OPTBL, OPTBM, OPTBN
ADVANCED SAFETY OPTIONS
QUICK GUIDE
PREFACE

DOCUMENT DETAILS

Document ID: DPD01919C
Date: 7.5.2019

ABOUT THIS MANUAL

This manual is copyright of VACON Ltd. All Rights Reserved. The manual is subject to change without prior notice. The language of the original instructions is English.

REFERENCES

You can download the VACON® NXP Advanced Safety Options Operating Guide from the Danfoss website http://drives.danfoss.com/knowledge-center/technical-documentation/. It is necessary to read the Operating Guide to understand and design the safety system.

The VACON® Safe tool can be downloaded from http://drives.danfoss.com/services/pc-tools.

The Commissioning report can be printed from the VACON® Safe tool with prefilled data. The Commissioning report can also be found as an appendix in the VACON® NXP Advanced Safety Options Operating Guide.
VERSION HISTORY

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Updates</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1.2017</td>
<td>A</td>
<td>The first published version of this manual.</td>
</tr>
</tbody>
</table>
• Version history table added.
• Table linking option board names to option board codes. Chapter 3.4 General information.
• Images edited. Chapter 3 VACON® Advanced Safety Option variants.
• Warning added. Chapter 4.1 Installation of the option board to VACON® NXP AC drive.
• Safety bypass procedure updated. Chapter 5.4 Safety bypass.
• Configuration example added. Chapter 5.5 Emergency stop using the STO function.
• Other minor updates. Throughout the manual. |
| 7.5.2019 | C | • NXP software information updated. Chapter 2.1 Requirements.
• Example configuration updated. Chapter 2.3 Using the Advanced safety option board.
• Encoder terminal information updated. Chapters 3.2 Option board OPTBM and 3.3 Option board OPTBN.
• General information updated. Chapter 3.4 General information.
• Option board installation instructions updated. Chapter 4.1 Installation of the option board to VACON® NXP AC drive. |
TABLE OF CONTENTS

Preface
- Document details .. 3
- About this manual ... 3
- References .. 3
- Version history .. 4

1 Approvals .. 6
- 1.1 The certificates of the Vacon® Advanced Safety Options 6
- 1.2 The EC Declaration of Conformity ... 9

2 General information ... 10
- 2.1 Requirements .. 10
- 2.2 Safety levels of the Advanced safety option board ... 10
- 2.3 Using the Advanced safety option board .. 10

3 Vacon® Advanced Safety Option variants ... 12
- 3.1 Option board OPTBL ... 12
- 3.2 Option board OPTBM ... 12
- 3.3 Option board OPTBN ... 13
- 3.4 General information .. 15

4 Installation .. 16
- 4.1 Installation of the option board to Vacon® NXP AC drive 16
- 4.1.1 The installation procedure .. 16

5 Commissioning ... 18
- 5.1 Preparing for commissioning .. 18
- 5.2 Parameterisation process ... 19
- 5.3 First start-up after the installation of the option board 21
- 5.3.1 Doing the first start-up with the option board .. 21
- 5.4 Safety bypass ... 22
- 5.5 Emergency stop using the STO function .. 22
1 APPROVALS

1.1 THE CERTIFICATES OF THE VACON® ADVANCED SAFETY OPTIONS

CERTIFICATE

No. Z10 17 03 99224 001

Holder of Certificate: Vacon Ltd
Runorintie 7
65380 Vaasa
FINLAND

Factory(ies): 96422
Certification Mark:

Product: Safety Related Programmable Electronic System
Advanced Safety Option Card for
Vacon NXP AC drive

Model(s): OPTBL, OPTBM, OPTBN

Parameters:
Safety functions: STO, SBC, SS1, SS2, SOS,
SL5, SMO, SSR, SSM
Safety integrity: up to SIL 3

Tested according to:
IEC 61508-1(ed.2)
IEC 61508-2(ed.2)
IEC 61508-3(ed.2)
IEC 61508-4(ed.2)
EN ISO 13849-1:2015 (up to PL e, Cat. 4)
EN 61800-5-2:2007
IEC 61511-1(ed.2)
EN 62061:2005/A2:2015

The product was tested on a voluntary basis and complies with the essential requirements. The certification mark shown above can be affixed on the product. It is not permitted to alter the certification mark in any way. In addition the certification holder must not transfer the certificate to third parties. See also notes overleaf.

Test report no.: SB90504T
Valid until: 2022-04-02

Date, 2017-04-03

Page 1 of 1

TÜV SÜD Product Service GmbH · Zertifizierstelle · Ridlerstraße 65 · 80339 München · Germany
Certificate

PROFIBUS Nutzerorganisation e.V. grants to

Vacon Ltd
Runsnrintie 7, 65380 VAASA, FINLAND

the Certificate No: Z20176 for the PROFIsafe Module:

Model Name: Vacon OPTBL, OPTBM, OPTBN Safety Option
Order-Number: OPTBL
Revision: SW: V2.18; HW: 3
Application CRC: Channel A: 0x5A1E
Channel B: 0x855B

This certificate confirms that the product has successfully passed the certification tests with the following PROFIsafe scope:

☑ PROFIsafe_V2 functionality on PROFIBUS DP

Test Report Number: PS109-1
Authorized Test Laboratory: SIEMENS AG, Fürth, Germany

The tests were executed in accordance with the following documents:
This certificate is granted according to the document:
"Framework for testing and certification of PROFIBUS and PROFINET products".
For all products that are placed in circulation by March 03, 2020 the certificate is valid for life.

Karlsruhe, April 03, 2017

(Official in Charge)

Board of PROFIBUS Nutzerorganisation e. V.

(Karsten Schneider)

(K-P. Lindner)
Certificate

PROFIBUS Nutzerorganisation e.V. grants to

Vacon Ltd
Runsortie 7, 65380 VAASA, FINLAND

the Certificate No: Z20212 for the PROFIsafe Device:

Model Name: Vacon OPTEA, OPTBL, OPTBM, OPTBN Advanced Safety Option
Order-Number: OPTBL, OPTBM, OPTBN
Revision: SW/FW: V3.7.0; HW: 3
Application CRC: Channel A: 0xee35
Channel B: 0xfa3c

This certificate confirms that the product has successfully passed the certification tests with the following PROFIsafe scope:

☑ PROFIsafe_V2 functionality on PROFINET IO

Test Report Number: PS127-1
Authorized Test Laboratory: SIEMENS AG, Fürth, Germany

The tests were executed in accordance with the following documents:

This certificate is granted according to the document:
"Framework for testing and certification of PROFIBUS and PROFINET products".

For all products that are placed in circulation by April 27, 2021 the certificate is valid for life.

Karlsruhe, June 1, 2018

(Official in Charge)

Board of PROFIBUS Nutzerorganisation e. V.

(Karsten Schneider)

(Dr. Jörg Hähnische)
1.2 THE EC DECLARATION OF CONFORMITY

EU DECLARATION OF CONFORMITY
Danfoss A/S
Vacon Ltd

declares under our sole responsibility that the

Product name: VACON® Advanced Safety Options to be used in VACON® NXP AC drive
Product identification: OPTBL, OPTBM, OPTBN
Product safety functions: Safe Torque Off, Safe Stop 1, Safe Stop 2, Safe Operating Stop, Safe Brake Control, Safe Limited Speed, Safe Speed Range, Safe Acceleration Range, Safe Speed Monitor, Safe Direction, Safe Maximum Speed, Safe Quick Stop

fulfils all of the relevant safety component requirements of EC Machinery Directive 2006/42/EC.

Covered by this declaration is in conformity with the following directive(s), standard(s) or other normative document(s), provided that the product is used in accordance with our instructions.

- EN ISO 13849-1:2015
 Safety of machinery – Safety-related parts of the control systems – Part 1
- EN ISO 13849-2:2012
 Safety of machinery – Safety-related parts of the control systems – Part 2
- IEC 61511-1: 2016
 Functional safety - Safety instrumented systems for the process industry sector – Part 1
- EN 60204-1:2006
 Safety of machinery – Electrical equipment of machines – Part 1
- EN 61800-5-2:2007
 Adjustable speed electrical power drive systems – Part 5-2
- IEC 61508:2010
 Functional safety of electrical/electronic/programmable electronic safety-related systems – Parts 1-3
- EN 62061:2005
 Safety of machinery – Functional safety of safety-related electrical, electronic and programmable electronic control systems

Person authorised to compile the relevant technical documentation: Vacon Ltd, Runsonrintie 7, 65380 Vaasa, Finland.

<table>
<thead>
<tr>
<th>Date & Place</th>
<th>Signed by</th>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.2.2023 Vaasa</td>
<td></td>
<td>Pekka Alaantsi</td>
<td>Product Manager, Functional Safety</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date & Place</th>
<th>Signed by</th>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.2.2023 Vaasa</td>
<td></td>
<td>Timo Rasti</td>
<td>VAC Design Center Finland and Italy</td>
</tr>
</tbody>
</table>

Danfoss only warrants for the correctness of the English version of this declaration. In the event of the declaration being translated into any other language, the translator concerned shall be liable for the correctness of the translation.

ID No: DP0091918 Revision No: A
Page 1 of 1
2 GENERAL INFORMATION

2.1 REQUIREMENTS

Table 1: Required drive component versions

<table>
<thead>
<tr>
<th>Component</th>
<th>Version</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>The control board of NXP AC drive</td>
<td>Hardware: VB00761 B or newer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Software: NXP00002V198 or newer</td>
<td></td>
</tr>
<tr>
<td>The STO and ATEX option board (OPTAF)</td>
<td>Hardware: VB00328 E or newer</td>
<td>See the product manual for safety levels of STO.</td>
</tr>
</tbody>
</table>

Table 2: The PC tools that can be used with the option board

<table>
<thead>
<tr>
<th>PC tool</th>
<th>Version</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCDrive</td>
<td>2.0.29 or newer</td>
<td>You can use older versions than this, but they do not show correctly the details of safety related faults.</td>
</tr>
<tr>
<td>VACON® Loader</td>
<td>1.1.12.0 or newer</td>
<td>The tool is used to update the option board firmware.</td>
</tr>
<tr>
<td>VACON® Safe</td>
<td>1.0.2.0 or newer</td>
<td>The tool is used to parameterise and monitor the option board.</td>
</tr>
</tbody>
</table>

2.2 SAFETY LEVELS OF THE ADVANCED SAFETY OPTION BOARD

- Safety integrity level (SIL): SIL 3
- Performance level (PL): PL e
- Category (Cat): Cat 4

2.3 USING THE ADVANCED SAFETY OPTION BOARD

The Advanced safety option board is used to implement safety functions in accordance with the standard EN IEC-61800-5-2. The option board handles the safe I/O and the monitoring of active safety functions. The option board does not handle the control of the AC drive. The AC drive can be controlled, for example, with the drive application, or the external process control system can give the speed reference to the AC drive.

The Advanced safety option board must be used with a subsystem that provides the STO function, it is not possible to use the Advanced safety option board alone. The STO function is provided, for example, by the OPTAF STO option board. To use the safety functions that do speed monitoring, an external speed sensor is necessary. The sensor can be a digital or an analogue encoder or a digital proximity sensor.

When you use a safe fieldbus, you must install an option board that supports the fieldbus.
The Fig. 1 below shows the configuration of the AC drive with the Advanced safety option board in slot C. The safe fieldbus and the closed-loop control are optional. The possible configuration and available features may depend on other option boards and their installation slots.

Fig. 1: An example configuration of the NXP drive with the Advanced safety option board. The sub-systems that handle safety actions are marked in grey.

The parameterisation of the option board is done by selecting and editing the safety functions and features with the VACON® Safe tool.
3 VACON® ADVANCED SAFETY OPTION VARIANTS

3.1 OPTION BOARD OPTBL

Fig. 2: The terminals of the OPTBL option board

A. Terminals X3

1. STO 1. STO terminal 1 +24 V.
2. STO 2. STO terminal 2 +24 V.
3. GND.
4. GND.
5. Dout 1A. Terminal A of digital output 1.
9. +24 V. +24 V supply for external logic.
10. GND.

B. Terminals X4

11. Din 1A. Terminal A of digital input 1.
15. Din 3A. Terminal A of digital input 3.

3.2 OPTION BOARD OPTBM

The OPTBM option board is similar to the OPTBL option board, but in addition, the OPTBM option board has a digital pulse TTL/HTL type encoder interface board attached to it.
Fig. 3: The terminals of the digital pulse type encoder interface board

C. Encoder input terminals X5

1. Encoder voltage. Configurable encoder voltage.
2. GND.
8. Z-. Reference signal, optional.

D. Encoder output terminals X6

10. A-. Unmodified encoder signal loop-back.

B. Terminals X4 (See Fig. 2.)

3.3 OPTION BOARD OPTBN

The OPTBN option board is similar to the OPTBL option board, but in addition, the OPTBN option board has a Sin/Cos type encoder interface board attached to it.
Fig. 4: The terminals of the Sin/Cos type encoder interface board

C. Encoder input terminals X7

1. Encoder voltage. Selectable encoder voltage.

2. GND.

4. Sin-. Sinus terminal of analogue pulse signal.

5. Cos+. Cosine terminal of analogue pulse signal.

6. Cos-. Cosine terminal of analogue pulse signal.

8. Z-. Reference signal, optional.

D. Encoder output terminals X8

10. Sin-. Unmodified encoder signal loop-back.

12. Cos-. Unmodified encoder signal loop-back.

B. Terminals X4 (See Fig. 2.)

A. Terminals X3 (See Fig. 2.)
3.4 GENERAL INFORMATION

Newer versions of the Advanced Safety Option have extended slot compatibility. The table below describes the supported slots for different revisions of the option board. The compatibility is determined by the revision of the board 70CVB01938. See Fig. 5 for the location of the revision information.

<table>
<thead>
<tr>
<th>Option board revision (70CVB01938)</th>
<th>Slot C</th>
<th>Slot D</th>
<th>Slot E</th>
</tr>
</thead>
<tbody>
<tr>
<td>C, E</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Fig. 5: The board identification sticker on the Advanced safety option board
4 INSTALLATION

4.1 INSTALLATION OF THE OPTION BOARD TO VACON® NXP AC DRIVE

CAUTION!
Do not install, remove, or replace option boards on the drive when the power is on. Doing this can cause damage to the boards.

WARNING!
Do not touch the control terminals. They can have a dangerous voltage also when the drive is disconnected from mains.

CAUTION!
Measure or do a check of the encoder supply voltage of the encoder interface board before you connect a new encoder. The encoder supply voltage might have been set to a higher voltage than what is supported by the new encoder. An incorrect encoder supply voltage can cause damage to the equipment.

THE INSTALLATION PROCEDURE

1 Remove the cable cover.

2 Open the cover of the control unit.
3 Install the option board into the slot C, D, or E on the control board of the AC drive. Make sure that the grounding plate fits tightly in the clamp.

- The board revision can affect the applicable installation slot.

4 In IP21, cut free the opening on the cover of the AC drive for the used option boards.
5 Install the cables.
6 Close the cover of the control unit and put back the cable cover.
5 COMMISSIONING

5.1 PREPARING FOR COMMISSIONING

NOTE!
The information in this chapter is also included in the Commissioning report.

The Commissioning report lists relevant instructions for commissioning the option board. The Commissioning report can be printed from the VACON® Safe tool with prefilled data. The Commissioning report can also be found as an appendix in the VACON® NXP Advanced Safety Options Operating Guide.

If it is possible, commission the AC drive first without the Advanced safety option board to make sure that your process is operational.

![Diagram](image.png)

Fig. 6: Preparing and commissioning a safety system that includes the Advanced safety option board
Preparing for the commissioning before the first start-up of the system with the option board

- Read the Advanced safety options Operating Guide and the Commissioning report and apply their instructions in the commissioning plan.
- Read the User Manual of the AC drive.
- Refer to the user manuals of other subsystems connected to the commissioned drive system.
- Define the parameter file for the Advanced safety option board.
- Make sure that the hardware and configuration are correct, and that the software is correct in the components of the AC drive and its subsystems.
- Make sure that the information of the commissioned AC drive matches the information in the commissioning plan and the Commissioning report.
- Make sure that the connections between different systems have been checked and are ready to be used.
- Make sure that the area affected by the commissioned systems is free and secure for the commissioning.
- Make sure that no danger can be caused to personnel if the system has been configured incorrectly and behaves unexpectedly.
- Make sure that the AC drive is correctly parameterised and commissioned for use.
 - The motor parameters have been set.
 - The identification run has been done. Preferred identification type: identification with run or encoder ID run.
 - The fieldbus connection can be established. If a fieldbus is used.
- Have a computer available with a software to control and parameterise the AC drive and the option boards, and to store test logs and parameters.
- Have the Commissioning report available.

Document the deviations compared to expected results during the commissioning and testing procedures. Do not release the system for use if any unacceptable deviations exist.

5.2 PARAMETERISATION PROCESS

Use the VACON® Safe tool to parameterise the Advanced safety option board.

The parameterisation process of the Advanced safety option board has 4 steps.

1. Selection of safety functions (“Select functions” in the tool).
2. Editing the safety functions (“Adjust parameters” in the tool).
3. Verifying the transfer of parameters to the option board (“Verify and Approve” in the tool).
4. Validation of the parameter file (“Validate” in the tool).
Fig. 7: The process of creating a new parameter file
5.3 FIRST START-UP AFTER THE INSTALLATION OF THE OPTION BOARD

NOTE!
The information in this chapter is also included in the Commissioning report.

After the option board is installed in the AC drive, do these steps.

DOING THE FIRST START-UP WITH THE OPTION BOARD

1 Do power-up on the AC drive.

 a) The drive shows the fault F38 DeviceAdded (submodule: slot D, subcode: 1). The actual faults shown depend on the configuration used during the previous start-up if other changes have also been made.
 b) If the option board was already installed and tested at the factory, the fault is not shown.
 c) Other faults are also shown: the warning for Safe Torque Off (F30, subcode: 1) and the fault for Safety System (F20 SafetySystem, source: 82 - Plaus. check, fault number: 3). Fault F20 indicates that the option board has no valid parameter file.

2 Reset the faults.

 a) The drive is not ready. The warning F30 SafeTorqueOff is shown.
 b) If the option board has been used in a previous configuration, it is possible that it has a valid parameter file already. In this case, the drive may be in READY state.
 c) The faults that are shown and their type (Fault or Alarm) depend on the settings of the AC drive.
 d) STO state can also be seen from the STO board diagnostic relay output.

3 Parameterise the option board using the VACON® Safe tool.

 a) After parameterisation the fault F20 (source: 82, fault number: 3) disappears. Depending on the parameterised safety functions and the state of the option board inputs, different safety functions can be reported as requested or reached.
 b) The fault F20 (source: 243 - drive conf, fault number: 2) appears. The fault indicates that the parameter file is not tested and validated.
4 Print the prefilled Commissioning report from the VACON® Safe tool or save the report in digital form.
5 Test the safe fieldbus, or if a safe fieldbus is not used, the relevant safety functions.

Table 3: Commissioning check list

<table>
<thead>
<tr>
<th>Step</th>
<th>Commissioning action</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The correct installation of the option board has been verified and documented.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>The option board has been parameterised with the intended configuration.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To commission the different safety functions, see Commissioning report of the option board.

5.4 SAFETY BYPASS

WARNING!

When the Advanced safety option board is bypassed, it does not provide any safety functions.

If the Advanced safety option board is installed in the AC drive with an STO board and the AC drive itself has not been commissioned, it may be preferable to bypass the safety functions of the Advanced safety option to make the commissioning simpler. To bypass the safety functions of the Advanced safety option, do these steps.

1. Disconnect the STO outputs of the Advanced safety option board if they are connected. Leave the outputs disconnected.
2. Connect the STO request input of the STO board to terminals +24 V and GND so that the STO function is disabled.
3. Do power-up to the AC drive.
4. Set the parameter P7.4.1.2.1 in the expander board menu to value “Warning” to deactivate the drive response to faults reported by the Advanced safety option.
5. Reset the faults.
 • The AC drive should be in the READY state.

NOTE!

While not strictly required, it is advisable to return the parameter P7.4.1.2.1 to its default value “Default” after the commissioning activities.

5.5 EMERGENCY STOP USING THE STO FUNCTION

A configuration for realising emergency stop according to IEC-60204-1 using the STO function in the Advanced safety option board OPTBL and the STO option board OPTAF. The drive reset is used to clear the faults and to deactivate the STO function after violations and faults. The STO function is set to the manual acknowledgement mode.
Depending on the result of the risk and hazard analysis, you can use the safe external acknowledgement signal \(^1\) or the non-safe drive acknowledgement \(^2\). The case in Fig. 8 has safe external acknowledgement.

The STO request is assigned to Digital Input 1 of the Advanced safety option board. External acknowledgement signal is assigned to Digital input 2. No speed measurement is needed or considered for this configuration.

Configuration in OPTBL. Used safety functions: STO

<table>
<thead>
<tr>
<th>STO parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement Mode (STO)</td>
<td>Manual</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input / output parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Input 1</td>
<td>STO</td>
</tr>
<tr>
<td>Digital Input 2</td>
<td>Acknowledgement (^1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive Reset</td>
<td>Enabled</td>
</tr>
<tr>
<td>Drive Acknowledgement</td>
<td>Enabled (^2) / Disabled (^1)</td>
</tr>
</tbody>
</table>

\(^1\) and \(^2\) indicate alternative options. Use values marked with the same number.
Fig. 8: Emergency stop configuration with the STO function and safe acknowledgement.

* = For some devices used for acknowledgement, additional wiring is required.