Danfoss scroll compressor

PCH065

50 Hz - R410A
GENERAL INFORMATION 4

PRODUCT INFORMATION 5
Features .. 5
Overview 5
Vapor injection 5
Compressor model designation 7
Nomenclature 7
Technical specifications 8
50Hz data 8

Dimensions 9
Single compressors 9
Connection details 10

Electrical data, connections and wiring 11
Motor voltage 11
Wiring connections 11
IP rating 12
Terminal box temperature 12
Three phase electrical characteristics 12
Motor protection 13

Approval and certification 15
Approval and certificates 15
Low voltage directive 15
Machines directive 15
Pressure equipment 15
Internal free volume 15

SYSTEM DESIGN 16
Design piping 16
General requirements 16

Design compressor mounting 17
General requirements 17
Single requirements 17

Manage oil in the circuit 18
Requirement 18
System Evaluation 18
Test, criteria and solutions 18

Manage sound and vibration 19
Compressor sound radiation 19
Mechanical vibrations 20
Gas pulsation 20

Manage operating envelope 21
Requirement 21
System evaluation 22
Test, criteria and solutions 22

Manage superheat 23
Requirement 23
System evaluation 23
Test, criteria and solutions 24

Manage off cycle migration 25
Requirement 25
System evaluation 25

Provide power supply and electrical protection 26
Wiring information 26
Soft starters 27

Control logic 28
Safety control logic requirements 28
Cycle rate limit requirements 28
Defrost logic recommendations 29
Pump-down logic recommendations 29

INTEGRATION INTO SYSTEMS 32
Reduce moisture in the system 30
Requirements 30
Solutions 30

Assembly line procedure 31
Compressor storage 31
Compressor holding charge 31
Handling 31

Assembly line procedure 32
Piping assembly 32
System pressure test and leak detection .. 32
Vacuum evacuation and moisture removal . 33
Refrigerant charging 33
Dielectric strength and insulation resistance tests ... 33

Commissioning 34
Preliminary check 34
Initial start-up 34
System monitoring 34

Dismantal and disposal 35

ORDERING INFORMATION 38
Packaging 36
Ordering codes 37

Accessories 38
Danfoss scroll compressors are designed and manufactured according to the state of the art and to valid European and US regulations. Particular emphasis has been placed on safety and reliability. Related instructions are highlighted with the following icons:

⚠️ This icon indicates instructions to avoid reliability risk.

⚠️ This icon indicates instructions to avoid safety risk.

The purpose of this guideline is to help customers qualify compressors in the unit. You are strongly advised to follow these instructions. For any deviation from the guidelines, please contact Danfoss Technical Support. In any case, Danfoss accepts no liability as a result of the improper integration of the compressor into the unit by the system manufacturer.
Overview

Danfoss PCH065 compressor is optimized for heat pump application. Moreover, it benefits from an improved design to achieve the highest efficiency and increased lifetime.

Features

- Internal Non Return Valve (INRV) prevents excessive leak rate from high pressure side
- Built in pressure ratio optimization dedicated to heat pump application
- Intermediate discharge valves (IDVs) increase efficiency at low pressure ratio conditions (Reversible mode)
- Integrated discharge gas temperature protection (DGT)
- Heat shield lowers the heat transfer between discharge and suction gas and the acoustic level
- Lead free polymer bearings improve behavior under poor lubrication conditions
- Patented gas path flow with gas intake design induce higher resistance to liquid slugging
- Vapor injection port to both enlarge the application envelope and improve efficiency
Vapor injection

The PCH065 compressor is fitted with an injection port that enables to carry out vapor injection by connecting an intermediate exchanger.

This vapor injection will have three benefits:

- Operating envelope enlargement by reduction of resulting discharge temperature.
- Cooling capacity and cooling efficiency improvement by reduction of the liquid temperature before expansion (Intermediate exchanger acting as economizer).
- Heat capacity and heating efficiency improvement by increase of the massflow at the condenser side (condenser massflow will be the sum of the evaporator massflow and the injected massflow).

The diagrams below explain the vapor injection principle, considering:

- m_{inj}: Injected massflow.
- ΔT_{IntX}: Difference of temperature between the outlet of intermediate exchanger and the intermediate pressure bubble point.
- Suct SH: Superheat at compressor suction.
- Inj SH: Superheat of injected gas (at intermediate pressure).
- SC: Subcooling at intermediate exchanger inlet.

For system with vapor injection we should also consider, in addition of the suction superheat and the condenser subcooling, the injection superheat and Intermediate exchanger DeltaT as key influent parameters on the compressor performance.

The injection massflow must be regulated through an EXV piloted by the injection superheat which must be above 5K.

It is recommended to install an additional solenoid valve on the injection line to prevent the refrigerant to come back directly into the compressor scroll set in case of power shortage.

The vapor injection must not be activated during inversion cycles (cooling mode and defrost).
Compressor model designation

Danfoss scroll compressor PCH065 is available as single compressor. The example below presents the compressor nomenclature which equals the technical reference as shown on the compressor nameplate. Code numbers for ordering are listed in section “Ordering codes”.

Nomenclature

- **Family, lubricant & refrigerant**
 - PCH: Heat pump optimized scroll, dedicated to Chinese market, POE lubricant, for R410A

- **Nominal capacity**
 - in kW at 50 Hz with R410A and at condition: -7°C /50°C Superheat 5K / Sub cooling 5K (w/o injection)

- **Motor protection**
 - B: Electronic module, 110-240V

- **Options**
 - V: Vapor Injection (No control logic and no injection valve included)

- **Motor voltage code**
 - 8: 380V/3~/50 Hz

- **UL index**
 - FRCC.PC.051.A3.02

Evolution index

- A-Z

Approvals

- A

Version

- VB

Voltage

- 8
Technical specifications

50Hz data

<table>
<thead>
<tr>
<th>Model</th>
<th>Swept volume</th>
<th>Displacement*</th>
<th>Oil charge</th>
<th>Net weight**</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCH065</td>
<td>276.2 cm³/rev</td>
<td>48.1 m³/h</td>
<td>6.7 dm³</td>
<td>111 kg</td>
</tr>
</tbody>
</table>

* at 2900 tr/min
** net weight with oil charge

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Nominal heating capacity</th>
<th>Nominal cooling capacity</th>
<th>Power input</th>
<th>Heating COP</th>
<th>Cooling COP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W</td>
<td>W</td>
<td>W/W</td>
<td>W/W</td>
<td></td>
</tr>
<tr>
<td>Evap temp</td>
<td>Cond temp</td>
<td>ΔT intX</td>
<td>Suction Superheat</td>
<td>Injection Superheat</td>
<td>Subcooling</td>
</tr>
<tr>
<td>°C</td>
<td>°C</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>-15</td>
<td>44</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>-7</td>
<td>50</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
Dimensions

Single compressors

<table>
<thead>
<tr>
<th>Compressor model</th>
<th>D (mm)</th>
<th>H (mm)</th>
<th>H1(mm)</th>
<th>H2(mm)</th>
<th>H3(mm)</th>
<th>L1(mm)</th>
<th>L2(mm)</th>
<th>L3(mm)</th>
<th>L4(mm)</th>
<th>L5(mm)</th>
<th>Outline drawing number</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCH065</td>
<td>318</td>
<td>683</td>
<td>331</td>
<td>648</td>
<td>97</td>
<td>428</td>
<td>279.4</td>
<td>371</td>
<td>345</td>
<td>305</td>
<td>8560119</td>
</tr>
</tbody>
</table>
Connection details

<table>
<thead>
<tr>
<th>Connection</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suction connection</td>
<td>Brazed 1" 5/8</td>
</tr>
<tr>
<td>Discharge connection</td>
<td>Brazed 1" 1/8</td>
</tr>
<tr>
<td>Oil sight glass</td>
<td>Threaded (1"1/8 - 18 UNF)</td>
</tr>
<tr>
<td>Oil equalization connection</td>
<td>Rotolock 2" 1/4</td>
</tr>
<tr>
<td>Oil drain connection</td>
<td>Female ¼" Flare incorporating a Schrader valve</td>
</tr>
<tr>
<td>Low pressure gauge port (Shrader)</td>
<td>Male ¼" Flare incorporating a Schrader valve</td>
</tr>
<tr>
<td>Injection connection</td>
<td>3/8" ODF</td>
</tr>
</tbody>
</table>

![Diagram of connection details](image-url)
Electrical data, connections and wiring

Motor voltage

<table>
<thead>
<tr>
<th>Motor voltage code</th>
<th>Code 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal voltage</td>
<td>380V-3ph</td>
</tr>
<tr>
<td>Voltage range</td>
<td>342-418V</td>
</tr>
</tbody>
</table>

The maximum allowable voltage imbalance is 2%. Voltage imbalance causes high amperage over one or several phases, which in turn leads to overheating and possible motor damage. Voltage imbalance is given by the formula:

$$\% \text{ voltage imbalance} = \frac{|V_{avg} - V1-2| + |V_{avg} - V1-3| + |V_{avg} - V2-3|}{2 \times V_{avg}} \times 100$$

Vavg = Mean voltage of phases 1, 2, 3.
V1-2 = Voltage between phases 1 and 2.
V1-3 = Voltage between phases 1 and 3.
V2-3 = Voltage between phases 2 and 3.

Wiring connections

Electrical power is connected to the compressor terminals by Ø 4.8 mm (3/16") screws. The maximum tightening torque is 3 Nm. Use a 1/4" ring terminal on the power leads.

The terminal box is provided with 2 triple knockouts and 1 single knockout for power supply and 4 double knockouts for the safety control circuit.

The 3 power supply knockouts accommodate the following diameters:
- Ø 50.8 mm (UL 1 3/4" conduit) & Ø 43.7 mm (UL 1 1/4" conduit) & Ø 34.5 mm (UL 1" conduit)
- Ø 40.5 mm (ISO40) & Ø 32.2 mm (ISO32) & Ø 25.5 mm (ISO25)
- Ø 25.5 mm (ISO25)

The 4 others knockouts are as follows:
- Ø 22.5 mm (PG16) (UL 1/2") & Ø 16.5 mm (ISO16) (x2)
- Ø 20.7 mm (ISO20 or PG13.5) (x2)
Electrical data, connections and wiring

The motor protection modules come preinstalled within the terminal box. Phase sequence protection connections and thermistor connections are pre-wired and should not be removed. The module must be connected to a power supply of the appropriate voltage. The module terminals are 6.3-mm size Faston type.

IP rating

The compressor terminal box according to IEC529 is IP54 for all models when correctly sized IP54 rated cable glands are used.

- First numeral, level of protection against contact and foreign objects
 - **5** - Dust protected

- Second numeral, level of protection against water
 - **4** - Protection against water splashing

Terminal box temperature

The temperature inside the terminal box must not exceed 70°C. Consequently, if the compressor is installed in an enclosure, precautions must be taken to avoid that the temperature around the compressor and in the terminal box would rise too much. A ventilation installation on the enclosure panels may be necessary. If not, the electronic protection module may not operate properly. Any compressor damage related to this will not be covered by Danfoss warranty. In the same manner, cables must be selected in a way that ensures the terminal box temperature does not exceed 70°C.

Three phase electrical characteristics

<table>
<thead>
<tr>
<th>Compressor model</th>
<th>LRA</th>
<th>Max. operating current</th>
<th>Winding resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor voltage code 8 380V / 3ph / 50 Hz PCH065</td>
<td>236</td>
<td>56</td>
<td>0.52</td>
</tr>
</tbody>
</table>
GENERAL INFORMATION
SYSTEM DESIGN
INTEGRATION INTO SYSTEM

ORDERING INFORMATION

PRODUCT INFORMATION

Motor protection

Compressor PCH065 is delivered with a pre-installed motor protection module inside the terminal box. This device provides efficient and reliable protection against overheating and overloading as well as phase loss/reversal.

The motor protector comprises a control module and PTC sensors embedded in the motor winding.

The motor temperature is being constantly measured by a PTC thermistor loop connected on S1-S2. If any thermistor exceeds its response temperature, its resistance increases above the trip level (4.500 Ω) and the output relay then trips – i.e. contacts M1-M2 are open. After cooling to below the response temperature (resistance < 2.750 Ω), a 5-minute time delay is activated.

After this delay has elapsed, the relay is once again pulled in – i.e. contacts M1-M2 are closed. The time delay may be cancelled by means of resetting the mains (L-N -disconnect) for approximately 5 sec.

A red/green twin LED is visible on the module. A solid green LED denotes a fault free condition. A blinking red LED indicates an identifiable fault condition:

PTC overheat

Delay timer active (after PTC over temp.)

Locked Rotor Amp value is the highest average current measured on mechanically blocked compressors tested under nominal voltage. The LRA value can be used as a rough estimation for the starting current. However, in most cases, the real starting current will be lower. A soft starter can be applied to reduce starting current (see section “soft starter”).

The max. operating current is the current when the compressors operate at maximum load conditions and 10% below nominal voltage (max. evaporating temperature and max. condensing temperature). Max Oper. A can be used to select cables and contactors. In normal operation, the compressor current consumption is always less than the Max Oper. A value.

The motor protection module inside the terminal box provides efficient and reliable protection against overheating and overloading as well as phase loss/reversal.

A red/green twin LED is visible on the module. A solid green LED denotes a fault free condition. A blinking red LED indicates an identifiable fault condition:

Electrical data, connections and wiring

Locked Rotor Amp (LRA)

Locked Rotor Amp value is the highest average current measured on mechanically blocked compressors tested under nominal voltage. The LRA value can be used as a rough estimation for the starting current. However, in most cases, the real starting current will be lower. A soft starter can be applied to reduce starting current (see section “soft starter”).

The max. operating current is the current when the compressors operate at maximum load conditions and 10% below nominal voltage (max. evaporating temperature and max. condensing temperature). Max Oper. A can be used to select cables and contactors. In normal operation, the compressor current consumption is always less than the Max Oper. A value.

Winding resistance

Winding resistance is the resistance between phases at 25°C (resistance value +/- 7%). Winding resistance is generally low and it requires adapted tools for precise measurement. Use a digital ohm-meter, a "4 wires" method and measure under stabilised ambient temperature. Winding resistance varies strongly with winding temperature. If the compressor is stabilised at a different value than 25°C, the measured resistance must be corrected using the following formula:

\[R_{\text{amb}} = \frac{a + t_{\text{amb}}}{a + t_{25^\circ\text{C}}} \]

where:
- \(R_{25^\circ\text{C}} \): winding resistance at 25°C
- \(R_{\text{amb}} \): winding resistance at \(t_{\text{amb}} \)
- \(t_{25^\circ\text{C}} \): reference temperature = 25°C
- \(t_{\text{amb}} \): temperature during measurement (°C)
- Coefficient \(a = 234.5 \)

Max. operating Current

Max. operating current is the current when the compressors operate at maximum load conditions and 10% below nominal voltage (max. evaporating temperature and max. condensing temperature). Max Oper. A can be used to select cables and contactors. In normal operation, the compressor current consumption is always less than the Max Oper. A value.

Winding resistance

Winding resistance is the resistance between phases at 25°C (resistance value +/- 7%). Winding resistance is generally low and it requires adapted tools for precise measurement. Use a digital ohm-meter, a "4 wires" method and measure under stabilised ambient temperature. Winding resistance varies strongly with winding temperature. If the compressor is stabilised at a different value than 25°C, the measured resistance must be corrected using the following formula:

\[R_{\text{amb}} = \frac{a + t_{\text{amb}}}{a + t_{25^\circ\text{C}}} \]

where:
- \(R_{25^\circ\text{C}} \): winding resistance at 25°C
- \(R_{\text{amb}} \): winding resistance at \(t_{\text{amb}} \)
- \(t_{25^\circ\text{C}} \): reference temperature = 25°C
- \(t_{\text{amb}} \): temperature during measurement (°C)
- Coefficient \(a = 234.5 \)

Locked Rotor Amp (LRA)

Locked Rotor Amp value is the highest average current measured on mechanically blocked compressors tested under nominal voltage. The LRA value can be used as a rough estimation for the starting current. However, in most cases, the real starting current will be lower. A soft starter can be applied to reduce starting current (see section “soft starter”).

The max. operating current is the current when the compressors operate at maximum load conditions and 10% below nominal voltage (max. evaporating temperature and max. condensing temperature). Max Oper. A can be used to select cables and contactors. In normal operation, the compressor current consumption is always less than the Max Oper. A value.

Electrical data, connections and wiring

Locked Rotor Amp (LRA)

Locked Rotor Amp value is the highest average current measured on mechanically blocked compressors tested under nominal voltage. The LRA value can be used as a rough estimation for the starting current. However, in most cases, the real starting current will be lower. A soft starter can be applied to reduce starting current (see section “soft starter”).

The max. operating current is the current when the compressors operate at maximum load conditions and 10% below nominal voltage (max. evaporating temperature and max. condensing temperature). Max Oper. A can be used to select cables and contactors. In normal operation, the compressor current consumption is always less than the Max Oper. A value.

Electrical data, connections and wiring

Locked Rotor Amp (LRA)

Locked Rotor Amp value is the highest average current measured on mechanically blocked compressors tested under nominal voltage. The LRA value can be used as a rough estimation for the starting current. However, in most cases, the real starting current will be lower. A soft starter can be applied to reduce starting current (see section “soft starter”).

The max. operating current is the current when the compressors operate at maximum load conditions and 10% below nominal voltage (max. evaporating temperature and max. condensing temperature). Max Oper. A can be used to select cables and contactors. In normal operation, the compressor current consumption is always less than the Max Oper. A value.
Phase sequence and reverse rotation protection

Use a phase meter to establish the phase orders and connect line phases L1, L2 and L3 to terminals T1, T2 and T3, respectively.

Compressor PH065 is delivered with an electronic module which provides protection against phase reversal and phase loss at start-up.

The phase sequencing and phase loss monitoring functions are active during a 5-sec window 1 second after compressor start-up (power on L1-L2-L3).

Should one of these parameters be incorrect, the relay would lock out (contact M1-M2 open). The red LED on the module will show the following blink code:

In case of phase reverse error:

- 0.24ms
- 0.24ms
- 0.24ms
- 0.4ms
- Approx. 760 ms

In case of phase loss error:

- Approx. 1 second

The lockout may be cancelled by resetting the power mains (disconnect L-N) for approximately 5 seconds.

For more detailed information see "Instructions for electronic module" FRCC.PI.031.
Approval and certification

PCH065 is QS certified

<table>
<thead>
<tr>
<th>Low voltage directive 2014/35/EU</th>
<th>Product</th>
<th>PCH065</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration of conformity</td>
<td>Contact Danfoss</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Machines directive 2006/42/EC</th>
<th>Product</th>
<th>PCH065</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer’s declaration of incorporation</td>
<td>Contact Danfoss</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pressure equipment directive 2014/68/EU</th>
<th>Products</th>
<th>PCH065</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerant fluids</td>
<td>Group 2</td>
<td></td>
</tr>
<tr>
<td>PED Category</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>Evaluation module</td>
<td>D1</td>
<td></td>
</tr>
<tr>
<td>Maximum/Minimum temperature - Ts</td>
<td>-35°C < Ts < 52°C</td>
<td></td>
</tr>
<tr>
<td>Maximum allowable pressure (Low side) - Ps</td>
<td>31.1 bar(g)</td>
<td></td>
</tr>
<tr>
<td>Declaration of conformity</td>
<td>Contact Danfoss</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Internal free volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Products</td>
</tr>
<tr>
<td>Low pressure side</td>
</tr>
<tr>
<td>PCH065</td>
</tr>
</tbody>
</table>
Design piping

General requirements

Proper piping practices should be employed to:

1. Ensure adequate oil return, even under minimum load conditions (refrigerant speed, piping slopes...). For validation tests see section “Manage oil in the circuit”.

2. Avoid condensed liquid refrigerant from draining back to the compressor when stopped (discharge piping upper loop). For validation tests see section “Manage off cycle migration”.

General recommendations are described in the figures below:

3. Piping should be designed with adequate three-dimensional flexibility to avoid excess vibration. It should not be in contact with the surrounding structure, unless a proper tubing mount has been installed. For more information on noise and vibration, see section on: “Sound and vibration management”.

![Diagram of piping system with specifications](image-url)
Design compressor mounting

General requirements
Compressors used in single applications must be mounted with flexible grommets. During operation, the maximum inclination from the vertical plan must not exceed 3 degrees.

Single requirements
To be used in single applications, an additional accessory including flexible grommets is necessary: accessory conversion kit 8156138.

The grommets must be compressed until contact between the flat washer and the steel mounting sleeve is established. The required bolt size is HM8-55. This bolt must be tightened to a torque of 21 Nm.
Manage oil in the circuit

Requirement

Oil level must be visible or full in the sight glass when the compressor is running and when all compressors of the circuit are stopped.

System Evaluation

<table>
<thead>
<tr>
<th>Single compressor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non split</td>
</tr>
<tr>
<td>Split</td>
</tr>
</tbody>
</table>

Test, criteria and solutions

<table>
<thead>
<tr>
<th>Test N°</th>
<th>Purpose</th>
<th>Test condition</th>
<th>Pass criteria</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Check proper oil return</td>
<td>Minimum number of compressor running for 6 hours, at a condition corresponding to highest pressure ratio foreseeable on the system application</td>
<td>Oil level must be visible or full in the sight glass when the compressor is running and when all compressors of the circuit are stopped.</td>
<td>1. Top-up with oil, generally 3% of the total system refrigerant charge (in weight). Above 3% look for potential oil trap in the system. 2. Integrate a function in control logic to run all compressors simultaneously in order to boost oil return (for more details see section “Control Logic”) 3. Oil separator can be added</td>
</tr>
<tr>
<td>3</td>
<td>Oil return in split systems</td>
<td>Since each installation is unique, test 1 can not fully validate the oil return. Oil level must be checked and adjusted at commissioning.</td>
<td>Oil level must be visible or full in the sight glass when the compressor is running and when all compressors of the circuit are stopped.</td>
<td>1. Pay special attention to “Piping design” 2. Oil separator is strongly recommended, especially in case of part load.</td>
</tr>
</tbody>
</table>
 Manage sound and vibration

Typical sounds and vibrations in systems can be broken down into the following three categories:
• Sound radiation (through air)
• Mechanical vibrations (through parts and structure)
• Gas pulsation (through refrigerant)

The following sections focus on the causes and methods of mitigation for each of the above sources.

Compressor sound radiation

For sound radiating from the compressors, the emission path is air and the sound waves are travelling directly from the machine in all directions.

Sound levels are as follows:
• For compressors running alone:

<table>
<thead>
<tr>
<th>Compressor model</th>
<th>Composition</th>
<th>50 Hz Sound power dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCH065</td>
<td>-</td>
<td>85</td>
</tr>
</tbody>
</table>

Sound power and attenuation are given at conditions -7/50/5/5, measured in free space.
Manage sound and vibration

| Note: During compressor shut down, a short reverse rotation sound is generated. The duration of this sound depends on the pressure difference at shut down and should be less than 3 seconds. This phenomenon has no impact on compressor reliability. |

| Mechanical vibrations | A compressor generates vibrations that propagate into the surrounding parts and structure. The vibration level of the PCH compressor alone does not exceed 154 µm peak to peak. However, when system structure natural frequencies are close to running frequency, vibrations are amplified due to resonance phenomenon. A high vibration level is damageable for piping reliability and generates high sound levels. Mitigations methods: 1. To ensure minimum vibrations transmission to the structure, strictly follow Danfoss mounting requirements (mounting feet, rails etc.). For further information on mounting requirements, please refer to section “Design compressor mounting”. 2. Ensure that there is no direct contact (without insulation) between vibrating components and structure. 3. To avoid resonance phenomenon, piping and frame must have natural frequencies as far as possible from running frequency (50Hz). Solutions to change natural frequencies are to work on structure stiffness and mass (brackets, metal sheet thickness or shape…). |

| Gas pulsation | PCH compressor has been designed and tested to ensure that gas pulsation is optimized for the most commonly encountered air conditioning pressure ratio. Manifolded compressors are equivalents to lagged sources of gas pulsation. Therefore, pulse level can vary during time. Mitigations methods: If an unacceptable level is identified, a discharge muffler with the appropriate resonant volume and mass can be installed. |
Manage operating envelope

Requirement

⚠️ The operating envelope for PCH compressors is given in the figures below and guarantees reliable operation of the compressor for steady-state and transient operation.

⚠️ In every instance, the discharge temperature must be kept below 135°C

Steady-state operation envelope is valid for a suction superheat within 5K range at nominal voltage.

System Design

<table>
<thead>
<tr>
<th>Condensing temperature (°C)</th>
<th>-40</th>
<th>-35</th>
<th>-30</th>
<th>-25</th>
<th>-20</th>
<th>-15</th>
<th>-10</th>
<th>-5</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaporating temperature (°C)</td>
<td></td>
</tr>
</tbody>
</table>

Non Injection Area

[Graph showing operating envelope]
Manage operating envelope

<table>
<thead>
<tr>
<th>Pressure settings</th>
<th>R410A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working range high side</td>
<td>bar(g)</td>
</tr>
<tr>
<td>Working range low side</td>
<td>bar(g)</td>
</tr>
<tr>
<td>Maximum high pressure safety switch setting</td>
<td>bar(g)</td>
</tr>
<tr>
<td>Minimum low pressure safety switch setting</td>
<td>bar(g)</td>
</tr>
<tr>
<td>Minimum low pressure pump-down switch setting</td>
<td>bar(g)</td>
</tr>
</tbody>
</table>

⚠️ LP and HP safety switches must never be bypassed nor delayed and must stop all the compressors.

LP switch auto restart must be limited to 5 times within 12 hours.

⚠️ HP safety switch must be reset manually.

Depending on application operating envelope, you must define HP and LP limits within operating envelope and pressure setting table above.

System evaluation

HP and LP must be monitored to respect operating envelope limitations. We consider two types of operating envelope management:

Basic:
- HP and LP switch
- MOP (Max Operating Pressure) ensured by expansion device
- Condensing pressure control
- Discharge gas sensor piloting injection expansion device

Advanced:
- HP and LP sensor
- Operating envelope limits (permanent and transient) integrated into control logic

See "Test, criteria and solutions" No additional test are required

PCH065 compressor includes an integrated Discharge Gas Temperature protection (DGT).

Excessive discharge temperature will result in tripping of electronic module output relay.

<table>
<thead>
<tr>
<th>Test N°</th>
<th>Purpose</th>
<th>Test condition</th>
<th>Pass criteria</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Check that Area 1 is reached within maximum transient time</td>
<td>Start test at minimum foreseeable evaporating temperature (minimum ambient temperature...</td>
<td>Continuous running within area 1. At start-up or for any map exit, respect max. transient time according to area number.</td>
<td>Work on compressor staging, fan staging, water flow etc.</td>
</tr>
<tr>
<td>2</td>
<td>Perform a defrost test if reversible unit</td>
<td>Perform a defrost test if reversible unit</td>
<td></td>
<td>Improve MOP function. Work on compressor staging, fan staging, water flow etc.</td>
</tr>
<tr>
<td>3</td>
<td>Perform a start-up test at maximum foreseeable evaporating temperature (max ambient temperature, or start up with hot water...)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Manage superheat

During normal operation, refrigerant enters the compressor as a superheated vapor. Liquid flood back occurs when a part of the refrigerant entering the compressor is still in liquid state. Liquid flood back can cause oil dilution and, in extreme situations lead to liquid slugging that can damage the compressor.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>In any conditions the expansion device must ensure a suction superheat within 5K to 30K.</th>
</tr>
</thead>
</table>

System evaluation

Use the table in relation with the application to quickly evaluate the risk and potential tests to perform.

<table>
<thead>
<tr>
<th>Application</th>
<th>Tests to perform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non reversible</td>
<td>Liquid flood back test</td>
</tr>
<tr>
<td>Reversible</td>
<td>Liquid flood back test</td>
</tr>
<tr>
<td></td>
<td>Defrost test</td>
</tr>
</tbody>
</table>
Manage superheat

Test, criteria and solutions

Suction accumulator must be added in system *

<table>
<thead>
<tr>
<th>Test N°</th>
<th>Purpose</th>
<th>Test condition</th>
<th>Pass criteria</th>
<th>Solutions</th>
</tr>
</thead>
</table>
| Liquid flood back test | Steady-state | Liquid flood back testing must be carried out under expansion valve threshold operating conditions: a high pressure ratio and minimum evaporator load. | Suction superheat >5 K | 1. Check expansion valve selection and setting.
- For Thermostatic Expansion Valve (TXV) check bulb position.
- For Electronic Expansion Valve (EXV) check measurement chain and PID.... |
| Transient | Tests must be carried out with most unfavorable conditions:
- fan staging,
- compressor, start-up, staging,
- etc. | Oil superheat shall not be more than 30 sec below the safe limit defined in the Dilution Chart (see graph below) | In reversible systems, the defrost logic can be worked out to limit liquid floodback effect (for more details see “Control Logic”). |

| Defrost test | Check liquid floodback during defrost cycle | Defrost test must be carried out in the most unfavorable condition (at 0°C outdoor ambient temperature) | Oil superheat shall not be more than 30 sec below the safe limit defined in the Dilution Chart (see graph below) | In reversible systems, the defrost logic can be worked out to limit liquid floodback effect (for more details see “Control Logic”). |

*Suction accumulator offers protection by trapping the liquid refrigerant upstream from the compressor. The accumulator should be sized at least 50 % of the total system charge. Suction accumulator dimensions can impact oil return (gas velocity, oil return hole size, etc.), therefore oil return has to be checked according to section “Manage oil in the circuit”.

Oil temperature sensor must be placed between the oil sight glass and the compressor baseplate. Some thermal paste shall be used to improve the conductivity. The sensor must also be correctly thermally insulated from the ambiance.

The Oil superheat is defined as:
(Oil temperature - Evaporating temperature)
Manage off cycle migration

It is recommended to add a solenoid valve on the injection line to isolate the compressor from the condensing stage when the compressor is off.

Requirement

At start-up, the amount of liquid refrigerant in the compressors must not exceed an acceptable level.

System evaluation

Use the tables below in relation with the system charge and the application to quickly define necessary safeties to implement and test to perform:

<table>
<thead>
<tr>
<th>Application</th>
<th>BELOW charge limit</th>
<th>ABOVE charge limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Ensure tightness between condenser & evaporator when system is OFF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Thermostatic expansion Valve (TXV) , Liquid Line Solenoid Valve LLSV** strongly recommended</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Electronic expansion valve (EXV) must close when system stop including in power shut down situation</td>
<td></td>
</tr>
<tr>
<td>Non split</td>
<td>No test or additional safeties required</td>
<td>• Surface Sump Heater *</td>
</tr>
<tr>
<td></td>
<td>• External Non-Return Valve ****</td>
<td></td>
</tr>
<tr>
<td>Split</td>
<td>Since each installation is unique, refrigerant charge may vary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Surface Sump Heater *</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Liquid Line Solenoid Valve**+ pump-down cycle***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• External Non-Return Valve</td>
<td></td>
</tr>
</tbody>
</table>

Off-cycle refrigerant migration happens:

- when the compressor is located at the coldest part of the installation, refrigerant vapor condenses in the compressor.
- or directly in liquid-phase by gravity or pressure difference.

When the compressor starts running again, the refrigerant diluted in the oil generates poor lubrication conditions. In extreme situations, this leads to liquid slugging that can damage the compressor.

Surface Sump heater (SSH)

The surface sump heaters are designed to protect the compressor against off-cycle migration of refrigerant.

Additional heater power or thermal insulation around compressor might be needed in case of ambient temperature below -5°C and a wind speed above 5m/second.

The heater must be turned on whenever all the compressors are off.

Surface sump heater accessories are available from Danfoss (see section “Accessories”).

Liquid Line Solenoid Valve (LLSV)

A LLSV is used to isolate the liquid charge on the condenser side, thereby preventing against charge transfer to the compressor during off-cycles. The quantity of refrigerant on the low-pressure side of the system can be further reduced by using a pump-down cycle in association with the LLSV.

Pump-down cycle

By decreasing pressure in the sump, pump down system:

- evacuates refrigerant from oil
- sets the sump saturating pressure much lower than ambiance temperature and therefore avoids refrigerant condensation in the compressor.

Pump-down must be set higher than 1.7 bar(g).

For more details on pump-down cycle see section “Control Logic”.

Charge limit is defined in table below:

<table>
<thead>
<tr>
<th>Models</th>
<th>Refrigerant charge limit (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCH065</td>
<td>15</td>
</tr>
</tbody>
</table>
Provide power supply and electrical protection

Wiring information

Requirements:
- Protect the compressor from short circuit and overcurrent by a thermal magnetic motor circuit breaker set to Max. Operating Current or lower (see table in section “Three phase electrical characteristics”)
- Compressor PCH065 is delivered with a pre-installed motor protection module inside the terminal box that must be powered on.
- HP safety switch and electronic module relay output (M1-M2) must be wired in the safety chain.
- Provide separate electrical supply for the heaters so that they remain energized even when the machine is out of service (e.g. seasonal shutdown).

The wiring diagram below is an example for a safe and reliable compressor wiring:

Compressor PCH065

Legends

- Fuses .. F1
- Compressor contactor ... KM
- High pressure safety switch HP
- Safety pressure switch ... LPS
- Discharge gas thermistor DGT
- Compressor motor ... M
- Motor Protection Module MPM
- Thermistor chain .. S
- Surface sump heater ... SSH
Soft starters

Soft starters are designed to reduce the starting current of 3-phase AC motors.

⚠️ Soft starter must be set so compressor start-up time is always less than 0.5 seconds to ensure proper lubrication of compressor parts.

Ramp-down must be set to minimum to ensure proper discharge valve closing.

Danfoss MCI and MCD soft-start controller are available as accessories: MCI and MCD can reduce the inrush current up to 40%.

Selection table:

<table>
<thead>
<tr>
<th>Compressor model</th>
<th>Soft starter reference Ambient max. 40°C</th>
<th>Soft starter reference Ambient max. 55°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCH065</td>
<td>MCI50CM</td>
<td>MCI50CM*</td>
</tr>
</tbody>
</table>

- MCI50CM replaces the contactor KM. All settings such as initial torque, ramp-up time (less than 0.5 sec) and ramp-down time are preset and do not require any modification.

- MCI50CM* requires a by-pass contactor K1. This configuration is needed to withstand current or temperature levels. All settings such as initial torque, ramp-up time (less than 0.5 sec) and ramp-down time are preset and do not require any modification.

See wiring diagram:
Control logic

Safety control logic requirements

<table>
<thead>
<tr>
<th>Safeties</th>
<th>Tripping conditions</th>
<th>Re-start conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP switch</td>
<td>See Pressure settings table</td>
<td>Manual reset</td>
</tr>
<tr>
<td></td>
<td>from section “Manage operating envelope”</td>
<td></td>
</tr>
<tr>
<td>LP safety switch</td>
<td>Immediate, no delay.</td>
<td>Conditions back to normal.</td>
</tr>
<tr>
<td>Contact M1-M2 opened</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic module (Motor protection, DGT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycle rate limit requirements</td>
<td>Danfoss requires a minimum compressor running time of 2 minutes to ensure proper oil return and sufficient motor cooling.</td>
<td>Additionally, compressor must not exceed 12 starts per hour.</td>
</tr>
</tbody>
</table>
Defrost logic recommendations

In reversible systems, the defrost logic can be worked out to limit liquid flood back effect by:

1. Running full load during defrost to share liquid refrigerant between all compressors.

2. Transferring liquid refrigerant from one exchanger to the other one thanks to pressures.

The following defrost logic combines both advantages:

<table>
<thead>
<tr>
<th>Compressor</th>
<th>ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solenoid valve on injection pipe</td>
<td>ON</td>
</tr>
<tr>
<td>4WV</td>
<td>Heating</td>
</tr>
<tr>
<td>EXV</td>
<td>100%</td>
</tr>
</tbody>
</table>

EXV opening degree and time have to be set to keep a minimum pressure for 4 way valve moving.

In any case, defrost logics must respect requirements and tests described in sections “Manage superheat” and “Manage operating envelope”.

⚠️ During inversion cycle of defrost mode, the vapor injection must be stopped.

To ensure compressor reliability, the 4-way valve must not reverse when the compressor is stopped due to heating or cooling demand (stop on thermostat).

Pump-down logic recommendations

Pump down is initiated prior to shutting down the last compressor on the circuit by de-energizing a Liquid Line Solenoid Valve or closing Electronic Expansion Valve. When suction pressure reaches the cut-out pressure, compressor is stopped.

Two types of pump-down exist:

- **One shot pump down** (preferred): when last compressor of the circuit stops, suction pressure is decreased 1.5 bar below nominal evaporating pressure with minimum of 1.7 bar(g). Even if suction pressure increases again, the compressor will not restart.
- **Continuous pump-down**: compressor restarts automatically when suction pressure increases. The PCH065 compressor integrates tight Internal Non Return Valve (INRV), therefore an external Non Return Valve (NRV) is not needed.
Reduce moisture in the system

Excessive air and moisture
• can increase condensing pressure and cause excessive high discharge temperatures.
• can create acid giving rise to copper platting.
• can destroy the lubricating properties of the oil.

All these phenomena reduce compressor life time and cause mechanical and electrical compressor failure.

Requirements
PCH065 compressor is delivered with < 100 ppm moisture level.
At the time of commissioning, system moisture content may be up to 100 ppm.

During operation, the filter drier must reduce this to a level between 20 and 50 ppm.

Solutions
To achieve this requirement, a properly sized and type of drier is required. Important selection criteria includes:
• driers water content capacity,
• system refrigeration capacity,
• system refrigerant charge.

Danfoss recommends using the Danfoss DML (100% molecular sieve) solid core filter drier.
Assembly line procedure

Compressor storage
The compressor must not be exposed to rain, nor corrosive or flammable atmosphere during storage. Store the compressor between -35°C and 70°C when charged with nitrogen and between -35°C and Ts max value (see section “Pressure equipment directive”) when charged with R410A refrigerant.

Compressor holding charge
Each compressor is shipped with a nominal dry nitrogen holding charge between 0.3 and 0.7 bar and is sealed with elastomer plugs.

Respect the following sequence to avoid discharge check valve gets stuck in open position:

- Remove the suction plug first.
- Remove the discharge plug afterwards.

Handling
The PCH065 compressor is equipped with two lift rings on the top shell.

- Always use both these rings when lifting the compressor.
- Use lifting equipment rated and certified for the weight of the compressor or compressor assembly.
- A spreader bar rated for the weight of the compressor is highly recommended to ensure a better load distribution.
- The use of lifting hooks closed with a clasp is recommended.

For tandem and trio assemblies, use a spreader bar and all compressor rings as shown in picture below.

- Never use the lift rings of the compressors to lift the full unit.

Maintain the compressor in an upright position during all handling manoeuvres (maximum of 15° from vertical).

Diagram:

- HEAVY
 - do not lift manually
Assembly line procedure

Piping assembly

Good practices for piping assembly is a pre-requisite to ensure compressor life time (system cleanliness, brazing procedure etc.)

System cleanliness

<table>
<thead>
<tr>
<th>Circuit contamination possible cause</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazing and welding oxides</td>
<td>During brazing, flow nitrogen through the system</td>
</tr>
<tr>
<td>Particles and burrs</td>
<td>Remove any particles and burrs generated by tube cutting and hole drilling</td>
</tr>
<tr>
<td>Moisture and air</td>
<td>Use only clean and dehydrated refrigeration grade copper tubing.</td>
</tr>
<tr>
<td></td>
<td>Opened compressor must not be exposed to air more than 20 minutes to avoid moisture captured by oil.</td>
</tr>
</tbody>
</table>

Brazing procedure:
- Brazing operations must be performed by qualified personnel.
- Make sure that no electrical wiring is connected to the compressor.
- To prevent compressor shell and electrical box overheating, use a heat shield and/or a heat-absorbent compound.
- Clean up connections with degreasing agent
- Flow nitrogen through the compressor.
- Use flux in paste or flux coated brazing rod.
- Use brazing rod with a minimum of 5% silver content.

- It is recommended to use double-tipped torch using acetylene to ensure a uniform heating of connection.
- For discharge and vapor injection connections, brazing time should less than 2 minutes, and cooling measures (eg: wet towel) must be taken during the operation.
- To enhance the resistance to rust, a varnish on the connection is recommended.

⚠️ Before eventual un-brazing of the compressor or any system component, the refrigerant charge must be removed.

System pressure test and leak detection

⚠️ The compressor has been strength tested and leak proof tested (<3g/year) at the factory. For system tests:
- Do not exceed the following pressures indicated in table below:

<table>
<thead>
<tr>
<th>Maximum compressor test pressures</th>
<th>PCH065</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum compressor test pressure high side (HP)</td>
<td>48.7 bar (g) HP-LP<37bar</td>
</tr>
<tr>
<td>Maximum compressor test pressure low side (LP)</td>
<td>34.3 bar (g) LP-HP<3bar</td>
</tr>
<tr>
<td>Maximum speed 4.8 bar/second*</td>
<td></td>
</tr>
</tbody>
</table>

The maximum pressurizing speed must be respected to ensure pressure equalization between LP and HP side over scroll elements.
Assembly line procedure

Vacuum evacuation and moisture removal

Requirements:
- Never use the compressor to vacuum the system.
- Connect a vacuum pump to both the LP and HP sides.
- Evacuate the system to a pressure of 500 μm Hg (0.67 mbar) absolute.

Recommendations:
- Energized heaters improve moisture removal.
- Alternate vacuum phases and break vacuum with nitrogen to improve moisture removal.

For more detailed information see “Vacuum pump-down and dehydration procedure” reference TI-026-0302.

Refrigerant charging

Initial charge:
- For the initial charge, the compressor must not run.
- Charge refrigerant as close as possible to the nominal system charge.
- This initial charging operation must be done in liquid phase between the condenser outlet and the filter drier.

If needed, a complement of charge can be done before evaporator, in liquid phase while compressor is running by slowly throttling liquid in.

Never bypass safety low pressure switch.

Dielectric strength and insulation resistance tests

Several tests have been performed on each compressor at the factory between each phase and ground.

- Dielectric strength test is done with a high potential voltage (hi-pot) of 2Un +1000V AC at least, and leakage current must be less than 5 mA. Insulation resistance is measured with a 500 V DC megohm tester and must be higher than 20 megohm.

Recommendations:
- Additional dielectric test is not recommended as it may reduce motor lifetime. Nevertheless, if such a test is necessary, it must be performed at a lower voltage.
- Insulation resistance test can be done.
- The presence of refrigerant around the motor windings will result in lower resistance values to ground and higher leakage current readings. Such readings do not indicate a faulty compressor. To prevent this, the system can be first operated briefly to distribute refrigerant.
- Do not use a megohm meter nor apply power to the compressor while it is under vacuum as this may cause internal damage.
Commissioning

Preliminary check

- **Check electrical power supply:**
 - Phase order: The PCH065 compressor is equipped with an electronic module, reverse rotation will be automatically detected. For more details refer to section “Motor protection”.
 - Voltage and voltage unbalance within tolerance: For more details refer to section “Motor voltage”.

Initial start-up

- Surface sump heaters must be energized at least 6 hours in advance to remove refrigerant from oil.
- A quicker start-up is possible by “jogging” the compressor to evacuate refrigerant. Start the compressor for 1 second, then wait for 1 to 2 minutes. After 3 or 4 jogs the compressor can be started. This operation must be repeated for each compressor individually.

System monitoring

The system must be monitored after initial startup for a minimum of 60 minutes to ensure proper operating characteristics such as:
- Correct superheat and subcooling.
- Current draw of individual compressors within acceptable values (depending on running conditions see www.coolselector.danfoss.com).
- No abnormal vibrations and noise.
- Correct oil level.

If oil top-up is needed, it must be done while the compressor is idle. Use the schrader connector or any other accessible connector on the compressor suction line. Always use original Danfoss POE oil 160SZ from new cans. For more detailed information see “Lubricants filling in instructions for Danfoss Commercial Compressors” reference TI 2-025-0402.
Dismantal and disposal

Danfoss recommends that compressors and compressor oil should be recycled by a suitable company at its site.
Packaging

Single pack

![Single pack image]

<table>
<thead>
<tr>
<th>Compressor model</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
<th>Gross weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCH065</td>
<td>760</td>
<td>600</td>
<td>900</td>
<td>125</td>
</tr>
</tbody>
</table>

Industrial pack

![Industrial pack image]

<table>
<thead>
<tr>
<th>Compressor model</th>
<th>Nbr*</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
<th>Gross weight (kg)</th>
<th>Static stacking pallets</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCH065</td>
<td>6</td>
<td>1150</td>
<td>965</td>
<td>768</td>
<td>702</td>
<td>2</td>
</tr>
</tbody>
</table>

* nbr: number of compressors per pack
Ordering codes

Compressor code numbers

The PCH065 can be ordered in either industrial or single packs. Please use the code numbers from below tables for ordering. For use in single applications flexible grommets are available as accessory kit 8156138.

Single pack

<table>
<thead>
<tr>
<th>Compressor model</th>
<th>Connections</th>
<th>Motor protection</th>
<th>Code no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCH065</td>
<td>Brazed</td>
<td>Module 110-240V *</td>
<td>120H1273</td>
</tr>
</tbody>
</table>

* Electronic motor protection, module located in terminal box

Mounting kit for single compressor applications : Ref 8156138

Industrial pack

<table>
<thead>
<tr>
<th>Compressor model</th>
<th>Connections</th>
<th>Motor protection</th>
<th>Code no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCH065</td>
<td>Brazed</td>
<td>Module 110-240 V *</td>
<td>120H1272</td>
</tr>
</tbody>
</table>

* Electronic motor protection, module located in terminal box
Accessories

Solder sleeve adapter set

<table>
<thead>
<tr>
<th>Code no.</th>
<th>Description</th>
<th>Application</th>
<th>Packaging</th>
<th>Pack size</th>
</tr>
</thead>
<tbody>
<tr>
<td>7765028</td>
<td>Rotolock adaptor set (2"1/4 ~ 1"5/8), (1"3/4 ~ 1"1/8)</td>
<td>PCH065</td>
<td>Multipack</td>
<td>6</td>
</tr>
</tbody>
</table>

Rotolock adapter

<table>
<thead>
<tr>
<th>Code no.</th>
<th>Description</th>
<th>Application</th>
<th>Packaging</th>
<th>Pack size</th>
</tr>
</thead>
<tbody>
<tr>
<td>120Z0364</td>
<td>Adaptor (1"3/4 Rotolock - 1"1/8 ODS)</td>
<td>Models with 1"1/8 ODF</td>
<td>Multipack</td>
<td>10</td>
</tr>
<tr>
<td>120Z0432</td>
<td>Adaptor (2"1/4 Rotolock - 1"5/8 ODS)</td>
<td>Models with 1"5/8 ODF</td>
<td>Multipack</td>
<td>10</td>
</tr>
</tbody>
</table>

Gaskets

<table>
<thead>
<tr>
<th>Code no.</th>
<th>Description</th>
<th>Application</th>
<th>Packaging</th>
<th>Pack size</th>
</tr>
</thead>
<tbody>
<tr>
<td>8156132</td>
<td>Gasket, 1"3/4</td>
<td>Models with 1"3/4 rotolock connection</td>
<td>Multipack</td>
<td>10</td>
</tr>
<tr>
<td>7956003</td>
<td>Gasket, 1"3/4</td>
<td>Models with 1"3/4 rotolock connection</td>
<td>Industry pack</td>
<td>50</td>
</tr>
<tr>
<td>8156133</td>
<td>Gasket, 2"1/4</td>
<td>Models with 2"1/4 rotolock connection</td>
<td>Multipack</td>
<td>10</td>
</tr>
<tr>
<td>7956004</td>
<td>Gasket, 2"1/4</td>
<td>Models with 2"1/4 rotolock connection</td>
<td>Industry pack</td>
<td>50</td>
</tr>
</tbody>
</table>

Solder sleeve

<table>
<thead>
<tr>
<th>Code no.</th>
<th>Description</th>
<th>Application</th>
<th>Packaging</th>
<th>Pack size</th>
</tr>
</thead>
<tbody>
<tr>
<td>8153004</td>
<td>Solder sleeve P02 (1"3/4 Rotolock - 1"1/8 ODF)</td>
<td>Models with 1"3/4 rotolock connection</td>
<td>Multipack</td>
<td>10</td>
</tr>
<tr>
<td>8153006</td>
<td>Solder sleeve P03 (2"1/4 Rotolock - 1"5/8 ODF)</td>
<td>Models with 2"1/4 rotolock connection</td>
<td>Multipack</td>
<td>10</td>
</tr>
</tbody>
</table>

Rotolock nut

<table>
<thead>
<tr>
<th>Code no.</th>
<th>Description</th>
<th>Application</th>
<th>Packaging</th>
<th>Pack size</th>
</tr>
</thead>
<tbody>
<tr>
<td>8153124</td>
<td>Rotolock nut, 1"3/4</td>
<td>Models with 1-3/4" rotolock connection</td>
<td>Multipack</td>
<td>10</td>
</tr>
<tr>
<td>8153126</td>
<td>Rotolock nut, 2"1/4</td>
<td>Models with 2-1/4" rotolock connection</td>
<td>Multipack</td>
<td>10</td>
</tr>
</tbody>
</table>

Rotolock service valve set

<table>
<thead>
<tr>
<th>Code no.</th>
<th>Description</th>
<th>Application</th>
<th>Packaging</th>
<th>Pack size</th>
</tr>
</thead>
<tbody>
<tr>
<td>7703383</td>
<td>Valve set, V03 (2"1/4 ~ 1"5/8), V02 (1"3/4 ~ 1"1/8)</td>
<td>PCH065</td>
<td>Multipack</td>
<td>4</td>
</tr>
</tbody>
</table>
Accessories

3-phase soft start equipment

<table>
<thead>
<tr>
<th>Code no.</th>
<th>Description</th>
<th>Application</th>
<th>Packaging</th>
<th>Pack size</th>
</tr>
</thead>
<tbody>
<tr>
<td>037N0401</td>
<td>Electronic soft start kit, MCIS0CM</td>
<td>PCH065</td>
<td>Single pack</td>
<td>1</td>
</tr>
</tbody>
</table>

Motor protection modules

<table>
<thead>
<tr>
<th>Code no.</th>
<th>Description</th>
<th>Application</th>
<th>Packaging</th>
<th>Pack size</th>
</tr>
</thead>
<tbody>
<tr>
<td>120Z0585</td>
<td>Electronic motor protection module, 115/240 V</td>
<td>PCH065</td>
<td>Single pack</td>
<td>1</td>
</tr>
</tbody>
</table>

Terminal boxes, covers and T-block connectors

<table>
<thead>
<tr>
<th>Code no.</th>
<th>Description</th>
<th>Application</th>
<th>Packaging</th>
<th>Pack size</th>
</tr>
</thead>
<tbody>
<tr>
<td>8173230</td>
<td>T block connector 60x75 mm</td>
<td>PCH065</td>
<td>Multipack</td>
<td>10</td>
</tr>
<tr>
<td>120Z0458</td>
<td>Terminal box 210 x 190 mm, incl. cover</td>
<td>PCH065</td>
<td>Single pack</td>
<td>1</td>
</tr>
</tbody>
</table>

Surface sump heaters

<table>
<thead>
<tr>
<th>Code no.</th>
<th>Accessory description</th>
<th>Application</th>
<th>Packaging</th>
<th>Pack size</th>
</tr>
</thead>
<tbody>
<tr>
<td>120Z0376</td>
<td>56W 230V surface sump heater + bottom insulation, CE & UL</td>
<td>PCH065</td>
<td>Multipack</td>
<td>6</td>
</tr>
<tr>
<td>120Z0377</td>
<td>56W 400V surface sump heater + bottom insulation, CE & UL</td>
<td>PCH065</td>
<td>Multipack</td>
<td>6</td>
</tr>
</tbody>
</table>
Accessories

Mounting hardware

<table>
<thead>
<tr>
<th>Code no.</th>
<th>Description</th>
<th>Application</th>
<th>Packaging</th>
<th>Pack Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>8156138</td>
<td>Mounting kit for scroll compressors. Grommets, sleeves, bolts, washers</td>
<td>PCH065</td>
<td>Single pack</td>
<td>1</td>
</tr>
</tbody>
</table>

Lubricant

<table>
<thead>
<tr>
<th>Code no.</th>
<th>Description</th>
<th>Packaging</th>
<th>Pack Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>7754023</td>
<td>POE lubricant, 1 litre can</td>
<td>Single pack</td>
<td>1</td>
</tr>
<tr>
<td>120Z0571</td>
<td>POE lubricant, 2.5 litre can</td>
<td>Single pack</td>
<td>1</td>
</tr>
</tbody>
</table>

Miscellaneous

<table>
<thead>
<tr>
<th>Code no.</th>
<th>Description</th>
<th>Packaging</th>
<th>Pack Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>8156019</td>
<td>Sight glass with gaskets</td>
<td>Multipack</td>
<td>4</td>
</tr>
<tr>
<td>8156129</td>
<td>Gasket for oil sight glass, 1 1/8 (white teflon)</td>
<td>Multipack</td>
<td>10</td>
</tr>
<tr>
<td>7956005</td>
<td>Gasket for oil sight glass, 1 1/8 (white teflon)</td>
<td>Multipack</td>
<td>50</td>
</tr>
<tr>
<td>8154001</td>
<td>Danfoss Commercial Compressors blue spray paint</td>
<td>Single pack</td>
<td>1</td>
</tr>
</tbody>
</table>
Danfoss Commercial Compressors

is a worldwide manufacturer of compressors and condensing units for refrigeration and HVAC applications. With a wide range of high quality and innovative products we help your company to find the best possible energy efficient solution that respects the environment and reduces total life cycle costs.

We have 40 years of experience within the development of hermetic compressors which has brought us amongst the global leaders in our business, and positioned us as distinct variable speed technology specialists. Today we operate from engineering and manufacturing facilities spanning across three continents.

Our products can be found in a variety of applications such as rooftops, chillers, residential air conditioners, heatpumps, coldrooms, supermarkets, milk tank cooling and industrial cooling processes.

http://cc.danfoss.com

Danfoss Commercial Compressors, BP 331, 01603 Trévoux Cedex, France | +334 74 00 28 29