

MAKING MODERN LIVING POSSIBLE

PVED-CLS Controller
For Electrohydraulic
Steering

KWP2000 protocol specification

Boot-loader version 3.81, 3.82,
3.85

MAKING MODERN LIVING POSSIBLE

 Revisions and references

Revision history

Date Change Revision

16 Jan 2014 Danfoss user documentation template.
This document is valid for PVED-CLS application software version 1.72 and later versions.

1.70

12 Aug 2014 Section 1.9 and 1.10 are added.
The boot-node ID can be set in the range 00-FEh
The KWP2000 protocol will reply to the master node ID

1.71

24 Nov 2014 Information about the boot-loader software version is added to the front page.
Section on safety parameterization is added in section 12.

1.72

15 Dec 2014 Checked for compatibility with bootloader 3.82 1.73

27 Jan 2015 Memory address ranges in Section 11 is corrected for checksum calculation purposes. 1.74

07 Apr 2015 Selection between KWP2000 frame padding mode and DLC optimized mode (ISO-15765-2) is added in
section 1.11.

1.75

10 June 2016 Examples section elaborated to include normal and failure scenarios of downloading of EEPROM
parameters (single, block), Code and Bootloader
Errata Section added.

1.76

22 Sept 2016 Security access section updated for sending fixed key and using safe parametrization as security
mechanism.
Warning added in Request download routine in case of write to EEPROM 0x0h or 0x1 h address location

1.77

Document references

Literature

PVED-CLS communication protocol, L1425546.

Definitions and Abbreviations

CAN Controller Area Network
EH 1. electro-hydraulic

2. specific type of electro-hydraulic valves
ISO International Organization for Standardization
ISOBUS agriculture industry specific communication protocol based on J1939; standardized as ISO 11783
J1939 vehicle bus standard defined by the Society of Automotive Engineers (SAE)
KWP2000 Keyword Protocol 2000, a communication protocol used for on-board vehicle diagnostic systems;

standardized as ISO 14230
NOR Nordborg, Denmark
PGN Parameter Group Number – identifier defined by the J1939 communication standard
PVED Proportional Valve Electronic Digital
PVED-CLS a special type of PVED S5 developed for steering applications
S5 Series-5
SEHS Safe EH Steering
U8 8-bit long unsigned data type
U16 16-bit long unsigned data type
XID extended message identifier
PAE Product Application Engineer
SW Software
PAE Product Application Engineer
LSB Least Significant Byte
MSB Most Significant Byte
NSB Next Significant Byte
PCI Protocol Control Information

MAKING MODERN LIVING POSSIBLE

Copyright notice

MAKING MODERN LIVING POSSIBLE

Table of Contents
IEH

 GENERAL INFORMATION ... 6

1.1 KWP2000 feature overview ...6

 ERRATA INFORMATION ... 7

 BOOT-LOADER MODE AND APPLICATION-MODE INTERACTION 8

1.2 Power-up ...9
1.3 Boot-loader mode ..9
1.4 Application mode ..9
1.5 Overview of available KWP2000 services.. 10

 NOT FULLY SUPPORTED SERVICES .. 10

1.6 Security access ... 10

 11 BIT AND 29 BIT ADDRESSING MODE .. 10

 ADDRESS ASSIGNMENT OF BOOT NODE-IDS ... 10

1.7 11 bit Identifier format ... 10
1.8 29 bit Identifier format ... 11
1.9 Node number range ... 11
1.10 Single session single Node ID .. 11
1.11 Frame padding mode / Optimized DLC mode .. 11

 BAUD RATE ... 12

 PROTOCOL DEFINITION OF THE BOOT-LOADER DATA TELEGRAM............................ 13

 THE SINGLE FRAME COMMUNICATION ... 13

 THE MULTI-MESSAGE COMMUNICATION ... 14

 SUPPORTED SERVICES ... 17

11.1 SI = 10HEX Start_Diagnostic_Session .. 17
11.2 SI = 1A HEX Read_ECU_Identification ... 19
11.3 SI = 20 HEX Stop_Diagnostic_Session ... 20
11.4 SI = 21HEX Request_Service_ID ... 21
11.5 SI = 27HEX Security_Access ... 22
11.6 SI = 31HEX Start_Routine_By_Local_Identifier/ Erase_Flash .. 23
11.7 SI = 31HEX Start_Routine_By_Local_Identifier/ Compare_Checksum 24
11.8 SI = 33HEX Request_Routine_Results_By_Local_Identifier/Erase_flash 25
11.9 SI = 33HEX Request_Routine_Results_By_Local_Id/Compare_Checksum 26
11.10 SI = 34HEX Request_Download/Write ... 27
11.11 SI = 35HEX Request_Upload/Read .. 28
11.12 SI = 36HEX Transfer_Data/Read .. 29
11.13 SI = 36HEX Transfer_Data/Write ... 30

Page | 5

MAKING MODERN LIVING POSSIBLE

11.14 SI = 37HEX Request_Transfer_Exit / Write ... 31

 SAFE PARAMETERIZATION – DIVERSE PARAMETER DATA UPLOAD 32

 EXAMPLES .. 33

13.1 Example 1a-Successfull Setting of Single Parameter in Main with Sector and

Signature CRC. .. 33
13.2 Example 1b-Failure During Setting of Single Parameter in Main with Sector and

Signature CRC. .. 35
13.3 Example 2a-Successfull Setting of parameter data block to the main micro-

controller. .. 37
13.4 Example 2b-Failure During Setting of parameter data block to the main micro-

controller. .. 39
13.5 Example 3a: Successful Downloading Application code to the main micro-controller41
13.6 Example 3b: Failure during Downloading application code to the main micro-

controller ... 43
13.7 Example 4a: Sucessfull Downloading Boot code to the main micro-controller 45
13.8 Example 4b: Failure during Downloading Boot code to the main micro-controller 47
13.9 Example 5: Multiple nodes access to PVED-CLS ... 49
13.10 Example 6: Using Official Main Binary (.bios) files for flashing code over KWP. 49

 ERROR CODES ... 51

 FLASHING PROCESS .. 52

 PLUS+1 SERVICE TOOL PROTOCOL SUPPORT .. 53

Page | 6

MAKING MODERN LIVING POSSIBLE

 General information
The purpose of this document is to describe the KWP2000 protocol and features which are available in the PVED-
CLS. The boot-loader software enables the PVED-CLS to be programmed with program (application software) and
data content (parameters) via the CAN bus. The boot-loader software can also be re-programmed if needed.
The main and the safety controller shall be individually programmed via separate boot node IDs.

The following data and software components can read and/or written over the CAN bus:

 Application (flash memory)

 Boot-loader (flash memory)

 Application parameters (EEPROM)

1.1 KWP2000 FEATURE OVERVIEW

 Switching between application mode and boot-loader mode

 Application- and boot-loader software programming. See the flashing procedure in chapter 15.

 Application parameter programming

 Request ECU identification data (hardware and software)

 11 bit mode or 29 bit mode support

 Use for achieving a CAN-node silent mode

Page | 7

MAKING MODERN LIVING POSSIBLE

 Errata information

The latest errata information is always available on the Danfoss homepage via following link:
HTTP://POWERSOLUTIONS.DANFOSS.COM/PRODUCTS/STEERING/PVED-CLS-INTELLIGENT-STEERING-SUB-SYSTEM/

It contains errata information for:

 PVED-CLS boot loader

 PVED-CLS application

 Documentation

 PLUS+1 Service tool

 Other topics related to the steering system

If further information to any errata is required, contact your nearest Danfoss Product Application Engineer

Attention

The system integrator and/or responsible for the target system is advised to periodically

observe the errata information as new information will be added as needed.

http://powersolutions.danfoss.com/products/steering/pved-cls-intelligent-steering-sub-system/

Page | 8

MAKING MODERN LIVING POSSIBLE

 Boot-loader mode and Application-mode interaction
Figure 1 shows the relation between boot-loader mode and application mode.

Bootloader

mode

application start

request for

off-road

steering

test completed

and

(no request for service mode)

test completed

and

request for service mode

failure detected

test in progress

request to enter the bootloader

request for

on-road

OSP

steering

bootloader lock

or no application

available

power-up

Safety switch: OFF

Power to the cut-off valve: OFF

Main spool: Mechanical neutral position

Safety switch: ON (request: ON/OFF)

Power to the cut-off valve: ON (request: ON/OFF)

Main spool: Neutral position (request: any position)

Safety switch: OFF

Power to the cut-off valve: OFF

Main spool: Mechanical neutral position

Safety switch: OFF

Power to the cut-off valve: OFF

Main spool: Mechanical neutral position

Service
Application

power-up

test

On-road

OSP

steering

Safety switch: ON (request: ON/OFF)

Power to the cut-off valve: ON (request: ON/OFF)

Main spool: Calculated position or mechanical

neutral position

Safe

state

Off-road

steering

request for

on-road OSP

steering

request for

off-road

steering

Safety switch: OFF

Power to the cut-off valve: OFF

Main spool: Mechanical neutral position

Application mode

Figure 1 Boot- and Application mode interaction

Page | 9

MAKING MODERN LIVING POSSIBLE

1.2 POWER-UP
The software enters boot-loader at power-up and checks if valid software is installed. If no valid application software
is installed, the PVED-CLS will remain in boot-loader mode.

The boot-loader waits 50ms for a StartDiagnosticSession request before a transition to Application mode takes place.
The 50ms time window enables a user to force the PVED-CLS in boot-loader mode immediately after power-up and
thus avoiding starting the application software.

1.3 BOOT-LOADER MODE
See section 1.5.

1.4 APPLICATION MODE
On transition from boot-loader mode, the application software will begin to execute. The user can request a
transition from application mode back to boot-loader mode at any time by means of the StartDiagnosticSession
service. Refer to PVED-CLS communication protocol, L1425546 for more information on application mode and
application communication protocol.

Page | 10

MAKING MODERN LIVING POSSIBLE

1.5 OVERVIEW OF AVAILABLE KWP2000 SERVICES
Table 1 shows the availability of KWP2000 service in the respective operation mode. The arrows indicate the mode
transition that takes place when a specific service is requested.

Service
Identifier

Command Application
mode

Boot-loader
mode

10 Hex StartDiagnosticSession1) + +

1A Hex ReadECUIdentification + +

20 Hex StopDiagnosticSession1) + +

21 Hex Request Service ID + +

27 Hex Security Access - +

31 Hex StartRoutineByLocalIdentifier / ERASE_FLASH - +

33 Hex RequestRoutineResultsByLocalIdentifier - +

34 Hex RequestDownload-Write - +

35 Hex RequestUpload-Read - +

36 Hex TransferData – Write / Read2) - +

37 Hex RequestTransferExit – Write / Read2) - +

31 Hex StartRoutineByLocalIdentifier/COMPARE_CHECKSUM - +
Table 1Available KWP2000 services

1) These commands also serve for switching between normal and programming modes and can be used for soft-
resetting the PVED-CLS.
2) Whether Write or Read is to be used, depends on the preceding command (34 Hex or 35 Hex).

 Not fully supported services

1.6 SECURITY ACCESS
The PVED-CLS is prepared for security access to support secure sessions between the PVED-CLS and a service tool.
The security access service is not fully supported.
A constant key shall be issued prior to accessing parameters
There is no need to request a seed first. Please refer to chapter 11.5 for more information.

 11 bit and 29 bit addressing mode
The PVED-CLS responds to KWP2000 messages in both 11bit and 29bit mode. It auto-detects the format and
continues the operation with the detected message ID format. The two modes should not be mixed during a session.

 Address assignment of boot node-IDs
In boot-loader mode the PVED-CLS controllers are addressed by their boot node-IDs. The boot-node ID used for
KWP2000 sessions and the application node IDs (J1939 source addresses) are programmed via independent
parameters. It is possible to set the boot-node ID equal to the application source address.
The address assignment of the nodes is defined in the CAN identifier as follows.

1.7 11 BIT IDENTIFIER FORMAT

CAN ID 101 XXXX XXX Y Description

Y Y = 0 Request from programming device

 Y= 1 Response from PVED-CLS

 XXXX XXX ECU addressing space

Using this assignment method guarantees that all CAN Identifiers are in the 5xxHex range.
The boot node-ID of the ECUs is assigned as follows:

Boot Node ID Request MSG-ID Response MSG-ID ECU

20 Hex 540Hex 541Hex PVED-CLS # main channel

21 Hex 542Hex 543Hex PVED-CLS # safety channel

00 Hex – EF Hex Address range by parameter setting. The value 7F Hex must not be used.

Page | 11

MAKING MODERN LIVING POSSIBLE

The boot node-ID can be changed via parameter P3 in both main and safety micro-controller.

1.8 29 BIT IDENTIFIER FORMAT
Services with extended (29bit) addressing in Normal Fixed Addressing mode (ISO 15765-2).

Message CAN identifier

Extended GLOBAL_MSG_ID 18DB32YY Hex

YY: Master ID

Extended RX_MSG_ID 18DAXXYY Hex

XX: Boot node ID of PVED-CLS
YY: Master ID

Extended TX_MSG_ID 18DAYYXX Hex

XX: Boot node ID of PVED-CLS
YY: Master ID

The message ID has priority 6.

1.9 NODE NUMBER RANGE
The default addresses (node number) of the ECUs are assigned as follows:

Boot Node ID Request MSG-ID Response MSG-ID ECU

20 Hex 18DA20F1Hex 18DAF120Hex Steering valve controller, main controller

21 Hex 18DA21F1Hex 18DAF121Hex Steering valve controller, safety controller

00 Hex – EF Hex Address range by parameter setting (P0003)

The boot node-ID can be changed via parameter P0003 in both main and safety micro-controller. Please note that not
all node numbers are valid per ISO 15765 and J1939.
The PVED-CLS replies to any master ID except the boot-node IDs already assigned to the main and safety controller.

1.10 SINGLE SESSION SINGLE NODE ID
The PVED-CLS does not support replying back to more masters in the same session. A session must be finished
before another master can access the PVED-CLS. The PVED-CLS will memorize the master’s node ID and reply to this
address. Requests from other masters are ignored and will not be processed until a new session begins. To start new
session stop diagnostics from active master and start diagnostics from the new desired master ECU.
It is not possible to query the PVED-CLS for any ongoing sessions. Refer examples 13.9 for behavior.

1.11 FRAME PADDING MODE / OPTIMIZED DLC MODE
This functionality is available from software version 1.93.
The KWP2000 protocol (ISO-15765-2) allows the use of two different message lengths; a fixed message length (frame
padding with DLC=8) and an optimized DLC where the message length is adapted to the number of transmitted data
bytes.

P13 Parameter value PVED-CLS functionality

0 (default) Optimized DLC mode.
The message DLC field of received messages is checked
against the received number of data bytes.

Transmitted KWP2000 messages have DLC set to the
number of transmitted bytes.

255 Frame padding mode.
The DLC field for incoming messages is ignored.

All transmitted KWP2000 messages have DLC set to 8
and unused bytes set/padded to FFHex.

Page | 12

MAKING MODERN LIVING POSSIBLE

Frame padding may result in reduced software complexity in interfacing nodes but can lead to a slightly higher bus-
load when larger data chunks are transferred. For further information refer to ISO-15765-2.

ATTENTION! Unintended wrong setting of P13 may lead to deadlocks where the configuration tool may not be able
to communicate with the PVED-CLS. In this situation use the PLUS+1 service tool to reset P13 to the correct value.

 Baud rate
250K is the default baud rate used by the system.
The initial Baud Rate can be selected via parameter P5 in both micro-controllers respectively.

ATTENTION!
The boot-loader Software supports 125K, 250K and 1Mbps CAN baud rate. It is recommended always to use
250Kbaud to minimize the complexity of ensuring that other CAN node will tolerate a new baud rate.

Page | 13

MAKING MODERN LIVING POSSIBLE

 Protocol definition of the boot-loader data telegram
During the downloading task, larger volumes of data must be transmitted via the CAN bus than is possible with a
CAN message, which is limited to 8 data bytes. To bypass this limitation, a data communication layer is set up over
CAN layer 2 when programming. Following is a description of two different methods for transporting data on the
CAN bus.

The following methods are defined for both cases:
For small data volume less than 8 bytes the single frame method
For data volume up to 4095 bytes the multi-message method
Following is an explanation of both of these methods.

 The single frame communication
This method is relatively simple, since the data volume can be transmitted within a CAN message without a problem
and a controlled transmission over several subsequent messages is not necessary.
The procedure is shown below.

SingleFrame(SF)[(PCI.DL=2,xx..]

DataLength = 2

DL=$2

Sender Receiver

DataLength = 2, DL=$2;

Frame Type
PCI

Byte #1 Byte #2 Byte #3 Byte #4 Byte #5 Byte #6 Byte #7 Byte #8

PCI name 7 6 5 4 3 2 1 0

SingleFrame (SF) 0 DL DATA-0 DATA-1 DATA-2 DATA-3 DATA-4 DATA-5 DATA-6
DL is the frame data length.

Page | 14

MAKING MODERN LIVING POSSIBLE

 The multi-message communication
If more than 7 bytes are to be transmitted, the data volume must be distributed over several messages that are sent
one after another. At the same time, the receiver has the opportunity to influence the time interval of the telegrams
and to inform the sender about the successful or unsuccessful progress of the block transfer. This is done via a so-
called “flow control” data telegram.
The following CAN message types have been defined:

First Frame (FF)

Frame Type
PCI

Byte #1 Byte #2 Byte #3 Byte #4 Byte #5 Byte #6 Byte #7 Byte #8

PCI name 7 6 5 4 3 2 1 0

First Frame 1 DL-H DL-L DATA-0 DATA-1 DATA-2 DATA-3 DATA-4 DATA-5

Consecutive Frame (CF)

Frame Type
PCI

Byte #1 Byte #2 Byte #3 Byte #4 Byte #5 Byte #6 Byte #7 Byte #8

PCI name 7 6 5 4 3 2 1 0

Consecutive Frame 2 SN DATA-0 DATA-1 DATA-2 DATA-3 DATA-4 DATA-5 DATA-6

Flow Control Frame (FC)

Frame Type
PCI

Byte #1 Byte #2 Byte #3 Byte #4 Byte #5 Byte #6 Byte #7 Byte #8

PCI name 7 6 5 4 3 2 1 0

Flow Control Frame 3 FS BS-Max SP-Min NA

DL-H = Frame Data Length High
DL-L = Frame Data Length Low
SN = Sequence Number
FS = Flow Status
BS-Max = Max Block size
SP-Min = Min Seperation Time

The “FirstFrame“ (FF) communicates the total number of bytes that belong to the transmission to the sender and
already contains the first bytes of the data volume. The rest of the data is transmitted to the receiver via a series of
„ConsecutiveFrames“ (CF), where a 4-bit message counter serves as a simple data integrity monitor (lost messages).
The receiver coordinates the process with the sender via „FlowControlFrames“ (FC), with which, among other things,
it can inform the sender about its data buffer size (BSMax) and the separation time (in milliseconds) between the
individual CFs that it wants. Furthermore, it can also force termination of data transfer with FC frames.

 DL (Data Length) is the length of the message in bytes (also for block transfer, separated in high byte and low byte).
SF.DL = 0..7 Bytes (SingleFrame.DataLength)
FF.DL = 0..4095 Bytes (FirstFrame.DataLength)

SN (Sequence Number) is the continuous counter for monitoring data integrity. When receiving the next CF, it must
be always be exactly one higher than for the last CF.

FS (Flow Status) = data for controlling data transfer

Page | 15

MAKING MODERN LIVING POSSIBLE

PCI.FC.FS nibble
Description of FlowStatus (FS)

3 2 1 0

0 0 0 0 ClearToSend (CTS) :
This parameter value is sent to the sender to resume message
transmission.
Flow control parameters (BSmax, STmin) shall be taken into account by
the sender only upon reception of the FlowControl.ClearToSend (FC.CTS)
frame that follows the FirstFrame (FF).

0 0 0 1 WaiT (WT) :
This parameter value is sent by the receiver during the reception of a
multiple frame message to inform the sender to pause transmission and
wait for an FC.CTS.

0 0 1 0 RepeatLastMessage(RLM):
This parameter value is sent to the sender to inform that a repeat
transmission of the last CAN-Message is necessary.
With this FC-Message it is possible to avoid broken data chains because of
lost FC- or Acknowledge-Messages
[No more bytes needed in CAN-Message]

BSmax = BlockSize. This value indicates how many CAN telegrams have been sent as CF within one protocol
frame. It can lie between 0..255 bytes If the data volume to be transferred (encoded with DL) is larger
than BSmax*7 (7 data bytes fit in one CF), the data is divided in to (BSmax*7)-sized blocks, which are
transmitted one after the other in blocks, delimited by the FC frames.

Special case: 0 means that the receiver is no longer to perform flow control for the received messages.
STmin = Separation Time which is the interval between two CFs in milliseconds.

Page | 16

MAKING MODERN LIVING POSSIBLE

The multi-message communication procedure is shown in the following schematic:

Sender Receiver

FirstFrame

 DataLength = 36
First 6 Databytes received

 FlowControlFrame
Connection SetUp

Now Receiver is ready to
get 3 CFs with data

CF 1

 Receives CF1-Data
13 Databytes rec.

CF 2

 Receives CF2-Data
20 Databytes rec.

CF 3

 Receives CF3-Data
27 Databytes rec.

 FlowControlFrame
Because SN = BSmax

Sender receives FC,
Receiver is ready to get
next 3 CFs

CF 4

 Receives CF4-Data
34 Databytes rec.

CF 5

 Receives CF5-Data
Only 2 valid Databytes are

in this CF, now all 36
Bytes are received

All Data are sent.

 All Data are received.

FF, PCI.DLhigh=0x00, PCI.DLlow =
0x24, Data...

FC, PCI.BSmax=3, STmin = 0

CF, PCI.SN=1, data...

CF, PCI.SN=2, data...

CF, PCI.SN=3, data...

FC, PCI.BSmax=3, STmin = 0

CF, PCI.SN=4, data...

CF, PCI.SN=5, data...

Page | 17

MAKING MODERN LIVING POSSIBLE

 Supported Services

11.1 SI = 10HEX START_DIAGNOSTIC_SESSION
There are a total of three different memory areas available, which can be differentiated by the DCM entry:

Area: Meaning: Byte address spaces ECU:

1 Application flash Address space 7E0000Hex to 7FBFFFHex

3 Parameter E²PROM Address space 0002 Hex to 1126Hex

4 Boot-loader flash Address space 7EC000Hex to 7EFFFFHex

The following entries are supported by DCM:
DCM_ = 85 Hex ECUProgrammingMode
 Area 1 (application flash) is enabled for programming.
DCM_ = 84 Hex EOLSupplierMode
 Area 3 (Parameter E²PROM) is enabled for programming.
DCM_ = 86 Hex ECUDevelopmentMode
 Area 4 (boot-loader flash is enabled for programming.

This byte can then be followed by 06 Hex. This value, announces a specific network transfer rate, which is then
transferred encoded in the three subsequent bytes (MSB, NSB, LSB).
All data fits in one CAN message, so that a SF can be used here.
The complete message is as follows:

 ID: 101 TTTTTTT0, where TTTTTTT= ECU address
 PCI: 06 Hex (SF, 6 bytes follow at bus speed)
or 02 Hex (SF, 2 bytes follow without bus speed)

 SI: 10 Hex (StartDiagnosticSession)
 DCM: 84 Hex,85 Hex,86 Hex (area)
 06 Hex (specific Baudrate) [optional]
 01 Hex (MSB for 100,000 bits/second) [optional]
 86 Hex (NSB) [optional]
 A0 Hex (LSB) [optional]

The ECU responds to these requests with a positive or negative response:

ATTENTION!
A positive response is output by the boot-loader software after switching from normal mode to programming mode.
This ensures that the end-of-line program knows the current status of the ECU.

The positive response is encoded with a SI = 50 Hex so that the message appears as follows:
 ID: 101 TTTTTTT1, where TTTTTTT= ECU address
 PCI: 06 Hex (SF, 6 bytes follow)
 SI: 50 Hex (StartDiagnosticSessionPositiveResponse)
 DCM: 84 Hex, 85 Hex, 86 Hex (ECU mode)
 06 Hex (specific Baudrate) [only if request exists]
 01 Hex (MSB for 100,000 bits/second) [ditto]
 86 Hex (NSB) [ditto]
 A0 Hex (LSB) [ditto]

The negative response is encoded with a SI = 7F Hex, followed by an identifier of the triggered error:
 ID: 101 TTTTTTT1, where TTTTTTT= ECU address
 PCI: 03 Hex (SF, 3 bytes follow)
 SI: 7F Hex (NegativeResponse)
 SDS: 10 Hex (on StartDiagnosticSession-SI)

Page | 18

MAKING MODERN LIVING POSSIBLE

 RC: yy Hex (Error condition)
 yy = 11 Hex: Service not supported
 12 Hex: Function not supported

Note
When in normal mode, the Start Diagnostic Session message must also be able to be used for switching an ECU into
programming mode. To prevent error conditions on the CAN bus, the following must be considered:

1. The CAN bus speed which must be signaled in the Start Diagnostic Session message.

2. If a new bus speed is specified in program mode (boot-loader active), the response message to this
command is output at the same speed Start Diagnostic Session message but subsequent messages are
transmitted at the requested CAN bus speed.

3. Switching bus speed is only possible if a point-to-point connection exists or all other bus nodes are fully

passive on the CAN bus, i.e. they also do not generate acknowledge or error frames.

4. If a new boot-loader software is downloaded in programming mode (boot-loader active), a software reset
must be carried out after successful data transmission (checksum OK). After the new boot-loader software
has been activated, the ECU returns a positive response with DCM=85.

Page | 19

MAKING MODERN LIVING POSSIBLE

11.2 SI = 1A HEX READ_ECU_IDENTIFICATION
In response to this message, the ECU that has been addressed sends data about its identification depending on the
Identification Option (IO). The following Identification Options (IO) are defined:

IO Description
Max. length

(Bytes)
Memory Format Generated by Function

87 Hex SW-Version (boot loader) 39
FLASH

ASCII
Boot loader SW identification boot loader

99 Hex Program date (boot loader) 3 BCD-cod.

8F Hex SW version (application) 39
FLASH

ASCII
Application SW identification application

90 Hex Program date (application) 3 BCD-cod.

ATTENTION!
ECU identification must be able to be carried out in normal as well as programming mode.
A positive response is transferred as SF or FF/CF sequence, depending on IO-number and the resulting data length:
 ID: 101 TTTTTTT1, where TTTTTTT= ECU address
 PCI: 0x?? (SF/FF)
 SI: 5A Hex (PositiveResponse)
 IO: 87 Hex, 99 Hex, 8F Hex, 90 Hex,… (requested value)
 Data ... (all data corresponding to the IO value)

A negative response appears as follows:
 ID: 101 TTTTTTT1, where TTTTTTT= ECU address
 PCI: 03 Hex (SF, 3 bytes follow)
 SI: 7F Hex (NegativeResponse)
 SDS: 1A Hex (on ReadECUIdentification-SI)
 RC: yy Hex (Error condition)
 yy = 11 Hex: Service not supported
 12 Hex: Function is not supported

Example
18DA20F1Hex = programming device message ID, 18DAF120Hex =PVED-CLS main controller message ID.

MSG ID DLC Data (hex) Time stamp Comment
18DA20F1X 3 02 1A 87 4237.764580 R Request ECU identification. 87h = boot-loader SW version.
18DAF120 X 8 10 29 5A 87 42 4F 4F 54 4237.765150 R PCI.DL = 29h (41 bytes). SI = 5Ah (pos response). IO = 87h
 Data = 42h, 4Fh, 4F, 54h
18DA20F1 X 3 30 03 00 4237.766240 R Flow control frame. FS=0h. Max block size = 3

Minimum separation time = 0.
18DAF120 X 8 21 5F 43 4C 53 2D 5F 4D 4237.766820 R Consecutive frame. Sequence no = 1
 Data = 5Fh, 43h, 4Ch, 53h, 2Dh, 5Fh, 4Dh
18DAF120 X 8 22 5F 52 33 37 30 5F 4B 4237.767390 R Consecutive frame. Sequence no = 2
 Data = 5Fh, 52h, 33h, 37h, 30h, 5Fh, 4Bh
18DAF120 X 8 23 57 50 32 30 30 30 2D 4237.767970 R Consecutive frame. Sequence no = 3
 Data = 5Fh, 52h, 33h, 37h, 30h, 5Fh, 4Bh
18DA20F1 X 3 30 03 00 4237.769310 R Flow control frame. FS=0h. Max block size = 3

Minimum separation time = 0.
18DAF120 X 8 24 5F 30 30 30 30 30 30 4237.769890 R Consecutive frame. Sequence no = 4.
 Data = 5Fh, 30h, 30h, 30h, 30h, 30h, 30h
18DAF120 X 8 25 30 30 5F 2D 72 72 72 4237.770460 R Consecutive frame. Sequence no = 5
 Data = 30h, 30h, 5Fh, 2Dh, 72h, 72h, 72h
 The 41 bytes represents the character string:

“BOOT_CLS-_M_R370_KWP2000-_00000000_-rrr”
18DA20F1 X 3 02 1A 99 4237.864480 R Request ECU identification. 99h = boot-loader SW date
18DAF120 X 6 05 5A 99 07 26 13 4237.864990 R The data represents the date “072613” (26 July 2013)
18DA20F1 X 3 02 1A 8F 4237.964450 R Request ECU identification. 8Fh = Application SW version
18DAF120 X 8 10 29 5A 8F 41 50 50 2D 4237.965020 R
18DA20F1 X 3 30 03 00 4237.966110 R
18DAF120 X 8 21 5F 43 4C 53 2D 5F 4D 4237.966690 R
18DAF120 X 8 22 5F 50 31 37 32 5F 53 4237.967260 R
18DAF120 X 8 23 45 48 53 2D 2D 2D 2D 4237.967780 R
18DA20F1 X 3 30 03 00 4237.969250 R
18DAF120 X 8 24 5F 30 30 30 30 30 30 4237.969820 R The transmitted bytes represents the character string:
18DAF120 X 8 25 30 30 5F 2D 72 72 72 4237.970400 R “APP-_CLS-_M_P172_SEHS----_00000000_-rrr”
18DA20F1 X 3 02 1A 90 4238.064610 R Request ECU identification. 8Fh = Application date

Page | 20

MAKING MODERN LIVING POSSIBLE

18DAF120 X 6 05 5A 90 13 01 14 4238.065120 R The data represents the date “130114” (13 Jan 2014)

11.3 SI = 20 HEX STOP_DIAGNOSTIC_SESSION
In response to this message, the ECU that has been addressed terminates the programming mode and returns to
normal mode (application mode).

The message is encoded as follows:
 ID: 101 TTTTTTT0, where TTTTTTT= ECU address
 PCI: 01 Hex (SF, 1 byte follows)
 SI: 20 Hex (ECUReset)

A positive response appears as follows:
 ID: 101 TTTTTTT1, where TTTTTTT= ECU address
 PCI: 01 Hex (SF, 1 byte follows)
 SI: 60 Hex (StopDiagnosticSessionPositiveResponse)

A negative response appears as follows:
 ID: 101 TTTTTTT1, where TTTTTTT= ECU address
 PCI: 03 Hex (SF, 3 further bytes follow)
 SI: 7F Hex (NegativeResponse)
 SDS: 20 Hex (on StopDiagnosticSession-SI)
 RC: yy Hex (Error condition)
 yy = 11 Hex: Service not supported
 14 Hex: Data length error

ATTENTION:

1. If the ECU is in programming mode (boot-loader active), the positive response is output by the firmware
after switching over to normal mode. This ensures that the end-of-line program knows the current mode
(programming, normal mode).

2. If the ECU is already in normal mode, a positive response is still output.

Page | 21

MAKING MODERN LIVING POSSIBLE

11.4 SI = 21HEX REQUEST_SERVICE_ID
Request for LocalID. The command will trigger the PVED-CLS main and safety controller to send out their boot node
IDs. The service is present in both normal mode and in boot-loader mode.
ATTENTION:
This service is only possible via the fixed CAN-ID 5FEHEX.
 ID: 101 11111110
 PCI: 02 Hex (SF, 2 further bytes follow)
 SI: 21 Hex (Request Service ID)
 LI: FA Hex (LocalID)

A positive response to this command appears as follows:
 ID: 101 TTTTTTT1, where TTTTTTT= ECU address
 PCI: 03 Hex (SF, 3 further bytes follow)
 SI: 61 Hex (PositiveResponse-SI)
 LI: FA Hex (LocalID)
 02 Hex value

A negative response to this command appears as follows:
 ID: 101 TTTTTTT1, where TTTTTTT= ECU address
 PCI: 03 Hex (SF, 3 further bytes follow)
 SI: 7F Hex (NegativeResponse)
 SDS: 21 Hex (RequestServiceID-SI)
 RC: yy Hex (Error condition)
 yy = 11 Hex: Service not supported

12 Hex: Function is not supported
 22 Hex: Incorrect conditions

Example
18DB32F1Hex = programming device message ID.
MSG ID DLC Data (hex) Time stamp Comment
18DB32F1 X 3 02 21 FA 13222.321380 R Request Service ID from programming device
18DAF120 X 4 03 61 FA 20 13222.321820 R Positive response from PVED-CLS main controller
18DAF121 X 4 03 61 FA 21 13222.324000 R Positive response from PVED-CLS safety controller

Page | 22

MAKING MODERN LIVING POSSIBLE

11.5 SI = 27HEX SECURITY_ACCESS
This service comprises two services – ‘Get Seed’ and ‘Send Key’ as described below.
Get Seed
This service is used to get security access seed from the PVED-CLS.
 ID: 101 TTTTTTT0, where TTTTTTT= ECU address
 PCI: 0x02 (SF - 2 Bytes follow)
 SI: 0x27 (RequestTransferExit)
 LID: 0x01 (Get security Seed)

A positive response to this command appears as follows:
ID: 101 TTTTTTT1, where TTTTTTT= ECU address
PCI: 0x06 (SF, 6 further byte follows)
SI: 0x67 (RequestTransferExit-PositiveResponse-SI)

A negative response to this command appears as follows:

ID: 101 TTTTTTT1, where TTTTTTT= ECU address
PCI: 0x03 (SF, 3 further bytes follow)
SI: 0x7F (NegativeResponse)
SDS: 0x27 (on RequestTransferExit -SI)
RC: 0xyy (Error condition)

yy = 0x11: Service not supported

Send Key
This Service is used to send security Key to ECU.
 ID: 101 TTTTTTT0, where TTTTTTT= ECU address
 PCI: 0x06 (SF, 2 byte follows)

 SI: 0x27 (RequestTransferExit)
 LID: 0x02 (Send Security Key)

 Key: 00, 00, 00, 00

A positive response to this command appears as follows:

ID: 101 TTTTTTT1, where TTTTTTT= ECU address
PCI: 0x02 (SF, 2 further byte follows)
SI: 0x67 (RequestTransferExit-PositiveResponse-SI)

A negative response to this command appears as follows:

ID: 101 TTTTTTT1, where TTTTTTT= ECU address
PCI: 0x03 (SF, 3 further bytes follow)
SI: 0x7F (NegativeResponse)
SDS: 0x27 (on RequestTransferExit -SI)
RC: 0xyy (Error condition)

 Yy = 0x11: Service not supported

NOTE: The PVED-CLS does not fully support security access. The security access is covered by Safe Parametrization
Section 12

Page | 23

MAKING MODERN LIVING POSSIBLE

11.6 SI = 31HEX START_ROUTINE_BY_LOCAL_IDENTIFIER/ ERASE_FLASH
In response to this message, specific functions for flash programming are called. Which function will be executed is
defined by the LocalIdentifier:

LI = 02 Hex Start Erase Flash
Erasing of transmitted flash space starts. This command is sent in the following format:
 ID: 101 TTTTTTT0, where TTTTTTT= ECU address
 PCI: 10 Hex 08 (FF, 8 further bytes follow)
 SI: 31 Hex (StartRoutineByLocalIdentifier)
 LI: 02 Hex (Erase Flash)
 sa Hex (MSB start address)
 sa Hex (NSB start address)
 sa Hex (LSB start address)
 ea Hex (MSB end address)
 ea Hex (NSB end address)
 ea Hex (LSB end address)

A positive response to this command appears as follows:
 ID: 101 TTTTTTT1, where TTTTTTT= ECU address
 PCI: 02 Hex (SF, 2 further bytes follow)
 SI: 71 Hex (PositiveResponse-SI)
 LI: 02 Hex (Erase Flash)

A negative response to this command appears as follows:
 ID: 101 TTTTTTT1, where TTTTTTT= ECU address
 PCI: 03 Hex (SF, 3 further bytes follow)
 SI: 7F Hex (NegativeResponse)
 SDS: 31 Hex (on StartRoutineByLocalIdentifier-SI)
 RC: yy Hex (Error condition)
 yy = 11 Hex: Service not supported

12 Hex: Function is not supported
 42 Hex: Invalid address
Note
Since erasing the flash can take quite some time, it is possible to check the termination of the process using the
following service Request_Routine_Results_by_Local_Identifer.

Page | 24

MAKING MODERN LIVING POSSIBLE

11.7 SI = 31HEX START_ROUTINE_BY_LOCAL_IDENTIFIER/ COMPARE_CHECKSUM
In response to this message, specific functions for flash or eeprom programming are called. Which function will be
executed is defined by the LocalIdentifier: LI = 01 Hex CompareChecksum

The calculation of checksums is started via the specified memory areas. This command is sent in the
following format:

ID: 101 TTTTTTT0, where TTTTTTT= ECU address
PCI: 0x100A (FF/CF, 10 further bytes follow)
SI: 0x31 (StartRoutineByLocalIdentifier)
LI: 0x01 (CompareChecksum)

 0xsa (MSB start address)
 0xsa (NSB start address)
 0xsa (LSB start address)
 0xsa (MSB end address)
 0xsa (NSB end address)
 0xsa (LSB end address)
 0xcs (MSB expected checksum)
 0xcs (LSB expected checksum)

A positive response to this command appears as follows:

ID: 101 TTTTTTT1, where TTTTTTT= ECU address
PCI: 0x02 (SF, 2 further bytes follow)
SI: 0x71 (PositiveResponse-SI)
LI: 0x01 (on CompareChecksum)

A negative response to this command appears as follows:

ID: 101 TTTTTTT1, where TTTTTTT= ECU address
PCI: 0x03 (SF, 3 further bytes follow)
SI: 0x7F (NegativeResponse)
SDS: 0x31 (on StartRoutineByLocalIdentifier-SI)
RC: 0xyy (Error condition)

yy = 0x11: Service not supported
0x12: Function is not supported
0x33: Security access error

Note
The checksum is formed as a sum[modulo16] of the byte-wise addition of the transmitted data values.
The result of the checksum comparison shall be queried with the
Request_Routine_Results_by_Local_Identifer service.

Page | 25

MAKING MODERN LIVING POSSIBLE

11.8 SI = 33HEX REQUEST_ROUTINE_RESULTS_BY_LOCAL_IDENTIFIER/ERASE_FLASH
Request the results of the routine. This is transmitted in a CAN message as follows:
 ID: 101 TTTTTTT0, where TTTTTTT= ECU address
 PCI: 0x02 (SF, 2 further bytes follow)
 SI: 0x33 (RequestRoutineResultsByLocalIdentifier)
 LI: 0x02 (Erase Flash)

A positive response to this command appears as follows:
 ID: 101 TTTTTTT1, where TTTTTTT= ECU address
 PCI: 0x02 (SF, 2 further bytes follow)
 SI: 0x73 (RequestRoutineResults_PositiveResponse-SI)
 LI: 0x02 (Erase Flash)

A negative response to this command appears as follows:
 ID: 101 TTTTTTT1, where TTTTTTT= ECU address
 PCI: 0x03 (SF, 3 further bytes follow)
 SI: 0x7F (NegativeResponse)
 SDS: 0x33 (on RequestRoutineResultsByLocalIdentifier -SI)
 RC: 0xyy (Error condition)
 yy = 0x11: Service not supported

0x12: Function is not supported
 0xFD: Error on Erasing

Page | 26

MAKING MODERN LIVING POSSIBLE

11.9 SI = 33HEX REQUEST_ROUTINE_RESULTS_BY_LOCAL_ID/COMPARE_CHECKSUM
See section 11 for information on the address ranges for checksum calculations.

Requests the results of the routine. This is transmitted in a CAN message as follows:

ID: 101 TTTTTTT0, where TTTTTTT= ECU address
PCI: 0x02 (SF, 2 further bytes follow)
SI: 0x33 (RequestRoutineResultsByLocalIdentifier)
LI: 0x01 (CompareChecksum)

A positive response to this command appears as follows:

ID: 101 TTTTTTT1, where TTTTTTT= ECU address
PCI: 0x02 (SF, 2 further bytes follow)
SI: 0x73 (RequestRoutineResults_PositiveResponse-SI)
LI: 0x01 (CompareChecksum)

A negative response to this command appears as follows:

ID: 101 TTTTTTT1, where TTTTTTT= ECU address
PCI: 0x03 (SF, 3 further bytes follow)
SI: 0x7F (NegativeResponse)
SDS: 0x33 (on RequestRoutineResultsByLocalIdentifier -SI)
RC: 0xyy (Error condition)

yy = 0xFA: Checksum Error

Page | 27

MAKING MODERN LIVING POSSIBLE

11.10 SI = 34HEX REQUEST_DOWNLOAD/WRITE
This message prepares data transfer into flash or EEPROM.
 ID: 101 TTTTTTT0, where TTTTTTT= ECU address
 PCI: 0x1008 (FF, 8 further bytes follow)
 SI: 0x34 (RequestDownload)
 0xsa (MSB start address)
 0xsa (NSB start address)
 0xsa (LSB start address)
 0x00 = uncompressed data
 0xea (MSB memory size)
 0xea (NSB memory size)
 0xea (LSB memory size)
Memory size = total number of bytes that are to be transferred in this download
A positive response to this command appears as follows:
 ID: 101 TTTTTTT1, where TTTTTTT= ECU address
 PCI: 0x02 (SF, 2 further bytes follow)
 SI: 0x74 (RequestDownload-PositiveResponse-SI)
 LI: 0xyy (yy = maximum number of bytes that can be transferred in a block)

A negative response to this command appears as follows:
 ID: 101 TTTTTTT1, where TTTTTTT= ECU address
 PCI: 0x03 (SF, 3 further bytes follow)
 SI: 0x7F (NegativeResponse)
 SDS: 0x34 (on RequestDownload -SI)
 RC: 0xyy (Error condition)
 yy = 0x11: Service not supported

0x12: Function is not supported
0x13: Time-out (300 ms)
0x22: Conditions not correct

 0x33: Security access denied
 0x42: Invalid address

WARNING: Download/Write to EEPROM address location 0x0h and 0x1h leads to destruction of the application
software and PVED-CLS will have to be recovered by forcing bootloader mode directly after boot.

Page | 28

MAKING MODERN LIVING POSSIBLE

11.11 SI = 35HEX REQUEST_UPLOAD/READ
This message prepares to read out the flash or EEPROM.

ID: 101 TTTTTTT0, where TTTTTTT= ECU address
PCI: 0x1008 (FF, 8 further bytes follow)
SI: 0x35 (RequestUpload)

0xsa (MSB start address)
0xsa (NSB start address)
0xsa (LSB start address)
0x00 = uncompressed data
0xea (MSB memory size)
0xea (NSB memory size)
0xea (LSB memory size)
Memory size = total number of bytes that are to be transferred in this download

ATTENTION:
This command is primarily used to read out the data from the EEPROM. For this reason, the transmitted data volume
is low. In the current version, this command only supports block transfers of max. 56 bytes. If a larger number is
requested, a negative response with the identifier 0x43 (Cannot Download number of data) is returned.

A positive response to this command appears as follows:

ID: 101 TTTTTTT1, where TTTTTTT= ECU address
PCI: 0x02 (SF, 2 further bytes follow)
SI: 0x75 (RequestUpload-PositiveResponse-SI)
LI: 0xyy (yy = total number of bytes that are to be transferred in this download)

A negative response to this command appears as follows:

ID: 101 TTTTTTT1, where TTTTTTT= ECU address
PCI: 0x03 (SF, 3 further bytes follow)
SI: 0x7F (NegativeResponse)
SDS: 0x35 (on RequestUpload-SI)
RC: 0xyy (Error condition)

 yy = 0x11: Service not supported
 0x12: Function is not supported
 0x22: Conditions not correct
 0x33: Security access denied
 0x42: Invalid address

If this command was executed with a positive response, the actual data transfer can begin.

Page | 29

MAKING MODERN LIVING POSSIBLE

11.12 SI = 36HEX TRANSFER_DATA/READ
This message transfers data out of the flash or EEPROM.
 ID: 101 TTTTTTT0, where TTTTTTT= ECU address
 PCI: 0x02 (2 Bytes follow)
 SI: 0x36 (Transfer data)
 0x35 (Read data)

Following this request, the ECU sends a positive response, which contains the desired data, or a negative response, if
an error has occurred:

A positive response to this command appears as follows:
 ID: 101 TTTTTTT1, where TTTTTTT= ECU address
 PCI: 0x10[yy+1] (yy is the number of bytes that are transmitted by the ECU in postive
 response to the RequestUpload command)
 SI: 0x76 (TransferData-PositiveResponse-SI)
 yy * Data

A negative response to this command appears as follows:
 ID: 101 TTTTTTT1, where TTTTTTT= ECU address
 PCI: 0x03 (SF, 3 further bytes follow)
 SI: 0x7F (NegativeResponse)
 SDS: 0x36 (on TransferData -SI)
 RC: 0xyy (Error condition)
 yy = 0x11: Service not supported
 0x14: Data length error

0x40: Upload finished
0x42: Invalid address
0x43: Cannot download number of data

When the desired number of data has been sent by the ECU, the command is finished. A further terminating routine
is not necessary here.

Page | 30

MAKING MODERN LIVING POSSIBLE

11.13 SI = 36HEX TRANSFER_DATA/WRITE
This message transfers data into flash or EEPROM.
 ID: 101 TTTTTTT0, where TTTTTTT= ECU address
 PCI: 0x10[yy+1] (yy is the number of bytes that are transferred by the ECU in postive
 response to the RequestDownload command)
 SI: 0x36 (TransferData)
 yy * Data

After each transmitted block, the ECU sends either a positive or negative response.
 A positive response to this command appears as follows:
 ID: 101 TTTTTTT1, where TTTTTTT= ECU address
 PCI: 0x01 (SF, 1 further byte follows)
 SI: 0x76 (TransferData-PositiveResponse-SI)

A negative response to this command appears as follows:
 ID: 101 TTTTTTT1, where TTTTTTT= ECU address
 PCI: 0x03 (SF, 3 further bytes follow)
 SI: 0x7F (NegativeResponse)
 SDS: 0x36 (on TransferData -SI)
 RC: 0xyy (Error condition)
 yy = 0x11: Service not supported
 0x13: Time-out (300 ms)
 0x22: Conditions not correct
 0x33: Security access error
 0x40: Download not accepted (finished or aborted)
 0x43: Cannot Download number of data
 0xFE: ProgrammingError

Page | 31

MAKING MODERN LIVING POSSIBLE

11.14 SI = 37HEX REQUEST_TRANSFER_EXIT / WRITE
This message terminates data transfer into flash or EEPROM.
 ID: 101 TTTTTTT0, where TTTTTTT= ECU address
 PCI: 0x01 (SF, 1 byte follows)
 SI: 0x37 (RequestTransferExit)

A positive response to this command appears as follows:
 ID: 101 TTTTTTT1, where TTTTTTT= ECU address
 PCI: 0x01 (SF, 1 further byte follows)
 SI: 0x77 (RequestTransferExit-PositiveResponse-SI)

A negative response to this command appears as follows:
 ID: 101 TTTTTTT1, where TTTTTTT= ECU address
 PCI: 0x03 (SF, 3 further bytes follow)
 SI: 0x7F (NegativeResponse)
 SDS: 0x37 (on RequestTransferExit -SI)
 RC: 0xyy (Error condition)
 yy = 0x11: Service not supported

Page | 32

MAKING MODERN LIVING POSSIBLE

 Safe parameterization – diverse parameter data upload
The boot-loader software supports a service for reading out parameter data in a diverse manner. Please note that
reading out data diversely does not provide the entire means for achieving safe parameterization. It can however be
used to realize a complete diverse software channel for reading out parameter data. This requires implementing
additional diverse data handling in a service tool.

 The parameter data is only stored once and protected by CRC.

 Diverse parameter data is only available when upload data and is supported in all read services.

 Diverse parameter data is used to enforce a diverse implementation and display method in a service tool.

 Diverse parameter data means bit-wise inverting the parameter data when forming the reply message.

 Safe parameterization is an optional protocol service for uploading data which shall be used if a safe
parameterization method is required.

 The PVED-CLS can be configured without using diverse parameter data upload.

 The boot-loader software will reply “Invalid address” by write attempts to the diverse parameter data
memory.

Normal parameter address space encoding is used for the physical memory address range 0 to 00800000HEX.

Diverse parameter address space encoding is used for the physical memory address range above 00800000HEX
The boot-loader recognizes a request for a diverse parameter upload by the most significant bit in byte two of the
requested address.

Example: Perform a diverse parameter upload of the parameter data at address 1234HEX
The requesting service tool shall issue an upload request for the data at logical eeprom address: 00801234HEX

Page | 33

MAKING MODERN LIVING POSSIBLE

 Examples

13.1 EXAMPLE 1A-SUCCESSFULL SETTING OF SINGLE PARAMETER IN MAIN WITH SECTOR AND SIGNATURE CRC.

This example describes a safe downloading procedure for a single parameter data to EEPROM to Main microcontroller. The procedure is similar for the safety controller
except for the boot node id.

MSG ID DLC Data(Hex) Time Stamp Comments

Start Diagnostics, Main Microcontroller
18DA20F0 X 3 02 10 84 3666.618320 T Start diagnostic session on main controller. DCM = 84h

(enable eeprom programming)
 18DAF020 X 3 02 50 84 3666.618710 R Positive response from main controller

Security Access

 18DA20F0 X 3 02 27 01 3666.718230 T Security access - GetSeed
 18DAF020 X 7 06 67 01 22 46 00 EC 3666.718800 R Positive response. On Security access – GetSeed.
 18DA20F0 X 7 06 27 02 00 00 00 00 3666.818450 T Security access – SendKey (fixed 00h 00h 00h 00h)
 18DAF020 X 3 02 67 02 3666.818840 R Positive response on Security access - SendKey

Request Download, Single Parameter, Start Address (ox0C71h), Size 2bytes.
 18DA20F0 X 8 10 08 34 00 0C 71 00 00 3666.918420 T Request Download - Write. Single parameter Start address 0x0C71h
 18DAF020 X 3 30 03 00 3666.918870 R Flow Control Frame, send next message/block
 18DA20F0 X 3 21 00 02 3667.018390 T Request Download - Write, Memory size 000002h
 18DAF020 X 3 02 74 02 3667.018770 R Positive response on Request Download - Write

Transfer Write, Single Parameter, Data 0x0400h.
 18DA20F0 X 4 03 36 00 04 3667.118290 T Transfer data - Write, 2 bytes 0x00h (LSB) 04h (MSB) => 0x0400h
 18DAF020 X 2 01 76 3667.123480 R Positive response on Transfer data - Write

Request Transfer Exit - Write
 18DA20F0 X 2 01 37 3667.218260 T Request Transfer Exit - Write
 18DAF020 X 2 01 77 3667.218640 R Positive response on Request Transfer Exit

Request Upload, Single Parameter (Start Add: 0x0C71), 2 bytes.
 18DA20F0 X 8 10 08 35 00 0C 71 00 00 3667.318420 T Request Upload - Read, Start address 0x0C71h, uncompressed data
 18DAF020 X 3 30 03 00 3667.318870 R Flow Control Frame (send next message)
 18DA20F0 X 3 21 00 02 3667.418200 T Request Upload - Read, memory size 000002h
 18DAF020 X 3 02 75 02 3667.418640 R Positive response on Request Upload - Read

Page | 34

MAKING MODERN LIVING POSSIBLE

Transfer Read data, Data 0x0400h .

 18DA20F0 X 3 02 36 35 3667.518160 T Transfer data - Read data
 18DAF020 X 4 03 76 00 04 3667.518930 R Positive response, 2 bytes, 0x00h (LSB) 0x40h (MSB) => 0400

Request Download, Sector CRC, Start Address (0x0C83), Size 2 bytes.
 18DA20F0 X 8 10 08 34 00 0C 83 00 00 3667.618390 T Request Download - Write. CRC Start address 0x0C83h
 18DAF020 X 3 30 03 00 3667.618840 R Flow Control Frame, send next message/block
 18DA20F0 X 3 21 00 02 3667.718290 T Request Download - Write, Memory size 000002h
 18DAF020 X 3 02 74 02 3667.718740 R Positive response on Request Download - Write

Transfer Write, Sector CRC, Data 0x5961h.
 18DA20F0 X 4 03 36 61 59 3667.818320 T Transfer data - Write, 2 bytes 0x61h (LSB) ,59h (MSB) => 0x5961h
 18DAF020 X 2 01 76 3667.823510 R Positive response on Transfer data - Write

Request Transfer Exit - Write
 18DA20F0 X 2 01 37 3667.918290 T Request Transfer Exit - Write
 18DAF020 X 2 01 77 3667.918680 R Positive response on Request Transfer Exit

Request Upload, Sector CRC (Start Add: 0x0C83), 2 bytes.
 18DA20F0 X 8 10 08 35 00 0C 83 00 00 3668.018520 T Request Upload - Read, Start address 0x0C83h, uncompressed data
 18DAF020 X 3 30 03 00 3668.018900 R Flow Control Frame (send next message)
 18DA20F0 X 3 21 00 02 3668.118290 T Request Upload - Read, memory size 000002h
 18DAF020 X 3 02 75 02 3668.118740 R Positive response on Request Upload - Read

Transfer Read, Sector CRC, Data 0x5961h.
 18DA20F0 X 3 02 36 35 3668.218390 T Transfer data - Read data
 18DAF020 X 4 03 76 61 59 3668.219160 R Positive response, 2 bytes, 0x61h (LSB) 0x59h (MSB) => 0x5961h

Request Download, Signature CRC, Start Address (0x0046), Size 2 bytes.
 18DA20F0 X 8 10 08 34 00 00 46 00 00 3668.318550 T Request Download - Write. CRC Start address 0x0046h
 18DAF020 X 3 30 03 00 3668.318930 R Flow Control Frame, send next message/block
 18DA20F0 X 3 21 00 02 3668.418390 T Request Download - Write, Memory size 000002h
 18DAF020 X 3 02 74 02 3668.418840 R Positive response on Request Download - Write

Transfer Signature CRC, Data 0x2A83h.
 18DA20F0 X 4 03 36 83 2A 3668.518420 T Transfer data - Write, 2 bytes 0x83h (LSB) ,2Ah (MSB) => 0x2A83h
 18DAF020 X 2 01 76 3668.523600 R Positive response on Transfer data - Write

Request Transfer Exit - Write
 18DA20F0 X 2 01 37 3668.618320 T Request Transfer Exit - Write

Page | 35

MAKING MODERN LIVING POSSIBLE

 18DAF020 X 2 01 77 3668.618770 R Positive response on Request Transfer Exit

Request Upload, Signature CRC, Start Add (0x0046h), Size 2 bytes.
18DA20F0 X 8 10 08 35 00 00 46 00 00 3668.718550 T Request Upload - Read, Start address 0x0046h, uncompressed data
18DAF020 X 3 30 03 00 3668.719000 R Flow Control Frame (send next message)
18DA20F0 X 3 21 00 02 3668.818390 T Request Upload - Read, memory size 000002h
18DAF020 X 3 02 75 02 3668.818840 R Positive response on Request Upload - Read

Transfer Read, Signature CRC, Data 0x 2A83h.
 18DA20F0 X 3 02 36 35 3668.918420 T Transfer data - Read data
 18DAF020 X 4 03 76 83 2A 3668.919190 R Positive response, 2 bytes, 0x83h (LSB) 0x2Ah (MSB) => 0x2A83h

Stop diagnostics, Main Microcontroller
 18DA20F0 X 2 01 20 3669.018390 T Stop Diagnostic session (main controller)
 18DAF020 X 2 01 60 3669.018780 R Positive Response

13.2 EXAMPLE 1B-FAILURE DURING SETTING OF SINGLE PARAMETER IN MAIN WITH SECTOR AND SIGNATURE CRC.

This example describes behavior of system in case of failure during downloading of a single parameter data to EEPROM to Main Microcontroller. The procedure is
similar for the safety controller except for the boot node id.

After system reset in case of failure during single parameter download, the system will go to safe state with Main microcontroller sending DTC for invalid EEPROM
configuration as shown in below example. The parameter download process shall be re-executed from beginning for successful download of single parameter as
described in Example 13.1

MSG ID DLC Data (Hex) Time Stamp Comments

Start Diagnostics, Main Microcontroller
18DA20F0 X 3 02 10 84 3666.618320 T Start diagnostic session on main controller. DCM = 84h (enable eeprom programming)
 18DAF020 X 3 02 50 84 3666.618710 R Positive response from main controller

Security Access

 18DA20F0 X 3 02 27 01 3666.718230 T Security access - GetSeed
 18DAF020 X 7 06 67 01 22 46 00 EC 3666.718800 R Positive response. On Security access – GetSeed.
 18DA20F0 X 7 06 27 02 00 00 00 00 3666.818450 T Security access – SendKey (fixed 00h 00h 00h 00h)
 18DAF020 X 3 02 67 02 3666.818840 R Positive response on Security access - SendKey

Request Download, Single Parameter, Start Address (ox0C71h), Size 2bytes.

Page | 36

MAKING MODERN LIVING POSSIBLE

 18DA20F0 X 8 10 08 34 00 0C 71 00 00 3666.918420 T Request Download - Write. Single parameter Start address 0x0C71h
 18DAF020 X 3 30 03 00 3666.918870 R Flow Control Frame, send next message/block
 18DA20F0 X 3 21 00 02 3667.018390 T Request Download - Write, Memory size 000002h
 18DAF020 X 3 02 74 02 3667.018770 R Positive response on Request Download - Write

Transfer Write, Single Parameter, Data 0x0400h.
 18DA20F0 X 4 03 36 00 04 3667.118290 T Transfer data - Write, 2 bytes 0x00h (LSB) 04h (MSB) => 0x0400h
 18DAF020 X 2 01 76 3667.123480 R Positive response on Transfer data - Write

Request Transfer Exit - Write
 18DA20F0 X 2 01 37 3667.218260 T Request Transfer Exit - Write
 18DAF020 X 2 01 77 3667.218640 R Positive response on Request Transfer Exit

Request Upload, Single Parameter (Start Add: 0x0C71), 2 bytes.
 18DA20F0 X 8 10 08 35 00 0C 71 00 00 3667.318420 T Request Upload - Read, Start address 0x0C71h, uncompressed data
 18DAF020 X 3 30 03 00 3667.318870 R Flow Control Frame (send next message)
 18DA20F0 X 3 21 00 02 3667.418200 T Request Upload - Read, memory size 000002h
 18DAF020 X 3 02 75 02 3667.418640 R Positive response on Request Upload - Read

Transfer Read data, Data 0x0400h .
 18DA20F0 X 3 02 36 35 3667.518160 T Transfer data - Read data
 18DAF020 X 4 03 76 00 04 3667.518930 R Positive response, 2 bytes, 0x00h (LSB) 0x40h (MSB) => 0400

Request Download, Sector CRC, Start Address (0x0C83), Size 2 bytes.
 18DA20F0 X 8 10 08 34 00 0C 83 00 00 3667.618390 T Request Download - Write. CRC Start address 0x0C83h
 18DAF020 X 3 30 03 00 3667.618840 R Flow Control Frame, send next message/block
 18DA20F0 X 3 21 00 02 3667.718290 T Request Download - Write, Memory size 000002h
 18DAF020 X 3 02 74 02 3667.718740 R Positive response on Request Download - Write

Transfer Write, Sector CRC, Data 0x5961h.
 18DA20F0 X 4 03 36 61 59 3667.818320 T Transfer data - Write, 2 bytes 0x61h (LSB) ,59h (MSB) => 0x5961h
 18DAF020 X 2 01 76 3667.823510 R Positive response on Transfer data - Write

Request Transfer Exit - Write
 18DA20F0 X 2 01 37 3667.918290 T Request Transfer Exit - Write
 18DAF020 X 2 01 77 3667.918680 R Positive response on Request Transfer Exit

Request Upload, Sector CRC (Start Add: 0x0C83), 2 bytes.
 18DA20F0 X 8 10 08 35 00 0C 83 00 00 3668.018520 T Request Upload - Read, Start address 0x0C83h, uncompressed data
 18DAF020 X 3 30 03 00 3668.018900 R Flow Control Frame (send next message)
 18DA20F0 X 3 21 00 02 3668.118290 T Request Upload - Read, memory size 000002h

Page | 37

MAKING MODERN LIVING POSSIBLE

 18DAF020 X 3 02 75 02 3668.118740 R Positive response on Request Upload - Read

Transfer Read, Sector CRC, Data 0x5961h.
 18DA20F0 X 3 02 36 35 3668.218390 T Transfer data - Read data
 18DAF020 X 4 03 76 61 59 3668.219160 R Positive response, 2 bytes, 0x61h (LSB) 0x59h (MSB) => 0x5961h

…
Power failure.
Reset the system
...
18FECA5A X 8 10 FF 10 F0 FF 03 FF FF 4.59162 R DM1 for Ext triggered safe state from Safety Controller.
1CECFF13 X 8 20 0A 00 02 FF CA FE00 4.80506 R DM1 BAM for Main Controller.
1CEBFF13 X 8 01 10 FF 2B F0 E2 11 2B 4.87508 R DM1 Incorrect EEPROM for Main Controller.
1CEBFF13 X 8 02 F0 EE 11 FF FF FF FF 4.94516 R DM1 CRC Failure for Main Controller.

13.3 EXAMPLE 2A-SUCCESSFULL SETTING OF PARAMETER DATA BLOCK TO THE MAIN MICRO-CONTROLLER.
This example describes a safe downloading procedure for a block parameter data to EEPROM to the main microcontroller. The procedure is similar for the safety
controller except for the boot node id.

MSG ID DLC Data(Hex) Time Stamp Comments

Start Diagnostics, Main Microcontroller

18DA20F0 X 3 02 10 84 9508.927960 T Start diagnostic session on main controller. DCM = 84h (enable eeprom programming)
18DAF020 X 3 02 50 84 9508.928400 R Positive response from main controller

Security Access
 18DA20F0 X 3 02 27 01 9509.027990 T Security access - GetSeed
 18DAF020 X 7 06 67 01 22 46 00 28 9509.028560 R Positive response. On Security access – GetSeed.
 18DA20F0 X 7 06 27 02 00 00 00 00 9509.128150 T Security access – SendKey (fixed 00h 00h 00h 00h)
 18DAF020 X 3 02 67 02 9509.128600 R Positive response on Security access – SendKey

Request Upload, Sector, Start Address(0x0C71), Size 20 bytes.
 18DA20F0 X 8 10 08 35 00 0C 71 00 00 9509.228370 T Request Upload - Read, Start address 0x0C71h, uncompressed data
 18DAF020 X 3 30 03 00 9509.228820 R Flow Control Frame (send next message)
 18DA20F0 X 3 21 00 14 9509.328280 T Request Upload - Read, memory size 0000014h
 18DAF020 X 3 02 75 14 9509.328720 R Positive response on Request Upload – Read

Transfer Read, Sector, Size 20 bytes.
 18DA20F0 X 3 02 36 35 9509.427920 T Transfer data - Read data

Page | 38

MAKING MODERN LIVING POSSIBLE

 18DAF020 X 8 10 15 76 00 05 94 11 C4 9509.430290 R Positive response, 5 bytes, 0x00h (LSB) 0x05h (MSB) => 0500h
 18DA20F0 X 3 30 03 00 9509.527890 T Flow Control Frame, send next message/block
 18DAF020 X 8 21 09 00 00 00 00 00 00 9509.528470 R Transfer data, 7 bytes (eeprom data)
 18DAF020 X 8 22 00 00 00 00 00 00 D8 9509.529040 R Transfer data, 7 bytes (eeprom data)
 18DAF020 X 2 23 00 9509.529430 R Transfer data, 1 bytes (eeprom data)

Request Download, Sector, Start Address (0x0C71), Size 20 bytes.
 18DA20F0 X 8 10 08 34 00 0C 71 00 00 9509.627990 T Request Download - Write. parameter Start address 0x0C71h
 18DAF020 X 3 30 03 00 9509.628440 R Flow Control Frame, send next message/block
 18DA20F0 X 3 21 00 14 9509.728020 T Request Download - Write, Memory size 0000014h
 18DAF020 X 3 02 74 14 9509.728470 R Positive response on Request Download – Write

Transfer Data Write, Sector(Data and CRC), Size 20 bytes.
 18DA20F0 X 8 10 15 36 00 05 94 11 C4 9509.828180 T Transfer data – Write. 20 bytes for transfer. 5 first bytes
 18DAF020 X 3 30 03 00 9509.828630 R Flow Control Frame, send next message/block
 18DA20F0 X 3 30 03 00 9509.927890 T
 18DA20F0 X 8 21 09 00 00 00 00 00 00 9510.028180 T Transfer data, 7 bytes
 18DA20F0 X 8 22 00 00 00 00 00 00 D8 9510.128210 T Transfer data, 7 bytes
 18DA20F0 X 2 23 00 9510.227990 T Transfer data, Last 1 byte
 18DAF020 X 2 01 76 9510.243220 R Positive response on Transfer data

Request Transfer Exit - Write
18DA20F0 X 2 01 37 9510.328020 T Request Transfer Exit - Write
18DAF020 X 2 01 77 9510.328400 R Positive response on Request Transfer Exit

Request Upload, Sector, Start Address(0x0C71), Size 20 bytes.
18DA20F0 X 8 10 08 35 00 0C 71 00 00 9510.428240 T Request Upload - Read, Start address 0x0C71h, uncompressed data
18DAF020 X 3 30 03 00 9510.428690 R Flow Control Frame (send next message)
18DA20F0 X 3 21 00 14 9510.528150 T Request Upload - Read, memory size 0000014h
18DAF020 X 3 02 75 14 9510.528600 R Positive response on Request Upload – Read

Transfer Read, Sector, Size 20 bytes.
18DA20F0 X 3 02 36 35 9510.628050 T Transfer data - Read data
18DAF020 X 8 10 15 76 00 05 94 11 C4 9510.630420 R Positive response, 5 bytes, 0x00h (LSB) 0x05h (MSB) => 0500h
18DA20F0 X 3 30 03 00 9510.728080 T Flow Control Frame, send next message/block
18DAF020 X 8 21 09 00 00 00 00 00 00 9510.728660 R Transfer data, 7 bytes (eeprom data)
18DAF020 X 8 22 00 00 00 00 00 00 D8 9510.729240 R Transfer data, 7 bytes (eeprom data)
18DAF020 X 2 23 00 9510.729620 R Transfer data, 1 bytes (eeprom data)

Request Download, Signature CRC, Start Address (0x0046), Size 2 bytes.

Page | 39

MAKING MODERN LIVING POSSIBLE

18DA20F0 X 8 10 08 34 00 00 46 00 00 9510.828310 T Request Download - Write. CRC Start address 0x0046h
18DAF020 X 3 30 03 00 9510.828690 R Flow Control Frame, send next message/block
18DA20F0 X 3 21 00 02 9510.927960 T Request Download - Write, Memory size 000002h
18DAF020 X 3 02 74 02 9510.928400 R Positive response on Request Download - Write

Transfer Signature CRC, Data 0xA884h.
18DA20F0 X 4 03 36 84 A8 9511.027990 T Transfer data - Write, 2 bytes 0x84h (LSB) ,A8h (MSB) => 0xA884h
18DAF020 X 2 01 76 9511.033170 R Positive response on Transfer data - Write

Request Transfer Exit - Write
18DA20F0 X 2 01 37 9511.127960 T Request Transfer Exit - Write
18DAF020 X 2 01 77 9511.128340 R Positive response on Request Transfer Exit

Request Upload, Signature CRC, Start Add (0x0046h), Size 2 bytes.
18DA20F0 X 8 10 08 35 00 00 46 00 00 9511.228310 T Request Upload - Read, Start address 0x0046h, uncompressed data
18DAF020 X 3 30 03 00 9511.228760 R Flow Control Frame (send next message)
18DA20F0 X 3 21 00 02 9511.328150 T Request Upload - Read, memory size 000002h
18DAF020 X 3 02 75 02 9511.328600 R Positive response on Request Upload - Read

Transfer Read, Signature CRC, Data 0x A884h.
18DA20F0 X 3 02 36 35 9511.428180 T Transfer data - Read data
18DAF020 X 4 03 76 84 A8 9511.428880 R Positive response, 2 bytes, 0xA8h (LSB) 0xA8h (MSB) => 0xA884h

Stop diagnostics
18DA20F0 X 2 01 20 9511.528020 T Stop Diagnostic session (main controller)
18DAF020 X 2 01 60 9511.528460 R Positive Response

13.4 EXAMPLE 2B-FAILURE DURING SETTING OF PARAMETER DATA BLOCK TO THE MAIN MICRO-CONTROLLER.
This example describes behavior of system in case of failure during downloading of a block parameter data to EEPROM for main microcontroller. The procedure is
similar for the safety controller except for the boot node id.

After system reset in case of failure during block parameter download, the system will go to safe state with Main microcontroller sending DTC for invalid EEPROM
configuration as shown in below example. The parameter download process shall be re-executed from beginning for successful download of block parameter as
described in Example 13.3

Page | 40

MAKING MODERN LIVING POSSIBLE

MSG ID DLC Data(Hex) Time Stamp Comments

Start Diagnostics, Main Microcontroller

18DA20F0 X 3 02 10 84 9508.927960 T Start diagnostic session on main controller. DCM = 84h
(enable eeprom programming)

18DAF020 X 3 02 50 84 9508.928400 R Positive response from main controller

Security Access
 18DA20F0 X 3 02 27 01 9509.027990 T Security access - GetSeed
 18DAF020 X 7 06 67 01 22 46 00 28 9509.028560 R Positive response. On Security access – GetSeed.
 18DA20F0 X 7 06 27 02 00 00 00 00 9509.128150 T Security access – SendKey (fixed 00h 00h 00h 00h)
 18DAF020 X 3 02 67 02 9509.128600 R Positive response on Security access – SendKey

Request Upload, Sector, Start Address(0x0C71), Size 20 bytes.
 18DA20F0 X 8 10 08 35 00 0C 71 00 00 9509.228370 T Request Upload - Read, Start address 0x0C71h, uncompressed data
 18DAF020 X 3 30 03 00 9509.228820 R Flow Control Frame (send next message)
 18DA20F0 X 3 21 00 14 9509.328280 T Request Upload - Read, memory size 0000014h
 18DAF020 X 3 02 75 14 9509.328720 R Positive response on Request Upload – Read

Transfer Read, Sector, Size 20 bytes.
 18DA20F0 X 3 02 36 35 9509.427920 T Transfer data - Read data
 18DAF020 X 8 10 15 76 00 05 94 11 C4 9509.430290 R Positive response, 5 bytes, 0x00h (LSB) 0x05h (MSB) => 0500h
 18DA20F0 X 3 30 03 00 9509.527890 T Flow Control Frame, send next message/block
 18DAF020 X 8 21 09 00 00 00 00 00 00 9 509.528470 R Transfer data, 7 bytes (eeprom data)
 18DAF020 X 8 22 00 00 00 00 00 00 D8 9509.529040 R Transfer data, 7 bytes (eeprom data)
 18DAF020 X 2 23 00 9509.529430 R Transfer data, 1 bytes (eeprom data)

Request Download, Sector, Start Address (0x0C71), Size 20 bytes.
 18DA20F0 X 8 10 08 34 00 0C 71 00 00 9509.627990 T Request Download - Write. parameter Start address 0x0C71h
 18DAF020 X 3 30 03 00 9509.628440 R Flow Control Frame, send next message/block
 18DA20F0 X 3 21 00 14 9509.728020 T Request Download - Write, Memory size 0000014h
 18DAF020 X 3 02 74 14 9509.728470 R Positive response on Request Download – Write

Transfer Data Write, Sector(Data and CRC), Size 20 bytes.
 18DA20F0 X 8 10 15 36 00 05 94 11 C4 9509.828180 T Transfer data – Write. 20 bytes for transfer. 5 first bytes
 18DAF020 X 3 30 03 00 9509.828630 R Flow Control Frame, send next message/block
 18DA20F0 X 3 30 03 00 9509.927890 T
 18DA20F0 X 8 21 09 00 00 00 00 00 00 9510.028180 T Transfer data, 7 bytes
 18DA20F0 X 8 22 00 00 00 00 00 00 D8 9510.128210 T Transfer data, 7 bytes
 18DA20F0 X 2 23 00 9510.227990 T Transfer data, Last 1 byte
 18DAF020 X 2 01 76 9510.243220 R Positive response on Transfer data

Page | 41

MAKING MODERN LIVING POSSIBLE

Request Transfer Exit - Write

18DA20F0 X 2 01 37 9510.328020 T Request Transfer Exit - Write
18DAF020 X 2 01 77 9510.328400 R Positive response on Request Transfer Exit

…
Power failure.
Reset the system
...
18FECA5A X 8 10 FF 10 F0 FF 03 FF FF 4.59162 R DM1 for Ext triggered safe state from Safety Controller.
1CECFF13 X 8 20 0A 00 02 FF CA FE00 4.80506 R DM1 BAM for Main Controller.
1CEBFF13 X 8 01 10 FF 2B F0 E2 11 2B 4.87508 R DM1 Incorrect EEPROM for Main Controller.
1CEBFF13 X 8 02 F0 EE 11 FF FF FF FF 4.94516 R DM1 CRC Failure for Main Controller.

13.5 EXAMPLE 3A: SUCCESSFUL DOWNLOADING APPLICATION CODE TO THE MAIN MICRO-CONTROLLER
This example describes the procedure for downloading application code to main controller flash memory.
The procedure is similar for the safety controller except for the boot node id.

Setting one of the controllers in boot-loader mode will automatically set the other controller is boot-loader mode as well.

MSG ID DLC Data (hex) Time stamp Comment
18DA20F1 X 7 06 10 85 06 03 D0 90 18692.776860 R Start diagnostic session. DCM = 85h (enable flash programming).

Network transfer rate = 250K.
18DAF120 X 7 06 50 85 06 03 D0 90 18692.776290 R Positive response.

18DA20F1 X 3 02 27 01 18692.775200 R Security access - GetSeed
18DAF120 X 7 06 67 01 06 03 D0 9A 18692.771810 R Positive response. On Security access – GetSeed. Seed = 06h 03h D0h 9Ah
18DA20F1 X 7 06 27 02 00 00 00 00 18692.771040 R Security access – SendKey (fixed 00h 00h 00h 00h)
18DAF120 X 3 02 67 02 18692.770590 R Positive response on Security access - SendKey

 Erase flash

18DA20F1 X 8 10 08 31 02 7E 00 00 7F 18692.768930 R Start Routine By Local Identifier - Erase flash, start address 7E0000h
18DAF120 X 3 30 03 00 18692.768480 R Flow Control Frame, send next message/block
18DA20F1 X 3 21 BF FF 18692.767070 R Start Routine By Local Identifier - Erase flash, end address 7FBFFFh
18DAF120 X 3 02 71 02 18692.762210 R Positive response on erase flash
18DA20F1 X 3 02 33 02 18692.761630 R Request routine results by local identifier on erase flash
18DAF120 X 3 02 73 02 18687.135840 R Positive response

Page | 42

MAKING MODERN LIVING POSSIBLE

 Request Download Write

18DA20F1 X 8 10 08 34 7E 00 00 00 01 18687.134940 R Request Download - Write. Start address 7E00000h
18DAF120 X 3 30 03 00 18687.134560 R Flow Control Frame, send next message/block
18DA20F1 X 3 21 C0 00 18687.133150 R Request download – Write. Size in bytes 01C000h
18DAF120 X 3 02 74 38 18687.132700 R Positive response on request download

 Transfer data – Write (56 byte block)

18DA20F1 X 8 10 39 36 56 1F 76 22 B9 18687.130910 R Transfer data – Write. 56 bytes for transfer. 6 first bytes
18DAF120 X 3 30 03 00 18687.130460 R Flow Control Frame, send next message/block
18DA20F1 X 8 21 C0 28 29 00 68 76 1A 18687.128540 R Transfer data, 7 bytes
18DA20F1 X 8 22 00 7F 23 04 22 57 00 18687.127900 R Transfer data, 7 bytes
18DA20F1 X 8 23 3F 22 57 00 3F 22 57 18687.127390 R Transfer data. 7 bytes
18DAF120 X 3 30 03 00 18687.126940 R Flow Control Frame, send next message/block
18DA20F1 X 8 24 00 3F 22 57 00 3F 22 18687.125660 R Transfer data. 7 bytes
18DA20F1 X 8 25 57 00 3F 22 57 00 3F 18687.125090 R Transfer data. 7 bytes
18DA20F1 X 8 26 22 57 00 3F 22 57 00 18687.124510 R Transfer data. 7 bytes
18DAF120 X 3 30 03 00 18687.124060 R Flow Control Frame, send next message/block
18DA20F1 X 8 27 3F 22 57 00 3F 22 57 18687.122460 R Transfer data. 7 bytes
18DA20F1 X 3 28 00 3F 18687.122080 R Transfer data. Last two bytes
18DAF120 X 2 01 76 18687.120800 R Positive response on Transfer data
…
Data removed to reduce example size.
...
18DA20F1 X 8 27 FF FF FF FF FF FF FF 18664.349020 R Last 56 block transfer
18DA20F1 X 3 28 FF FF 18664.348640 R
18DAF120 X 2 01 76 18664.347870 R
18DA20F1 X 8 10 39 36 FF FF FF FF FF 18664.347100 R
18DAF120 X 3 30 03 00 18664.346660 R
18DA20F1 X 8 21 FF FF FF FF FF FF FF 18664.344990 R
18DA20F1 X 8 22 FF FF FF FF FF FF FF 18664.344420 R
18DA20F1 X 8 23 FF FF FF 00 41 00 50 18664.343780 R
18DAF120 X 3 30 03 00 18664.343390 R
18DA20F1 X 8 24 00 50 00 2D 00 5F 00 18664.341920 R
18DA20F1 X 8 25 43 00 4C 00 53 00 2D 18664.341340 R
18DA20F1 X 8 26 00 5F 00 4D 00 5F 00 18664.340770 R
18DAF120 X 3 30 03 00 18664.340320 R
18DA20F1 X 8 27 50 00 31 00 37 00 32 18664.338780 R
18DA20F1 X 3 28 00 5F 18664.338400 R
18DAF120 X 2 01 76 18664.337060 R End of last 56 bytes block

Page | 43

MAKING MODERN LIVING POSSIBLE

18DA20F1 X 2 01 37 18664.324580 R Request transfer exit – Write
18DAF120 X 2 01 77 18664.324190 R Positive response on Request transfer exit
18DA20F1 X 8 10 0A 31 01 7E 00 00 7F 18664.323300 R Start routine by local identifier. Compare checksum. Start address 7E0000h
18DAF120 X 3 30 03 00 18664.322850 R Flow Control Frame, send next message/block
18DA20F1 X 5 21 C0 00 16 E0 18664.321310 R Start routine by local identifier. Compare checksum. End address 7FC000h.

Checksum 16E0h

18DAF120 X 3 02 71 01 18664.316450 R Positive response on request routine results by local ID. Compare checksum
18DA20F1 X 3 02 33 01 18664.315810 R Request routine result by local id. Compare checksum
18DAF120 X 3 02 73 01 18663.189470 R Positive response. Checksum is correct

18DA20F1 X 2 01 20 18656.050340 R Stop Diagnostic session (main controller)
18DAF120 X 2 01 60 18655.513500 R Positive response

18EEFF5A X 8 06 00 20 07 02 10 00 00 18655.355810 R Address claim from safety controller (source address 5Ah)
18EEFF13 X 8 06 00 20 07 01 10 00 00 18655.353700 R Address claim from main controller (source address 13h)
18FECA5A X 8 10 FF E2 8F 82 30 FF FF 18655.085540 R Application data from safety controller
18FECA13 X 8 10 FF E2 8F 82 02 FF FF 18655.084130 R Application data from safety controller

13.6 EXAMPLE 3B: FAILURE DURING DOWNLOADING APPLICATION CODE TO THE MAIN MICRO-CONTROLLER
This example describes failure scenario of programming application code to main controller flash memory. Failure in programming application code will cause both
microcontrollers to go in Bootloader mode. ECU Identification service can be used to validate if desired code is downloaded in Flash memory. Programming sequence as
described in example 13.5 has to be re-executed in case of failure.

The procedure is similar for the safety controller except for the boot node id.

MSG ID DLC Data (hex) Time stamp Comment
18DA20F1 X 7 06 10 85 06 03 D0 90 18692.776860 R Start diagnostic session. DCM = 85h (enable flash programming).

Network transfer rate = 250K.
18DAF120 X 7 06 50 85 06 03 D0 90 18692.776290 R Positive response.

18DA20F1 X 3 02 27 01 18692.775200 R Security access - GetSeed
18DAF120 X 7 06 67 01 06 03 D0 9A 18692.771810 R Positive response. On Security access – GetSeed. Seed = 06h 03h D0h 9Ah
18DA20F1 X 7 06 27 02 00 00 00 00 18692.771040 R Security access – SendKey (fixed 00h 00h 00h 00h)
18DAF120 X 3 02 67 02 18692.770590 R Positive response on Security access - SendKey

 Erase flash

Page | 44

MAKING MODERN LIVING POSSIBLE

18DA20F1 X 8 10 08 31 02 7E 00 00 7F 18692.768930 R Start Routine By Local Identifier - Erase flash, start address 7E0000h
18DAF120 X 3 30 03 00 18692.768480 R Flow Control Frame, send next message/block
18DA20F1 X 3 21 BF FF 18692.767070 R Start Routine By Local Identifier - Erase flash, end address 7FBFFFh
18DAF120 X 3 02 71 02 18692.762210 R Positive response on erase flash
18DA20F1 X 3 02 33 02 18692.761630 R Request routine results by local identifier on erase flash
18DAF120 X 3 02 73 02 18687.135840 R Positive response

 Request Download Write

18DA20F1 X 8 10 08 34 7E 00 00 00 01 18687.134940 R Request Download - Write. Start address 7E00000h
18DAF120 X 3 30 03 00 18687.134560 R Flow Control Frame, send next message/block
18DA20F1 X 3 21 C0 00 18687.133150 R Request download – Write. Size in bytes 01C000h
18DAF120 X 3 02 74 38 18687.132700 R Positive response on request download

 Transfer data – Write (56 byte block)

18DA20F1 X 8 10 39 36 56 1F 76 22 B9 18687.130910 R Transfer data – Write. 56 bytes for transfer. 6 first bytes
18DAF120 X 3 30 03 00 18687.130460 R Flow Control Frame, send next message/block
18DA20F1 X 8 21 C0 28 29 00 68 76 1A 18687.128540 R Transfer data, 7 bytes
18DA20F1 X 8 22 00 7F 23 04 22 57 00 18687.127900 R Transfer data, 7 bytes
18DA20F1 X 8 23 3F 22 57 00 3F 22 57 18687.127390 R Transfer data. 7 bytes
18DAF120 X 3 30 03 00 18687.126940 R Flow Control Frame, send next message/block
18DA20F1 X 8 24 00 3F 22 57 00 3F 22 18687.125660 R Transfer data. 7 bytes
18DA20F1 X 8 25 57 00 3F 22 57 00 3F 18687.125090 R Transfer data. 7 bytes
18DA20F1 X 8 26 22 57 00 3F 22 57 00 18687.124510 R Transfer data. 7 bytes
18DAF120 X 3 30 03 00 18687.124060 R Flow Control Frame, send next message/block
18DA20F1 X 8 27 3F 22 57 00 3F 22 57 18687.122460 R Transfer data. 7 bytes
18DA20F1 X 3 28 00 3F 18687.122080 R Transfer data. Last two bytes
18DAF120 X 2 01 76 18687.120800 R Positive response on Transfer data
…

Power failure.
…..
Reset the system
Main and Safety will enter bootloader mode.
No messages will be available on CAN bus.
LED on PVED-CLS will be blinking between Green and Orange
....
 Perform ECU Identification to verify download of software.

18DA20F1 X 3 02 1A 87 4237.764580 R Request ECU identification. 87h = boot-loader SW version.

Page | 45

MAKING MODERN LIVING POSSIBLE

18DAF120 X 8 10 29 5A 87 42 4F 4F 54 4237.765150 R PCI.DL = 29h (41 bytes). SI = 5Ah (pos response). IO = 87h
18DA20F1 X 3 30 03 00 4237.766240 R Flow control frame. FS=0h. Max block size = 3
18DAF120 X 8 21 5F 43 4C 53 2D 5F 4D 4237.766820 R Consecutive frame. Sequence no = 1
18DAF120 X 8 22 5F 52 33 37 30 5F 4B 4237.767390 R Consecutive frame. Sequence no = 2
18DAF120 X 8 23 57 50 32 30 30 30 2D 4237.767970 R Consecutive frame. Sequence no = 3
18DA20F1 X 3 30 03 00 4237.769310 R Flow control frame. FS=0h. Max block size = 3
18DAF120 X 8 24 5F 30 30 30 30 30 30 4237.769890 R Consecutive frame. Sequence no = 4.
18DAF120 X 8 25 30 30 5F 2D 72 72 72 4237.770460 R Consecutive frame. Sequence no = 5
 The 41 bytes represents the character string:

“BOOT_CLS-_M_R370_KWP2000-_00000000_-rrr”
18DA20F1 X 3 02 1A 99 4237.864480 R Request ECU identification. 99h = boot-loader SW date
18DAF120 X 6 05 5A 99 07 26 13 4237.864990 R The data represents the date “072613” (26 July 2013)
18DA20F1 X 3 02 1A 8F 4237.964450 R Request ECU identification. 8Fh = Application SW version
18DAF120 X 8 10 29 5A 8F FF FF FF FF 4237.965020 R
18DA20F1 X 3 30 03 00 4237.966110 R
18DAF120 X 8 21 FF FF FF FF FF FF FF 4237.966690 R
18DAF120 X 8 22 FF FF FF FF FF FF FF 4237.967260 R
18DAF120 X 8 23 FF FF FF FF FF FF FF 4237.967780 R
18DA20F1 X 3 30 03 00 4237.969250 R
18DAF120 X 8 24 FF FF FF FF FF FF FF 4237.969820 R The transmitted bytes represents the garbage character string:
18DAF120 X 8 25 FF FF FF FF FF FF FF 4237.970400 R
18DA20F1 X 3 02 1A 90 4238.064610 R Request ECU identification. 8Fh = Application date
18DAF120 X 6 05 5A 90 FF FF FF 4238.065120 R The data represents garbage data

Garbage value in the returned Application SW version and date would imply unsuccessful download of code to flash memory.
Reprogram the ECU as described in example 13.5

13.7 EXAMPLE 4A: SUCESSFULL DOWNLOADING BOOT CODE TO THE MAIN MICRO-CONTROLLER
This example describes how downloading boot code to main controller flash memory is performed.
The procedure is similar for the safety controller except for the boot node id.

The order of programming the controllers is not important. Setting one of the controllers in boot-loader mode will automatically set the other controller is boot-loader
mode as well.

MSG ID DLC Data (hex) Time stamp Comment
18DA20F1 X 7 06 10 86 06 03 D0 90 2.419680 R Start diagnostic session. DCM = 86h (enable boot programming). Network transfer rate = 250K.
18DAF120 X 7 06 50 86 06 03 D0 90 3.022240 R Positive response.

Page | 46

MAKING MODERN LIVING POSSIBLE

18DA20F1 X 3 02 27 01 3.023000 R Security access - GetSeed
 18DAF120 X 7 06 67 01 06 03 D0 5C 3.031520 R Positive response.
 18DA20F1 X 7 06 27 02 00 00 00 00 3.032540 R Security access – SendKey (fixed 00h 00h 00h 00h)
 18DAF120 X 3 02 67 02 3.032920 R Positive response on Security access – SendKey

 Erase Flash

 18DA20F1 X 8 10 08 31 02 7E C0 00 7E 3.034520 R Start Routine By Local Identifier - Erase flash, start address 7EC000h
 18DAF120 X 3 30 03 00 3.034970 R Flow Control Frame, send next message/block
 18DA20F1 X 3 21 FF FF 3.036570 R Start Routine By Local Identifier - Erase flash, end address 7EFFFFh
 18DAF120 X 3 02 71 02 3.041630 R Positive response on erase flash
 18DA20F1 X 3 02 33 02 3.042400 R Request routine results by local identifier on erase flash
 18DAF120 X 3 02 73 02 9.099290 R Positive response

 Request Download Write

 18DA20F1 X 8 10 08 34 7E C0 00 00 00 9.100250 R Request Download - Write. Start address 7EC0000h
 18DAF120 X 3 30 03 00 9.100640 R Flow Control Frame, send next message/block
 18DA20F1 X 3 21 40 00 9.102170 R Request download – Write. Size in bytes 004000h
 18DAF120 X 3 02 74 38 9.102560 R Positive response on request download

 Transfer data – Write (56 byte block)

 18DA20F1 X 8 10 39 36 00 7F 72 99 B2 9.104480 R Transfer data – Write. 56 bytes for transfer. 6 first bytes
 18DAF120 X 3 30 03 00 9.104920 R Flow Control Frame, send next message/block
 18DA20F1 X 8 21 BD AA BD A2 BD FE 1C 9.106460 R Transfer data, 7 bytes
 18DA20F1 X 8 22 76 1F 02 22 56 BF FF 9.107040 R Transfer data, 7 bytes
 18DA20F1 X 8 23 15 2B 53 76 7F 73 63 9.107610 R Transfer data. 7 bytes
 18DAF120 X 3 30 03 00 9.108000 R Flow Control Frame, send next message/block
 18DA20F1 X 8 24 5C AD 28 5A 40 00 02 9.109600 R Transfer data. 7 bytes
 18DA20F1 X 8 25 00 DC 9A 56 BF 20 59 9.110170 R Transfer data. 7 bytes
 18DA20F1 X 8 26 2B 58 1E 56 76 7F 7A 9.110680 R Transfer data. 7 bytes
 18DAF120 X 3 30 03 00 9.111130 R Flow Control Frame, send next message/block
 18DA20F1 X 8 27 9C 76 7F 76 AE 5C AD 9.112670 R Transfer data. 7 bytes
 18DA20F1 X 3 28 2B 41 9.113050 R Transfer data. Last two bytes
 18DAF120 X 2 01 76 9.114330 R Positive response on Transfer data

…
Data removed to reduce example size.
...

Page | 47

MAKING MODERN LIVING POSSIBLE

18DA20F1 X 8 27 00 00 00 00 00 00 00 12.433820 R
 18DA20F1 X 3 28 00 00 12.434200 R
 18DAF120 X 2 01 76 12.436120 R

 18DA20F1 X 8 10 21 36 00 00 00 00 00 12.437020 R Last 32 bytes block
 18DAF120 X 3 30 03 00 12.437470 R
 18DA20F1 X 8 21 00 00 00 00 00 00 00 12.439260 R
 18DA20F1 X 8 22 00 7F 60 00 FF FF FF 12.439840 R
 18DA20F1 X 8 23 FF FF FF FF FF FF FF 12.440480 R
 18DAF120 X 3 30 03 00 12.440860 R
 18DA20F1 X 7 24 FF FF FF FF FF FF 12.442270 R
 18DAF120 X 2 01 76 12.443230 R End of last 32 bytes block

 18DA20F1 X 2 01 37 12.444000 R Request transfer exit – Write
 18DAF120 X 2 01 77 12.444440 R Positive response on Request transfer exit

 18DA20F1 X 8 10 0A 31 01 7E C0 00 7F 12.445400 R Start routine by local identifier. Compare checksum. Start address 7EC000h
 18DAF120 X 3 30 03 00 12.445850 R Flow Control Frame, send next message/block
 18DA20F1 X 5 21 00 00 A3 DC 12.447260 R Start routine by local identifier. Compare checksum. End address 7F0000h. Checksum A3Dch

 18DAF120 X 3 02 71 01 12.447710 R Positive response on request routine results by local ID. Compare checksum
 18DA20F1 X 3 02 33 01 12.449370 R Request routine result by local id. Compare checksum
 18DAF120 X 3 02 73 01 12.453080 R Positive response. Checksum is correct

13.8 EXAMPLE 4B: FAILURE DURING DOWNLOADING BOOT CODE TO THE MAIN MICRO-CONTROLLER

This example describes failure scenario of downloading boot code to main controller flash memory. It is essential to have a stable power source and operating
environment during modification of bootloader software. Failure during downloading boot code operations will lead to non-repairable damage to PVED-CLS software.

The behavior is similar for the safety controller.

MSG ID DLC Data (hex) Time stamp Comment
18DA20F1 X 7 06 10 86 06 03 D0 90 2.419680 R Start diagnostic session. DCM = 86h (enable boot programming).

Network transfer rate = 250K.
18DAF120 X 7 06 50 86 06 03 D0 90 3.022240 R Positive response.

18DA20F1 X 3 02 27 01 3.023000 R Security access - GetSeed
 18DAF120 X 7 06 67 01 06 03 D0 5C 3.031520 R Positive response.

Page | 48

MAKING MODERN LIVING POSSIBLE

 18DA20F1 X 7 06 27 02 00 00 00 00 3.032540 R Security access – SendKey (fixed 00h 00h 00h 00h)
 18DAF120 X 3 02 67 02 3.032920 R Positive response on Security access – SendKey

 Erase Flash
 18DA20F1 X 8 10 08 31 02 7E C0 00 7E 3.034520 R Start Routine By Local Identifier - Erase flash, start address 7EC000h
 18DAF120 X 3 30 03 00 3.034970 R Flow Control Frame, send next message/block
 18DA20F1 X 3 21 FF FF 3.036570 R Start Routine By Local Identifier - Erase flash, end address 7EFFFFh
 18DAF120 X 3 02 71 02 3.041630 R Positive response on erase flash
 18DA20F1 X 3 02 33 02 3.042400 R Request routine results by local identifier on erase flash
 18DAF120 X 3 02 73 02 9.099290 R Positive response

 Request Download Write
 18DA20F1 X 8 10 08 34 7E C0 00 00 00 9.100250 R Request Download - Write. Start address 7EC0000h
 18DAF120 X 3 30 03 00 9.100640 R Flow Control Frame, send next message/block
 18DA20F1 X 3 21 40 00 9.102170 R Request download – Write. Size in bytes 004000h
 18DAF120 X 3 02 74 38 9.102560 R Positive response on request download

 Transfer data – Write (56 byte block)
 18DA20F1 X 8 10 39 36 00 7F 72 99 B2 9.104480 R Transfer data – Write. 56 bytes for transfer. 6 first bytes
 18DAF120 X 3 30 03 00 9.104920 R Flow Control Frame, send next message/block
 18DA20F1 X 8 21 BD AA BD A2 BD FE 1C 9.106460 R Transfer data, 7 bytes
 18DA20F1 X 8 22 76 1F 02 22 56 BF FF 9.107040 R Transfer data, 7 bytes
 18DA20F1 X 8 23 15 2B 53 76 7F 73 63 9.107610 R Transfer data. 7 bytes
 18DAF120 X 3 30 03 00 9.108000 R Flow Control Frame, send next message/block
 18DA20F1 X 8 24 5C AD 28 5A 40 00 02 9.109600 R Transfer data. 7 bytes
 18DA20F1 X 8 25 00 DC 9A 56 BF 20 59 9.110170 R Transfer data. 7 bytes
 18DA20F1 X 8 26 2B 58 1E 56 76 7F 7A 9.110680 R Transfer data. 7 bytes
 18DAF120 X 3 30 03 00 9.111130 R Flow Control Frame, send next message/block
 18DA20F1 X 8 27 9C 76 7F 76 AE 5C AD 9.112670 R Transfer data. 7 bytes
 18DA20F1 X 3 28 2B 41 9.113050 R Transfer data. Last two bytes
 18DAF120 X 2 01 76 9.114330 R Positive response on Transfer data
…

 Power failure.
…..
Reset the system
Symptoms: No messages available on CAN bus and PVED-CLS does not respond to any diagnostic requests
Conclusion: Boot Loader damaged. PVED-CLS in non-repairable state.

Page | 49

MAKING MODERN LIVING POSSIBLE

13.9 EXAMPLE 5: MULTIPLE NODES ACCESS TO PVED-CLS
This example describes the response of PVED-CLS to request of diagnostic sessions from multiple nodes. PVED-CLS can serve requests from only one node at a time. If
PVED-CLS is already in diagnostic session, no response to other nodes is provided. Active diagnostic session has to be stopped using stop diagnostic command for new
nodes to be able to communicate with PVED-CLS

MSG ID DLC Data (hex) Time stamp Comment
18DA20F1 X 3 02 10 85 40.875090 Request from Node with Source Address F1h to start diagnostics
18DAF120 X 3 02 50 85 40.875530 R Positive Response
18DA20F0 X 3 02 10 85 45.117580 T Request from Node with Source Address F0h to start diagnostics.

No Response from ECU
18DA20F0 X 3 02 10 85 51.950540 T Request from Node with Source Address F0h to start diagnostics.

No Response from ECU
18DA20F1 X 2 01 20 60.029770 R Request from Node with Source Address F1h to stop diagnostics
18DAF120 X 2 01 60 60.656460 R Positive Response
18EEFF5A X 8 06 00 20 07 02 10 00 00 61.777740 R
18EEFF13 X 8 06 00 20 07 01 10 00 00 61.796810 R
0CFF185A X 8 E8 03 00 00 FF F1 0C F8 62.087630 R
0CFF1813 X 8 E8 03 00 00 FF F1 0C F8 62.106960 R

0CFF1813 X 8 E8 03 00 00 FF FB 04 0A 66.609490 R
18DA20F0 X 3 02 10 85 66.628110 T Request from Node with Source Address F0h to start diagnostics.
18DAF020 X 3 02 50 85 67.215250 R Positive Response
18DA20F1 X 3 02 10 85 84.536270 R Request from Node with Source Address F1h to start diagnostics. No Response from ECU
18DA20F0 X 2 01 20 8.856850 T Request from Node with Source Address F0h to stop diagnostics
18DAF020 X 2 01 60 99.483470 R Positive Response
18EEFF5A X 8 06 00 20 07 02 10 00 00 00.652620 R
18EEFF13 X 8 06 00 20 07 01 10 00 00 100.663890 R

18FF2013 X 8 E1 FF 7F 11 FF FC A0 23 103.825610 R
0CFF1813 X 8 E8 03 00 00 FF FA 68 C2 103.826380 R
18DA20F1 X 3 02 10 85 103.832590 R Request from Node with Source Address F1h to start diagnostics
18DAF120 X 3 02 50 85 104.421390 R Positive Response

13.10 EXAMPLE 6: USING OFFICIAL MAIN BINARY (.BIOS) FILES FOR FLASHING CODE OVER KWP.
This example describes how to use the content of the official binary (.bios) file to send over KWP.

Page | 50

MAKING MODERN LIVING POSSIBLE

The content of the official binary files can be viewed through a hex editor or read via read binary file APIs. The below screen shot is using Notepad++ and plugin
Hex-Editor.

Entire file contents are not show here for readability purpose. The data available in the binary file above can be used instead of the data used in the Transfer data
–Write service in example 13.5

Page | 51

MAKING MODERN LIVING POSSIBLE

 Error Codes

Error Code (Hex) Description

0x00 No error

0x7F The basic negative response

0x11 Service not supported response

0x12 Sub function not supported response

0x22 Sequence Error

0x80 Request Length Error response

0x78 Response Pending Negative response

0x35 The Security key provided is not valid

0x33 This session is protected and a valid key has not been
provided

0xFA The format of the received message was invalid

0x41 The target type or data identifier are wrong

0xFA Invalid length of download data

0x23 The routine is not complete (eg. Erase Flash)

0xFC The Transfer Data Framer format is incorrect

0xFE Incorrect blockcount on data transfer

0x79 Wrong length of downloaded data

0xFA Wrong number of bytes received

0xFA Invalid Checksum on received download

0x22 Incorrect Condition

0x31 Invalid Baud rate

0x43 Cannot download data further

0xFE Error during programming

0xFD Error during erasing

0x81 Error for Timeout

0x82 Error for Invalid application

Page | 52

MAKING MODERN LIVING POSSIBLE

 Flashing process

The flashing process is depicted below.

Result

Page | 53

MAKING MODERN LIVING POSSIBLE

 PLUS+1 Service tool protocol Support

The PVED-CLS boot-loader is also compatible with the PLUS+1 GUIDE KWP2000 protocol variant which is used by the PLUS+1
service tool. This protocol is not described in this document. Contact your local Danfoss PAE for further information on the
PLUS+1 service tool.

