Design Guide

MCD 200

MCD 201
MCD 202
Contents

MCD 200 Series Overview ... 3
 Description .. 3
 Ratings ... 4
 General Technical Data .. 5
 Mechanical Installation ... 7
 Dimensions and Weights .. 7
 Cable Size .. 9
 Semiconductor Fuses ... 9
 Frequently Asked Questions .. 10

MCD 201 ... 12
 Electrical Schematic ... 12
 Control Circuits ... 13
 Functionality ... 13
 Indication ... 14
 Fault Finding ... 14

MCD 202 ... 15
 Electrical Schematic ... 15
 Control Circuits ... 15
 Functionality ... 16
 Motor Thermistor Protection ... 18
 Indication ... 18
 Fault Finding ... 18

Accessories .. 19
 Overview .. 19
 MCD 200 Remote Operator ... 19
 MCD 200 Modbus Module .. 19
 MCD 200 Profibus Module ... 19
 MCD 200 DeviceNet Module .. 19
 MCD 200 AS-i Module ... 19
 MCD PC Software .. 19

Soft Start Application Guide ... 21
 Reduced Voltage Starting .. 21
 Types of Soft Start Control ... 22
 Understanding Soft Starter Ratings ... 22
 Model Selection ... 23
 Typical Applications ... 23
 Power Factor Correction .. 24
Warnings

High Voltage Warning

The MCD 200 contains dangerous voltages when connected to line voltage. Only a competent electrician should carry out the electrical installation. Improper installation of the motor or the MCD 200 may cause equipment failure, serious injury or death. Follow this manual, National Electrical Code (NEC®) and local safety codes.

Safety Regulations

1. The soft starter must be disconnected from the mains if repair work is to be carried out.

 It is the responsibility of the user or the person installing the MCD 200 to provide proper grounding and branch circuit protection according to the National Electrical Code (NEC®) and local safety codes.

2. Do not apply incorrect voltages to the MCD 200 control inputs.

 Electrostatic Precaution: Electrostatic discharge (ESD). Many electronic components are sensitive to static electricity. Voltages so low that they cannot be felt, seen or heard, can reduce the life, affect performance, or completely destroy sensitive electronic components. When performing service, proper ESD equipment should be used to prevent possible damage from occurring.

Warning Against Unintended Start

1. The motor can be brought to a stop by means of digital or bus commands while the soft starter is connected to the mains. If personal safety considerations make it necessary to ensure that no unintended start occurs, these stop functions are not sufficient.

2. A motor that has been stopped may start if faults occur in the electronics of the soft starter, or a temporary fault in the supply mains or the motor connection ceases.

Symbols Used in this Manual

When reading this manual you will come across different symbols that require special attention. The symbols used are the following:

- **NB!**: Indicates something to be noted by the reader
- **Indicates a general warning**
- **Indicates a high voltage warning**

Avoiding Soft Starter Damage

Please read and follow all instructions in this manual. Additionally, take special note of the following:

1. Do not connect power factor correction capacitors to the soft starter output. Static power factor correction, if used, must be connected on the mains side of the soft starter.
MCD 200 Series Overview

Description
The Danfoss MCD 200 Soft Starter series comprises two separate ranges:

- MCD 201
- MCD 202

MCD 201 and MCD 202 soft starters share a common power and mechanical design, but offer different levels of functionality.

MCD 201 soft starters provide TVR (Timed Voltage Ramp) starting and stopping control and are designed for use with an external motor protection device.

MCD 202 soft starters provide Current Limit starting control, TVR soft stop and include a range of motor protection functions.

NB!
This manual makes reference to MCD 200, MCD 201 and MCD 202. The MCD 200 designation is used when referring to characteristics common to both the MCD 201 and MCD 202 ranges. In all other cases the text refers to the specific range MCD 201 or MCD 202.

MCD 200 soft starters include an integral bypass function that bypasses the soft starter SCRs during run. This minimises heat dissipation during run and makes the MCD 200 suitable for installation within non-ventilated enclosures without the need for an external bypass contactor.

Ordering Type Code

```
MCD 2  
Series
201 = Soft Start Only
202 = Soft Start plus Protection
Nominal Motor kW & V: 400 V
E.g. 5.5 kW = 055
22 kW = 022
Maximum Voltage Rating
T4 = 200 - 440 V AC
T6 = 200 - 575 V AC
Control Supply Voltage
CV1 = 24 VAC/VDC
CV3 = 110-240 VAC & 380-440 VAC
```
Ratings

<table>
<thead>
<tr>
<th>MCD 200 Model</th>
<th>Normal</th>
<th>Heavy</th>
</tr>
</thead>
<tbody>
<tr>
<td>007</td>
<td>18 A: AC53b 4-6:354</td>
<td>17 A: AC53b 4-20:340</td>
</tr>
<tr>
<td>015</td>
<td>34 A: AC53b 4-6:354</td>
<td>30 A: AC53b 4-20:340</td>
</tr>
<tr>
<td>018</td>
<td>42 A: AC53b 4-6:354</td>
<td>36 A: AC53b 4-20:340</td>
</tr>
<tr>
<td>022</td>
<td>48 A: AC53b 4-6:354</td>
<td>40 A: AC53b 4-20:340</td>
</tr>
<tr>
<td>030</td>
<td>60 A: AC53b 4-6:354</td>
<td>49 A: AC53b 4-20:340</td>
</tr>
<tr>
<td>037</td>
<td>75 A: AC53b 4-6:594</td>
<td>65 A: AC53b 4-20:580</td>
</tr>
<tr>
<td>045</td>
<td>85 A: AC53b 4-6:594</td>
<td>73 A: AC53b 4-20:580</td>
</tr>
<tr>
<td>055</td>
<td>100 A: AC53b 4-6:594</td>
<td>96 A: AC53b 4-20:580</td>
</tr>
<tr>
<td>075</td>
<td>140 A: AC53b 4-6:594</td>
<td>120 A: AC53b 4-20:580</td>
</tr>
<tr>
<td>090</td>
<td>170 A: AC53b 4-6:594</td>
<td>142 A: AC53b 4-20:580</td>
</tr>
<tr>
<td>110</td>
<td>200 A: AC53b 4-6:594</td>
<td>165 A: AC53b 4-20:580</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MCD 200 Model</th>
<th>Normal</th>
<th>Heavy</th>
</tr>
</thead>
<tbody>
<tr>
<td>007</td>
<td>17 A: AC53b 4-6:354</td>
<td>15 A: AC53b 4-20:340</td>
</tr>
<tr>
<td>015</td>
<td>32 A: AC53b 4-6:354</td>
<td>28 A: AC53b 4-20:340</td>
</tr>
<tr>
<td>018</td>
<td>40 A: AC53b 4-6:354</td>
<td>33 A: AC53b 4-20:340</td>
</tr>
<tr>
<td>022</td>
<td>44 A: AC53b 4-6:354</td>
<td>36 A: AC53b 4-20:340</td>
</tr>
<tr>
<td>030</td>
<td>55 A: AC53b 4-6:354</td>
<td>45 A: AC53b 4-20:340</td>
</tr>
<tr>
<td>037</td>
<td>68 A: AC53b 4-6:594</td>
<td>59 A: AC53b 4-20:580</td>
</tr>
<tr>
<td>045</td>
<td>78 A: AC53b 4-6:594</td>
<td>67 A: AC53b 4-20:580</td>
</tr>
<tr>
<td>055</td>
<td>100 A: AC53b 4-6:594</td>
<td>87 A: AC53b 4-20:580</td>
</tr>
<tr>
<td>075</td>
<td>133 A: AC53b 4-6:594</td>
<td>110 A: AC53b 4-20:580</td>
</tr>
<tr>
<td>090</td>
<td>157 A: AC53b 4-6:594</td>
<td>130 A: AC53b 4-20:580</td>
</tr>
<tr>
<td>110</td>
<td>186 A: AC53b 4-6:594</td>
<td>152 A: AC53b 4-20:580</td>
</tr>
</tbody>
</table>

* Contact Danfoss for other ratings.

Example

For 22 kW model: 48 A: AC53b: 4-6:354

48 A: Starter current rating.

AC53b: Load category for soft starters with SCRs bypassed during run.

4-6: 400% start current for 6 seconds.

354: 354 seconds between the end of one start to the beginning of the next start (i.e. 10 starts per hour).
General Technical Data

Mains Supply (L1, L2, L3):

<table>
<thead>
<tr>
<th>Model</th>
<th>Voltage Range</th>
<th>Supply Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCD 200-xxx-T4-xxx</td>
<td>3 x 200 VAC ~ 440 VAC (+10% / - 15%)</td>
<td>45 Hz - 66 Hz</td>
</tr>
<tr>
<td>MCD 200-xxx-T6-xxx</td>
<td>3 x 200 VAC ~ 575 VAC (+10% / - 15%)</td>
<td></td>
</tr>
</tbody>
</table>

Control Supply (A1, A2, A3):

<table>
<thead>
<tr>
<th>Model</th>
<th>Voltage Range</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MCD 200-xxx-xx-CV1</td>
<td>24 VAC/VDC (± 20%)</td>
<td></td>
</tr>
<tr>
<td>MCD 200- xxx-xx-CV3</td>
<td>110-240 VAC (+10% / - 15%)</td>
<td>or 380-440 VAC (+10% / - 15%)</td>
</tr>
</tbody>
</table>

Start Terminal N1: Normally Open, 300 VAC max.
Stop Terminal N2: Normally Closed, 300 VAC max.

Environmental

Degree of protection MCD 200-007 to MCD 200-055: IP20
Degree of protection MCD 200-075 to MCD 200-110: IP00

Operating Temperatures: -10 °C / + 60 °C
Humidity: 5% to 95% Relative Humidity
Pollution Degree: Pollution Degree 3
Vibration: IEC 60068 Test Fc Sinusoidal

EMC Emission

Equipment class (EMC): Class A
Conducted radio frequency emission: 0.15 MHz - 0.5 MHz: < 90 dB (µV)
Conducted radio frequency emission: 0.5 MHz - 5 MHz: < 76 dB (µV)
Conducted radio frequency emission: 5 MHz - 30 MHz: 80-60 dB (µV)
Radiated radio frequency emission: 30 MHz - 230 MHz: < 30 dB (µV/m)
Radiated radio frequency emission: 230 MHz - 1000 MHz: < 37 dB (µV/m)

This product has been designed for Class A equipment. Use of the product in domestic environments may cause radio interference, in which case the user may be required to employ additional mitigation methods.

EMC Immunity

Electrostatic discharge: 4 kV contact discharge, 8 kV air discharge
Radio frequency electromagnetic field: 0.15 MHz - 1000 MHz: 140 dB (µV)
Rated impulse withstand voltage (Fast transients 5/50 ns): 2 kV line to earth
Rated insulation voltage (Surges 1.2/50 µs - 8/20 ms): 2 kV line to earth, 1 kV line to line
Voltage dip and short time interruption: 100 ms (at 40% nominal voltage)

Short Circuit

Rated short-circuit current MCD 200-007 to MCD 200-037: 5 kA
Rated short-circuit current MCD 200-045 to MCD 200-110: 10 kA
Heat Dissipation

During Start .. 3 watts / ampere
During Run .. < 4 watts

Standards Approvals

<table>
<thead>
<tr>
<th>Approval</th>
<th>Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>IEC 60947-4-2</td>
</tr>
<tr>
<td>UL / C-UL</td>
<td>UL508</td>
</tr>
<tr>
<td>CE</td>
<td>IEC 60947-4-2</td>
</tr>
<tr>
<td>CCC</td>
<td>GB 14048.6</td>
</tr>
</tbody>
</table>

MG.17.C2.02 - VLT is a registered Danfoss trademark
■ Mechanical Installation

MCD 200 Design Guide

<table>
<thead>
<tr>
<th>MCD 200</th>
<th>Din Rail</th>
<th>Foot Mounting</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCD 200-007 ~ MCD 200-030</td>
<td>30 mm</td>
<td>Yes</td>
</tr>
<tr>
<td>MCD 200-037 ~ MCD 200-110</td>
<td>Not available</td>
<td>Yes</td>
</tr>
</tbody>
</table>

■ Dimensions and Weights

MCD 201-007 ~ MCD 201-030 (2.2 kg / 4.8 lb)

MCD 202-007 ~ MCD 202-030 (2.4 kg / 5.3 lb)
MCD 200 Design Guide

■ Cable Size

<table>
<thead>
<tr>
<th>MCD 200-007 ~ MCD 200-030</th>
<th>MCD 200-031 ~ MCD 200-055</th>
<th>MCD 200-075 ~ MCD 200-110</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 - 35 (8 - 2)</td>
<td>25 - 50 (4 - 1/0)</td>
<td>N.A.</td>
</tr>
<tr>
<td>0.5 sq in (0.08)</td>
<td>11 (0.02) (0.03)</td>
<td>0.14 - 1.5 (26 - 16)</td>
</tr>
<tr>
<td>7 mm</td>
<td>25 - 50 (4 - 1/0)</td>
<td>N.A.</td>
</tr>
<tr>
<td>3 - 5 Nm</td>
<td>2.9 - 4.4 ft-lb</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

75ºC Wire. Use copper conductors only.

■ Semiconductor Fuses

Semiconductor fuses may be used with the MCD 200 soft starters. Use of semiconductor fuses will provide Type 2 coordination and reduce the potential of SCR damage due to transient overload currents and short circuits. MCD 200 soft starters have been tested to achieve Type 2 coordination with semiconductor fuses.

The following table provides a list of suitable Ferraz and Bussman fuses. If selecting alternate brands ensure the selected fuse has a lower total clearing I²t rating than the SCR, and can carry start current for the full starting duration.

<table>
<thead>
<tr>
<th>MCD 200</th>
<th>SCR I²t (A²s)</th>
<th>Ferraz Fuse</th>
<th>Bussman Fuse</th>
<th>Bussman Fuse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>European/IEC Style (North American Style)</td>
<td>Square Body (170M)</td>
<td>British Style (BS88)</td>
</tr>
<tr>
<td>MCD 200-007</td>
<td>1150</td>
<td>6.6URD30xxxA0063 (A070URD30xxx0063)</td>
<td>170M-1314</td>
<td>63 FE</td>
</tr>
<tr>
<td>MCD 200-015</td>
<td>8000</td>
<td>6.6URD30xxxA0125 (A070URD30xxx0125)</td>
<td>170M-1317</td>
<td>160 FEE</td>
</tr>
<tr>
<td>MCD 200-018</td>
<td>10500</td>
<td>6.6URD30xxxA0160 (A070URD30xxx0160)</td>
<td>170M-1318</td>
<td>160 FEE</td>
</tr>
<tr>
<td>MCD 200-022</td>
<td>15000</td>
<td>6.6URD30xxxA0160 (A070URD30xxx0160)</td>
<td>170M-1318</td>
<td>180 FM</td>
</tr>
<tr>
<td>MCD 200-030</td>
<td>18000</td>
<td>6.6URD30xxxA0160 (A070URD30xxx0160)</td>
<td>170M-1319</td>
<td>180 FM</td>
</tr>
<tr>
<td>MCD 200-037</td>
<td>51200</td>
<td>6.6URD30xxxA0250 (A070URD30xxx0250)</td>
<td>170M-1321</td>
<td>250 FM</td>
</tr>
<tr>
<td>MCD 200-045</td>
<td>80000</td>
<td>6.6URD30xxxA0315 (A070URD30xxx0315)</td>
<td>170M-1321</td>
<td>250 FM</td>
</tr>
<tr>
<td>MCD 200-055</td>
<td>97000</td>
<td>6.6URD30xxxA0315 (A070URD30xxx0315)</td>
<td>170M-1321</td>
<td>250 FM</td>
</tr>
<tr>
<td>MCD 200-075</td>
<td>168000</td>
<td>6.6URD31xxxA0450 (A070URD31xxx0450)</td>
<td>170M-1322</td>
<td>500 FMM</td>
</tr>
<tr>
<td>MCD 200-090</td>
<td>245000</td>
<td>6.6URD31xxxA0450 (A070URD31xxx0450)</td>
<td>170M-3022</td>
<td>500 FMM</td>
</tr>
<tr>
<td>MCD 200-110</td>
<td>320000</td>
<td>6.6URD31xxxA0450 (A070URD31xxx0450)</td>
<td>170M-3022</td>
<td>500 FMM</td>
</tr>
</tbody>
</table>

xxx = Blade Type.

Refer Ferraz for options.

MG.17.C2.02 - VLT is a registered Danfoss trademark
Frequently Asked Questions

- **What is the minimum allowable motor current when using an MCD 201 open loop soft starter?**
 There is no minimum current when using an MCD 201 open loop soft starter.

- **What is the minimum allowable motor current when using an MCD 202 closed loop soft starter?**
 The minimum "Motor FLC" setting is 50% of the MCD 202 nameplate rating. All the motor protections are based on this setting. It is possible to operate an MCD 202 with a small kW motor, for testing purposes. In this case, the motor will effectively start DOL, and the MCD 202 will not protect the motor. The starter will not trip, because there is no undercurrent protection on MCD 202.

- **What type of motor protection does the MCD 202 have?**
 The MCD 202 has built-in motor overload protection of the electronic "thermal model" type. The motor current is continuously monitored and the expected temperature is calculated based on this monitored current. The rate of rise of the calculated motor temperature is determined by the Motor Trip Class setting. An Overcurrent trip (x 2 Ready LED flashes) will occur when the calculated temperature reaches 105%. The setting of the Motor Trip Class pot is similar to a motor trip class setting on a standard thermal overload relay. An external motor protection device is not required when using an MCD 202 soft starter. MCD 202 is certified to conform to the IEC60947-4-2 standard for electronic soft starters. The reliability of the motor protection feature is part of this standard.

- **How do I select an MCD 200 soft starter for duty cycles different from those listed in the standard ratings table?**
 The WinStart software package is available for selecting soft starters for different duty cycles.

- **Which MCD 200 models carry the UL mark?**
 All T6 models carry the UL mark.

- **What are the MCD 200 operational ratings before maintenance may be required?**
 The operational ratings for MCD 200 are size-dependent, and are due to the capability of the internal bypass relays: Size 1 & 2 (7.5 ~ 55 kW): 1,000,000 operations, Size 3 (75 ~ 110 kW): 100,000 operations.

- **When would I use a line contactor?**
 A line contactor may be compulsory for a specific installation. This requirement will be the same whether using a two-phase controlled soft starter or a three-phase controlled soft starter (see Product Note for more detail).

- **How do I size the fuses of the motor branch circuit (Type 1) when using an MCD 200 soft starter?**
 For "Current Limit" settings ≤ 350% and start times ≤ 15 seconds, the nominal rating of standard line supply fuses (gG) should be 1.75 x Motor FLC. If motor rated fuses (gM) are being used, their nominal rating should be 1.5 x Motor FLC. For "Current Limit" settings > 350% and start times > 15 seconds, the nominal rating of standard line supply fuses (gG) should be 2 x Motor FLC. If motor rated fuses (gM) are being used, their nominal rating should be 1.75 x Motor FLC.

- **When would I use semiconductor fuses?**
 Either when specified for an installation, or when Type 2 coordination is required. The MCD 200 is internally bypassed, so the SCRs are in use only during starting and soft stopping.

- **What is the current consumption of the MCD 200 control supply?**
 The steady state consumption of the control supply is 100 mA maximum, for both CV1 and CV3 models. However, the short time inrush current at control supply "switch-on" can be as high as 10 A for CV3 models, and 2 A for CV1 models (due to the SMPS power supply).

- **How can the MCD 202 programmable output relay be used?**
 The programmable output relay provides an N/O contact, which can be used for a "Trip" or "Run" output. Trip output: The relay operates when the MCD 202 trips on any fault. This can be used to operate a shunt-trip mechanism of an upstream circuit breaker to isolate the motor branch circuit. It could also be used to signal MCD 202 "Trip" status to an automation system. Run output: The relay operates on completion of start ramp. This can be used to operate a contactor for power factor correction capacitors. It could also be used to signal MCD 202 "Run" status to an automation system.

- **Is the MCD 202 suitable for flying start application?**
 Yes. There is a built-in 2 second delay between the end of one stop and the beginning of the next start. This delay allows the motor flux to decay, eliminating any chance of the MCD 202 tripping on Power Circuit fault (x 1 Ready LED flash) due to detection of motor back EMF when the start signal is applied. The major effect of a flying start is on...
the actual time the MCD 202 "current limits". The ramp-up time will be reduced and is determined by the motor speed on reapplication of the start signal.

- **What is the remote start and stop input impedance?**

 Are any special precautions necessary during installation?

 The 01/02 input impedance is approximately 400 kΩ @ 300 VAC and 5.6 kΩ @ 24 VAC/DC. All control wiring, for long runs, should be either twisted pair or shielded cable with the screen earthed at one end. Control wiring should be separated from power cables by a minimum distance of 300 mm. If long cable runs cannot be avoided, the best assurance against noise interference is to install an interposing relay in close proximity to the MCD 200 soft starter.

- **Why is it necessary to apply control voltage before (or with) mains voltage?**

 There is a possibility the soft starter could arrive at site with the internal bypass relays in "closed" state. On first application of control voltage, the bypass relays are commanded to open. If mains voltage is applied without control voltage, this step is missed, and the motor may start DOL without warning (see Product Note for more detail).

- **What are the under- & over-frequency trip points for MCD 200 soft starters?**

 The trip points are 40 Hz and 72 Hz. If the frequency falls below 40 Hz or rises above 72 Hz, the soft starter will trip (x 6 Ready LED flashes). These trip points are not adjustable.

 A supply frequency trip will also occur if all three phases from the mains supply are lost, or fall below approximately 120 VAC while the soft starter is running.

 A supply frequency trip will occur if the line contactor drops out during running.

- **Will the motor start DOL if the start ramp of MCD 201 open loop soft starter is set to "full voltage"?**

 No, the MCD 201 will still provide a limited soft start. The voltage is ramped up from 0 to 100% in approximately 0.25 seconds.
MCD 201

MCD 201 Range
MCD 201 soft starters provide TVR (Timed Voltage Ramp) starting and stopping control and are designed for use with an external motor protection device.

Electrical Schematic
Example 1 – MCD 201 installed with motor protection circuit breaker.

Example 2 – MCD 201 installed with motor protection circuit breaker and line contactor.

Example 3 – MCD 201 installed with circuit breaker, overload and line contactor.

1 6 A @ 30 VDC resistive / 2 A 400 VAC AC11

2 Main Contactor
1 Initial Torque

Value:
30% - 75% Initial Torque ★ 50%

Function:
Determines the start torque generated by the motor when the start command is first applied.

Description of choice:
Set so that the motor begins to rotate as soon as the start command is given.

2 Ramp Up

Value:
2 - 20 seconds, Full Voltage ★ 10 seconds

Function:
Determines the time taken for voltage to be ramped up to line voltage.

Description of choice:
Set to optimise motor acceleration and/or start current. Short ramp times result in quicker acceleration and higher start currents. Long ramp times result in slower acceleration and lower start current.

3 Ramp Down

Value:
2 - 20 seconds, No Soft Stop ★ No Soft Stop

Function:
Sets the time of the soft stop voltage ramp. The soft stop function extends motor deceleration time by ramping down voltage supplied to the motor when a stop is initiated.

Description of choice:
Set the ramp time to optimise stopping characteristics for the load.
Indication

<table>
<thead>
<tr>
<th>LED</th>
<th>OFF</th>
<th>ON</th>
<th>FLASH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ready</td>
<td>No control power</td>
<td>Ready</td>
<td>Starter tripped</td>
</tr>
<tr>
<td>Run</td>
<td>Motor not running</td>
<td>Motor running at full speed</td>
<td>Motor starting or stopping</td>
</tr>
</tbody>
</table>

Fault Finding

<table>
<thead>
<tr>
<th>Ready LED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>🌟 x 1</td>
<td>Power Circuit Fault: Check mains supply L1, L2 & L3, motor circuit T1, T2 & T3 and soft starter SCRs.</td>
</tr>
<tr>
<td>🌟 x 6</td>
<td>Supply Frequency: Check supply frequency is in range</td>
</tr>
<tr>
<td>🌟 x 8</td>
<td>Network Comms Failure (between accessory module and network): Check network connections and settings.</td>
</tr>
<tr>
<td>🌟 x 9</td>
<td>Starter Comms Failure (between starter and accessory module): Remove and refit accessory module.</td>
</tr>
</tbody>
</table>
■ MCD 202

■ MCD 202 Range
MCD 202 soft starters provide Current Limit control, TVR soft stop and include a range of motor protection features.

■ Electrical Schematic
Example 1 – MCD 202 installed with system protection circuit breaker complete with shunt trip device.

Example 2 – MCD 202 installed with system protection circuit breaker and line contactor.

■ Control Circuits

2 Wire Control

1 6 A @ 30 VDC resistive / 2 A 400 VAC AC11
2 Main Contactor
3 Auxiliary Relay Function = Trip (see parameter 8)

* Also resets the MCD 202

** Also resets the MCD 202

MCD 200 Design Guide

16A@30VDC resistive / 2A 400VAC AC11
2 Main Contactor
3 Auxiliary Relay Function = Trip (see parameter 8)
2 Current Limit

Value:

250% - 475% Motor FLC ★ 350%

Function:

Sets the desired starting current limit.

Description of choice:

The current limit should be set so that the motor accelerates easily to full speed.

![Graph](image)

NB!:

Start current must be great enough to allow the motor to produce sufficient torque to accelerate the connected load. The minimum current required to do this is dependent on motor design and load torque requirements.

3 Current Ramp

Value:

150% Motor FLC (2, 5 or 15 seconds) ★ Off

200% Motor FLC (2, 5 or 15 seconds)

250% Motor FLC (2, 5 or 15 seconds) Off

Function:

Sets the initial starting current and ramp time for the Current Ramp start mode.

Description of choice:

The Current Ramp start mode modifies the Current Limit start mode by adding an extended ramp.

![Graph](image)

Typically the Current Ramp start mode would be used in two circumstances.

1. For applications where start conditions vary between starts the Current Ramp mode provides an optimum soft start irrespective of motorloading e.g. a conveyor that may start loaded or unloaded. In this case make the following settings:
 - Set Parameter 2 Current Limit so that the motor can accelerate to full speed when fully loaded.
 - Set Parameter 3 Current Ramp so that:
 - the Initial Start Current allows the motor to accelerate when unloaded.
- the ramp time provides the desired starting performance

2. On generator set supplies where a gradual increase in current is required to allow greater time for the generator set to respond to the increased loading. In this case make the following settings:
 - Set Parameter 2 Current Limit as desired.
 - Set Parameter 3 Current Ramp so that:
 - the Initial Start Current is lower level than the Current Limit
 - the ramp time achieves the desired gradual draw of start current

4 Soft Stop Ramp Time

Value:

2 - 20 seconds, No Soft Stop ★ No Soft Stop

Function:

Sets the time of the soft stop voltage ramp. The soft stop function extends motor deceleration time by ramping down voltage supplied to the motor when a stop is initiated.

Description of choice:

Set the ramp time to optimise stopping characteristics for the load.

5 Motor Trip Class

Value:

2 - 20, Off ★ 10

Function:

Calibrates the MCD 202 motor thermal model according to the desired motor trip class.

6 Excess Start Time Protection

Value:

2 - 20 seconds, Off ★ 10 seconds

Function:

Sets the maximum allowable start time.

Description of choice:

Set for a period slightly longer than the normal motor starting time. The MCD 202 will then trip if the start time exceeds normal.

This provides early indication that the application conditions have changed or that the motor has stalled. It can also protect the soft starter from being operated outside its rated start capability.

NB!

Ensure the Excess Start Time protection setting is within the MCD 202 rated capability.

7 Phase Rotation Protection

Value:

ANY, FWD ★ ANY

ANY = Forward & Reverse rotation permitted
FWD = Forward Rotation Only

Function:

Sets the allowable phase rotation sequence of the incoming supply.
Description of choice:

The MCD 202 itself is phase rotation insensitive. This function allows motor rotation to be limited to one direction only. Set the protection according to application requirements.

8 Auxiliary Relay Function (Terminals 23, 24)

Value:
- Trip, Run ★ Trip

Function:
Sets the functionality of the Auxiliary Relay (Terminals 23,24).

Description of choice:
Set as required, using the combined Phase Rotation/Aux Relay adjustment.

Motor Thermistor Protection

Motor thermistor cut out value = 2.8 kΩ.

Indication

<table>
<thead>
<tr>
<th>LED</th>
<th>OFF</th>
<th>ON</th>
<th>FLASH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ready</td>
<td>No control power</td>
<td>Ready</td>
<td>Starter tripped</td>
</tr>
<tr>
<td>Run</td>
<td>Motor not running</td>
<td>Motor running at full speed</td>
<td>Motor starting or stopping</td>
</tr>
</tbody>
</table>

Fault Finding

<table>
<thead>
<tr>
<th>Ready LED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>✕ 1</td>
<td>Power Circuit Fault: Check mains supply L1, L2 & L3, motor circuit T1, T2 & T3 and soft starter SCRs.</td>
</tr>
<tr>
<td>✕ 2</td>
<td>Excess Start Time: Check load, increase start current or adjust Excess Start Time setting.</td>
</tr>
<tr>
<td>✕ 3</td>
<td>Motor Overload: Allow motor to cool, reset soft starter and restart. (MCD 202 cannot be reset until motor has cooled adequately).</td>
</tr>
<tr>
<td>✕ 4</td>
<td>Motor Thermistor: Check motor ventilation and thermistor connection 05 & 06. Allow motor to cool.</td>
</tr>
<tr>
<td>✕ 5</td>
<td>Phase Imbalance: Check line current L1, L2 & L3.</td>
</tr>
<tr>
<td>✕ 6</td>
<td>Supply Frequency: Check supply frequency is in range</td>
</tr>
<tr>
<td>✕ 7</td>
<td>Phase Rotation: Check for correct phase rotation.</td>
</tr>
<tr>
<td>✕ 8</td>
<td>Network Comms Failure (between accessory module and network): Check network connections and settings.</td>
</tr>
<tr>
<td>✕ 9</td>
<td>Starter Comms Failure (between starter and accessory module): Remove and refit accessory module.</td>
</tr>
</tbody>
</table>
Accessories

Overview

The following optional accessory items are available for use with MCD 200 soft starters:

- MCD 200 Remote Operator
 (Order Code 175G9004)
- MCD 200 Modbus Module
 (Order Code 175G9000)
- MCD 200 Profibus Module
 (Order Code 175G9001)
- MCD 200 DeviceNet Module
 (Order Code 175G9002)
- MCD 200 AS-i Module
 (Order Code 175G9003)
- MCD PC Software

Accessory items are integrated with the MCD 200 soft starters by means of a plug-in module as shown below.

MCD 200 Remote Operator

Order Code: 175G9004

The Danfoss Remote Operator can be used with MCD 201, MCD 202 and MCD 3000 to provide the following functionality.

<table>
<thead>
<tr>
<th>Feature</th>
<th>MCD 201</th>
<th>MCD 202</th>
<th>MCD 3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pushbutton Control</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>(Start, Stop, Reset)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starter Status LEDs</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>(Starting, Running, Tripped)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Current Display</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Motor Temperature Display</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Trip Code Display</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>4-20 mA Output (Motor Current)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See the Remote Operator Operating Instructions for further details.

MCD 200 Modbus Module

Order Code: 175G9000

The Modbus Module supports Modbus RTU and ASCII. See the Modbus Module Operating Instructions for further details.

MCD 200 Profibus Module

Order Code: 175G9001

The Profibus Module can be used with MCD 200 soft starters for control and monitoring via a Profibus network. See the Profibus Module Operating Instructions for further details.

MCD 200 DeviceNet Module

Order Code: 175G9002

The DeviceNet Module can be used with MCD 200 soft starters for control and monitoring via a DeviceNet network. See the DeviceNet Module Operating Instructions for further details.

MCD 200 AS-i Module

Order Code: 175G9003

Under development.

MCD PC Software

The Danfoss MCD PC Software can be used with MCD 201, MCD 202 and MCD 3000 to provide the following functionality for networks of up to 99 soft starters.
<table>
<thead>
<tr>
<th>Feature</th>
<th>MCD 201</th>
<th>MCD 202</th>
<th>MCD 3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational Control</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>(Start, Stop, Reset, Quick Stop)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status Monitoring</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>(Ready, Starting, Running, Stopping, Tripped)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance Monitoring</td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>(Motor Current, Motor Temperature)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upload Parameter Settings</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Download Parameter Settings</td>
<td></td>
<td></td>
<td>●</td>
</tr>
</tbody>
</table>

Additionally, each MCD 200 soft starter connected to the network must be fitted with a Modbus Module (175G9000) or a Remote Operator (175G9004). See the PC Software Operating Instructions for further details.
Soft Start Application Guide

Application Guide
This section provides data useful in the selection and application of soft starters.

Reduced Voltage Starting
When started under full voltage conditions AC induction motors initially draw locked rotor current (LRC) and produce locked rotor torque (LRT). As the motor accelerates the current falls and the torque increases to breakdown torque before falling to full speed levels. Both the magnitude and shape of the current and torque curves are dependent on motor design. When started under full voltage conditions AC induction motors initially draw locked rotor current (LRC) and produce locked rotor torque (LRT). As the motor accelerates the current falls and the torque increases to breakdown torque before falling to full speed levels. Both the magnitude and shape of the current and torque curves are dependent on motor design.

Motors with almost identical full speed characteristics often vary significantly in their starting capabilities. Locked rotor currents range from as low as 500%, to in excess of 900% of motor FLC. Locked rotor torques range from as low as 70%, to highs of around 230% motor full load torque (FLT). The motor’s full voltage current and torque characteristics set the limits for what can be achieved with a reduced voltage starter. For installations in which either minimising start current or maximising start torque is critical, it is important to ensure that a motor with low LRC and high LRT characteristics is used. When a reduced voltage starter is used, motor start torque is reduced according to the following formula.

\[T_{ST} = \text{Start torque} \]
\[I_{ST} = \text{Start current} \]
\[LRC = \text{Motor Locked Rotor Current} \]
\[LRT = \text{Motor Locked Rotor Torque} \]

The most common reduced voltage starters are:
- Star/Delta starters
- Auto-transformer starters
- Primary resistance starters
- Soft starters

Star/Delta starting is the cheapest form of reduced voltage starting, however performance is limited.

The two most significant limitations are:
1. There is no control over the level of current and torque reduction; these are fixed at one third of the full voltage levels.
2. There are normally large current and torque transients as the starter changes from star to delta. This causes mechanical and electrical stress often resulting in damage. The transients occur because as the motor is spinning and then disconnected from the supply it acts as a generator with output voltage which may be at the same amplitude as the supply. This voltage is still present when the motor is reconnected in delta configuration, and can be exactly out of phase. The result is a current of up to twice locked rotor current and four times locked rotor torque.

Auto-transformer starting offers more control than the star/delta method, however voltage is still applied in steps.

Limitations of auto-transformer starting include:
1. Torque transients caused by switching between voltages.
2. Limited number of output voltage taps restricts the ability to closely select the ideal starting current.
3. High price for models suitable for frequent or extended starting conditions.
4. Cannot provide an effective reduced voltage start for loads with varying start requirements. For instance, a material conveyor may start loaded or unloaded. The auto-transformer starter can only be optimised for one condition.

Primary resistance starters also provide greater starting control than star/delta starters. However, they do have a number of characteristics that reduce their effectiveness.

These include:
1. Difficult to optimise start performance when commissioning because the resistance value must
be calculated when the starter is manufactured
and is not easily changed later.
2. Poor performance in frequent starting situations
because the resistance value changes as heat is
generated in the resistors during a start. A long
cool down period is required between starts.
3. Poor performance for heavy duty or extended
starts because heat build up in the resistors
changes the resistance value.
4. Cannot provide an effective reduced voltage start
for loads with varying start requirements.

Soft starters are the most advanced of the reduced
current starters. They offer superior control over
current and torque as well as incorporating advanced
motor protection and interface features.
The main starting advantages soft starters offer are:
1. Simple and flexible control over starting
current and torque.
2. Smooth control of voltage and current free
from steps or transitions.
3. Capable of frequent starting.
4. Capable of handling changing start conditions.
5. Soft stop control to extend motor deceleration times.
6. Braking control to reduce motor deceleration times.

Types of Soft Start Control

The term ‘soft start’ is applied to a range of
technologies. These technologies all relate to motor
starting but there are significant differences in the
methods used and the benefits available.
Some of the key differences are described below.
Control philosophy: Soft starters can generally
be divided into two groups.
• Timed Voltage Ramp (TVR) systems
• Current controlled systems

TVR starters control voltage applied to the motor
in a preset manner and receive no feedback on
motor starting current. Control of start performance
is provided to the users through settings such as
Initial Voltage and Ramp up time. Soft Stop is
also commonly available and provides the ability
to extend motor stopping times.
Current controlled soft starters monitor motor current
and use this feedback to adjust voltage so that user
specified starting current is maintained. Soft Stop is also
provided as are range of motor protection functions.

Power assemblies: Soft starters can provide control
of one, two or all three phases.
Single-phase controllers remove the torque shock
associated with motor starting but provide no significant
current reduction. They must be used with a line
contactor and motor overload. They are suitable for
very small motors and should only be applied to light
applications with low to medium start frequency.
Two-phase controllers control two phases while the
third phase is uncontrolled. These controllers provide
soft start and current reduction. Care should be taken
to ensure that the control algorithms of two-phase
controllers balance the output waveform in order to
provide a symmetrical waveform. Basic two-phase
controllers subject the motor to an asymmetrical
output waveform which creates a DC field in the
motor. This stationary DC field increases the required
start current and increases motor heating. Such
unbalanced controllers should not be applied to
high inertia loads or in situations with high start
frequencies. Three-phase controllers control all phases
and are best suited for very large motors.

External or internal bypass connection: The SCRs
in a soft starter can be bypassed once the motor
is up to speed. This reduces heat generation and
prevents damage to the SCR from overcurrent or
overvoltage events that occur while the motor is
running. Some soft starters include built-in bypass
contactors while other provide terminals for connection
of an external bypass contactor.

Understanding Soft Starter Ratings

The maximum rating of a soft starter is calculated
so the junction temperature of the power modules
SCRs) does not exceed 125 °C. Five operating
parameters effect the SCR junction temperature:
Motor Current, Start Current, Start Duration, Number
of Starts Per Hour, Off Time. The full rating of a
particular soft start model must account for all these
parameters. A current rating on its own is not sufficient
to describe the capability of a soft starter.

IEC 60947-4-2 details the AC53 utilisation categories
for describing a soft starter's ratings.

There are two AC53 codes:

1. AC53a: for soft starters used without
bypass contactors.

For example, the following AC53a code describes
a soft starter capable of supplying a 256 A run
current and a start current of 4.5 x FLC for 30
seconds 10 times per hour where the motor
runs for 70% of each operating cycle (operating
cycle = 60 minutes / starts per hour).

256 A: AC-53a 4.5-30: 70-10
Start Current Ratings
Start Time (seconds)
Load Duration
Starts Per Hour
Motor Cooling Class
• **Start Current Rating**: Maximum FLC rating of the motor to be connected to the soft starter given the operating parameters specified by the remaining items in the AC53a code.

• **Start Current**: The maximum start current that will be drawn during start.

• **Start Time**: The time taken for the motor to accelerate.

• **On-load Duty Cycle**: The percentage of each operating cycle that the soft starter will run.

• **Starts Per Hour**: The number of operating cycles per hour.

2. **AC53b**: for soft starters used with bypass contactors.

For example, the following AC53b code describes a soft starter which, when bypassed, is capable of supplying 145 A run current and a start current of 4.5 x FLC for 30 seconds with a minimum of 570 seconds between the end of one start and the commencement of the next.

\[
\begin{align*}
145 \text{A} & \quad \text{AC-53b}\quad 4.5-30 : 570
\end{align*}
\]

In summary, a soft starter has many current ratings. These current ratings are dependent on the start current and operational performance required by the application.

To compare the current rating of different soft starters it is important to ensure that operating parameters are identical.

Model Selection

NB!:

To fully understand the model selection procedures it is important to have a good knowledge of the fundamental principles of soft starter ratings. See *Understanding Soft Starter Ratings*.

To select the correct MCD 200 model:

1. Determine whether the application requires a normal duty or a heavy duty rating. The table below can be used as a guide.

2. See the tables in *Ratings* and select an MCD 200 model with an FLC rating greater than that of the motor.

### Application	Duty
Agitator & Water | Normal
Centrifugal Pump | Normal
Compressor (Screw, unloaded) | Normal
Compressor (Reciprocating, unloaded) | Normal
Fan (damped) | Normal
Fan (undamped) | Normal
Mixer | Normal
Positive Displacement Pump | Normal
Submersible Pump | Normal
Belt Conveyor | Heavy
Dust Collector | Normal
Hammer Mill | Heavy
Rock Crusher | Normal
Roller Conveyor | Normal
Roller Mill | Normal
Tumbler | Normal
Wire Draw Machine | Heavy
Bottle Washer | Normal
Centrifuge | Normal
Dryer | Heavy
Mixer | Heavy
Palletiser | Heavy
Separator | Heavy
Slicer | Normal
Pulp and Paper
Dryer | Heavy
Re-pulper | Heavy
Shredder | Heavy
Petrochemical
Ball Mill | Heavy
Centrifuge | Normal
Extruder | Heavy
Screw Conveyor | Normal
Transport & Machine Tool
Ball Mill | Heavy
Grinder | Normal
Material Conveyor | Normal
Palletiser | Heavy
Press | Normal
Roller Mill | Heavy
Rotary Table | Normal
Lumber & Wood products
Band saw | Heavy
Chipper | Heavy
Circular Saw | Normal
Debarker | Normal
Edge | Normal
Hydraulic Power Pack | Normal
Planer | Normal
Sander | Normal

NB!:

The above start current requirements are typical and appropriate in most circumstances. However, start torque requirements and performance of motors and machines does vary. Please contact Danfoss if the application requires duties other than listed in this manual.
Typical Applications

MCD 200 soft starters can offer benefits for almost all motor starting applications. Typical advantages are highlighted in the table below.

<table>
<thead>
<tr>
<th>Application</th>
<th>Benefits</th>
</tr>
</thead>
</table>
| **Pumps** | - Minimised hydraulic shock in pipelines during start and stop.
- Reduced starting current.
- Minimised mechanical stress on motor shaft.
- Phase rotation protection prevents damage from reverse pump rotation. |
| **Conveyor Belts** | - Controlled soft start without mechanical shocks, e.g. bottles on a belt do not fall over during starting, minimised belt stretch, reduced counter balance stress.
- Controlled stop without mechanical shocks. Soft stop.
- Optimum soft start performance even with varying starting loads, e.g. coal conveyors started loaded or unloaded.
- Extended mechanical lifetime.
- Maintenance-free. |
| **Centrifuges** | - Smooth application of torque prevents mechanical stress.
- Reduced starting times over star/delta starting. |
| **Ski Lifts** | - Jerk free acceleration increases skier comfort and prevents swinging T-bars etc.
- Reduced starting current allows starting of large motors on a weak power supply.
- Smooth and gradual acceleration whether the ski lift is lightly or heavily loaded.
- Phase rotation protection prevents operation in reverse direction. |

Power Factor Correction

If a soft starter is used with static power factor correction it must be connected to the supply side of the starter.

Connecting power factor correction capacitors to the output of the soft starter will result in damage to the soft starter.