Introduction
Superheat controller EKE 1A is for use where superheat must be accurately controlled, typically in commercial air conditioning, heat pumps, commercial refrigeration, food retailing and industrial applications. Compatible valves: Danfoss ETS 6 / ETS / ETS Colibri®, KVS / KVS Colibri® and CCM / CCMT / CTR valves.
Reference: For details please see EKE data sheet.

Applications

1. Superheat controller: standalone

2. Valve driver

Dimensions EKE 1A

Weight: 152 gram
TECHNICAL SPECIFICATIONS

POWER SUPPLY

EKE has galvanic isolation by switch-mode power supply.
24 V AC ± 20%, 50/60 Hz. Maximum power consumption: 18 VA.
Input voltage rating (DC): 24 V DC ± 20%, 15 W.

I/O TYPE NUMBER SPECIFICATION

<table>
<thead>
<tr>
<th>I/O</th>
<th>TYPE</th>
<th>NUMBER</th>
<th>SPECIFICATION</th>
</tr>
</thead>
</table>
| Analog | | | Max. 15 V input voltage
Do not connect voltage sources to unpowered units without limiting the current to analog inputs (overall 80 mA).
Open circuit HW diagnostics available for voltage input on : AI4 |
| | Voltage | 2 | AI3 (Pe)
0 – 5 V ratiometric
AI4
0 – 5 V, 0 – 10 V |
| | NTC | 1 | AI2 (S2)
NTC temperature probes, 10 kΩ at 25 °C |
| | Auxiliary Supplies | 1 | 5 V +
Sensor supply: 5 V DC / 15 mA, overload protection approximately 150 mA |
| Digital | Voltage free contacts | 3 | D1, D2, D3
Steady current minimum 1mA
Cleaning current 100 mA at 15 V DC
On: RIL < = 300 Ω
Off: RIH > = 3.5 k Ω |
| | Relay | 1 | C1-NO1
Normally Open: 3 A General purpose, 250 V AC, 100 k cycle
Normally Open: 3 A Inductive (AC-15), 250 V AC, 100 k cycle
Normally Closed: 2 A General purpose, 250 V AC, 100 k cycle |
| | Bipolar/unipolar | 1 | Stepper valves: A1, A2, A3, A4
Bipolar and unipolar stepper motor output:
- Danfoss ETS / KVS / ETS C / KVS C / CCMT 2 – CCMT 42 / CTR Valves
 (green, red, black, white)
- ETS6 / CCMT 0 / CCMT 1 (black, red, yellow, orange)
Other Valves:
- speed 10 – 400 pps
- drive mode 1/8 microstep
- max. peak phase current: 1.2 A (848 mA RMS)
- max. drive voltage 40 V
- max. output power 1.2 W |
| | Battery backup | 1 | VBATT: 18 – 24 V DC (24 V DC recommended):
- max. battery current: 850 mA at 18 V
- battery alarm will be activated below 16 V DC and above 27 V DC |
| | Communication | 1 | CAN - RJ
RJ connector to directly connect and supply a MMI. |

POWER SUPPLY
24 V AC ± 20%, 50/60 Hz. Maximum power consumption: 18 VA.
Input voltage rating (DC): 24 V DC ± 20%, 15 W.
PLASTIC HOUSING FEATURES
- DIN rail mounting complying with EN 50022
- Self-extinguishing V0 according to IEC 60695-11-10 and glowing hot wire test at 960 °C according to IEC 60695-2-12
- Ball test: 125 °C according to IEC 60730-1. Leakage current: ≥ 250 V according to IEC 60112

OTHER FEATURES
- Operating conditions CE: -20T60, 90% RH non-condensing
- Storage conditions: -30T80, 90% RH non-condensing
- To be integrated in Class I and/or II appliances
- Index of protection: IP 20 on product and IP40 only on the front cover
- Period of electric stress across insulating parts: long
- Suitable for using in a normal pollution environment
- Category of resistance to heat and fire: D
- Immunity against voltage surges: category II
- Software class and structure: class A

CE COMPLIANCE
This product is designed to comply with the following EU standards:
- Low voltage guideline: 2014/35/EU
- Electromagnetic compatibility EMC: 2014/30/EU and with the following norms:
 - EN61000-6-1, EN61000-6-3 (immunity for residential, commercial and light-industrial environments)
 - EN61000-6-2, EN61000-6-4 (immunity and emission standard for industrial environments)
 - EN60730 (Automatic electrical controls for household and similar use)

GENERAL WARNINGS
- Every use that is not described in this manual is considered incorrect and is not authorized by the manufacturer
- Verify that the installation and operating conditions of the device respect those specified in the manual especially concerning the supply voltage and environmental conditions
- This device contains live electrical components. All service and maintenance operations must therefore be performed by qualified personnel
- The device must not be used as a safety device
- Liability for injury or damage caused by the incorrect use of the device lies solely with the user

INSTALLATION WARNINGS
- Recommended mounting position: vertical
- Installation must comply with local standards and legislation
- Before working on the electrical connections, disconnect the device from the main power supply
- Before carrying out any maintenance operations on the device, disconnect all electrical connections
- For safety reasons the appliance must be fitted inside an electrical panel with no live parts accessible
- Do not expose the device to continuous water sprays or to a relative humidity greater than 90%
- Avoid exposure to corrosive or pollutant gases, natural elements, environments where explosives or mixes of flammable gases are present, dust, strong vibrations or shock, large and rapid fluctuations in ambient temperature that might cause condensation in combination with high humidity, strong magnetic and/or radio interference (e.g. transmitting antennae)
- When connecting loads be aware of the maximum current for each relay and connector
- Use cable ends suitable for the corresponding connectors. After tightening connector screws, tug the cables gently to check their tightness
- Use appropriate data communication cables. Refer to the EKE data sheet for the kind of cable to be used and setup recommendations
- Minimize the length of probe and digital input cables as much as possible, and avoid spiral routes around power devices. Separate from inductive loads and power cables to avoid possible electromagnetic noises
- Avoid touching or nearly touching the electronic components fitted on the board to avoid electrostatic discharges

PRODUCT WARNINGS
• Use a class II category transformer for 24 V AC power supply.
• Connecting any EKE inputs to mains voltage will permanently damage the controller.
• Battery Backup terminals does not generate power to recharge a device connected.
• Battery backup - the voltage will close the stepper motor valves if the controller loses its supply voltage.
• Do not connect an external power supply to the digital input DI terminals to avoid damaging the controller.
DIN rail mounting / demounting

The unit can be mounted onto a 35 mm DIN rail simply by snapping it into place and securing it with a stopper to prevent sliding. It is demounted by gently pulling the stirrup located in the base of the housing.
EKE 1A - connection overview

Master controller

<table>
<thead>
<tr>
<th>Master controller</th>
<th>MMIGRS2 Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN RJ</td>
<td>080G0294 (optional)</td>
</tr>
<tr>
<td></td>
<td>MMIMMYK Gateway</td>
</tr>
<tr>
<td></td>
<td>KoolProg PC tool</td>
</tr>
</tbody>
</table>

Pressure Transmitter
Ratiometric 0.5 – 4.5 V

e.g. AKS 32R

Power supply
24 V AC ± 20%
24 V DC ± 20%
18 V

2.5 A T fuse (optional)
Batt backup (optional)

ETS 6 valve

ETS / KVS Colibri®
CCMT / CTR valve

Relay
Normally open or normally closed (optional)

Alarm

ON/OFF solenoid valve

© Danfoss | DCS (az) | 2018.06
Sensor mounting: Temperature sensor

1. Conductive paste
2. Evaporator outlet
3. OD

Important Note
- Mount the sensor on a clean paint-free surface.
- Remember to use heat conducting paste and insulate the sensor.
- For precise measurements, mount the sensor max. 5 cm from the outlet of the evaporator.

Pressure transmitter
- Installation of the pressure transmitter is less critical. However, the pressure transmitter should be closer to the temperature sensor, right after the evaporator and with its head upright. It is a good practice to select a pressure transmitter with an average load of 40 – 60% of full scale.
- 5 EKEs at maximum are allowed to share the output signal of a ratiometric pressure transmitter. In order to get a correct acquisition on all the units all the three wires (GND, 5 V and transmitter signal output) must be routed to every unit.

Power supply
- Power sharing is allowed in EKE controller.
- It is a good practice not to reverse the polarity of the power connection cables. Selection of the common power supply depends on the total number of sharings and the valve in use.
Relay Outputs

EKE 1A has 1 relay output:
- Type SPDT relay. Digital Output can be used to connect either a solenoid valve or an alarm.
- The relays cannot be used for the direct connection of capacitive loads such as LEDs and ON/OFF control of EC motors. All loads with a switch-mode power supply must be connected with a suitable contactor or similar.

Cable length

EKE controller supports the following max. cable length.

<table>
<thead>
<tr>
<th>Component</th>
<th>Cable length</th>
<th>Wire size min. / max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog inputs (Voltage)</td>
<td>10[m]</td>
<td>0.14 / 1.5</td>
</tr>
<tr>
<td>Temperature sensor</td>
<td>10 *)</td>
<td>-</td>
</tr>
<tr>
<td>Stepper valve connection</td>
<td>30[m]</td>
<td>0.14 / 1.5</td>
</tr>
<tr>
<td>Power supply</td>
<td>5[m]</td>
<td>0.2 / 2.5</td>
</tr>
<tr>
<td>Digital input</td>
<td>10[m]</td>
<td>0.14 / 1.5</td>
</tr>
<tr>
<td>Digital output</td>
<td></td>
<td>0.2 / 2.5</td>
</tr>
<tr>
<td>Digital MMI</td>
<td></td>
<td>max. 3 over CAN RJ</td>
</tr>
</tbody>
</table>

Cable and wiring *)

- The max. cable distance between the controller and the valve depends on many factors like shielded/unshielded cable, the wire size used in the cable, the output power for the controller and EMC.
- Keep controller and sensor wiring well separated from mains wiring.
- Connecting sensors by wires more than the specified length may decrease the accuracy of measured values.

Warning

Separate the sensor and digital input cables as much as possible (at least 10 cm) from the power cables to the loads to avoid possible electromagnetic disturbance. Never lay power cables and probe cables in the same conduits (including those in the electrical panels).
Stepper Motor Output
- All valves are driven in a bipolar mode with a 24 V supply chopped to control the current (Current driver).
- The stepper motor is connected to the “Stepper Valve” terminals (see terminal assignment) with a standard M12 connection cable.
- To configure stepper motor valves other than Danfoss stepper motor valves, the correct valve parameters must be set as described in the Valve configuration section (see manual for details).
- The default valve setting in EKE 1A is: none.
- The correct valve must be defined in “Valve configuration”, i.e. parameter I067. An overview of valve types is given in the “Parameter identification” section.

Valve Cable Connection
ETS Colibri / KVS Colibri / ETS / KVS / CCM / CCMT / CTR

<table>
<thead>
<tr>
<th>Danfoss M12 Cable</th>
<th>White</th>
<th>Black</th>
<th>Red</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETS / KVS / CCM Pins</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ETS Colibri / KVS Colibri® / CCMT / CTR / Pins</td>
<td>A1</td>
<td>A2</td>
<td>B1</td>
<td>B2</td>
</tr>
<tr>
<td>EKE terminals</td>
<td>A1</td>
<td>A2</td>
<td>B1</td>
<td>B2</td>
</tr>
</tbody>
</table>

Pin designation used in above table are shown in the product data sheet.

ETS 6

<table>
<thead>
<tr>
<th>Wire color</th>
<th>Orange</th>
<th>Yellow</th>
<th>Red</th>
<th>Black</th>
<th>Gray</th>
</tr>
</thead>
<tbody>
<tr>
<td>EKE terminals</td>
<td>A1</td>
<td>A2</td>
<td>B1</td>
<td>B2</td>
<td>Not connected</td>
</tr>
</tbody>
</table>

Guideline for long M12 cables on Danfoss stepper motor valves
- Long cables will lead to degradation of performance.
- You can overcome this degradation by changing the settings for the valve driver. This guideline is based on the cable type being the same type as the standard Danfoss stepper motor cable.

Recommended wire size and cable distance between EKE controller and stepper motor valve

<table>
<thead>
<tr>
<th>Cable length</th>
<th>1 m – 15 m</th>
<th>15 m – 30 m</th>
<th>30 m – 50 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire diameter</td>
<td>0.52 / 0.33 mm² (20 / 22 AWG)</td>
<td>0.33 mm² (20 AWG)</td>
<td>0.82 mm² (18 AWG)</td>
</tr>
</tbody>
</table>

Parameter setting for long M12 cable

<table>
<thead>
<tr>
<th>Product</th>
<th>0 m – 15 m cable</th>
<th>15 m – 30 m cable</th>
<th>30 m – 50 m cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETS 12C - ETS 100C KVS 2C - KVS 5C</td>
<td>Use default values</td>
<td>I028 Valve drive current= 925 mA peak</td>
<td>I028 Valve drive current = 1000 mA peak I065 Valve duty cycle = 90%</td>
</tr>
<tr>
<td>ETS 12.5 - ETS 400 KVS 15 - KVS 42 CTR 20 CCMT 2 - CCMT 8 CCM 10 - CCMT 40</td>
<td>Use default values</td>
<td>I028 Valve drive current= 200 mA peak</td>
<td>I028 Valve drive current = 300 mA peak</td>
</tr>
<tr>
<td>ETS 6</td>
<td>Use default values</td>
<td>I028 Valve drive current= 270 mA peak</td>
<td>I028 Valve drive current = 350 mA peak</td>
</tr>
<tr>
<td>CCMT 0</td>
<td>Use default values</td>
<td>I028 Valve drive current= 270 mA peak</td>
<td>I028 Valve drive current = 350 mA peak</td>
</tr>
<tr>
<td>CCMT 1</td>
<td>Use default values</td>
<td>I028 Valve drive current= 400 mA peak</td>
<td>I028 Valve drive current = 500 mA peak</td>
</tr>
<tr>
<td>CCMT 16 - CCMT 42</td>
<td>Use default values</td>
<td>I028 Valve drive current= 450 mA peak</td>
<td>I028 Valve drive current = 500 mA peak</td>
</tr>
</tbody>
</table>
KoolProg

KoolProg is a software tool for quickly and easily configuring EKE controllers. It enables you to make online changes to parameter configuration, copy settings to multiple controllers, monitor the live status of input/outputs, and quickly analyze controller behavior and program patterns with a graphical trending tool.

KoolProg requires a Gateway (code 080G9711) to connect to the PC.

Important note!

To guarantee a reliable USB connection to a host device (e.g. industrial PC), you must:
• Connect terminals R and H on MMIMYK CAN port using a termination wire.
• Place cable holder close to MMIMYK to keep USB connector firmly in place.
• Keep USB cable length < 1 m.
• Place MMIMYK and route USB cable far from noise sources (inverter, motors, contactors etc.)
Danfoss MMIGRS2 display

Connecting external MMIGRS2 display

MMIGRS2 display can be used to set up EKE 1A. The display can be used not only for setting up the necessary parameters, but also as an external display during operation to show important parameters, e.g. degree of opening of valve, superheat, etc.

Important note:
- Max. distance between controller and display is 3 m over CAN RJ.
- CANbus requires termination in both ends of the cable by a 120 Ohm resistor to ensure reliable communication.

 Note: Setup and service menu requires login with the default password 100 (daily use), 200 (service use) or 300 (commissioning use). Long press Enter key to access login menu.
Setup wizard via MMIGRS2 display

When all connections to the controller have been made, after the power is switched on, the Danfoss logo will appear for 5 seconds, then the Home screen will be displayed. To access the Wizard: press and hold enter to access the Login screen, the commissioning password is 300, scroll down the Setup and service menu and select “Setup wizard”.

When using the Setup Wizard, repeat the following sequence for all parameter settings:

a. From Setup wizard, select relevant parameters.
b. Press ENTER to highlight 1st option
c. Scroll with UP / DOWN to your desired option
d. If the selected default value is acceptable, press DOWN to get to the next settings. Otherwise, press ENTER to set your choice
e. Scroll with DOWN to the next parameter (repeat sequence a. to e.)

Note:

- If you do not have sufficient information to complete the Wizard, leave settings on their default values. To generate the requested info, you can use Danfoss Coolselector2 software to calculate operating conditions and valve OD for the same operating point.
- Setup Wizard only covers the most important parameters. If other features are to be enabled (e.g. Alarm settings, MOP/LOP, etc.), they must be configured separately once the Setup Wizard is done.

Setup Wizard is also available in KoolProg PC tool. The workflow process is the same as that described above for MMIGRS2 display. For details, please refer to EKE data sheet.
Quick guide for parameter selection

Apart from wizard setup, users can also use the following section which describes quick parameter settings for general applications.

Start: Main switch = Off → Select valve type → Application mode

Driver - Controller

Make sure that main switch is OFF before changing the settings. The setting will depend on the system requirement. Parameter: R012 Main Switch

Select predefined Danfoss valve type ETS, ETS C, KVS, KVS C, CCM, CCMT, CTR, or user defined. Parameter: I067 Valve configuration

Select how you want to use EKE: driver or superheat controller. Parameter: R102 Operation mode

Select the predefined refrigerant. Parameter: O030 Refrigerant

Select Temperature sensor type: EKS, ACCPBT, MBT, Sensata 112CP. Parameter: I082 - S2 sensor configuration.

Select Pressure transmitter type: AKS 32R, Sensata 112CP, OEM Ratio, NSK, AKS 32 1-5V, OEM Voltage. Parameter: I086 - Pe transmitter configuration

Define min and max Pressure transmitter in barg. Parameter: O020 - Pe min., O021 Pe max., Check parameter list for other sensors.

Set the value for the selected control min./max. superheat reference. Parameter R009 SH max., N010 - SH min.

Optional – Force start up, MOP, LOP, Alarm, Thermostat function. Check parameter list for details.

Finish: main switch = ON

Remember to turn on main switch to start “ON”. Parameter R012 Main switch.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R012 Main switch</td>
<td>0</td>
<td>0 = regulation Off</td>
</tr>
<tr>
<td>R102 Operation mode</td>
<td>0</td>
<td>0 = Superheat control</td>
</tr>
<tr>
<td>I033 Driver reference configuration</td>
<td>-</td>
<td>0 = Voltage to OD</td>
</tr>
<tr>
<td>I034 Ext ref. voltage low</td>
<td>0</td>
<td>Range 0 – 10 V. To be used with I033</td>
</tr>
<tr>
<td>I035 Ext ref. voltage high</td>
<td>10</td>
<td>Range 0 – 10 V. To be used with I033</td>
</tr>
<tr>
<td>I067 Valve configuration</td>
<td>0</td>
<td>0 = no valve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = ETS 12C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 = ETS 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 = ETS 250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 = KVS 2C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17 = KVS 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19 = CCMT 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21 = CCMT 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26 = CCMT 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28 = CCM 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32 = CTR 20</td>
</tr>
<tr>
<td>I030 Refrigerant</td>
<td>0</td>
<td>0 = Undef</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = R12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = R22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 = R134A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 = R502</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 = R717</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 = R13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 = R13b1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 = R23</td>
</tr>
<tr>
<td>I082 S2 Sensor configuration</td>
<td>0</td>
<td>0 = Not defined</td>
</tr>
<tr>
<td>I086 Pe transmitter configuration</td>
<td>0</td>
<td>0 = Not defined</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 = NSK</td>
</tr>
<tr>
<td>O020 Pe transmitter min. (in bar g)</td>
<td>-1</td>
<td>Define pressure range in bar gauge</td>
</tr>
<tr>
<td>O021 Pe transmitter max. (in bar g)</td>
<td>12</td>
<td>Define pressure range in bar gauge</td>
</tr>
<tr>
<td>N021 SH reference mode</td>
<td>2</td>
<td>0 = Fixed SH</td>
</tr>
<tr>
<td>N107 SH fixed setpoint (K)</td>
<td>7</td>
<td>Range 2 – 40 K</td>
</tr>
<tr>
<td>N009 SH max. (K)</td>
<td>9</td>
<td>Range 4 – 40 K</td>
</tr>
<tr>
<td>N010 SH min. (K)</td>
<td>4</td>
<td>Range 2 – 9 K</td>
</tr>
<tr>
<td>N116 SH ref. delta temp. factor (%)</td>
<td>65</td>
<td>Range 20 – 100</td>
</tr>
</tbody>
</table>

For a detailed parameter list and explanation, please check the EKE data sheet.
Related products

<table>
<thead>
<tr>
<th>MMIGRS2 Display</th>
<th>Power Supply</th>
<th>MMIMYK Gateway</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| User interface module **MMIGRS2 Display** | **AK-PS**
Input: 100 – 240 V AC, 45 – 65 Hz
Output: 24 V DC: available with 18 VA, 36 VA and 60 VA
ACCTRD
Input: 230 V AC, 50 – 60 Hz
Output: 24 V AC, available with 12 VA, 22 VA and 35 VA | **MMIMYK device is used as a gateway to connect EKEs and the PC tool i.e KoolProg software for parameter setting or data logging.** |

Pressure Transducer

| **AKS** Pressure Transducer
Available with ratiometric and 4 – 20 mA.
NSK
Ratiometric pressure probe
XSK
Pressure probe 4 – 20 mA | **PT 1000**
AKS is a High precision temp. sensor
AKS 11 (preferred), AKS 12, AKS 21
ACCPBT PT1000
NTC sensors
EKS 221 (NTC-10 Kohm), MBT 153
ACCPBT
NTC Temp probe (IP 67/68) | |

Temperature Sensor

| **ACCCBI Cable**
ACCCBI cables for MMI display and gateway.
EKE is compatible with Danfoss stepper motor valves i.e Danfoss ETS 6, ETS, KVS, ETS Colibri®, KVS colibri®, CTR, CCMT | **Stepper motor valves**
M12 cable
M12 Angle cable to connect Danfoss stepper motor valve and EKE controller | |