entrée de l'alimentation électrique. Elle compare les caractéristiques du moteur aux données saisies dans les paramètres 1–20 à 1–25.

REMARQUE

Certains moteurs ne peuvent pas effectuer une version complète du test et cela déclenche une alarme.

Si c'est le cas ou si un filtre de sortie est raccordé au moteur, sélectionner [2] Enable reduced AMA (AMA activée réduite).

Procédure

- 1. Appuyer sur [Main Menu].
- 2. Sélectionner 1-** Load and Motor (Charge et moteur) et appuyer sur [OK].
- 3. Sélectionner 1–2* Motor Data (Données moteur) et appuyer sur [OK].
- 4. Sélectionner le paramètre 1-29 Automatic Motor Adaptation (AMA) (Adaptation auto. au moteur (AMA)) et appuyer sur [OK].
- 5. Sélectionner [1] Enable complete AMA (AMA activée compl.) et appuyer sur [OK].
- 6. Appuyer sur [Hand On] puis sur [OK].

Le test s'effectue automatiquement, puis un message indique la fin du test.

7.3 Tests avant le démarrage du système

7.3.1 Tests de rotation moteur

Context:

REMARQUE

ROTATION MOTEUR INCORRECTE

Si le moteur tourne dans le mauvais sens, cela peut endommager l'équipement.

- Avant de faire fonctionner l'unité, vérifier la rotation du moteur en le faisant tourner brièvement.

Procédure

- 1. Appuyer sur [Hand On].
- 2. Déplacer le curseur gauche sur la gauche de la virgule à l'aide de la flèche gauche.
- 3. Saisir une valeur de tr/min qui fait tourner lentement le moteur et appuyer sur [OK].

Le moteur fonctionne un court instant à 5 Hz ou à la fréquence minimum réglée au *paramètre 4-12 Motor Speed Low Limit [Hz]* (Vitesse moteur limite basse [Hz]).

4. Si le sens de rotation du moteur est erroné, régler le paramètre 1-06 Clockwise Direction (Sens horaire) sur [1] Inverse (Inversé).

7.4 Réglage des paramètres

7.4.1 Vue d'ensemble du réglage des paramètres

Les paramètres sont des réglages opérationnels auxquels il est possible d'accéder via le LCP et qui servent à configurer et à utiliser le variateur et le moteur pour des applications spécifiques.

Certains paramètres présentent des réglages par défaut différents pour l'international ou l'Amérique du Nord. Pour une liste des différentes valeurs par défaut, voir la section Réglages des paramètres par défaut selon International/North America (Amérique Nord).

Les réglages des paramètres sont enregistrés en interne dans le variateur, ce qui offre les avantages suivants :

- Les réglages des paramètres peuvent être chargés dans la mémoire du LCP et conservés comme sauvegarde.
- Il est possible de programmer rapidement plusieurs unités en raccordant le LCP à l'unité et en téléchargeant les réglages de paramètres sauvegardés.
- Les réglages enregistrés dans le LCP ne sont pas modifiés à la restauration des réglages par défaut.
- Les changements au niveau des réglages par défaut et les variables de paramètre sont enregistrés et peuvent être consultés dans le menu rapide. Voir la section Menu du LCP.

108 | Danfoss A/S © 2018.10

8 Exemples de configuration de câblage

8.1 Exemples d'applications

Les exemples de cette partie servent de référence rapide pour les applications courantes.

- Les réglages des paramètres correspondent aux valeurs régionales par défaut sélectionnées dans le *paramètre 0-03 Regional Settings* (Réglages régionaux), sauf indication contraire.
- Les paramètres associés aux bornes et leurs réglages sont indiqués à côté des dessins.
- Le réglage des commutateurs des bornes analogiques A53 ou A54 est aussi représenté.

8.1.1 Configuration de câblage pour l'adaptation automatique au moteur (AMA)

Tableau 49: Configuration de câblage pour l'AMA avec borne 27 connectée

	Paramètres	
+24 V XD2.10 +24 V XD2.110 D IN XD2.12 D IN XD2.130	Fonction	Réglage
	Paramètre 1-29 Automatic Motor Adaptation (AMA) (Adaptation auto. au moteur (AMA))	[1] Enable complete AMA (AMA activée compl.)
COM XD2.180 D IN XD2.14	Paramètre 5-12 Terminal 27 Digital Input (E.dig- it.born.27)	[2]* Coast inverse (Lâchage)
D IN XD2.150	* = valeur par défaut	
D IN XD2.170 D IN XD2.170	Remarques/commentaires:	
ADZ.13	Régler le <i>groupe de paramètres 1-2* Motor Data</i> (Doni nalétique du moteur.	nées moteur) en fonction de la plaque sig-
	La borne 27 dans l'intitulé du paramètre correspond mande.	à la borne XD2.14 du compartiment de com-

8.1.2 Configuration de câblage pour l'adaptation automatique au moteur (AMA) sans borne 27

Tableau 50: Configuration de câblage pour l'AMA sans borne 27 connectée

			Paramètres	
		10	Fonction	Réglage
+24 V	XD2.100	e30bu091.10	Paramètre 1-29 Automatic Motor Adaptation (AMA) (Adaptation auto. au moteur (AMA))	[1] Enable complete AMA (AMA activée compl.)
+24 V D IN	XD2.110 XD2.120	Φ	Paramètre 5-12 Terminal 27 Digital Input (E.dig- it.born.27)	[0] No operation (Inactif)
D IN COM	XD2.13 XD2.18		* = valeur par défaut	
D IN D IN	XD2.14 XD2.15		Remarques/commentaires:	
D IN D IN D IN	XD2.160 XD2.170 XD2.190		Régler le <i>groupe de paramètres 1-2* Motor Data</i> (Données moteur) en fonction de la plaque signalétique du moteur.	
+10 V A IN A IN COM A OUT COM	XD2.60 XD2.70 XD2.80 XD2.90 XD2.50 XD2.40		La borne 27 dans l'intitulé du paramètre correspond à la borne XD2.14 du compartiment de commande.	

8.1.3 Configuration de câblage : vitesse

Tableau 51: Configuration de câblage pour la référence de vitesse analogique (tension)

	Paramètres	
3.10	Fonction	Réglage
e30bu073.10	Paramètre 6-10 Terminal 53 Low Voltage (Ech.min.U/born.53)	0,07 V*
+10V XD2.60	Paramètre 6-11 Terminal 53 High Voltage (Ech.max.U/born.53)	10 V*
A IN XD2.7	Paramètre 6-14 Terminal 53 Low Ref./Feedb. value (Val.ret./Réf.bas.born.53)	0 Hz
A IN XD2.80 COM XD2.90	Paramètre 6-15 Terminal 53 High Ref./Feedb. Value (Val.ret./Réf.haut.born.53)	50 Hz
A OUT XD2.50 0–10 V	* = valeur par défaut	
COM XD2.40	Remarques/commentaires:	
U-I	D IN 37 est une option.	
La borne 53 dans l'intitulé du paramètre correspond à la borne XD2.7 du compartir mande.		oartiment de com-

Tableau 52: Configuration de câblage pour la référence de vitesse analogique (courant)

	Paramètres	
7.10	Fonction	Réglage
e30bu074.10	Paramètre 6-12 Terminal 53 Low Current (Ech.min.l/born.53)	4 mA*
110 7 702.00	Paramètre 6-13 Terminal 53 High Current (Ech.max.I/born.53)	20 mA*
A IN XD2.76	Paramètre 6-14 Terminal 53 Low Ref./Feedb. value (Val.ret./Réf.bas.born.53)	0 Hz
A OUT XD2.50	Paramètre 6-15 Terminal 53 High Ref./Feedb. Value (Val.ret./Réf.haut.born.53)	50 Hz
COM XD2.40 4-20mA	* = valeur par défaut	
	Remarques/commentaires:	
U-I	D IN 37 est une option.	
A53	La borne 53 dans l'intitulé du paramètre correspond à la borne XD2.7 du comp mande.	partiment de com-

Tableau 53: Configuration de câblage pour la référence de vitesse (à l'aide d'un potentiomètre manuel)

	Paramètres	
5.10	Fonction	Réglage
+10V XD2 60	Paramètre 6-10 Terminal 53 Low Voltage (Ech.min.U/born.53)	0,07 V*
1 1 1 1 1 1 1 1	Paramètre 6-11 Terminal 53 High Voltage (Ech.max.U/born.53)	10 V*
A IN XD2.70 # 5k# A IN XD2.80	Paramètre 6-14 Terminal 53 Low Ref./Feedb. value (Val.ret./Réf.bas.born.53)	0 Hz
COM XD2.90 A OUT XD2.50	Paramètre 6-15 Terminal 53 High Ref./Feedb. Value (Val.ret./Réf.haut.born.53)	50 Hz
COM XD2.40	* = valeur par défaut	
	Remarques/commentaires:	
U - I	D IN 37 est une option.	
A53	La borne 53 dans l'intitulé du paramètre correspond à la borne XD2.7 du comp mande.	partiment de com-

Tableau 54: Configuration de câblage pour l'accélération/la décélération

	Paramètre	
+24 V XD2.100	Fonction	Réglage
+24 V XD2.10 +24 V XD2.110 D IN XD2.120 D IN XD2.130	Paramètre 5-10 Terminal 18 Digital Input (E.digit.born. 18)	[8] Start (Démarrage)*
COM XD2.180 D IN XD2.140	Paramètre 5-12 Terminal 27 Digital Input (E.digit.born. 27)	[19] Freeze Reference (Gel référence)
D IN XD2.150 D IN XD2.170	Paramètre 5-13 Terminal 29 Digital Input (E.digit.born. 29)	[21] Speed Up (Accélération)
D IN XD2.119	Paramètre 5-14 Terminal 32 Digital Input (E.digit.born. 32)	[22] Speed Down (Décélération)
	* = valeur par défaut	
	Remarques/commentaires: D IN 37 est une option. La borne 18 dans l'intitulé du paramètre correspond à la mande.	a borne XD2.12 du compartiment de com-
	La borne 27 dans l'intitulé du paramètre correspond à la mande.	a borne XD2.14 du compartiment de com-
	La borne 29 dans l'intitulé du paramètre correspond à la mande.	a borne XD2.15 du compartiment de com-
	La borne 32 dans l'intitulé du paramètre correspond à la mande.	a borne XD2.16 du compartiment de com-

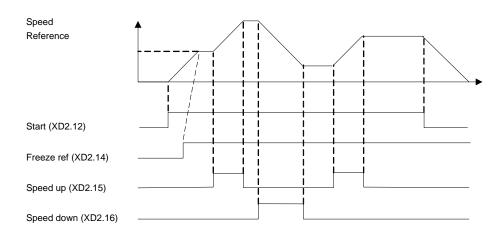


Illustration 60: Accélération/décélération

e30bu077.10

8.1.4 Configuration de câblage : Signal de retour

Tableau 55: Configuration de câblage pour transducteur de retour analogique courant 2 fils

	Paramètres	
3.10	Fonction	Réglage
01.820 900 124 V XD2.100	Paramètre 6-22 Terminal 54 Low Current (Ech.min.l/born.54)	4 mA*
+24 V XD2.100	Paramètre 6-23 Terminal 54 High Current (Ech.max.l/born.54)	20 mA*
D IN XD2.12	Paramètre 6-24 Terminal 54 Low Ref./Feedb. value (Val.ret./Réf.bas.born.54)	0*
D IN XD2.130	Paramètre 6-25 Terminal 54 High Ref./Feedb. Value (Val.ret./Réf.haut.born.54)	50*
D IN XD2.140	* = valeur par défaut	
D IN XD2.150 D IN XD2.160 D IN XD2.170 D IN XD2.190 +10 V XD2.60 A IN XD2.70 A IN XD2.80 COM XD2.90 A OUT XD2.50 COM XD2.40 U - I A 54	Remarques/commentaires: D IN 37 est une option. La borne 54 dans l'intitulé du paramètre correspond à la borne XD2.8 du commande.	partiment de com-

Tableau 56: Configuration de câblage pour le transducteur de retour de tension analogique (à 3 fils)

		Paramètres	
	9.10	Fonction	Réglage
	e30bu079.10	Paramètre 6-20 Terminal 54 Low Voltage (Ech.min.U/born.54)	0,07 V*
+24 V XD2.100 +24 V XD2.110	e30	Paramètre 6-21 Terminal 54 High Voltage (Ech.max.U/born.54)	10 V*
D IN XD2.12		Paramètre 6-24 Terminal 54 Low Ref./Feedb. value (Val.ret./Réf.bas.born.54)	0*
D IN XD2.135 COM XD2.185		Paramètre 6-25 Terminal 54 High Ref./Feedb. Value (Val.ret./Réf.haut.born.54)	50*
D IN XD2.140 D IN XD2.150		* = valeur par défaut	
D IN XD2.16		Remarques/commentaires:	
D IN XD2.170 D IN XD2.190		D IN 37 est une option.	
+10V XD2.60 A IN XD2.70 A IN XD2.80 COM XD2.90 A OUT XD2.50 COM XD2.40	0-10 V	La borne 54 dans l'intitulé du paramètre correspond à la borne XD2.8 du compande.	oartiment de com-

Tableau 57: Configuration de câblage pour le transducteur de retour de tension analogique (à 4 fils)

	Paramètres		
0.10	Fonction	Réglage	
01:080 900 900 900 900 900 900 900	Paramètre 6-20 Terminal 54 Low Voltage (Ech.min.U/born.54)	0,07 V*	
+24 V XD2.10	Paramètre 6-21 Terminal 54 High Voltage (Ech.max.U/born.54)	10 V*	
D IN XD2.12	Paramètre 6-24 Terminal 54 Low Ref./Feedb. value (Val.ret./Réf.bas.born.54)	0*	
D IN XD2.130 COM XD2.180	Paramètre 6-25 Terminal 54 High Ref./Feedb. Value (Val.ret./Réf.haut.born.54)	50*	
D IN XD2.14	* = valeur par défaut		
D IN XD2.150 D IN XD2.160	Remarques/commentaires :		
D IN XD2.170 D IN XD2.190	D IN 37 est une option.		
+10 V XD2.60 A IN XD2.70 A IN XD2.80 COM XD2.90 A OUT XD2.50 COM XD2.40 U-1 A54	La borne 54 dans l'intitulé du paramètre correspond à la borne XD2.8 du compande.	partiment de com-	

8.1.5 Configuration de câblage : marche/arrêt

Tableau 58: Configuration de câblage pour ordre de marche/arrêt avec verrouillage externe

		Paramètre	
	1.10	Fonction	Réglage
+24 V XD2.10 +24 V XD2.110	e30bu081	Paramètre 5-10 Terminal 18 Digital Input (E.digit.born. 18)	[8] Start (Démarrage)*
D IN XD2.12		Paramètre 5-12 Terminal 27 Digital Input (E.digit.born. 27)	[7] External interlock (Verrouillage ext.)
COM XD2.180		* = valeur par défaut	
D IN XD2.150 D IN XD2.160		Remarques/commentaires :	
D IN XD2.170 D IN XD2.170		D IN 37 est une option.	
La borne 18 dans l'intitulé du paramètre correspond à la borne XD2.12 du compartime mande.			la borne XD2.12 du compartiment de com-
La borne 27 dans l'intitulé du paramètre correspond à la borne XD2.14 du compartime mande.		la borne XD2.14 du compartiment de com-	

Tableau 59: Configuration de câblage pour ordre de marche/arrêt sans verrouillage externe

	Paramètre	
.10	Fonction	Réglage
+24 V XD2.100 +24 V	Paramètre 5-10 Terminal 18 Digital Input (E.dig- it.born.18)	[8] Start (Démarrage)*
+24 V XD2.11¢ D IN XD2.12¢ D IN XD2.13¢	Paramètre 5-12 Terminal 27 Digital Input (E.dig- it.born.27)	[7] External interlock (Verrouillage ext.)
COM XD2.18¢	* = valeur par défaut	
D IN XD2.14¢ D IN XD2.15¢ D IN XD2.16¢ D IN XD2.17¢	Remarques/commentaires : Si le paramètre 5-12 Terminal 27 Digital Inputs (E.digi	it.born.27) est réglé sur [0] No operation (Inac-
D IN XD2.19 ₀	tif), aucun cavalier n'est requis sur la borne XD2.14. D IN 37 est une option.	
	La borne 18 dans l'intitulé du paramètre correspond mande.	d à la borne XD2.12 du compartiment de com-
	La borne 27 dans l'intitulé du paramètre correspond mande.	d à la borne XD2.14 du compartiment de com-

Tableau 60: Configuration de câblage pour autorisation de marche

			Paramètre	
		3.10	Fonction	Réglage
		e30bu083.10	Paramètre 5-10 Terminal 18 Digital Input (E.dig- it.born.18)	[8] Start (Démarrage)*
+24 V +24 V D IN	XD2.100 XD2.110 XD2.120		Paramètre 5-11 Terminal 19 Digital Input (E.dig- it.born.19)	[52] Run permissive (Fct autorisé)
D IN COM	XD2.130 XD2.180		Paramètre 5-12 Terminal 27 Digital Input (E.dig- it.born.27)	[7] External interlock (Verrouillage ext.)
D IN D IN	XD2.14 XD2.150	+	Paramètre 5-40 Function Relay (Fonction relais)	[167] Start command act. (Ordre dém. actif)
D IN	XD2.160		* = valeur par défaut	
D IN D IN	XD2.17 XD2.19		Remarques/commentaires:	
+10V	0V XD2.6¢		D IN 37 est une option.	
A IN A IN COM	XD2.7 XD2.8 XD2.9		La borne 18 dans l'intitulé du paramètre correspormande.	nd à la borne XD2.12 du compartiment de com-
A OUT COM	XD2.5 XD2.4		La borne 19 dans l'intitulé du paramètre correspormande.	nd à la borne XD2.13 du compartiment de com-
₹	XD2.210 La borne 27 dans l'intitulé du paramètre correspond à la borne XD2.14 du compartire mande.		nd à la borne XD2.14 du compartiment de com-	
84	− XD2.240 − XD2.250 − XD2.260			

8.1.6 Configuration de câblage : Marche/arrêt

Tableau 61: Configuration de câblage pour ordre de démarrage/arrêt avec option Safe Torque Off

	Paramètre	
4.10	Fonction	Réglage
+24 A XD5.100 830bu084.10	Paramètre 5-10 Terminal 18 Digital Input (E.dig- it.born.18)	[Start]*
D IN XD2.130	Paramètre 5-12 Terminal 27 Digital Input (E.dig- it.born.27)	[0] No operation (Inactif)
COM XD2.180 D IN XD2.140	Paramètre 5-19 Terminal 37 Safe Stop (Arrêt de sécurité borne 37)	[1] Safe Stop Alarm (Alarme arrêt sécur.)
D IN XD2.150 D IN XD2.160	* = valeur par défaut	
D IN XD2.170 D IN XD2.190	Remarques/commentaires: Si le paramètre 5-12 Terminal 27 Digital Input (E.digit tif), aucun cavalier n'est requis sur la borne XD2.14. D IN 37 est une option. La borne 18 dans l'intitulé du paramètre correspondmende. La borne 27 dans l'intitulé du paramètre correspondmende. La borne 37 dans l'intitulé du paramètre correspondmende.	d à la borne XD2.12 du compartiment de com- d à la borne XD2.14 du compartiment de com-

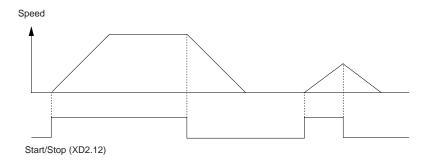


Illustration 61: Configuration de câblage pour ordre de démarrage/arrêt avec Safe Torque Off

e30bu101.10

Tableau 62: Configurations de câblage pour démarrage/arrêt type impulsionnel

	Paramètre	
0.10	Fonction	Réglage
+24 V XD2.10 +24 V XD2.10	Paramètre 5-10 Terminal 18 Digital Input (E.dig- it.born.18)	[9] Latched Start (Démarrage par impulsion)
+24 V XD2.110 D IN XD2.120 D IN XD2.130	Paramètre 5-12 Terminal 27 Digital Input (E.dig- it.born.27)	[6] Stop Inverse (Arrêt)
COM XD2.18	* = valeur par défaut	
D IN XD2.140 D IN XD2.150	Remarques/commentaires :	
D IN XD2.160 D IN XD2.170 D IN XD2.190	Si le <i>paramètre 5-12 Terminal 27 Digital Input</i> (E.digitif), aucun cavalier n'est requis sur la borne XD2.14.	
	D IN 37 est une option.	
7	La borne 18 dans l'intitulé du paramètre correspon- mande.	d à la borne XD2.12 du compartiment de com-
	La borne 27 dans l'intitulé du paramètre correspon- mande.	d à la borne XD2.14 du compartiment de com-

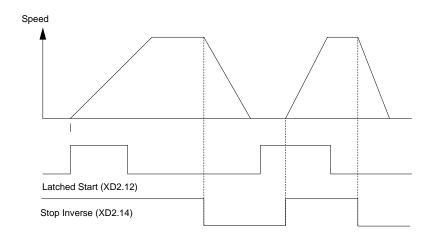
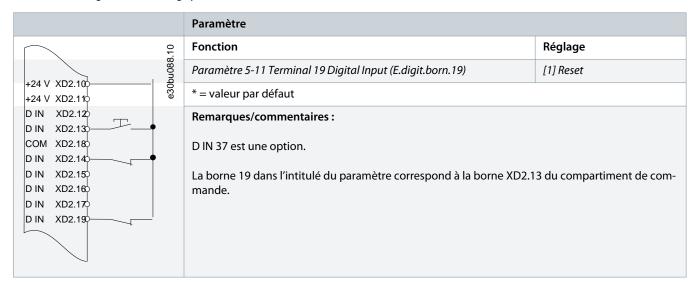


Illustration 62: Démarrage par impulsion/arrêt

e130bu087.10


Tableau 63: Configuration de câblage pour démarrage/arrêt avec inversion et 4 vitesses prédéfinies

		Paramètres	
	3.10	Fonction	Réglage
+24 V XD2.100 +24 V XD2.110	e30bu086.10	Paramètre 5-10 Terminal 18 Digital Input (E.digit.born.18)	[8] Start (Démarrage)
D IN XD2.12		Paramètre 5-11 Terminal 19 Digital Input (E.digit.born.19)	[10] Reversing (Inversion)*
COM XD2.180 D IN XD2.140		Paramètre 5-12 Terminal 27 Digital Input (E.digit.born.27)	[0] No operation (Inactif)
D IN XD2.150 D IN XD2.160 D IN XD2.170		Paramètre 5-14 Terminal 32 Digital Input (E.digit.born.32)	[16] Preset ref bit 0 (Réf prédéfinie bit 0)
		Paramètre 5-15 Terminal 33 Digital Input (E.digit.born.33)	[17] Preset ref bit 1 (Réf prédéfinie bit 1)
		Paramètre 3-10 Preset Reference (Référence	• Preset ref. 0 = 25% (Réf. prédéfinie 0 = 25 %)
		prédéfinie)	• Preset ref. 1 = 50% (Réf. prédéfinie 1 = 50 %)
			• Preset ref. 2 = 75% (Réf. prédéfinie 2 = 75 %)
			• Preset ref. 3 = 100% (Réf. prédéfinie 3 = 100 %)
		* = valeur par défaut	
		Remarques/commentaires:	
		D IN 37 est une option.	
		La borne 18 dans l'intitulé du paramètre corre mande.	spond à la borne XD2.12 du compartiment de com-
		La borne 19 dans l'intitulé du paramètre corre mande.	spond à la borne XD2.13 du compartiment de com-
		La borne 27 dans l'intitulé du paramètre corre mande.	spond à la borne XD2.14 du compartiment de com-
		La borne 32 dans l'intitulé du paramètre corre mande.	spond à la borne XD2.16 du compartiment de com-
		La borne 33 dans l'intitulé du paramètre corre mande.	spond à la borne XD2.17 du compartiment de com-

8.1.7 Configuration de câblage : Réinitialisation d'alarme externe

Tableau 64: Configuration de câblage pour réinitialisation d'alarme externe

8.1.8 Configuration de câblage: RS485

Tableau 65: Configuration de câblage pour le raccordement du réseau RS485

		Paramètre	
		Fonction	Réglage
XD2.100 RS485 XD2.110 + XD2.120 -	e30pn089	Paramètre 8-30 Protocol (Protocole)	FC*
	e30	Paramètre 8-31 Address (Adresse)	1*
		Paramètre 8-32 Baud Rate (Vit. transmission)	9600*
		* = valeur par défaut	
		Remarques/commentaires :	
		Sélectionner le protocole, l'adresse et la vitesse de transmission ci-dessus.	on dans les paramètres mentionnés
		D IN 37 est une option.	

8.1.9 Configuration de câblage: thermistance du moteur

A ATTENTION **A**

ISOLATION THERMISTANCE

Risque de blessures ou de dommages à l'équipement.

 Utiliser uniquement des thermistances comportant une isolation renforcée ou double pour satisfaire aux exigences d'isolation PELV.

Tableau 66: Configuration de câblage d'une thermistance du moteur

	Paramètres	
0.10	Fonction	Réglage
+10V XD2.60 A IN XD2.70	Paramètre 1-90 Motor Thermal Protection (Protect. thermique mot.)	[2] Thermistor trip (Arrêt thermistance)
A IN XD2.86 COM XD2.90 A OUT XD2.50	Paramètre 1-93 Thermistor Source (Source thermistance)	[1] Analog input 53 (Entrée ANA 53)
COM XD2.40	* = valeur par défaut	
U-I	Si seul un avertissement est nécessaire, régler le pot thermique mot.) sur [1] Thermistor warning (Avertis	-
A53	D IN 37 est une option.	
	L'entrée 53 dans le paramètre correspond à la borr	ne XD2.7 du compartiment de commande.

8.1.10 Câblage de régénération

Tableau 67: Configuration de câblage pour la régénération

			Paramètres	
		10	Fonction	Réglage
+24 V	XD2.100	e30bu091.10	Paramètre 1-90 Motor Thermal Protection (Protect. thermique mot.)	100%*
+24 V	XD2.110	Φ	* = valeur par défaut	
D IN D IN COM D IN D IN D IN D IN D IN A IN A IN COM A OUT COM	XD2.120 XD2.130 XD2.140 XD2.140 XD2.150 XD2.160 XD2.170 XD2.190 XD2.600 XD2.700 XD2.800 XD2.900 XD2.500 XD2.40		Pour désactiver la régénération, diminuer le <i>paramè</i> thermique mot.) à 0 %. Toutefois, si l'application util régénération n'est pas activée, le variateur s'arrête.	

122 | Danfoss A/S © 2018.10 AQ123456789012fr-000101 / 130R0881

8.1.11 Configuration de câblage pour une commande de relais avec contrôleur logique avancé

Tableau 68: Configuration de câblage pour une commande de relais avec contrôleur logique avancé

	Paramètres	
2.10	Fonction	Réglage
XD2.210 XD2.22 XD2.22 XD2.22	Paramètre 4-30 Motor Feedback Loss Function (Fonction perte signal de retour moteur)	[1] Warning (Avertissement)
XD2.230	Paramètre 4-31 Motor Feedback Speed Error (Erreur vitesse signal de retour moteur)	100 RPM (100 tr/min)
ND2.250 XD2.250 XD2.260	Paramètre 4-32 Motor Feedback Loss Timeout (Fonction tempo. signal de retour moteur)	5 s
	Paramètre 7-00 Speed PID Feedback Source (PID vit.source ret.)	[2] MCB 102
	Paramètre 17-11 Resolution (PPR) (Résolution (PPR))	1024*
	Paramètre 13-00 SL Controller Mode (Mode contr. log avancé)	[1] On (Actif)
	Paramètre 13-01 Start Event (Événement de démarrage)	[19] Warning (Avertissement)
	Paramètre 13-02 Stop Event (Événement d'arrêt)	[44] Reset key (Touche Reset)
	Paramètre 13-10 Comparator Operand (Opérande comparateur)	[21] Warning no. (N° avertiss.)
	Paramètre 13-11 Comparator Operator (Opérateur comparateur)	[1] ≈ (equal) (≈ (égal))*
	Paramètre 13-12 Comparator Value (Valeur comparateur)	90
	Paramètre 13-51 SL Controller Event (Événement contr. log avancé)	[22] Comparator 0 (Comparateur 0)
	Paramètre 13-52 SL Controller Action (Action contr. logique avancé)	[32] Set digital out A low (Déf. sort. dig. A bas)
	Paramètre 5-40 Function Relay (Fonction relais)	[80] SL digital output A (Sortie digitale log. avancé A)
	* = valeur par défaut	
	Remarques/commentaires :	
	Si la limite dans le dispositif de surveillance de signal de re <i>Feedback Mon</i> . (Surv. codeur) apparaît. Le SLC surveille l' <i>av</i> deur) et, s'il devient VRAI, le relais 1 est déclenché. L'équipe tretien.	ertissement 90, Feedback Mon. (Surv. co-
	Toutefois, si l'erreur de signal de retour redescend sous la l ment disparaît, appuyer sur [Reset] sur le LCP.	imite en moins de 5 s et l'avertisse-

8.1.12 Configuration de câblage : compresseur

Le SmartStart guide l'utilisateur dans la configuration d'un compresseur de réfrigération en lui demandant de saisir les données concernant le compresseur et le système de réfrigération dans lequel le variateur fonctionne. La terminologie et les unités utilisées

dans le SmartStart sont typiques du domaine de la réfrigération et la configuration est donc réalisée facilement en 10-15 étapes, à l'aide de 2 touches du LCP.

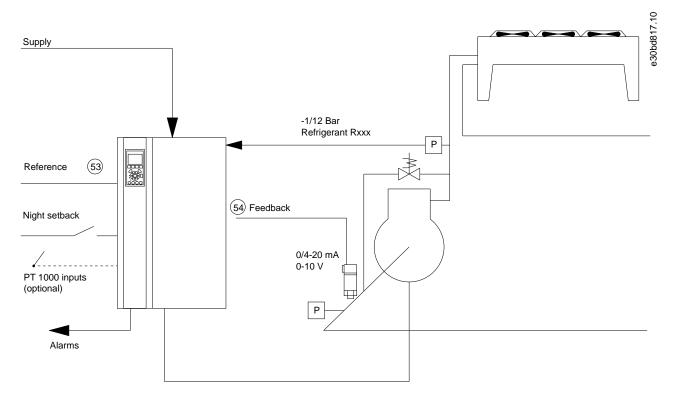


Illustration 63: Configuration standard du compresseur avec commande interne

Entrée SmartStart :

- · Vanne bipasse
- Temps de recyclage (d'un démarrage à un autre)
- Fréquence minimum (Hz)
- Fréquence maximum (Hz)
- Consigne
- Enclench./déclench.
- 400/230 V CA
- Courant (A)
- · Vitesse [tr/min]

8.1.13 Configuration de câblage : ventilateurs ou pompes uniques ou multiples

Le SmartStart guide dans la configuration d'un ventilateur ou d'une pompe de condenseur frigorifique. Saisir les données concernant le condenseur ou la pompe et le système de réfrigération dans lequel le variateur fonctionne. La terminologie et les unités utilisées dans le SmartStart sont typiques du domaine de la réfrigération et la configuration est donc réalisée facilement en 10-15 étapes, à l'aide de 2 touches du LCP.

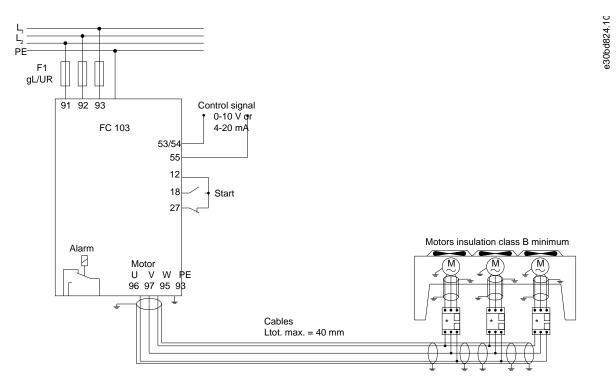


Illustration 64: Commande de vitesse utilisant la référence analogique (boucle ouverte) – Ventilateur ou pompe unique/ventilateurs ou pompes multiples en parallèle

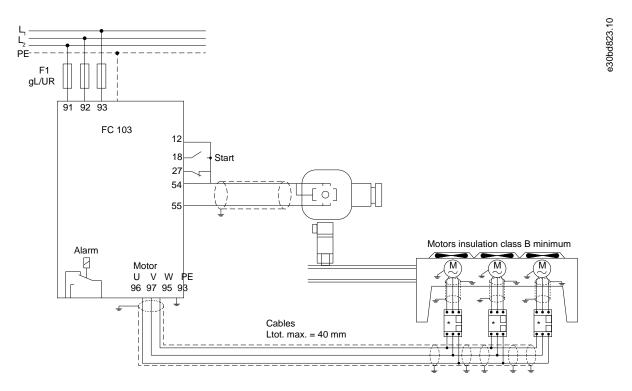


Illustration 65: Contrôle de pression en boucle fermée – Système autonome – Ventilateur ou pompe unique/ventilateurs ou pompes multiples en parallèle

Les types de câbles du moteur recommandés sont les suivants :

- LIYCY
- Lapp Oelflex 100CY 450/750 V
- Lapp Oelflex 110CY 600/1 000 V
- Lapp Oelflex SERVO 2YSLCY-J9
- Lapp Oelflex SERVO 2YSLCYK-J9
- HELU TOPFLEX-EWV-2YSLCY-J
- HELU TOPFLEX-EWV-UV 2YSLCYK-J
- HELU TOPFLEX-EWV-3PLUS 2YSLCY-J
- HELU TOPFLEX-EWV-UV-3PLUS 2YSLCYK-J
- Faber Kabel EWV-Motorleitung 2YSL(St)Cyv
- Nexans MOTIONLINE RHEYFLEX-EWV 2XSLSTCY-J

8.1.14 Configuration de câblage : groupe de compresseurs

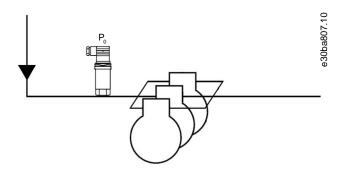


Illustration 66: Transmetteur de pression P₀

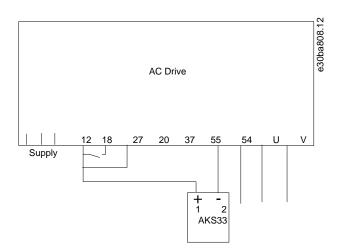
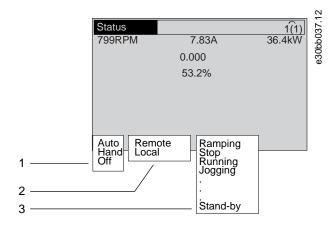


Illustration 67: Connexion du FC 103 et de l'AKS33 pour applications en boucle fermée

REMARQUE

Pour connaître les paramètres concernés, lancer le SmartStart.



9 Maintenance, diagnostic et dépannage

9.1 Messages d'état

9.1.1 Vue d'ensemble des messages d'état

Lorsque le variateur est en mode d'état, les messages d'état apparaissent automatiquement sur la ligne inférieure de l'écran du LCP. Voir <u>illustration 68</u>.

- 1 Mode d'exploitation. Se reporter à <u>9.1.2 Messages d'état Mode d'exploitation</u>.
- 2 Emplacement de la référence. Se reporter à 9.1.3 Messages d'état Emplacement de la référence.
- 3 État d'exploitation. Se reporter à <u>9.1.4 Messages d'état État d'exploitation</u>.

Illustration 68: Écran d'état

9.1.2 Messages d'état – Mode d'exploitation

Tableau 69: Mode d'exploitation

Mode d'ex- ploitation	Description
Off	Le variateur ne réagit à aucun signal de commande jusqu'à ce que l'on appuie sur [Auto On] ou [Hand On].
Auto	Le variateur nécessite des ordres externes pour réaliser les fonctions. Les ordres de démarrage/arrêt sont envoyés via les bornes de commande et/ou la communication série.
Hand	Les touches de navigation sur le LCP peuvent servir à commander le variateur. Les ordres d'arrêt, les réinitialisations, l'inversion, le freinage par injection de courant continu et d'autres signaux appliqués aux bornes de commande peuvent annuler la commande locale.

9.1.3 Messages d'état – Emplacement de la référence

Tableau 70: Emplacement de la référence

Emplacement de la référence	Description
À distance	La référence de vitesse est fournie par :
	des signaux externes ;
	la communication série ;
	des références prédéfinies internes.
Local	Le variateur utilise les valeurs de référence du LCP.

9.1.4 Messages d'état – État d'exploitation

Tableau 71: État d'exploitation

État d'ex- ploitation	Description
Frein CA	Le frein CA a été sélectionné au <i>paramètre 2-10 Brake Function</i> (Fonction de freinage). Le frein CA surmagnétise le moteur pour obtenir un ralentissement contrôlé.
Fin AMA OK	L'adaptation automatique au moteur (AMA) a été menée avec succès.
AMA prêt	L'AMA est prête à commencer. Pour commencer, appuyer sur [Hand On].
AMA active	Le processus d'AMA est en cours.
Freinage	Le hacheur de freinage est en fonctionnement. La résistance de freinage absorbe l'énergie génératrice.
Freinage max.	Le hacheur de freinage est en fonctionnement. La limite de puissance pour la résistance de freinage définie au paramètre 2-12 Brake Power Limit (kW) (P. kW Frein Res.) est atteinte.
Roue libre	 [2] Coast inverse (Lâchage) a été sélectionné comme fonction d'une entrée digitale (groupe de paramètres 5-1* Digital Inputs (Entrées digitales)). La borne correspondante n'est pas raccordée. Roue libre activée via la communication série.
Décélération ctrlée	 [1] Ctrl. ramp-down (Décélération ctrlée) a été sélectionné au paramètre 14-10 Mains Failure (Défaut secteur). La tension secteur est inférieure à la valeur réglée au paramètre 14-11 Mains Voltage at Mains Fault (Tension secteur à la panne secteur). Le variateur fait décélérer le moteur de manière contrôlée.
Courant haut	Le courant de sortie du variateur est au-dessus de la limite définie au <i>paramètre 4-51 Warning Current High</i> (Avertis. courant haut).
Courant bas	Le courant de sortie du variateur est en dessous de la limite définie au <i>paramètre 4-52 Warning Current Low</i> (Avertis. courant bas).
Maintien CC	DC hold (Maintien CC) est sélectionné au <i>paramètre 1-80 Function at Stop</i> (Fonction à l'arrêt) et un ordre d'arrêt est actif. Le moteur est maintenu par un courant CC réglé au <i>paramètre 2-00 DC Hold Current</i> (I maintien CC)
Arrêt inj.CC	Le moteur est maintenu par un courant CC (paramètre 2-01 DC Brake Current (Courant frein CC)) pendant un temps spécifié (paramètre 2-02 DC Braking Time (Temps frein CC)).
	 Le freinage CC est activé au paramètre 2-03 DC Brake Cut In Speed [RPM] (Vitesse frein CC [tr/min]) et un ordre d'arrêt est actif.
	• DC brake (inverse) (Frein CC (NF)) est sélectionné comme fonction pour une entrée digitale (groupe de paramètres 5-1* Digital Inputs (Entrées digitales)). La borne correspondante n'est pas active.
	Le frein CC est activé via la communication série.

État d'ex- ploitation	Description
Signal de re- tour haut	La somme de tous les signaux de retour actifs est supérieure à la limite de signal de retour définie au <i>paramètre</i> 4-57 Warning Feedback High (Avertis.retour haut).
Signal de re- tour bas	La somme de tous les signaux de retour actifs est inférieure à la limite de signal de retour définie au <i>paramètre 4-56 Warning Feedback Low</i> (Avertis.retour bas).
Gel sortie	 La référence distante est active et maintient la vitesse actuelle. [20] Freeze Output (Gel sortie) a été sélectionné comme fonction pour une entrée digitale (groupe de paramètres 5-1* Digital Inputs (Entrées digitales)). La borne correspondante est active. La commande de vitesse n'est possible que via les fonctions de borne Accélération et Décélération. La rampe de maintien est activée via la communication série.
Demande gel sortie	Un ordre de gel sortie a été donné, mais le moteur reste arrêté jusqu'à la réception d'un signal d'autorisation de marche.
Gel référence	[19] Freeze Reference (Gel référence) a été sélectionné comme fonction pour une entrée digitale (groupe de paramètres 5-1* Digital Inputs (Entrées digitales)). La borne correspondante est active. Le variateur enregistre la référence effective. Le changement de référence n'est possible que via les fonctions de borne Accélération et Décélération.
Demande de jogging	Un ordre de jogging a été donné, mais le moteur reste arrêté jusqu'à la réception d'un signal d'autorisation de marche via une entrée digitale.
Jogging	 Le moteur fonctionne selon la programmation du paramètre 3-19 Jog Speed [RPM] (Fréq.Jog. [tr/min]). [14] Jog (Jogging) a été sélectionné comme fonction pour une entrée digitale (groupe de paramètres 5-1* Digital Inputs (Entrées digitales)). La borne correspondante (p. ex. borne 29) est active. La fonction Jogging est activée via la communication série. La fonction Jogging a été sélectionnée en tant que réaction pour une fonction de surveillance (p. ex. Pas de signal). La fonction de surveillance est active.
Test moteur	Au paramètre 1-80 Function at Stop (Fonction à l'arrêt), [2] Motor Check (Test moteur) a été sélectionné. Un ordre d'arrêt est actif. Pour s'assurer qu'un moteur est connecté au variateur, un courant de test permanent est appliqué au moteur.
Contrôle de surtension OVC	Le contrôle de surtension est activé par [2] Enabled (Activé) au paramètre 2-17 Over-voltage Control (Ctrl surtens.). Le moteur raccordé fournit une énergie génératrice au variateur. Le contrôle de surtension ajuste le rapport V/Hz pour faire tourner le moteur en mode contrôlé et pour empêcher le variateur de s'arrêter.
Unité hors tension	(Uniquement pour les variateurs avec alimentation externe 24 V installée). L'alimentation secteur du variateur est coupée, mais la carte de commande est alimentée par l'alimentation 24 V externe.
Mode protect.	 Le mode de protection est actif. L'unité a détecté un état critique (surcourant ou surtension). Pour éviter un arrêt, la fréquence de commutation est réduite à 1,5 kHz si le paramètre 14-55 Output Filter (Filtre de sortie) est réglé sur [2] Sine-Wave Filter Fixed (Filtre sinus fixe). Sinon, la fréquence de commutation est réduite à 1,0 kHz. Si cela est possible, le mode de protection se termine après environ 10 s. Le mode de protection peut être restreint au paramètre 14-26 Trip Delay at Inverter Fault (Temps en U limit.).
Arrêt rapide	 Le moteur décélère en utilisant le paramètre 3-81 Quick Stop Ramp Time (Temps rampe arrêt rapide). [4] Quick stop inverse (Arrêt rapide NF) a été sélectionné comme fonction pour une entrée digitale (groupe de paramètres 5-1* Digital Inputs (Entrée digitales)). La borne correspondante n'est pas active. La fonction d'arrêt rapide a été activée via la communication série.
Marche rampe	Le moteur accélère/décélère à l'aide de la rampe d'accélération/décélération active. La référence, une valeur limite ou un arrêt n'a pas encore été atteint.

État d'ex- ploitation	Description
Réf. haute	La somme de toutes les références actives est supérieure à la limite de référence définie au <i>paramètre 4-55 Warning Reference High</i> (Avertis. référence haute).
Réf. basse	La somme de toutes les références actives est inférieure à la limite de référence définie au <i>paramètre 4-54 Warning Reference Low</i> (Avertis. référence basse).
F.sur réf	Le variateur fonctionne dans la plage de référence. La valeur du signal de retour correspond à la valeur de consigne.
Demande de fct	Un ordre de démarrage a été donné, mais le moteur est arrêté jusqu'à la réception d'un signal d'autorisation de marche via une entrée digitale.
En fonction.	Le variateur entraîne le moteur.
Mode veille	La fonction d'économie d'énergie est activée. Cela signifie que le moteur est actuellement arrêté, mais qu'il redémarrera automatiquement lorsque nécessaire.
Vit. haute	La vitesse du moteur est supérieure à la valeur définie au paramètre 4-53 Warning Speed High (Avertis.vitesse haute).
Vit. basse	La vitesse du moteur est inférieure à la valeur définie au paramètre 4-52 Warning Speed Low (Avertis.vitesse basse).
En attente	En mode Auto On, le variateur démarre le moteur avec un signal de démarrage via une entrée digitale ou la communication série.
Retard dé- mar.	Au <i>paramètre 1-71 Start Delay</i> (Retard démar.), une temporisation pour le démarrage est définie. Un ordre de démarrage est activé et le moteur démarre une fois que la temporisation du démarrage expire.
Démar. av./ar.	[12] Enable Start Forward (Marche sens hor.) et [13] Enable Start Reverse (Marche sens antihor.) ont été sélectionnés comme fonctions pour 2 entrées digitales différentes (groupe de paramètres 5-1* Digital Inputs (Entrées digitales)). Le moteur démarre en avant ou en arrière selon la borne correspondante qui est activée.
Arrêt	Le variateur a reçu un ordre d'arrêt de l'un des éléments suivants : LCP; entrée digitale; communication série.
Alarme	Une alarme s'est produite et le moteur est arrêté. Une fois que la cause de l'alarme est éliminée, réinitialiser le variateur de l'une des manières suivantes : en appuyant sur [Reset]; à distance par les bornes de commande; via la communication série.
Alarme verr.	Une alarme s'est produite et le moteur est arrêté. Une fois que la cause de l'alarme est éliminée, le variateur de fréquence doit être éteint puis rallumé. Réinitialiser le variateur manuellement de l'une des manières suivantes : en appuyant sur [Reset] ; à distance par les bornes de commande ; via la communication série.

9.2 Maintenance et service

Dans des conditions de fonctionnement normal et avec des profils de charge normaux, le variateur ne nécessite aucune maintenance tout au long de sa durée de vie. Pour éviter pannes, dangers et dommages, vérifier à intervalles réguliers que le variateur ne présente aucune connexion desserrée sur les bornes, aucune accumulation excessive de poussière, etc. Remplacer les pièces usées ou endommagées par des pièces agréées par Danfoss. Pour l'entretien et l'assistance, contacter le fournisseur local Danfoss.

A AVERTISSEMENT A

DÉMARRAGE IMPRÉVU

Lorsque le variateur est relié au secteur CA, à l'alimentation CC ou à la répartition de la charge, le moteur peut démarrer à tout moment, ce qui peut entraîner la mort, des blessures graves ou des dégâts matériels. Le moteur peut être démarré en actionnant un commutateur externe, un ordre du bus de terrain, un signal de référence d'entrée à partir du LCP ou du LOP, par commande à distance à l'aide du logiciel de programmation MCT 10 ou suite à la suppression d'une condition de panne.

- Appuyer sur [Off] sur le LCP avant de programmer les paramètres.
- Débrancher le variateur du secteur si la sécurité des personnes l'exige, afin d'éviter un démarrage imprévu du moteur.
- Vérifier que le variateur, le moteur et tout équipement entraîné soient prêts à fonctionner.

9.3 Avertissements et alarmes

9.3.1 Types d'avertissement et d'alarme

Alarme

Une alarme signale une erreur qui nécessite une attention particulière immédiatement. Le défaut déclenche toujours un arrêt ou une alarme verrouillée. Réinitialiser le variateur après une alarme à l'aide d'une des méthodes suivantes :

- appuver sur [Reset]/[Off/Reset] :
- ordre de réinitialisation via une entrée digitale ;
- ordre de réinitialisation via la communication série ;
- · reset automatique.

Avertissement

État résultant de situations de panne, p. ex. en cas de surchauffe du variateur ou lorsque celui-ci protège le moteur, le process ou le mécanisme. Le variateur empêche tout redémarrage tant que l'origine de la panne n'a pas été résolue. Pour annuler l'état d'alarme, redémarrer le variateur. Ne pas utiliser l'état d'alarme à des fins de sécurité des personnes.

Alarme verr.

En situations de panne, le variateur entre dans cet état afin de se protéger. Le variateur nécessite une intervention physique, p. ex. en cas de court-circuit sur la sortie. Une alarme verrouillée ne peut être annulée que par coupure de l'alimentation secteur, résolution de l'origine de la panne et reconnexion du variateur. Le redémarrage est impossible tant que l'état d'arrêt n'a pas été annulé par un reset ou, dans certains cas, grâce à un reset programmé automatiquement. Ne pas utiliser l'état d'alarme verrouillée à des fins de sécurité des personnes.

Notification du LCP

Lorsqu'un défaut se déclenche, le LCP indique le type de défaut (alarme, avertissement ou alarme verrouillée) et indique le numéro d'alarme ou d'avertissement sur l'écran.

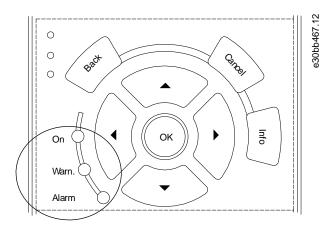


Illustration 69: Voyants d'état

Tableau 72:

Type de défaut	Voyant d'avertissement	Voyant d'alarme
Avertissement	On	Éteint
Alarme	Off	Allumé (clignotant)
Alarme verr.	On	Allumé (clignotant)

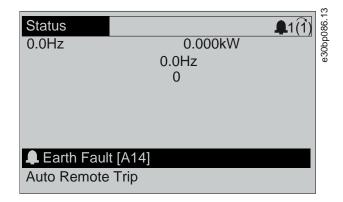


Illustration 70: Exemple d'alarme

9.3.2 AVERTISSEMENT 1, 10 Volts Low (10 V bas)

Cause

La tension de la carte de commande est inférieure à 10 V à partir de la borne 50. Réduire la charge de la borne 50, puisque l'alimentation 10 V est en surcharge. Maximum 15 mA ou minimum 590 Ω .

Un court-circuit dans un potentiomètre connecté ou un câblage incorrect du potentiomètre peut être à l'origine de ce problème.

Dépannage

• Retirer le câble de la borne 50. Si l'avertissement s'efface, le problème vient du câblage. Si l'avertissement persiste, remplacer la carte de commande.

9.3.3 AVERTISSEMENT/ALARME 2, Live Zero Error (Défaut zéro signal)

Cause

Cet avertissement ou cette alarme n'apparaît que s'il/si elle est programmé(e) au paramètre 6-01 Live Zero Timeout Function (Tempo Fonction Zero signal). Le signal sur l'une des entrées analogiques est inférieur à 50 % de la valeur minimale programmée pour cette entrée. Cette condition peut provenir d'un câblage rompu ou d'un dispositif défectueux qui envoie le signal.

Dépannage

- Vérifier les connexions de toutes les bornes secteur analogiques.
 - Bornes de la carte de commande 53 et 54 pour les signaux, borne 55 commune.
- Vérifier que la programmation du variateur et les réglages du commutateur correspondent au type de signal analogique.

9.3.4 AVERTISSEMENT/ALARME 3, No Motor (Pas de moteur)

Cause

Aucun moteur n'est connecté à la sortie du variateur.

9.3.5 AVERTISSEMENT/ALARME 4, Mains Phase Loss (Perte phase s.)

Cause

Une phase manque du côté de l'alimentation ou le déséquilibre de la tension secteur est trop élevé. Ce message apparaît aussi en cas de panne du redresseur d'entrée. Les options sont programmées au *paramètre 14-12 Function at Mains Imbalance* (Fonct.sur déséqui. secteur).

Dépannage

• Contrôler la tension et les courants d'alimentation vers le variateur.

9.3.6 AVERTISSEMENT 5, DC Link Voltage High (Tension continue circuit intermédiaire élevée)

Cause

La tension du circuit intermédiaire (CC) est plus élevée que la limite d'avertissement haute tension. La limite dépend de la tension nominale du variateur. Unité encore active.

9.3.7 AVERTISSEMENT 6, DC Link Voltage Low (Tension continue circuit intermédiaire basse)

Cause

La tension du circuit intermédiaire (CC) est inférieure à la limite d'avertissement basse tension. La limite dépend de la tension nominale du variateur. Unité encore active.

9.3.8 AVERTISSEMENT/ALARME 7, DC Overvoltage (Surtension CC)

Cause

Si la tension du circuit intermédiaire est supérieure à la limite, le variateur s'arrête au bout d'un moment.

Dépannage

- · Relier une résistance de freinage.
- Prolonger le temps de rampe.
- · Modifier le type de rampe.
- · Activer les fonctions au paramètre 2-10 Brake Function (Fonction frein.).
- Augmenter le paramètre 14-26 Trip Delay at Inverter Fault (Temps en U limit.).
- Si l'alarme/avertissement survient pendant une baisse de puissance, utiliser la sauvegarde cinétique (paramètre 14-10 Mains Failure (Défaut secteur)).

9.3.9 AVERTISSEMENT/ALARME 8, DC Undervoltage (Sous-tension CC)

Cause

Si la tension du circuit intermédiaire tombe en dessous de la limite de sous-tension, le variateur vérifie si une alimentation 24 V CC de secours est connectée. Si aucune alimentation 24 V CC de secours n'est raccordée, le variateur disjoncte après une durée déterminée. La durée est fonction de la taille de l'unité.

Dépannage

- · Contrôler que la tension d'alimentation correspond à la tension du variateur.
- Effectuer un test de la tension d'entrée.
- Effectuer un test du circuit de faible charge.

9.3.10 AVERTISSEMENT/ALARME 9, Inverter Overload (Surcharge onduleur)

Cause

La surcharge du variateur est supérieure à 100 % pendant une durée trop longue ; le variateur est sur le point de s'arrêter. Le compteur de la protection thermique électronique de l'onduleur émet un avertissement à 98 % et s'arrête à 100 % avec une alarme. Le variateur ne peut être remis à zéro tant que le compteur n'est pas inférieur à 90 %.

Dépannage

- Comparer le courant de sortie indiqué sur le LCP avec le courant nominal du variateur.
- Comparer le courant de sortie indiqué sur le LCP avec le courant du moteur mesuré.
- Afficher la charge thermique du variateur sur le LCP et contrôler la valeur. Si la valeur dépasse le courant continu nominal du variateur, le compteur augmente. Si la valeur est inférieure au courant continu nominal du variateur, le compteur diminue.

9.3.11 AVERTISSEMENT/ALARME 10, Motor Overload Temperature (Surch.ETR mot.)

Cause

La protection thermique électronique (ETR) signale que le moteur est trop chaud.

Sélectionner l'une de ces options :

- Le variateur émet un avertissement ou une alarme lorsque le compteur est > 90 % si le paramètre 1-90 Motor Thermal Protection (Protect. thermique mot.) est réglé sur des options d'avertissement.
- Le variateur s'arrête lorsque le compteur atteint 100 % si le *paramètre 1-90 Motor Thermal Protection* (Protect. thermique mot.) est réglé sur des options d'arrêt.

La panne survient lors d'une surcharge de moteur à plus de 100 % pendant trop longtemps.

Dépannage

- · Vérifier si le moteur est en surchauffe.
- Vérifier si le moteur est en surcharge mécanique.
- Vérifier que le courant du moteur réglé au paramètre 1-24 Motor Current (Courant moteur) est correct.
- Vérifier que les données du moteur aux paramètres 1-20 à 1-25 sont correctement réglées.
- Si une ventilation externe est utilisée, vérifier qu'elle est bien sélectionnée dans le *paramètre 1-91 Motor External Fan* (Ventil. ext. mot.).
- L'exécution d'une AMA au paramètre 1-29 Automatic Motor Adaptation (AMA) (Adaptation auto. au moteur (AMA)) adapte plus précisément le variateur au moteur et réduit la charge thermique.

9.3.12 AVERTISSEMENT/ALARME 11, Motor Thermistor Overtemp (Surt.therm.mot)

La thermistance du moteur indique que la température du moteur est trop élevée.

Dépannage

- · Vérifier si le moteur est en surchauffe.
- · Vérifier si la thermistance est bien branchée.
- Vérifier si le moteur est en surcharge mécanique.
- En cas d'utilisation de la borne 53 ou 54, vérifier que la thermistance est correctement connectée entre la borne 53 ou 54 (entrée de tension analogique) et la borne 50 (alimentation +10 V). Vérifier aussi que le commutateur des bornes 53 et 54 est réglé sur tension. Vérifier que le *paramètre 1-93 Thermistor Resource* (Source Thermistance) est sur 53 ou 54.
- En cas d'utilisation des bornes 18, 19, 31, 32 ou 33 (entrées digitales), vérifier que la thermistance est correctement connectée entre la borne d'entrée digitale utilisée (seulement PNP entrée digitale) et la borne 50. Sélectionner la borne à utiliser au paramètre 1-93 Thermistor Resource (Source Thermistance).

9.3.13 AVERTISSEMENT/ALARME 12, Torque Limit (Limite couple)

Cause

Le couple est supérieur à la valeur du *paramètre 4-16 Torque Limit Motor Mode* (Mode moteur limite couple) ou du *paramètre 4-17 Torque Limit Generator Mode* (Mode générateur limite couple). Le *paramètre 14-25 Trip Delay at Torque Limit* (Délais Al./C.limit ?) peut être utilisé pour modifier cela en passant d'une condition d'avertissement uniquement à un avertissement suivi d'une alarme.

Dépannage

- Si la limite du couple du moteur est dépassée pendant la rampe d'accélération, rallonger le temps de rampe d'accélération.
- Si la limite du couple générateur est dépassée pendant la rampe de décélération, rallonger le temps de rampe de décélération.
- Si la limite de couple est atteinte pendant le fonctionnement, augmenter la limite de couple. S'assurer que le système peut fonctionner de manière sûre à un couple plus élevé.
- Examiner l'application pour chercher d'éventuels appels de courant excessifs sur le moteur.

9.3.14 AVERTISSEMENT/ALARME 13, Overcurrent (Surcourant)

Cause

Dépannage

- Couper l'alimentation et vérifier si l'arbre moteur peut tourner.
- Vérifier que la taille du moteur correspond au variateur.
- Vérifier que les données du moteur sont correctes aux paramètres 1-20 à 1-25.

9.3.15 ALARME 14, Earth (Ground) Fault (Défaut terre (masse))

Cause

Présence d'un courant de la phase de sortie à la terre, dans le câble entre le variateur et le moteur ou dans le moteur lui-même. Les transformateurs de courant détectent le défaut de mise à la terre en mesurant le courant qui sort du variateur et le courant qui arrive dans le variateur depuis le moteur. Un défaut de mise à la terre est émis si l'écart entre les deux courants est trop important. Le courant sortant du variateur doit être identique à celui qui y entre.

Dépannage

- Mettre le variateur hors tension et réparer le défaut de mise à la terre.
- Rechercher les défauts de mise à la terre dans le moteur en mesurant la résistance à la terre des fils du moteur et du moteur à l'aide d'un mégohmmètre.
- Réinitialiser tout décalage potentiel dans les 3 transformateurs de courant du variateur. Effectuer une initialisation manuelle ou une AMA complète. Cette méthode est plus pertinente après modification de la carte de puissance.

9.3.16 ALARME 15, Hardware Mismatch (HW incomp.)

Cause

Une option installée n'est pas compatible avec le matériel ou le logiciel actuel de la carte de commande.

Dépannage

Noter la valeur des paramètres suivants et contacter Danfoss :

- Paramètre 15-40 FC Type (Type. FC)
- Paramètre 15-41 Power Section (Partie puiss.)
- Paramètre 15-42 Voltage (Tension)
- Paramètre 15-43 Software Version (Version logiciel)
- Paramètre 15-45 Actual Typecode String (Code composé var)
- Paramètre 15-49 SW ID Control Card (N°logic.carte ctrl.)
- Paramètre 15-50 SW ID Power Card (N°logic.carte puis)
- Paramètre 15-60 Option Mounted (Option montée)
- Paramètre 15-61 Option SW Version (Version logicielle option) (pour chaque emplacement)

9.3.17 ALARME 16, Short Circuit (Court-circuit)

Cause

Il y a un court-circuit dans le moteur ou le câblage du moteur.

Dépannage

▲ AVERTISSEMENT **▲**

HAUTE TENSION

Les variateurs de fréquence contiennent des tensions élevées lorsqu'ils sont reliés à l'alimentation secteur CA, à l'alimentation CC ou à la répartition de la charge. Le non-respect de la réalisation de l'installation, du démarrage et de la maintenance par du personnel qualifié peut entraîner la mort ou des blessures graves.

- L'installation, le démarrage et la maintenance ne doivent être effectués que par du personnel qualifié.
- Déconnecter la tension avant de commencer.
- Mettre le variateur hors tension et réparer le court-circuit.

9.3.18 AVERTISSEMENT/ALARME 17, Control Word Timeout (Dép.tps.mot ctrl)

Cause

Pas de communication avec le variateur. L'avertissement est uniquement actif si le *paramètre 8-04 Control Word Timeout Function* (Mot de ctrl.Fonct.dépas.tps) n'est PAS réglé sur [0] Off (Désactivé).

Si le *paramètre 8-04 Control Word Timeout Function* (Mot de ctrl.Fonct.dépas.tps) est réglé sur [5] Stop and trip (Arrêt et alarme), un avertissement apparaît et le variateur suit la rampe de décélération jusqu'à ce qu'il s'arrête, en émettant une alarme.

Dépannage

- Vérifier les connexions sur le câble de communication série.
- Augmenter le paramètre 8-03 Control Word Timeout Time (Mot de ctrl. Action dépas.tps).
- Vérifier le fonctionnement de l'équipement de communication.
- · Vérifier que l'installation a été effectuée conformément aux exigences CEM.

9.3.19 AVERTISSEMENT/ALARME 20, Temp. Input Error (Erreur entrée temp.)

Cause

Le capteur de température n'est pas connecté.

9.3.20 AVERTISSEMENT/ALARME 21, Parameter Error (Erreur par.)

Cause

Paramètre hors gamme. Le numéro du paramètre est affiché à l'écran.

Dépannage

· Régler le paramètre concerné sur une valeur valide.

9.3.21 AVERTISSEMENT/ALARME 22, Hoist Mechanical Brake (Frein levage act)

Cause

La valeur de cet avertissement/alarme indique le type d'avertissement/alarme.

0 = réf. du couple non atteinte avant temporisation (paramètre 2-27 Torque Ramp Up Time (Tps rampe acc. couple)).

1 = retour de frein attendu non reçu avant temporisation (paramètre 2-23 Activate Brake Delay (Activation retard frein), paramètre 2-25 Brake Release Time (Tps déclchment frein)).

9.3.22 AVERTISSEMENT 23, Internal Fan Fault (Panne ventilateurs internes)

Cause

La fonction d'avertissement du ventilateur constitue une protection supplémentaire chargée de vérifier si le ventilateur fonctionne/est monté. L'avertissement du ventilateur peut être désactivé au *paramètre 14-53 Fan Monitor* (Surveillance ventilateur) (réglé sur [0] Disabled (Désactivé)).

Les variateurs munis de ventilateurs CC comportent un capteur de retour monté dans le ventilateur. Si le ventilateur reçoit un ordre de marche et qu'il n'y a pas de retour du capteur, cette alarme apparaît. Pour les variateurs à ventilateurs CA, la tension en direction du ventilateur est contrôlée.

Dépannage

- · Vérifier que le ventilateur fonctionne correctement.
- Mettre le variateur hors tension puis sous tension et vérifier que le ventilateur fonctionne brièvement au démarrage.
- Vérifier les capteurs sur la carte de commande.

9.3.23 AVERTISSEMENT 24, External Fan Fault (Panne ventil. ext.)

Cause

La fonction d'avertissement du ventilateur constitue une protection supplémentaire chargée de vérifier si le ventilateur fonctionne/est monté. L'avertissement du ventilateur peut être désactivé au *paramètre 14-53 Fan Monitor* (Surveillance ventilateur) (réglé sur [0] Disabled (Désactivé)).

Les variateurs munis de ventilateurs CC comportent un capteur de retour monté dans le ventilateur. Si le ventilateur reçoit un ordre de marche et qu'il n'y a pas de retour du capteur, cet avertissement apparaît. Pour les variateurs à ventilateurs CA, la tension en direction du ventilateur est contrôlée.

Dépannage

- Vérifier que le ventilateur fonctionne correctement.
- Mettre le variateur hors tension puis sous tension et vérifier que le ventilateur fonctionne brièvement au démarrage.
- Vérifier les capteurs sur le dissipateur de chaleur.

9.3.24 AVERTISSEMENT 25, Brake Resistor Short Circuit (Court-circuit résistance de freinage)

Cause

La résistance de freinage est contrôlée en cours de fonctionnement. En cas de court-circuit, la fonction de freinage est désactivée et un avertissement est émis. Le variateur continue de fonctionner, mais sans la fonction de freinage.

Dépannage

Mettre le variateur hors tension et remplacer la résistance de freinage (voir le paramètre 2-15 Brake Check (Contrôle freinage)).

9.3.25 AVERTISSEMENT/ALARME 26, Brake Resistor Power Limit (Limite puissance résistance freinage)

Cause

La puissance transmise à la résistance de freinage est calculée comme une valeur moyenne portant sur les 120 dernières secondes de fonctionnement. Le calcul s'appuie sur la tension de circuit intermédiaire et sur la valeur de la résistance de freinage définie au paramètre 2-16 AC Brake Max. Current (Courant max. frein CA). L'avertissement est actif lorsque la puissance de freinage émise est supérieure à 90 % de la puissance de la résistance de freinage. Si l'option [2] Trip (Alarme) est sélectionnée au paramètre 2-13 Brake Power Monitoring (Surv. puis. freinage), le variateur s'arrête lorsque la puissance de freinage émise atteint 100 %.

9.3.26 AVERTISSEMENT/ALARME 27, Brake Chopper Fault (Panne hacheur de freinage)

Cause

Le transistor de freinage est contrôlé en cours de fonctionnement ; en cas de court-circuit, la fonction de freinage est désactivée et un avertissement est émis. Le variateur est toujours opérationnel mais puisque le transistor de freinage a été court-circuité, une puissance élevée sera transmise à la résistance de freinage même si elle est inactive.

Dépannage

Mettre le variateur hors tension et ôter la résistance de freinage.

9.3.27 AVERTISSEMENT/ALARME 28, Brake Check Failed (Échec contrôle freinage)

Cause

La résistance de freinage n'est pas connectée ou ne marche pas.

Dépannage

• Vérifier le paramètre 2-15 Brake Check (Contrôle freinage).

9.3.28 ALARME 29, Heat Sink Temp (Température dissipateur de chaleur)

Cause

La température maximale du dissipateur de chaleur est dépassée. L'erreur de température n'est pas réinitialisée tant que la température ne tombe pas en dessous d'une température de dissipateur de chaleur définie. Les points de déclenchement et de réinitialisation diffèrent selon la puissance du variateur.

Dépannage

- la température ambiante est trop élevée;
- les câbles du moteur sont trop longs ;
- le dégagement pour le débit d'air au-dessus et en dessous du variateur est inapproprié;
- le débit d'air est entravé autour du variateur ;
- le ventilateur du dissipateur de chaleur est endommagé;
- · le dissipateur de chaleur est sale.

9.3.29 ALARME 30, Motor Phase U Missing (Phase U abs.)

Cause

La phase U moteur entre le variateur et le moteur est absente.

Dépannage

▲ AVERTISSEMENT **▲**

HAUTE TENSION

Les variateurs de fréquence contiennent des tensions élevées lorsqu'ils sont reliés à l'alimentation secteur CA, à l'alimentation CC ou à la répartition de la charge. Le non-respect de la réalisation de l'installation, du démarrage et de la maintenance par du personnel qualifié peut entraîner la mort ou des blessures graves.

- L'installation, le démarrage et la maintenance ne doivent être effectués que par du personnel qualifié.
- Déconnecter la tension avant de commencer.
- Mettre le variateur hors tension et vérifier la phase U moteur.

9.3.30 ALARME 31, Motor Phase V Missing (Phase V abs.)

Cause

La phase V moteur entre le variateur et le moteur est absente.

Dépannage

A AVERTISSEMENT A

HAUTE TENSION

Les variateurs de fréquence contiennent des tensions élevées lorsqu'ils sont reliés à l'alimentation secteur CA, à l'alimentation CC ou à la répartition de la charge. Le non-respect de la réalisation de l'installation, du démarrage et de la maintenance par du personnel qualifié peut entraîner la mort ou des blessures graves.

- L'installation, le démarrage et la maintenance ne doivent être effectués que par du personnel qualifié.
- Déconnecter la tension avant de commencer.
- Mettre le variateur hors tension et vérifier la phase V moteur.

9.3.31 ALARME 32, Motor Phase W Missing (Phase W abs.)

Cause

La phase W moteur entre le variateur et le moteur est absente.

Dépannage

▲ AVERTISSEMENT **▲**

HAUTE TENSION

Les variateurs de fréquence contiennent des tensions élevées lorsqu'ils sont reliés à l'alimentation secteur CA, à l'alimentation CC ou à la répartition de la charge. Le non-respect de la réalisation de l'installation, du démarrage et de la maintenance par du personnel qualifié peut entraîner la mort ou des blessures graves.

- L'installation, le démarrage et la maintenance ne doivent être effectués que par du personnel qualifié.
- Déconnecter la tension avant de commencer.
- Mettre le variateur hors tension et vérifier la phase W moteur.

9.3.32 ALARME 33, Inrush Fault (Défaut instantané)

Cause

Trop de mises sous tension se sont produites dans une courte période.

Dépannage

• Laisser l'unité refroidir jusqu'à la température de fonctionnement.

9.3.33 AVERTISSEMENT/ALARME 34, Fieldbus Communication Fault (Défaut communication bus de terrain)

Cause

Le bus de terrain sur la carte d'option communication ne fonctionne pas.

9.3.34 AVERTISSEMENT/ALARME 35, Option Fault (Erreur option)

Cause

Une alarme d'option est reçue. L'alarme est spécifique à l'option. La cause la plus vraisemblable de l'alarme est un défaut de mise sous tension ou de communication.

9.3.35 AVERTISSEMENT/ALARME 36, Mains Failure (Défaut secteur)

Cause

Cet avertissement/alarme n'est actif que si la tension d'alimentation du variateur est perdue et si le *paramètre 14-10 Mains Failure* (Défaut secteur) n'est pas réglé sur [0] No Function (Pas de fonction).

Dépannage

· Vérifier les fusibles vers le variateur et l'alimentation secteur vers l'unité.

9.3.36 ALARME 37, Phase Imbalance (Déséquilibre tension alim.)

Cause

Déséquilibre actuel entre les unités de puissance.

9.3.37 ALARME 38, Internal Fault (Erreur interne)

Cause

Lorsqu'une erreur interne se produit, un numéro de code défini dans table 73 s'affiche.

Dépannage

- Mettre hors tension puis sous tension.
- Vérifier que l'option est correctement installée.
- · Rechercher d'éventuels câbles desserrés ou manquants.

Il peut être nécessaire de contacter le fournisseur Danfoss ou le service technique. Noter le numéro de code pour faciliter le dépannage ultérieur.

Tableau 73: Codes d'erreur interne

Numéro	Texte
0	Impossible d'initialiser le port série. Contacter le fournisseur Danfoss ou le service technique Danfoss.
256-258	Les données EEPROM de puissance sont incorrectes ou obsolètes. Remplacer la carte de puissance.
512-519	Erreur interne. Contacter le fournisseur Danfoss ou le service technique Danfoss.
783	Valeur du paramètre hors limites min./max.
1024-1284	Erreur interne. Contacter le fournisseur Danfoss ou le service technique Danfoss.
1299	Logiciel option A trop ancien.
1300	Logiciel option B trop ancien.
1302	Logiciel option C1 trop ancien.
1315	Logiciel option A non pris en charge/non autorisé.
1316	Logiciel option B non pris en charge/non autorisé.
1318	Logiciel option C1 non pris en charge/non autorisé.
1379-2819	Erreur interne. Contacter le fournisseur Danfoss ou le service technique Danfoss.
1792	Réinitialisation matérielle du processeur de signal numérique.
1793	Paramètres dérivés du moteur non transférés correctement au processeur de signal numérique.
1794	Données de puissance non transférées correctement au processeur de signal numérique lors de la mise sous tension.

Numéro	Texte
1795	Le processeur de signal numérique a reçu trop de télégrammes SPI inconnus. Le variateur de fréquence utilise aussi ce code de défaut si le MCO ne s'allume pas correctement. Cette situation peut survenir en raison d'une mauvaise protection CEM ou d'une mise à la terre inadéquate.
1796	Erreur copie RAM.
2561	Remplacer la carte de commande.
2820	Dépassement de pile LCP.
2821	Dépassement port série.
2822	Dépassement port USB.
3072-5122	Valeur de paramètre hors limites.
5123	Option A : matériel incompatible avec celui de la carte de commande.
5124	Option B : matériel incompatible avec celui de la carte de commande.
5125	Option C0 : matériel incompatible avec celui de la carte de commande.
5126	Option C1 : matériel incompatible avec celui de la carte de commande.
5376-6231	Erreur interne. Contacter le fournisseur Danfoss ou le service technique Danfoss.

9.3.38 ALARME 39, Heat Sink Sensor (Capteur dissipateur de chaleur)

Cause

Pas de retour du capteur de température du dissipateur de chaleur.

Le signal du capteur thermique IGBT n'est pas disponible sur la carte de puissance. Le problème peut provenir de la carte de puissance, de la carte de commande de gâchette ou du câble plat entre la carte de puissance et la carte de commande de gâchette.

9.3.39 AVERTISSEMENT 40, Overload of Digital Output Terminal 27 (Surcharge borne sortie digitale 27)

Dépannage

- Vérifier la charge connectée à la borne 27 ou supprimer le raccordement en court-circuit.
- Vérifier le paramètre 5-00 Digital I/O Mode (Mode E/S digital) et le paramètre 5-01 Terminal 27 Mode (Mode born.27).

9.3.40 AVERTISSEMENT 41, Overload of Digital Output Terminal 29 (Surcharge borne sortie digitale 29)

Dépannage

- Vérifier la charge connectée à la borne 29 ou supprimer le raccordement en court-circuit.
- Vérifier le paramètre 5-00 Digital I/O Mode (Mode E/S digital) et le paramètre 5-02 Terminal 29 Mode (Mode born29).

9.3.41 AVERTISSEMENT 42, Ovrld X30/6-7 (Surcharge X30/6-7)

Dépannage

Pour la borne X30/6:

- Vérifier la charge connectée à la borne, ou supprimer le raccordement en court-circuit.
- Vérifier le paramètre 5-32 Term X30/6 Digi out (MCB 101) (S.digit.born. X30/6 (MCB 101)) (VLT® General Purpose I/O MCB 101).

Pour la borne X30/7:

- · Vérifier la charge connectée à la borne, ou supprimer le raccordement en court-circuit.
- Vérifier le paramètre 5-33 Term X30/7 Digi out (MCB 101) (S.digit.born. X30/7 (MCB 101)) (VLT® General Purpose I/O MCB 101).

9.3.42 ALARME 43, Ext. Supply (Alim. ext.)

Connecter une alimentation externe 24 V CC ou spécifier qu'aucune alimentation externe n'est utilisée via le *paramètre 14-80 Option Supplied by External 24VDC* (Option alimentée par 24 V CC ext.), [0] No (Non). Toute modification de ce *paramètre* nécessite un cycle de mise hors/sous tension.

Cause

Le VLT[®] Extended Relay Option MCB 113 est monté sans alimentation 24 V CC.

Dépannage

Choisir l'une des actions suivantes :

- Connecter une alimentation externe 24 V CC.
- Spécifier qu'aucune alimentation externe n'est utilisée via le paramètre paramètre 14-80 Option Supplied by External 24VDC (Option alimentée par 24 V CC ext.), [0] No (Non). Toute modification de ce paramètre nécessite un cycle de mise hors/sous tension.

9.3.43 ALARME 45, Earth Fault 2 (Défaut terre 2)

Cause

Défaut de mise à la terre.

Dépannage

- S'assurer que la mise à la terre est correcte et rechercher d'éventuelles connexions desserrées.
- Vérifier que la taille des câbles est adaptée.
- Examiner les câbles du moteur pour chercher d'éventuels courts-circuits ou courants de fuite.

9.3.44 ALARME 46, Power Card Supply (Alim. carte puissance)

Cause

Alimentation de la carte de puissance hors plage. Autre raison potentielle : ventilateur du dissipateur de chaleur défectueux.

Il existe 3 alimentations générées par l'alimentation du mode de commutation (SMPS) de la carte de puissance :

- 24 V
- 5 V
- ± 18 V

Lorsque l'alimentation est fournie par le VLT[®] 24 V DC Supply MCB 107, seules les alimentations 24 V et 5 V sont surveillées. Lorsqu'elles sont alimentées par une tension secteur triphasée, les 3 alimentations sont surveillées.

Dépannage

- · Rechercher une éventuelle carte de puissance défectueuse.
- Rechercher une éventuelle carte de commande défectueuse.
- Rechercher une éventuelle carte d'option défectueuse.
- Si une alimentation 24 V CC est utilisée, vérifier qu'elle est correcte.
- Vérifier l'état du ventilateur du dissipateur de chaleur.

9.3.45 AVERTISSEMENT 47, 24 V Supply Low (Alim. 24 V bas)

Cause

Alimentation de la carte de puissance hors plage.

Il existe 3 alimentations générées par l'alimentation du mode de commutation (SMPS) de la carte de puissance :

- 24 V
- 5 V
- ±18 V

Dépannage

• Rechercher une éventuelle carte de puissance défectueuse.

9.3.46 AVERTISSEMENT 48, 1.8 V Supply Low (Alim. 1,8 V bas)

Cause

L'alimentation 1,8 V CC utilisée sur la carte de commande se situe en dehors des limites admises. L'alimentation est mesurée sur la carte de commande.

Dépannage

- Rechercher une éventuelle carte de commande défectueuse.
- Si une carte d'option est montée, rechercher une éventuelle surtension.

9.3.47 AVERTISSEMENT 49, Speed Limit (Vit. limite)

Cause

L'avertissement s'affiche lorsque la vitesse ne se trouve pas dans la plage spécifiée au paramètre 4-11 Motor Speed Low Limit [RPM] (Vit. mot. limite basse [tr/min]) et au paramètre 4-13 Motor Speed High Limit [RPM] (Vit.mot. limite haute [tr/min]). Si la vitesse est inférieure à la limite spécifiée au paramètre 1-86 Trip Speed Low [RPM] (Arrêt vit. basse [tr/min]) (sauf lors du démarrage ou de l'arrêt), le variateur s'arrête.

9.3.48 ALARME 50, AMA Calibration Failed (Échec calibrage AMA)

Dépannage

• Contacter le fournisseur Danfoss ou le service technique.

9.3.49 ALARME 51, AMA Check Unom and Inom (AMA Unom et Inom)

Cause

Les réglages de la tension, du courant et de la puissance du moteur sont erronés.

Dépannage

• Vérifier les réglages des paramètres 1-20 à 1-25.

9.3.50 ALARME 52, AMA Low Inom (AMA I nominal bas)

Cause

Le courant moteur est trop bas.

Dépannage

• Vérifier les réglages du paramètre 1-24 Motor Current (Courant moteur).

9.3.51 ALARME 53, AMA Motor Too Big (AMAgrosmoteur)

Cause

Le moteur est trop gros pour réaliser l'AMA.

9.3.52 ALARME 54, AMA Motor Too Small (AMA-petit mot)

Cause

Le moteur utilisé est trop petit pour réaliser l'AMA.

9.3.53 ALARME 55, Parameter Out of Range (AMA hors gam.)

Cause

L'AMA ne peut pas fonctionner car les valeurs des paramètres du moteur sont hors de la plage admissible.

9.3.54 ALARME 56, AMA Interrupted by User (AMA interrompue par l'utilisateur)

Cause

L'AMA est interrompue manuellement.

9.3.55 ALARME 57, AMA Internal Fault (Erreur interne AMA)

Cause

Essayer de relancer l'AMA. Des tentatives successives peuvent surchauffer le moteur.

9.3.56 ALARME 58, AMA Internal Fault (Erreur interne AMA)

Dépannage

Contacter le fournisseur Danfoss.

9.3.57 AVERTISSEMENT 59, Current Limit (I limite)

Cause

Le courant est supérieur à la valeur programmée au paramètre 4-18 Current Limit (Limite courant).

Dépannage

- Vérifier que les données du moteur aux paramètres 1-20 à 1-25 sont correctement réglées.
- Augmenter la limite de courant si nécessaire. S'assurer que le système peut fonctionner de manière sûre à une limite supérieure.

9.3.58 ALARME 60, External Interlock (Verrouillage externe)

Cause

Un signal d'entrée digitale indique une condition de panne extérieure au variateur. Dans le compartiment de commande, les 3 contacts de relais suivants sont branchés en série à 1 entrée digitale servant de relais de surcharge thermique :

- KFJ.1 surveille la chaleur dans l'armoire d'options de puissance d'entrée.
- KFJ.2 surveille la chaleur dans l'armoire de filtre de sortie.
- KFJ.3 surveille la chaleur dans l'armoire de filtre d'entrée.

Lorsque les commutateurs thermiques dans l'une de ces armoires s'ouvrent en raison d'une surtempérature, le variateur s'arrête sur External Interlock (Verrouillage externe) [A60]

Dépannage

- Ouvrir le compartiment de commande et vérifier si des voyants s'allument dans les relais KFJ.1, KFJ.2 et KFJ.3. Si aucun voyant n'est allumé, vérifier les autres verrouillages externes.
- · Supprimer la condition de panne externe.
- Pour reprendre un fonctionnement normal, appliquer 24 V CC à la borne programmée pour le verrouillage externe.
- · Réinitialiser le variateur.

9.3.59 AVERTISSEMENT/ALARME 61, Feedback Error (Erreur de signal de retour)

Cause

Erreur entre la vitesse calculée et la mesure de vitesse provenant du dispositif de retour.

Dépannage

- Vérifier les réglages pour l'avertissement/l'alarme/la désactivation au paramètre 4-30 Motor Feedback Loss Function (Fonction perte signal de retour moteur).
- Définir le temps de perte du signal de retour acceptable au paramètre 4-32 Motor Feedback Loss Timeout (Fonction tempo. signal de retour moteur).

9.3.60 AVERTISSEMENT 62, Output Frequency at Maximum Limit (Limite max. fréquence de sortie)

Cause

La fréquence de sortie atteint la valeur définie au paramètre 4-19 Max Output Frequency (Frq.sort.lim.hte).

Dépannage

- Rechercher les causes possibles dans l'application.
- Augmenter la limite de fréquence de sortie. S'assurer que le système peut fonctionner de manière sûre avec une fréquence de sortie supérieure.

L'avertissement s'efface lorsque la sortie descend sous la limite maximale.

9.3.61 ALARME 63, Mechanical Brake Low (Frein mécanique bas)

Cause

Le courant moteur effectif n'a pas dépassé le courant d'activation du frein au cours de la temporisation du démarrage.

9.3.62 AVERTISSEMENT 64, Voltage Limit (Limite tension)

Cause

La combinaison charge et vitesse exige une tension moteur supérieure à la tension du circuit intermédiaire CC réelle.

9.3.63 AVERTISSEMENT/ALARME 65, Control Card Overtemperature (Température excessive de la carte de commande)

Cause

La température de déclenchement de la carte de commande a dépassé la limite supérieure.

Dépannage

- Vérifier que la température ambiante de fonctionnement est dans les limites.
- Vérifier le fonctionnement du ventilateur.
- Vérifier la carte de commande.

9.3.64 AVERTISSEMENT 66, Heat Sink Temperature Low (Temp. dissipateur de chaleur basse)

Cause

Le variateur est trop froid pour fonctionner. Cet avertissement repose sur le capteur de température du module IGBT.

Dépannage

- Augmenter la température ambiante de l'unité.
- Fournir une faible quantité de courant au variateur chaque fois que le moteur est arrêté en réglant le *paramètre 2-00 DC Hold/ Preheat Current* (I maintien/préchauff.CC) sur 5 % et le *paramètre 1-80 Function at Stop* (Fonction à l'arrêt).

9.3.65 ALARME 67, Option Module Configuration has Changed (La configuration du module d'options a changé)

Cause

Une ou plusieurs options ont été ajoutées ou supprimées depuis la dernière mise hors tension.

Dépannage

• Vérifier que le changement de configuration est intentionnel et réinitialiser l'unité.

9.3.66 ALARME 68, Safe Stop Activated (Arrêt de sécurité activé)

Cause

La fonction Safe Torque Off (STO) a été activée.

Dépannage

• Pour reprendre le fonctionnement normal, appliquer 24 V CC à la borne 37, puis envoyer un signal de réinitialisation (via le bus, digitale ou en appuyant sur [Reset]).

9.3.67 ALARME 69, Power Card Temperature (Température carte de puissance)

Cause

Le capteur de température de la carte de puissance est trop chaud ou trop froid.

Dépannage

- Vérifier que la température ambiante de fonctionnement est dans les limites.
- · Rechercher d'éventuels filtres bouchés.
- Vérifier le fonctionnement du ventilateur.
- Examiner la carte de puissance.

9.3.68 ALARME 70, Illegal FC Configuration (Configuration FC illégale)

Cause

La carte de commande et la carte de puissance sont incompatibles.

Dépannage

• Contacter le fournisseur Danfoss avec le code de type indiqué sur la plaque signalétique de l'unité et les références des cartes pour vérifier la compatibilité.

9.3.69 ALARME 71, PTC 1 Safe Stop (Arrêt sécurité PTC 1)

Cause

Étant donné que le moteur est trop chaud, le VLT[®] PTC Thermistor Card MCB 112 a activé Safe Torque Off (STO).

Dépannage

 Une fois que la température du moteur atteint un niveau acceptable et que l'entrée digitale depuis le MCB 112 est désactivée, envoyer un signal de Reset via le bus ou une E/S digitale, ou appuyer sur [Reset].

9.3.70 ALARME 72, Dangerous Failure (Panne danger)

Cause

Safe Torque Off (STO) avec alarme verrouillée.

Dépannage

Une combinaison inattendue d'ordres de STO s'est produite :

- Le VLT® PTC Thermistor Card MCB 112 active la borne X44/10, mais la fonction STO n'est pas activée.
- Le MCB 112 est le seul dispositif utilisant la fonction STO (spécifié via le choix [4] PTC 1 alarm (Alarme PTC 1) ou [5] PTC 12 warning (Avertissement PTC 12) au paramètre 5-19 Terminal 37 Safe Stop (Arrêt de sécurité borne 37)). La fonction STO est activée, mais la borne X44/10 ne l'est pas.

9.3.71 AVERTISSEMENT 73, Safe Stop Auto Restart (Arrêt de sécurité redémarrage auto)

Cause

La fonction STO est activée.

Dépannage

· Avec l'activation du redémarrage automatique, le moteur peut démarrer à la suppression de la panne.

9.3.72 ALARME 74, PTC Thermistor (Thermistce PTC)

Cause

La thermistance PTC ne fonctionne pas. L'alarme est liée au VLT[®] PTC Thermistor Card MCB 112.

9.3.73 ALARME 75, Illegal Profile Sel. (Sél. profil illégal)

Cause

Ne pas écrire la valeur du paramètre lorsque le moteur est en marche.

Dépannage

Arrêter le moteur avant d'écrire le profil MCO au paramètre 8-10 Control Word Profile (Profil mot contrôle).

9.3.74 Avertissement 76, Power Unit Setup (Config. unité alim.)

Cause

Le nombre requis d'unités d'alimentation ne correspond pas au nombre détecté d'unités d'alimentation actives.

Dépannage

• Lors du remplacement d'un module de châssis F, cela se produit si les données spécifiques de puissance dans la carte de puissance du module ne correspondent pas avec le reste du variateur. Merci de confirmer que la pièce détachée et sa carte de puissance ont le bon numéro de code.

9.3.75 AVERTISSEMENT 77, Reduced Power Mode (Mode puissance réduite)

Cause

Le variateur fonctionne en puissance réduite (c'est-à-dire à un niveau inférieur au nombre autorisé de sections d'onduleur). L'avertissement est émis et reste actif lors du cycle de mise hors/sous tension du variateur avec moins d'onduleurs.

9.3.76 ALARME 78, Tracking Error (Err. traînée)

Cause

La différence entre la valeur de consigne et la valeur effective dépasse la valeur du paramètre 4-35 Tracking Error (Err. traînée).

Dépannage

- Désactiver la fonction ou sélectionner une alarme ou un avertissement au *paramètre 4-34 Tracking Error Function* (Fonction err. traînée).
- Examiner la mécanique autour de la charge et du moteur. Vérifier les raccordements du signal de retour du codeur moteur vers le
- Sélectionner la fonction de retour du moteur au *paramètre 4-30 Motor Feedback Loss Function* (Fonction perte signal de retour moteur).
- Ajuster l'intervalle d'erreur de traînée au paramètre 4-35 Tracking Error (Erreur de traînée) et au paramètre 4-37 Tracking Error Ramping (Erreur de trainée pendant la rampe).

9.3.77 ALARM 79, Illegal Power Section Configuration (ConfigPSprohib)

Cause

Référence incorrecte ou absence de la carte de mise à l'échelle. Le connecteur MK102 n'a pas pu être installé sur la carte de puissance.

9.3.78 ALARME 80, Drive Initialized to Default Value (Variateur initialisé à val. défaut)

Cause

Les réglages des paramètres sont initialisés aux réglages par défaut après un reset manuel. Réinitialiser l'unité pour supprimer l'alarme.

9.3.79 ALARME 81, CSIV Corrupt (CSIV corrompu)

Cause

Erreurs de syntaxe dans le fichier CSIV.

9.3.80 ALARME 82, CSIV Parameter Error (Erreur par. CSIV)

Cause

Échec CSIV pour lancer un paramètre.

9.3.81 ALARME 83, Illegal Option Combination (Combinaison d'options illégale)

Cause

Les options installées ne sont pas compatibles.

9.3.82 ALARME 84, No Safety Option (Pas d'option de sécurité)

Cause

L'option de sécurité a été supprimée sans appliquer de réinitialisation générale.

Dépannage

Reconnecter l'option de sécurité.

9.3.83 ALARME 85, Dang Fail PB (Danger PB)

Cause

Erreur PROFIBUS/PROFIsafe.

9.3.84 ALARME 88, Option Detection (Détection option)

Cause

Un changement au niveau de la disposition des options est détecté. Le *paramètre 14-89 Option Detection* (Détection option) est réglé sur [0] Frozen configuration (Config. gelée) et la disposition des options a été modifiée.

Dépannage

- Pour appliquer le changement, activer les changements de disposition des options au *paramètre 14-89 Option Detection* (Détection option).
- Il est aussi possible de restaurer la configuration correcte des options.

9.3.85 AVERTISSEMENT 89, Mechanical Brake Sliding (Frein mécanique coulissant)

Cause

Le dispositif de surveillance du frein de levage détecte une vitesse de moteur supérieure à 10 tr/min.

9.3.86 ALARME 90, Feedback Monitor (Surveillance codeur)

Dépannage

 Vérifier la connexion de l'option codeur/résolveur et, le cas échéant, remplacer le VLT[®] Encoder Input MCB 102 ou le VLT[®] Resolver Input MCB 103.

9.3.87 ALARME 91, Analog Input 54 Wrong Settings (Réglages incorrects entrée analogique 54)

Dépannage

• Désactiver le commutateur S202 (entrée tension) en présence d'un capteur KTY connecté à la borne d'entrée analogique 54.

9.3.88 ALARME 99, Locked Rotor (Rotor verrouillé)

Cause

9.3.89 AVERTISSEMENT/ALARME 104, Mixing Fan Fault (Erreur ventilateur mélange)

Cause

Le ventilateur ne fonctionne pas. La surveillance du ventilateur contrôle que le ventilateur tourne à la mise sous tension ou à chaque fois que le ventilateur de mélange est activé. L'erreur liée au ventilateur de brassage peut être configurée comme un avertissement ou une alarme au paramètre 14-53 Fan Monitor (Surveillance ventilateur).

Dépannage

· Mettre le variateur hors tension, puis sous tension afin de déterminer si l'avertissement/alarme revient.

9.3.90 AVERTISSEMENT/ALARME 122, Mot. Rotat. Unexp. (Rot. mot. inattendue)

Cause

Le variateur réalise une fonction qui nécessite l'arrêt du moteur, par exemple, maintien CC pour moteurs PM.

9.3.91 AVERTISSEMENT 163, ATEX ETR Cur.Lim.Warning (Avert. lim. courant ETR ATEX)

Cause

Le variateur a dépassé la courbe caractéristique pendant plus de 50 s. L'avertissement est activé à 83 % et désactivé à 85 % de la surcharge thermique autorisée.

9.3.92 ALARME 164, ATEX ETR Cur.Lim.Alarm (Alarm.lim.cour. ETR ATEX)

Cause

Un fonctionnement au-dessus de la courbe caractéristique pendant plus de 60 s sur une période de 600 s active l'alarme et le variateur s'arrête.

9.3.93 AVERTISSEMENT 165, ATEX ETR Freq.Lim.Warning (Avert.lim.frg. ETR ATEX)

Cause

Le variateur a fonctionné plus de 50 s en dessous de la fréquence minimale autorisée (paramètre 1-98 ATEX ETR Interpol. Points Freq. (Frq. pts interp. ETR ATEX)).

9.3.94 ALARME 166, ATEX ETR Freq.Lim.Alarm (Alarme lim. fréq. ETR ATEX)

Le variateur a fonctionné plus de 60 s (au cours d'une période de 600 s) en dessous de la fréquence minimale autorisée (*paramètre 1-98 ATEX ETR Interpol. Points Freq.* (Frq. pts interp. ETR ATEX)).

9.3.95 ALARME 244, Heat Sink Temperature (Temp. dissipateur de chaleur)

Cause

La température maximum du dissipateur de chaleur a été dépassée. L'erreur de température ne peut pas être réinitialisée tant que la température ne tombe pas en dessous de la température de dissipateur de chaleur définie. Les points de déclenchement et de réinitialisation diffèrent selon la puissance. Cette alarme équivaut à l'alarme 29, Heat Sink Temp (Temp. dissipateur de chaleur).

Dépannage

Vérifier les points suivants :

- la température ambiante est trop élevée ;
- le câble du moteur est trop long ;
- le dégagement pour le débit d'air au-dessus ou en dessous du variateur de fréquence est inapproprié;
- le débit d'air est entravé autour de l'unité ;
- le ventilateur du dissipateur de chaleur est endommagé;
- le dissipateur de chaleur est sale.

9.3.96 AVERTISSEMENT 251, New Typecode (Nouv. code type)

Cause

La carte de puissance ou d'autres composants ont été remplacés, et le code de type a changé.

9.3.97 ALARME 421, Temperature Fault (Erreur température)

Cause

Une panne causée par le capteur de température intégré est détectée sur la carte de puissance du ventilateur.

Dépannage

- Vérifier le câblage.
- Vérifier le capteur de température intégré.
- Remplacer la carte de puissance du ventilateur.

9.3.98 ALARME 423, FPC Updating (Mise à jour FPC)

Cause

L'alarme est générée lorsque la carte de puissance du ventilateur (FPC) signale un PUD non valide. La carte de commande tente de mettre à jour le PUD. Une alarme peut en résulter en fonction de la mise à jour. Voir *alarme 424, FPC Update Successful (Mise à jour FPC réussie)* et *alarme 425 FPC Update Failure (Échec mise à jour FPC)*.

9.3.99 ALARME 424, FPC Update Successful (Mise à jour FPC réussie)

Cause

Cette alarme est générée lorsque la carte de commande a réussi la mise à jour du PUD de la carte de puissance du ventilateur.

Dépannage

· Appuyer sur [Reset] pour arrêter l'alarme.

9.3.100 ALARME 425, FPC Update Failure (Échec mise à jour FPC)

Cause

Cette alarme est générée après l'échec de mise à jour du PUD de la carte de puissance du ventilateur par la carte de commande.

Dépannage

- · Vérifier le câblage de la carte de puissance du ventilateur.
- Remplacer la carte de puissance du ventilateur.
- Contacter le fournisseur.

9.3.101 ALARME 426, FPC Config (Config. FPC)

Cause

Le nombre de cartes de puissance de ventilateur détectées ne correspond pas au nombre de cartes de puissance de ventilateur configurées. Voir, dans le *groupe de paramètres 15-6* Option Ident* (Identif.Option), le nombre de cartes de puissance de ventilateur configurées.

Dépannage

- Vérifier le câblage de la carte de puissance du ventilateur.
- Remplacer la carte de puissance du ventilateur.

9.3.102 ALARME 427, FPC Supply (Alimentation FPC)

Cause

Panne de tension d'alimentation (5 V, 24 V ou 48 V) détectée sur la carte de puissance du ventilateur.

Dépannage

- Vérifier le câblage de la carte de puissance du ventilateur.
- Remplacer la carte de puissance du ventilateur.

9.4 Dépannage

Tableau 74: Dépannage

Symptôme	Cause possible	Test	Solution
Affichage obscur/inactif	Défaut d'alimentation d'entrée	Voir <u>6.1 Liste de vérification avant le</u> <u>démarrage</u> .	Vérifier la source de l'alimentation d'entrée.
	Fusibles ouverts ou manquants	Voir Fusibles de puissance ouverts dans ce tableau pour connaître les causes possibles.	Suivre les recommandations fournies.
	LCP non alimenté	Vérifier que le câble du LCP est bien raccordé et intact.	Remplacer le LCP ou le câble de con- nexion défectueux.
	Court-circuit de la tension de commande (borne 12 ou 50) ou au niveau des bornes de commande	Vérifier l'alimentation de commande 24 V des bornes 12/13 à 20-39 ou 10 V pour les bornes 50 à 55.	Câbler les bornes correctement.
	LCP incompatible (LCP du VLT [*] 2800 ou 5000/6000/8000/ FCD ou FCM)	-	Utiliser uniquement le LCP 101 (P/N 130B1124) ou le LCP 102 (P/N 130B1107).
	Mauvais réglage du contraste	-	Appuyer sur [Status] et sur les flèches [▲]/[▼] pour ajuster le contraste.
	L'affichage (LCP) est défec- tueux	Faire un test en utilisant un LCP différent.	Remplacer le LCP ou le câble de con- nexion défectueux.
	Panne de l'alimentation de la tension interne ou SMPS dé- fectueuse	-	Contacter le fournisseur.
Affichage intermittent	Alimentation (SMPS) en sur- charge en raison d'un câ- blage de commande incor- rect ou d'une panne dans le variateur de fréquence	Pour remédier à un problème lié au câblage de commande, débrancher tous les câbles de commande en retir- ant les borniers.	Si l'affichage reste allumé, le prob- lème provient du câblage de com- mande. Inspecter le câblage pour dé- tecter des courts-circuits ou des branchements incorrects. Si l'affich- age continue à clignoter, suivre la procédure indiquée pour Affichage obscur/inactif.

Symptôme	Cause possible	Test	Solution
Moteur ne fonc- tionnant pas	Interrupteur secteur ouvert ou raccordement du moteur manquant		Raccorder le moteur et inspecter l'interrupteur secteur.
	Pas d'alimentation secteur avec la carte d'option 24 V CC		Appliquer une tension secteur.
	Arrêt LCP		Selon le mode d'exploitation, appuyer sur [Auto On] ou [Hand On].
	Signal de démarrage absent (veille)		Appliquer un signal de démarrage valide.
	Signal de roue libre du mo- teur actif (en roue libre)		Appliquer 24 V à la borne 27 ou programmer cette borne sur [0] No operation (Inactif).
	Source du signal de référence erronée	 Vérifier le signal de référence : Local Référence distante ou bus ? Référence prédéfinie active ? Connexion des bornes correcte ? Mise à l'échelle des bornes correcte ? Signal de référence disponible ? 	Programmer les réglages corrects. Vérifier le <i>paramètre 3-13 Reference</i> <i>Site</i> (Emplacement réf.). Régler la réf- érence prédéfinie active dans le <i>groupe de paramètres 3-1* References</i> (Références). Vérifier que le câblage est correct. Vérifier la mise à l'échelle des bornes. Vérifier le signal de référ- ence.
Moteur tournant dans le mauvais sens	Limite de rotation du moteur	Vérifier que le <i>paramètre 4-10 Motor</i> Speed Direction (Sens vit. moteur) est programmé correctement.	Programmer les réglages corrects.
	Signal d'inversion actif	Vérifier si un ordre d'inversion est pro- grammé pour la borne au <i>groupe de</i> paramètres 5-1* Digital inputs (Entrées digitales).	Désactiver le signal d'inversion.
	Connexion des phases moteur incorrecte	-	Voir le <u>7.3.1 Tests de rotation moteur</u> .
Moteur n'atteig- nant pas la vi- tesse maximum	Limites de fréquence mal réglées	Vérifier les limites de sortie dans le paramètre 4-13 Motor Speed High Limit [RPM] (Vit. mot. limite haute [tr/min]), le paramètre 4-14 Motor Speed High Limit [Hz] (Vitesse moteur limite haute [Hz]) et le paramètre 4-19 Max Output Frequency (Frq.sort.lim.hte).	Programmer des limites correctes.
	Signal d'entrée de référence incorrectement mis à l'échelle	Vérifier la mise à l'échelle du signal d'entrée de référence dans le groupe de paramètres 6-0* Analog I/O mode (Mode E/S ana.) et le groupe de para- mètres 3-1* References (Références).	Programmer les réglages corrects.

Symptôme	Cause possible	Test	Solution
Vitesse du mo- teur instable	Réglages des paramètres éventuellement incorrects	Vérifier les réglages de tous les para- mètres du moteur, y compris tous les réglages de compensation du moteur. Pour le fonctionnement en boucle fer- mée, contrôler les réglages du PID.	Vérifier les réglages du groupe de par- amètres 1-6* Load Depen. Setting (Proc.dépend. charge). Pour le fonc- tionnement en boucle fermée, con- trôler les réglages du groupe de para- mètres 20-0* Feedback (Retour).
Le moteur tourne de façon irrégulière	Surmagnétisation possible	Rechercher les réglages incorrects du moteur dans tous les paramètres du moteur.	Vérifier les réglages du moteur dans les groupes de paramètres 1-2* Motor data (Données moteur), 1-3* Adv Mo- tor Data (Données av. moteur) et 1-5* Load Indep. Setting (Proc.indép. charge).
Le moteur ne freine pas	Éventuels réglages incorrects au niveau des paramètres de freinage. Il est possible que les rampes de décélération soient trop courtes.	Vérifier les paramètres de freinage. Vérifier les réglages du temps de rampe.	Vérifier les <i>groupes de paramètres</i> 2-0* DC Brake (Frein CC) et 3-0* Refer- ence Limits (Limites de réf).
Fusibles de puis- sance ouverts	Court-circuit entre phases	Court-circuit entre phases du moteur ou du panneau. Rechercher de possibles courts-circuits sur les phases du moteur et du panneau.	Éliminer les courts-circuits détectés.
	Surcharge moteur	Le moteur est en surcharge pour l'application.	Effectuer un test de démarrage et vérifier que le courant du moteur figure dans les spécifications. Si le courant du moteur dépasse le courant de pleine charge de la plaque signalétique, le moteur ne peut fonctionner qu'avec une charge réduite. Examiner les spécifications pour l'application.
	Connexions desserrées	Procéder à une vérification avant le démarrage pour rechercher les éven- tuelles connexions desserrées.	Serrer les connexions desserrées.
Déséquilibre du courant secteur supérieur à 3 %	Problème lié à l'alimentation secteur (voir la description de l' <i>alarme 4, Mains phase</i> <i>loss</i> (Perte phase s.)).	Décaler les fils d'alimentation d'entrée d'une position : A vers B, B vers C, C vers A.	Si le déséquilibre de la colonne suit le fil, il s'agit d'un problème de puissance. Contrôler l'alimentation secteur.
	Problème lié au variateur de fréquence	Décaler les fils d'alimentation d'entrée d'une position sur le variateur de fré- quence : A vers B, B vers C, C vers A.	Si le déséquilibre de colonne reste sur la même borne d'entrée, il s'agit d'un problème dans le variateur de fréquence. Contacter le fournisseur.
Déséquilibre du courant du mo- teur supérieur à 3 %	Problème avec le moteur ou le câblage du moteur	Décaler les câbles du moteur de sortie d'une position : U vers V, V vers W, W vers U.	Si le déséquilibre de la colonne suit le fil, le problème se trouve dans le mo- teur ou le câblage du moteur. Vérifier le moteur et le câblage du moteur.
	Problème lié au variateur de fréquence	Décaler les câbles du moteur de sortie d'une position : U vers V, V vers W, W vers U.	Si le déséquilibre de la colonne reste sur la même borne de sortie, il existe un problème dans l'unité. Contacter le fournisseur.

Symptôme	Cause possible	Test	Solution
Le variateur de fréquence pré- sente des prob- lèmes d'accélér- ation	Les données du moteur n'ont pas été correctement saisies	Si des avertissements ou des alarmes se produisent, se reporter à la section Avertissements et alarmes. Vérifier que les données du moteur ont été correctement saisies.	Augmenter la rampe d'accélération au paramètre 3-41 Ramp 1 Ramp Up Time (Temps accél. rampe 1). Augmenter la limite de courant au paramètre 4-18 Current Limit (Limite courant). Augmenter la limite de couple au paramètre 4-16 Torque Limit Motor Mode (Mode moteur limite couple).
Le variateur de fréquence pré- sente des prob- lèmes de décél- ération	Les données du moteur n'ont pas été correctement saisies	Si des avertissements ou des alarmes se produisent, se reporter à la section Avertissements et alarmes. Vérifier que les données du moteur ont été correctement saisies.	Augmenter la rampe de décélération au paramètre 3-42 Ramp 1 Ramp Down Time (Temps décél. rampe 1). Activer le contrôle de surtension au paramètre 2-17 Over-voltage Control (Contrôle de surtension).

10 Spécifications

10.1 Données électriques

10.1.1 Données électriques, 380-480 V CA

Tableau 75: Données électriques, alimentation secteur 3 x 380-480 V CA

FC 103	N110	N132	N160	N200	N250	N315
Surcharge normale	NO	NO	NO	NO	NO	NO
Couple de 110 % pendant 60 s.						
Sortie d'arbre typique à 400 V [kW]	110	132	160	200	250	315
Sortie d'arbre typique à 460 V [HP]	150	200	250	300	350	450
Sortie d'arbre typique à 480 V [kW]	132	160	200	250	315	355
Taille de boîtier	D9h	D9h	D9h	D10h	D10h	D10h
Courant de sortie (triph	asé)					
Continu (à 400 V) [A]	212	260	315	395	480	588
Intermittent (sur- charge 60 s) (à 400 V) [A]	233	286	347	435	528	647
Continu (à 460/480 V) [A]	190	240	302	361	443	535
Intermittent (sur- charge 60 s) (à 460/480 V) [A]	209	264	332	397	487	589
kVA continu (à 400 V) [kVA]	147	180	218	274	333	407
kVA continu (à 460 V) [kVA]	151	191	241	288	353	426
kVA continu (à 480 V) [kVA]	165	208	262	313	384	463
Courant d'entrée maxir	nal					
Continu (à 400 V) [A]	204	251	304	381	463	567
Continu (à 460/480 V) [A]	183	231	291	348	427	516
Nombre et taille de câb	les maximum p	ar phase				
- Secteur [mm² (AWG)]	2 x 95 (2 x 3/0 mcm)	2 x 95 (2 x 3/0 mcm)	2 x 95 (2 x 3/0 mcm)	2 x 185 (2 x 350 mcm)	2 x 185 (2 x 350 mcm)	2 x 185 (2 x 350 mcm)

FC 103	N110	N132	N160	N200	N250	N315
- Secteur avec section- neur [mm² (AWG)]	2 x 95 (2 x 3/0 mcm)	2 x 95 (2 x 3/0 mcm)	2 x 95 (2 x 3/0 mcm)	2 x 185 (2 x 350 mcm)	2 x 185 (2 x 350 mcm)	2 x 185 (2 x 350 mcm)
- Secteur avec section- neur fusible [mm² (AWG)]	2 x 95 (2 x 3/0 mcm)	2 x 95 (2 x 3/0 mcm)	2 x 95 (2 x 3/0 mcm)	2 x 185 (2 x 350 mcm)	2 x 185 (2 x 350 mcm)	2 x 185 (2 x 350 mcm)
- Secteur avec contacteur [mm² (AWG)]	2 x 95 (2 x 3/0 mcm)	2 x 95 (2 x 3/0 mcm)	2 x 95 (2 x 3/0 mcm)	2 x 185 (2 x 350 mcm)	2 x 185 (2 x 350 mcm)	2 x 185 (2 x 350 mcm)
- Moteur [mm² (AWG)]	2 x 95 (2 x 3/0 mcm)	2 x 95 (2 x 3/0 mcm)	2 x 95 (2 x 3/0 mcm)	2 x 185 (2 x 350 mcm)	2 x 185 (2 x 350 mcm)	2 x 185 (2 x 350 mcm)
Perte de puissance du module variateur à 400 V [W] ⁽¹⁾ ⁽²⁾ ⁽³⁾	2559	2954	3770	4116	5137	6674
Perte de puissance du module variateur à 460 V [W] ⁽¹⁾ ⁽²⁾ ⁽³⁾	2261	2724	3628	3569	4566	5714
Rendement du varia- teur ⁽²⁾	0,98	0,98	0,98	0,98	0,98	0,98
Fréquence de sortie [Hz] ⁽⁴⁾	0–590	0–590	0–590	0–590	0–590	0–590
Arrêt surtempérature dissipateur de chaleur [° C (° F)]	110 (230)	110 (230)	110 (230)	110 (230)	110 (230)	110 (230)
Arrêt surtempérature carte de commande [° C (° F)]	75 (167)	75 (167)	75 (167)	80 (176)	80 (176)	80 (176)
Arrêt surtempérature PHF [° C (° F)]	150 (302)	150 (302)	150 (302)	150 (302)	150 (302)	150 (302)
Arrêt surtempérature filtre dU/dt [° C (° F)]	150 (302)	150 (302)	150 (302)	150 (302)	150 (302)	150 (302)
Arrêt surtempérature filtre sinus [° C (° F)]	150 (302)	150 (302)	150 (302)	150 (302)	150 (302)	150 (302)

La perte de puissance typique, mesurée dans des conditions normales, doit être de ±15 % (la tolérance est liée à la variété des conditions de tension et de câblage). Ces valeurs s'appuient sur le rendement typique d'un moteur (limite IE/IE3). Les moteurs de moindre rendement augmentent la perte de puissance du variateur. S'applique au dimensionnement du refroidissement du variateur. Si la fréquence de commutation est supérieure au réglage par défaut, les pertes de puissance peuvent augmenter. Les puissances consommées par le LCP et la carte de commande sont incluses. Pour les données des pertes de puissance selon la norme EN 50598-2, consulter drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Des options et la charge client peuvent accroître les pertes de 30 W max., bien que généralement on compte seulement 4 W pour une carte de commande à pleine charge ou des options pour les emplacements A et B.

² Mesuré avec des câbles de moteur blindés de 5 m (16,4 pi) à la charge et à la fréquence nominales. Rendement mesuré au courant nominal. Pour connaître la classe d'efficacité énergétique, se reporter à la section Conditions ambiantes. Pour connaître les pertes à charge partielle, voir drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.

³ Voir aussi Pertes de l'option de puissance d'entrée.

⁴ En cas d'utilisation d'un filtre de sortie, la fréquence de sortie est encore plus limitée. Voir la section Puissance du moteur (U, V, W).

Tableau 76: Données électriques, alimentation secteur 3 x 380-480 V CA

FC 103	N355	N400	N450	N500	N560
Surcharge normale	NO	NO	NO	NO	NO
Couple de 110 % pendant 60 s.					
Sortie d'arbre typique à 400 V [kW]	355	400	450	500	560
Sortie d'arbre typique à 460 V [HP]	500	600	600	650	750
Sortie d'arbre typique à 480 V [kW]	400	500	530	560	630
Taille de boîtier	E5h	E5h	E5h	E6h	E6h
Courant de sortie (triphasé)					
Continu (à 400 V) [A]	658	745	800	880	990
Intermittent (surcharge 60 s) (à 400 V) [A]	724	820	880	968	1089
Continu (à 460/480 V) [A]	590	678	730	780	890
Intermittent (surcharge 60 s) (à 460/480 V) [A]	649	746	803	858	979
kVA continu (à 400 V) [kVA]	456	516	554	610	686
kVA continu (à 460 V) [kVA]	470	540	582	621	709
kVA continu (à 480 V) [kVA]	511	587	632	675	771
Courant d'entrée maximal		1		1	1
Continu (à 400 V) [A]	634	718	771	848	954
Continu (à 460/480 V) [A]	569	653	704	752	858
Nombre et taille de câbles n	naximum par phase				
- Secteur [mm² (AWG)]	4 x 120 (4 x 250 mcm)	4 x 120 (4 x 250 mcm)	4 x 120 (4 x 250 mcm)	4 x 185 (4 x 350 mcm)	4 x 185 (4 x 350 mcm)
- Secteur avec sectionneur [mm² (AWG)]	4 x 120 (4 x 250 mcm)	4 x 120 (4 x 250 mcm)	4 x 120 (4 x 250 mcm)	4 x 185 (4 x 350 mcm)	4 x 185 (4 x 350 mcm)
- Secteur avec sectionneur fusible [mm² (AWG)]	4 x 120 (4 x 250 mcm)	4 x 120 (4 x 250 mcm)	4 x 120 (4 x 250 mcm)	4 x 185 (4 x 350 mcm)	4 x 185 (4 x 350 mcm)
- Secteur avec contacteur [mm² (AWG)]	4 x 120 (4 x 250 mcm)	4 x 120 (4 x 250 mcm)	4 x 120 (4 x 250 mcm)	4 x 185 (4 x 350 mcm)	4 x 185 (4 x 350 mcm)
- Moteur [mm² (AWG)]	4 x 120 (4 x 250 mcm)	4 x 120 (4 x 250 mcm)	4 x 120 (4 x 250 mcm)	4 x 185 (4 x 350 mcm)	4 x 185 (4 x 350 mcm)
Perte de puissance du module variateur à 400 V [W] ^{(1) (2) (3)}	6928	8036	8783	9473	11102

FC 103	N355	N400	N450	N500	N560
Perte de puissance du module variateur à 460 V [W] (1) (2) (3)	5910	6933	7969	7809	9236
Rendement du variateur (2)	0,98	0,98	0,98	0,98	0,98
Fréquence de sortie [Hz] (4)	0–590	0–590	0–590	0–590	0–590
Arrêt surtempérature dissi- pateur de chaleur [° C (° F)]	110 (230)	110 (230)	110 (230)	110 (230)	100 (212)
Arrêt surtempérature carte de commande [° C (° F)]	80 (176)	80 (176)	80 (176)	80 (176)	80 (176)
Arrêt surtempérature PHF [° C (° F)]	150 (302)	150 (302)	150 (302)	150 (302)	150 (302)
Arrêt surtempérature filtre dU/dt [° C (° F)]	150 (302)	150 (302)	150 (302)	150 (302)	150 (302)
Arrêt surtempérature filtre sinus [° C (° F)]	150 (302)	150 (302)	150 (302)	150 (302)	150 (302)

La perte de puissance typique, mesurée dans des conditions normales, doit être de ±15 % (la tolérance est liée à la variété des conditions de tension et de câblage). Ces valeurs s'appuient sur le rendement typique d'un moteur (limite IE/IE3). Les moteurs de moindre rendement augmentent la perte de puissance du variateur. S'applique au dimensionnement du refroidissement du variateur. Si la fréquence de commutation est supérieure au réglage par défaut, les pertes de puissance peuvent augmenter. Les puissances consommées par le LCP et la carte de commande sont incluses. Pour les données des pertes de puissance selon la norme EN 50598-2, consulter drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Des options et la charge client peuvent accroître les pertes de 30 W max., bien que généralement on compte seulement 4 W pour une carte de commande à pleine charge ou des options pour les emplacements A et B.

10.1.2 Données électriques, 525-695 V CA

Tableau 77: Données électriques, alimentation secteur 3 x 525-690 V CA

FC 103	N110	N132	N160	N200	N250	N315	N400	N450
Surcharge normale	NO							
Couple de 110 % pendant 60 s.								
Sortie d'arbre typique à 550 V [kW]	90	110	132	160	200	250	315	355
Sortie d'arbre typique à 575 V [HP]	125	150	200	250	300	350	400	450

² Mesuré avec des câbles de moteur blindés de 5 m (16,4 pi) à la charge et à la fréquence nominales. Rendement mesuré au courant nominal. Pour connaître la classe d'efficacité énergétique, se reporter à la section Conditions ambiantes. Pour connaître les pertes à charge partielle, voir drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.

³ Voir aussi Pertes de l'option de puissance d'entrée.

⁴ En cas d'utilisation d'un filtre de sortie, la fréquence de sortie est encore plus limitée. Voir la section Puissance du moteur (U, V, W).

FC 103	N110	N132	N160	N200	N250	N315	N400	N450
Sortie d'arbre typique à 690 V [kW]	110	132	160	200	250	315	400	450
Taille de boîtier	D9h	D9h	D9h	D10h	D10h	D10h	D10h	E5h
Courant de	sortie (tripha	asé)						
Continu (à 550 V) [A]	137	162	201	253	303	360	418	470
Intermit- tent (sur- charge 60 s) (à 550 V) [A]	151	178	221	278	333	396	460	517
Continu (à 575/690 V) [A]	131	155	192	242	290	344	400	450
Intermit- tent (sur- charge 60 s) (à 575/690 V) [A]	144	171	211	266	319	378	440	495
kVA con- tinu (à 550 V) [kVA]	125	147	183	230	276	327	380	448
kVA con- tinu (à 575 V) [kVA]	131	154	191	241	289	343	398	448
kVA con- tinu (à 690 V) [kVA]	157	185	230	289	347	411	478	538
Courant d'e	ntrée maxim	nal						
Continu (à 525 V) [A]	132	156	193	244	453	504	574	453
Continu (à 575/690 V) [A]	126	149	185	233	434	482	549	434
Nombre et t	aille de câbl							
- Secteur [mm² (AWG)]	2 x 95 (2 x 3/0 mcm)	2 x 95 (2 x 3/0 mcm)	2 x 95 (2 x 3/0 mcm)	2 x 185 (2 x 350 mcm)	4 x 120 (4 x 250 mcm)			

FC 103	N110	N132	N160	N200	N250	N315	N400	N450
- Secteur avec sec- tionneur [mm² (AWG)]	2 x 95 (2 x 3/0 mcm)	2 x 95 (2 x 3/0 mcm)	2 x 95 (2 x 3/0 mcm)	2 x 185 (2 x 350 mcm)	4 x 120 (4 x 250 mcm)			
- Secteur avec sec- tionneur fusible [mm² (AWG)]	2 x 95 (2 x 3/0 mcm)	2 x 95 (2 x 3/0 mcm)	2 x 95 (2 x 3/0 mcm)	2 x 185 (2 x 350 mcm)	4 x 120 (4 x 250 mcm)			
- Secteur avec con- tacteur [mm² (AWG)]	2 x 95 (2 x 3/0 mcm)	2 x 95 (2 x 3/0 mcm)	2 x 95 (2 x 3/0 mcm)	2 x 185 (2 x 350 mcm)	4 x 120 (4 x 250 mcm)			
- Moteur [mm² (AWG)]	2 x 95 (2 x 3/0 mcm)	2 x 95 (2 x 3/0 mcm)	2 x 95 (2 x 3/0 mcm)	2 x 185 (2 x 350 mcm)	4 x 120 (4 x 250 mcm)			
Perte de puissance du module variateur à 600 V [W]	1740	2101	2649	3074	3723	4465	5028	6062
Perte de puissance du mod- ule varia- teur à 690 V [W]	1798	2167	2740	3175	3851	4614	5155	5939
Rende- ment du variateur	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98
Fréquence de sortie [Hz] ⁽⁴⁾	0–590	0–590	0–590	0–590	0–590	0–590	0–590	0–590
Arrêt sur- tempéra- ture dissi- pateur de chaleur [° C (° F)]	110 (230)	110 (230)	110 (230)	110 (230)	110 (230)	110 (230)	110 (230)	110 (230)

FC 103	N110	N132	N160	N200	N250	N315	N400	N450
Arrêt sur- tempéra- ture carte de com- mande [° C (° F)]	80 (176)	80 (176)	80 (176)	80 (176)	80 (176)	80 (176)	80 (176)	80 (176)
Arrêt sur- tempéra- ture PHF [° C (° F)]	150 (302)	150 (302)	150 (302)	150 (302)	150 (302)	150 (302)	150 (302)	150 (302)
Arrêt sur- tempéra- ture filtre dU/dt [° C (° F)]	150 (302)	150 (302)	150 (302)	150 (302)	150 (302)	150 (302)	150 (302)	150 (302)
Arrêt sur- tempéra- ture filtre sinus [° C (° F)]	150 (302)	150 (302)	150 (302)	150 (302)	150 (302)	150 (302)	150 (302)	150 (302)

La perte de puissance typique, mesurée dans des conditions normales, doit être de ±15 % (la tolérance est liée à la variété des conditions de tension et de câblage). Ces valeurs s'appuient sur le rendement typique d'un moteur (limite lE/lE3). Les moteurs de moindre rendement augmentent la perte de puissance du variateur. S'applique au dimensionnement du refroidissement du variateur. Si la fréquence de commutation est supérieure au réglage par défaut, les pertes de puissance peuvent augmenter. Les puissances consommées par le LCP et la carte de commande sont incluses. Pour les données des pertes de puissance selon la norme EN 50598-2, consulter drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Des options et la charge client peuvent accroître les pertes de 30 W max., bien que généralement on compte seulement 4 W pour une carte de commande à pleine charge ou des options pour les emplacements A et B.

Tableau 78: Données électriques, alimentation secteur 3 x 525-690 V CA

FC 103	N500	N560	N630	N710	N800
Surcharge normale	NO	NO	NO	NO	NO
Couple de 110 % pendant 60 s.					
Sortie d'arbre typique à 550 V [kW]	400	450	500	560	670
Sortie d'arbre typique à 575 V [HP]	500	600	650	750	950
Sortie d'arbre typique à 690 V [kW]	500	560	630	710	800
Taille de boîtier	E5h	E5h	E6h	E6h	E6h
Courant de sortie (triphasé)					
Continu (à 550 V) [A]	523	596	630	763	889

² Mesuré avec des câbles de moteur blindés de 5 m (16,4 pi) à la charge et à la fréquence nominales. Rendement mesuré au courant nominal. Pour connaître la classe d'efficacité énergétique, se reporter à la section Conditions ambiantes. Pour connaître les pertes à charge partielle, voir drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.

³ Voir aussi Pertes de l'option de puissance d'entrée.

⁴ En cas d'utilisation d'un filtre de sortie, la fréquence de sortie est encore plus limitée. Voir la section Puissance du moteur (U, V, W).

FC 103	N500	N560	N630	N710	N800
Intermittent (surcharge 60 s) (à 550 V) [A]	575	656	693	839	978
Continu (à 575/690 V) [A]	500	570	630	730	850
Intermittent (surcharge 60 s) (à 575/690 V) [A]	550	627	693	803	935
kVA continu (à 550 V) [kVA]	498	568	600	727	847
kVA continu (à 575 V) [kVA]	498	568	627	727	847
kVA continu (à 690 V) [kVA]	598	681	753	872	1016
Courant d'entrée maximal					
Continu (à 525 V) [A]	504	568	607	735	857
Continu (à 575/690 V) [A]	482	681	607	704	819
Nombre et taille de câbles n	naximum par phase				
- Secteur [mm² (AWG)]	4 x 120 (4 x 250 mcm)	4 x 120 (4 x 250 mcm)	4 x 185 (4 x 350 mcm)	4 x 185 (4 x 350 mcm)	4 x 185 (4 x 350 mcm)
- Secteur avec sectionneur [mm² (AWG)]	4 x 120 (4 x 250 mcm)	4 x 120 (4 x 250 mcm)	4 x 185 (4 x 350 mcm)	4 x 185 (4 x 350 mcm)	4 x 185 (4 x 350 mcm)
- Secteur avec sectionneur fusible [mm² (AWG)]	4 x 120 (4 x 250 mcm)	4 x 120 (4 x 250 mcm)	4 x 185 (4 x 350 mcm)	4 x 185 (4 x 350 mcm)	4 x 185 (4 x 350 mcm)
- Secteur avec contacteur [mm² (AWG)]	4 x 120 (4 x 250 mcm)	4 x 120 (4 x 250 mcm)	4 x 185 (4 x 350 mcm)	4 x 185 (4 x 350 mcm)	4 x 185 (4 x 350 mcm)
- Moteur [mm² (AWG)]	4 x 120 (4 x 250 mcm)	4 x 120 (4 x 250 mcm)	4 x 185 (4 x 350 mcm)	4 x 185 (4 x 350 mcm)	4 x 185 (4 x 350 mcm)
Perte de puissance du module variateur à 600 V [W] (1) (2) (3)	6879	8076	9208	10346	12723
Perte de puissance du module variateur à 690 V [W] (1) (2) (3)	6715	7852	8921	10066	12321
Rendement du variateur (2)	0,98	0,98	0,98	0,98	0,98
Fréquence de sortie [Hz] (4)	0–590	0–590	0–590	0–590	0–590
Arrêt surtempérature dissi- pateur de chaleur [° C (° F)]	110 (230)	110 (230)	110 (230)	110 (230)	110 (230)
Arrêt surtempérature carte de commande [° C (° F)]	80 (176)	80 (176)	80 (176)	80 (176)	80 (176)
Arrêt surtempérature PHF [° C (° F)]	150 (302)	150 (302)	150 (302)	150 (302)	150 (302)
Arrêt surtempérature filtre dU/dt [° C (° F)]	150 (302)	150 (302)	150 (302)	150 (302)	150 (302)
Arrêt surtempérature filtre sinus [° C (° F)]	150 (302)	150 (302)	150 (302)	150 (302)	150 (302)

10.2 Alimentation secteur

L'unité peut être utilisée sur un circuit capable de délivrer un courant nominal de court-circuit (SCCR) de 100 kA maximum à 480/600 V.

Bornes d'alimentation	L1, L2, L3
Tension d'alimentation (1)	380–480/500 V \pm 10 %, 525–690 V \pm 10 %
Fréquence d'alimentation	50/60 Hz ± 5 %
Déséquilibre temporaire maximum entre phases secteur	3,0 % de la tension nominale d'alimentation (2)
Facteur de puissance réelle (λ)	≥ 0,9 à charge nominale
Facteur de puissance de déphasage (cos Φ)	Proche de 1 (> 0,98)
Commutations sur l'entrée d'alimentation L1, L2, L3 (mises sous tension)	Maximum 1 fois/2 minutes
Environnement conforme à la norme EN 60664-1	Catégorie de surtension III/degré de pollution 2

¹ Tension secteur basse/chute tension secteur: en cas de tension secteur basse ou de chute de la tension secteur, le variateur continue de fonctionner jusqu'à ce que la tension présente sur le circuit intermédiaire descende sous le seuil d'arrêt minimum, qui correspond généralement à 15 % de moins que la tension nominale d'alimentation la plus basse du variateur.

Mise sous tension et couple complet ne sont pas envisageables à une tension secteur inférieure à 10 % de la tension nominale d'alimentation secteur du variateur.

10.3 Puissance et données du moteur

10.3.1 Puissance du moteur (U, V, W)

Puissance du moteur (U, V, W)

Tension de sortie	0-100 % de la tension d'alimentation	
Fréquence de sortie (sans filtre sinus)	0–590 Hz ⁽¹⁾	
Fréquence de sortie (avec filtre sinus et sans déclassement)	0–60 Hz sans déclassement	
Fréquence de sortie (avec filtre sinus et déclassement)	0–100 Hz	
Fréquence de sortie en mode flux	0-300 Hz	
Commutation sur la sortie	Illimitée	
Temps de rampe	0,01-3 600 s	

¹ Dépend de la tension et de la puissance.

170 | Danfoss A/S © 2018.10 AQ123456789012fr-000101 / 130R0881

La perte de puissance typique, mesurée dans des conditions normales, doit être de ±15 % (la tolérance est liée à la variété des conditions de tension et de câblage). Ces valeurs s'appuient sur le rendement typique d'un moteur (limite IE/IE3). Les moteurs de moindre rendement augmentent la perte de puissance du variateur. S'applique au dimensionnement du refroidissement du variateur. Si la fréquence de commutation est supérieure au réglage par défaut, les pertes de puissance peuvent augmenter. Les puissances consommées par le LCP et la carte de commande sont incluses. Pour les données des pertes de puissance selon la norme EN 50598-2, consulter drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Des options et la charge client peuvent accroître les pertes de 30 W max., bien que généralement on compte seulement 4 W pour une carte de commande à pleine charge ou des options pour les emplacements A et B.

² Mesuré avec des câbles de moteur blindés de 5 m (16,4 pi) à la charge et à la fréquence nominales. Rendement mesuré au courant nominal. Pour connaître la classe d'efficacité énergétique, se reporter à la section Conditions ambiantes. Pour connaître les pertes à charge partielle, voir drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.

³ Voir aussi Pertes de l'option de puissance d'entrée.

⁴ En cas d'utilisation d'un filtre de sortie, la fréquence de sortie est encore plus limitée. Voir la section Puissance du moteur (U, V, W).

² Les calculs reposent sur la norme UL/CEI 61800-3.

10.3.2 Caractéristique de couple

Caractéristiques de couple

Couple de démarrage (couple constant)	Maximum 160 % pendant 60 s une fois en 10 minutes (1)
Couple de démarrage/surcouple (couple variable)	Maximum 110 % pendant 0,5 s une fois en 10 minutes (1)
Temps de montée du couple en mode flux (pour f _{sw} égale à 5 kHz)	1 ms
Temps de montée du couple en mode VVC^+ (indépendant de f_{sw})	10 ms

¹ Le pourcentage se rapporte au couple nominal.

10.4 Conditions ambiantes

Environnement

Boîtier	IP21/NEMA 1, IP54/NEMA 12
Essai de vibration	1,0 g
THDv max.	10%
Humidité relative max.	5–93 (CEI 721-3-3) ; classe 3K3 (non condensante) pendant le fonctionnement)
Environnement agressif (CEI 60068-2-43) test H ₂ S	Classe Kd
Température ambiante	Maximum 50 °C (122 °F) (sur une moyenne de 24 heures, maximum 45 °C (113 °F)) $^{(1)}$
Température ambiante min. en pleine exploitation	0 °C (32 °F) ⁽¹⁾
Température ambiante min. en exploitation à vitesse réduite	-10 °C (14 °F) ⁽¹⁾
Température durant le stockage/transport	-25 à +65/70 °C (-13 à +149/158 °F)
Altitude max. au-dessus du niveau de la mer sans déclassement	1 000 m (3 280 pi)
Normes CEM, Émission	EN 61800-3
Normes CEM, Immunité	EN 61800-3
Classe d'efficacité énergétique (2)	IE2

 $^{^{1}}$ Pour plus d'informations sur le déclassement, se reporter au manuel de configuration du produit.

- à la charge nominale ;
- à 90 % de la fréquence nominale;
- au réglage d'usine de fréquence de commutation ;
- au réglage d'usine de type de modulation.

10.5 Câbles de commande

Longueurs et sections de câble de commande

Longueur max. du câble du moteur, blindé	150 m (492 pi)
Longueur max. du câble du moteur, non blindé	300 m (984 pi)
Section max. des bornes de commande, fil souple/rigide sans manchon d'extrémité de câble	1,5 mm ² /16 AWG
Section max. des bornes de commande, fil souple avec manchons d'extrémité de câble	1 mm²/18 AWG
Section max. des bornes de commande, fil souple avec manchons d'extrémité de câble et collier	0,5 mm²/20 AWG

² Déterminée d'après la norme EN 50598-2 :

Section minimale des bornes de commande

0,25 mm²/24 AWG

Pour les câbles de puissance, voir 10.1.1 Données électriques, 380-480 V CA à 10.1.2 Données électriques, 525-695 V CA.

10.6 Entrée/sortie de commande et données de commande

10.6.1 Carte de commande, communication série USB

Norme USB	1.1 (pleine vitesse)
Fiche USB ⁽¹⁾	Fiche USB de type B

¹ La connexion à un PC est réalisée via un câble USB standard hôte/dispositif.

La connexion USB est isolée galvaniquement de la tension d'alimentation (PELV) et d'autres bornes haute tension. La mise à la terre USB n'est toutefois pas isolée galvaniquement de la terre. Utiliser uniquement un ordinateur portable isolé en tant que connexion PC au connecteur USB sur le variateur.

10.6.2 Borne STO XD2.19 (la borne XD2.19 est en logique PNP fixe)

Borne STO XD2.19 (1) (2)	
Niveau de tension	0-24 V CC
Niveau de tension, 0 logique PNP	< 4 V CC
Niveau de tension, 1 logique PNP	> 20 V CC
Tension maximale sur l'entrée	28 V CC
Courant d'entrée typique à 24 V	50 mA rms
Courant d'entrée typique à 20 V	60 mA rms
Capacitance d'entrée	400 nF

¹ Pour de plus amples informations sur la borne XD2.19 (borne 37 sur le module variateur) et Safe Torque Off, voir le manuel de configuration.

Toutes les entrées digitales sont isolées galvaniquement de la tension d'alimentation (PELV) et d'autres bornes haute tension.

10.6.3 Carte de commande, sortie 24 V CC

N° de borne	XD2.10, XD2.11
Tension de sortie	24 V +1, -3 V
Charge maximale	200 mA

L'alimentation 24 V CC est isolée galvaniquement de la tension d'alimentation (PELV) tout en ayant le même potentiel que les entrées et sorties analogiques et digitales.

10.6.4 Carte de commande, sortie +10 V CC

² En cas d'utilisation d'un contacteur comportant une bobine CC avec STO, il est important de prévoir un chemin de retour pour le courant venant de la bobine lors de sa mise hors tension. Cela peut être obtenu en installant dans la bobine une diode de roue libre (ou bien un MOV de 30 ou 50 V pour un temps de réponse plus court). Des contacteurs typiques peuvent être achetés avec cette diode.

N° de borne	XD2.6
Tension de sortie	10,5 V ±0,5 V
Charge maximale	15 mA

L'alimentation 10 V CC est isolée galvaniquement de la tension d'alimentation (PELV) et d'autres bornes haute tension.

10.6.5 Sorties digitales

Sorties digitales/impulsionnelles programmables	2
N° de borne ⁽¹⁾	XD2.14, XD2.15
Niveau de tension à la sortie digitale/en fréquence	0-24 V
Courant de sortie max. (récepteur ou source)	40 mA
Charge maximale à la sortie en fréquence	1 kΩ
Charge capacitive max. à la sortie en fréquence	10 nF
Fréquence de sortie min. à la sortie en fréquence	0 Hz
Fréquence de sortie max. à la sortie en fréquence	32 kHz
Précision de la sortie en fréquence	Erreur maximale : 0,1 % de l'échelle totale
Résolution des sorties en fréquence	12 bits

¹ Peut également être programmée comme entrée.

La sortie digitale est isolée galvaniquement de la tension d'alimentation (PELV) et d'autres bornes haute tension.

10.6.6 Entrées digitales

Entrées digitales programmables	4 (6)
N° de borne ⁽¹⁾	XD2.12, XD2.13, XD2.14, XD2.15, XD2.16, XD2.17
Logique	PNP ou NPN
Niveau de tension	0-24 V CC
Niveau de tension, 0 logique PNP	< 5 V CC
Niveau de tension, 1 logique PNP	> 10 V CC
Niveau de tension, logique 0 NPN (2)	> 19 V CC
Niveau de tension, logique 1 NPN (2)	< 14 V CC
Tension maximale sur l'entrée	28 V CC
Plage de fréquences d'impulsion	0-110 kHz
(Cycle d'utilisation) durée de l'impulsion min.	4,5 ms
Résistance d'entrée, R _i	Environ 4 k Ω

¹ Les bornes XD2.14 et XD2.15 peuvent aussi être programmées comme sorties.

Toutes les entrées digitales sont isolées galvaniquement de la tension d'alimentation (PELV) et d'autres bornes haute tension.

² Sauf borne d'entrée STO XD2.19.

10.6.7 Entrées codeur/impulsions

Entrées codeur/impulsions programmables	2/1
N° de borne (entrées impulsions)	XD2.15 ⁽¹⁾ , XD2.17
N° de borne (entrées codeur) (2)	XD2.16, XD2.17
Fréquence maximum aux bornes XD2.15, XD2.16, XD2.17 (activation push-pull)	110 kHz
Fréquence maximum aux bornes XD2.15, XD2.16, XD2.17 (collecteur ouvert)	5 kHz
Fréquence maximum aux bornes XD2.15, XD2.16, XD2.17	4 kHz
Niveau de tension	Voir Entrée/sortie de commande et données de commande.
Tension maximale sur l'entrée	28 V CC
Résistance d'entrée, R _i	Environ 4 k Ω
Précision d'entrée d'impulsions (0,1-1 kHz)	Erreur maximale : 0,1 % de l'échelle totale
Précision d'entrée du codeur (1-11 kHz)	Erreur maximale : 0,05 % de l'échelle totale

¹ FC 302 uniquement.

Les entrées impulsions et codeur (bornes XD2.15, XD2.16, XD2.17) sont isolées galvaniquement de la tension d'alimentation (PELV) et d'autres bornes haute tension.

10.6.8 Caractéristiques de contrôle

Résolution de fréquence de sortie à 0-590 Hz	±0,003 Hz
Précision de reproductibilité de démarrage/arrêt précis (bornes XD2.12, XD2.13)	≤ ±0,1 ms≤
Temps de réponse système (bornes XD2.12, XD2.13, XD2.14, XD2.15, XD2.16, XD2.17)	≤ 2 ms
Plage de commande de vitesse (boucle ouverte)	1:100 de la vitesse synchrone
Plage de commande de vitesse (boucle fermée)	1:1 000 de la vitesse synchrone
Précision de vitesse (boucle ouverte)	30-4 000 tr/min : erreur ±8 tr/min
Précision de vitesse (boucle fermée) en fonction de la résolution du dispositif du signal de retour	0-6 000 tr/min : erreur ±0,15 tr/min
Précision de commande de couple (retour de vitesse)	erreur max. ±5 % du couple nominal

Toutes les caractéristiques de contrôle sont basées sur un moteur asynchrone 4 pôles.

10.6.9 Sorties relais

Sorties relais programmables	FC 302:2
N° de borne relais 01 ⁽¹⁾	21-23 (interruption), 21-22 (établissement)
Charge maximale sur les bornes (CA-1) sur 21–23 (NF), 21–22 (NO) (charge résistive) (2) (3)	240 V CA, 2 A
Charge maximale sur les bornes (CA-15) (charge inductive à cosφ 0,4)	240 V CA, 0,2 A
Charge maximale sur les bornes (CC-1) sur 21–22 (NO), 21–23 (NF) (charge résistive)	60 V CC, 1 A
Charge maximale sur les bornes (CC-13) (charge inductive)	24 V CC, 0,1 A
N° de borne relais 02 (FC 302 uniquement) (1)	24–26 (interruption), 24–25 (établissement)
Charge maximale sur les bornes (CA-1) sur 24–25 (NO) (charge résistive) (2) (3)	400 V CA, 2 A
Charge maximale sur les bornes (CA-15) sur 24–25 (NO) (charge inductive à cosφ 0,4)	240 V CA, 0,2 A

174 | Danfoss A/S © 2018.10 AQ123456789012fr-000101 / 130R0881

² Entrées codeur : XD2.16=A, XD2.17=B.

Environnement conforme à la norme EN 60664-1	Catégorie de surtension III/degré de pollution 2
Charge minimale sur les bornes sur 21–23 (NF), 21–22 (NO), 24–26 (NF), 24–25 (NO)	24 V CC 10 mA, 24 V CA 20 mA
Charge maximale sur les bornes (CC-13) sur 24–26 (NF) (charge inductive)	24 V CC, 0,1 A
Charge maximale sur les bornes (CC-1) sur 24–26 (NF) (charge résistive)	50 V CC, 2 A
Charge maximale sur les bornes (CA-15) sur 24–26 (NF) (charge inductive à cosφ 0,4)	240 V CA, 0,2 A
Charge maximale sur les bornes (CA-1) sur 24–26 (NF) (charge résistive)	240 V CA, 2 A
Charge maximale sur les bornes (CC-13) sur 24–25 (NO) (charge inductive)	24 V CC, 0,1 A
Charge maximale sur les bornes (CC-1) sur 24–25 (NO) (charge résistive)	80 V CC, 2 A

¹ CEI 60947 parties 4 et 5. Les contacts de relais sont isolés galvaniquement du reste du circuit par une isolation renforcée (PELV).

10.6.10 Sortie analogique

Nombre de sorties programmables	1
N° de borne	XD2.5
Plage de courant de la sortie analogique	0/4 à 20 mA
Charge maximum GND-sortie analogique inférieure à	500 Ω
Précision de la sortie analogique	Erreur maximale : 0,5 % de l'échelle totale
Résolution de la sortie analogique	12 bits

La sortie analogique est isolée galvaniquement de la tension d'alimentation (PELV) et d'autres bornes haute tension.

10.6.11 Carte de commande, communication série RS485

N° de borne	XD2.2 (P,TX+, RX+), XD2.3 (N,TX-, RX-)
Borne n° XD2.1	Commune pour les bornes XD2.2 et XD2.3

Le circuit de communication série RS485 est isolé galvaniquement de la tension d'alimentation (PELV).

10.6.12 Performance de la carte de commande

Intervalle de balavage	1 ms

10.6.13 Entrées analogiques

Nombre d'entrées analogiques	2
N° de borne	XD2.7, XD2.8
Modes	Tension ou courant
Sélection du mode	Commutateurs S201 et S202
Tension	Commutateur S201/commutateur S202 = Inactif (U)
Niveau de tension	-10 à +10 V (échelonnable)

² Surtension cat. II.

³ Applications UL 300 V CA 2 A.

Résistance d'entrée, R _i	Environ 10 kΩ
Tension maximale	± 20 V
Courant	Commutateur S201/S202 = ON (I)
Niveau de courant	0/4 à 20 mA (échelonnable)
Résistance d'entrée, R _i	Environ 200 Ω
Courant maximal	30 mA
Résolution des entrées analogiques	10 bits (signe +)
Précision des entrées analogiques	Erreur max. 0,5 % de l'échelle totale
Largeur de bande	100 Hz

Les entrées analogiques sont isolées galvaniquement de la tension d'alimentation (PELV) et d'autres bornes haute tension.

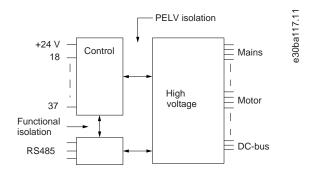


Illustration 71: Isolation PELV

10.7 Spécifications du filtre

10.7.1 Spécifications du filtre harmoniques passif

Déséquilibre de la tension d'alimentation	3 % maximum (les variateurs doivent être fonctionnels jusqu'à 8 %)
Variation de tension	+10%-15%
Fréquence nominale	-2 %, +2 % (de 50 Hz ou 60 Hz) lorsque le PHF est installé
Capacité de surcharge	150 % pendant 60 s sur une période de 10 minutes
Courant d'appel maximum, côté variateur	5 x I _{nom variateur} maximum
Courant d'appel maximum, côté entrée PHF	2 x I _{nom variateur} maximum
Cos d'IL à 25 % IPHF, N	0,85 Ind
Cos d'IL à 50 % IPHF, N	0,88 Ind
Cos d'IL à 75 % IPHF, N	0,92 Ind
Cos d'IL à 100 % IPHF, N	0,99 Ind
Cos d'IL à 160 % IPHF, N	0,98 Ind
Déclassement de puissance	ldentique au variateur

176 | Danfoss A/S © 2018.10 AQ123456789012fr-000101 / 130R0881

10.7.2 Spécifications de la réactance de ligne

Toutes les réactances de ligne sont équipées de protections thermiques mises en série et raccordées sur le variateur en armoire pour assurer une protection contre la surtempérature. Pour plus de détails, se reporter à la section concernant le compartiment de commande. La configuration de la réactance de ligne varie selon la tension et le boîtier requis.

Tableau 79: Configuration de la réactance de ligne pour les boîtiers D9h-D10h et E5h-E6h, 380-480 V

Boîtier	Modèle	Réactance de ligne [A]
D9h	N110	312
	N132	312
	N160	425
D10h	N200	425
	N250	2 x 312
	N315	2 x 312
E5h	N355	2 x 425
	N400	2 x 425
	N450	2 x 425
E6h	N500	3 x 425
	N560	3 x 425

Tableau 80: Configuration de la réactance de ligne pour les boîtiers D9h-D10h et E5h-E6h, 525-690 V

Boîtier	Modèle	Réactance de ligne [A]
D9h	N110	225
	N132	225
	N160	225
D10h	N200	315
	N250	315
	N315	2 x 225
	N400	2 x 225
E5h	N450	2 x 315
	N500	2 x 315
	N560	2 x 315
	N630	3 x 225
E6h	N710	3 x 315
	N800	3 x 315

10.7.3 Spécifications du filtre dU/dt

Tension nominale 3 x 380–690 V

Courant nominal à 50 Hz	Jusqu'à 590 A ⁽¹⁾
Déclassement de fréquence du moteur, 50 Hz	Nominal
Déclassement de fréquence du moteur, 60 Hz	Nominal
Déclassement de fréquence du moteur, 100 Hz	0,75 x nominal
Fréquence de commutation minimale	Pas de limite
Fréquence de commutation max.	Fréquence de commutation nominale
Capacité de surcharge	150 % pendant 60 s, toutes les 10 minutes
Température ambiante [°C (°F)]	-10 (14) à +45 (113)
Température de stockage [°C (°F)]	-25 (-13) à +60 (150)
Température de transport [°C (°F)]	-25 (-13) à +70 (158)
Température ambiante maximum avec déclassement [°C (°F)]	55 (131)
Altitude maximale sans déclassement [°C (°F)]	_
Niveau sonore	< module variateur

 $^{^1 \,} Les \, courants \, nominaux \, pour \, les \, boîtiers \, E5h \, et \, E6h \, sont \, atteints \, en \, mettant \, les \, filtres \, en \, parallèle.$

Tableau 81: Configurations du filtre dU/dt pour les boîtiers D9h-D10h et E5h-E6h, 380-480 V

Boîtier	Modèle	Courant nominal [A]	Filtres requis
D9h	N110	261	1
D9h	N132	261	1
D9h	N160	418	1
D10h	N200	418	1
D10h	N250	590	1
D10h	N315	590	1
E5h	N355	418	2
E5h	N400	418	2
E5h	N450	418	2
E6h	N500	590	2
E6h	N560	590	2

Tableau 82: Configurations du filtre dU/dt pour les boîtiers D9h-D10h et E5h-E6h, 525-690 V

Boîtier	Modèle	Courant nominal [A]	Filtres requis
D9h	N110	144	1
D9h	N132	261	1
D9h	N160	261	1
D10h	N200	418	1
D10h	N250	418	1
D10h	N315	418	1
D10h	N355	418	1

Boîtier	Modèle	Courant nominal [A]	Filtres requis
E5h	N400	590	1
E5h	N500	418	2
E5h	N560	418	2
E5h	N630	418	2
E6h	N710	590	2
E6h	N800	590	2

10.7.4 Spécifications du filtre sinus

Tension nominale	3 x 380–480 V et 525–690 V CA
Courant nominal à 50 Hz	212 A et 315 A pour 380–480 V, 137 A et 222 A pour 525–690 V $^{(1)}$
Fréquence du moteur avec déclassement	Jusqu'à 150 Hz
Fréquence du moteur sans déclassement	0–70 Hz
Fréquence de commutation minimale	2 kHz pour 380–480 V, 1,5 kHz pour 525–690 V
Fréquence de commutation max.	Fréquence de commutation nominale
Catégorie de surtension	OVC III selon la norme CEI 61800-5-1
Capacité de surcharge	150 % pendant 60 s toutes les 10 minutes
Température ambiante [°C (°F)]	-15 (5) à +60 (140)
Température de stockage [°C (°F)]	-40 (-40) à +70 (158)
Température de transport [°C (°F)]	-40 (-40) à +70 (158)
Altitude en cours de fonctionnement	
	Courant de 100 % (aucun déclassement) jusqu'à 1 000 m (3 280 pi)
	Déclassement du courant de 1 % tous les 100 m (328 pi) au-dessus de 1 000 m (3 280 pi)
	Maximum 4 000 m (13 123 pi) avec 500 V CA
	Maximum 2 000 m (6 561 pi) avec 690 V CA
Niveau sonore	< 80 dB(A)

¹ Les courants nominaux pour les boîtiers E5h et E6h sont atteints par la mise en parallèle des filtres.

10.8 Fusibles et disjoncteurs

10.8.1 Types de fusibles

Fusibles d'armoire

Les fusibles d'armoire constituent une option de protection en amont, et peuvent être commandés en tant que fusible de classe UL pour une version UL ou fusible gG pour la version CEI.

Sectionneur fusible

Le sectionneur fusible est une option permettant d'isoler en toute sécurité le variateur du secteur en montant un commutateur à fusible en amont du module variateur.

Sectionneur non fusible

Le sectionneur non fusible est une option. Toutes les unités commandées et fournies avec un sectionneur non fusible installé en usine nécessitent un fusible de classe UL afin de se conformer au SCCR de 65 kA pour le système du variateur.

Contacteur de ligne

Le contacteur de ligne est une option. Toutes les unités commandées et fournies avec un contacteur installé en usine nécessitent des fusibles de circuit de dérivation de classe L/J afin de se conformer au SCCR de 65 kA pour le système du variateur.

Cette option permet de connecter ou déconnecter le variateur du secteur à l'aide d'un commutateur de commande sur la porte du compartiment de commande ou d'un commutateur externe. Le commutateur externe doit être relié aux bornes XDO. Voir <u>5.3 Schéma de câblage pour variateurs en armoire D9h et D10h</u> et <u>5.4 Schéma de câblage pour variateurs en armoire E5h et E6h</u>. Le contacteur de ligne est fourni avec 2 ensembles de contacts auxiliaires (1 normalement ouvert et 1 normalement fermé). Ils se trouvent sur les côtés du contacteur. Par défaut, le contact auxiliaire NO est relié en usine et utilisé par le système.

Disjoncteur

Avec les disjoncteurs recommandés, le SCCR du système du variateur peut être déclaré comme indiqué ci-dessous.

10.8.2 Fusibles d'armoire

Les fusibles d'armoire constituent une option de protection en amont, et peuvent être commandés en tant que fusible de classe UL pour une version UL ou fusible gG pour la version CEI.

Tableau 83: Fusibles d'armoire pour les modèles N110K-N315, 380-480 V

	N110	N132	N160	N200	N250	N315
CEI (type gG)	250 A/500 V	315 A/500 V	355 A/500 V	425 A/500 V	630 A/500 V	630 A/500 V
P/N Mersen	NH1GG50V250	NH2GG50V315	NH2GG50V355	NH3GG50V425	NH3AGG50V630	NH3AGG50V630
UL (classe J/L/T)	300 A/600 V	350 A/600 V	400 A/600 V	500 A/600 V	600 A/600 V	750 A/600 V
P/N Mersen	A4J300	A4J350	A4J400	A4J500	A4J600	AABY750

Tableau 84: Fusibles d'armoire pour les modèles N355-N560, 380-480 V

	N355	N400	N450	N500	N560
CEI (type gG)	800 A/500 V	1 000 A/500 V	1 000 A/500 V	1 000 A/500 V	1 250 A/500 V
P/N Mersen	NH4GG50V800	NH4GG50V1000	NH4GG50V1000	NH4GG50V1000	NH4GG50V1250
UL (classe J/L/T)	800 A/600 V	1 000 A/600 V	1 000 A/600 V	1 100 A/600 V	1 200 A/600 V
P/N Mersen	A4BY800	A4BY1000	A4BY1000	A4BY1100	A4BY1200

Tableau 85: Fusibles d'armoire pour les modèles N110-N315, 525-690 V

	N110	N132	N160	N200	N250	N315
CEI (type gG)	250 A/690 V	250 A/690 V	250 A/690 V	315 A/690 V	355 A/690 V	425 A/690 V
P/N Mersen	NH2GG69V250	NH2GG69V250	NH2GG69V250	NH2GG69V315	NH3GG69V355	NH3GG69V425
UL (classe J/L/T)	175 A/600 V	200 A/600 V	250 A/600 V	350 A/600 V	400 A/600 V	500 A/600 V

180 | Danfoss A/S © 2018.10 AQ123456789012fr-000101 / 130R0881

	N110	N132	N160	N200	N250	N315
P/N Mersen	A4J175	A4J200	A4J250	A4J350	A4J400	A4J500

Tableau 86: Fusibles d'armoire pour les modèles N400-N630, 525-690 V

	N400	N450	N500	N560	N630
CEI (type gG)	500 A/690 V	500 A/500 V	630 A/500 V	800 A/500 V	800 A/500 V
P/N Mersen	NH3GG69V500	NH3GG69V500	NH4GG69V630	NH4GG69V800	NH4GG69V800
UL (classe J/L/T)	600 A/600 V	600 A/600 V	650 A/600 V	750 A/600 V	800 A/600 V
P/N Mersen	A4J600	A4J600	A4BY650	A4BY750	A4BY800

Tableau 87: Fusibles d'armoire pour les modèles N710-N800, 525-690 V

	N710	N800
CEI (type gG)	1 000 A/690 V	1 000 A/690 V
P/N ABB	OFAA4AGG1000	OFAA4AGG1000
UL (classe J/L/T)	1 000 A/600 V	1 100 A/600 V
P/N Mersen	A4BY1000	A4BY1100

10.8.3 Sectionneurs fusibles

Le sectionneur fusible est une option permettant d'isoler en toute sécurité le variateur du secteur en montant un commutateur à fusible en amont du module variateur. Toutes les unités commandées et fournies avec un sectionneur fusible installé en usine intègrent un fusible dans le commutateur. Le fusible a été dimensionné afin de se conformer au SCCR de 65 kA pour le système. La tension d'entrée et le dimensionnement puissance du variateur déterminent la classe spécifique ou le fusible gG. La tension d'entrée et le dimensionnement puissance sont indiqués sur la plaque signalétique. Voir 4.2 Éléments fournis.

Tableau 88: Sectionneurs fusibles pour les modèles N110-N315, 380-480 V

	N110	N132	N160	N200	N250	N315
CEI	400 A/690 V	400 A/690 V	400 A/690 V	630 A/690 V	630 A/690 V	630 A/690 V
P/N ABB	OS400D30P	OS400D30P	OS400D30P	OS630D30P	OS630D30P	OS630D30P
UL	400 A/600 V	400 A/600 V	400 A/600 V	600 A/600 V	600 A/600 V	800 A/600 V
P/N ABB	OS400J30	OS400J30	OS400J30	OS600J30	OS600J30	OS800L30

Tableau 89: Sectionneurs fusibles pour les modèles N355-N560, 380-480 V

	N355	N400	N450	N500	N560
CEI	1 250 A/690 V				
P/N ABB	OS1250D30P	OS1250D30P	OS1250D30P	OS1250D30P	OS1250D30P
UL	800 A/600 V	1 200 A/600 V	1 200 A/600 V	1 200 A/600 V	1 200 A/600 V
P/N ABB	OS800L30	OS1200L30	OS1200L30	OS1200L30	OS1200L30

Tableau 90: Sectionneurs fusibles pour les modèles N110-N315, 525-690 V

	N110	N132	N160	N200	N250	N315
CEI	400 A/690 V	400 A/690 V	400 A/690 V	630 A/690 V	630 A/690 V	630 A/690 V
P/N ABB	OS400D30P	OS400D30P	OS400D30P	OS630D30P	OS630D30P	OS630D30P
UL	400 A/600 V	600 A/600 V				
P/N ABB	OS400J30	OS400J30	OS400J30	OS400J30	OS400J30	OS600J30

Tableau 91: Sectionneurs fusibles pour les modèles N400-N630, 525-690 V

	N400	N450	N500	N560	N630
CEI	630 A/690 V	630 A/690 V	1 250 A/690 V	1 250 A/690 V	1 250 A/690 V
P/N ABB	OS630D30P	OS630D30P	OS1250D30P	OS1250D30P	OS1250D30P
UL	600 A/600 V	600 A/600 V	800 A/600 V	800 A/600 V	800 A/600 V
P/N ABB	OS600J30	OS600J30	OS800L30	OS800L30	OS800L30

Tableau 92: Sectionneurs fusibles pour les modèles N710-N800, 525-690 V

	N710	N800
CEI	1 250 A/690 V	1 250 A/690 V
P/N ABB	OS1250D30P	OS1250D30P
UL	1 200 A/600 V	1 200 A/600 V
P/N ABB	OS1200L30	OS1200L30

10.8.4 Sectionneurs non fusibles

Le sectionneur non fusible est une option. Toutes les unités commandées et fournies avec un sectionneur non fusible installé en usine nécessitent un fusible de classe UL afin de se conformer au SCCR de 65 kA pour le système du variateur.

Tableau 93: Sectionneurs non fusibles pour les modèles N110-N315, 380-480 V

	N110	N132	N160	N200	N250	N315
CEI	400 A/600 V	400 A/600 V	400 A/600 V	630 A/600 V	630 A/600 V	630 A/600 V
P/N ABB	OT400E30	OT400E30	OT400E30	OT630E30	OT630E30	OT630E30
UL	400 A/690 V	400 A/690 V	400 A/690 V	600 A/690 V	600 A/690 V	800 A/690 V
P/N ABB	OT400U30	OT400U30	OT400U30	OT600U30	OT600U30	OT800U30

Tableau 94: Sectionneurs non fusibles pour les modèles N355-N560, 380-480 V

	N355	N400	N450	N500	N560
CEI	1 000 A/600 V	1 000 A/600 V	1 250 A/600 V	1 250 A/600 V	1 250 A/600 V
P/N ABB	OT1000E30	OT1000E30	OT1250E30	OT1250E30	OT1250E30
UL	800 A/690 V	1 200 A/690 V	1 200 A/690 V	1 200 A/690 V	1 200 A/690 V

	N355	N400	N450	N500	N560
P/N ABB	OT800U30	OT1200U30	OT1200U30	OT1200U30	OT1200U30

Tableau 95: Sectionneurs non fusibles pour les modèles N110-N315, 525-690 V

	N110	N132	N160	N200	N250	N315
CEI	400 A/600 V	400 A/600 V	400 A/600 V	630 A/600 V	630 A/600 V	630 A/600 V
P/N ABB	OT400E30	OT400E30	OT400E30	OT630E30	OT630E30	OT630E30
UL	400 A/690 V	400 A/690 V	400 A/690 V	600 A/690 V	600 A/690 V	600 A/690 V
P/N ABB	OT400U30	OT400U30	OT400U30	OT600U30	OT600U30	OT600U30

Tableau 96: Sectionneurs non fusibles pour les modèles N400-N630, 525-690 V

	N400	N450	N500	N560	N630
CEI	630 A/600 V	630 A/600 V	630 A/600 V	1 000 A/600 V	1 000 A/600 V
P/N ABB	OT630E30	OT630E30	OT630E30	OT1000E30	OT1000E30
UL	600 A/690 V	600 A/690 V	600 A/690 V	800 A/690 V	800 A/690 V
P/N ABB	OT600U30	OT600U30	OT600U30	OT800U30	OT800U30

Tableau 97: Sectionneurs non fusibles pour les modèles N710-N800, 525-690 V

	N710	N800
CEI	1 250 A/600 V	1 250 A/600 V
P/N ABB	OT1250E30	OT1250E30
UL	1 200 A/690 V	1 200 A/690 V
P/N ABB	OT1200U30	OT1200U30

10.8.5 Fusibles de contacteur

Le contacteur de ligne est une option. Toutes les unités commandées et fournies avec un contacteur installé en usine nécessitent des fusibles de circuit de dérivation de classe L/J afin de se conformer au SCCR de 65 kA pour le système du variateur.

Cette option permet de connecter ou déconnecter le variateur du secteur à l'aide d'un commutateur de commande sur la porte du compartiment de commande ou d'un commutateur externe. Le commutateur externe doit être relié aux bornes XD0. Voir <u>5.3 Schéma de câblage pour variateurs en armoire D9h et D10h</u> et <u>5.4 Schéma de câblage pour variateurs en armoire E5h et E6h</u>. Le contacteur de ligne est fourni avec 2 ensembles de commutateurs auxiliaires (1 normalement ouvert et 1 normalement fermé). Ces commutateurs se trouvent sur les côtés du contacteur. Par défaut, le commutateur auxiliaire NO est relié en usine et utilisé par le système.

Spécifications du commutateur auxiliaire

Courant nominal de fonctionnement à 230 V	6 A
Courant nominal de fonctionnement à 380 V	4 A
Courant nominal de fonctionnement à 480 V	1,5 A
Courant thermique conventionnel, Ith	10 A
Tension nominale	500 V CA

Tension nominale de tenue aux chocs

600 V CA

Tableau 98: Fusibles de contacteur de ligne pour les modèles N110-N315, 380-480 V

	N110	N132	N160	N200	N250	N315
CEI	185 A/1 000 V	185 A/1 000 V	185 A/1 000 V	400 A/1 000 V	580 A/1 000 V	500 A/1 000 V
P/N Eaton	XTCE400M22A	XTCE400M22A	XTCE400M22A	XTCE400M22A	XTCE400M22A	XTCE500M22A
UL	185 A/1 000 V	185 A/1 000 V	185 A/1 000 V	400 A/1 000 V	400 A/1 000 V	580 A/1 000 V
P/N Eaton	XTCE400M22A	XTCE400M22A	XTCE400M22A	XTCE400M22A	XTCE580N22A	XTCE580N22A

Tableau 99: Fusibles de contacteur de ligne pour les modèles N355-N560, 380-480 V

	N355	N400	N450	N500	N560
CEI	580 A/1 000 V	580 A/1 000 V	580 A/1 000 V	820 A/1 000 V	820 A/1 000 V
P/N Eaton	XTCE580N22A	XTCE580N22A	XTCE580N22A	XTCE820N22A	XTCE820N22A
UL	820 A/1 000 V	820 A/1 000 V	820 A/1 000 V	1 000 A/1 000 V	1 000 A/1 000 V
P/N Eaton	XTCE820N22A	XTCE820N22A	XTCE820N22A	XTCEC10N22A	XTCEC10N22A

Tableau 100: Fusibles de contacteur de ligne pour les modèles N110-N315, 525-690 V

	N110	N132	N160	N200	N250	N315
CEI	185 A/1 000 V	185 A/1 000 V	185 A/1 000 V	400 A/1 000 V	400 A/1 000 V	400 A/1 000 V
P/N Eaton	XTCE400H22A	XTCE400H22A	XTCE400H22A	XTCE400M22A	XTCE400M22A	XTCE400M22A
UL	185 A/1 000 V	185 A/1 000 V	185 A/1 000 V	400 A/1 000 V	400 A/1 000 V	400 A/1 000 V
P/N Eaton	XTCE400H22A	XTCE400H22A	XTCE400H22A	XTCE400M22A	XTCE400M22A	XTCE400M22A

Tableau 101: Fusibles de contacteur de ligne pour les modèles N400-N630, 525-690 V

	N400	N450	N500	N560	N630
CEI	400 A/1 000 V	580 A/1 000 V			
P/N Eaton	XTCE400M22A	XTCE580N22A	XTCE580N22A	XTCE580N22A	XTCE580N22A
UL	400 A/1 000 V	580 A/1 000 V			
P/N Eaton	XTCE400M22A	XTCE580N22A	XTCE580N22A	XTCE580N22A	XTCE580N22A

Tableau 102: Fusibles de contacteur de ligne pour les modèles N710-N800, 525-690 V

	N710	N800
CEI	580 A/1 000 V	820 A/1 000 V
P/N Eaton	XTCE580N22A	XTCE820N22A
UL	820 A/1 000 V	1 000 A/1 000 V
P/N Eaton	XTCE820N22A	XTCEC10N22A

10.8.6 Disjoncteurs à boîtier moulé

Le disjoncteur à boîtier moulé (MCCB) est une option qui associe un dispositif sensible à la température à un dispositif électromagnétique sensible au courant afin de protéger le variateur.

Tableau 103: Références des disjoncteurs pour les modèles N110-N315, 380-480 V

	N110	N132	N160	N200	N250	N315
CEI	400 A/600 V	400 A/600 V	400 A/600 V	800 A/600 V	800 A/600 V	800 A/600 V
P/N ABB	T5L400T	T5L400T	T5L400T	T6L800T	T6L800T	T6L800T
UL	400 A/690 V	400 A/690 V	400 A/690 V	600 A/690 V	600 A/690 V	800 A/690 V
P/N ABB	T5L400TW	T5L400TW	T5L400TW	T6L600TW	T6L600TW	T6L800TW

Tableau 104: Références des disjoncteurs pour les modèles N355K-N560, 380-480 V

	N355	N400	N450	N500	N560
CEI	1 000 A/690 V	1 000 A/690 V	1 250 A/690 V	1 250 A/690 V	1 600 A/690 V
P/N ABB	T71000LSPR231 DS- LS	T71000LSPR231 DS- LS	T71250LSPR231 DS-LS	T71250LSPR231 DS- LS	T71600LSPR231 DS- LS
UL	1 200 A/600 V	1 200 A/600 V	1 200 A/600 V	1 600 A/600 V	1 600 A/600 V
P/N ABB	T7L1200PR231/P	T7L1200PR231/P	T7LQ1200PR231/P	T8V1600PR231/P	T8V1600PR231/P

Tableau 105: Références des disjoncteurs pour les modèles N110-N315, 525-690 V

	N110	N132	N160	N200	N250	N315
CEI	400 A/690 V	400 A/690 V	400 A/690 V	630 A/690 V	630 A/690 V	630 A/690 V
P/N ABB	T5L400T	T5L400T	T5L400T	T6L630T	T6L630T	T6L630T
UL	400 A/600 V	400 A/600 V	400 A/600 V	600 A/600 V	600 A/600 V	600 A/600 V
P/N ABB	T5L400TW	T5L400TW	T5L400TW	T6L600TW	T6L600TW	T6L600TW

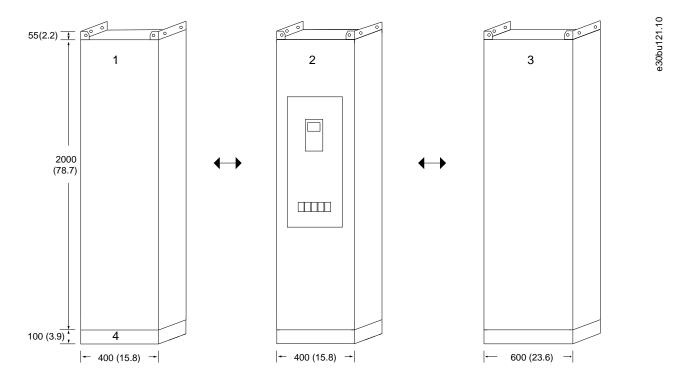
Tableau 106: Références des disjoncteurs pour les modèles N400-N630, 525-690 V

	N400	N450	N500	N560	N630
CEI	600 A/690 V	1 000 A/690 V	1 000 A/690 V	1 000 A/690 V	1 000 A/690 V
P/N ABB	T6L630T	T7L1000LSPR23 1 DS- LS	T7L1000LSPR23 1 DS- LS	T7L1000LSPR23 1 DS-LS	T7L1000LSPR23 1 DS-LS
UL	600 A/600 V	1 000 A/600 V	1 000 A/600 V	1 000 A/600 V	1 000 A/600 V
P/N ABB	T6LQ600TW	T7L1000PR231/P	T7L1000PR231/P	T7LQ1000PR231/P	T7LQ1000PR231/P

Tableau 107: Références des disjoncteurs pour les modèles N710-N800, 525-690 V

	N710	N800
CEI	1 250 A/690 V	1 250 A/690 V
P/N ABB	T7L1250LSPR23 1 DS-LS	T7L1250LSPR23 1 DS-LS
UL	1 200 A/600 V	1 200 A/600 V

	N710	N800
P/N ABB	T7L1200PR231/ P	T7L1200PR231/ P

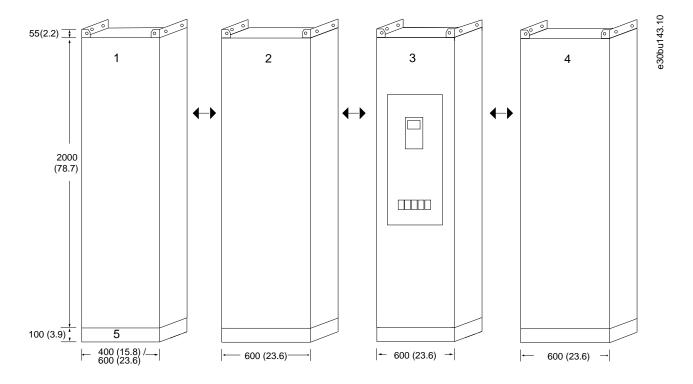

10.9 Dimensions du boîtier

10.9.1 Dimensions du socle

Le socle sur lequel repose le boîtier est disponible en 3 tailles :

- 100 mm (3,9 po)
- 200 mm (7,9 po)
- 400 mm (15,8 po)

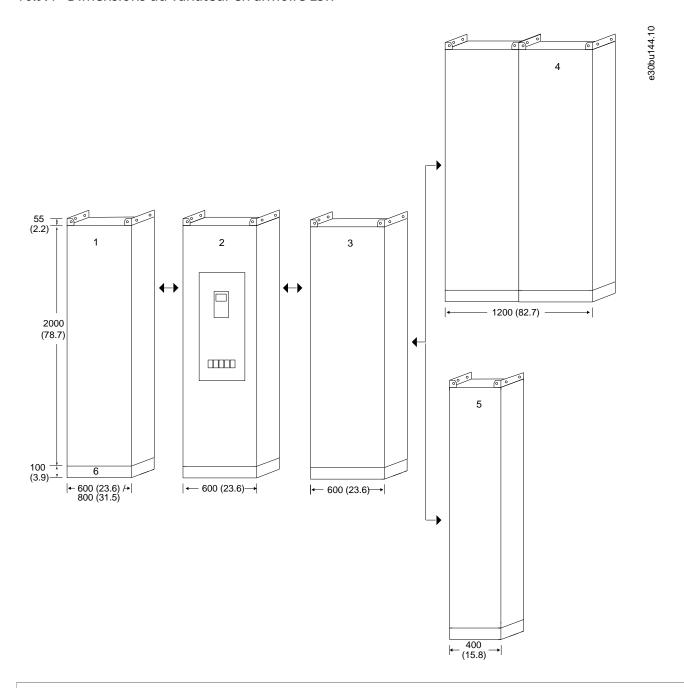
10.9.2 Dimensions du variateur en armoire D9h



- 1 Armoire de filtre harmonique passif/réactance de ligne
- 2 Armoire de variateur D9h
- 3 Armoire de filtre sinus
- 4 Socle standard

Illustration 72: Dimensions du boîtier D9h avec socle standard

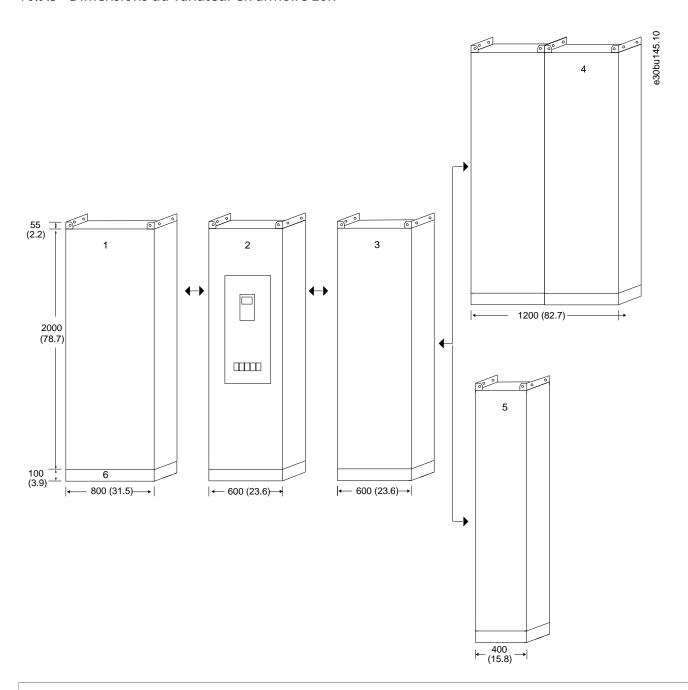
10.9.3 Dimensions du variateur en armoire D10h



- 1 Armoire de filtre harmonique passif/réactance de ligne
- 2 Armoire d'options (fournie lorsque plus d'une option d'entrée est commandée)
- 3 Armoire de variateur D10h
- 4 Armoire de filtre sinus
- 5 Socle standard

Illustration 73: Dimensions du boîtier D10h avec socle standard

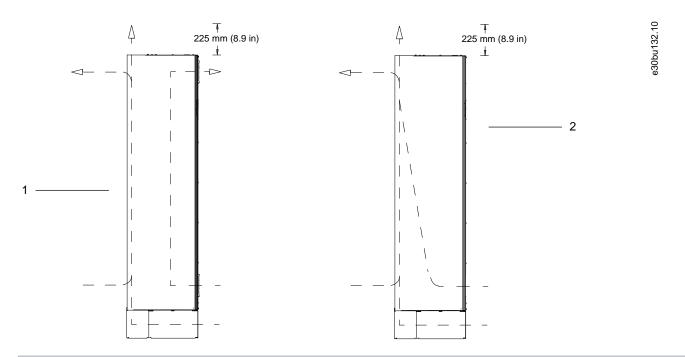
10.9.4 Dimensions du variateur en armoire E5h


- 1 Armoire de filtre harmonique passif/réactance de ligne
- 2 Armoire d'options
- 3 Armoire de variateur E5h
- 4 Armoire de filtre sinus
- 5 Armoire dU/dt

6 Socle standard

Illustration 74: Dimensions du boîtier E5h avec socle standard

10.9.5 Dimensions du variateur en armoire E6h


- 1 Armoire de filtre harmonique passif/réactance de ligne
- 2 Armoire d'options

- 3 Armoire de variateur E6h
- 4 Armoire de filtre sinus
- 5 Armoire dU/dt
- 6 Socle standard

Illustration 75: Dimensions du boîtier E6h avec socle standard

10.10 Circulation de l'air dans le boîtier

- 1 PHF et armoire de variateur
- 2 Armoires de filtre sinus

Illustration 76: Circulation de l'air dans le boîtier

10.11 Couples de serrage nominaux

Appliquer le couple adéquat pour serrer les fixations aux endroits répertoriés dans le tableau. L'application d'un couple trop faible ou trop élevé lors du serrage d'une connexion électrique entraîne un mauvais raccordement électrique. Pour garantir un couple correct, utiliser une clé dynamométrique.

Tableau 108: Couples de serrage nominaux

Emplacement	Taille de boulon	Couple [Nm (po-lb)]
Bornes de secteur	M10/M12	19 (168)/37 (335)
Bornes du moteur	M10/M12	19 (168)/37 (335)
Bornes de mise à la terre	M8/M10	9,6 (84)/19,1 (169)

Emplacement	Taille de boulon	Couple [Nm (po-lb)]
Bornes de freinage	M8	9,6 (84)
Bornes de répartition de la charge	M10/M12	19 (168)/37 (335)
Bornes de relais	-	0,5 (4)
Protection de porte/panneau	M5	2,3 (20)
Plaque d'entrée de câble	M5	2,3 (20)
Panneau d'accès au dissipateur de chaleur	M5	2,3 (20)
Cache de communication série	M5	2,3 (20)

11 Annexe

11.1 Conventions

- Les listes numérotées correspondent à des procédures.
- Les listes à puces fournissent d'autres informations et décrivent les illustrations.
- Les textes en italique indiquent :
 - Références croisées
 - Liens
 - Notes de bas de page
 - Nom du paramètre
 - Nom du groupe de paramètres
 - Option de paramètre
- Toutes les dimensions sont en mm (pouces).

11.2 Abréviations

Tableau 109: Abréviations, acronymes et symboles

Terme	Définition
°C	Degrés Celsius
°F	Degrés Fahrenheit
Ω	Ohm
CA	Courant alternatif
AEO	Optimisation automatique de l'énergie
ACP	Processeur de contrôle de l'application
AMA	Adaptation automatique au moteur
AWG	American Wire Gauge (calibre américain des fils)
CPU	Unité centrale
CSIV	Valeurs d'initialisation spécifiques au client
TC	Transformateur de courant
CC	Courant continu
DVM	Voltmètre numérique
EEPROM	Mémoire morte programmable effaçable électriquement
CEM	Compatibilité électromagnétique
EMI	Interférences électromagnétiques
ESD	Décharge électrostatique
ETR	Relais thermique électronique
f _{M,N}	Fréquence nominale du moteur
HF	Haute fréquence

Terme	Définition
HVAC	Chauffage, ventilation et air conditionné
Hz	Hertz
I _{LIM}	Limite de courant
I _{INV}	Courant de sortie nominal onduleur
I _{M,N}	Courant nominal du moteur
I _{VLT,MAX}	Courant de sortie maximal
I _{VLT,N}	Courant nominal de sortie fourni par le variateur
CEI	Commission électrotechnique internationale
IGBT	Transistor bipolaire à grille isolée
E/S	Entrées/sorties
IP	Protection contre les infiltrations
kHz	Kilohertz
kW	Kilowatt
L _d	Inductance moteur axe d
Lq	Inductance moteur axe q
LC	Inductance-condensateur
LCP	Panneau de commande local
LED	Diode électroluminescente
LOP	Panneau de commande local
mA	Milliampère
МСВ	Disjoncteurs miniatures
Disjoncteur	Disjoncteur à boîtier moulé
MCO	Option de contrôle de mouvement
MCP	Processeur de contrôle du moteur
MCT	Outil de contrôle du mouvement
MDCIC	Carte d'interface de commande multi-variateurs
mV	Millivolts
NEMA	National Electrical Manufacturers Association
NTC	Coefficient de température négative
P _{M,N}	Puissance nominale du moteur
PCB	Carte à circuits imprimés
PE	Protection par mise à la terre
PELV	Très basse tension de protection
PHF	Filtre harmonique passif

Terme	Définition
PID	Proportionnel intégral dérivé
PLC	Contrôleur logique programmable
P/N	Référence
PROM	Mémoire morte programmable
PS	Partie puissance
PTC	Coefficient de température positive
PWM	Modulation par largeur d'impulsion
R _S	Résistance du stator
RAM	Mémoire à accès aléatoire
RCD	Relais de protection différentielle
Régén.	Bornes régénératives
RFI	Interférences de radio fréquence
RMS	Valeur efficace (courant électrique alternatif)
Tr/min	Tours par minute
SCR	Thyristor
SMPS	Alimentation à découpage
S/N	Numéro de série
STO	Safe Torque Off
T _{LIM}	Limite de couple
U _{M,N}	Tension nominale du moteur
V	Volt
VVC	Commande vectorielle de tension
X _h	Inductance de sortie moteur

11.3 Réglages des paramètres par défaut selon International/North America (Amérique Nord)

Le réglage du paramètre 0-03 Regional Settings (Réglages régionaux) sur [0] International ou [1] North America (Amérique Nord) change les réglages par défaut de certains paramètres. Le tableau 10.2 répertorie les paramètres qui sont affectés par ce réglage.

Tableau 110: Réglages des paramètres par défaut selon International/North America (Amérique Nord) de VLT[®] FC Series

Paramètre	Valeur par défaut : International	Valeur par défaut : North America (Amérique Nord)
Paramètre 0-03 Regional Settings (Réglages régionaux)	International	North America (Amérique Nord)
Paramètre 0-71 Date Format (Format date)	DD-MM-YYYY (JJ-MM- AAAA)	MM/DD/YYYY (MM/JJ/ AAAA)
Paramètre 0-72 Time Format (Format heure)	24 h	12 h

Paramètre	Valeur par défaut : Inter- national	Valeur par défaut : North America (Amérique Nord)
Paramètre 1-23 Motor Frequency (Fréq.moteur)	50 Hz	60 Hz
Paramètre 1-25 Motor Nominal Speed (Vit.nom.moteur)	1400 RPM (1 400 tr/min)	1680 RPM (1 680 tr/min)
Paramètre 1-53 Model Shift Frequency (Changement de modèle fréquence)	16,7	20,0
Paramètre 1-56 U/f Characteristic (Caract. U/f)	50 Hz	60 Hz
Paramètre 6-15 Terminal 53 High Ref./Feedb. Value (Val.ret./ Réf.haut.born.53)	1500 RPM (1 500 tr/min)	1800 RPM (1 800 tr/min)
Paramètre 14-37 Fieldweakening Speed (Vit. affaiblisst de champ)	1400 RPM (1 400 tr/min)	1680 RPM (1 680 tr/min)

11.4 Réglage des paramètres requis suivant les options du variateur

Lorsqu'un Reset aux valeurs d'usine est effectué sur le variateur, tous les paramètres du variateur reviennent à leur valeur d'usine par défaut. Dans plusieurs options de variateur, les réglages des paramètres doivent être configurés différemment des valeurs d'usine par défaut pour que les options fonctionnent correctement.

Tableau 111: Réglage des paramètres pour l'option de filtre actif (caractère de code de type 7 = A)

Paramètre	Faire passer la valeur à
Paramètre 5-02 Terminal 29 Mode (Mode born.29)	[1] Output (Sortie)

Tableau 112: Réglage des paramètres pour l'option de filtre actif (caractère de code de type 7 = P/H/L/U)

Paramètre	Faire passer la valeur à
Paramètre 5-02 Terminal 29 Mode (Mode born.29)	[1] Output (Sortie)
Paramètre 5-10 Terminal 18 Digital Input (E.digit.born.18)	[51] External Interlock (Verrouillage ext.)
Paramètre 5-31 Terminal 29 Digital Output (S.digit.born.29)	[188] AHF Capacitor Connect (Connex° condens. AHF)

Tableau 113: Réglage des paramètres pour les options de filtre dU/dt et sinus (caractère de code de type 18 = D/S/1/2)

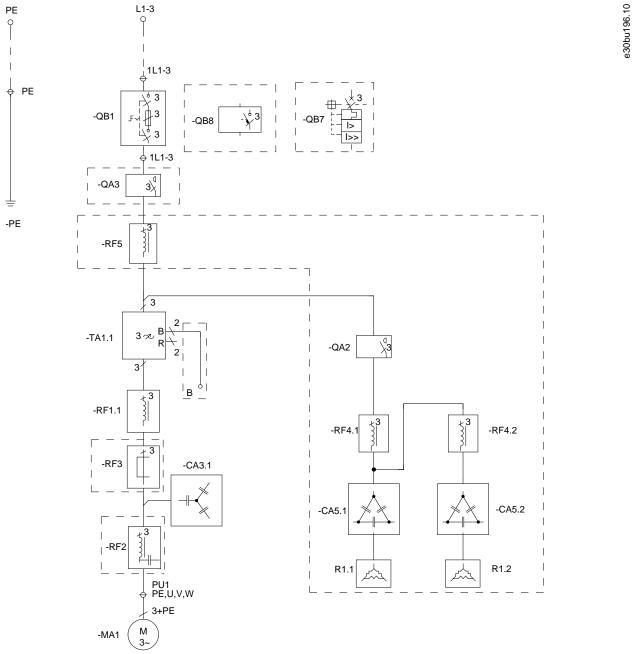

Paramètre	Faire passer la valeur à
Paramètre 5-02 Terminal 29 Mode (Mode born.29)	[1] Output (Sortie)
Paramètre 14-52 Fan Control (Cmd ventilateur)	[3] On 100% (À 100 %)

Tableau 114: Réglage des paramètres de l'option voyant + bouton Reset (caractère de code de type 28–29 = D1/DA/DB/DC/DD/DE)

Paramètre	Faire passer la valeur à
Paramètre 5-40 Function Relay [1] (Fonction relais [1])	[5] Running (En fonction.)
Paramètre 5-40 Function Relay [2] (Fonction relais [2])	[5] Running (En fonction.)
Paramètre 5-11 Terminal 19 Digital Input (E.digit.born.19)	[1] Reset

11.5 Schémas fonctionnels

-RFI Filtre d'interférences radioélectriques (RFI)

Résistance R1

-RF5 Filtre harmonique passif (PHF) L0

-RF4 Bobines d'induction de PHF


-CA5 Condensateurs de PHF

-QA2	Contacteur de PHF
-RFL	Réactance de ligne
-QAF	Relais PHF
-QB7	Disjoncteur à boîtier moulé (MCCB)
-QA3	Contacteur de ligne
-QB2	Sectionneur à fusibles secteur
-QB8	Sectionneur secteur
-MA7	Ventilateurs de filtre dU/dt et sinus
-MA8	Ventilateurs de PHF
-RF2	Bobine d'induction de filtre sinus
-CA4	Condensateur de filtre sinus
-RF1	Bobine d'induction de filtre dU/dt
-CA3	Condensateur de filtre dU/dt
-RF3	Filtre de mode commun
-MA1	Moteur (côté client)
-TA1	Module variateur
LCP	Panneau de commande local

Illustration 77: Circulation de l'énergie électrique pour le boîtier D9h/D10h

-RFI Filtre d'interférences radioélectriques (RFI)

R1 Résistance

-RF5 Filtre harmonique passif (PHF) L0

-RF4 Bobines d'induction de PHF

-CA5 Condensateurs de PHF

-QA2 Contacteur de PHF

-RFL Réactance de ligne

-QAF	Relais PHF
-QB7	Disjoncteur à boîtier moulé (MCCB)
-QA3	Contacteur de ligne
-QB2	Sectionneur à fusibles secteur
-QB8	Sectionneur secteur
-MA7	Ventilateurs de filtre dU/dt et sinus
-MA8	Ventilateurs de PHF
-RF2	Bobine d'induction de filtre sinus
-CA4	Condensateur de filtre sinus
-RF1	Bobine d'induction de filtre dU/dt
-CA3	Condensateur de filtre dU/dt
-RF3	Filtre de mode commun
-MA1	Moteur (côté client)
-TA1	Module variateur
LCP	Panneau de commande local

Illustration 78: Circulation de l'énergie électrique pour le boîtier E5h/E6h

11.6 Pertes de l'option de puissance d'entrée

11.6.1 Pertes de contacteur

Tableau 115: Pertes de puissance pour le contacteur en option, 380-500 V (pertes indiquées en watts)

Modèle	380-440 V		380–440 V 441–500 V		
-	NO	но	NO	НО	
N90K	16	11	13	9	
N110	25	16	21	13	
N132	36	25	33	21	
N160	57	36	47	33	
N200	42	28	36	24	
N250	63	42	52	36	
N315	62	51	50	42	
N355	79	62	66	50	
N400	91	69	76	66	
N450	74	61	58	51	
N500	94	74	76	58	

Tableau 116: Pertes de puissance pour le contacteur en option, 525-690 V (pertes indiquées en watts)

Modèle	525–550 V		525–550 V 551–690 V		
-	NO	но	NO	НО	
N90K	7	5	6	4	
N110	10	7	9	6	
N132	15	10	13	9	
N160	23	15	21	13	
N200	33	23	30	21	
N250	47	33	43	30	
N315	63	47	58	43	
N355	40	28	37	26	
N400	50	33	45	30	
N500	64	50	59	45	
N560	72	64	72	59	
N630	83	62	76	57	
N710	76	56	69	51	

11.6.2 Pertes de sectionneur fusible

Tableau 117: Pertes de puissance pour le sectionneur fusible en option, 380-500 V (pertes indiquées en watts)

Modèle	380-440 V		380–440 V 441–500 V		
-	NO	но	NO	но	
N90K	71	49	57	40	
N110	89	59	76	48	
N132	131	90	121	76	
N160	142	91	119	83	
N200	155	105	132	88	
N250	233	155	193	132	
N315	188	156	151	127	
N355	202	158	168	127	
N400	233	176	194	168	
N450	282	233	222	194	
N500	305	241	246	189	

Tableau 118: Pertes de puissance pour le sectionneur fusible en option, 525-690 V (pertes indiquées en watts)

Modèle	525–550 V		551–690 V	
-	NO	но	NO	но
N90K	29	20	27	18
N110	41	29	37	27
N132	63	41	57	37
N160	71	45	65	41
N200	101	70	92	64
N250	118	84	108	77
N315	151	112	138	102
N355	191	135	175	125
N400	134	90	123	83
N500	154	119	141	109
N560	173	154	173	141
N630	208	155	190	142
N710	282	208	258	190

11.6.3 Pertes de sectionneur non fusible

Tableau 119: Pertes de puissance pour le sectionneur non fusible en option, 380-500 V (pertes indiquées en watts)

Modèle	380-440 V		380–440 V 441–500 V		
-	NO	но	NO	но	
N90K	8	6	7	5	
N110	13	8	11	7	
N132	19	13	17	11	
N160	29	19	25	17	
N200	44	29	37	25	
N250	65	44	54	37	
N315	25	21	20	17	
N355	32	25	26	20	
N400	36	27	30	26	
N450	43	36	34	30	
N500	55	43	44	34	

Tableau 120: Pertes de puissance pour le sectionneur non fusible en option, 525-690 V (pertes indiquées en watts)

Modèle	525–550 V		551–690 V	
-	NO	но	NO	НО
N90K	4	2	3	2
N110	5	4	5	3
N132	8	5	7	5
N160	12	8	11	7
N200	17	12	16	11
N250	24	17	22	16
N315	33	24	30	22
N355	42	29	38	27
N400	52	35	47	32
N500	20	16	19	14
N560	23	20	23	19
N630	32	24	30	22
N710	44	32	40	30

11.6.4 Pertes du disjoncteur

Tableau 121: Pertes de puissance pour l'option disjoncteur, 380–500 V (pertes indiquées en watts)

Modèle	380-440 V		èle 380–440 V 441–500 V		
-	NO	но	NO	но	
N90K	25	18	20	14	
N110	38	25	32	20	
N132	56	38	51	32	
N160	54	35	45	32	
N200	80	54	68	45	
N250	120	80	100	68	
N315	62	52	50	42	
N355	80	62	66	50	
N400	92	70	77	66	
N450	112	92	88	77	
N500	92	73	74	57	

Tableau 122: Pertes de puissance pour l'option disjoncteur, 525-690 V (pertes indiquées en watts)

Modèle	525-550 V		551–690 V	
-	NO	но	NO	НО
N90K	11	7	10	7
N110	15	11	14	10
N132	23	15	21	14
N160	22	14	20	13
N200	32	22	29	20
N250	45	32	41	29
N315	61	45	56	41
N355	43	30	39	28
N400	53	36	49	33
N500	69	53	63	49
N560	77	69	77	63
N630	84	63	77	57
N710	114	84	104	77

11.6.5 Pertes de filtre harmonique passif

Tableau 123: Pertes de puissance pour le filtre harmonique passif en option, 380-500 V (pertes indiquées en watts)

Modèle	380-440 V		441–500 V	
-	NO	но	NO	но
N90K	1083	841	1083	841
N110	1284	1083	1284	1083
N132	1511	1284	1511	1284
N160	1704	1511	1704	1511
N200	1814	1704	1814	1704
N250	2242	1814	1980	1814
N315	2302	2242	2242	1980
N355	2498	2302	2302	2242
N400	2613	2498	2498	2302
N450	2838	2613	2613	2498
N500	3160	2838	2838	2613

Tableau 124: Pertes de puissance pour le filtre harmonique passif en option, 525-690 V (pertes indiquées en watts)

Modèle	525–550 V		551–690 V	
-	NO	но	NO	НО
N90K	3406	2689	2689	2151
N110	4302	3406	3406	2689
N132	5199	4302	4302	3406
N160	6454	5199	5199	4302
N200	8246	6454	6454	5199
N250	10308	8246	8246	6454
N315	10308	10308	10308	8246
N355	7768	6872	6872	5498
N400	10995	6872	7768	6872
N500	9919	9919	8605	7768
N560	10995	9919	9919	8605
N630	13744	10995	10995	9919
N710	13744	13744	13744	10995

11.6.6 Pertes de filtre dU/dt

Tableau 125: Pertes de puissance pour le filtre dU/dt en option, 380–500 V (pertes indiquées en watts)

Modèle	380-440 V		441–500 V	
-	NO	но	NO	НО
N90K	350	244	281	199
N110	526	350	448	281
N132	327	223	300	190
N160	514	327	429	300
N200	834	565	710	472
N250	1251	834	1036	710
N315	713	593	573	480
N355	914	713	757	573
N400	1054	795	878	757
N450	1402	1158	1101	964
N500	1774	1402	1434	1101

Tableau 126: Pertes de puissance pour le filtre dU/dt en option, 525-690 V (pertes indiquées en watts)

Modèle	525–550 V		551–690 V	
-	NO	но	NO	НО
N90K	453	308	414	281
N110	204	146	187	134
N132	314	204	287	187
N160	498	314	456	287
N200	302	211	277	193
N250	427	302	390	277
N315	575	427	527	390
N355	800	565	733	523
N400	989	666	905	608
N500	585	450	535	412
N560	654	585	654	535
N630	959	715	878	654
N710	1430	1054	1308	964

11.6.7 Pertes de filtre sinus

Tableau 127: Pertes de puissance pour le filtre sinus en option, 380–500 V (pertes indiquées en watts)

Modèle	380-440 V		441–500 V	
-	NO	но	NO	но
N90K	1320	920	1060	752
N110	1363	906	1161	728
N132	2000	1363	1838	1161
N160	2291	1457	1914	1339
N200	2322	1572	1978	1313
N250	3484	2322	2885	1978
N315	3179	2643	2556	2141
N355	4075	3179	3375	2556
N400	4699	3547	3913	3375
N450	3902	3225	3066	2685
N500	4939	3902	3991	3066

Tableau 128: Pertes de puissance pour le filtre sinus en option, 525-690 V (pertes indiquées en watts)

Modèle	525–550 V		551–690 V	
-	NO	НО	NO	но
N90K	1100	748	1006	684
N110	1065	762	975	696
N132	1640	1065	1496	975
N160	1876	1184	1716	1080
N200	1863	1299	1706	1188
N250	2630	1863	2401	1706
N315	3545	2630	3246	2401
N355	3237	2286	2967	2116
N400	4004	2697	3663	2463
N500	3603	2772	3296	2536
N560	4027	3603	4027	3296
N630	5909	4406	5406	4027
N710	8018	5906	7330	5406

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.

Danfoss A/S Ulsnaes 1 DK-6300 Graasten vlt-drives.danfoss.com