Installation Guide

VLT® PROFIBUS DP MCA 101

VLT® Frequency Converter Series FC 102 • FC 103 • FC 202 • FC 301/302
Contents

1 Introduction
- 1.1 Purpose of the Manual 2
- 1.2 Additional Resources 2
- 1.3 Product Overview 2
- 1.4 Approvals and Certifications 2
- 1.5 Disposal 3
- 1.6 Symbols, Abbreviations and Conventions 3

2 Safety
- 2.1 Safety Symbols 4
- 2.2 Qualified Personnel 4
- 2.3 Safety Precautions 4

3 Installation
- 3.1 Safety Instructions 6
- 3.2 EMC-compliant Installation 6
- 3.3 Grounding 6
- 3.4 Cable Routing 6
- 3.5 Mounting 7
- 3.6 Setting Address Switches 8
- 3.7 Electrical Installation 8
- 3.8 Reassembling Cover 12
- 3.9 Applying Power 12
- 3.10 Checking Network Cabling 12

4 Troubleshooting
- 4.1 Warnings and Alarms 13
- 4.2 Troubleshooting 14
 - 4.2.1 LED Status 14
 - 4.2.2 No Communication with the Frequency Converter 15
 - 4.2.3 Warning 34 Appears 15

Index 16
1 Introduction

1.1 Purpose of the Manual

This installation guide provides information for quick installation of a VLT® PROFIBUS DP MCA 101 in the VLT® frequency converter.

The installation guide is intended for use by qualified personnel. Users are assumed to be familiar with the VLT® frequency converter, with PROFIBUS technology, and with the PC or PLC that is used as a master in the system.

Read the instructions before installation and ensure that instructions for safe installation are observed.

VLT® is a registered trademark.

1.2 Additional Resources

Resources available for the frequency converters and optional equipment:

- The VLT® Operating Instructions provide the necessary information for getting the frequency converter up and running.
- The VLT® Design Guide provides detailed information about capabilities and functionality to design motor control systems.
- The VLT® Programming Guide provides greater detail on working with parameters and many application examples.
- The VLT® PROFIBUS DP MCA 101 Installation Guide provides information about installing the PROFIBUS and troubleshooting.
- The VLT® PROFIBUS DP MCA 101 Programming Guide provides information about configuring the system, controlling the frequency converter, parameter access, programming, troubleshooting, as well as some typical application examples.

Supplementary publications and manuals are available from Danfoss. See www.danfoss.com/BusinessAreas/DrivesSolutions/Documentations/VLT+Technical+Documentation.htm for listings.

1.3 Product Overview

1.3.1 Intended Use

This installation guide relates to PROFIBUS interface ordering no. 130B1100 and ordering no. 130B1200.

The PROFIBUS interface enables communication between a VLT® frequency converter and any master complying with the PROFIBUS standard. Communication can be configured via MCT 10 Set-up Software. The PROFIBUS interface supports PROFIBUS DP V1.

VLT® PROFIBUS DP MCA 101 is intended for use with:

- VLT® HVAC Drive FC 102
- VLT® Refrigeration Drive FC 103
- VLT® AQUA Drive FC 202
- VLT® AutomationDrive FC 301/302

Requirements to the master:

A PLC or PC that:

- has a serial communication card with PROFIBUS Master Class 1 capability
- supports all PROFIBUS communication services required by the application
- fulfils requirements of the PROFIBUS standard
- fulfils requirements of the PROFIBUS frequency converter profile and its company-specific implementation, PROFIdrive
- fulfils requirements of the relevant VLT® frequency converter

1.3.2 Items Supplied

When the fieldbus option is not factory mounted, the following items are supplied:

- Fieldbus option and connector
- LCP cradle
- Front covers (in various sizes)
- Stickers
- Accessories bag (including EMC bracket)
- Installation Guide

1.4 Approvals and Certifications

More approvals and certifications are available. For more information, contact local Danfoss partner.
1.5 Disposal

Do not dispose of equipment containing electrical components together with domestic waste. Collect it separately in accordance with local and currently valid legislation.

1.6 Symbols, Abbreviations and Conventions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN</td>
<td>Controller Area Network</td>
<td></td>
</tr>
<tr>
<td>DP</td>
<td>Distributed Periphery</td>
<td></td>
</tr>
<tr>
<td>EMC</td>
<td>Electromagnetic Compatibility</td>
<td></td>
</tr>
<tr>
<td>FDT</td>
<td>Field Device Tool</td>
<td></td>
</tr>
<tr>
<td>HF</td>
<td>High Frequency</td>
<td></td>
</tr>
<tr>
<td>LCP</td>
<td>Local Control Panel</td>
<td></td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
<td></td>
</tr>
<tr>
<td>LOP</td>
<td>Local Operating Panel</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
<td></td>
</tr>
<tr>
<td>PLC</td>
<td>Programmable Logic Control</td>
<td></td>
</tr>
<tr>
<td>PPO</td>
<td>Parameter Process Data</td>
<td></td>
</tr>
<tr>
<td>STW</td>
<td>Status Word</td>
<td></td>
</tr>
</tbody>
</table>

Table 1.1 Symbols and Abbreviations

Conventions

Numbered lists indicate procedures.
Bullet lists indicate other information and description of illustrations.
Italicised text indicates

- cross reference
- link
- parameter name
2 Safety

2.1 Safety Symbols

The following symbols are used in this document:

WARNING
Indicates a potentially hazardous situation which could result in death or serious injury.

CAUTION
Indicates a potentially hazardous situation which could result in minor or moderate injury. It may also be used to alert against unsafe practices.

NOTICE
Indicates important information, including situations that may result in damage to equipment or property.

2.2 Qualified Personnel

Correct and reliable transport, storage, installation, operation and maintenance are required for the trouble-free and safe operation of the frequency converter. Only qualified personnel is allowed to install or operate this equipment.

Qualified personnel is defined as trained staff, who are authorised to install, commission, and maintain equipment, systems and circuits in accordance with pertinent laws and regulations. Additionally, the personnel must be familiar with the instructions and safety measures described in this document.

2.3 Safety Precautions

WARNING
HIGH VOLTAGE
Frequency converters contain high voltage when connected to AC mains input, DC power supply, or load sharing. Failure to perform installation, start-up, and maintenance by qualified personnel can result in death or serious injury.

- Installation, start-up, and maintenance must be performed by qualified personnel only.

WARNING
UNINTENDED START
When the frequency converter is connected to AC mains, DC power supply, or load sharing, the motor may start at any time. Unintended start during programming, service or repair work can result in death, serious injury, or property damage. The motor can start by means of an external switch, a serial bus command, an input reference signal from the LCP or LOP, via remote operation using MCT 10 software, or after a cleared fault condition.

To prevent unintended motor start:

- Disconnect the frequency converter from mains.
- Press [Off/Reset] on the LCP, before programming parameters.
- The frequency converter, motor, and any driven equipment must be fully wired and assembled when the frequency converter is connected to AC mains, DC power supply, or load sharing.

WARNING
DISCHARGE TIME
The frequency converter contains DC-link capacitors, which can remain charged even when the frequency converter is not powered. Failure to wait the specified time after power has been removed before performing service or repair work, can result in death or serious injury.

- Stop motor.
- Disconnect AC mains and remote DC-link power supplies, including battery back-ups, UPS, and DC-link connections to other frequency converters.
- Disconnect or lock PM motor.
- Wait for the capacitors to discharge fully, before performing any service or repair work. The duration of waiting time is specified in the relevant frequency converter Operating Instructions, Chapter 2 Safety.
WARNING

LEAKAGE CURRENT HAZARD
Leakage currents exceed 3.5 mA. Failure to ground the frequency converter properly can result in death or serious injury.

- Ensure correct grounding of the equipment by a certified electrical installer.

WARNING

EQUIPMENT HAZARD
Contact with rotating shafts and electrical equipment can result in death or serious injury.

- Ensure that only trained and qualified personnel perform installation, start up, and maintenance.
- Ensure that electrical work conforms to national and local electrical codes.
- Follow the procedures in this manual.

CAUTION

INTERNAL FAILURE HAZARD
An internal failure in the frequency converter can result in serious injury, when the frequency converter is not properly closed.

- Before applying power, ensure all safety covers are in place and securely fastened.
3 Installation

3.1 Safety Instructions

See chapter 2 Safety for general safety instructions.

3.2 EMC-compliant Installation

To obtain an EMC-compliant installation, follow the instructions provided in the relevant frequency converter Operating Instructions and Design Guide. Refer to the PROFIBUS master manual from the PLC supplier for further installation guidelines.

3.3 Grounding

- Ensure that all stations connected to the PROFIBUS network are connected to the same ground potential. When there are long distances between the stations in a PROFIBUS network, connect the individual stations to the same ground potential. Install equalising cables between the system components.
- Establish a grounding connection with low HF impedance, for example by mounting the frequency converter on a conductive back plate.
- Keep the ground wire connections as short as possible.
- Establish electrical contact between the cable screen and the frequency converter enclosure by using metal cable glands or by using the clamps provided on the equipment.
- Use high-strand wire to reduce electrical interference.

3.4 Cable Routing

NOTICE

EMC INTERFERENCE

Use screened cables for motor and control wiring, and separate cables for fieldbus communication, motor wiring and brake resistor. Failure to isolate fieldbus communication, motor and brake resistor cables can result in unintended behaviour or reduced performance. Minimum 200 mm (7.9 in) clearance between power, motor and control cables is required.

NOTICE

When the fieldbus cable crosses a motor cable or a brake resistor cable, ensure that the cables cross at an angle of 90°.

Illustration 3.1 Cable Routing
3.5 Mounting

1. Check whether the fieldbus option is already mounted in the frequency converter. If already mounted, go to step 6. If not mounted, go to step 2.
2. Remove the LCP or blind cover from the frequency converter.
3. Use a screwdriver to remove the front cover and the LCP cradle.
4. Mount the fieldbus option. Mount the option with the connector facing up for top cable entry (see Illustration 3.3), or with the connector facing down for bottom cable entry (see Illustration 3.4). If an MCB option is installed, only top cable entry is possible.
5. Remove the knock-out plate from the new LCP cradle.
6. Mount the new LCP cradle.
7. Set the termination switch (shown in Illustration 3.5) on the fieldbus option to “ON”, when the frequency converter is the last station on the segment.

Illustration 3.3 Top Cable Entry: Option Mounted with Connector Facing Up

Illustration 3.4 Bottom Cable Entry: Option Mounted with Connector Facing Down

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LCP</td>
</tr>
<tr>
<td>2</td>
<td>LCP cradle</td>
</tr>
<tr>
<td>3</td>
<td>Fieldbus option</td>
</tr>
<tr>
<td>4</td>
<td>Connector</td>
</tr>
</tbody>
</table>

Illustration 3.2 Exploded View
3.6 Setting Address Switches

Set the address switches to give the option a unique ID. Select an address range from 0 to 125 (factory setting 127) according to Table 3.1.

<table>
<thead>
<tr>
<th>Switch</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address value</td>
<td>Not used</td>
<td>+64</td>
<td>+32</td>
<td>+16</td>
<td>+8</td>
<td>+4</td>
<td>+2</td>
<td>+1</td>
</tr>
<tr>
<td>5</td>
<td>Not used</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>35</td>
<td>Not used</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>82</td>
<td>Not used</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Table 3.1 Settings for the Address Switches

Alternatively, assign a unique ID from 9-18 Node Address. For setting the address from 9-18 Node Address, ensure that all address switches are set to “ON”. When the address is already set using address hardware switches, the address value shown in 9-18 Node Address is ‘read only’.

3.7 Electrical Installation

3.7.1 Cabling Requirements

- Terminate the nodes at the physical ends of each segment. If the bus segment is branched, the device furthest from the segment connector represents the end of the segment.
- Terminals 66 and 67 provide a 5 V DC power supply, available for external termination.

NOTICE
The PROFIBUS D-sub 9 adapter also features a termination switch. When the D-sub 9 adapter is used, set the termination switch on the fieldbus option to OFF, to avoid double termination.

NOTICE
When the fieldbus is extended with a repeater, terminate the extension at both ends.

NOTICE
To avoid impedance mismatch, use the same cable type throughout the entire network. Refer to chapter 3.7.2 Cable Specifications for cable specifications.

3.7.2 Cable Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impedance at a measuring frequency from 3 to 20 MHz</td>
<td>135 to 165 ohm</td>
</tr>
<tr>
<td>Resistance</td>
<td><110 ohm/km</td>
</tr>
<tr>
<td>Capacitance</td>
<td><30 pF/m</td>
</tr>
<tr>
<td>Damping (total wire length)</td>
<td>max. 9 dB over the whole wire length</td>
</tr>
<tr>
<td>Cross section</td>
<td>max. 0.34 mm², AWG 22</td>
</tr>
<tr>
<td>Cable type</td>
<td>twisted in pairs, 1 x 2, or 2 x 2, or 1 x 4 wires</td>
</tr>
<tr>
<td>Screening</td>
<td>Copper-braided screen or braided screen and foil screen</td>
</tr>
</tbody>
</table>

Table 3.2 Cable Specifications
3.7.3 Bus Segment Requirements

A maximum of 32 field devices (nodes) can be connected per fieldbus segment. Field devices include:

- frequency converter, active node
- master, active node
- repeater, passive node

NOTICE

A repeater represents a node in each of the 2 segments it connects.

Maximum fieldbus cable length

<table>
<thead>
<tr>
<th>Segment</th>
<th>Repeater</th>
<th>Active Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>62</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>92</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>122</td>
</tr>
</tbody>
</table>

Table 3.3 Number of Active Nodes per Segment

<table>
<thead>
<tr>
<th>Transmission speed</th>
<th>1 segment [m]</th>
<th>2 segments [m]</th>
<th>3 segments [m]</th>
<th>4 segments [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.6-187.5 kBaud</td>
<td>1000</td>
<td>2000</td>
<td>3000</td>
<td>4000</td>
</tr>
<tr>
<td>500 kBaud</td>
<td>400</td>
<td>800</td>
<td>1200</td>
<td>1600</td>
</tr>
<tr>
<td>1.5 MBaud</td>
<td>200</td>
<td>400</td>
<td>600</td>
<td>800</td>
</tr>
<tr>
<td>3-12 MBaud</td>
<td>100</td>
<td>200</td>
<td>300</td>
<td>400</td>
</tr>
</tbody>
</table>

Table 3.4 Maximum Total Bus Cable Length, including Drop Cables

<table>
<thead>
<tr>
<th>Transmission speed</th>
<th>Max. drop cable length per segment [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.6-93.75 kBaud</td>
<td>96</td>
</tr>
<tr>
<td>187.5 kBaud</td>
<td>75</td>
</tr>
<tr>
<td>500 kBaud</td>
<td>30</td>
</tr>
<tr>
<td>1.5 MBaud</td>
<td>10</td>
</tr>
<tr>
<td>3-12 MBaud</td>
<td>None</td>
</tr>
</tbody>
</table>

Table 3.5 Maximum Drop Cable Length per Segment

The length statements in Table 3.4 and Table 3.5 are valid for bus cables with the properties in chapter 3.7.2 Cable Specifications.
3.7.4 Wiring Procedures

Wiring Procedure for Enclosure Types A1-A3

1. Mount the fieldbus connector on the fieldbus option (terminal 62, 62, 66, 67). For top cable entry, mount the supplied EMC bracket on top of the frequency converter with 2 screws.

2. Prepare the fieldbus cable by stripping a section of the cable insulation, so that the cable screen contacts the EMC bracket. Keep the unshielded wire as short as possible. For cable specifications, refer to chapter 3.7.2 Cable Specifications. For fieldbus cable requirements, see chapter 3.7.3 Bus Segment Requirements.

3. Connect the fieldbus cable wires to the terminals according to the colour code of the wires, see Illustration 3.8.

4. Position the stripped cable between the spring loaded metal clamps, to establish mechanical fixation and electrical contact between cable screen and ground.

Illustration 3.7 Wiring for Enclosure Types A1-A3

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cable screen</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>EMC bracket (Used for top cable entry only)</td>
<td></td>
</tr>
</tbody>
</table>

Illustration 3.8 Fieldbus Cable Terminal Connections

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>Rx/Tx-P red cable</td>
</tr>
<tr>
<td>63</td>
<td>Rx/Tx-N green cable</td>
</tr>
<tr>
<td>66 and 67</td>
<td>5 V DC power supply, available for external termination</td>
</tr>
<tr>
<td>CS</td>
<td>Control select, 5 V DC indicates transmission from the fieldbus option</td>
</tr>
</tbody>
</table>
Wiring Procedure for Enclosure Types A4-A5, B1-B4, and C1-C4

1. Push the cable through cable glands.
3. Prepare the fieldbus cable by stripping a section of the cable insulation. Keep the unshielded wire as short as possible. For cable specifications, refer to chapter 3.7.2 Cable Specifications. For fieldbus cable requirements, see chapter 3.7.3 Bus Segment Requirements.
4. Connect the fieldbus cable wires to the terminals according to the colour code of the wires, see Illustration 3.8.
5. Fix the cable screen to the metal base plate using cable clamp or cable tie, see Illustration 3.9.
6. Tighten cable glands securely.

Wiring Procedure for Enclosure Types D, E, and F

1. Mount the fieldbus connector on the fieldbus option (terminal 62, 62, 66, 67).
2. Prepare the fieldbus cable by stripping a section of the cable insulation. Keep unshielded wire as short as possible. For cable specifications, refer to chapter 3.7.2 Cable Specifications. For fieldbus cable requirements, see chapter 3.7.3 Bus Segment Requirements.
3. Connect the fieldbus cable wires to the terminals according to the colour code of the wires, see Illustration 3.8.
4. Fix the cable screen to the metal base plate using cable clamp or cable tie, see Illustration 3.10.
5. Tie down the cable and route it with other control wires inside the unit, see Illustration 3.10.
3.8 Reassembling Cover

1. Mount the new front cover and the LCP.
2. Attach the sticker with the correct product name to the front cover.

3.9 Applying Power

Follow the instructions in the frequency converter Operating Instructions to commission the frequency converter. The frequency converter automatically detects the PROFIBUS interface. A new parameter group (Group 9) appears.

3.10 Checking Network Cabling

1. If the address has not been set via the address switches, go to 9-18 Node Address to set the address.
2. Connect to a running PROFIBUS master.
3. Check that network cabling is correct:
 - Check the net status LED flashes green in any pattern except Search Baud Rate, see .
 - Check if 9-63 Actual Baud Rate shows the same baudrate as the PROFIBUS master.
 - Check that the bit ‘Baudrate Search’ in 9-53 Profibus Warning Word is not active.
4 Troubleshooting

4.1 Warnings and Alarms

NOTICE

Refer to the relevant Operating Instructions for an overview of warning and alarm types and for the full list of warnings and alarms.

Alarm word, warning word, and PROFIBUS warning word are shown on the frequency converter display in hex format. When there is more than 1 warning or alarm, the sum of all warnings or alarms is shown. Alarm word, warning word, and PROFIBUS warning word can also be displayed using the serial bus in 16-90 Alarm Word, 16-92 Warning Word, and 9-53 Profibus Warning Word. For warning 165 'Baudrate search', refer to Table 4.1.

<table>
<thead>
<tr>
<th>Bit (hex)</th>
<th>Unit diagnose bit</th>
<th>PROFIBUS warning word (9-53 Profibus Warning Word)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000001</td>
<td>160</td>
<td>Connection with DP-master is not ok</td>
</tr>
<tr>
<td>00000002</td>
<td>161</td>
<td>Unused</td>
</tr>
<tr>
<td>00000004</td>
<td>162</td>
<td>FDL (Fieldbus Data link Layer) is not ok</td>
</tr>
<tr>
<td>00000008</td>
<td>163</td>
<td>Clear data command received</td>
</tr>
<tr>
<td>00000010</td>
<td>164</td>
<td>Actual value is not updated</td>
</tr>
<tr>
<td>00000020</td>
<td>165</td>
<td>Baudrate search</td>
</tr>
<tr>
<td>00000040</td>
<td>166</td>
<td>PROFIBUS ASIC is not transmitting</td>
</tr>
<tr>
<td>00000080</td>
<td>167</td>
<td>Initialising of PROFIBUS is not ok</td>
</tr>
<tr>
<td>00000100</td>
<td>152</td>
<td>Drive is tripped</td>
</tr>
<tr>
<td>00000200</td>
<td>153</td>
<td>Internal CAN error</td>
</tr>
<tr>
<td>00000400</td>
<td>154</td>
<td>Wrong configuration data from PLC</td>
</tr>
<tr>
<td>00000800</td>
<td>155</td>
<td>Wrong ID sent by PLC</td>
</tr>
<tr>
<td>00001000</td>
<td>156</td>
<td>Internal error occurred</td>
</tr>
<tr>
<td>00002000</td>
<td>157</td>
<td>Not configured</td>
</tr>
<tr>
<td>00004000</td>
<td>158</td>
<td>Timeout active</td>
</tr>
<tr>
<td>00008000</td>
<td>159</td>
<td>Warning 34 active</td>
</tr>
</tbody>
</table>

Table 4.1 9-53 Profibus Warning Word
4.2 Troubleshooting

4.2.1 LED Status

The 2 bi-colour LEDs on the PROFIBUS card indicate the status of PROFIBUS communication:

- The lower LED (NS) indicates the net status, that is, the cyclical communication to the PROFIBUS master.
- The upper LED (MS) indicates the module status, that is, acyclical DP V1 communication from either a PROFIBUS Master Class 1 (PLC) or a Master Class 2 (MCT10, FDT tool).

Table 4.2 Net Status

<table>
<thead>
<tr>
<th>State</th>
<th>LED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power On</td>
<td>Red: Solid red</td>
<td>The interface is defect. Contact Danfoss</td>
</tr>
<tr>
<td></td>
<td>Green: Flashing green</td>
<td>The interface is OK.</td>
</tr>
<tr>
<td>Baud rate search</td>
<td>Green: Flashing green</td>
<td>Searching for the baud rate. Check the connection to the master if the interface stays in this state.</td>
</tr>
<tr>
<td>Wait Parameterising</td>
<td>Green: Long green flash</td>
<td>Baud rate found - waiting for parameters from the master.</td>
</tr>
<tr>
<td></td>
<td>Red: Long red flash</td>
<td>Wrong parameters from the master.</td>
</tr>
<tr>
<td>Wait Configuration</td>
<td>Green: Short green flash</td>
<td>Parameters from master OK – waiting for configuration data.</td>
</tr>
<tr>
<td></td>
<td>Red: Short red flash</td>
<td>Wrong Configuration data from the master.</td>
</tr>
<tr>
<td>Data Exchange</td>
<td>Green: Solid green</td>
<td>Data Exchange between the master and the frequency converter is active.</td>
</tr>
<tr>
<td></td>
<td>Red: Flashing red</td>
<td>Clear State. Warning 34 is active and a bus reaction in 8-04 Control Word Timeout Function is executed.</td>
</tr>
<tr>
<td>LED</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>No light</td>
<td>Off</td>
<td>No PROFIBUS DPV1 communication is active.</td>
</tr>
<tr>
<td>Green:</td>
<td>Short green flash</td>
<td>DP V1 communication from a Master Class 1 (PLC) is active.</td>
</tr>
<tr>
<td>Green:</td>
<td>Long green flash</td>
<td>DP V1 communication from a Master Class 2 (MCT 10, FDT) is active.</td>
</tr>
<tr>
<td>Green:</td>
<td>Solid green</td>
<td>DP V1 communication from a Master Class 1 and 2 is active.</td>
</tr>
<tr>
<td>Red:</td>
<td>Flashing red</td>
<td>Internal error.</td>
</tr>
</tbody>
</table>

Table 4.3 Module Status

4.2.2 No Communication with the Frequency Converter

When there is no communication with the frequency converter, proceed with the following checks:

1. Check that cabling is correct.
 Check that the red and green cables are connected to the correct terminals as shown in Illustration 3.8.
2. Check that the bus connection is terminated at both ends.
 If not, terminate the bus connection with termination resistors at the initial and final nodes.

4.2.3 Warning 34 Appears

Warning 34 is not related to wiring only.
Warning 34 appears when:

- there is no master communication for 60 s after power-up.
- master is in stop mode.
- master communication is not established, or is incorrectly configured.
- wiring is incorrect.

Action:

- check master mode and master configuration.
- check wiring if master mode and communication are correct.
Index

A
- Abbreviations .. 3
- Additional resources .. 2
- Address switches ... 8, 12
- Alarm word .. 13
- Alarms .. 13
- Applying power .. 12
- Approvals ... 0

B
- Bus segment requirements ... 9

C
- Cable specifications ... 8
- Cabling requirements .. 8
- Certifications ... 0
- Conventions .. 3

D
- Discharge time .. 4

E
- Electrical installation .. 8
- Electrical interference .. 6
- EMC interference ... 6
- Exploded view .. 7

G
- Grounding ... 6

H
- High voltage .. 4

I
- Intended use ... 2
- Items supplied ... 2

L
- Leakage current ... 5
- LED panel .. 14
- LED status .. 14

M
- MCT 10 .. 2
- Module status .. 15

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor wiring</td>
<td>6</td>
</tr>
<tr>
<td>Mounting</td>
<td>7</td>
</tr>
<tr>
<td>Net status</td>
<td>14</td>
</tr>
<tr>
<td>Network cabling</td>
<td>12</td>
</tr>
<tr>
<td>Qualified personnel</td>
<td>4</td>
</tr>
<tr>
<td>Screened cable</td>
<td>6</td>
</tr>
<tr>
<td>Symbols</td>
<td>3</td>
</tr>
<tr>
<td>Termination switch</td>
<td>8</td>
</tr>
<tr>
<td>Unintended start</td>
<td>4</td>
</tr>
<tr>
<td>Warning 34</td>
<td>15</td>
</tr>
<tr>
<td>Warning word</td>
<td>13</td>
</tr>
<tr>
<td>Warnings</td>
<td>13</td>
</tr>
<tr>
<td>Wiring procedure</td>
<td>10</td>
</tr>
</tbody>
</table>