Operating Instructions

VLT® Frequency Converters - Safe Torque Off

www.danfoss.com/drives
Contents

1 Introduction
- 1.1 Purpose of the Manual 2
- 1.2 Additional Resources 2
- 1.3 Functional Overview 2
- 1.4 Approvals and Certifications 3
- 1.5 Symbols, Abbreviations and Conventions 4

2 Safety
- 2.1 Safety Symbols 5
- 2.2 Qualified Personnel 5
- 2.3 Safety Precautions 5

3 Installation
- 3.1 Safety Instructions 7
- 3.2 Safe Torque Off Installation 7
- 3.3 Installation in Combination with Thermistor Module MCB 112 8

4 Commissioning
- 4.1 Safety Instructions 9
- 4.2 Activation and Termination of Safe Torque Off 9
- 4.3 Parameter Settings for STO in Combination with Thermistor Module MCB 112 9
- 4.4 Automatic/Manual Restart Behaviour 9
- 4.5 Safe Torque Off Commissioning Test 10
 - 4.5.1 Restart Prevention for STO Application 10
 - 4.5.2 Automatic Restart of Safe Torque Off Application 10
- 4.6 System Configuration Security 10
- 4.7 Service and Maintenance 10

5 Safe Torque Off Technical Data 11

Index 12
1 Introduction

1.1 Purpose of the Manual

This manual provides information for use of Danfoss VLT® frequency converters in functional safety applications. The manual includes information about functional safety standards, Danfoss VLT® frequency converter Safe Torque Off (STO) function, and the related installation and commissioning as well as service and maintenance for STO.

1.2 Additional Resources

This manual is targeted at users already familiar with the VLT® frequency converters and is intended as a supplement to the manuals and instructions available for download at www.danfoss.com/BusinessAreas/DrivesSolutions/Documentations/VLT+Technical+Documentation.htm. Read the instructions shipped with the frequency converter and/or frequency converter option before installation of the unit and observe the instructions for safe installation.

Disclosure, duplication and sale of this document, as well as communication of its content, are prohibited unless explicitly permitted. Infringement of this prohibition incurs liability for damages. All rights reserved with regards to patents, utility patents and registered designs. VLT® is a registered trademark.

1.3 Functional Overview

1.3.1 Introduction

The Safe Torque Off (STO) function is a component in a safety control system. Components in the system must be selected and applied appropriately to achieve the desired level of operational safety. STO disables the control voltage of the power semiconductors of the frequency converter output stage, which in turn prevents generating the voltage required to rotate the motor.

The frequency converter can integrate the safety function Safe Torque Off (STO, as defined by EN IEC 61800-5-2) and Stop Category 0 (as defined in EN 60204-1). The frequency converter is available with STO functionality via control terminal 37.

Before integrating and using STO in an installation, a thorough risk analysis on the installation must be carried out to determine whether the STO functionality and safety levels are appropriate and sufficient. The frequency converter with STO functionality is designed and approved, suitable for the requirements of:

- Category 3 in EN ISO 13849-1
- Performance Level "d" in EN ISO 13849-1
- SIL 2 in IEC 61508 and EN 61800-5-2
- SILCL 2 in EN 62061

1.3.2 Products Covered and Identification

The STO function is available for the following types of frequency converters:

- VLT® HVAC Drive FC 102
- VLT® Refrigeration Drive FC 103
- VLT® AQUA Drive FC 202
- VLT® AutomationDrive FC 301 enclosure type A1
- VLT® AutomationDrive FC 302

Identification

- Confirm that the frequency converter is configured with STO function by checking the unit typecode on the nameplate (see Table 1.1).

<table>
<thead>
<tr>
<th>Product</th>
<th>Typecode</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLT® HVAC Drive FC 102</td>
<td>T or U at digit 17 of the typecode</td>
</tr>
<tr>
<td>VLT® Refrigeration Drive FC 103</td>
<td>T at digit 17 of the typecode</td>
</tr>
<tr>
<td>VLT® AQUA Drive FC 202</td>
<td>T or U at digit 17 of the typecode</td>
</tr>
<tr>
<td>VLT® AutomationDrive FC 301</td>
<td>T at digit 17 of the typecode</td>
</tr>
<tr>
<td>enclosure type A1</td>
<td></td>
</tr>
<tr>
<td>VLT® AutomationDrive FC 302</td>
<td>X, B or R at digit 17 of the typecode</td>
</tr>
</tbody>
</table>

Table 1.1 Typecode Identification
1.4 Approvals and Certifications

Table 1.2 Approvals and Certifications

More approvals and certifications are available. Contact local Danfoss partner.

Applied standards and compliance

Use of Safe Torque Off on terminal 37 requires that the user satisfies all provisions for safety including relevant laws, regulations and guidelines. The integrated STO function complies with the following standards:

- IEC 60204-1: 2005 Stop category 0 – uncontrolled stop
- EN 60204-1: 2006 Stop category 0 – uncontrolled stop
- IEC/EN 61508: 2010 SIL2
- IEC/EN 62061: 2005 SIL CL2
- ISO 13849-1: 2006 Category 3 PL d
- EN ISO 13849-1:2008 Category 3 PL d
1.5 Symbols, Abbreviations and Conventions

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat.</td>
<td>EN ISO 13849-1</td>
<td>Category, level "B, 1-4"</td>
</tr>
<tr>
<td>DC</td>
<td></td>
<td>Diagnostic Coverage</td>
</tr>
<tr>
<td>FIT</td>
<td></td>
<td>Failure In Time: $1E^{-9}$/hour</td>
</tr>
<tr>
<td>HFT</td>
<td>EN IEC 61508</td>
<td>Hardware Fault Tolerance: $HFT = n$ means that $n+1$ faults could cause a loss of the safety function</td>
</tr>
<tr>
<td>MTTFd</td>
<td>EN ISO 13849-1</td>
<td>Mean Time To Failure - dangerous. Unit: years</td>
</tr>
<tr>
<td>PFH</td>
<td>EN IEC 61508</td>
<td>Probability of Dangerous Failures per Hour. This value shall be considered if the safety device is operated in high demand or continuous mode of operation, where the frequency of demands for operation made on a safety-related system is greater than one per year.</td>
</tr>
<tr>
<td>PFD</td>
<td>EN IEC 61508</td>
<td>Average probability of failure on demand, value used for low demand operation.</td>
</tr>
<tr>
<td>PL</td>
<td>EN ISO 13849-1</td>
<td>Discrete level used to specify the ability of safety related parts of control systems to perform a safety function under foreseeable conditions. Levels a-e</td>
</tr>
<tr>
<td>SFF</td>
<td>EN IEC 61508</td>
<td>Safe Failure Fraction [%]; percentage of safe failures and dangerous detected failures of a safety function or a subsystem related to all failures.</td>
</tr>
<tr>
<td>SIL</td>
<td>EN IEC 61508</td>
<td>Safety Integrity Level</td>
</tr>
<tr>
<td>STO</td>
<td>EN IEC 61800-5-2</td>
<td>Safe Torque Off</td>
</tr>
<tr>
<td>SS1</td>
<td>EN IEC 61800 -5-2</td>
<td>Safe Stop 1</td>
</tr>
<tr>
<td>SRECS</td>
<td>EN IEC 62061</td>
<td>Safety Related Electrical Control System</td>
</tr>
<tr>
<td>SRP/CS</td>
<td>EN ISO 13849-1</td>
<td>Safety Related Parts of Control Systems</td>
</tr>
<tr>
<td>PDS/SR</td>
<td>EN IEC 61508</td>
<td>Power Drive System (Safety-related)</td>
</tr>
</tbody>
</table>

Table 1.3 Abbreviations Related to Functional Safety

Conventions

Numbered lists indicate procedures.
Bullet lists indicate other information and description of illustrations.
Italicised text indicates:
- cross reference
- link
- parameter name
2 Safety

2.1 Safety Symbols

The following symbols are used in this document:

WARNING
Indicates a potentially hazardous situation which could result in death or serious injury.

CAUTION
Indicates a potentially hazardous situation which could result in minor or moderate injury. It may also be used to alert against unsafe practices.

NOTICE
Indicates important information, including situations that may result in damage to equipment or property.

2.2 Qualified Personnel

The products may only be assembled, installed, programmed, commissioned, maintained, and decommissioned by persons with proven skills. Persons with proven skills

- are qualified electrical engineers, or persons who have received training from qualified electrical engineers and are suitably experienced to operate devices, systems, plant and machinery in accordance with the general standards and guidelines for safety technology
- are familiar with the basic regulations concerning health and safety/accident prevention
- have read and understood the safety guidelines given in this manual and also the instructions given in the *Operating Instructions* of the frequency converter.
- have a good knowledge of the generic and specialist standards applicable to the specific application

Users of PDS(SR)s are responsible for

- hazard and risk analysis of the application
- identifying safety functions required and allocating SIL or PLr to each of the functions
- other subsystems and the validity of signals and commands from them
- designing appropriate safety-related control systems (hardware, software, parameterisation, etc.)

2.3 Safety Precautions

See the Safety Chapter in the relevant Operating Instructions for general safety precautions.

CAUTION
After installation of STO, a commissioning test as specified in chapter 4.5 Safe Torque Off Commissioning Test must be performed. A passed commissioning test is mandatory after first installation and after each change to the safety installation.

WARNING
If external forces act on the motor e.g. in case of vertical axis (suspended loads) - and an unwanted movement, for example caused by gravity, could cause a hazard, the motor must be equipped with additional measures for fall protection. For example, mechanical brakes must be installed additionally. Risk of death and serious injury.

WARNING
Safe Torque Off (i.e. removal of 24 V DC voltage supply to terminal 37) does not provide electrical safety. The Safe Torque Off function itself is not sufficient to implement the Emergency-Off function as defined by EN 60204-1. Emergency-Off requires measures of electrical isolation, e.g. by switching off mains via an additional contactor. Risk of death and serious injury.
WARNING

SAFE TORQUE OFF FUNCTION

The Safe Torque Off function does NOT isolate mains voltage to the frequency converter or auxiliary circuits. Perform work on electrical parts of the frequency converter or the motor only after isolating the mains voltage supply and waiting the length of time specified in the Safety Chapter in the relevant Operating Instructions. Failure to isolate the mains voltage supply from the unit and waiting the time specified could result in death or serious injury.

- Do not stop the frequency converter by using the Safe Torque Off function. If a running frequency converter is stopped by using the function, the unit trips and stops by coasting. If this is not acceptable, e.g. causes danger, stop the frequency converter and machinery by using the appropriate stopping mode before using this function. Depending on the application, a mechanical brake may be required.

- Safe Torque Off is suitable for performing mechanical work on the frequency converter system or affected area of a machine only. It does not provide electrical safety. Safe Torque Off should not be used as a control for starting and/or stopping the frequency converter.

CAUTION

Automatic restart behaviour is only allowed in 1 of the 2 situations:

1. The unintended restart prevention is implemented by other parts of the Safe Torque Off installation.

2. A presence in the dangerous zone can be physically excluded when Safe Torque Off is not activated. In particular, paragraph 5.3.2.5 of ISO 12100-2 2003 must be observed.

WARNING

The Safe Torque Off function can be used for asynchronous, synchronous and permanent magnet motors. 2 faults can occur in the power semiconductor of the frequency converter. When using synchronous or permanent magnet motors, a residual rotation can result from the faults. The rotation can be calculated to angle = \(\frac{360}{\text{number of poles}}\). The application using synchronous or permanent magnet motors must take this residual rotation into consideration and ensure that it does not pose a safety risk. This situation is not relevant for asynchronous motors. Risk of death and serious injury.

NOTICE

The selection of a stop category in accordance with EN 60204-1 for each stop function must be determined by a risk assessment:

- Stop Category 0 is achieved with immediate removal of power to the actuator, resulting in an uncontrolled coast to stop. Safe Torque Off (STO) according to EN 61800-5-2 accomplishes a Stop Category 0 stop.

- Stop Category 1 is achieved with power available to the machine actuators to achieve the stop. Power is removed from the actuators when the stop is achieved according to EN 61800-5-2 Safe Stop 1 (SS1).

- Stop Category 2 is a controlled stop with power available to the machine actuators. The stop is followed by a holding position under power.

NOTICE

When designing the machine application, timing and distance should be considered for a coast to stop (Stop Category 0 or Safe Torque Off). For more information regarding stop categories, refer to EN 60204-1.
3 Installation

3.1 Safety Instructions

See chapter 2 Safety for general safety instructions.

3.2 Safe Torque Off Installation

For motor connection, AC mains connection, and control wiring, follow the instructions for safe installation in the Operating Instructions of the frequency converter.

For installation with the Ex-certified Thermistor Module MCB 112, see chapter 3.3 Installation in Combination with Thermistor Module MCB 112.

Enable the integrated Safe Torque Off as follows:

1. Remove the jumper wire between control terminals 37 and 12 or 13. Cutting or breaking the jumper is not sufficient to avoid short-circuiting. (See jumper on Illustration 3.1)

2. Connect an external safety monitoring relay via a NO safety function to terminal 37 (Safe Torque Off) and either terminal 12 or 13 (24 V DC). Follow the installation instructions for the safety monitoring relay, and ensure that the safety monitoring relay comply with Category 3 /PL “d” (ISO 13849-1) or SIL 2 (EN 62061 and IEC 61508).

Illustration 3.1 Jumper between Terminal 12/13 (24 V) and 37

1. Safety relay (cat. 3, PL d or SIL2)
2. Emergency stop button
3. Reset button
4. Short-circuit protected cable (if not inside installation IP54 cabinet). See ISO 13849-2 Table D.4 for further information.

Illustration 3.2 Installation to Achieve a Stop Category 0 (EN 60204-1) with Safety Cat. 3/PL “d” (ISO 13849-1) or SIL 2 (EN 62061 and IEC 61508).

3. Complete wiring according to the instructions given in the Operating Instructions of the frequency converter.
3.3 Installation in Combination with Thermistor Module MCB 112

NOTICE

Combination of Thermistor Module MCB 112 and Safe Torque Off function is only available for VLT® HVAC Drive FC 102, VLT® AutomationDrive FC 302, and VLT® AutomationDrive FC 301 enclosure type A1.

Thermistor Module MCB 112 uses Terminal 37 as its safety-related switch-off channel.

- Ensure that the output X44/12 of MCB 112 is AND-ed with the safety-related sensor (such as emergency stop button, safety guard switch, etc.) that activates Safe Torque Off. This means that the output to Safe Torque Off terminal 37 is HIGH (24 V) only if both the signal from MCB 112 output X44/12 and the signal from the safety-related sensor are HIGH. If at least 1 of the 2 signals is LOW, then the output to terminal 37 must be LOW, too.

- Ensure that the safety device with AND-logic complies with the needed safety level.

- Short-circuit protect the connection from the output of the safety device with safe AND-logic to the Safe Torque Off terminal 37, see Illustration 3.3.

Illustration 3.3 Combination of a Safe Torque Off Application and an MCB 112 Application

Illustration 3.3 shows a Restart input for the external safety device. This means that in this installation 5-19 Terminal 37 Safe Stop can be set to value [7] PTC 1 & Relay W or [8] PTC 1 & Relay A/W. Refer to MCB 112 Operating Instructions for further details.
4 Commissioning

4.1 Safety Instructions

See chapter 2 Safety for general safety instructions.

4.2 Activation and Termination of Safe Torque Off

The STO function is activated by removing the voltage at terminal 37 of the frequency converter. By connecting the frequency converter to external safety devices providing a safe delay, an installation for a Safe Stop 1 can be obtained. External safety devices need to fulfill Cat./PL or SIL when connected to terminal 37. The STO function can be used for asynchronous, synchronous, and permanent magnet motors.

When the STO function (T37) is activated, the frequency converter issues an alarm, trips the unit, and coasts the motor to a stop. Manual restart is required. Use the STO function to stop the frequency converter in emergency stop situations. In normal operating mode when STO is not required, use the standard stop function instead. Ensure that requirements according to ISO 12100-2 paragraph 5.3.2.5 are fulfilled, before using the automatic restart function.

4.3 Parameter Settings for STO in Combination with Thermistor Module MCB 112

When MCB 112 is connected, additional selections are available for 5-19 Terminal 37 Safe Stop (4) PTC 1 Alarm to (9) PTC 1 & Relay W/A.

- Selections [1]* Safe Stop Alarm and [3] Safe Stop Warning are still available, but are for installations without MCB 112 or any external safety devices. If [1]* Safe Stop Alarm or [3] Safe Stop Warning are selected and MCB 112 is triggered, the frequency converter reacts with an alarm “Dangerous Failure [A72]” and coasts the frequency converter safely, without automatic restart.

- Selections [4] PTC 1 Alarm and [5] PTC 1 Warning are not to be selected when an external safety device is used. Those selections are for when only MCB 112 uses the Safe Torque Off. If selection [4] PTC 1 Alarm or [5] PTC 1 Warning is selected and the external safety device triggers Safe Torque Off, the frequency converter issues an alarm “Dangerous Failure [A72]” and coasts the frequency converter safely, without automatic restart.

CAUTION

Selections allow for automatic restart when the external safety device is de-activated.

Before selecting [7] PTC 1 & Relay W or [8] PTC 1 & Relay A/W, ensure that:

- the unintended restart prevention is implemented by other parts of the Safe Torque Off installation, or:
- a presence in the dangerous zone can be physically excluded when Safe Torque Off is not activated. In particular, paragraph 5.3.2.5 of ISO 12100-2 2003 must be observed.

See Operating Instructions for Thermistor Module MCB 112 for further information.

4.4 Automatic/Manual Restart Behaviour

By default the STO function is set to unintended restart prevention behaviour. To terminate STO and resume normal operation:

1. Reapply 24 V DC supply to Terminal 37.

Set the STO function to automatic restart by setting the value of 5-19 Terminal 37 Safe Stop from default value [1]* Safe Stop Alarm to value [3] Safe Stop Warning. Automatic restart means that STO is terminated, and normal operation is resumed, as soon as the 24 V DC is applied to terminal 37. No reset signal is required.
4.5 Safe Torque Off Commissioning Test

After installation and before first operation, perform a commissioning test of the installation, using Safe Torque Off. Perform the test again after each modification of the installation or application involving the STO.

NOTICE

A successful commissioning test of the STO function is required after the initial installation, and after each subsequent change to the installation.

4.5.1 Restart Prevention for STO Application

Application where 5-19 Terminal 37 Safe Stop is set to default value [1]* Safe Stop Alarm, or combined Safe Torque Off and MCB 112 where 5-19 Terminal 37 Safe Stop is set to [6] PTC 1 & Relay A or [9] PTC 1 & Relay W/A:

1. Remove the 24 V DC voltage supply to terminal 37 using the interrupt device while the frequency converter drives the motor (that is mains supply is not interrupted).
2. Check that:
 - the motor reacts with a coast,
 - the mechanical brake is activated (if connected), and
 - the alarm Safe Stop [A68] is displayed in the local control panel (LCP), if mounted.
3. Reapply 24 V DC to terminal 37.
4. Ensure that the motor becomes operational again.

The commissioning test is successfully completed when all the above steps are passed.

4.5.2 Automatic Restart of Safe Torque Off Application

Application where 5-19 Terminal 37 Safe Stop is set to [3] Safe Stop Warning, or combined Safe Torque Off and MCB 112 where 5-19 Terminal 37 Safe Stop is set to [7] PTC 1 & Relay W or [8] PTC 1 & Relay A/W:

1. Remove the 24 V DC voltage supply to terminal 37 by the interrupt device while the frequency converter drives the motor (that is mains supply is not interrupted).
2. Check that:
 - the motor reacts with a coast,
 - the mechanical brake is activated (if connected), and
 - the alarm Safe Stop [A68] is displayed in the local control panel (LCP), if mounted
3. Reapply 24 V DC to terminal 37.
4. Ensure that the motor becomes operational again.

The commissioning test is successfully completed when all the above steps are passed.

NOTICE

See the warning on the restart behaviour in chapter 2.3 Safety Precautions.

4.6 System Configuration Security

- Security measures are the responsibility of the user
- The frequency converter parameters can be password-protected

4.7 Service and Maintenance

No maintenance of the Safe Torque Off (STO) functionality is needed.
5 Safe Torque Off Technical Data

NOTICE

For technical specifications and operating conditions for the frequency converter, refer to the relevant Operating Instructions of the frequency converter.

NOTICE

The STO signal must be SELV or PELV supplied.

The following values are associated with each safety level:

Reaction time for T37
- Maximum reaction time: 20 ms

Reaction time = delay between de-energising the STO input and switching off the output bridge.

Data for EN ISO 13849-1
- Performance Level "d"
- MTTFd: 14000 years
- DC: 90%
- Category 3
- Lifetime 20 years

Data for EN IEC 62061, EN IEC 61508, EN IEC 61800-5-2
- SIL 2, SIL CL 2
- PFH < 1E-10/h
- Component type: Type A
- HFT (Hardware Fault Tolerance) = 1 (1oo2 architecture)
- Lifetime 20 years

Data for EN IEC 61508 low demand
- PFDavg for 1 year proof test: 1E-10
- PFDavg for 3 year proof test: 1E-10
- PFDavg for 5 year proof test: 1E-10

SISTEMA Data

Functional safety data are available from a data library for use with the SISTEMA calculation tool from the IFA (Institute for Occupational Safety and Health of the German Social Accident Insurance), and data for manual calculation. SISTEMA is available for download at www.danfoss.com/BusinessAreas/DrivesSolutions/SISTEMA/.
Index

A
Abbreviations.. 4
Activation... 9
Alarm.. 9
Approvals... 3
Automatic Restart..................................... 9, 10

C
Certifications.. 3
Command.. 5
Commissioning test.................................... 10
Component type.. 11
Control system... 5
Conventions... 4

E
EN
 60204-1.. 2
 61800-5-2.. 2
 62061.. 2
 ISO 13849-1.. 2
External safety devices................................ 9

H
Hardware Fault Tolerance................................. 11

I
Identification... 2
IEC 61508... 2
Installation... 8

M
Maintenance.. 10
Mechanical brake.. 10

O
Output.. 8

P
Parameter Settings... 9
Performance Level "d"................................... 11
Products Covered.. 2

Q
Qualified Personnel....................................... 5

R
Reaction time.. 11
Restart
 Behaviour... 9
 Prevention.. 9, 10

S
Safe Torque Off... 2
Safety device.. 8
Safety-guard switch...................................... 8
Safety-related sensor.................................. 8
Selections.. 9
Signal.. 5, 8
SIL CL2.. 3
SIL2.. 3
SISTEMA Data... 11
Standards and Compliance............................... 3
Stop Category 0... 2
Switch-off channel...................................... 8
Symbols... 4

T
Technical Data... 11
Terminal 37... 2
Termination.. 9
Thermistor
 module.. 8
 Module MCB 112... 8

U
Uncontrolled stop... 3
Unintended restart prevention.......................... 9
Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.