

Contents

Contents

1 How to Read this Design Guide	1-1
1.1.1 Copyright, Limitation of Liability and Revision Rights	1-1
1.1.3 Approvals	1-2
1.1.4 Symbols	1-2
1.1.5 Abbreviations	1-2
1.1.6 Definitions	1-3
2 Introduction to VLT® HVAC Drive	2-1
2.1 Safety	2-1
2.2 CE labeling	2-2
2.4 Aggressive Environments	2-3
2.5 Vibration and shock	2-4
2.6 Safe Stop	2-4
2.8 Control Structures	2-23
2.8.3 PM/EC+ Motor Control	2-24
2.9 General aspects of EMC	2-32
2.9.1 General Aspects of EMC Emissions	2-32
2.9.2 Emission Requirements	2-33
2.9.7 Immunity Requirements	2-37
2.10 Galvanic Isolation (PELV)	2-39
2.10.1 PELV - Protective Extra Low Voltage	2-39
2.11 Ground Leakage Current	2-39
2.12 Brake Function	2-40
2.12.4 Brake Resistor Cabling	2-42
2.13 Extreme Running Conditions	2-42
3 VLT® HVAC Drive Selection	3-1
3.1 Options and Accessories	3-1
3.1.10 MCB 112 VLT® PTC Thermistor Card	3-7
3.1.11 Sensor Input Option MCB 114	3-10
3.1.11.1 Ordering Code Numbers and Parts Delivered	3-10
3.1.11.2 Electrical and Mechanical Specifications	3-10
3.1.11.3 Electrical Wiring	3-11
3.1.12 Frame Size F Panel Options	3-11
4 How to Order	4-1
4.1 Ordering Form	4-1
4.2 Ordering Numbers	4-6

Contents VLT® HVAC Drive Design Guide

4.2.2 Ordering Numbers: High Power Kits	4-9
5 How to Install	5-1
5.1 Mechanical Installation	5-1
5.1.2 Mechanical Dimensions	5-2
5.1.5 Lifting	5-7
5.1.6 Safety Requirements of Mechanical Installation	5-8
5.2 Electrical Installation	5-9
5.2.2 Electrical Installation and Control Cables	5-10
5.2.6 Removal of Knockouts for Extra Cables	5-13
5.2.7 Connector/Conduit Entry - IP21 (NEMA 1) and IP54 (NEMA12)	5-13
5.2.9 Non-UL Compliance Fuses	5-16
5.3 Final Set-Up and Test	5-25
5.4 Additional Connections	5-27
5.4.1 Line Power Disconnectors	5-27
5.4.5 Brake Resistor Temperature Switch	5-28
5.4.6 External Fan Supply	5-28
5.5 Installation of Misc. Connections	5-32
5.6 Safety	5-34
5.6.1 High Voltage Test	5-34
5.6.2 Safety Ground Connection	5-34
5.7 EMC-correct Installation	5-34
5.7.1 Electrical Installation - EMC Precautions	5-34
5.7.2 Use of EMC-Correct Cables	5-35
6 Application Examples	6-1
6.1.1 Start/Stop	6-1
6.1.2 Pulse Start/Stop	6-1
6.1.3 Potentiometer Reference	6-2
6.1.4 Automatic Motor Adaptation (AMA)	6-2
6.1.5 Smart Logic Control	6-2
6.1.6 Smart Logic Control Programming	6-2
6.1.7 SLC Application Example	6-3
6.1.8 BASIC Cascade Controller	6-5
6.1.9 Pump Staging with Lead Pump Alternation	6-5
6.1.10 System Status and Operation	6-6
6.1.11 Fixed Variable Speed Pump Wiring Diagram	6-6
6.1.12 Lead Pump Alternation Wiring Diagram	6-6
6.1.13 Cascade Controller Wiring Diagram	6-8

VLT® HVAC Drive Design Guide

Contents

6.1.14 Start/Stop Conditions	6-8
7 RS-485 Installation and Set-up	7-1
7.1 RS-485 Installation and Set-up	7-1
7.1.4 EMC Precautions	7-2
7.2 Adjustable Frequency Protocol Overview	7-3
7.3 Network Configuration	7-4
7.4 FC Protocol Message Framing Structure	7-4
7.4.1 Content of a Character (byte)	7-4
7.4.2 Message Structure	7-4
7.4.3 Message Length (LGE)	7-5
7.4.4 Adjustable Frequency Drive Address (ADR)	7-5
7.4.5 Data Control Byte (BCC)	7-5
7.4.6 The Data Field	7-5
7.4.7 The PKE Field	7-6
7.4.9 Index (IND)	7-7
7.4.10 Parameter Value (PWE)	7-8
7.4.12 Conversion	7-9
7.4.13 Process Words (PCD)	7-9
7.5 Examples	7-9
7.5.1 Writing a Parameter Value	7-9
7.5.2 Reading a Parameter Value	7-10
7.6 Modbus RTU Overview	7-10
7.6.1 Assumptions	7-10
7.6.2 What the User Should Already Know	7-10
7.6.3 Modbus RTU Overview	7-10
7.6.4 Adjustable Frequency Drive with Modbus RTU	7-11
7.7.1 Adjustable Frequency Drive with Modbus RTU	7-11
7.8 Modbus RTU Message Framing Structure	7-11
7.8.1 Adjustable Frequency Drive with Modbus RTU	7-11
7.8.2 Modbus RTU Message Structure	7-12
7.8.3 Start/Stop Field	7-12
7.8.4 Address Field	7-12
7.8.5 Function Field	7-12
7.8.6 Data Field	7-12
7.8.7 CRC Check Field	7-12
7.8.8 Coil Register Addressing	7-13
7.8.9 How to Control the Adjustable Frequency Drive	7-15
7.8.10 Function Codes Supported by Modbus RTU	7-15

Contents VLT® HVAC Drive Design Guide

7.8.11 Modbus Exception Codes	7-15
7.9 How to Access Parameters	7-15
7.9.1 Parameter Handling	7-15
7.9.2 Storage of Data	7-15
7.9.3 IND	7-16
7.9.4 Text Blocks	7-16
7.9.5 Conversion Factor	7-16
7.9.6 Parameter Values	7-16
7.10 Examples	7-16
7.11 Danfoss FC Control Profile	7-19
8 General Specifications and Troubleshooting	8-1
8.1 Line Power Supply Tables	8-1
8.2 General Specifications	8-17
8.3 Efficiency	8-21
8.4 Acoustic noise	8-21
8.5 Peak voltage on motor	8-22
8.6 Special Conditions	8-27
8.7 Troubleshooting	8-28
8.7.1 Alarm Words	8-33
8.7.2 Warning Words	8-34
8.7.3 Extended Status Words	8-35
8.7.4 Fault Messages	8-36
9 Index	9-1

1 How to Read this Design Guide

VLT[®] HVAC Drive FC 100 Series

This guide can be used with all VLT® HVAC Drive adjustable frequency drives with software version 3.7x.

The actual software version number can be read from 15-43 Software Version.

Table 1.1

1.1.1 Copyright, Limitation of Liability and Revision Rights

This publication contains information proprietary to Danfoss. By accepting and using this manual, the user agrees that the information contained herein will be used solely for operating equipment from Danfoss or equipment from other vendors provided that such equipment is intended for communication with Danfoss equipment over a serial communication link. This publication is protected under the copyright laws of Denmark and most other countries.

Danfoss does not warrant that a software program produced according to the guidelines provided in this manual will function properly in every physical, hardware or software environment.

Although Danfoss has tested and reviewed the documentation within this manual, Danfoss makes no warranty or representation, neither expressed nor implied, with respect to this documentation, including its quality, performance, or fitness for a particular purpose.

In no event shall Danfoss be liable for direct, indirect, special, incidental, or consequential damages arising out of the use, or the inability to use information contained in

this manual, even if advised of the possibility of such damages. In particular, Danfoss is not responsible for any costs, including but not limited to those incurred as a result of lost profits or revenue, loss or damage of equipment, loss of computer programs, loss of data, the costs to substitute these, or any claims by third parties.

Danfoss reserves the right to revise this publication at any time and to make changes to its contents without prior notice or any obligation to notify former or present users of such revisions or changes.

1.1.2 Available Literature for VLT® HVAC Drive

- Instruction Manual MG.11.Ax.yy provides the necessary information for getting the Adjustable frequency drive up and running.
- Instruction Manual VLT® HVAC Drive High Power, MG.11.Fx.yy
- Design Guide MG.11.Bx.yy provides all technical information about the Adjustable frequency drive and customer design and applications.
- Programming Guide MG.11.Cx.yy provides information on how to program and includes complete parameter descriptions.
- Mounting Instruction, Analog I/O Option MCB 109, MI.38.Bx.yy
- Application Note, Temperature Derating Guide, MN.11.Ax.yy
- PC-based Configuration Tool MCT 10, MG.10.Ax.yy enables the user to configure the Adjustable frequency drive from a Windows[™]-based PC environment.
- Danfoss VLT® Energy Box software at www.danfoss.com/BusinessAreas/DrivesSolutions then choose PC Software Download
- VLT® HVAC Drive Drive Applications, MG.11.Tx.yy
- Instruction Manual VLT® HVAC Drive Profibus, MG.33.Cx.yy
- Instruction Manual VLT® HVAC Drive Device Net, MG.33.Dx.yy
- Instruction Manual VLT® HVAC Drive BACnet, MG.11.Dx.yy

- Instruction Manual VLT® HVAC Drive LonWorks, MG.11.Ex.yy
- Instruction Manual VLT[®] HVAC Drive Metasys, MG.11.Gx.yy
- Instruction Manual VLT® HVAC Drive FLN, MG.11.Zx.yy
- Output Filter Design Guide, MG.90.Nx.yy
- Brake Resistor Design Guide, MG.90.Ox.yy

x = Revision number

yy = Language code

Danfoss technical literature is available in print from your local Danfoss Sales Office or online at: www.danfoss.com/BusinessAreas/DrivesSolutions/Documentations/Technical+Documentation.htm

1.1.3 Approvals

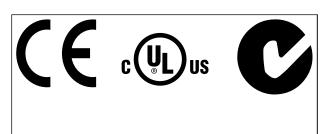


Table 1.2

1.1.4 Symbols

Symbols used in this guide.

NOTE!

Indicates something to be noted by the reader.

ACAUTION

Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury or equipment damage.

AWARNING

Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

* Indicates default setting

Table 1.3

1.1.5 Abbreviations

Alternating current	AC
American wire gauge	AWG
Ampere/AMP	Α
Automatic Motor Adaptation	AMA
Current limit	I _{LIM}
Degrees Celsius	°C
Direct current	DC
Drive Dependent	D-TYPE
Electro Magnetic Compatibility	EMC
Electronic Thermal Relay	ETR
Adjustable frequency drive	FC
Gram	g
Hertz	Hz
Horsepower	hp
Kilohertz	kHz
Local Control Panel	LCP
Meter	m
Millihenry Inductance	mH
Milliampere	mA
Millisecond	ms
Minute	min
Motion Control Tool	MCT
Nanofarad	nF
Newton Meters	Nm
Nominal motor current	I _{M,N}
Nominal motor frequency	f _{M,N}
Nominal motor power	P _{M,N}
Nominal motor voltage	U _{M,N}
Permanent Magnet motor	PM motor
Protective Extra Low Voltage	PELV
Printed Circuit Board	PCB
Rated Inverter Output Current	I _{INV}
Revolutions Per Minute	RPM
Regenerative terminals	Regen
Second	sec.
Synchronous Motor Speed	ns
Torque limit	T _{LIM}
Volts	V
The maximum output current	I _{VLT,MAX}
The rated output current supplied by the	I _{VLT,N}
Adjustable frequency drive	

Table 1.4

1.1.6 Definitions

Drive:

LVLT,MAX

The maximum output current.

IVLT,N

The rated output current supplied by the Adjustable frequency drive.

$\underline{U}_{\text{VLT, MAX}}$

The maximum output voltage.

Input:

Control command	Group	Reset, Coasting stop, Reset
Start and stop the	1	and Coasting stop, Quick-
connected motor with the		stop, DC braking, Stop and
LCP or the digital inputs.		the "Off" key.
Functions are divided into	Group	Start, Pulse start, Reversing,
two groups.	2	Start reversing, Jog and
Functions in group 1 have		Freeze output
higher priority than		
functions in group 2.		

Table 1.5

Motor:

fjog

The motor frequency when the jog function is activated (via digital terminals).

fм

The motor frequency.

f_{MAX}

The maximum motor frequency.

fMIN

The minimum motor frequency.

$f_{M,N}$

The rated motor frequency (nameplate data).

lΜ

The motor current.

$I_{M,N}$

The rated motor current (nameplate data).

nm,n

The rated motor speed (nameplate data).

$P_{M,N}$

The rated motor power (nameplate data).

$T_{M,N}$

The rated torque (motor).

U_{M}

The instantaneous motor voltage.

$U_{M,N}$

The rated motor voltage (nameplate data).

Break-away torque

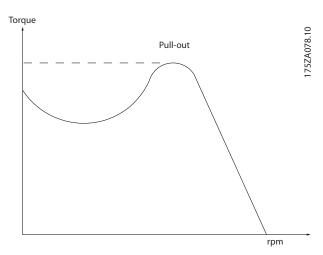


Figure 1.1

<u>n</u>vl

The efficiency of the Adjustable frequency drive is defined as the ratio between the power output and the power input.

Start-disable command

A stop command belonging to the group 1 control commands - see this group.

Stop command

See Control commands.

References:

Analog Reference

A signal transmitted to the analog inputs 53 or 54, can be voltage or current.

Bus Reference

A signal transmitted to the serial communication port (FC port).

Preset Reference

A defined preset reference to be set from -100% to \pm 100% of the reference range. Selection of eight preset references via the digital terminals.

Pulse Reference

A pulse frequency signal transmitted to the digital inputs (terminal 29 or 33).

Ref_{MAX}

Determines the relationship between the reference input at 100% full scale value (typically 10 V, 20mA) and the resulting reference. The maximum reference value set in 3-03 Maximum Reference.

Refmin

Determines the relationship between the reference input at 0% value (typically 0V, 0mA, 4mA) and the resulting reference. The minimum reference value set in 3-02 Minimum Reference

Miscellaneous:

Analog Inputs

The analog inputs are used for controlling various functions of the Adjustable frequency drive.

There are two types of analog inputs:

Current input, 0-20 mA and 4-20 mA

Voltage input, 0-10 V DC.

Analog Outputs

The analog outputs can supply a signal of 0-20 mA, 4-20 mA, or a digital signal.

Automatic Motor Adaptation, AMA

AMA algorithm determines the electrical parameters for the connected motor at standstill.

Brake Resistor

The brake resistor is a module capable of absorbing the braking energy generated in regenerative braking. This regenerative braking energy increases the intermediate circuit voltage and a brake chopper ensures that the power is transmitted to the brake resistor.

CT Characteristics

Constant torque characteristics used for screw and scroll refrigeration compressors.

Digital Inputs

The digital inputs can be used for controlling various functions of the Adjustable frequency drive.

Digital Outputs

The Adjustable frequency drive features two Solid State outputs that can supply a 24 V DC (max. 40 mA) signal.

DSP

Digital Signal Processor.

Relay Outputs:

The Adjustable frequency drive features two programmable relay outputs.

ETR

Electronic Thermal Relay is a thermal load calculation based on present load and time. Its purpose is to estimate the motor temperature.

GLCP:

Graphical Local Control Panel (LCP102)

Initializing

If initializing is carried out (14-22 Operation Mode), the programmable parameters of the Adjustable frequency drive return to their default settings.

Intermittent Duty Cycle

An intermittent duty rating refers to a sequence of duty cycles. Each cycle consists of an on-load and an off-load period. The operation can be either periodic duty or non-periodic duty.

LCP

The Local Control Panel (LCP)keypad makes up a complete interface for control and programming of the Adjustable frequency drive. The control panelkeypad is detachable and can be installed up to 10 ft [3 m] from the Adjustable frequency drive, i.e., in a front panel by means of the installation kit option.

The local control panel is available in two versions:

- Numerical LCP101 (NLCP)
- Graphical LCP102 (GLCP)

<u>lsb</u>

Least significant bit.

<u>MCM</u>

Short for Mille Circular Mil, an American measuring unit for cable cross-section. 1 MCM \equiv 0.00079 in² (0.5067 mm²).

msb

Most significant bit.

NLCP

Numerical Local Control Panel LCP101

On-line/Off-line Parameters

Changes to on-line parameters are activated immediately after the data value is changed. Changes to off-line parameters are not activated until you enter [OK] on the LCP.

PID Controller

The PID controller maintains the desired speed, pressure, temperature, etc. by adjusting the output frequency to match the varying load.

RCD

Residual Current Device.

Set-up

You can save parameter settings in four set-ups. Change between the four parameter set-ups, and edit one set-up, while another set-up is active.

SFAVM

Switching pattern called <u>Stator Flux-oriented Asynchronous</u> <u>Vector Modulation</u> (14-00 Switching Pattern).

Slip Compensation

The Adjustable frequency drive compensates for the motor slip by giving the frequency a supplement that follows the measured motor load keeping the motor speed almost constant.

Smart Logic Control (SLC)

The SLC is a sequence of user defined actions executed when the associated user defined events are evaluated as true by the SLC.

Thermistor:

A temperature-dependent resistor placed where the temperature is to be monitored (Adjustable frequency drive or motor).

Trip

A state entered in fault situations, e.g., if the Adjustable frequency drive is subject to an overtemperature or when the Adjustable frequency drive is protecting the motor, process or mechanism. Restart is prevented until the cause of the fault has disappeared and the trip state is cancelled by activating reset or, in some cases, by being

programmed to reset automatically. Trip may not be used for personal safety.

Trip Locked

A state entered in fault situations when the Adjustable frequency drive is protecting itself and requiring physical intervention, e.g., if the Adjustable frequency drive is subject to a short circuit on the output. A locked trip can only be canceled by cutting off line power, removing the cause of the fault, and reconnecting the Adjustable frequency drive. Restart is prevented until the trip state is cancelled by activating reset or, in some cases, by being programmed to reset automatically. The trip-lock function may not be used as a personal safety measure.

VT Characteristics

Variable torque characteristics used for pumps and fans.

VVCplus

If compared with standard voltage/frequency ratio control, Voltage Vector Control (VVC^{plus}) improves the dynamics and the stability, both when the speed reference is changed and in relation to the load torque.

60° AVM

Switching pattern called 60° Asynchronous Vector Modulation (See *14-00 Switching Pattern*).

1.1.7 Power Factor

The power factor is the relation between I₁ and I_{RMS}.

Power factor =
$$\frac{\sqrt{3} \times U \times I_{1} \times COS\phi}{\sqrt{3} \times U \times I_{RMS}}$$

The power factor for 3-phase control:

$$= \frac{I_1 \times \cos \varphi 1}{I_{RMS}} = \frac{I_1}{I_{RMS}} \text{ since } \cos \varphi 1 = 1$$

The power factor indicates to which extent the Adjustable frequency drive imposes a load on the line power supply. The lower the power factor, the higher the I_{RMS} for the same kW performance.

$$I_{RMS} = \sqrt{I_1^2 + I_5^2 + I_7^2 + ... + I_n^2}$$

In addition, a high power factor indicates that the different harmonic currents are low.

The built-in DC coils in the adjustable frequency drive produce a high power factor, which minimizes the imposed load on the line power supply.

² Introduction to VLT[®] HVAC Drive

2.1 Safety

2.1.1 Safety Note

AWARNING

The voltage of the Adjustable frequency drive is dangerous whenever connected to line power. Incorrect installation of the motor, Adjustable frequency drive or serial communication bus may cause death, serious personal injury or damage to the equipment. Consequently, the instructions in this manual, as well as national and local rules and safety regulations, must be complied with.

Safety Regulations

- The Adjustable frequency drive must be disconnected from line power if repair work is to be carried out. Make sure that the line power supply has been disconnected and that the necessary time has passed before removing motor and line power plugs.
- 2. The [STOP/RESET] key on the LCP of the Adjustable frequency drive does not disconnect the equipment from line power and is thus not to be used as a safety switch.
- Correct protective grounding of the equipment must be established, the user must be protected against supply voltage, and the motor must be protected against overload in accordance with applicable national and local regulations.
- 4. The ground leakage currents are higher than 3.5 mA.
- 5. Protection against motor overload is set by 1-90 Motor Thermal Protection. If this function is desired, set 1-90 Motor Thermal Protection to data value [ETR trip] (default value) or data value [ETR warning]. Note: The function is initialized at 1.16 x rated motor current and rated motor frequency. For the North American market: The ETR functions provide class 20 motor overload protection in accordance with NEC.
- 6. Do not remove the plugs for the motor and line power supply while the Adjustable frequency drive is connected to line power. Make sure that the line power supply has been disconnected and that the necessary time has passed before removing motor and line power plugs.

7. Please note that the Adjustable frequency drive has more voltage inputs than L1, L2 and L3, when load sharing (linking of DC intermediate circuit) and external 24 V DC have been installed. Make sure that all voltage inputs have been disconnected and that the necessary time has passed before commencing repair work.

Installation at high altitudes

ACAUTION

380–500 V, enclosure A, B and C: At altitudes above 6,561 ft , please contact Danfoss regarding PELV.
380–500 V, enclosure D, E and F: At altitudes above 9,842 ft , please contact Danfoss regarding PELV.
525–690 V: At altitudes above 6,561 ft [2 km], please contact Danfoss regarding PELV.

AWARNING

Warning against Unintended Start

- The motor can be brought to a stop by means of digital commands, bus commands, references or a local stop, while the Adjustable frequency drive is connected to line power. If personal safety considerations make it necessary to ensure that no unintended start occurs, these stop functions are not sufficient.
- While parameters are being changed, the motor may start. Consequently, the stop key [STOP/ RESET] must always be activated, after which data can be modified.
- A motor that has been stopped may start if faults occur in the electronics of the Adjustable frequency drive, or if a temporary overload or a fault in the supply line power or the motor connection ceases.

AWARNING

Touching the electrical parts may be fatal - even after the equipment has been disconnected from line power.

Also make sure that other voltage inputs have been disconnected, such as external 24 V DC, load sharing (linkage of DC intermediate circuit), as well as the motor connection for kinetic backup. Refer to the instruction manual for further safety guidelines.

2

AWARNING

The Adjustable frequency drive DC link capacitors remain charged after power has been disconnected. To avoid an electrical shock hazard, disconnect the Adjustable frequency drive from line power before carrying out maintenance. Wait at least as long as follows before doing service on the Adjustable frequency drive:

Voltage		Min. Waiting Time (Minutes)							
(V)	4	15	20	30	40				
200-	1.5-5 hp	7.5-60 hp							
240	[1.1–3.7	[5.5–45							
	kW]	kW]							
380-	1.5-10 hp	15–125	150-350		450–1350				
480	[1.1–7.5	hp [11-90	hp [110-		hp [315–				
	kW]	kW]	250 kW]		1000 kW]				
525-	1.5-10 hp	15–125							
600	[1.1–7.5	hp [11-90							
	kW]	kW]							
525-		15–125	60-550	600–1875					
690		hp [11-90	hp [45–	hp [450–					
		kW]	400 kW]-	1400 kW]					
			400 kW]	kW]					

Be aware that there may be high voltage on the DC link even when the LEDs are turned off.

Table 2.1

2.1.2 Disposal Instructions

Equipment containing electrical components may not be disposed of together with domestic waste. It must be separately collected with electrical and electronic waste according to local and currently valid legislation.

Table 2.2

2.2 CE labeling

2.2.1 CE Conformity and Labeling

What is CE Conformity and Labeling?

The purpose of CE labeling is to avoid technical trade obstacles within the EFTA and the EU. The EU has introduced the CE label as a simple way of showing whether a product complies with the relevant EU directives. The CE label says nothing about the specifications or quality of the product. Adjustable frequency drives are regulated by three EU directives:

The machinery directive (2006/42/EC)

Adjustable frequency drives with the integrated safety function are now falling under the Machinery Directive. Danfoss uses CE labels in accordance with the directive and will issue a declaration of conformity upon request. Adjustable frequency drives without the safety function do not fall under the machinery directive. However, if a Adjustable frequency drive is supplied for use in a machine, we provide information on safety aspects relating to the Adjustable frequency drive.

The low-voltage directive (2006/95/EC)

Adjustable frequency drives must be CE-labeled in accordance with the Low-voltage Directive of January 1, 1997. The directive applies to all electrical equipment and appliances used in the 50–1000 V AC and the 75–1500 V DC voltage ranges. Danfoss CE-labels in accordance with the directive and issues a declaration of conformity upon request.

The EMC directive (2004/108/EC)

EMC is short for electromagnetic compatibility. The presence of electromagnetic compatibility means that the mutual interference between different components/ appliances does not affect the way the appliances work. The EMC directive came into effect on January 1, 1996. Danfoss CE labels in accordance with the directive and issues a declaration of conformity upon request. To carry out EMC-correct installation, see the instructions in this Design Guide. In addition, we specify which standards our products comply with. We offer the filters presented in the specifications and provide other types of assistance to ensure the optimum EMC result.

The Adjustable frequency drive is most often used by professionals of the trade as a complex component forming part of a larger appliance, system or installation. It must be noted that the responsibility for the final EMC properties of the appliance, system or installation rests with the installer.

2.2.2 What Is Covered

The EU "Guidelines on the Application of Council Directive 2004/108/EC" outline three typical situations of using a Adjustable frequency drive. See below for EMC coverage and CE labeling.

The Adjustable frequency drive is sold directly to the end-consumer. The Adjustable frequency drive is for example sold to a DIY market. The end-consumer is a layman. He installs the Adjustable frequency drive himself for use with a hobby machine, a kitchen appliance, etc. For such applications, the Adjustable frequency drive must

be CE labeled in accordance with the EMC directive.

- 2. The Adjustable frequency drive is sold for installation in a plant. The plant is built up by professionals of the trade. It could be a production plant or a heating/ventilation plant designed and installed by professionals of the trade. Neither the Adjustable frequency drive nor the finished plant has to be CE labeled under the EMC directive. However, the unit must comply with the basic EMC requirements of the directive. This is ensured by using components, appliances and systems that are CE-labeled under the EMC directive.
- 3. The Adjustable frequency drive is sold as part of a complete system. The system is being marketed as complete and could, for example, be an airconditioning system. The complete system must be CE-labeled in accordance with the EMC directive. The manufacturer can ensure CE labeling under the EMC directive either by using CE labeled components or by testing the EMC of the system. If he chooses to use only CE labeled components, he does not have to test the entire system.

2.2.3 Danfoss Adjustable Frequency Drive and CE Labeling

CE labeling is a positive feature when used for its original purpose, i.e., to facilitate trade within the EU and EFTA.

However, CE labeling may cover many different specifications. Thus, you have to check what a given CE label specifically covers.

The covered specifications can be very different and a CE label may therefore give the installer a false feeling of security when using a Adjustable frequency drive as a component in a system or an appliance.

Danfoss CE labels the adjustable frequency drives in accordance with the low-voltage directive. This means that if the Adjustable frequency drive is installed correctly, we guarantee compliance with the low-voltage directive. Danfoss issues a declaration of conformity that confirms our CE labeling in accordance with the low-voltage directive.

The CE label also applies to the EMC directive provided that the instructions for EMC-correct installation and

filtering are followed. On this basis, a declaration of conformity in accordance with the EMC directive is issued.

The Design Guide offers detailed instructions for installation to ensure EMC-correct installation. Furthermore, Danfoss specifies which our different products comply with.

Danfoss provides other types of assistance that can help you obtain the best EMC result.

2.2.4 Compliance with EMC Directive 2004/108/EC

As mentioned, the Adjustable frequency drive is mostly used by professionals of the trade as a complex component forming part of a larger appliance, system, or installation. It must be noted that the responsibility for the final EMC properties of the appliance, system or installation rests with the installer. As an aid to the installer, Danfoss has prepared EMC installation guidelines for the Power Drive system. The standards and test levels stated for power drive systems are complied with, provided that the EMC-compatible instructions for installation are followed; see the section *EMC Immunity*.

2.3 Air humidity

The Adjustable frequency drive has been designed to meet the IEC/EN 60068-2-3 standard, EN 50178 pkt. 9.4.2.2 at 122°F [50°C].

2.4 Aggressive Environments

A Adjustable frequency drive contains a large number of mechanical and electronic components. All are to some extent vulnerable to environmental effects.

ACAUTION

The Adjustable frequency drive should not be installed in environments with airborne liquids, particles, or gases capable of affecting and damaging the electronic components. Failure to take the necessary protective measures increases the risk of stoppages, thus reducing the life of the Adjustable frequency drive.

Degree of protection as per IEC 60529

The safe stop function may only be installed and operated in a control cabinet with a degree of protection of IP54 or higher (or equivalent environment). This is required to avoid cross faults and short circuits between terminals,

2

connectors, tracks and safety-related circuitry caused by foreign objects.

<u>Liquids</u> can be carried through the air and condense in the Adjustable frequency drive and may cause corrosion of components and metal parts. Steam, oil and salt water may cause corrosion of components and metal parts. In such environments, use equipment with enclosure rating IP 54/55. As an extra protection, coated printed circuit boards can be ordered as an option.

Airborne <u>particles</u> such as dust may cause mechanical, electrical, or thermal failure in the Adjustable frequency drive. A typical indicator of excessive levels of airborne particles is dust particles around the Adjustable frequency drive fan. In very dusty environments, use equipment with enclosure rating IP 54/55 or a cabinet for IP 00/IP 20/TYPE 1 equipment.

In environments with high temperatures and humidity, <u>corrosive gases</u> such as sulfur, nitrogen and chlorine compounds will cause chemical processes on the Adjustable frequency drive components.

Such chemical reactions will rapidly affect and damage the electronic components. In such environments, mount the equipment in a cabinet with fresh air ventilation, keeping aggressive gases away from the Adjustable frequency drive.

An extra protection in such areas is a coating of the printed circuit boards, which can be ordered as an option.

NOTE!

Mounting adjustable frequency drives in aggressive environments increases the risk of stoppages and considerably reduces the life of the drive.

Before installing the Adjustable frequency drive, check the ambient air for liquids, particles and gases. This is done by observing existing installations in this environment. Typical indicators of harmful airborne liquids are water or oil on metal parts, or corrosion of metal parts.

Excessive dust particle levels are often found on installation cabinets and existing electrical installations. One indicator of aggressive airborne gases is the blackening of copper rails and cable ends on existing installations. D and E enclosures have a stainless steel back-channel option to provide additional protection in aggressive environments. Proper ventilation is still required for the internal components of the drive. Contact Danfoss for additional information.

2.5 Vibration and shock

The Adjustable frequency drive has been tested according to the procedure based on the shown standards:

The Adjustable frequency drive complies with requirements that exist for units mounted on the walls and floors of production premises, as well as in panels bolted to walls or floors.

- IEC/EN 60068-2-6: Vibration (sinusoidal) 1970
- IEC/EN 60068-2-64: Vibration, broad-band random

2.6 Safe Stop

2.6.1 Electrical terminals

The Adjustable frequency drive can perform the safety function *Safe Torque Off* (As defined by draft CD IEC 61800-5-2) or *Stop Category 0* (as defined in EN 60204-1). It is designed and approved suitable for the requirements of Safety Category 3 in EN 954-1. This functionality is called Safe Stop. Prior to integration and use of Safe Stop in an installation, a thorough risk analysis on the installation must be carried out in order to determine whether the Safe Stop functionality and safety category are appropriate and sufficient.

AWARNING

In order to install and use the safe stop function in accordance with the requirements of Safety Category 3 in EN 954-1, the related information and instructions in the relevant Design Guide must be followed! The information and instructions of the Instruction Manual are not sufficient for a correct and safe use of the safe stop functionality!

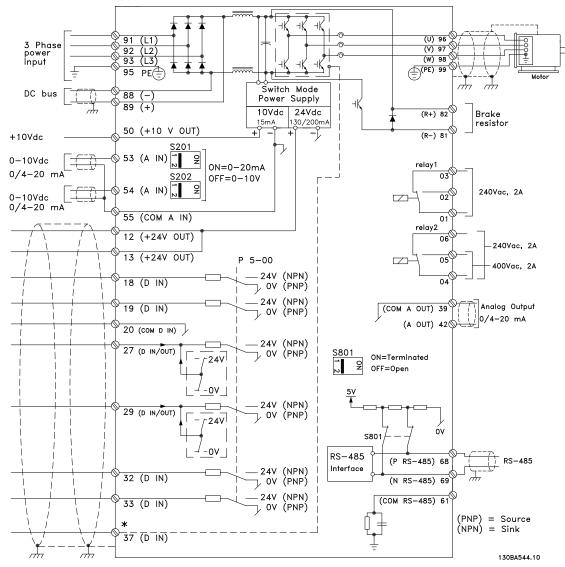


Figure 2.1 Diagram showing all electrical terminals. (Terminal 37 present for units with safe stop function only.)

2

Prüf- und Zertifizierungsstelle im BG-PRÜFZERT

Hauptverband der gewerblichen Berufsgenossenschaften

<u>Translation</u>	Type Test Certificate	г	
In any case, the German original shall prevail.	Type resi Cerificate		05 06004
,			No. of certificate
Name and address of the	Danfoss Drives A/S, Ulnaes 1		
holder of the certificate: (customer)	DK-6300 Graasten, Dänemark		
Name and address of the	Danfoss Drives A/S, Ulnaes 1		
manufacturer:	DK-6300 Graasten, Dänemark		
Ref. of customer:	Ref. of Test and Certification Body:		te of Issue:
Van Albert	Apf/Köh VE-Nr. 2003 23220	13.	04.2005
Product designation:	Frequency converter with integrated safety functions		
Туре:	VLT® Automation Drive FC 302		
Intended purpose:	Implementation of safety function "Safe Stop"		
Testing based on:	EN 954-1, 1997-03,		W. BOLL
resining bused on.	DKE AK 226.03, 1998-06,		
	EN ISO 13849-2; 2003-12,		
	EN 61800-3, 2001-02,		
	EN 61800-5-1, 2003-09,		
Test certificate:	No.: 2003 23220 from 13.04.2005		
Remarks:	The presented types of the frequency converter FC 3 down in the test bases.	02 meet the	e requirements laid
	With correct wiring a category 3 according to DIN Electron.	N 954-1 is	reached for the safety

The type tested complies with the provisions laid down in the directive 98/37/EC (Machinery).

Further conditions are laid down in the Rules of Procedure for Testing and Certification of April 2004.

130BA373.11

(Prof. Dr. rer. nat. Dietmar Reinert)

Certification officer

(Dipl.-Ing. R. Apfeld)

PZB10E 01.05 GRUE E

Postal adress: 53754 Sankt Augustin Office: Alte Heerstraße 111 53757 Sankt Augustin Phone: 0 22 41/2 31-02 Fax: 0 22 41/2 31-22 34

Figure 2.2

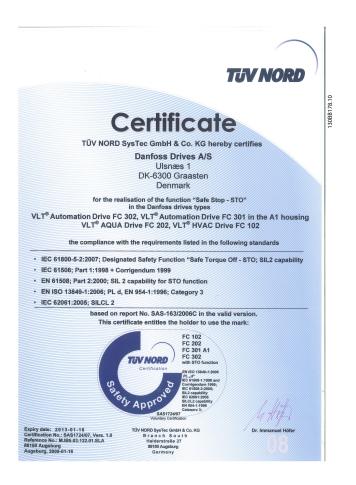


Figure 2.3

2.6.2 Safe Stop Installation

To carry out an installation of a Category 0 Stop (EN60204) in conformity with Safety Category 3 (EN954-1), follow these instructions:

- 1. The bridge (jumper) between Terminal 37 and 24V DC must be removed. Cutting or breaking the jumper is not sufficient. Remove it entirely to avoid short-circuiting. See jumper in Figure 2.4.
- Connect terminal 37 to 24 V DC by a short circuit-protected cable. The 24 V DC voltage supply must be interruptible by an EN954-1 category 3 circuit interrupt device. If the interrupt device and the Adjustable frequency drive are placed in the same installation panel, you can use an non-shielded cable instead of a shielded one.

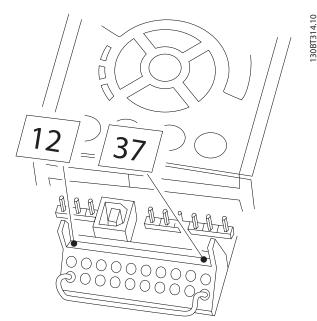


Figure 2.4 Bridge jumper between terminal 37 and 24V DC

Figure 2.5 shows a Stopping Category 0 (EN 60204-1) with safety Category 3 (EN 954-1). The circuit interrupt is caused

by an opening door contact. The figure also shows how to connect a non-safety related hardware coast.

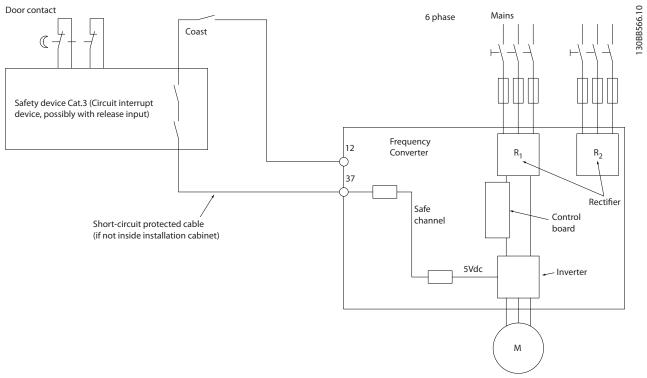


Figure 2.5 Essential aspects of an installation to achieve a Stopping Category 0 (EN 60204-1) with safety Category 3 (EN 954-1).

2.7 Advantages

2.7.1 Why use a Adjustable Frequency Drive for Controlling Fans and Pumps?

A Adjustable frequency drive takes advantage of the fact that centrifugal fans and pumps follow the laws of proportionality for such fans and pumps. For further information, see the text and figure *The Laws of Proportionality*.

2.7.2 The Clear Advantage - Energy Savings

The very clear advantage of using a Adjustable frequency drive for controlling the speed of fans or pumps lies in the electricity savings.

When comparing with alternative control systems and technologies, a Adjustable frequency drive is the optimum energy control system for controlling fan and pump systems.

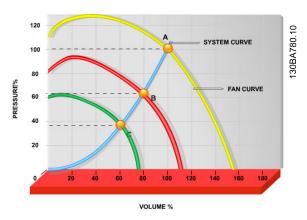


Figure 2.6 The graph is showing fan curves (A, B and C) for reduced fan volumes.

Danfoss

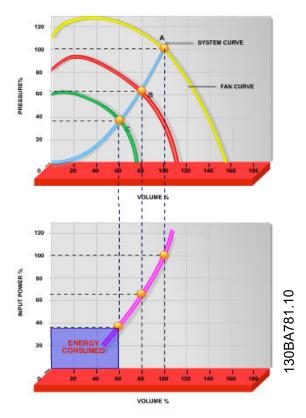


Figure 2.7 When using a Adjustable frequency drive to reduce fan capacity to 60% - more than 50% energy savings may be obtained in typical applications.

2.7.3 Example of Energy Savings

As can be seen from the figure (the laws of proportionality), the flow is controlled by changing the RPM. By reducing the rated speed by only 20%, the flow is also reduced by 20%. This is because the flow is directly proportional to the RPM. The consumption of electricity, however, is reduced by 50%.

If the system in question only needs to be able to supply a flow corresponding to 100% a few days each year, while the average is below 80% of the rated flow for the remainder of the year, the amount of energy saved is even greater than 50%.

The laws of proportionality					
Figure 2.8 describes the deper	Figure 2.8 describes the dependence of flow, pressure and power				
consumption on RPM.					
Q = Flow	P = Power				
Q ₁ = Rated flow	P ₁ = Rated power				
Q_2 = Reduced flow P_2 = Reduced power					
H = Pressure	n = Speed regulation				
H ₁ = Rated pressure	n ₁ = Rated speed				
H_2 = Reduced pressure n_2 = Reduced speed					

Table 2.3

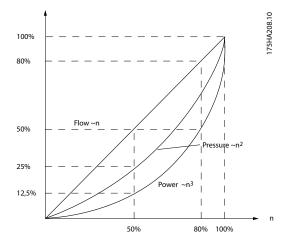


Figure 2.8

Flow:
$$\frac{Q_1}{Q_2} = \frac{n_1}{n_2}$$

Pressure: $\frac{H_1}{H_2} = \left(\frac{n_1}{n_2}\right)^2$

Power: $\frac{P_1}{P_2} = \left(\frac{n_1}{n_2}\right)^3$

2.7.4 Comparison of Energy Savings

The Danfoss Adjustable frequency drive solution offers major savings compared with traditional energy saving solutions. This is because the Adjustable frequency drive is able to control fan speed according to thermal load on the system and the fact that the Adjustable frequency drive has a built-in facility that enables the Adjustable frequency drive to function as a Building Management System, BMS.

The graph (*Figure 2.10*) shows typical energy savings obtainable with three well-known solutions when fan volume is reduced to, e.g. 60%.

As the graph shows, more than 50% energy savings can be achieved in typical applications.

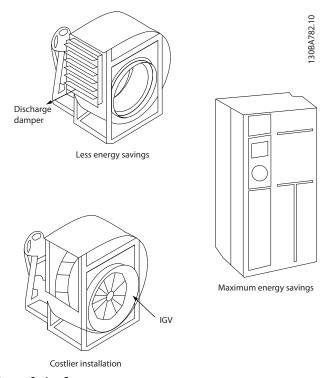


Figure 2.9 The Three Common Energy Saving Systems.

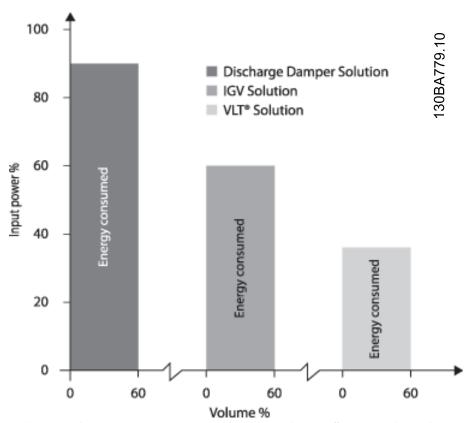


Figure 2.10 Discharge dampers reduce power consumption somewhat. Inlet guide vans offer a 40% reduction but are expensive to install. The Danfoss Adjustable frequency drive solution reduces energy consumption with more than 50% and is easy to install.

2

2.7.5 Example with Varying Flow over 1 Year

The example below is calculated on the basis of pump characteristics obtained from a pump datasheet.

The result obtained shows energy savings in excess of 50% at the given flow distribution over a year. The payback period depends on the price per kWh and price of Adjustable frequency drive. In this example, it is less than a year when compared with valves and constant speed.

Energ	y savir	ngs						
P _{shaft} =	P _{shaft o}	utput						
Flow	distribu	ution o	ver 1	year				
[h] † P					10.10			
2000 -					175HA210.10			
1500 -			l _					
1000 -								
500 -								
	100	200	300	400	Q [m ³ /h]			

Table 2.4

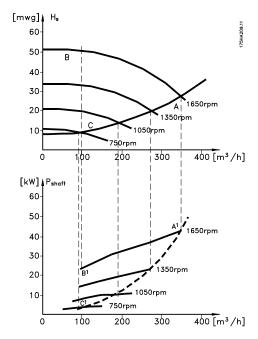


Figure 2.11

m³/h	Distri- bution		Valve regulation		,	e frequency control
	%	Hours	Power	Consump-	Power	Consump
				tion		tion
			A1 - B1	kWh	A1 - C1	kWh
350	5	438	42.5	18.615	42.5	18.615
300	15	1314	38.5	50.589	29.0	38.106
250	20	1752	35.0	61.320	18.5	32.412
200	20	1752	31.5	55.188	11.5	20.148
150	20	1752	28.0	49.056	6.5	11.388
100	20	1752	23.0	40.296	3.5	6.132
Σ	100	8760		275.064		26.801

Table 2.5

2.7.6 Better Control

If a Adjustable frequency drive is used for controlling the flow or pressure of a system, improved control is obtained. A Adjustable frequency drive can vary the speed of the fan or pump, thereby obtaining variable control of flow and pressure.

Furthermore, a Adjustable frequency drive can quickly adapt the speed of the fan or pump to new flow or pressure conditions in the system.

Simple control of process (flow, level or pressure) utilizing the built-in PID control.

2.7.7 Cos φ Compensation

Generally speaking, the VLT® HVAC Drive has a $\cos \phi$ of 1 and provides power factor correction for the $\cos \phi$ of the motor, which means that there is no need to make allowance for the $\cos \phi$ of the motor when sizing the power factor correction unit.

2.7.8 Star/Delta Starter or Soft-starter not Required

When larger motors are started, it is necessary in many countries to use equipment that limits the start-up current. In more traditional systems, a star/delta starter or soft-starter is widely used. Such motor starters are not required if a Adjustable frequency drive is used.

As illustrated in the figure below, a Adjustable frequency drive does not consume more than rated current.

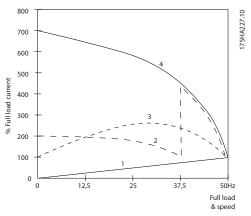


Figure 2.12

1 = VLT® HVAC Drive	
2 = Star/delta starter	
3 = Soft-starter	
4 = Start directly on line power	

Table 2.6

2.7.9 Using a Adjustable Frequency Drive Saves Money

The example on the following page shows that a lot of equipment is not required when a Adjustable frequency drive is used. It is possible to calculate the cost of installing the two different systems. In the example, the two systems can be established at roughly the same price.

2.7.10 Without a Adjustable Frequency Drive

The figure shows a fan system made in the traditional way.						
D.D.C.	=	Direct Digital Control	E.M.S.	Energy = Management system		
V.A.V.	=	Variable Air Volume				
Sensor P	=	Pressure	Sensor T	= Temperature		

Table 2.7

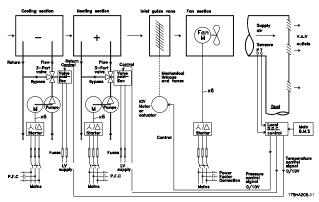


Figure 2.13

2.7.11 With a Adjustable Frequency Drive

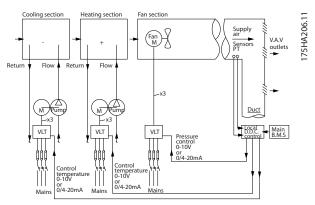


Figure 2.14 The figure shows a fan system controlled by adjustable frequency drives.

Secondary pumps

2.7.12 Application Examples

The next few pages give typical examples of applications within HVAC.

If you would like to receive further information about a given application, please ask your Danfoss supplier for an information sheet that gives a full description of the application.

Variable Air Volume	
Ask for The Drive toImproving Variable Air Volume Ventilation Systems MN.60.A1.02	
Constant Air Volume	
Ask for The Drive toImproving Constant Air Volume Ventilation Systems MN.60.B1.02	
Cooling Tower Fan	
Ask for The Drive toImproving fan control on cooling towers MN.60.C1.02	
Condenser pumps	
Ask for The Drive toImproving condenser water pumping systems MN.60.F1.02	
Primary pumps	
Ask for The Drive toImprove your primary pumping in primay/secondary pumping systems MN.60.D1.02	

Ask for The Drive to...Improve your secondary pumping in primay/secondary pumping systems MN.60.E1.02

2.7.13 Variable Air Volume

VAV or Variable Air Volume systems, are used to control both the ventilation and temperature to satisfy the requirements of a building. Central VAV systems are considered to be the most energy efficient method to air condition buildings. By designing central systems instead of distributed systems, a greater efficiency can be obtained.

The efficiency comes from utilizing larger fans and larger chillers which have much higher efficiencies than small motors and distributed air-cooled chillers. Savings are also a result of decreased maintenance requirements.

2.7.14 The VLT Solution

While dampers and IGVs work to maintain a constant pressure in the ductwork, a Adjustable frequency drive solution saves much more energy and reduces the complexity of the installation. Instead of creating an artificial pressure drop or causing a decrease in fan efficiency, the Adjustable frequency drive decreases the speed of the fan to provide the flow and pressure required by the system.

Centrifugal devices such as fans behave according to the centrifugal laws. This means the fans decrease the pressure and flow they produce as their speed is reduced. Their power consumption is thereby significantly reduced.

The return fan is frequently controlled to maintain a fixed difference in airflow between the supply and return. The advanced PID controller of the HVAC Adjustable frequency drive can be used to eliminate the need for additional controllers.

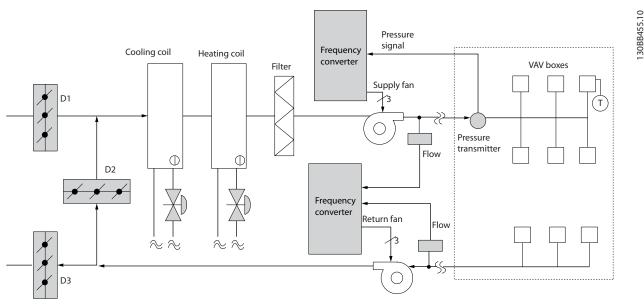


Figure 2.15

2.7.15 Constant Air Volume

CAV, or Constant Air Volume systems, are central ventilation systems usually used to supply large common zones with the minimum amounts of fresh tempered air. They preceded VAV systems and therefore are found in older, multi-zoned commercial buildings as well. These systems preheat amounts of fresh air utilizing Air Handling Units (AHUs) with a heating coil, and many are also used to air condition buildings and have a cooling coil. Fan coil units are frequently used to assist in the heating and cooling requirements in the individual zones.

2.7.16 The VLT Solution

With a Adjustable frequency drive, significant energy savings can be obtained while maintaining decent control of the building. Temperature sensors or CO₂ sensors can be used as feedback signals to adjustable frequency drives. Whether controlling temperature, air quality, or both, a CAV system can be controlled to operate based on actual building conditions. As the number of people in the controlled area decreases, the need for fresh air decreases. The CO₂ sensor detects lower levels and decreases the supply fans speed. The return fan modulates to maintain a static pressure setpoint or fixed difference between the supply and return air flows.

With temperature control (especially used in air conditioning systems), as the outside temperature varies and the number of people in the controlled zone changes, different cooling requirements arise. As the temperature decreases below the setpoint, the supply fan can decrease its speed. The return fan modulates to maintain a static pressure setpoint. By decreasing the air flow, energy used to heat or cool the fresh air is also reduced, adding further savings.

Several features of the Danfoss HVAC dedicated Adjustable frequency drive can be utilized to improve the performance of your CAV system. One concern of controlling a ventilation system is poor air quality. The programmable minimum frequency can be set to maintain a minimum amount of supply air, regardless of the feedback or reference signal. The Adjustable frequency drive also includes a 3-zone, 3 setpoint PID controller which allows monitoring both temperature and air quality. Even if the temperature requirement is satisfied, the Adjustable frequency drive will maintain enough supply air to satisfy the air quality sensor. The controller is capable of monitoring and comparing two feedback signals to control the return fan by maintaining a fixed differential air flow between the supply and return ducts as well.

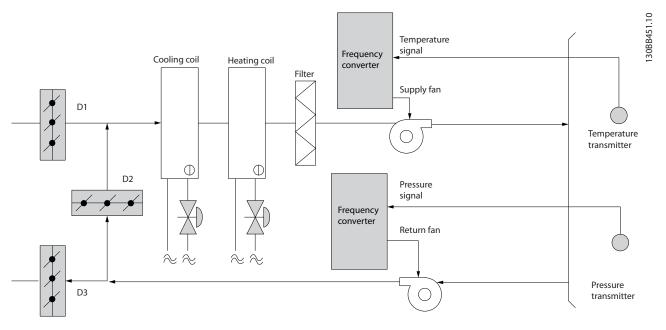


Figure 2.16

2.7.17 Cooling Tower Fan

Cooling tower fans are used to cool condenser water in water-cooled chiller systems. Water-cooled chillers provide the most efficient means of creating chilled water. They are as much as 20% more efficient than air-cooled chillers. Depending on climate, cooling towers are often the most energy efficient method of cooling the condenser water from chillers. They cool the condenser water by evaporation.

The condenser water is sprayed into the cooling tower, onto the cooling tower's "fill" to increase its surface area. The tower fan blows air through the fill and sprayed water to aid in the evaporation. Evaporation removes energy from the water, thus dropping its temperature. The cooled water collects in the cooling towers basin, where it is pumped back into the chiller's condenser, and the cycle is then repeated.

2.7.18 The VLT Solution

With a Adjustable frequency drive, the cooling towers' fans can be controlled to the required speed to maintain the condenser water temperature. The adjustable frequency drives can also be used to turn the fan on and off as needed.

Several features of the Danfoss HVAC dedicated Adjustable frequency drive, the HVAC Adjustable frequency drive can be utilized to improve the performance of your cooling tower fans application. As the cooling tower fans drop below a certain speed, the effect the fan has on cooling the water becomes insignificant. Also, when utilizing a gear box to frequency control the tower fan, a minimum speed of 40-50% may be required.

The customer programmable minimum frequency setting is available to maintain this minimum frequency even as the feedback or speed reference calls for lower speeds.

Also as a standard feature, you can program the Adjustable frequency drive to enter a "sleep" mode and stop the fan until a higher speed is required. Additionally, some cooling tower fans have undesireable frequencies that may cause vibrations. These frequencies can easily be avoided by programming the bypass frequency ranges in the Adjustable frequency drive.

2

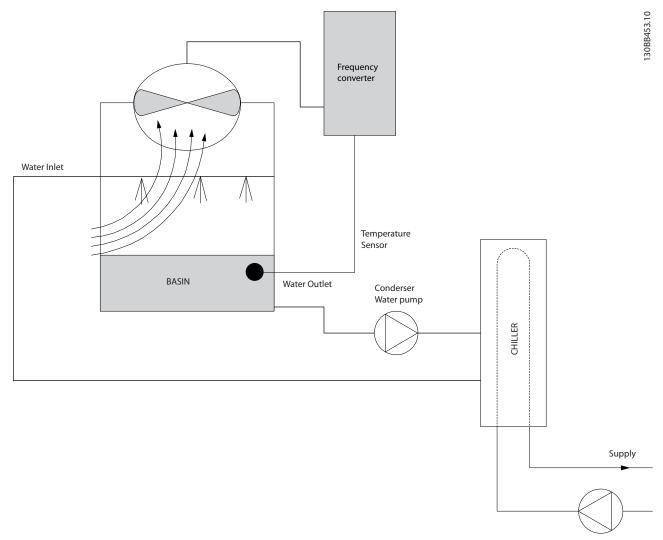


Figure 2.17

2.7.19 Condenser Pumps

Condenser water pumps are primarily used to circulate water through the condenser section of water cooled chillers and their associated cooling tower. The condenser water absorbs the heat from the chiller's condenser section and releases it into the atmosphere in the cooling tower. These systems are used to provide the most efficient means of creating chilled water, and they are as much as 20% more efficient than air cooled chillers.

2.7.20 The VLT Solution

Adjustable frequency drives can be added to condenser water pumps instead of balancing the pumps with a throttling valve or trimming the pump impeller.

Using a Adjustable frequency drive instead of a throttling valve simply saves the energy that would have been absorbed by the valve. This can amount to savings of 15-20% or more. Trimming the pump impeller is irreversible, thus if the conditions change and higher flow is required the impeller must be replaced.

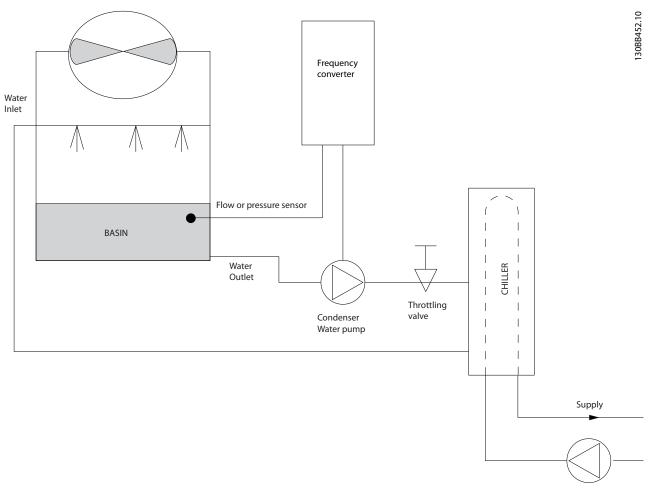


Figure 2.18

2.7.21 Primary Pumps

Primary pumps in a primary/secondary pumping system can be used to maintain a constant flow through devices that encounter operation or control difficulties when exposed to variable flow. The primary/secondary pumping technique decouples the "primary" production loop from the "secondary" distribution loop. This allows devices such as chillers to obtain constant design flow and operate properly while allowing the rest of the system to vary in flow.

As the evaporator flow rate decreases in a chiller, the chilled water begins to become over-chilled. As this happens, the chiller attempts to decrease its cooling capacity. If the flow rate drops far enough, or too quickly, the chiller cannot shed its load sufficiently and the chiller's low evaporator temperature safety trips the chiller, requiring a manual reset. This situation is common in large installations, especially when two or more chillers are installed in parallel and primary/secondary pumping is not utilized.

2.7.22 The VLT Solution

Depending on the size of the system and the size of the primary loop, the energy consumption of the primary loop can become substantial.

A Adjustable frequency drive can be added to the primary system, to replace the throttling valve and/or trimming of the impellers, leading to reduced operating expenses. Two control methods are common:

The first method uses a flow meter. Because the desired flow rate is known and constant, a flow meter installed at the discharge of each chiller can be used to control the pump directly. Using the built-in PID controller, the Adjustable frequency drive will always maintain the appropriate flow rate, even compensating for the changing resistance in the primary piping loop as chillers and their pumps are staged on and off.

The other method is local speed determination. The operator simply decreases the output frequency until the design flow rate is achieved.

Using a Adjustable frequency drive to decrease the pump speed is very similar to trimming the pump impeller, except it doesn't require any labor and the pump efficiency remains higher. The balancing contractor simply decreases the speed of the pump until the proper flow rate is achieved and leaves the speed fixed. The pump will operate at this speed any time the chiller is staged on. Because the primary loop doesn't have control valves or other devices that can cause the system curve to change, and because the variance due to staging pumps and chillers on and off is usually small, this fixed-speed will remain appropriate. In the event, the flow rate needs to be increased later in the systems life, the Adjustable frequency drive can simply increase the pump speed instead of requiring a new pump impeller.

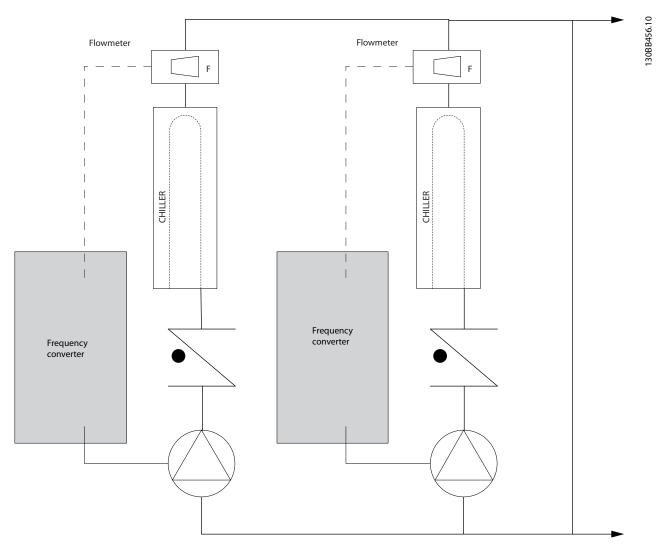


Figure 2.19

2.7.23 Secondary Pumps

Secondary pumps in a primary/secondary chilled water pumping system are used to distribute the chilled water to the loads from the primary production loop. The primary/secondary pumping system is used to hydronically de-couple one piping loop from another. In this case, the primary pump is used to maintain a constant flow through the chillers while allowing the secondary pumps to vary in flow, increase control and save energy.

If the primary/secondary design concept is not used and a variable volume system is designed, the chiller cannot shed its load properly when the flow rate drops far enough or too quickly. The chiller's low evaporator temperature safety then trips the chiller, requiring a manual reset. This situation is common in large installations, especially when two or more chillers are installed in parallel.

2.7.24 The VLT Solution

While the primary-secondary system with two-way valves improves energy savings and eases system control problems, the true energy savings and control potential is realized by adding adjustable frequency drives.

With the proper sensor location, the addition of adjustable frequency drives allows the pumps to vary their speed to follow the system curve instead of the pump curve.

This results in the elimination of wasted energy and eliminates most of the over-pressurization to which two-way valves can be subjected.

As the monitored loads are reached, the two-way valves close down. This increases the differential pressure measured across the load and two-way valve. As this differential pressure starts to rise, the pump is slowed to maintain the control head also called setpoint value. This setpoint value is calculated by summing the pressure drop of the load and two-way valve together under design conditions.

Please note that when running multiple pumps in parallel, they must run at the same speed to maximize energy savings, either with individual dedicated drives or one Adjustable frequency drive running multiple pumps in parallel.

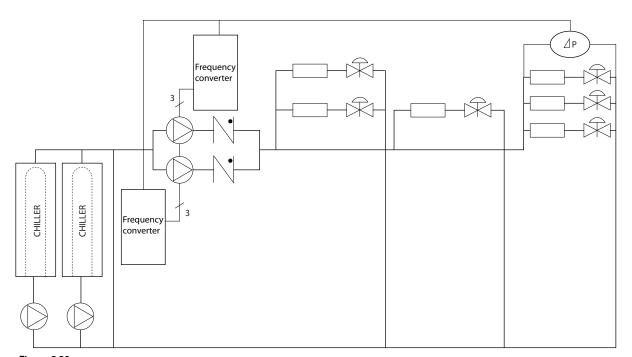


Figure 2.20

2.7.25 Why use a Adjustable Frequency Drive for Controlling Fans and Pumps?

A Adjustable frequency drive takes advantage of the fact that centrifugal fans and pumps follow the laws of proportionality for such fans and pumps. For further information, see the text and figure *The Laws of Proportionality*.

2.8 Control Structures

2.8.1 Control Principle

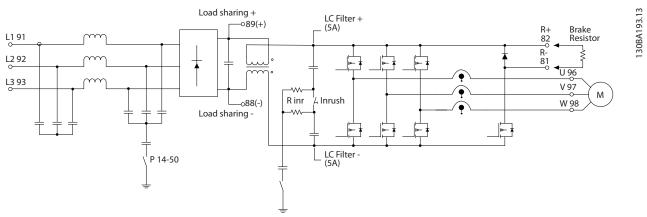


Figure 2.21 Control structures.

The Adjustable frequency drive is a high performance unit for demanding applications. It can handle various kinds of motor control principles such as U/f special motor mode and VVC^{plus} and can handle normal squirrel cage asynchronous motors. Short-circuit behavior on this Adjustable frequency drive depends on the three current transducers in the motor phases.

In 1-00 Configuration Mode, it can be selected if open-loop or closed-loop is to be used

2.8.2 Control Structure Open-loop

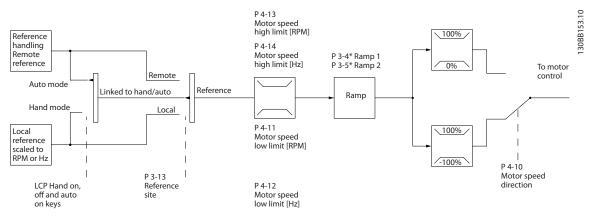


Figure 2.22 Open-loop structure.

In the configuration shown in *Figure 2.22, 1-00 Configuration Mode* is set to Open-loop [0]. The resulting reference from the reference handling system or the local reference is received and fed through the ramp limitation and speed limitation before being sent to the motor control.

The output from the motor control is then limited by the maximum frequency limit.

2.8.3 PM/EC+ Motor Control

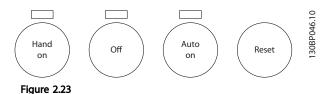
The Danfoss EC+ concept provides the option of using high efficiency PM motors in an IEC standard frame size operated by Danfoss adjustable frequency drives. The commissioning procedure is comparable to the existing one for asynchronous (induction) motors by utilizing the Danfoss VVC^{plus} PM control strategy.

Customer advantages:

- Free choice of motor technology (permanent magnet or induction motor)
- Installation and operation as known on induction motors
- Manufacturer independent when choosing system components (e.g., motors)
- Best system efficiency by choosing best components
- Possible retrofit of existing installations
- High power range: 1.5–1900 hp [1.1–1400 kW] for Induction motors and 1.5–30 hp [1.1–22 KW] for PM motors

Current limitations:

- Currently only supported up to 30 hp [22 Kw]
- Currently limited to non-salient type PM motors
- LC filters not supported together with PM motors
- Over Voltage Control algorithm is not supported with PM motors
- Kinetic backup algorithm is not supported with PM motors
- AMA algorithm is not supported with PM motors
- No missing motor phase detection
- No stall detection
- No ETR function


2.8.4 Local (Hand On) and Remote (Auto On) Control

The Adjustable frequency drive can be operated manually via the local control panel (LCP) or remotely via analog/digital inputs or serial bus.

If allowed in 0-40 [Hand on] Key on LCP, 0-41 [Off] Key on LCP, 0-42 [Auto on] Key on LCP, and 0-43 [Reset] Key on LCP, it is possible to start and stop the Adjustable frequency drive byLCP using the [Hand ON] and [Off] keys. Alarms can be reset via the [RESET] key. After pressing the [Hand ON] key, the Adjustable frequency drive goes into hand

mode and follows (as default) the Local reference set by using the LCP arrow keys up $[\blacktriangle]$ and down $[\blacktriangledown]$.

After pressing the [Auto On] key, the Adjustable frequency drive goes into auto mode and follows (as default) the Remote reference. In this mode, it is possible to control the Adjustable frequency drive via the digital inputs and various serial interfaces (RS-485, USB, or an optional serial communication bus). See more about starting, stopping, changing ramps and parameter set-ups etc. in parameter group 5-1* (digital inputs) or parameter group 8-5* (serial communication).

Hand Off	Reference Site	Active Reference
Auto	3-13 Reference Site	
LCP Keys		
Hand	Linked to Hand /	Local
	Auto	
Hand -> Off	Linked to Hand /	Local
	Auto	
Auto	Linked to Hand /	Remote
	Auto	
Auto -> Off	Linked to Hand /	Remote
	Auto	
All keys	Local	Local
All keys	Remote	Remote

Table 2.8 Conditions for either Local or Remote Reference

Table 2.8 shows under which conditions either the Local Reference or the Remote Reference is active. One of them is always active, but both can not be active at the same time.

Local Reference will force the configuration mode to open-loop, independent on the setting of *1-00 Configuration Mode*.

Local Reference will be restored at power-down.

2.8.5 Control Structure Closed-loop

The internal controller allows the Adjustable frequency drive to become an integral part of the controlled system. The Adjustable frequency drive receives a feedback signal from a sensor in the system. It then compares this feedback to a setpoint reference value and determines the error, if any, between these two signals. It then adjusts the speed of the motor to correct this error.

For example, consider a pump application where the speed of a pump is to be controlled so that the static pressure in a pipe is constant. The desired static pressure value is supplied to the Adjustable frequency drive as the setpoint reference. A static pressure sensor measures the actual static pressure in the pipe and supplies this to the Adjustable frequency drive as a feedback signal. If the feedback signal is greater than the setpoint reference, the Adjustable frequency drive will slow down to reduce the pressure. In a similar way, if the pipe pressure is lower than the setpoint reference, the Adjustable frequency drive will automatically speed up to increase the pressure provided by the pump.

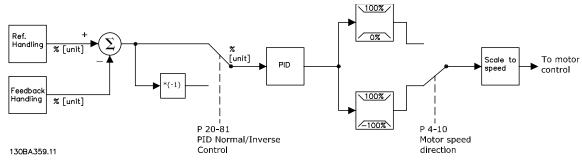


Figure 2.24 Block Diagram of Closed-loop Controller

While the default values for the adjustable frequency drive's closed-loop controller will often provide satisfactory performance, the control of the system can often be optimized by adjusting some of the closed-loop controller's parameters. It is also possible to autotune the PI constants.

2.8.6 Feedback Handling

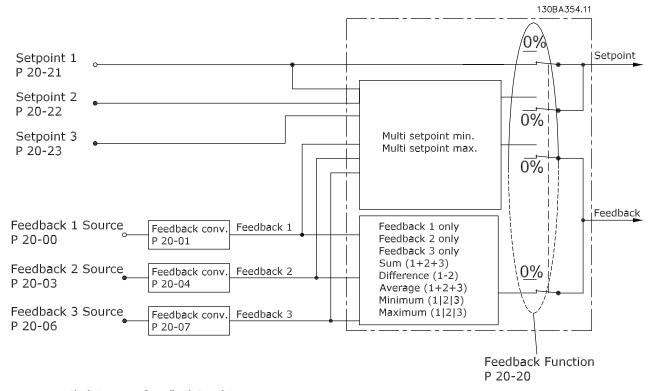


Figure 2.25 Block Diagram of Feedback Signal Processing

Feedback handling can be configured to work with applications requiring advanced control, such as multiple setpoints and multiple feedbacks. Three types of control are common.

Single Zone, Single Setpoint

Single Zone, Single Setpoint is a basic configuration. Setpoint 1 is added to any other reference (if any, see Reference Handling) and the feedback signal is selected using 20-20 Feedback Function.

Multi-zone, Single Setpoint

Multi-zone, Single Setpoint uses two or three feedback sensors, but only one setpoint. The feedbacks can be added, subtracted (only feedback 1 and 2) or averaged. In addition, the maximum or minimum value may be used. Setpoint 1 is used exclusively in this configuration.

If *Multi Setpoint Min* [13] is selected, the setpoint/feedback pair with the largest difference controls the speed of the adjustable frequency drive. *Multi Setpoint Maximum* [14] attempts to keep all zones at or below their respective setpoints, while *Multi Setpoint Min* [13] attempts to keep all zones at or above their respective setpoints.

Example:

A two-zone two setpoint application Zone 1 setpoint is 15 bar and the feedback is 5.5 bar. Zone 2 setpoint is 4.4 bar and the feedback is 4.6 bar. If *Multi Setpoint Max* [14] is selected, Zone 1's setpoint and feedback are sent to the PID controller, since this has the smaller difference (feedback is higher than setpoint, resulting in a negative difference). If *Multi Setpoint Min* [13] is selected, Zone 2's setpoint and feedback is sent to the PID controller, since this has the larger difference (feedback is lower than setpoint, resulting in a positive difference).

2.8.7 Feedback Conversion

In some applications, it may be useful to convert the feedback signal. One example of this is using a pressure signal to provide flow feedback. Since the square root of pressure is proportional to flow, the square root of the pressure signal yields a value proportional to the flow. This is shown in *Figure 2.26*.

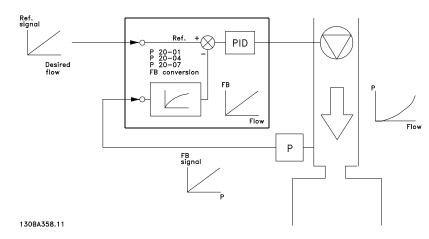


Figure 2.26 Feedback Conversion

2.8.8 Reference Handling

Details for Open-loop and Closed-loop Operation

130BA357.11

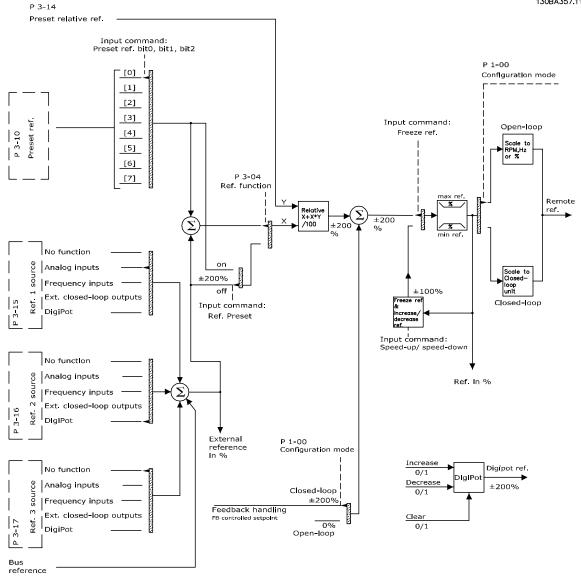


Figure 2.27 Block Diagram Showing Remote Reference

The Remote Reference is comprised of:

- Preset references.
- External references (analog inputs, pulse frequency inputs, digital potentiometer inputs and serial communication bus references).
- The preset relative reference.
- Feedback controlled setpoint.

Up to 8 preset references can be programmed in the drive. The active preset reference can be selected using digital inputs or the serial communications bus. The reference can also be supplied externally, most commonly from an analog input. This external source is selected by one of the 3 Reference Source parameters (3-15 Reference 1 Source, 3-16 Reference 2 Source and 3-17 Reference 3 Source). Digipot is a digital potentiometer. This is also commonly called a speed up/speed down control, or a floating point control. To set it up, one digital input is programmed to increase the reference while another digital input is programmed to decrease the reference. A third digital input can be used to reset the digipot reference. All reference resources and the bus reference are added to produce the total external reference. The external reference, the preset reference or the sum of the two can be selected to be the active reference. Finally, this reference can by be scaled using 3-14 Preset Relative Reference.

The scaled reference is calculated as follows: Reference = $X + X \times \left(\frac{Y}{100}\right)$

Where X is the external reference, the preset reference or the sum of these and Y is 3-14 Preset Relative Reference in [%].

If Y, 3-14 Preset Relative Reference is set to 0%, the reference will not be affected by the scaling.

2.8.9 Example of Closed-loop PID Control

The following is an example of a closed-loop control for a ventilation system:

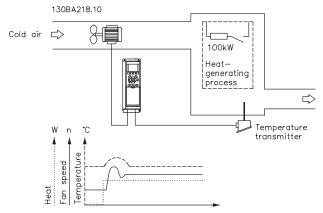
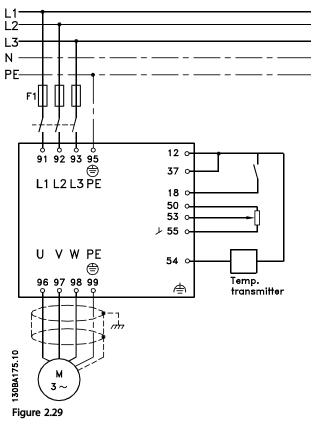



Figure 2.28

In a ventilation system, the temperature is to be maintained at a constant value. The desired temperature is set between 23° and 95°F [-5°-+35°C] using a 0–10 volt potentiometer. Because this is a cooling application, if the temperature is above the setpoint value, the speed of the fan must be increased to provide more cooling air flow. The temperature sensor has a range of 14°-104°F [-10°-+40°C] and uses a two-wire transmitter to provide a 4–20 mA signal. The output frequency range of the Adjustable frequency drive is 10 to 50Hz.

- Start/Stop via switch connected between terminals 12 (+24V) and 18.
- 2. Temperature reference via a potentiometer (23°–95° F [-5°–+35°C], 0–10 V) connected to terminals 50 (+10 V), 53 (input) and 55 (common).
- Temperature feedback via transmitter (14°–104°F [-10°–+40°C], 4–20 mA) connected to terminal 54.
 Switch S202 behind the LCP set to ON (current input).

2.8.10 Programming Order

NOTE!

In this example, it is assumed an induction motor is used, i.e., that 1-10 Motor Construction = [0] Asynchron.

Function	Par. no.	Setting
1) Make sure the motor runs properly. Do the following:	•	•
Set the motor parameters using nameplate data.	1-2*	As specified by motor nameplate
Run Automatic Motor Adaptation.	1-29	Enable complete AMA [1] and then run the AMA
		function.
2) Check that the motor is running in the right direction		•
Run Motor Rotation Check.	1-28	If the motor runs in the wrong direction, remove
		power temporarily and reverse two of the motor
		phases.
3) Make sure the Adjustable frequency drive limits are se	et to safe values.	
	_	
Make sure that the ramp settings are within the	3-41	60 sec.
capabilities of the drive and the allowed application	3-42	60 sec.
operating specifications.		Depends on motor/load size!
		Also active in hand mode.
Prohibit the motor from reversing (if necessary)	4-10	Clockwise [0]
Set acceptable limits for the motor speed.	4-12	10 Hz, Motor min speed
	4-14	50 Hz, Motor max speed
	4-19	50 Hz, Drive max output frequency
Switch from open-loop to closed-loop.	1-00	Closed-loop [3]
4) Configure the feedback to the PID controller.		
Select the appropriate reference/feedback unit.	20-12	Bar [71]
5) Configure the setpoint reference for the PID controlle	r.	
Set acceptable limits for the setpoint reference.	20-13	0 Bar
	20-14	10 Bar
Choose current or voltage by switches S201 / S202		
6) Scale the analog inputs used for setpoint reference ar	nd feedback.	
Scale Analog Input 53 for the pressure range of the	6-10	0 V
potentiometer (0–10 Bar, 0–10 V).	6-11	10 V (default)
	6-14	0 Bar
	6-15	10 Bar
Scale Analog Input 54 for pressure sensor (0–10 Bar, 4–	6-22	4 mA
20 mA)	6-23	20 mA (default)
	6-24	0 Bar
	6-25	10 Bar
7) Tune the PID controller parameters.		
Adjust the drive's closed-loop controller, if needed.	20-93	See Optimization of the PID Controller below.
	20-94	
8) Finished!		
Save the parameter setting to the LCP for safe keeping	0-50	All to LCP [1]

Table 2.9

2.8.11 Tuning the Drive Closed-loop Controller

Once the adjustable frequency drive's closed-loop controller has been set up, the performance of the controller should be tested. In many cases, its performance may be acceptable using the default values of 20-93 PID Proportional Gain and 20-94 PID Integral Time. However, in some cases it may be helpful to optimize these parameter values to provide faster system response while still controlling speed overshoot.

2.8.12 Manual PID Adjustment

- 1. Start the motor
- 2. Set 20-93 PID Proportional Gain to 0.3 and increase it until the feedback signal begins to oscillate. If necessary, start and stop the drive or make step changes in the setpoint reference to attempt to cause oscillation. Next reduce the PID Proportional Gain until the feedback signal stabilizes. Then reduce the proportional gain by 40-60%.
- 3. Set 20-94 PID Integral Time to 20 sec. and reduce it until the feedback signal begins to oscillate. If necessary, start and stop the drive or make step changes in the setpoint reference to attempt to cause oscillation. Next, increase the PID Integral Time until the feedback signal stabilizes. Then increase the Integral Time by 15–50%.
- 4. 20-95 PID Differentiation Time should only be used for very fast-acting systems. The typical value is 25% of 20-94 PID Integral Time. The differential function should only be used when the setting of the proportional gain and the integral time has been fully optimized. Make sure that oscillations of the feedback signal are sufficiently dampened by the low-pass filter for the feedback signal (parameters 6-16, 6-26, 5-54 or 5-59 as required).

2.9 General aspects of EMC

2.9.1 General Aspects of EMC Emissions

Electrical interference is usually conducted at frequencies in the range 150 kHz to 30 MHz. Airborne interference from the Adjustable frequency drive system in the range 30 MHz to 1 GHz is generated from the inverter, motor cable, and the motor.

As shown in *Figure 2.30*, capacitive currents in the motor cable coupled with a high dU/dt from the motor voltage generate leakage currents.

The use of a shielded motor cable increases the leakage current (see *Figure 2.30*) because shielded cables have higher capacitance to ground than non-shielded cables. If the leakage current is not filtered, it will cause greater interference on the line power in the radio frequency range below approximately 5 MHz. Since the leakage current (I₁) is carried back to the unit through the shield (I₃), there will in principle only be a small electro-magnetic field (I₄) from the shielded motor cable according to the below figure.

The shield reduces the radiated interference, but increases the low-frequency interference in the line power supply. The motor cable shield must be connected to the Adjustable frequency drive enclosure as well as on the motor enclosure. This is best done by using integrated shield clamps so as to avoid twisted shield ends (pigtails). These increase the shield impedance at higher frequencies, which reduces the shield effect and increases the leakage current (l₄). If a shielded cable is used for serial communication bus, relay, control cable, signal interface and brake, the shield must be mounted on the enclosure at both ends. In some situations, however, it will be necessary to break the shield to avoid current loops.

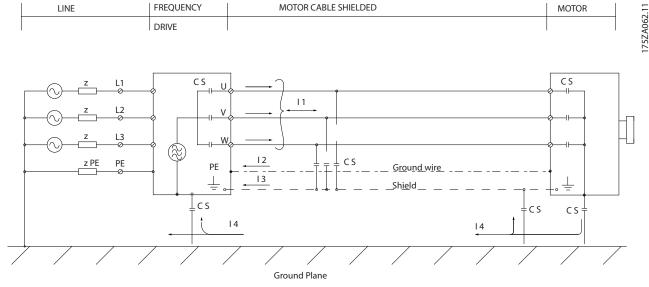


Figure 2.30 Situation that Generates Leakage Currents

If the shield is to be placed on a mounting plate for the Adjustable frequency drive, the mounting plate must be made of metal, because the shield currents have to be conveyed back to the unit. Moreover, ensure good electrical contact from the mounting plate through the mounting screws to the Adjustable frequency drive chassis.

When non-shielded cables are used, some emission requirements are not complied with, although the immunity requirements are observed.

In order to reduce the interference level from the entire system (unit + installation), make motor and brake cables as short as possible. Avoid placing cables with a sensitive signal level alongside motor and brake cables. Radio interference higher than 50 MHz (airborne) is especially generated by the control electronics. Please see for more information on EMC.

2.9.2 Emission Requirements

According to the EMC product standard for adjustable frequency drives EN/IEC 61800-3:2004 the EMC requirements depend on the intended use of the Adjustable frequency drive. Four categories are defined in the EMC product standard. The definitions of the four categories together with the requirements for line power supply voltage conducted emissions are given in *Table 2.10*.

Category	Definition	Conducted emission requirement according to the limits given in EN 55011
C1	Adjustable frequency drives installed in the first environment (home and office) with a supply voltage less than 1000 V.	Class B
C2	Adjustable frequency drives installed in the first environment (home and office) with a supply voltage less than 1000 V, which are neither plug-in nor movable and are intended to be installed and commissioned by a professional.	Class A Group 1
C3	Adjustable frequency drives installed in the second environment (industrial) with a supply voltage lower than 1000 V.	Class A Group 2
C4	Adjustable frequency drives installed in the second environment with a supply voltage equal to or above 1000 V or rated current equal to or above 400 A or intended for use in complex systems.	No limit line. An EMC plan should be made.

Table 2.10 Emission Requirements

When the generic emission standards are used the adjustable frequency drives are required to comply with the following limits:

Environment	Generic standard	Conducted emission requirement according to the limits given in EN 55011
First environment	EN/IEC 61000-6-3 Emission standard for residential, commercial	Class B
(home and office)	and light industrial environments.	
Second environment	EN/IEC 61000-6-4 Emission standard for industrial environments.	Class A Group 1
(industrial environment)		

Table 2.11

2.9.3 EMC Test Results (Emission)

The following test results have been obtained using a system with a Adjustable frequency drive (with options if relevant), a shielded control cable, a control box with potentiometer, as well as a motor and motor shielded cable.

control cable, a control box	with pot	T as well			D - 41 - 4	
RFI filter type		Adan da	Conducted emiss	Radiated emission		
		-	num shielded cal			
		Industrial environment		Housing, trades and	Industrial	Housing, trades and
		_	T .	light industries	environment	light industries
Standard		EN 55011 Class EN 55011 Class		EN 55011 Class B	EN 55011 Class	EN 55011 Class B
		A2	A1		A 1	
H1						
1.5–60 hp [1.1–45 kW]	T2	492 ft [150 m]	492 ft [150 m]	164 ft [50 m]	Yes	No
200–240 V		132 10 [130 111]	132 10 [130 11]	10110 [50 11]		110
1.5–125 hp [1.1–90 kW]	T4					
380-480V		492 ft [150 m]	492 ft [150 m]	164 ft [50 m]	Yes	No
H2						
1.5–5 hp [1.1–3.7 kW]	T2	16.4 ft [5 m]	No	No	No	No
200-240V						
7.5–60 hp [5.5–45 kW]	T2					
200-240V	12	82 ft [25 m]	No	No	No	No
1.5–10 hp [1.1–7.5 kW]	T4	16.4 ft [5 m]	No	No	No	No
380-480 V						
15–125 hp [11–90kW]	Τ4					
380–480 V	T4	82 ft [25 m]	No	No	No	No
150-1350 hp [110-1000	Τ4	402 ft [150 ma]	Ne	No	NI-	Na
kW] 380–480 V	T4	492 ft [150 m]	No	No	No	No
15–125 hp [11–90 kW]	T7	Vac	Nie	No	NI-	No
525-690 V	17	Yes	No	No	No	NO
60-1900 hp [45-1400 kW]	T-7	402 ft [150]	NI-	NI-	NI-	N-
525-690 V	T7	492 ft [150 m]	No	No	No	No
Н3						
1.5-60 hp [1.1-45 kW]	Ta					
200-240 V	T2	246 ft [75 m]	164 ft [50 m]	32.8 ft [10 m]	Yes	No
1.5–125 hp [1.1–90 kW]	T4	246 ft [75]	164 (150)	22.0 & [10]	Yes	No
380–480 V	14	246 ft [75 m]	164 ft [50 m]	32.8 ft [10 m]	res	INO
H4						
150-1350 hp [110-1000	T4	402 ft [150]	402 ft [150 ==]	No	Voc	No
kW] 380–480 V	14	492 ft [150 m]	492 ft [150 m]	INO	Yes	INO
60–550 hp [45–400 kW]	T7	402 ft [1501	00 ft [20 m]	No	No	Ma
525-690 V	T7	492 ft [150 m]	98 ft [30 m]	No	No	No
15–125 hp [11–90 kW]	T7	No	Vas	No	Voc	Ma
525-690 V	T7	No	Yes	No	Yes	No
Нх						
1.5–125 hp [1.1–90 kW]	T6					
525-600 V	10	-	-	-	-	-

Table 2.12 EMC Test Results (Emission)

HX, H1, H2 or H3 is defined in the type code pos. 16 - 17 for EMC filters

HX - No EMC filters built in the Adjustable frequency drive (600V units only)

H1 - Integrated EMC filter. Fulfill Class A1/B

H2 - No additional EMC filter. Fulfill Class A2

H3 - Integrated EMC filter. Fulfill class A1/B (Frame size A1 only)

H4 - Integrated EMC filter. Fulfill class A1

2.9.4 General Aspects of Harmonics Emission

A Adjustable frequency drive takes up a non-sinusoidal current from line power, which increases the input current I_{RMS}. A non-sinusoidal current is transformed by means of a Fourier analysis and split up into sine-wave currents with different frequencies, i.e., different harmonic currents I_n with 50 Hz as the basic frequency:

Harmonic currents	l ₁	l ₅	l ₇
Hz	50	250	350

Table 2.13

The harmonics do not affect the power consumption directly but increase the heat losses in the installation (transformer, cables). Consequently, in plants with a high percentage of rectifier load, maintain harmonic currents at a low level to prevent an overload of the transformer and high temperature in the cables.

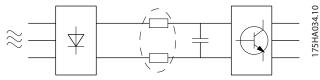


Figure 2.31

NOTE!

Some of the harmonic currents might disturb communication equipment connected to the same transformer or cause resonance in connection with power-factor correction batteries.

To ensure low harmonic currents, the Adjustable frequency drive is equipped with intermediate circuit coils as standard. This normally reduces the input current IRMS by 40%.

The voltage distortion on the line power supply voltage depends on the size of the harmonic currents multiplied by the line power impedance for the frequency in question. The total voltage distortion THD is calculated on the basis of the individual voltage harmonics using this formula:

$$THD\% = \sqrt{U\frac{2}{5} + U\frac{2}{7} + \dots + U\frac{2}{N}}$$
 (U_N% of U)

2.9.5 Harmonics Emission Requirements

Equipment connected to the public supply network

Options:	Definition:
1	IEC/EN 61000-3-2 Class A for 3-phase balanced
	equipment (for professional equipment only up to
	1.5 hp [1 kW] total power).
2	IEC/EN 61000-3-12 Equipment 16 A-75 A and profes-
	sional equipment as from 1.5 hp [1 kW] up to 16 A
	phase current.

Table 2.14

2.9.6 Harmonics Test Results (Emission)

Power sizes up to PK75 in T2 and T4 complies with IEC/EN 61000-3-2 Class A. Power sizes from P1K1 and up to P18K in T2 and up to P90K in T4 complies with IEC/EN 61000-3-12, Table 4. Power sizes P110 - P450 in T4 also complies with IEC/EN 61000-3-12 even though not required because currents are above 75A.

	Indi	Individual Harmonic Current I _n /I ₁ (%)				
	l ₅	l ₇	l ₁₁	l ₁₃		
Actual (typical)	40	20	10	8		
Limit for R _{sce} ≥120	40	25	15	10		
	Harr	Harmonic current distortion factor (%)				
	TH	I D	F	PWHD		
Actual (typical)	46		45			
Limit for R _{sce} ≥120	4	8		46		

Table 2.15 Harmonics Test Results (Emission)

Provided that the short-circuit power of the supply S_{sc} is greater than or equal to:

 $S_{SC} = \sqrt{3} \times R_{SCE} \times U_{line\ power} \times I_{equ} = \sqrt{3} \times 120 \times 400 \times I_{equ}$ at the interface point between the user's supply and the public system (R_{sce}).

It is the responsibility of the installer or user of the equipment to ensure, by consultation with the distribution network operator if necessary, that the equipment is connected only to a supply with a short-circuit power S_{sc} greater than or equal to specified above.

Other power sizes can be connected to the public supply network by consultation with the distribution network

operator.

Compliance with various system level guidelines: The harmonic current data in the table are given in accordance with IEC/EN61000-3-12 with reference to the Power Drive Systems product standard. They may be used as the basis for calculation of the harmonic currents' influence on the power supply system and for the documentation of compliance with relevant regional guidelines: IEEE 519 -1992; G5/4.

2.9.7 Immunity Requirements

The immunity requirements for adjustable frequency drives depend on the environment where they are installed. The requirements for the industrial environment are higher than the requirements for the home and office environment. All Danfoss adjustable frequency drives comply with the requirements for the industrial environment and consequently comply also with the lower requirements for home and office environment with a large safety margin.

In order to document immunity against electrical interference from electrical phenomena, the following immunity tests have been made on a system consisting of a Adjustable frequency drive (with options if relevant), a shielded control cable and a control box with potentiometer, motor cable and motor.

The tests were performed in accordance with the following basic standards:

- EN 61000-4-2 (IEC 61000-4-2): Electrostatic discharges (ESD): Simulation of electrostatic discharges from human beings.
- EN 61000-4-3 (IEC 61000-4-3): Incoming electromagnetic field radiation, amplitude modulated simulation of the effects of radar and radio communication equipment as well as mobile communications equipment.
- EN 61000-4-4 (IEC 61000-4-4): Electrical interference: Simulation of interference brought about by switching a contactor, relay or similar devices.
- EN 61000-4-5 (IEC 61000-4-5): Surge transients: Simulation of transients brought about, e.g., by lightning that strikes near installations.
- EN 61000-4-6 (IEC 61000-4-6): RF Common mode: Simulation of the effect from radio-transmission equipment joined by connection cables.

See Table 2.16.

Voltage range: 200–240V, 380–480V						
Basic standard	Electrical interference IEC 61000-4-4	Surge IEC 61000-4-5	ESD IEC 61000-4-2	Radiated electromagnetic field IEC 61000-4-3	RF common mode voltage IEC 61000-4-6	
Acceptance criterion	В	В	В	Α	Α	
Line	4kV CM	2kV/2Ω DM 4kV/12Ω CM	_	_	10V _{RMS}	
Motor	4kV CM	4kV/2Ω ¹⁾	_	_	10V _{RMS}	
Brake	4kV CM	4kV/2Ω ¹⁾	_	_	10V _{RMS}	
Load sharing	4kV CM	4kV/2Ω ¹⁾	_	_	10V _{RMS}	
Control wires	2kV CM	2kV/2Ω ¹⁾	_	_	10V _{RMS}	
Standard bus	2kV CM	2kV/2Ω ¹⁾	_	_	10V _{RMS}	
Relay wires	2kV CM	2kV/2Ω 1)	_	_	10V _{RMS}	
Application and serial communication options	2kV CM	2kV/2Ω ¹⁾	_	_	10V _{RMS}	
LCP cable	2kV CM	2kV/2Ω ¹⁾	_	_	10V _{RMS}	
External 24V DC	2V CM	0.5kV/2Ω DM 1 kV/12Ω CM	_	_	10V _{RMS}	
Enclosure	_	_	8kV AD 6 kV CD	10V/m	_	

Table 2.16 EMC Immunity Form

1) Injection on cable shield

AD: Air Discharge

CD: Contact Discharge

CM: Common mode

DM: Differential mode

2.10 Galvanic Isolation (PELV)

2.10.1 PELV - Protective Extra Low Voltage

PELV offers protection by way of extra low voltage. Protection against electric shock is ensured when the electrical supply is of the PELV type and the installation is made as described in local/national regulations on PELV supplies.

All control terminals and relay terminals 01-03/04-06 comply with PELV (Protective Extra Low Voltage) (Does not apply to grounded Delta leg above 400V).

Galvanic (ensured) isolation is obtained by fulfilling requirements for higher isolation and by providing the relevant creapage/clearance distances. These requirements are described in the EN 61800-5-1 standard.

The components that make up the electrical isolation, as described below, also comply with the requirements for higher isolation and the relevant test as described in EN 61800-5-1.

The PELV galvanic isolation can be shown in six locations (see *Figure 2.32*):

In order to maintain PELV, all connections made to the control terminals must be PELV. For example, the thermistor must be reinforced/double insulated.

- 1. Power supply (SMPS) incl. signal isolation of U_{DC}, indicating the intermediate current voltage.
- Gate drive that runs the IGBTs (trigger transformers/opto-couplers).
- 3. Current transducers.
- 4. Opto-coupler, brake module.
- Internal soft-charge, RFI and temperature measurement circuits.
- 6. Custom relays.

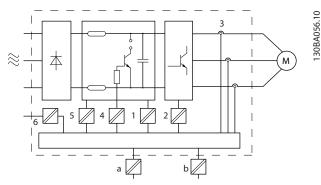


Figure 2.32 Galvanic Isolation

The functional galvanic isolation (a and b on drawing) is for the 24V backup option and for the RS-485 standard bus interface.

AWARNING

Installation at high altitude:

380–500V, enclosure A, B and C: At altitudes above 6561 ft [2 km], please contact Danfoss regarding PELV.
380–500V, enclosure D, E and F: At altitudes above 9842 ft [3 km], please contact Danfoss regarding PELV.
525–690V: At altitudes above 6561 ft [2 km], please contact Danfoss regarding PELV.

AWARNING

Touching the electrical parts could be fatal - even after the equipment has been disconnected from line power. Also make sure that other voltage inputs have been disconnected, such as load sharing (linkage of DC intermediate circuit), as well as the motor connection for kinetic backup.

Before touching any electrical parts, wait at least the amount of time indicated in the *Safety Precautions* section. Shorter time is allowed only if indicated on the nameplate for the specific unit.

2.11 Ground Leakage Current

Follow national and local codes regarding protective grounding of equipment with a leakage current > 3.5 mA. Adjustable frequency drive technology implies high frequency switching at high power. This will generate a leakage current in the ground connection. A fault current in the adjustable frequency drive at the output power terminals might contain a DC component which can charge the filter capacitors and cause a transient ground current.

The ground leakage current is made up from several contributions and depends on various system configurations including RFI filtering, shielded motor cables and adjustable frequency drive power.

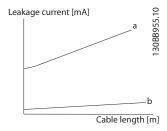


Figure 2.33 Cable Length and Power Size Influence on Leakage Current. Pa > Pb.

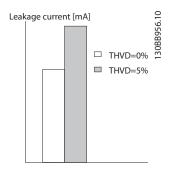


Figure 2.34 Line Distortion Influences Leakage Current.

NOTE!

When a filter is used, turn off 14-50 RFI Filter when charging the filter, to avoid a high leakage current making the RCD switch.

EN/IEC61800-5-1 (Power Drive System Product Standard) requires special care if the leakage current exceeds 3.5mA. Grounding must be reinforced in one of the following ways:

- Ground wire (terminal 95) of at least 0.016 in² [10mm²]
- Two separate ground wires both complying with the dimensioning rules

See EN/IEC61800-5-1 and EN50178 for further information.

Using RCDs

Where residual current devices (RCDs), also known as ground leakage circuit breakers (ELCBs), are used, comply with the following:

Use RCDs of type B only which are capable of detecting AC and DC currents

Use RCDs with an inrush delay to prevent faults due to transient ground currents

Dimension RCDs according to the system configuration and environmental considerations

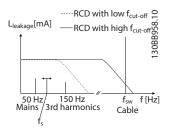


Figure 2.35 Main Contributions to Leakage Current.

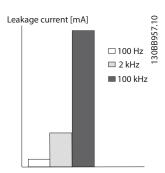


Figure 2.36 The influence of the cut-off frequency of the RCD on what is responded to/measured.

See also RCD Application Note, MN.90.GX.02.

2.12 Brake Function

2.12.1 Selection of Brake Resistor

In certain applications, for instance in tunnel or underground railway station ventilation systems, it is desirable to bring the motor to a stop more rapidly than can be achieved through controlling via ramp-down or by free-wheeling. In such applications, dynamic braking with a braking resistor may be utilized. Using a braking resistor ensures that the energy is absorbed in the resistor and not in the Adjustable frequency drive.

If the amount of kinetic energy transferred to the resistor in each braking period is not known, the average power can be calculated on the basis of the cycle time and braking time, also known as the intermitted duty cycle. The resistor intermittent duty cycle is an indication of the duty cycle at which the resistor is active. The below figure shows a typical braking cycle.

The intermittent duty cycle for the resistor is calculated as follows:

Duty Cycle = t_b / T

T = cycle time in seconds

 $t_{\mbox{\scriptsize b}}$ is the braking time in seconds (as part of the total cycle time)

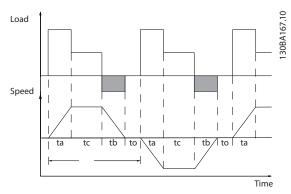


Figure 2.37

Danfoss offers brake resistors with duty cycle of 5%, 10% and 40% suitable for use with the VLT® HVAC Drive Adjustable frequency drive series. If a 10% duty cycle resistor is applied, it is capable of absorbing braking energy up to 10% of the cycle time, with the remaining 90% being used to dissipate heat from the resistor.

For further selection advice, please contact Danfoss.

2.12.2 Brake Resistor Calculation

The brake resistance is calculated as shown:

$$R_{br}[\Omega] = \frac{U_{dc}^{2}}{P_{peak}}$$
where
$$P_{peak} = P_{motor} \times M_{br} \times \eta_{motor} \times \eta[W]$$

Table 2.17

As can be seen, the brake resistance depends on the intermediate circuit voltage (U_{DC}).

The brake function of the Adjustable frequency drive is settled in three areas of line power supply:

Size	Brake active	Warning before cut- out	Cut-out (trip)
3 x 200–240V	390V (UDC)	405V	410V
3 x 380–480V	778V	810V	820V
3 x 525-600V	943V	965V	975V
3 x 525-690V	1084V	1109V	1130V

Table 2.18

NOTE!

Make sure that the brake resistor can cope with a voltage of 410V, 820V or 975V, unless Danfoss brake resistors are used.

Danfoss recommends the brake resistance R_{rec} , i.e., one that guarantees that the Adjustable frequency drive is able to brake at the highest braking torque ($M_{br(\%)}$) of 110%. The formula can be written as:

$$R_{rec}[\Omega] = \frac{U_{dc}^2 \times 100}{P_{motor} \times M_{br}(\%) \times X_{motor}}$$

 η_{motor} is typically at 0.90 η is typically at 0.98

For 200V, 480V and 600V adjustable frequency drives, R_{rec} at 160% braking torque is written as:

$$\begin{aligned} &200V: \ R_{rec} = \frac{107780}{P_{motor}} [\Omega] \\ &480V: \ R_{rec} = \frac{375300}{P_{motor}} [\Omega]^1) \\ &480V: \ R_{rec} = \frac{428914}{P_{motor}} [\Omega]^2) \\ &600V: \ R_{rec} = \frac{630137}{P_{motor}} [\Omega] \\ &690V: \ R_{rec} = \frac{832664}{P_{motor}} [\Omega] \end{aligned}$$

- 1) For adjustable frequency drives \leq 10 hp [7.5 kW] shaft output
- 2) For adjustable frequency drives > 10 hp [7.5 kW] shaft output

NOTE!

The resistor brake circuit resistance selected should not be higher than that recommended by Danfoss. If a brake resistor with a higher ohmic value is selected, the braking torque may not be achieved because there is a risk that the Adjustable frequency drive cuts out for safety reasons.

2

NOTE!

If a short circuit in the brake transistor occurs, power dissipation in the brake resistor is only prevented by using a line power switch or contactor to disconnect line power for the Adjustable frequency drive. (The contactor can be controlled by the Adjustable frequency drive).

▲WARNING

Do not touch the brake resistor, as it can get very hot during/after braking.

2.12.3 Control with Brake Function

The brake is protected against short-circuiting of the brake resistor, and the brake transistor is monitored to ensure that short-circuiting of the transistor is detected. A relay/digital output can be used for protecting the brake resistor against overloading in connection with a fault in the Adjustable frequency drive.

In addition, the brake makes it possible to read out the momentary power and the mean power for the latest 120 seconds. The brake can also monitor the power energizing and make sure it does not exceed a limit selected in 2-12 Brake Power Limit (kW). In 2-13 Brake Power Monitoring, select the function to carry out when the power transmitted to the brake resistor exceeds the limit set in 2-12 Brake Power Limit (kW).

NOTE!

Monitoring the braking energy is not a safety function; a thermal switch is required for that purpose. The brake resistor circuit is not protected against ground leakage.

Overvoltage control (OVC) (exclusive brake resistor) can be selected as an alternative brake function in 2-17 Overvoltage Control. This function is active for all units. The function ensures that a trip can be avoided if the DC link voltage increases. This is done by increasing the output frequency to limit the voltage from the DC link. It is a very useful function, e.g., if the ramp-down time is too short since tripping of the Adjustable frequency drive is avoided. In this situation, the ramp-down time is extended.

OVC cannot be activated when running a PM motor (when 1-10 Motor Construction is set to [1] PM non-salient SPM).

2.12.4 Brake Resistor Cabling

EMC (twisted cables/shielding)

To reduce the electrical noise from the wires between the brake resistor and the Adjustable frequency drive, the wires must be twisted.

For enhanced EMC performance, a metal shield can be used.

2.13 Extreme Running Conditions

Short Circuit (Motor Phase - Phase)

The Adjustable frequency drive is protected against short circuits by means of current measurement in each of the three motor phases or in the DC link. A short circuit between two output phases will cause an overcurrent in the inverter. The inverter will be turned off individually when the short circuit current exceeds the permitted value (Alarm 16 Trip Lock).

To protect the Adjustable frequency drive against a short circuit at the load sharing and brake outputs, please see the design guidelines.

See certificate in 2.6.1 Electrical terminals.

Switching on the Output

Switching on the output between the motor and the Adjustable frequency drive is fully permitted. Switching on the output does not damage the Adjustable frequency drive in any way. However, fault messages may appear.

Motor-generated Overvoltage

The voltage in the intermediate circuit is increased when the motor acts as a generator. This occurs in the following cases:

- The load drives the motor (at constant output frequency from the Adjustable frequency drive), i.e., the load generates energy.
- During deceleration ("ramp-down") if the moment of inertia is high, the friction is low and the rampdown time is too short for the energy to be dissipated as a loss in the Adjustable frequency drive, the motor and the installation.
- 3. Incorrect slip compensation setting may cause higher DC link voltage.
- 4. Back-EMF from PM motor operation. If coasted at high rpm, the PM motor back-EMF may potentially exceed the maximum voltage tolerance of the adjustable frequency drive and cause damage. To help prevent this, the value of

4-19 Max Output Frequency is automatically limited based on an internal calculation based on the value of 1-40 Back EMF at 1000 RPM, 1-25 Motor Nominal Speed and 1-39 Motor Poles. If it is possible that the motor may overspeed (e.g., due to excessive windmilling effects) then it is recommended to equip a brake resistor.

AWARNING

The adjustable frequency drive must be equipped with a break chopper.

The control unit may attempt to correct the ramp if possible (2-17 Over-voltage Control.

The inverter turns off to protect the transistors and the intermediate circuit capacitors when a certain voltage level is reached.

See 2-10 Brake Function and 2-17 Over-voltage Control to select the method used for controlling the intermediate circuit voltage level.

NOTE!

OVC cannot be activated when running a PM motor (when 1-10 Motor Construction is set to [1] PM non-salient SPM).

Line Drop-out

During a line drop-out, the Adjustable frequency drive keeps running until the intermediate circuit voltage drops below the minimum stop level, which is typically 15% below the adjustable frequency drive's lowest rated supply voltage. The AC line voltage before the drop-out and the motor load determine how long it takes for the inverter to coast.

Static Overload in VVC^{plus} Mode

When the Adjustable frequency drive is overloaded (the torque limit in 4-16 Torque Limit Motor Mode/4-17 Torque Limit Generator Mode is reached), the controls reduce the output frequency to reduce the load.

If the overload is excessive, a current may occur that makes the Adjustable frequency drive cut out after approx. 5–10 sec.

Operation within the torque limit is limited in time (0–60 sec.) in *14-25 Trip Delay at Torque Limit*.

2.13.1 Motor Thermal Protection

This is the way Danfoss is protecting the motor from being overheated. It is an electronic feature that simulates a bimetal relay based on internal measurements. The characteristic is shown in *Figure 2.38*

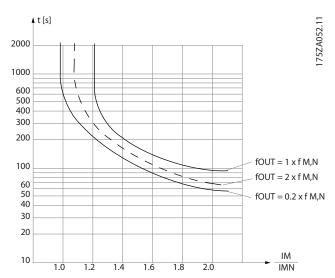


Figure 2.38 The X-axis show the ratio between I_{motor} and I_{motor} nominal. The Y-axis is showing the time in seconds before the ETR cuts off and trips the Adjustable frequency drive. The curves show the characteristic nominal speed at twice the nominal speed and at 0.2x the nominal speed.

At lower speeds, the ETR cuts off at lower levels due to reduced cooling of the motor. In that way, the motors are protected from being overheated even at low speeds. The ETR feature calculates the motor temperature based on the actual current and speed. The calculated temperature is visible as a read out parameter in 16-18 Motor Thermal in the Adjustable frequency drive.

The thermistor cut-out value is $> 3k\Omega$.

Integrate a thermistor (PTC sensor) in the motor for winding protection.

Motor protection can be implemented using a range of techniques: PTC sensor in motor windings; mechanical thermal switch (Klixon type); or Electronic Thermal Relay (ETR).

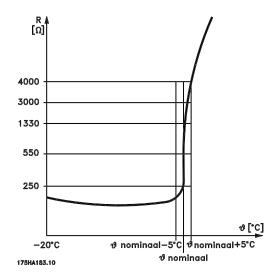


Figure 2.39

Using a digital input and 24V as power supply: Example: The Adjustable frequency drive trips when the motor temperature is too high.

Parameter set-up:

Set 1-90 Motor Thermal Protection to Thermistor Trip [2] Set 1-93 Thermistor Source to Digital Input 33 [6]

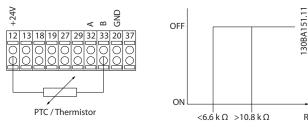


Figure 2.40

Using a digital input and 10V as power supply: Example: The Adjustable frequency drive trips when the motor temperature is too high.

Parameter set-up:

Set 1-90 Motor Thermal Protection to Thermistor Trip [2] Set 1-93 Thermistor Source to Digital Input 33 [6]

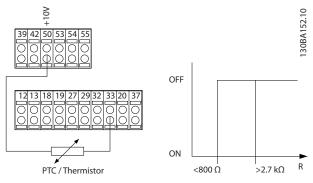
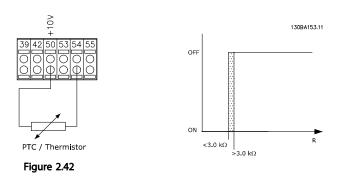



Figure 2.41

Using an analog input and 10V as power supply: Example: The Adjustable frequency drive trips when the motor temperature is too high.

Parameter set-up:

Set 1-90 Motor Thermal Protection to Thermistor Trip [2] Set 1-93 Thermistor Source to Analog Input 54 [2] Do not select a reference source.

Input	Supply Voltage V	Threshold	
Digital/analog	Cut-out Values	Cut-out Values	
Digital	24	$<$ 6.6k Ω - $>$ 10.8k Ω	
Digital	10	$< 800\Omega - > 2.7k\Omega$	
Analog	10	< 3.0kΩ - > 3.0kΩ	

Table 2.19

NOTE!

Ensure that the chosen supply voltage follows the specification of the thermistor element utilized.

Summary

With the Torque limit feature, the motor is protected for being overloaded independent of the speed. With the ETR, the motor is protected for being overheated and there is no need for any further motor protection. That means when the motor is heated up, the ETR timer controls how long the motor may run at that temperature before it is

stopped in order to prevent overheating. If the motor is overloaded without reaching the temperature where the ETR shuts off the motor, the torque limit protects the motor and application for becoming overloaded.

ETR is activated in 1-90 Motor Thermal Protection and is controlled in 4-16 Torque Limit Motor Mode. The time before the torque limit warning trips the Adjustable frequency drive is set in 14-25 Trip Delay at Torque Limit.

2

7

3 VLT® HVAC Drive Selection

3.1 Options and Accessories

Danfoss offers a wide range of options and accessories for adjustable frequency drives.

3.1.1 Mounting Option Modules in Slot B

The power to the Adjustable frequency drive must be disconnected.

For A2 and A3 enclosures:

- Remove the LCP (Local Control Panel), the terminal cover, and the LCP frame from the Adjustable frequency drive.
- Fit the MCB1xx option card into slot B.
- Connect the control cables and fasten the cables with the enclosed cable strips.
 Remove the knock-out in the extended LCP frame delivered in the option set so that the option will fit under the extended LCP frame.
- Fit the extended LCP frame and terminal cover.
- Fit the LCP or blind cover in the extended LCP frame.
- Connect power to the Adjustable frequency drive.
- Set up the input/output functions in the corresponding parameters, as mentioned in 8.2 General Specifications.

For B1, B2, C1 and C2 enclosures:

- Remove the LCP and the LCP cradle
- Fit the MCB 1xx option card into slot B
- Connect the control cables and relieve the cable by the enclosed cable strips.
- Fit the cradle.
- Fit the LCP

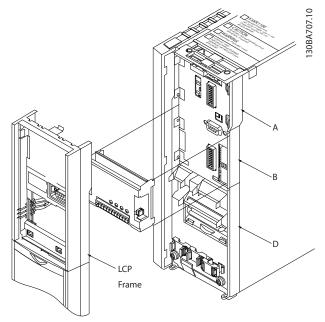


Figure 3.1 A2, A3 and B3 Enclosures

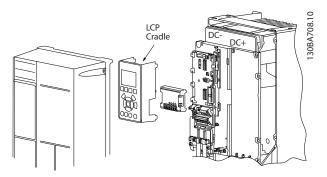


Figure 3.2 A5, B1, B2, B4, C1, C2, C3 and C4 Enclosures

3.1.2 General Purpose Input Output Module MCB 101

MCB 101 is used for extension of the number of digital and analog inputs and outputs of the Adjustable frequency drive.

Contents: MCB 101 must be fitted into slot B in the Adjustable frequency drive.

- MCB 101 option module
- Extended LCP frame
- Terminal cover

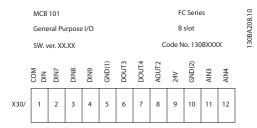


Figure 3.3

Galvanic isolation in the MCB 101

Digital/analog inputs are galvanically isolated from other inputs/outputs on the MCB 101 and in the control card of the Adjustable frequency drive. Digital/analog outputs in the MCB 101 are galvanically isolated from other inputs/outputs on the MCB 101, but not from those on the control card of the Adjustable frequency drive.

If the digital inputs 7, 8 or 9 are to be switched by use of the internal 24V power supply (terminal 9) the connection between terminal 1 and 5 which is shown in *Figure 3.4* has to be established.

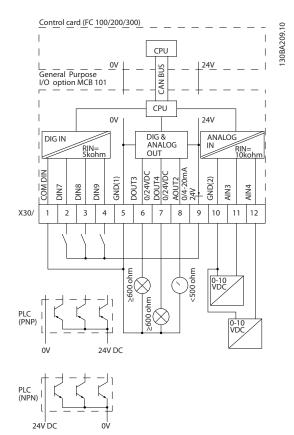


Figure 3.4 Principle Diagram

3.1.3 Digital Inputs - Terminal X30/1-4

Parame	Parameters for set-up: 5-16, 5-17 and 5-18					
Numb	Volta	Voltage levels	Tolerance	Max. Input		
er of	ge			impedance		
digital	level					
inputs						
3	0–24	PNP type:	± 28V	Approx. 5kΩ		
	V DC	Common = 0V	continuous			
		Logic "0": Input <	± 37V in			
		5V DC	minimum			
		Logic "0": Input >	10 sec.			
		10V DC				
		NPN type:				
		Common = 24V				
		Logic "0": Input >				
		19V DC				
		Logic "0": Input <				
		14V DC				

Table 3.1

3.1.4 Analog Voltage Inputs - Terminal X30/10-12

Parameters for set-up: 6-3*, 6-4* and 16-76						
Number of	Standardized	Tolerance	Reso	Max. Input		
analog voltage	input signal		lutio	impedance		
inputs			n			
2	0–10V DC	± 20V	10	Approx. 5KΩ		
		contin-	bits			
		uously				

Table 3.2

3.1.5 Digital Outputs - Terminal X30/5-7

Parameters for set-up: 5-32 and 5-33					
Number of digital Output level Tolerance Max.impeda					
outputs			ce		
2	0 or 2 V DC	± 4V	≥ 600Ω		

Table 3.3

3.1.6 Analog Outputs - Terminal X30/5+8

Parameters for set-up: 6-6* and 16-77				
Number of analog	Output signal	Tolerance	Max.imp	
outputs	level		edance	
1	0/4-20mA	± 0.1mA	< 500Ω	

Table 3.4

3.1.7 Relay Option MCB 105

The MCB 105 option includes 3 pieces of SPDT contacts and must be fitted into option slot B.

Electrical Data:

Max terminal load (AC-1) 1) (Resistive load)	240 V AC 2A
Max terminal load (AC-15) ¹⁾ (Inductive load @ cosφ 0.4)	240 V AC 0.2 A
Max terminal load (DC-1) ¹⁾ (Resistive load)	24 V DC 1 A
Max terminal load (DC-13) ¹⁾ (Inductive load)	24 V DC 0.1 A
Min terminal load (DC)	5 V 10 mA
Max switching rate at rated load/min load	6 min ⁻¹ /20 sec ⁻¹

1) IEC 947 part 4 and 5

When the relay option kit is ordered separately, the kit includes:

- Relay Module MCB 105
- Extended LCP frame and enlarged terminal cover
- Label for covering access to switches S201, S202 and S801
- Cable strips for fastening cables to relay module

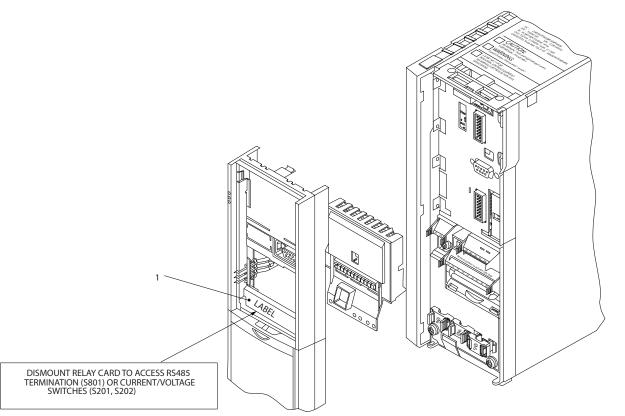


Figure 3.5

130BA709.10

3

A2-A3-B3

A5-B1-B2-B4-C1-C2-C3-C4

¹⁾ **IMPORTANT**! The label MUST be placed on the LCP frame as shown (UL approved).

Table 3.5

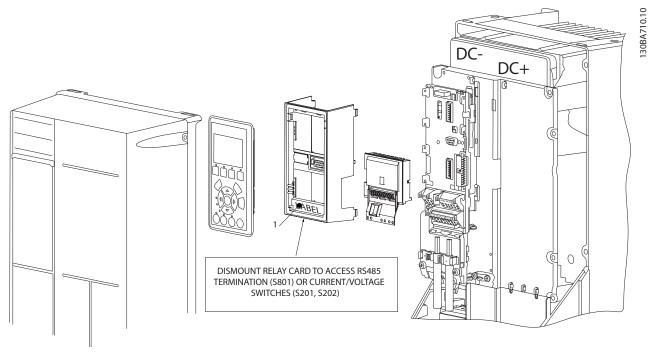


Figure 3.6

AWARNING

Warning Dual supply

How to add the MCB 105 option:

- See the mounting instructions at the beginning of the section Options and Accessories.
- The power to the live part connections on relay terminals must be disconnected.
- Do not mix live parts with control signals (PELV).
- Select the relay functions in 5-40 Function Relay [6-8], 5-41 On Delay, Relay [6-8] and 5-42 Off Delay, Relay [6-8].

NB! (Index [6] is relay 7, index [7] is relay 8, and index [8] is relay 9)

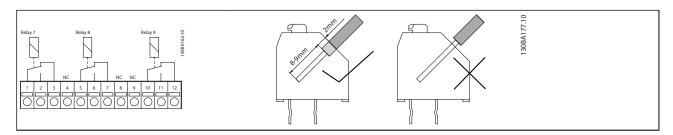


Table 3.6

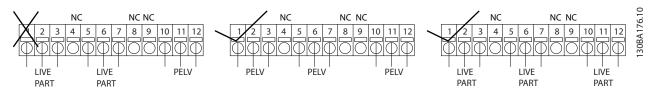


Figure 3.7

AWARNING

Do not combine low voltage parts and PELV systems. At a single fault the whole system might become dangerous to touch and it could result in death or serious injury.

3.1.8 24 V Backup Option MCB 107 (Option D)

External 24V DC Supply

An external 24V DC supply can be installed for low-voltage supply to the control card and any option card installed. This enables full operation of the LCP (including the parameter setting) and serial communication busses without line power supplied to the power section.

External 24V DC supply specification:

Input voltage range	24V DC ±15% (max. 37 V in 10 sec.)
Max. input current	2.2A
Average input current for the Adjustable frequency drive	0.9A
Max cable length	246 ft [75m]
Input capacitance load	< 10uF
Power-up delay	< 0.6sec.
The inputs are protected.	=

Terminal numbers:

Terminal 35: - external 24V DC supply.

Terminal 36: + external 24V DC supply.

Follow these steps:

- 1. Remove the LCP or blind cover
- 2. Remove the Terminal Cover
- 3. Remove the cable de-coupling plate and the plastic cover underneath
- 4. Insert the 24V DC Backup External Supply Option in the Option Slot
- 5. Mount the cable de-coupling plate
- 6. Attach the terminal cover and the LCP or blind cover.

When MCB 107, 24V backup option is supplying the control circuit, the internal 24V supply is automatically disconnected.

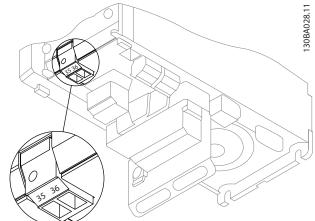


Figure 3.8 Connection to 24V Backup Supplier (A2-A3).

30BA216.10



Figure 3.9 Connection to 24V Backup Supplier (A5-C2).

3.1.9 Analog I/O option MCB 109

The Analog I/O card is supposed to be used, e.g., in the following cases:

- Providing battery backup of clock function on control card
- As general extension of analog I/O selection available on control card, e.g., for multi-zone control with three pressure transmitters
- Turning Adjustable frequency drive into decentral I/O block supporting Building Management System with inputs for sensors and outputs for operating dampers and valve servos.
- Support extended PID controllers with I/Os for setpoint inputs, transmitter/sensor inputs and outputs for servos.



Figure 3.10 Principle diagram for Analog I/O mounted in Adjustable frequency drive.

Analog I/O configuration

3 x analog inputs, capable of handling following:

• 0-10V DC

OR

- 0–20mA (voltage input 0–10V) by mounting a 510Ω resistor across terminals (see NB!)
- 4–20mA (voltage input 2–10V) by mounting a 510Ω resistor across terminals (see NB)
- Ni1000 temperature sensor of 1000Ω at 32° F [0°C]. Specifications according to DIN43760
- Pt1000 temperature sensor of 1000Ω at 32°F [0°C]. Specifications according to IEC 60751

3 x analog outputs supplying 0-10V DC.

3

NOTE!

Please note the values available within the different standard groups of resistors:

E12: Closest standard value is 470 Ω , creating an input of 449.9 Ω and 8.997 V.

E24: Closest standard value is 510 Ω , creating an input of 486.4 Ω and 9.728 V.

E48: Closest standard value is 511Ω , creating an input of 487.3Ω and 9.746 V.

E96: Closest standard value is 523Ω , creating an input of 498.2Ω and 9.964 V.

Analog inputs - terminal X42/1-6

Parameter group for read out: 18-3*. See also VLT® HVAC Drive Programming Guide, MG11CXYY.

Parameter groups for set-up: 26-0*, 26-1*, 26-2* and 26-3*. See also VLT® HVAC Drive Programming Guide, MG11CXYY.

3 x analog inputs	Operating range	Resolution	Accuracy	Sampling	Max load	Impedance
Used as	-58° to 302°F [-50–	11 bits	-58°F [-50°C]	3Hz	=	-
temperature	+150°C]		±1 Kelvin			
sensor input			302°F [+150°C]			
			±2 Kelvin			
Used as			0.2% of full		+/- 20V	Annrovimatoly
	0-10V DC	10 bits	scale at cal.	2.4Hz	+/- 20V continuously	Approximately
voltage input			temperature		Continuously	5kΩ

Table 3.7

When used for voltage, analog inputs are scalable by parameters for each input.

When used for temperature sensor, analog inputs scaling is preset to necessary signal level for specified temperature span.

When analog inputs are used for temperature sensors, it is possible to read out the feedback value in both °C and °F.

When operating with temperature sensors, maximum cable length to connect sensors is 262 ft [80 m] non-shielded/non-twisted wires.

Analog outputs - terminal X42/7-12

Parameter group for read out and write: 18-3*. See also *VLT® HVAC Drive Programming Guide, MG11XYY*Parameter groups for set-up: 26-4*, 26-5* and 26-6*. See also *VLT® HVAC Drive Programming Guide, MG11XYY*

3 x analog outputs	Output signal level	Resolution	Linearity	Max load
Volt	0–10V DC	11 bits	1% of full	1mA
			scale	

Table 3.8

Analog outputs are scalable by parameters for each output.

The function assigned is selectable via a parameter and has the same options as for analog outputs on the control card.

For a more detailed description of parameters, please refer to the VLT® HVAC Drive Programming Guide, MG11CXYY.

Real-time clock (RTC) with backup

The data format of RTC includes year, month, date, hour, minutes and weekday.

Accuracy of clock is better than ± 20 ppm at 77°F [25°C].

The built-in lithium backup battery lasts on average for minimum 10 years, when Adjustable frequency drive is operating at 104°F [40°C] ambient temperature. If the battery backup pack fails, the analog I/O option must be replaced.

3.1.10 MCB 112 VLT° PTC Thermistor Card

The MCB 112 option makes it possible to monitor the temperature of an electrical motor through a galvanically-isolated PTC thermistor input. It is a B option for FC 102 with safe stop.

For information on mounting and installation of the option, please see earlier in this section. See also *6 Application Examples* for different application possibilities.

X44/ 1 and X44/ 2 are the thermistor inputs, X44/ 12 will enable safe stop of the FC 102 (T-37) if the thermistor values make it necessary and X44/ 10 will inform the FC 102 that a request for safe stop came from the MCB 112 in order to ensure suitable alarm handling. One of the digital Inputs of the FC 102 (or a DI of a mounted option) must be set to PTC Card 1 [80] in order to use the information from X44/ 10. 5-19 Terminal 37 Safe Stop Terminal 37 Safe Stop must be configured to the desired safe stop functionality (default is Safe Stop Alarm).

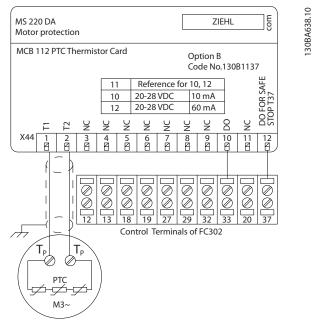


Figure 3.11

ATEX Certification with

The MCB 112 has been certified for ATEX which means that the FC 102 together with the MCB 112 can now be used with motors in potentially explosive atmospheres. See the Instruction Manual for the MCB 112 for more information.

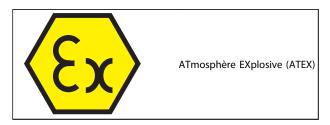


Table 3.9

Electrical Data

Resistor connection			
PTC compliant with DIN 44081 and DIN 44082.			
Number	16 resistors in series		
Shut-off value	3.3Ω 3.65Ω 3.85Ω		
Reset value	1.7Ω 1.8Ω 1.95Ω		
Trigger tolerance	± 6°C		
Collective resistance of the sensor loop	< 1.65Ω		
Terminal voltage	≤ 2.5V for R ≤ 3.65 Ω , ≤ 9V for R = ∞		
Sensor current	≤ 1mA		
Short circuit	$20\Omega \le R \le 40\Omega$		
Power consumption	60 mA		
Testing conditions			
EN 60 947-8			
Measurement voltage surge resistance	6000V		
Overvoltage category	III		
Pollution degree	2		
Measurement isolation voltage Vbis	690V		
Reliable galvanic isolation until Vi	500V		
Perm. ambient temperature	-4°F [-20°C] 140°F [+60°C]		
	EN 60068-2-1 Dry heat		
Moisture	5–95%, no condensation permissible		
EMC resistance	EN61000-6-2		
EMC emissions	EN61000-6-4		
Vibration resistance	10–1000Hz 1.14g		
Shock resistance	50g		
Safety system values			
EN 61508 for $Tu = 167^{\circ}F$ [75°C] ongoing			
SIL	2 for maintenance cycle of 2 years		
	1 for maintenance cycle of 3 years		
HFT	0		
PFD (for yearly functional test)	4.10 *10 ⁻³		
SFF	78%		
$\lambda_s + \lambda_{DD}$	8494 FIT		
λ _{DU}	934 FIT		
Ordering number 130B1137			

3.1.11 Sensor Input Option MCB 114

The sensor input option card MCB 114 can be used in the following cases:

- Sensor input for temperature transmitters PT100 and PT1000 for monitoring bearing temperatures
- As general extension of analog inputs with one additional input for multi-zone control or differential pressure measurements
- Support extended PID controllers with I/Os for setpoint, transmitter/sensor inputs

Typical motors, designed with temperature sensors for protecting bearings from being overloaded, are fitted with three PT100/1000 temperature sensors. One in front, one in the back end bearing, and one in the motor windings. The Danfoss Option MCB 114 supports 2- or 3-wire sensors with individual temperature limits for under/over temperature. An auto detection of sensor type, PT100 or PT1000 takes place at power up.

The option can generate an alarm if the measured temperature is either below low limit or above high limit specified by the user. The individual measured temperature on each sensor input can be read out in the display or by readout parameters. If an alarm occurs, the relays or digital outputs can be programmed to be active high by selecting [21] Thermal Warning in parameter group 5-**.

A fault condition has a common warning/alarm number associated with it, which is Alarm/Warning 20, Temp. input error. Any present output can be programmed to be active in case the warning or alarm appears.

3.1.11.1 Ordering Code Numbers and Parts Delivered

Standard version code no: 130B1172. Coated version code no: 130B1272.

3.1.11.2 Electrical and Mechanical Specifications

Analog Input	
Number of analog inputs	1
Format	0–20mA or 4–20mA
Wires	2
Input impedance	<200Ω
Sample rate	1kHz
Third order filter	100Hz at 3dB
The option is able to supply the analog sensor with 24V DC (terminal 1).	
Temperature Sensor Input	
Number of analog inputs supporting PT100/1000	3
Signal type	PT100/1000
Connection	PT 100 2 or 3 wire/PT1000 2 or 3 wire
Frequency PT100 and PT1000 input	1Hz for each channel
Resolution	10 bit
	-50–204°C
Temperature range	-58–399°F
Galvanic Isolation	
The sensors to be connected are expected to be galvanically	isolated from the AC line voltage
level.	IEC 61800-5-1 and UL508C
Cabling	
Maximum signal cable length	1640 ft [500 m]

3.1.11.3 Electrical Wiring

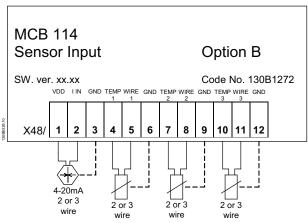


Figure 3.12

Terminal	Name	Function
1	VDD	24V DC to supply 4-
		20mA sensor
2	l in	4–20mA input
3	GND	Analog input GND
4, 7, 10	Temp 1, 2, 3	Temperature input
5, 8, 11	Wire 1, 2, 3	Third wire input if three
		wire sensors are used
6, 9, 12	GND	Temp. input GND

Table 3.10

3.1.12 Frame Size F Panel Options

Space Heaters and Thermostat

Mounted on the cabinet interior of frame size F adjustable frequency drives, space heaters controlled via automatic thermostat help control humidity inside the enclosure, extending the lifetime of drive components in damp environments. The thermostat default settings turn on the heaters at 10°C (50°F) and turn them off at 15.6°C (60°F).

Cabinet Light with Power Outlet

A light mounted on the cabinet interior of frame size F adjustable frequency drives increases visibility during servicing and maintenance. The housing light includes a power outlet for temporarily powering tools or other devices, available in two voltages:

- 230 V, 50 Hz, 2.5 A, CE/ENEC
- 120 V, 60 Hz, 5 A, UL/cUL

Transformer Tap Set-up

If the Cabinet Light & Outlet and/or the Space Heaters & Thermostat are installed Transformer T1 requires it taps to be set to the proper input voltage. A 380–480/ 500 V drive will initially be set to the 525 V tap and a 525–690 V drive

will be set to the 690 V tap to insure no overvoltage of secondary equipment occurs if the tap is not changed prior to power being applied. See *Table 3.11* to set the proper tap at terminal T1 located in the rectifier cabinet.

Input voltage range	Tap to select
380-440 V	400V
441–490 V	460V
491–550 V	525V
551–625 V	575V
626-660 V	660V
661–690 V	690V

Table 3.11 Transformer Tap Set-up

NAMUR Terminals

NAMUR is an international association of automation technology users in process industries, primarily in the chemical and pharmaceutical industries, in Germany. Selection of this option provides terminals organized and labeled to the specifications of the NAMUR standard for drive input and output terminals. This requires MCB 112 PTC Thermistor Card and MCB 113 Extended Relay Card.

RCD (Residual Current Device)

Uses the core balance method to monitor ground fault currents in grounded and high-resistance grounded systems (TN and TT systems in IEC terminology). There is a pre-warning (50% of main alarm setpoint) and a main alarm setpoint. Associated with each setpoint is an SPDT alarm relay for external use. Requires an external "window-type" current transformer (supplied and installed by customer).

- Integrated into the adjustable frequency drive safe-stop circuit
- IEC 60755 Type B device monitors AC, pulsed DC, and pure DC ground fault currents
- LED bar graph indicator of the ground fault current level from 10–100% of the setpoint
- Fault memory
- TEST / RESET button

Insulation Resistance Monitor (IRM)

Monitors the insulation resistance in ungrounded systems (IT systems in IEC terminology) between the system phase conductors and ground. There is an ohmic pre-warning and a main alarm setpoint for the insulation level. Associated with each setpoint is an SPDT alarm relay for external use. Note: only one insulation resistance monitor can be connected to each ungrounded (IT) system.

- Integrated into the drive's safe-stop circuit
- LCD display of the ohmic value of the insulation resistance
- Fault Memory

• INFO, TEST, and RESET buttons

IEC Emergency Stop with Pilz Safety Relay

Includes a redundant 4-wire emergency-stop push-button mounted on the front of the enclosure and a Pilz relay that monitors it in conjunction with the adjustable frequency drive safe-stop circuit and the line power contactor located in the options cabinet.

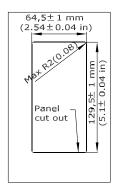
Manual Motor Starters

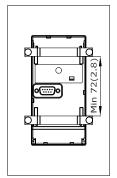
Provide 3-phase power for electric blowers often required for larger motors. Power for the starters is provided from the load side of any supplied contactor, circuit breaker, or disconnect switch. Power is fused before each motor starter, and is off when the incoming power to the drive is off. Up to two starters are allowed (one if a 30 A, fuse-protected circuit is ordered). Integrated into the adjustable frequency drive safe-stop circuit.

Unit features include:

- Operation switch (on/off)
- Short-circuit and overload protection with test function
- Manual reset function

30 Ampere, Fuse-protected Terminals


- 3-phase power matching incoming AC line voltage for powering auxiliary customer equipment
- Not available if two manual motor starters are selected
- Terminals are off when the incoming power to the drive is off
- Power for the fused protected terminals will be provided from the load side of any supplied contactor, circuit breaker, or disconnect switch.


In applications where the motor is used as a brake, energy is generated in the motor and send back into the Adjustable frequency drive. If the energy cannot be transported back to the motor, it will increase the voltage in the drive DC line. In applications with frequent braking and/or high inertia loads, this increase may lead to an overvoltage trip in the drive, and ultimately, a shutdown. Brake resistors are used to dissipate the excess energy resulting from the regenerative braking. The resistor is selected in respect to its ohmic value, its power dissipation rate and its physical size. Danfoss offers a wide variety of different resistors that are specially designed to our adjustable frequency drives. See the section *Control with brake function* for the dimensioning of brake resistors.

The LCP can be moved to the front of a cabinet by using the remote built-in kit. The enclosure is the IP66. The fastening screws must be tightened with a torque of max. 1Nm.

Technical data	
Enclosure:	IP66 front
Max. cable length between and unit:	10 ft [3 m]
Communication std:	RS-485

Table 3.12

130BA139.11

Figure 3.13

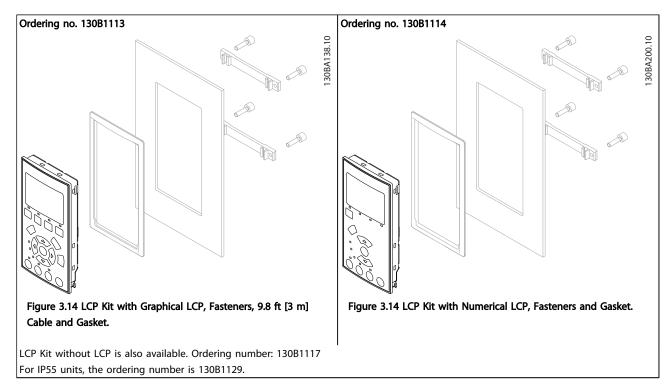


Table 3.13

3.1.13 IP21/IP41/ TYPE 1 Enclosure Kit

IP 21/IP 41 top/ TYPE 1 is an optional enclosure element available for IP20 Compact units, enclosure size A2-A3, B3+B4 and C3+C4.

If the enclosure kit is used, an IP20 unit is upgraded to comply with enclosure IP21/41 top/TYPE 1.

The IP41 top can be applied to all standard IP20 VLT® HVAC Drive variants.

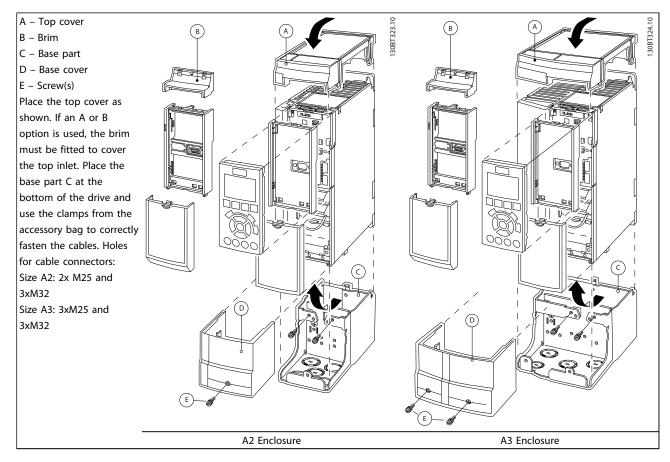


Table 3.14

Dimensions				
Enclosure type	Height (in [mm]) A	Width (in [mm]) B	Depth (in [mm]) C*	
A2	14.6 [372]	3.5 [90]	8.1 [205]	
А3	14.6 [372]	5.1 [130]	8.1 [205]	
В3	18.7 [475]	6.5 [165]	9.8 [249]	
B4	26.4 [670]	10 [255]	9.7 [246]	
C3	29.7 [755]	13 [329]	13.3 [337]	
C4	37.4 [950]	15.4 [391]	13.3 [337]	

^{*} If option A/B is used, the depth will increase (see section Mechanical Dimensions for details)

Table 3.15

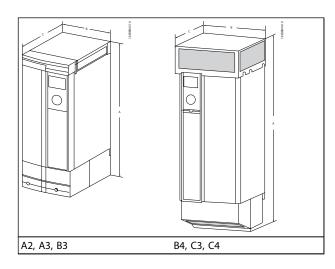


Table 3.16

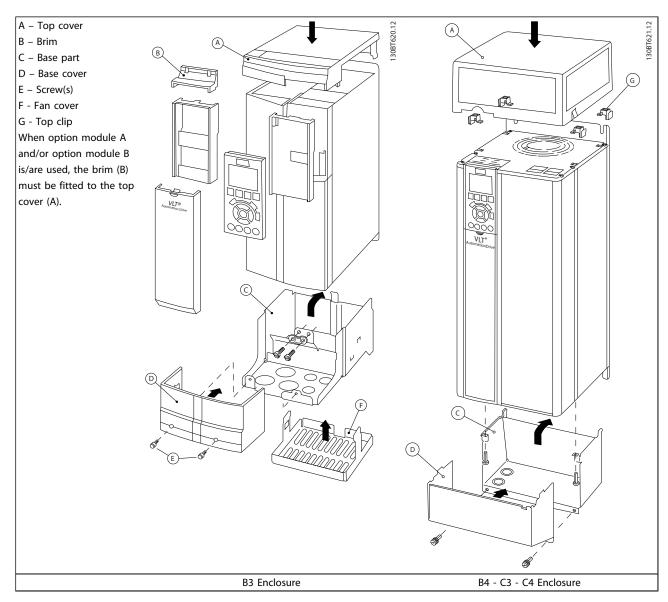


Table 3.17

VLT® HVAC Drive Selection

NOTE!

Side-by-side installation is not possible when using the IP 21/ IP 4X/ TYPE 1 Enclosure Kit

3.1.14 Output Filters

The high speed switching of the Adjustable frequency drive produces some secondary effects, which influence the motor and the enclosed environment. These side effects are addressed by two different filter types, the du/dt and the sine-wave filter.

dU/dt filters

Motor insulation stresses are often caused by the combination of rapid voltage and current increase. The rapid energy changes can also be reflected back to the DC line in the inverter and cause shut down. The du/dt filter is designed to reduce the voltage rise time/the rapid energy change in the motor, and by that intervention, it prevents premature aging and flashover in the motor insulation. The du/dt filters have a positive influence on the radiation of magnetic noise in the cable that connects the drive to the motor. The voltage wave form is still pulse-shaped but the du/dt ratio is reduced in comparison with the installation without filter.

Sine-wave filters

Sine-wave filters are designed to allow only low frequencies to pass. High frequencies are consequently shunted away, which results in a sinusoidal phase-to-phase voltage waveform and sinusoidal current waveforms. With the sinusoidal waveforms, the use of special Adjustable frequency drive motors with reinforced insulation is no longer needed. The acoustic noise from the motor is also damped as a consequence of the wave condition.

Besides the features of the du/dt filter, the sine-wave filter also reduces insulation stress and bearing currents in the motor, thus leading to prolonged motor lifetime and longer periods between service. Sine-wave filters enable use of longer motor cables in applications where the motor is installed far from the drive. The length is unfortunately limited because the filter does not reduce leakage currents in the cables.

4 How to Order

4.1 Ordering Form

4.1.1 Drive Configurator

It is possible to design a Adjustable frequency drive according to the application requirements by using the ordering number system.

Order the Adjustable frequency drive as either standard or with integral options by sending a type code string describing the product to the local Danfoss sales office, i.e.:

FC-102P18KT4E21H1XGCXXXSXXXXAGBKCXXXXDX

The meaning of the characters in the string can be located in the pages containing the ordering numbers in 3 Selection. In the example above, a Profibus LON works option and a general purpose I/O option are included in the Adjustable frequency drive.

Ordering numbers for Adjustable frequency drive standard variants can also be located in the chapter *How to Select Your VLT*.

From the Internet based Drive Configurator, you can configure the right Adjustable frequency drive for the right application and generate the type code string. The drive configurator will automatically generate an eight-digit sales number to be delivered to your local sales office. Furthermore, you can establish a project list with several products and send it to a Danfoss sales representative.

The drive configurator can be found on the Danfoss homepage: www.danfoss.com/drives.

Example of Drive Configurator interface set-up:

The numbers shown in the boxes refer to the letter/figure number of the type code string; read from left to right.

Product groups	1-3	
Adjustable frequency drive series	4-6	
Power rating	8-10	
Phases	11	
AC Line Voltage	12	
Enclosure	13-15	
Enclosure type		
Enclosure class		
Control supply voltage		
Hardware configuration		
RFI filter	16-17	
Brake	18	
Display (LCP)	19	
Coating PCB	20	
Line power option	21	
Adaptation A	22	
Adaptation B	23	
Software release	24-27	
Software language	28	
A options	29-30	
B options	31-32	
C0 options, MCO	33-34	□
C1 options	35	
C option software	36-37	
D options	38-39	

Table 4.1

4.1.2 Type Code String low and medium power

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	
F	C	-		0		Р				Т					Н						Х	Χ	S	Χ	Х	Х	Х	Α		В		С		П			D		į

Figure 4.1

Description	Pos	Possible choice
Product group & FC	1	
Series	1-6	FC 102
Power rating	8-10	1.5-121 hp [1.1-90 kW] (P1K1
Power rating	0-10	- P90K)
Number of phases	11	Three phases (T)
		T 2: 200–240V AC
AC line voltage	11-12	T 4: 380–480V AC
rie mie volage		T 6: 525–600V AC
		T 7: 525–690V AC
		E20: IP20
		E21: IP21/NEMA Type 1
		E55: IP55/NEMA Type 12
		E66: IP66
Enclosure	13–15	P21: IP21/NEMA Type 1 w/
Liiciosure	13-13	backplate
		P55: IP55/NEMA Type 12 w/
		backplate
		Z55: A4 Frame IP55
		Z66: A4 Frame IP66
		H1: RFI filter class A1/B
		H2: RFI filter class A2
RFI filter	16–17	H3: RFI filter class A1/B
		(reduced cable length)
		Hx: No RFI filter
		X: No brake chopper included
	1	B: Brake chopper included
Brake	18	T: Safe Stop
		U: Safe + brake
		G: Graphical Local Control
		Panel (GLCP)
Display	19	N: Numeric Local Control
		Panel (NLCP)
		X: No Local Control Panel
	1	X. No coated PCB
Coating PCB	20	C: Coated PCB
		X: No line power disconnect
		switch and load sharing
		1: With line power disconnect
		switch (IP55 only)
Line power option	21	8: Line power disconnect and
		Load Sharing
		D: Load Sharing
		See Chapter 8 for max. cable
		sizes.
		sizes.

Description	Pos	Possible choice
		X: Standard
Adaptation	22	0: European metric thread in
		cable entries.
Adaptation	23	Reserved
Software release	24-27	Current software
Software language	28	
		AX: No options
		A0: MCA 101 Profibus DP V1
		A4: MCA 104 DeviceNet
A	29-30	AG: MCA 108 Lonworks
A options	29-30	AJ: MCA 109 BACnet gateway
		AL: MCA 120 Profinet
		AN: MCA 121 EtherNet/IP
		AQ: MCA 122 Modbus TCP
		BX: No option
		BK: MCB 101 General purpose
		I/O option
		BP: MCB 105 Relay option
D antiana	31-32	BO: MCB 109 Analog I/O
B options	31-32	option
		B2: MCB 112 PTC Thermistor
		Card
		B4: MCB 114 Sensor input
		option
C0 options MCO	33-34	CX: No options
C1 options	35	X: No options
C option software	36-37	XX: Standard software
D options	38-39	DX: No option
υ οραστις	30-39	D0: DC backup

Table 4.2 Type Code Description

4.1.3 Type Code String High Power

Ordering type code fra	me sizes D and E	
Description	Pos	Possible choice
Product group+series	1-6	FC 102
Power rating	8-10	60–750 hp [45–560 kW]
Phases	11	Three phases (T)
AC line voltage	11-12	T 4: 380–500V AC
		T 7: 525–690V AC
Enclosure	13-15	E00: IP00/Chassis
		C00: IP00/Chassis w/ stainless steel back channel
		E0D: IP00/Chassis, D3 P37K-P75K, T7
		COD: IP00/Chassis w/ stainless steel back channel, D3 P37K-P75K, T7
		E21: IP 21/ NEMA Type 1
		E54: IP 54/ NEMA Type 12
		E2D: IP 21/ NEMA Type 1, D1 P37K-P75K, T7
		E5D: IP 54/ NEMA Type 12, D1 P37K-P75K, T7
		E2M: IP 21/ NEMA Type 1 with line power shield
		E5M: IP 54/ NEMA Type 12 with line power shield
RFI filter	16-17	H2: RFI filter, class A2 (standard)
		H4: RFI filter class A1 ¹⁾
		H6: RFI filter Maritime use ²⁾
Brake	18	B: Brake IGBT mounted
		X: No brake IGBT
		R: Regeneration terminals (E frames only)
Display	19	G: Graphical Local Control Panel LCP
		N: Numerical Local Control Panel (LCP)
		X: No Local Control Panel (D frames IP00 and IP 21 only)
Coating PCB	20	C: Coated PCB
		X. No coated PCB (D frames 380–480/500V only)
Line power option	21	X: No AC line option
		3: Line power disconnect and fuse
		5: Line power disconnect, fuse and load sharing
		7: Fuse
		A: Fuse and load sharing
A de retetion	22	D: Load sharing
Adaptation	22	Reserved
Adaptation	23	Reserved
Software release	24-27	Current software
Software language	28	AV. N
A options	29-30	AX: No options
		A0: MCA 101 Profibus DP V1 A4: MCA 104 DeviceNet
B options	21.22	
B options	31-32	BX: No option
		BK: MCB 101 General purpose I/O option BP: MCB 105 Relay option
		BO: MCB 109 Analog I/O option
		B2: MCB 112 PTC Thermistor Card
		B4: MCB 114 Sensor input option
C ₀ options	33-34	CX: No options
C1 options	35	X: No options
C option software	36-37	XX: Standard software
C option software	30-3/	AA. Statiuatu Suttware

Ordering type code frame sizes D and E								
Description	Pos	Possible choice						
D options	38-39	DX: No option						
		D0: DC backup						
The various options are de	scribed further in	this Design Guide.						
1): Available for all D frame	es. E frames 380–4	80/500V AC only						
2) Consult factory for appl	ications requiring	maritime certification						

Table 4.3

Ordering type coo	Pos	Possible choice
Description	103	1 ossible choice
Product group	1-3	
Drive series	4-6	
Power rating	8-10	675–1900 hp [500–1400 kW]
Phases	11	Three phases (T)
AC line voltage	11-	T 5: 380–500V AC
	12	T 7: 525–690V AC
Enclosure	13-	E21: IP 21/ NEMA Type 1
	15	E54: IP 54/ NEMA Type 12
		L2X: IP21/NEMA 1 with cabinet light & IEC 230V power outlet
		L5X: IP54/NEMA 12 with cabinet light & IEC 230V power outlet
		L2A: IP21/NEMA 1 with cabinet light & NAM 115V power outlet
		L5A: IP54/NEMA 12 with cabinet light & NAM 115V power outlet
		H21: IP21 with space heater and thermostat
		H54: IP54 with space heater and thermostat
		R2X: IP21/NEMA1 with space heater, thermostat, light & IEC 230V outlet
		R5X: IP54/NEMA12 with space heater, thermostat, light & IEC 230V outlet
		R2A: IP21/NEMA1 with space heater, thermostat, light, & NAM 115V outlet
		R5A: IP54/NEMA12 with space heater, thermostat, light, & NAM 115V outlet
RFI filter	16-	H2: RFI filter, class A2 (standard)
	17	H4: RFI filter, class A1 ^{2, 3)}
		HE: RCD with Class A2 RFI filter ²⁾
		HF: RCD with class A1 RFI filter ^{2, 3)}
		HG: IRM with Class A2 RFI filter ²⁾
		HH: IRM with class A1 RFI filter ^{2, 3)}
		HJ: NAMUR terminals and class A2 RFI filter ¹⁾
		HK: NAMUR terminals with class A1 RFI filter ^{1, 2, 3)}
		HL: RCD with NAMUR terminals and class A2 RFI filter ^{1, 2)}
		HM: RCD with NAMUR terminals and class A1 RFI filter ^{1, 2, 3)}
		HN: IRM with NAMUR terminals and class A2 RFI filter ^{1, 2)}
		HP: IRM with NAMUR terminals and class A1 RFI filter ^{1, 2, 3)}
Brake	18	B: Brake IGBT mounted
טומעכ	10	X: No brake IGBT
		R: Regeneration terminals
		M: IEC Emergency stop push-button (with Pilz safety relay) ⁴⁾
		N: IEC emergency stop push-button with brake IGBT and brake terminals ⁴⁾
S		P: IEC emergency stop push-button with regeneration terminals ⁴⁾
Display	19	G: Graphical Local Control Panel LCP
Coating PCB	20	C: Coated PCB

Ordering type cod	e frame size F	
Line power option	21	X: No AC line option
		3 ²⁾ : Line power disconnect and fuse
		5 ²): Line power disconnect, fuse and load sharing
		7: Fuse
		A: Fuse and load sharing
		D: Load sharing
		E: Line power disconnect, contactor & fuses2)
		F: Line power circuit breaker, contactor & fuses 2)
		G: Line power disconnect, contactor, load sharing terminals & fuses2)
		H: Line power circuit breaker, contactor, load sharing terminals & fuses2)
		J: Line power circuit breaker & fuses 2)
		K: Line power circuit breaker, load sharing terminals & fuses 2)
A options	29-30	AX: No options
		A0: MCA 101 Profibus DP V1
		A4: MCA 104 DeviceNet
		AG: MCA 108 Lonworks
		AJ: MCA 109 BACnet Gateway
		AL: MCA 120 Profinet
		AN: MCA 121 Ethernet/IP
B options	31-32	BX: No option
		BK: MCB 101 General purpose I/O option
		BP: MCB 105 Relay option
		BO: MCB 109 Analog I/O option
C ₀ options	33-34	CX: No options
C1 options	35	X: No options
C option software	36-37	XX: Standard software
D options	38-39	DX: No option
		D0: DC backup
The various options a	are described fu	urther in this Design Guide.

Table 4.4

4.2 Ordering Numbers

4.2.1 Ordering Numbers: Options and Accessories

Туре	Description	Ordering no.
Miscellaneous	hardware I	
DC link	Terminal block for DC link	130B1064
connector	connnection on A2/A3	
IP 21/4X top/	IP21/NEMA1 Top + bottom A2	130B1122
TYPE 1 kit		
IP 21/4X top/	IP21/NEMA1 Top + bottom A3	130B1123
TYPE 1 kit		
IP 21/4X top/	IP21/NEMA1 Top + bottom B3	
TYPE 1 kit		130B1187
IP 21/4X top/	IP21/NEMA1 Top + bottom B4	
TYPE 1 kit		130B1189
IP 21/4X top/	IP21/NEMA1 Top + bottom C3	
TYPE 1 kit		130B1191
IP 21/4X top/	IP21/NEMA1 Top + bottom C4	
TYPE 1 kit		130B1193
IP21/4X top	IP21 Top Cover A2	130B1132
IP21/4X top	IP21 Top Cover A3	130B1133
IP 21/4X top	IP21 Top Cover B3	130B1188
IP 21/4X top	IP21 Top Cover B4	130B1190
IP 21/4X top	IP21 Top Cover C3	130B1192
IP 21/4X top	IP21 Top Cover C4	130B1194
Panel Through	Enclosure, frame size A5	130B1028
Mount Kit		
Panel Through	Enclosure, frame size B1	130B1046
Mount Kit		
Panel Through	Enclosure, frame size B2	130B1047
Mount Kit		
Panel Through	Enclosure, frame size C1	130B1048
Mount Kit		
Panel Through	Enclosure, frame size C2	130B1049
Mount Kit		
Profibus D-Sub	Connector kit for IP20	130B1112
9		
Profibus top	Top entry kit for Profibus	176F1742
entry kit	connection - D + E enclosures	

Туре	Description	Ordering
		no.
Miscellaneous	hardware I	
Terminal blocks	Screw terminal blocks for replacing	
	spring loaded terminals	
	1 x 10-pin, 1 x 6-pin and 1 x 3-pin	
	connectors	130B1116
Backplate	A5 IP55 / NEMA 12	130B1098
Backplate	B1 IP21 / IP55 / NEMA 12	130B3383
Backplate	B2 IP21 / IP55 / NEMA 12	130B3397
Backplate	C1 IP21 / IP55 / NEMA 12	130B3910
Backplate	C2 IP21 / IP55 / NEMA 12	130B3911
Backplate	A5 IP66	130B3242
Backplate	B1 IP66	130B3434
Backplate	B2 IP66	130B3465
Backplate	C1 IP66	130B3468
Backplate	C2 IP66	130B3491
LCPs and kits		•
LCP 101	Numerical Local Control Panel	130B1124
	(NLCP)	
LCP 102	Graphical Local Control Panel	130B1107
	(GLCP)	
LCP cable	Separate LCP cable, 9.8 ft [3 m]	175Z0929
LCPkit	Panel mounting kit including	130B1113
	graphical LCP, fasteners, 9.8 ft [3 m]	
	cable and gasket	
LCP kit	Panel mounting kit including	130B1114
	numerical LCP, fasteners and gasket	
LCPkit	Panel mounting kit for all LCPs	130B1117
	including fasteners, 9.8 ft [3 m]	
	cable and gasket	
LCPkit	Front mounting kit, IP55 enclosures	130B1129
LCPkit	Panel mounting kit for all LCPs	130B1170
	including fasteners and gasket -	
	without cable	

Table 4.5 Options can be ordered as factory built-in options, see ordering information.

VLT® HVAC Drive Design Guide

Туре	Description	Comments
Options for Slot A	·	Ordering no.
		Coated
MCA 101	Profibus option DP V0/V1	130B1200
MCA 104	DeviceNet option	130B1202
MCA 108	Lonworks	130B1206
MCA 109	BACnet gateway for built-in. Not to be used with the relay option MCB 105 card	130B1244
MCA 120	Profinet	130B1135
MCA 121	Ethernet	130B1219
Options for Slot B		
MCB 101	General purpose Input Output option	
MCB 105	Relay option	
MCB 109	Analog I/O option and battery backup for real-time clock	130B1243
MCB 112	ATEX PTC	130B1137
MCB 114	Sensor input - uncoated	130B1172
WICD 114	Sensor input - coated	130B1272
Option for Slot D		
MCB 107	24 V DC backup	130B1208
External Options		
Ethernet IP	Ethernet master	

Table 4.6

How to Order

For information on serial communication bus and application option compatibility with older software versions, please contact your Danfoss supplier.

VLT® HVAC Drive Design Guide

Туре	Description		
Spare Parts		Ordering no.	Comments
Control board FC	With Safe Stop Function	130B1150	
Control board FC	Without Safe Stop Function	130B1151	
Fan A2	Fan, frame size A2	130B1009	
Fan A3	Fan, frame size A3	130B1010	
Fan A5	Fan, frame size A5	130B1017	
Fan B1	Fan external, frame size B1	130B3407	
Fan B2	Fan external, frame size B2	130B3406	
Fan B3	Fan external, frame size B3	130B3563	
Fan B4	Fan external, 25–30 hp [18.5/22 kW]	130B3699	
Fan B4	Fan external 30–40 hp [22/30 kW]	130B3701	
Fan C1	Fan external, frame size C1	130B3865	
Fan C2	Fan external, frame size C2	130B3867	
Fan C3	Fan external, frame size C3	130B4292	
Fan C4	Fan external, frame size C4	130B4294	
Miscellaneous hardware	Ш		
Accessory bag A2	Accessory bag, frame size A2	130B1022	
Accessory bag A3	Accessory bag, frame size A3	130B1022	
Accessory bag A5	Accessory bag, frame size A5	130B1023	
Accessory bag B1	Accessory bag, frame size B1	130B2060	
Accessory bag B2	Accessory bag, frame size B2	130B2061	
Accessory bag B3	Accessory bag, frame size B3	130B0980	
Accessory bag B4	Accessory bag, frame size B4	130B1300	Small
Accessory bag B4	Accessory bag, frame size B4	130B1301	Big
Accessory bag C1	Accessory bag, frame size C1	130B0046	
Accessory bag C2	Accessory bag, frame size C2	130B0047	
Accessory bag C3	Accessory bag, frame size C3	130B0981	
Accessory bag C4	Accessory bag, frame size C4	130B0982	Small
Accessory bag C4	Accessory bag, frame size C4	130B0983	Big

Table 4.7

4.2.2 Ordering Numbers: High Power Kits

Kit	Description	Ordering Number	Instruction Number
NEMA-3R (Rittal Enclosures)	D3 Frame	176F4600	175R5922
	D4 Frame	176F4601	
	E2 Frame	176F1852	
NEMA-3R (Welded Enclosures)	D3 Frame	176F0296	175R1068
	D4 Frame	176F0295	
	E2 Frame	176F0298	
Pedestal	D Frames	176F1827	175R5642
Back Channel Duct Kit	D3 5.9 ft [1800 mm]	176F1824	175R5640
Top & Bottom)	D4 5.9 ft [1800 mm]	176F1823	
	D3 78.7 in [2000 mm]	176F1826	
	D4 78.7 in [2000 mm]	176F1825	
	E2 78.7 in [2000 mm]	176F1850	
	E2 7.2 ft [2200 mm]	176F0299	
Back Channel Duct Kit	D3/D4 Frames	176F1775	175R1107
Top Only)	E2 Frame	176F1776	
P00 Top & Bottom Covers	D3/D4 Frames	176F1862	175R1106
Welded Enclosures)	E2 Frame	176F1861	
P00 Top & Bottom Covers	D3 Frames	176F1781	177R0076
Rittal Enclosures)	D4 Frames	176F1782	
	E2 Frame	176F1783	
P00 Motor Cable Clamp	D3 Frame	176F1774	175R1109
	D4 Frame	176F1746	
	E2 Frame	176F1745	
P00 Terminal Cover	D3/D4 Frame	176F1779	175R1108
ine Power Shield	D1/D2 Frames	176F0799	175R5923
	E1 Frame	176F1851	
nput Plates	See Instr		175R5795
oad share	D1/D3 Frame	176F8456	175R5637
	D2/D4 Frame	176F8455	
op Entry Sub D or Shield Termination	D3/D4/E2 Frames	176F1884	175R5964
P00 to IP20 Kits	D3/D4 Frames	176F1779	17501100
	E2 Frames	176F1884	175R1108
JSB Extension Kit	D Frames	130B1155	
	E Frames	130B1156	177R0091
	F Frames	176F1784	7

Table 4.8

4.2.3 Ordering Numbers: Harmonic Filters

Harmonic filters are used to reduce line harmonics.

AHF 010: 10% current distortion

• AHF 005: 5% current distortion

-415 VAC, 50 H	łz			
I _{AHF,N} [A]	Typical Motor Used [kW]	Danfoss Ord	ering Number	Adjustable Frequency
		AHF 005	AHF 010	DriveSize
10	1.1-4	175G6600	175G6622	P1K1, P4K0
19	5.5–7.5	175G6601	175G6623	P5K5 - P7K5
26	11	175G6602	175G6624	P11K
35	15–18.5	175G6603	175G6625	P15K - P18K
43	22	175G6604	175G6626	P22K
72	30–37	175G6605	175G6627	P30K - P37K
101	45–55	175G6606	175G6628	P45K - P55K
144	75	175G6607	175G6629	P75K
180	90	175G6608	175G6630	P90K
217	110	175G6609	175G6631	P110
289	132	175G6610	175G6632	P132 - P160
324	160	175G6611	175G6633	
370	200	175G6688	175G6691	P200
506	250	175G6609	175G6631	P250
506	250	+ 175G6610	+ 175G6632	P250
578	315	2x 175G6610	2x 175G6632	P315
648	355	2x175G6611	2x175G6633	P355
694	400	175G6611	175G6633	D400
094	400	+ 175G6688	+ 175G6691	P400
740	450	2x175G6688	2x175G6691	P450

Table 4.9

I _{AHF,N} [A]	Typical Motor Used [HP]	Danfoss Ord	lering Number	Adjustable Frequency Drive
		AHF 005	AHF 010	Size
10	1.1–4	130B2540	130B2541	P1K1 - P4K0
19	5.5-7.5	130B2460	130B2472	P5K5 - P7K5
26	11	130B2461	130B2473	P11K
35	15–18.5	130B2462	130B2474	P15K, P18K
43	22	130B2463	130B2475	P22K
72	30-37	130B2464	130B2476	P30K - P37K
101	45-55	130B2465	130B2477	P45K - P55K
144	75	130B2466	130B2478	P75K
180	90	130B2467	130B2479	P90K
217	110	130B2468	130B2480	P110
289	132	130B2469	130B2481	P132
324	160	130B2470	130B2482	P160
370	200	130B2471	130B2483	P200
506	250	130B2468	130B2480	P250
		+ 130B2469	+ 130B2481	
578	315	2x 130B2469	2x 130B2481	P315
648	355	2x130B2470	2x130B2482	P355
694	400	130B2470	130B2482	P400
		+ 130B2471	+ 130B2483	
740	450	2x130B2471	130B2483	P450

Table 4.10

I _{AHF,N} [A]	Typical Motor Used [HP]	Danfoss Ord	ering Number	Adjustable Frequency Drive
		AHF 005	AHF 010	Size
10	1.5-7.5	130B2538	130B2539	P1K1 - P5K5
19	10–15	175G6612	175G6634	P7K5 - P11K
26	20	175G6613	175G6635	P15K
35	25–30	175G6614	175G6636	P18K - P22K
43	40	175G6615	175G6637	P30K
72	50-60	175G6616	175G6638	P37K - P45K
101	75	175G6617	175G6639	P55K
144	100–125	175G6618	175G6640	P75K - P90K
180	150	175G6619	175G6641	P110
217	200	175G6620	175G6642	P132
289	250	175G6621	175G6643	P160
370	350	175G6690	175G6693	P200
434	350	2x175G6620	2x175G6642	P250
506	450	175G6620 + 175G6621	175G6642 + 175G6643	P315
578	500	2x 175G6621	2x 175G6643	P355
648	550-600	2x175G6689	2x175G6692	P400
694	600	175G6689 + 175G6690	175G6692 + 175G6693	P450
740	650	2x175G6690	2x175G6693	P500

Table 4.11

Matching the Adjustable frequency drive and filter is pre-calculated based on 400V/480V and on a typical motor load (4 pole) and 110% torque.

500–525 V AC, 50	Hz			
I _{AHF,N} [A]	Typical Motor Used [kW]	Danfoss Orde	ering Number	Adjustable Frequency Drive
		AHF 005	AHF 010	Size
10	1.1–7.5	175G6644	175G6656	P1K1 - P7K5
19	11	175G6645	175G6657	P11K
26	15–18.5	175G6646	175G6658	P15K - P18K
35	22	175G6647	175G6659	P22K
43	30	175G6648	175G6660	P30K
72	37–45	175G6649	175G6661	P45K - P55K
101	55	175G6650	175G6662	P75K
144	75–90	175G6651	175G6663	P90K - P110
180	110	175G6652	175G6664	P132
217	132	175G6653	175G6665	P160
289	160–200	175G6654	175G6666	P200 - P250
324	250	175G6655	175G6667	P315
397	315	175G6652 + 175G6653	175G6641 + 175G6665	P400
434	355	2x175G6653	2x175G6665	P450
506	400	175G6653 + 175G6654	175G6665 + 175G6666	P500
578	450	2X 175G6654	2X 175G6666	P560
613	500	175G6654 + 175G6655	175G6666 + 175G6667	P630

Table 4.12

V AC, 50 Hz	Typical Motor Used [kW]	Danfoss Orde	ering Number	Adjustable Frequency Drive
,	, , , , , ,	AHF 005	AHF 010	Size
43	45	130B2328	130B2293	
72	45–55	130B2330	130B2295	P37K - P45K
101	75–90	130B2331	130B2296	P55K - P75K
144	110	130B2333	130B2298	P90K - P110
180	132	130B2334	130B2299	P132
217	160	130B2335	130B2300	P160
288	200–250	2x130B2333	130B2301	P200 - P250
324	315	130B2334 + 130B2335	130B2302	P315
397	400	130B2334 + 130B2335	130B2299 + 130B2300	P400
434	450	2x130B2335	2x130B2300	P450
505	500	*	130B2300 + 130B2301	P500
576	560	*	2x130B2301	P560
612	630	*	130B2301 + 130B2300	P630
730	710	*	2x130B2302	P710

VLT® HVAC Drive Design Guide

Table 4.13 * For higher currents, please contact Danfoss.

4.2.4 Ordering Numbers: Sine-wave Filter Modules, 200-500 VAC

Adjustable Fred	uency Drive Size	9	Minimum switching	Maximum			Rated filter current
200-240 [VAC]	380-440 [VAC]	440–480 [VAC]	frequency [kHz]	output frequency [Hz]	Part No. IP20	Part No. IP00	at 50 Hz [A]
	P1K1	P1K1	5	120	130B2441	130B2406	4.5
	P1K5	P1K5	5	120	130B2441	130B2406	4.5
	P2K2	P2K2	5	120	130B2443	130B2408	8
P1K5	P3K0	P3K0	5	120	130B2443	130B2408	8
	P4K0	P4K0	5	120	130B2444	130B2409	10
P2K2	P5K5	P5K5	5	120	130B2446	130B2411	17
P3K0	P7K5	P7K5	5	120	130B2446	130B2411	17
P4K0			5	120	130B2446	130B2411	17
P5K5	P11K	P11K	4	100	130B2447	130B2412	24
P7K5	P15K	P15K	4	100	130B2448	130B2413	38
	P18K	P18K	4	100	130B2448	130B2413	38
P11K	P22K	P22K	4	100	130B2307	130B2281	48
P15K	P30K	P30K	3	100	130B2308	130B2282	62
P18K	P37K	P37K	3	100	130B2309	130B2283	75
P22K	P45K	P55K	3	100	130B2310	130B2284	115
P30K	P55K	P75K	3	100	130B2310	130B2284	115
P37K	P75K	P90K	3	100	130B2311	130B2285	180
P45K	P90K	P110	3	100	130B2311	130B2285	180
	P110	P132	3	100	130B2312	130B2286	260
	P132	P160	3	100	130B2313	130B2287	260
	P160	P200	3	100	130B2313	130B2287	410
	P200	P250	3	100	130B2314	130B2288	410
	P250	P315	3	100	130B2314	130B2288	480
	P315	P315	2	100	130B2315	130B2289	660
	P355	P355	2	100	130B2315	130B2289	660
	P400	P400	2	100	130B2316	130B2290	750
		P450	2	100	130B2316	130B2290	750
	P450	P500	2	100	130B2317	130B2291	880
	P500	P560	2	100	130B2317	130B2291	880
	P560	P630	2	100	130B2318	130B2292	1200
	P630	P710	2	100	130B2318	130B2292	1200
	P710	P800	2	100	2x130B2317	2x130B2291	1500
	P800	P1M0	2	100	2x130B2317	2x130B2291	1500
	P1M0		2	100	2x130B2318	2x130B2292	1700

Table 4.14

When using sine-wave filters, the switching frequency should comply with filter specifications in 14-01 Switching Frequency.

NOTE!

See also Output Filter Design Guide, MG.90.Nx.yy

4.2.5 Ordering Numbers: Sine-Wave Filter Modules, 525–600/690 V AC

Adjustable Frequen	cy Drive Size	Minimum switching	Maximum output			Rated filter
525-600 [VAC]	690 [VAC]	frequency [kHz]	frequency [Hz]	Part No. IP20	Part No. IP00	current at 50 Hz
						[A]
P1K1		2	100	130B2341	130B2321	13
P1K5		2	100	130B2341	130B2321	13
P2k2		2	100	130B2341	130B2321	13
P3K0		2	100	130B2341	130B2321	13
P4K0		2	100	130B2341	130B2321	13
P5K5		2	100	130B2341	130B2321	13
P7K5		2	100	130B2341	130B2321	13
P11K		2	100	130B2342	130B2322	28
P15K		2	100	130B2342	130B2322	28
P18K		2	100	130B2342	130B2322	28
P22K		2	100	130B2342	130B2322	28
P30K		2	100	130B2343	130B2323	45
P37K	P45K	2	100	130B2344	130B2324	76
P45K	P55K	2	100	130B2344	130B2324	76
P55K	P75K	2	100	130B2345	130B2325	115
P75K	P90K	2	100	130B2345	130B2325	115
P90K	P110	2	100	130B2346	130B2326	165
	P132	2	100	130B2346	130B2326	165
	P160	2	100	130B2347	130B2327	260
	P200	2	100	130B2347	130B2327	260
	P250	2	100	130B2348	130B2329	303
	P315	2	100	130B2370	130B2341	430
	P355	1.5	100	130B2370	130B2341	430
	P400	1.5	100	130B2370	130B2341	430
	P450	1.5	100	130B2371	130B2342	530
	P500	1.5	100	130B2371	130B2342	530
	P560	1.5	100	130B2381	130B2337	660
	P630	1.5	100	130B2381	130B2337	660
	P710	1.5	100	130B2382	130B2338	765
	P800	1.5	100	130B2383	130B2339	940
	P900	1.5	100	130B2383	130B2339	940
	P1M0	1.5	100	130B2384	130B2340	1320
	P1M2	1.5	100	130B2384	130B2340	1320
	P1M4	1.5	100	2x130B2382	2x130B2338	1479

Table 4.15

NOTE!

When using sine-wave filters, the switching frequency should comply with filter specifications in 14-01 Switching Frequency.

NOTE!

See also Output Filter Design Guide, MG.90.Nx.yy

4.2.6 Ordering Numbers: dU/dt Filters, 380-480V AC

Line power supply 3x380 to 3x480V AC

Adjustable Freq	uency Drive Size	Minimum switching	Maximum output	Part No. IP20	Part No. IPOO	Rated filter current at 50
380-439 [VAC]	440-480 [VAC]	frequency [kHz]	frequency [Hz]	Part No. IP20	Part No. IPOU	Hz [A]
P11K	P11K	4	100	130B2396	130B2385	24
P15K	P15K	4	100	130B2397	130B2386	45
P18K	P18K	4	100	130B2397	130B2386	45
P22K	P22K	4	100	130B2397	130B2386	45
P30K	P30K	3	100	130B2398	130B2387	75
P37K	P37K	3	100	130B2398	130B2387	75
P45K	P45K	3	100	130B2399	130B2388	110
P55K	P55K	3	100	130B2399	130B2388	110
P75K	P75K	3	100	130B2400	130B2389	182
P90K	P90K	3	100	130B2400	130B2389	182
P110	P110	3	100	130B2401	130B2390	280
P132	P132	3	100	130B2401	130B2390	280
P160	P160	3	100	130B2402	130B2391	400
P200	P200	3	100	130B2402	130B2391	400
P250	P250	3	100	130B2277	130B2275	500
P315	P315	2	100	130B2278	130B2276	750
P355	P355	2	100	130B2278	130B2276	750
P400	P400	2	100	130B2278	130B2276	750
	P450	2	100	130B2278	130B2276	750
P450	P500	2	100	130B2405	130B2393	910
P500	P560	2	100	130B2405	130B2393	910
P560	P630	2	100	130B2407	130B2394	1500
P630	P710	2	100	130B2407	130B2394	1500
P710	P800	2	100	130B2407	130B2394	1500
P800	P1M0	2	100	130B2407	130B2394	1500
P1M0		2	100	130B2410	130B2395	2300

Table 4.16

NOTE!

See also Output Filter Design Guide, MG.90.Nx.yy

4.2.7 Ordering Numbers: dU/dt filters, 525-600/690V AC

Line power supply 3x525 to 3x690V AC

Adjustable Freque	ncy Drive Size	Minimum switching	Maximum output	Part No. ID20	Part No. IP00	Rated filter current at 50
525-600 [V AC]	690 [V AC]	frequency [kHz]	frequency [Hz]	Fait No. IF20	Part No. IFOO	Hz [A]
P1K1		4	100	130B2423	130B2414	28
P1K5		4	100	130B2423	130B2414	28
P2K2		4	100	130B2423	130B2414	28
P3K0		4	100	130B2423	130B2414	28
P4K0		4	100	130B2424	130B2415	45
P5K5		4	100	130B2424	130B2415	45
P7K5		3	100	130B2425	130B2416	75
P11K		3	100	130B2425	130B2416	75
P15K		3	100	130B2426	130B2417	115
P18K		3	100	130B2426	130B2417	115
P22K		3	100	130B2427	130B2418	6.5 [165]
P30K		3	100	130B2427	130B2418	6.5 [165]
P37K	P45K	3	100	130B2425	130B2416	75
P45K	P55K	3	100	130B2425	130B2416	75
P55K	P75K	3	100	130B2426	130B2417	115
P75K	P90K	3	100	130B2426	130B2417	115
P90K	P110	3	100	130B2427	130B2418	6.5 [165]
	P132	2	100	130B2427	130B2418	6.5 [165]
	P160	2	100	130B2428	130B2419	260
	P200	2	100	130B2428	130B2419	260
	P250	2	100	130B2429	130B2420	310
	P315	2	100	130B2238	130B2235	430
	P400	2	100	130B2238	130B2235	430
	P450	2	100	130B2239	130B2236	530
	P500	2	100	130B2239	130B2236	530
	P560	2	100	130B2274	130B2280	630
	P630	2	100	130B2274	130B2280	630
	P710	2	100	130B2430	130B2421	765
	P800	2	100	130B2431	130B2422	1350
	P900	2	100	130B2431	130B2422	1350
	P1M0	2	100	130B2431	130B2422	1350
	P1M2	2	100	130B2431	130B2422	1350
	P1M4	2	100	2x130B2430	2x130B2421	1530

Table 4.17

NOTE!

See also Output Filter Design Guide, MG.90.Nx.yy

4.2.8 Ordering Numbers: Brake Resistors

NOTE!

See Brake Resistor Design Guide, MG.90.Ox.yy

5 How to Install

5.1 Mechanical Installation

5.1.1 Mechanical Front Views

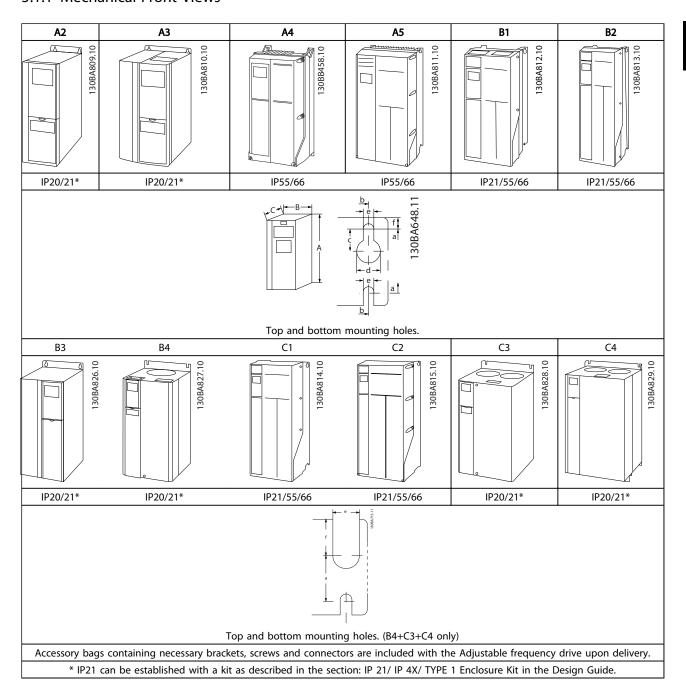
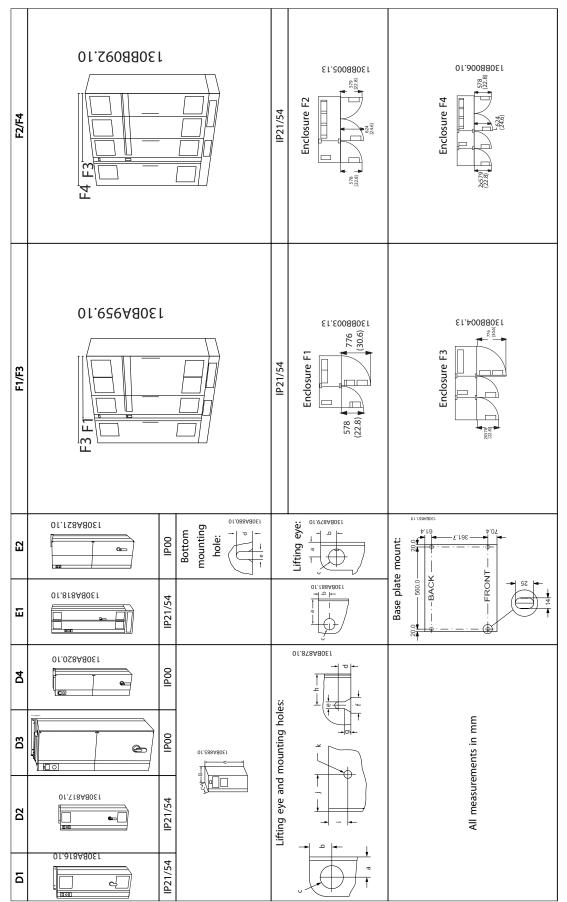


Table 5.1

5

5-2


5.1.2 Mechanical Dimensions

					Med	Mechanical Dimensions	ensions							
Frame size (kW):	A2		A3		A4	A5	B1	B2	B3	B4	C1	C2	G	C4
200-240V	1.1–2.2		3.0–3.7		1.1–2.2	1.1–3.7	5.5–11	15	5.5-11	15-18.5	18.5–30	37-45	22-30	37-45
380-480V	1.1-4.0		5.5-7.5		1.1-4.0	1.1-7.5	11-18.5	22–30	11-18.5	22-37	3-55	75-90	45-55	75-90
525-600V			1.1–7.5			1.1-7.5	11-18.5	11–30	11-18.5	22-37	37-55	37-90	45-55	75-90
525-690 V								11-30				37-90		
П	20	21	20	21	99/55	25/66	21/55/66 21/55/66		20	20	21/55/66 21/55/66		20	20
NEMA	Chassis	Type 1	Chassis	Type 1		Type 12	Type 1/12	Type 1/12 Type 1/12 Chassis	Chassis	Chassis	Type 1/12 Type 1/12 Chassis	Type 1/12	Chassis	Chassis
Height (in [mm])														
Enclosure	A** 9.7 [246]	5] 14.6 [372]	9.7	[246] 14.6 [372]	15.4 [390] 16.5 [420]	16.5 [420]	18.9 [480]	25.6 [650]	13.8 [350]	18.1 [460]	26.8 [680]	30.3 [770]	19.3 [490]	23.6 [600]
with de-coupling plate	A2 14.7 [374]	- [4]	14.7 [374]						16.5 [419]	23.4 [595]			24.8 [630]	31.5 [800]
Backplate	A1 10.5 [26	8] 14.8 [375	A1 10.5 [268] 14.8 [375] 10.5 [268] 14.8 [375] 15.4 [390] 16.5 [420] 18.9 [480]	14.8 [375]	15.4 [390]	16.5 [420]	18.9 [480]	25.6 [650] 15.7 [399]	15.7 [399]	20.5 [520]	20.5 [520] 26.8 [680] 30.3 [770]	30.3 [770]	21.7 [550]	26 [660]
Distance between	a 10.1 [25	a 10.1 [257] 13.8 [350] 10.1	ı	13.8 [350]	15.8 [401]	15.8 [402]	17.9 [454]	[257] 13.8 [350] 15.8 [401] 15.8 [402] 17.9 [454] 24.6 [624]	15 [380]	19.5 [495]	19.5 [495] 25.5 [648] 29.1 [739] 20.5 [521] 24.8 [631]	29.1 [739]	20.5 [521]	24.8 [631]
mount. noles														
Width (in [mm])														
Enclosure	B 3.5 [90]] 3.5 [90]	5.1 [130]	5.1 [130]	7.87 [200]	9.5 [242]	9.5 [242]	9.5 [242]	6.5 [165]	9.1 [231]	12.1 [308] 14.6 [370] 12.1 [308] 14.6 [370]	14.6 [370]	12.1 [308]	14.6 [370]
With one C option	B 5.1 [130]	[130] 5.1	[170] [170]	6.7 [170]		9.5 [242]	9.5 [242]	9.5 [242]	8.1 [205]	9.1 [231]	12.1 [308] 14.6 [370]		12.1 [308] 14.6 [370]	14.6 [370]
Backplate	B 3.5 [90]] 3.5 [90]	5.1 [130]	5.1 [130]	7.87 [200]	9.5 [242]	9.5 [242]	9.5 [242]	6.5 [165]	9.1 [231]	12.1 [308] 14.6 [370]	14.6 [370]	12.1 [308]	14.6 [370]
Distance between mount. holes	b 2.8 [70]] 2.8 [70]	4.3 [110]	4.3 [110]	6.7 [171]	8.5 [215]	8.3 [210]	8.3 [210]	5.5 [140]	7.87 [200]	7.87 [200] 10.7 [272] 13.2 [334] 10.6 [270]	13.2 [334]	10.6 [270]	13 [330]
Depth (in [mm])														
Without option A/B	C 8.1 [205]	5] 8.1 [205]] 8.1 [205]	8.1 [205]	6.9 [175]	7.87 [200]	10.2 [260] 10.2 [260]	10.2 [260]	9.8 [248]	9.5 [242]	12.2 [310]	13.2 [335]	13.1 [333]	13.1 [333]
With option A/B	C* 8.7 [220]] 8.7 [220]] 8.7 [220]	8.7 [220]	6.9 [175]	7.87 [200]	10.2 [260]	7.87 [200] 10.2 [260] 10.2 [260] 10.3 [262]	10.3 [262]	9.5 [242]	12.2 [310]	13.2 [335]	13.1 [333]	13.1 [333]
Screw holes (in [mm])														
	c 0.31 [8.0	0.31 [8.0] 0.31 [8.0]	[8.0]	0.31 [8.0]	0.32 [8.2]	0.32 [8.2]	0.47 [12]	0.47 [12]	0.31 [8]	-	0.47 [12]	0.47 [12]	-	-
Diameter ø	d 0.43 [11]	[] 0.43] 0.43 [11]	0.43 [11]	0.47 [12]	0.47 [12]	0.74 [19]	0.74 [19]	0.47 [12]	-	0.74 [19]	0.74 [19]	-	-
Diameter ø	e 0.21 [5.5]	5] 0.21 [5.5]	5] 0.21 [5.5]	0.21 [5.5]	0.25 [6.5]	0.25 [6.5]	0.35 [9]	0.35 [9]	0.27 [6.8]	0.33 [8.5]	0.35 [9.0]	0.35 [9.0]	0.33 [8.5]	0.33 [8.5]
	f 0.35 [9]] 0.35 [9]	0.35 [9]	0.35 [9]	0.23 [6]	0.35 [9]	0.35 [9]	0.35 [9]	0.31 [7.9]	0.59 [15]	0.38 [9.8]	0.38 [9.8]	0.67 [17]	0.67 [17]
Max weight (lbs [kg])	10.8 [4.	9] 11.7 [5.3	10.8 [4.9] 11.7 [5.3] 14.6 [6.6] 14.4 [7.0]	14.4 [7.0]	21.4 [9.7]	30.9 [14]	50.7 [23]	59.5 [27]	26.5 [12]	51.8 [23.5]	99.2 [45] 143.3 [65]	143.3 [65]	77.2 [35]	110 [50]
- 4	0.1	.,												

^{*} Depth of enclosure will vary with different options installed.

^{**} The free space requirements are above and below the bare enclosure height measurement A. See section Mechanical Mounting for further information.

				Mechanical	Mechanical dimensions					
Enclosure size (kW)	10	D2	D3	7	E1	E 2	E	72	E	7
380-480 V AC	110–132	160–250	110–132	160–250	315–450	315–450	500-710	800-1000	500–710	800-1000
525-690 V AC	45–160	200-400	45–160	200–400	450–630	450–630	710–900	1000–1400	710–900	1000-1400
dl	21/54	21/54	00	00	21/54	00	21/54	21/54	21/54	21/54
NEMA	Type 1/12	Type 1/12	Chassis	Chassis	Type 1/12	Chassis	Type 1/12	Type 1/12	Type 1/12	Type 1/12
Shipping dimensions (in [mm]):]):									
Width	68.1 [1730]	68.1 [1730]	48 [1220]	58.7 [1490]	86.5 [2197]	67.1 [1705]	91.49 [2324]	91.49 [2324]	91.49 [2324]	91.49 [2324]
Height	25.6 [650]	25.6 [650]	25.6 [650]	25.6 [650]	33 [840]	32.7 [831]	61.8 [1569]	77.2 [1962]	85 [2159]	100.75 [2559]
Depth	22.4 [570]	22.4 [570]	22.4 [570]	22.4 [570]	28.9 [736]	28.9 [736]	36.5 [927]	36.5 [927]	36.5 [927]	36.5 [927]
FCDrive dimensions: (in [mm])										
Height										
Backplate A	47.6 [1209]	62.5 [1589]	41.2 [1046]	52.2 [1327]	78.7 [2000]	60.9 [1547]	89.8 [2281]	89.8 [2281]	89.8 [2281]	89.8 [2281]
Width										
Backplate B	16.5 [420]	16.5 [420]	16.1 [408]	16.1 [408]	23.6 [600]	23 [585]	55.1 [1400]	70.8 [1800]	78.7 [2000]	94.5 [2400]
Depth										
J	15 [380]	15 [380]	14.8 [375]	14.8 [375]	19.4 [494]	19.4 [494]	23.9 [607]	23.9 [607]	23.9 [607]	23.9 [607]
Dimensions brackets (mm/inch)	h)									
Center hole to edge	22/0.9	22/0.9	22/0.9	22/0.9	56/2.2	23/0.9				
Center hole to edge b	25/1.0	25/1.0	25/1.0	25/1.0	25/1.0	25/1.0				
Hole diameter c	25/1.0	25/1.0	25/1.0	25/1.0	25/1.0	25/1.0				
Р	20/0.8	20/0.8	20/0.8	20/0.8		27/1.1				
в	11/0.4	11/0.4	11/0.4	11/0.4		13/0.5				
f	22/0.9	22/0.9	22/0.9	22/0.9						
6	10/0.4	10/0.4	10/0.4	10/0.4						
h	51/2.0	51/2.0	51/2.0	51/2.0						
-	25/1.0	25/1.0	25/1.0	25/1.0						
j	49/1.9	49/1.9	49/1.9	49/1.9						
Hole diameter k	11/0.4	11/0.4	11/0.4	11/0.4						
Max weight (lbs [kg])	229.3 [104]	332.9 [151]	200.6 [91]	304.2 [138]	690 [313]	610.7 [277]	2213.4 [1004]	2747 [1246]	2863.8 [1299]	3397.3 [1541]
Please contact Danfoss for more detailed information and CAD drawings for your own planning purposes.	ore detailed infor	mation and CAD	drawings for you	ur own planning	purposes.					

Table 5.4

5.1.3 Accessory Bags

Accessory Bags: Find the following parts included in the Adjustable frequency drive accessory bags	ded in the Adjustable frequency drive accesso	ry bags	
01.90BT309.10	01.9EET80E1	01.08ET80E1	OI SOPHWORE
Frame sizes A1, A2 and A3	Frame size A5	Frame sizes B1 and B2	Frame sizes C1 and C2
01.30BT346.10	01.748T808T		OLOPEIDEL
Frame size B3	Frame size B4	Frame size C3	Frame size C4
1 + 2 only available in units with brake chopp	+ 2 only available in units with brake chopper. For DC link connection (load sharing) the connector 1	connector 1 can be ordered separately (Code no. 130B1064)	o. 130B1064)
An eight-pole connector is included in accessory bag for F	ory bag for FC 102 without Safe Stop.		

Table 5.5

5.1.4 Mechanical Mounting

All A, B and C enclosures allow side-by-side installation. Exception: If a IP21 kit is used, there has to be a clearance between the enclosures. For enclosures A2, A3, B3, B4 and C3 the minimum clearance is 2 in [50 mm], for C4 it is 3 in [75 mm].

For optimal cooling conditions, allow a free air passage
above and below the Adjustable frequency drive. See
Table 5.6.

130BA419.10

Figure 5.1

- 1. Drill holes in accordance with the measurements given.
- 2. Provide screws suitable for the surface on which you want to mount the Adjustable frequency drive. Retighten all four screws.

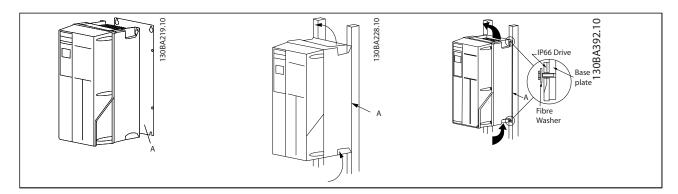


Table 5.7 When mounting enclosure sizes A5, B1, B2, B3, B4, C1, C2, C3 and C4 on a non-solid back wall, the adjustable frequency drive must be provided with a backplate A due to insufficient cooling air over the heatsink.

Enclosure:	A2	A3	A 5	B1	B2	В3
a/b (in	3.94	3.94	3.94	7.87	7.87	7.87
[mm])	[100]	[100]	[100]	[200]	[200]	[200]
Enclosure:	B4	C1	C2	C3	C4	
a/b (in	7.87	7.87	8.86	7.87	8.86	
[mm])	[200]	[200]	[225]	[200]	[225]	

Table 5.6 Air Passage for Different Enclosures

5.1.5 Lifting

Always lift the Adjustable frequency drive in the dedicated lifting eyes. For all D and E2 (IP00) enclosures, use a bar to avoid bending the lifting holes of the Adjustable frequency drive.

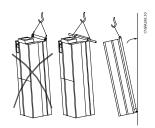


Figure 5.2 Recommended Lifting Method, Frame Sizes D and E .

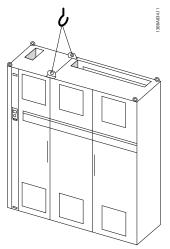


Figure 5.4 Recommended Lifting Method, Frame Size F2 (460V, 1000–1200 HP, 575/690V, 1250–1350 HP)

AWARNING

The lifting bar must be able to handle the weight of the Adjustable frequency drive. See *Mechanical Dimensions* for the weight of the different frame sizes. Maximum diameter for bar is 1 in [2.5 cm]. The angle from the top of the drive to the lifting cable should be 60°C or greater.

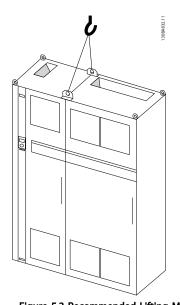


Figure 5.3 Recommended Lifting Method, Frame Size F1 (460V, 600–900 HP, 575/690V, 900–1150 HP)

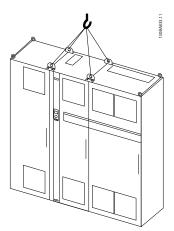


Figure 5.5 Recommended Lifting Method, Frame Size F3 (460V, 600–900 HP, 575/690V, 900–1150 HP)

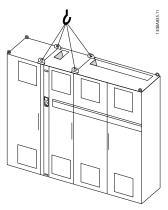


Figure 5.6 Recommended Lifting Method, Frame Size F4 (460V, 1000–1200 HP, 575/690V, 1250–1350 HP)

NOTE!

The plinth is provided in the same packaging as the Adjustable frequency drive but is not attached to frame sizes F1-F4 during shipment. The plinth is required to allow airflow to the adjustable frequency drive to provide proper cooling. The F frames should be positioned on top of the plinth in the final installation location. The angle from the top of the drive to the lifting cable should be 60°C or greater.

In addition to the drawings above, a spreader bar is an acceptable way to lift the F Frame.

5.1.6 Safety Requirements of Mechanical Installation

AWARNING

Pay attention to the requirements that apply to integration and the field mounting kit. Observe the information in the list to avoid serious injury or equipment damage, especially when installing large units.

CAUTION

The Adjustable frequency drive is cooled by means of air circulation.

To protect the unit from overheating, it must be ensured that the ambient temperature does not exceed the maximum temperature stated for the Adjustable frequency drive and that the 24-hour average temperature is not exceeded. Locate the maximum temperature and 24-hour average in 8.6.2 Derating for Ambient Temperature. If the ambient temperature is in the range of 133°–131°F [45°–55°C], derating of the Adjustable frequency drive will become relevant, see 8.6.2 Derating for Ambient Temperature.

The service life of the Adjustable frequency drive is reduced if derating for ambient temperature is not taken into account.

5.1.7 Field Mounting

IP 21/IP 4X top/TYPE 1 kits or IP 54/55 units are recommended.

5.2 Electrical Installation

5.2.1 Cables General

NOTE!

For the VLT® HVAC Drive High Power series AC line input and motor connections, please see VLT® HVAC Drive High Power Instruction Manual MG.11.FX.YY.

NOTE!

Cables General

All cabling must comply with national and local regulations on cable cross-sections and ambient temperature. Copper (140°–167°F [60°–75°C]) conductors are recommended.

Details of terminal tightening torques.

		Power (kW))				Torque	(Nm)		
Enclo- sure	200-240V	380-480V	525-600V	525–690 V	Line power	Motor	DC connection	Brake	Ground	Relay
A2	1.1-3.0	1.1-4.0	1.1-4.0		1.8	1.8	1.8	1.8	3	0.6
A3	3.7	5.5-7.5	5.5-7.5		1.8	1.8	1.8	1.8	3	0.6
A4	1.1-2.2	1.1–4			1.8	1.8	1.8	1.8	3	0.6
A5	1.1-3.7	1.1-7.5	1.1-7.5		1.8	1.8	1.8	1.8	3	0.6
B1	5.5–11	11–18.5	11–18.5	-	1.8	1.8	1.5	1.5	3	0.6
B2	-	22	22	11	2.5	2.5	3.7	2.5	3	0.6
B2	15	30	30	30	4.5 ²⁾	4.5 ²⁾	3.7	3.7	3	0.6
В3	5.5–11	11–18.5	11–18.5	-	1.8	1.8	1.8	1.8	3	0.6
B4	15–18.5	22-37	22–37	-	4.5	4.5	4.5	4.5	3	0.6
C1	18.5–30	37–55	37–55	-	10	10	10	10	3	0.6
C2	37–45	75–90	75–90	30 90	14/24 ¹⁾	14/24 ¹⁾	14	14	3	0.6
C3	22-30	45-55	45-55	-	10	10	10	10	3	0.6
C4	37–45	75–90	75–90	-	14/24 ¹⁾	14/24 ¹⁾	14	14	3	0.6
D1/D3		110–132		45–160	19	19	9.6	9.6	19	0.6
D2/D4		160-250		200-400	19	19	9.6	9.6	19	0.6
E1/E2		315-450		450-630	19	19	19	9.6	19	0.6
F1/F3 ³⁾		500-710		710–900	19	19	19	9.6	19	0.6
F2/F4 ³⁾		800–1000		1000- 1400	19	19	19	9.6	19	0.6

Table 5.8 Tightening of Terminals

- 1) For different cable dimensions x/y, where $x \le 0.147$ in [95 mm²] and $y \ge 0.147$ in [95 mm²].
- 2) Cable dimensions above 25 hp [18.5 kW] \geq 0.0542 in² [35 mm²] and below 30 hp [22 kW] \leq < 0.0155 in² [10 mm²].
- 3) For data on the F frame sizes, consult the FC 100 High Power Instruction Manual.

5.2.2 Electrical Installation and Control Cables

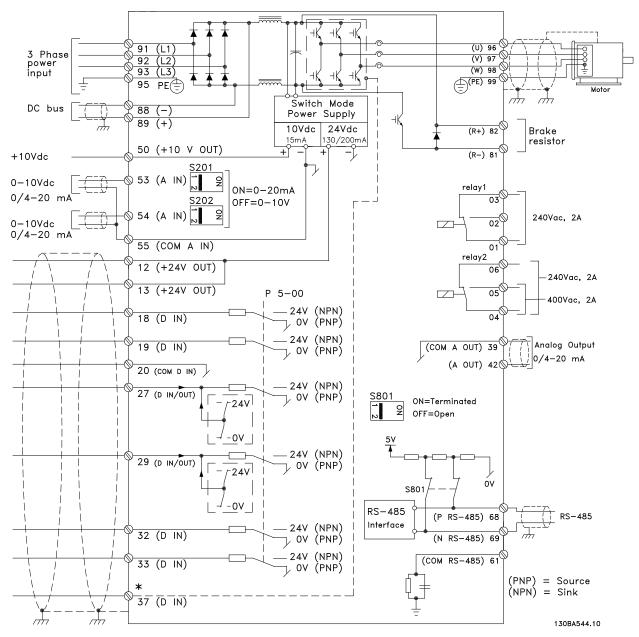


Figure 5.7 Diagram Showing all Electrical Terminals. (Terminal 37 Present for Units with Safe Stop Function only.)

Terminal number	Terminal description	Parameter number	Factory default
1+2+3	Terminal 1+2+3-Relay1	5-40	No operation
4+5+6	Terminal 4+5+6-Relay2	5-40	No operation
12	Terminal 12 Supply	-	+24 V DC
13	Terminal 13 Supply	-	+24 V DC
18	Terminal 18 Digital Input	5-10	Start
19	Terminal 19 Digital Input	5-11	No operation
20	Terminal 20	-	Common
27	Terminal 27 Digital Input/Output	5-12/5-30	Coast inverse
29	Terminal 29 Digital Input/Output	5-13/5-31	Jog
32	Terminal 32 Digital Input	5-14	No operation
33	Terminal 33 Digital Input	5-15	No operation
37	Terminal 37 Digital Input	-	Safe Stop
42	Terminal 42 Analog Output	6-50	Speed 0-HighLim
53	Terminal 53 Analog Input	3-15/6-1*/20-0*	Reference
54	Terminal 54 Analog Input	3-15/6-2*/20-0*	Feedback

Table 5.9 Terminal Connections

Very long control cables and analog signals may, in rare cases and depending on the installation, result in 50/60 Hz ground loops due to noise from line power supply cables.

If this occurs, break the shield or insert a 100 nF capacitor between shield and chassis.

NOTE!

How to Install

The common of digital / analog inputs and outputs should be connected to separate common terminals 20, 39, and 55. This will prevent ground current interference among groups. For example, it prevents switching on digital inputs from disturbing analog inputs.

NOTE!

Control cables must be shielded/armored.

5.2.3 Motor Cables

See section *General Specifications* for maximum dimensioning of motor cable cross-section and length.

- Use a shielded/armored motor cable to comply with EMC emission specifications.
- Keep the motor cable as short as possible to reduce the noise level and leakage currents.
- Connect the motor cable shield to both the decoupling plate of the Adjustable frequency drive and to the metal cabinet of the motor.
- Make the shield connections with the largest possible surface area (cable clamp). This is done

- by using the supplied installation devices in the Adjustable frequency drive.
- Avoid mounting with twisted shield ends (pigtails), which will spoil high frequency shielding effects.
- If it is necessary to split the shield to install a motor isolator or motor relay, the shield must be continued with the lowest possible HF impedance.

F frame Requirements

F1/F3 requirements: Motor phase cable quantities must be multiples of 2, resulting in 2, 4, 6, or 8 (1 cable is not allowed) to obtain equal amount of wires attached to both inverter module terminals. The cables are required to be equal length within 10% between the inverter module terminals and the first common point of a phase. The recommended common point is the motor terminals.

F2/F4 requirements: Motor phase cable quantities must be multiples of 3, resulting in 3, 6, 9, or 12 (1 or 2 cables are not allowed) to obtain equal amount of wires attached to each inverter module terminal. The wires are required to be equal length within 10% between the inverter module terminals and the first common point of a phase. The recommended common point is the motor terminals.

Output junction box requirements: The length, a minimum of 8 ft [2.5 m], and quantity of cables must be equal from each inverter module to the common terminal in the junction box.

NOTE!

If a retrofit application requires unequal amount of wires per phase, please consult the factory for requirements and documentation or use the top/bottom entry side cabinet busbar option.

5.2.4 Electrical Installation of Motor Cables

Shielding of cables

Avoid installation with twisted shield ends (pigtails). They spoil the shielding effect at higher frequencies. If it is necessary to break the shield to install a motor isolator or motor contactor, the shield must be continued at the lowest possible HF impedance.

Cable length and cross-section

The Adjustable frequency drive has been tested with a given length of cable and a given cross-section of that cable. If the cross-section is increased, the cable capacitance - and thus the leakage current - may increase, thereby requiring that the cable length is reduced accordingly.

Switching frequency

When adjustable frequency drives are used together with sine-wave filters to reduce the acoustic noise from a motor, the switching frequency must be set according to the sine-wave filter instructions in 14-01 Switching Frequency.

Aluminum conductors

Aluminum conductors are not recommended. Terminals can accept aluminum conductors but the conductor surface has to be clean and the oxidation must be removed and sealed by neutral acid free Vaseline grease before the conductor is connected.

Furthermore, the terminal screw must be retightened after two days due to the softness of the aluminum. It is crucial to keep the connection a gas-tight joint, otherwise the aluminum surface will oxidize again.

5.2.5 Enclosure Knock-outs

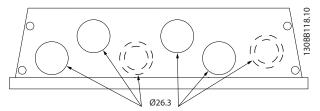


Figure 5.8 Cable entry holes for enclosure A5. The suggested use of the holes are purely recommendations and other solutions are possible.

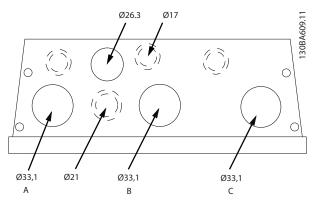


Figure 5.9 Cable entry holes for enclosure B1. The suggested use of the holes are purely recommendations and other solutions are possible.

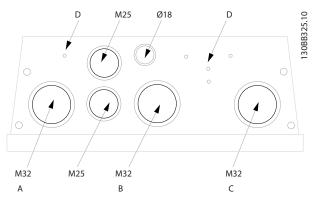


Figure 5.10 Cable entry holes for enclosure B1. The suggested use of the holes are purely recommendations and other solutions are possible.

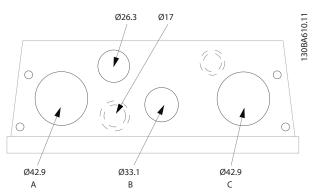


Figure 5.11 Cable entry holes for enclosure B2. The suggested use of the holes are purely recommendations and other solutions are possible.

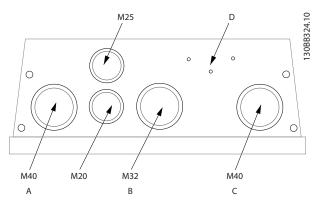


Figure 5.12 Cable entry holes for enclosure B2. The suggested use of the holes are purely recommendations and other solutions are possible.

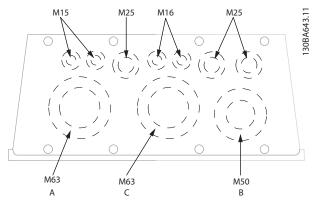


Figure 5.13 Cable entry holes for enclosure C1. The suggested use of the holes are purely recommendations and other solutions are possible.

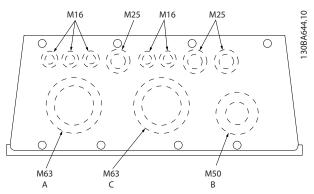


Figure 5.14 Cable entry holes for enclosure C2. The suggested use of the holes are purely recommendations and other solutions are possible.

Legend:

- A: Line in
- B: Brake/load sharing
- C: Motor out
- D: Free space

5.2.6 Removal of Knockouts for Extra Cables

- Remove cable entry from the Adjustable frequency drive (Avoiding foreign parts falling into the Adjustable frequency drive when removing knockouts)
- 2. The cable entry must be supported around the knockout you intend to remove.
- The knockout can now be removed with a strong mandrel and a hammer.
- 4. Remove burrs from the hole.
- 5. Mount Cable entry on Adjustable frequency drive.

5.2.7 Connector/Conduit Entry - IP21 (NEMA 1) and IP54 (NEMA12)

Cables are connected through the connector plate from the bottom. Remove the plate and plan where to place the entry for the connectors or conduits. Prepare holes in the marked area on the drawing.

NOTE!

The connector plate must be fitted to the Adjustable frequency drive to ensure the specified protection degree, as well as ensuring proper cooling of the unit. If the connector plate is not mounted, the Adjustable frequency drive may trip on Alarm 69, Pwr. Card Temp

Cable entries viewed from the bottom of the Adjustable frequency drive - 1) Line power side 2) Motor side

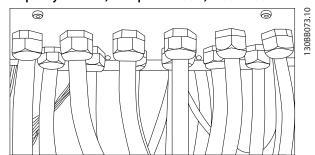


Figure 5.15 Example of Proper Installation of Connector Plate.

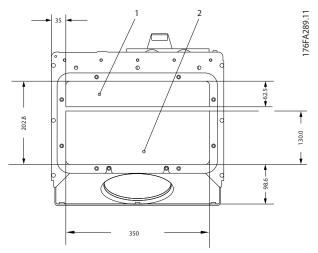


Figure 5.16 Frame Sizes D1 + D2

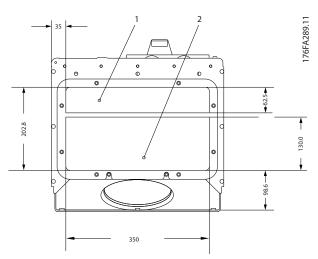


Figure 5.17 Frame Size E1

F1-F4: Cable entries viewed from the bottom of the Adjustable frequency drive - 1) Place conduits in marked areas

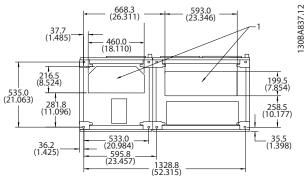


Figure 5.18 Frame Size F1

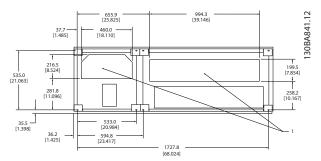


Figure 5.19 Frame Size F2

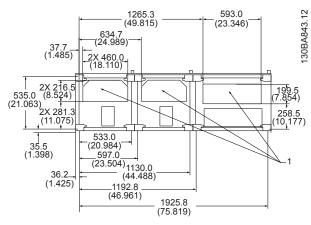


Figure 5.20 Frame Size F3

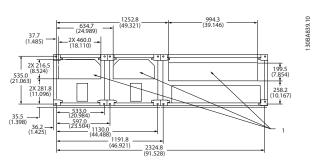


Figure 5.21 Frame Size F4

5.2.8 Fuses

A Adjustable frequency drive that works correctly limits the current it can draw from the supply. Still, it is recommended to use fuses and/ or circuit breakers on the supply side as protection in case of component breakdown inside the Adjustable frequency drive (first fault).

NOTE!

This is mandatory in order to ensure compliance with IEC 60364 for CE or NEC 2009 for UL.

AWARNING

Personnel and property must be protected against the consequences of component breakdown internally in the Adjustable frequency drive.

Branch Circuit Protection

In order to protect the installation against electrical and fire hazard, all branch circuits in an installation, switch gear, machines etc., must be protected against short-circuit and overcurrent according to national/international regulations.

NOTE!

The recommendations given do not cover branch circuit protection for UL!

Short-circuit protection:

Danfoss recommends using the fuses/circuit breakers listed in and to protect service personnel and property in case of component break-down in the Adjustable frequency drive.

Overcurrent protection:

The Adjustable frequency drive provides overload protection to limit threats to human life, property damage and to avoid fire hazard due to overheating of the cables in the installation. The Adjustable frequency drive is equipped with an internal overcurrent protection (4-18 Current Limit) that can be used for upstream overload protection (UL applications excluded). Moreover, fuses or circuit breakers can be used to provide the overcurrent protection in the installation. Overcurrent protection must always be provided in accordance with national regulations.

5.2.9 Non-UL Compliance Fuses

Non-UL Compliance fuses

Adjustable frequency drive	Max. fuse size	Voltage (V)	Туре
200–240 V - T2			
1K1-1K5	16A ¹	200–240	type gG
2K2	25A ¹	200–240	type gG
3K0	25A ¹	200–240	type gG
3K7	35A ¹	200–240	type gG
5K5	50A ¹	200–240	type gG
7K5	63A ¹	200–240	type gG
11K	63A ¹	200–240	type gG
15K	80A ¹	200–240	type gG
18K5	125A ¹	200–240	type gG
22K	125A ¹	200–240	type gG
30K	160A ¹	200–240	type gG
37K	200A ¹	200–240	type aR
45K	250A ¹	200–240	type aR
380–480 V - T4		•	
1K1-1K5	10A ¹	380-500	type gG
2K2-3K0	16A ¹	380–500	type gG
4K0-5K5	25A ¹	380–500	type gG
7K5	35A ¹	380-500	type gG
11K-15K	63A ¹	380–500	type gG
18K	63A ¹	380-500	type gG
22K	63A ¹	380–500	type gG
30K	80A ¹	380-500	type gG
37K	100A ¹	380-500	type gG
45K	125A ¹	380-500	type gG
55K	160A ¹	380–500	type gG
75K	250A ¹	380-500	type aR
90K	250A ¹	380-500	type aR
1) Max. fuses - see national/interna	ational regulations for selecting an appli	cable fuse size.	

Table 5.10 Non-UL Fuses 200V to 480V

If UL/cUL is not to be complied with, Danfoss recommends using the following fuses, which will ensure compliance with EN50178:

Adjustable Frequency Drive	Voltage (V)	Туре
P110 - P250	380–480	type gG
P315 - P450	380–480	type gR

Table 5.11 Compliance with EN50178

UL Compliance fuses

Adjustable frequency drive	Bussmann	Bussmann	Bussmann	SIBA	Littel fuse	Ferraz- Shawmut	Ferraz- Shawmut
200-240V							
kW	Type RK1	Type J	Type T	Type RK1	Type RK1	Type CC	Type RK1
K25-K37	KTN-R05	JKS-05	JJN-05	5017906-005	KLN-R005	ATM-R05	A2K-05R
K55-1K1	KTN-R10	JKS-10	JJN-10	5017906-010	KLN-R10	ATM-R10	A2K-10R
1K5	KTN-R15	JKS-15	JJN-15	5017906-015	KLN-R15	ATM-R15	A2K-15R
2K2	KTN-R20	JKS-20	JJN-20	5012406-020	KLN-R20	ATM-R20	A2K-20R
3K0	KTN-R25	JKS-25	JJN-25	5012406-025	KLN-R25	ATM-R25	A2K-25R
3K7	KTN-R30	JKS-30	JJN-30	5012406-030	KLN-R30	ATM-R30	A2K-30R
5K5	KTN-R50	JKS-50	JJN-50	5012406-050	KLN-R50	-	A2K-50R
7K5	KTN-R50	JKS-60	JJN-60	5012406-050	KLN-R60	-	A2K-50R
11K	KTN-R60	JKS-60	JJN-60	5014006-063	KLN-R60	A2K-60R	A2K-60R
15K	KTN-R80	JKS-80	JJN-80	5014006-080	KLN-R80	A2K-80R	A2K-80R
18K5	KTN-R125	JKS-150	JJN-125	2028220-125	KLN-R125	A2K-125R	A2K-125R
22K	KTN-R125	JKS-150	JJN-125	2028220-125	KLN-R125	A2K-125R	A2K-125R
30K	FWX-150	-	-	2028220-150	L25S-150	A25X-150	A25X-150
37K	FWX-200	-	-	2028220-200	L25S-200	A25X-200	A25X-200
45K	FWX-250	-	-	2028220-250	L25S-250	A25X-250	A25X-250

Table 5.12 UL Fuses, 200-240V

Adjustable frequency drive	Bussmann	Bussmann	Bussmann	SIBA	Littel fuse	Ferraz- Shawmut	Ferraz- Shawmut
380–480V, 52	5–600V	•	•			•	
kW	Type RK1	Type J	Type T	Type RK1	Type RK1	Type CC	Type RK1
K37-1K1	KTS-R6	JKS-6	JJS-6	5017906-006	KLS-R6	ATM-R6	A6K-6R
1K5-2K2	KTS-R10	JKS-10	JJS-10	5017906-010	KLS-R10	ATM-R10	A6K-10R
3K0	KTS-R15	JKS-15	JJS-15	5017906-016	KLS-R16	ATM-R16	A6K-16R
4K0	KTS-R20	JKS-20	JJS-20	5017906-020	KLS-R20	ATM-R20	A6K-20R
5K5	KTS-R25	JKS-25	JJS-25	5017906-025	KLS-R25	ATM-R25	A6K-25R
7K5	KTS-R30	JKS-30	JJS-30	5012406-032	KLS-R30	ATM-R30	A6K-30R
11K	KTS-R40	JKS-40	JJS-40	5014006-040	KLS-R40	-	A6K-40R
15K	KTS-R40	JKS-40	JJS-40	5014006-040	KLS-R40	-	A6K-40R
18K	KTS-R50	JKS-50	JJS-50	5014006-050	KLS-R50	-	A6K-50R
22K	KTS-R60	JKS-60	JJS-60	5014006-063	KLS-R60	-	A6K-60R
30K	KTS-R80	JKS-80	JJS-80	2028220-100	KLS-R80	-	A6K-80R
37K	KTS-R100	JKS-100	JJS-100	2028220-125	KLS-R100		A6K-100R
45K	KTS-R125	JKS-150	JJS-150	2028220-125	KLS-R125		A6K-125R
55K	KTS-R150	JKS-150	JJS-150	2028220-160	KLS-R150		A6K-150R
75K	FWH-220	-	-	2028220-200	L50S-225		A50-P225
90K	FWH-250	-	-	2028220-250	L50S-250		A50-P250

Table 5.13 UL Fuses, 380-600V

KTS fuses from Bussmann may substitute KTN for 240V adjustable frequency drives.

FWH fuses from Bussmann may substitute FWX for 240V adjustable frequency drives.

KLSR fuses from LITTEL FUSE may substitute for KLNR fuses for 240V adjustable frequency drives.

5

L50S fuses from LITTEL FUSE may substitute for L50S fuses for 240V adjustable frequency drives.

A6KR fuses from FERRAZ SHAWMUT may substitute A2KR for 240V adjustable frequency drives.

A50X fuses from FERRAZ SHAWMUT may substitute A25X for 240V adjustable frequency drives.

UL Compliance

380-480V, frame sizes D, E and F

The fuses below are suitable for use on a circuit capable of delivering 100,000 Arms (symmetrical), 240 V, or 480 V, or 500 V, or 600 V depending on the drive voltage rating. With the proper fusing, the drive Short Circuit Current Rating (SCCR) is 100,000 Arms.

Size/ Type	Bussmann E1958 JFHR2**	Bussmann E4273 T/JDDZ**	SIBA E180276 JFHR2	LittelFuse E71611 JFHR2**	Ferraz- Shawmut E60314 JFHR2**	Bussmann E4274 H/JDDZ**	Bussmann E125085 JFHR2*	Internal Option Bussmann
P110	FWH-	JJS-	2061032.315	L50S-300	A50-P300	NOS-	170M3017	170M3018
	300	300				300		
P132	FWH-	JJS-	2061032.35	L50S-350	A50-P350	NOS-	170M3018	170M3018
	350	350				350		
P160	FWH-	JJS-	2061032.40	L50S-400	A50-P400	NOS-	170M4012	170M4016
	400	400				400		
P200	FWH-	JJS-	2061032.50	L50S-500	A50-P500	NOS-	170M4014	170M4016
	500	500				500		
P250	FWH-	JJS-	2062032.63	L50S-600	A50-P600	NOS-	170M4016	170M4016
	600	600				600		

Table 5.14 Frame Size D, Line Fuses, 380-480V

Size/	Bussma	Rating	Ferraz	Siba	
Type	nn PN*				
P315	170M4	700A, 6.9URD31D08A0		20 610 32.700	
	017	700V	700		
P355	170M6	900A, 6.9URD33D08A0		20 630 32.900	
	013	700V	900		
P400	170M6	900A, 6.9URD33D08A0		20 630 32.900	
	013	700V	900		
P450	170M6	900A,	6.9URD33D08A0	20 630 32.900	
	013	700V	900		

Table 5.15 Frame Size E, Line Fuses, 380-480V

Size/ Type	Bussmann PN*	Rating	Siba	Internal Bussmann Option
P500	170M7081	1600A, 700V	20 695 32.1600	170M7082
P560	170M7081	1600A, 700V	20 695 32.1600	170M7082
P630	170M7082	2000A, 700V	20 695 32.2000	170M7082
P710	170M7082	2000A, 700V	20 695 32.2000	170M7082
P800	170M7083	2500A, 700V	20 695 32.2500	170M7083
P1M0	170M7083	2500A, 700V	20 695 32.2500	170M7083

Table 5.16 Frame Size F, Line Fuses, 380-480V

Size/Type	Bussmann PN*	Rating	Siba
P500	170M8611	1100A,	20 781 32.1000
		1000V	
P560	170M8611	1100A,	20 781 32.1000
		1000V	
P630	170M6467	1400A,	20 681 32.1400
		700V	
P710	170M6467	1400A,	20 681 32.1400
		700V	
P800	170M8611	1100A,	20 781 32.1000
		1000V	
P1M0	170M6467	1400A,	20 681 32.1400
		700V	

Table 5.17 Frame Size F, Inverter Module DC Link Fuses, 380-480V

*170M fuses from Bussmann shown use the -/80 visual indicator, -TN/80 Type T, -/110 or TN/110 Type T indicator fuses of the same size and amperage may be substituted for external use

^{**}Any minimum 500V UL-listed fuse with associated current rating may be used to meet UL requirements.

525-690V, frame sizes D, E and F

Size/ Type	Bussm ann E1250 85 JFHR2	Amps	SIBA E18027 6 JFHR2	Ferraz- Shawmut E76491 JFHR2	Internal Option Bussmann
P45K	170M	125	20610	6.6URD30D08	170M3015
	3013		32.125	A0125	
P55K	170M	160	20610	6.6URD30D08	170M3015
	3014		32.16	A0160	
P75K	170M	200	20610	6.6URD30D08	170M3015
	3015		32.2	A0200	
P90K	170M	200	20610	6.6URD30D08	170M3015
	3015		32.2	A0200	
P110	170M	250	20610	6.6URD30D08	170M3018
	3016		32.25	A0250	
P132	170M	315	20610	6.6URD30D08	170M3018
	3017		32.315	A0315	
P160	170M	350	20610	6.6URD30D08	170M3018
	3018		32.35	A0350	
P200	170M	350	20610	6.6URD30D08	170M5011
	4011		32.35	A0350	
P250	170M	400	20610	6.6URD30D08	170M5011
	4012		32.4	A0400	
P315	170M	500	20610	6.6URD30D08	170M5011
	4014		32.5	A0500	
P400	170M	550	20620	6.6URD32D08	170M5011
	5011		32.55	A550	

Table 5.18 Frame Size D, E and F 525-690V

Size/ Type	Bussmann PN*	Rating	Ferraz	Siba
P450	170M4017	700 A,	6.9URD31	20 610 32.700
		700 V	D08A070	
			0	
P500	170M4017	700 A,	6.9URD31	20 610 32.700
		700 V	D08A070	
			0	
P560	170M6013	900 A,	6.9URD33	20 630 32.900
		700 V	D08A090	
			0	
P630	170M6013	900 A,	6.9URD33	20 630 32.900
		700 V	D08A090	
			0	

Table 5.19 Frame Size E, 525-690V

Size/ Type	Bussmann PN*	Rating	Siba	Internal Bussmann Option
P710	170M7081	1600A, 700V	20 695 32.1600	170M7082
P800	170M7081	1600A, 700V	20 695 32.1600	170M7082
P900	170M7081	1600A, 700V	20 695 32.1600	170M7082
P1M0	170M7081	1600A, 700V	20 695 32.1600	170M7082
P1M2	170M7082	2000A, 700V	20 695 32.2000	170M7082
P1M4	170M7083	2500A, 700V	20 695 32.2500	170M7083

Table 5.20 Frame Size F, Line Fuses, 525-690V

Size/Type	Bussmann PN*	Rating	Siba
P710	170M8611	1100A,	20 781 32. 1000
		1000V	
P800	170M8611	1100A,	20 781 32. 1000
		1000V	
P900	170M8611	1100A,	20 781 32. 1000
		1000V	
P1M0	170M8611	1100A,	20 781 32. 1000
		1000V	
P1M2	170M8611	1100A,	20 781 32. 1000
		1000V	
P1M4	170M8611	1100A,	20 781 32.1000
		1000V	

Table 5.21 Frame size F, Inverter Module DC Link Fuses, 525–690V

*170M fuses from Bussmann shown use the -/80 visual indicator, - TN/80 Type T, -/110 or TN/110 Type T indicator fuses of the same size and amperage may be substituted for external use.

Suitable for use on a circuit capable of delivering not more than 100 000 rms symmetrical amperes, 500/600/690 Volts maximum when protected by the above fuses.

Supplementary fuses

Frame size> Bussmann PN*		Rating
D, E and F	KTK-4	4 A, 600 V

Table 5.22 SMPS Fuse

Size/Type	Bussmann PN*	LittelFuse	Rating
P110-P315,	KTK-4		4 A, 600 V
380–480 V			
P45K-P500,	KTK-4		4 A, 600 V
525–690 V			
P355-P1M0,		KLK-15	15A, 600 V
380–480 V			
P560-P1M4,		KLK-15	15A, 600 V
525–690 V			

Table 5.23 Fan Fuses

Size/		Bussmann PN*	Rating	Alternative
Type				Fuses
P500-	2.5–4.0 A	LPJ-6 SP or	6 A, 600 V	Any listed
P1M0,		SPI		Class J Dual
380–480				Element,
V				Time Delay,
				6 A
P710-		LPJ-10 SP	10 A, 600 V	Any listed
P1M4,		or SPI		Class J Dual
525-690				Element,
V				Time Delay,
				10 A
P500-	4.0-6.3 A	LPJ-10 SP	10 A, 600 V	Any listed
P1M0,		or SPI		Class J Dual
380-480				Element,
٧				Time Delay,
				10 A
P710-		LPJ-15 SP	15 A, 600 V	Any listed
P1M4,		or SPI		Class J Dual
525-690				Element,
V				Time Delay,
				15 A
P500-	6.3-10 A	LPJ-15 SP	15 A, 600 V	Any listed
P1M0,		or SPI		Class J Dual
380-480				Element,
V				Time Delay,
				15 A
P710-		LPJ-20 SP	20 A, 600 V	Any listed
P1M4,		or SPI		Class J Dual
525-690				Element,
V				Time Delay,
				20 A
P500-	10–16 A	LPJ-25 SP	25 A, 600 V	Any listed
P1M0,		or SPI		Class J Dual
380-480				Element,
V				Time Delay,
				25 A

Size/ Type	Bussmann PN*	Rating	Alternative Fuses
P710-	LPJ-20 SP	20 A, 600 V	Any listed
P1M4,	or SPI		Class J Dual
525-690			Element,
V			Time Delay,
			20 A

Table 5.24 Manual Motor Controller Fuses

Frame size>	Bussmann PN*	Rating	Alternative Fuses
F	LPJ-30 SP or	30 A, 600 V	Any listed
	SPI		Class J Dual
			Element, Time
			Delay, 30 A

Table 5.25 30 A Fuse Protected Terminal Fuse

Frame size>	Bussmann PN*	Rating	Alternative Fuses
F	LPJ-6 SP or SPI	6 A, 600 V	Any listed
			Class J Dual
			Element, Time
			Delay, 6 A

Table 5.26 Control Transformer Fuse

Frame size>	Bussmann PN*	Rating
F	GMC-800MA	800 mA, 250 V

Table 5.27 NAMUR Fuse

Frame size>	Bussmann PN*	Rating	Alternative Fuses
F	LP-CC-6	6 A, 600 V	Any listed
			Class CC, 6 A

Table 5.28 Safety Relay Coil Fuse with PILS Relay

5.2.10 Control Terminals

Drawing reference numbers:

- 1. 10-pole plug, digital I/O.
- 2. 3-pole plug, RS-485 bus.
- 3. 6-pole, analog I/O.
- 4. USB Connection.

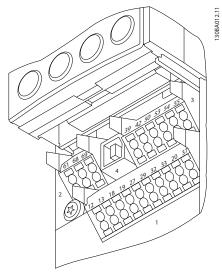


Figure 5.22 Control Terminals (all Enclosures)

5.2.11 Control Cable Terminals

To mount the cable to the terminal:

- 1. Strip isolation of 0.34–0.39 in [9–10 mm]
- 2. Insert a screw driver¹⁾ in the rectangular hole.
- 3. Insert the cable in the adjacent circular hole.
- 4. Remove the screwdriver. The cable is now mounted to the terminal.

To remove the cable from the terminal:

- 1. Insert a screw driver¹⁾ in the square hole.
- 2. Pull out the cable.
- ¹⁾ Max. 0.015 x 0.1 in [0.4 x 2.5 mm]

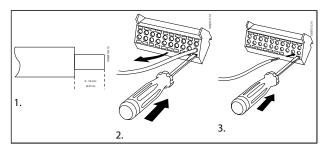


Table 5.29

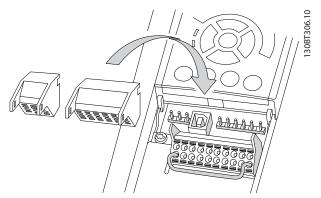
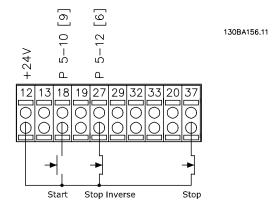


Figure 5.23


5.2.12 Basic Wiring Example

- 1. Mount terminals from the accessory bag to the front of the Adjustable frequency drive.
- 2. Connect terminals 18 and 27 to +24 V (terminal 12/13)

Default settings:

18 = latched start

27 = stop inverse

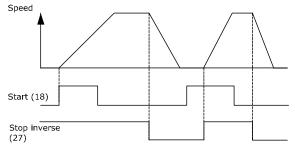


Figure 5.24 Terminal 37 available with Safe Stop Function only!

5.2.13 Electrical Installation, Control Cables

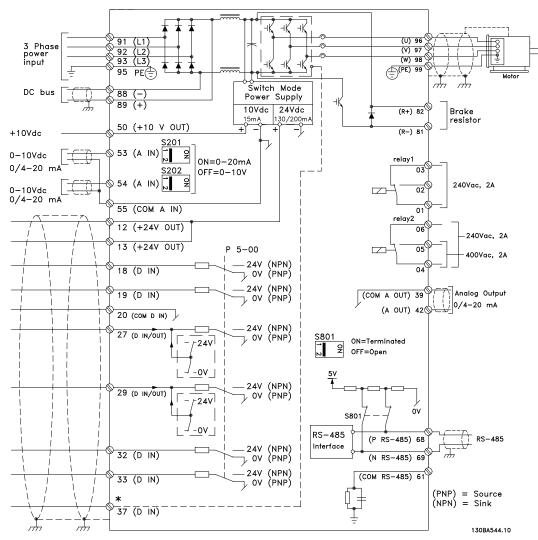


Figure 5.25 Diagram Showing all Electrical Terminals.

In rare cases, and depending on the installation, very long control cables and analog signals may result in 50/60 Hz ground loops due to noise from line power supply cables.

If this occurs, you may have to break the shield or insert a 100 nF capacitor between shield and chassis.

The digital and analog in and outputs must be connected separately to the Adjustable frequency drive common inputs (terminal 20, 55, 39) to avoid ground currents from both groups to affect other groups. For example, switching on the digital input may disturb the analog input signal.

NOTE!

Control cables must be shielded/armored.

1. Use a clamp from the accessory bag to connect the shield to the Adjustable frequency drive decoupling plate for control cables.

See section entitled 5.7.3 Grounding of Shielded/Armored Control Cables for the correct termination of control cables.

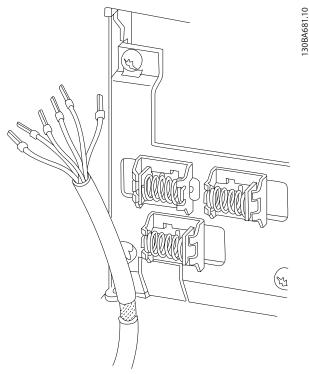


Figure 5.26

5.2.14 Switches S201, S202, and S801

Switches S201 (A53) and S202 (A54) are used to select a current (0–20 mA) or a voltage (0–10 V) configuration of the analog input terminals 53 and 54 respectively.

Switch S801 (BUS TER.) can be used to enable termination on the RS-485 port (terminals 68 and 69).

See Figure 5.25

Default setting:

S201 (A53) = OFF (voltage input)

S202 (A54) = OFF (voltage input)

S801 (Bus termination) = OFF

NOTE!

It is recommended to only change switch position at power off.

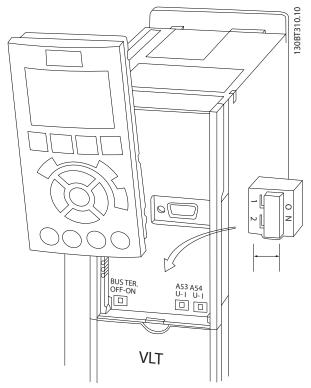


Figure 5.27

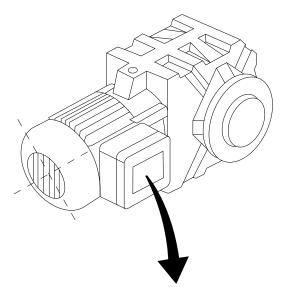
5.3 Final Set-Up and Test

To test the set-up and ensure that the Adjustable frequency drive is running, follow these steps.

Step 1. Locate the motor nameplate

The motor is either star- (Y) or delta-connected (Δ). This information is located on the motor nameplate data.

Step 2. Enter the motor nameplate data in this parameter list


To access this list, first press the [QUICK MENU] key, then select "Q2 Quick Set-up".

1.	Motor Power [kW]	1-20 Motor Power [kW]
	or Motor Power [HP]	1-21 Motor Power [HP]
2.	Motor Voltage	1-22 Motor Voltage
3.	Motor Frequency	1-23 Motor Frequency
4.	Motor Current	1-24 Motor Current
5.	Motor Nominal Speed	1-25 Motor Nominal
		Speed

Table 5.30

130BT307.10

BAUER D-	BAUER D-7 3734 ESLINGEN				
3~ MOTO	R NR. 18274	121 2003			
S/E005A9					
	1,5	KW			
n ₂ 31,5	/MIN.	400	Υ	V	
nı 1400	/MIN.		50	Hz	
cos 0,80			3,6	Α	
1,7L					
В	IP 65	H1/1A			

Figure 5.28

Step 3. Activate the Automatic Motor Adaptation (AMA)Performing an AMA will ensure optimum performance. The AMA measures the values from the motor model equivalent diagram.

- 1. Connect terminal 27 to terminal 12 or set 5-12 Terminal 27 Digital Input to 'No function' (5-12 Terminal 27 Digital Input [0])
- 2. Activate the AMA 1-29 Automatic Motor Adaptation (AMA).
- Choose between complete or reduced AMA. If an LC filter is mounted, run only the reduced AMA, or remove the LC filter during the AMA procedure.
- 4. Press the [OK] key. The display shows "Press [Hand On] to start".
- 5. Press the [Hand On] key. A progress bar indicates if the AMA is in progress.

Stop the AMA during operation

 Press the [OFF] key - the Adjustable frequency drive enters into alarm mode and the display shows that the AMA was terminated by the user.

Successful AMA

- 1. The display shows "Press [OK] to finish AMA".
- 2. Press the [OK] key to exit the AMA state.

Unsuccessful AMA

- 1. The Adjustable frequency drive enters into alarm mode. A description of the alarm can be found in the *Troubleshooting* section.
- 2. "Report Value" in the [Alarm Log] shows the last measuring sequence carried out by the AMA before the Adjustable frequency drive entered alarm mode. This number along with the description of the alarm will assist you in troubleshooting. If you contact Danfoss Service, make sure to mention number and alarm description.

Unsuccessful AMA is often caused by incorrectly registered motor nameplate data or a difference between the motor power size and the Adjustable frequency drive power size that is to great.

Step 4. Set speed limit and ramp time

Set up the desired limits for speed and ramp time.

Minimum Reference	3-02 Minimum Reference
Maximum Reference	3-03 Maximum Reference

Table 5.31

Motor Speed Low Limit	4-11 Motor Speed Low Limit
	[RPM] or 4-12 Motor Speed Low
	Limit [Hz]
Motor Speed High Limit	4-13 Motor Speed High Limit
	[RPM] or 4-14 Motor Speed High
	Limit [Hz]

Table 5.32

Ramp-up Time 1 [s]	3-41 Ramp 1 Ramp Up Time
Ramp-down Time 1 [s]	3-42 Ramp 1 Ramp Down Time

Table 5.33

5.4 Additional Connections

5.4.1 Line Power Disconnectors

Assembling of IP55/NEMA Type 12 (A5 housing) with line power disconnector

Line power switch is placed on left side on frame sizes B1, B2, C1 and C2. Line power switch on A5 frames is placed on right side

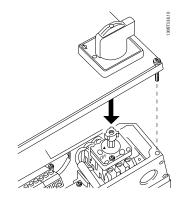


Figure 5.29

Frame size	Туре	Termir	nal connec	tions			
A5	Kraus&Naimer KG20A T303	L1	L2 I	L3	31 I	43 I	32.10
B1	Kraus&Naimer KG64 T303				L _y		130BB182.10
B2	Kraus&Naimer KG64 T303	T1	T2	T3	32	44	=
C1 37 kW	Kraus&Naimer KG100 T303	L1	L2	L3		13	1.10
C1 45–55 kW	Kraus&Naimer KG105 T303	1				,	30BB181.10
C2 75 kW	Kraus&Naimer KG160 T303	1	\	\			5
C2 90 kW	Kraus&Naimer KG250 T303	T1	T2	Тэ	ı	14	

Table 5.34

5.4.2 Line Power Disconnectors - Frame Size D, E and F

Frame		
size	Power & Voltage	Туре
	P110-P132 380-480 V &	ABB OETL-NF200A or
D1/D3	P110-P160 525-690 V	OT200U12-91
	P160-P250 380-480 V &	ABB OETL-NF400A or
D2/D4	P200-P400 525-690 V	OT400U12-91
	P315 380-480 V & P450-	
E1/E2	P630 525-690 V	ABB OETL-NF600A
E1/E2	P355-P450 380-480 V	ABB OETL-NF800A
	P500 380-480 V & P710-	Merlin Gerin
F3	P800 525-690 V	NPJF36000S12AAYP
	P560-P710 380-480 V &	Merlin Gerin
F3	P900 525-690 V	NRK36000S20AAYP
	P800-P1M0 380-480 V &	Merlin Gerin
F4	P1M0-P1M4 525-690 V	NRK36000S20AAYP

Table 5.35

5.4.3 F Frame circuit breakers

Frame		
size	Power & Voltage	Туре
	P500 380-480V & P710-	Merlin Gerin
F3	P800 525-690V	NPJF36120U31AABSCYP
	P560-P710 380-480V &	Merlin Gerin
F3	P900 525-690V	NRJF36200U31AABSCYP
	P800 380-480V & P1M0-	Merlin Gerin
F4	P1M4 525-690V	NRJF36200U31AABSCYP
		Merlin Gerin
F4	P1M0 380-480V	NRJF36250U31AABSCYP

Table 5.36

5.4.4 F Frame Line Power Contactors

Frame		
size	Power & Voltage	Туре
	P500-P560 380-480V &	
F3	P710-P900 525-690V	Eaton XTCE650N22A
F3	P 630-P710 380-480V	Eaton XTCEC14P22B
	P800-P1M0 380-480V &	
F4	P1M0-P1M4 525-690V	Eaton XTCEC14P22B

Table 5.37

5.4.5 Brake Resistor Temperature Switch

Frame size D-E-F

Torque: 0.5-0.6 Nm (5 in-lbs)

Screw size: M3

This input can be used to monitor the temperature of an externally connected brake resistor. If the input between 104 and 106 is established, the Adjustable frequency drive will trip on warning/alarm 27, "Brake IGBT". If the connection is closed between 104 and 105, the Adjustable frequency drive will trip on warning/alarm 27, "Brake IGBT". A KLIXON switch must be installed that is 'normally closed'. If this function is not used, 106 and 104 must be short-circuited together.

Normally closed: 104-106 (factory installed jumper)

Normally open: 104-105

Terminal No.	Function
106, 104, 105	Brake resistor temperature switch.

Table 5.38

NOTE!

If the temperature of the brake resistor gets too high and the thermal switch drops out, the Adjustable frequency drive will stop braking. The motor will start coasting.

Figure 5.30

5.4.6 External Fan Supply

Frame size D, E, F

If the Adjustable frequency drive is supplied by DC or if the fan must run independently of the power supply, an external power supply can be applied. The connection is made on the power card.

Terminal No.	Function
100, 101	Auxiliary supply S, T
102, 103	Internal supply S, T

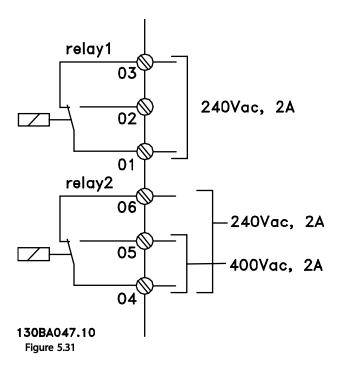
Table 5.39

The connector located on the power card provides the AC line voltage connection for the cooling fans. The fans are factory-equipped to be supplied from a common AC line (jumpers between 100-102 and 101-103). If an external

supply is needed, the jumpers are removed and the supply is connected to terminals 100 and 101. A 5 Amp fuse should be used for protection. In UL applications, this should be a LittleFuse KLK-5 or equivalent.

5.4.7 Relay Output

Relay 1


- Terminal 01: common
- Terminal 02: normal open 240V AC
- Terminal 03: normal closed 240V AC

Relay 2

- Terminal 04: common
- Terminal 05: normal open 400V AC
- Terminal 06: normal closed 240V AC

Relay 1 and relay 2 are programmed in 5-40 Function Relay, 5-41 On Delay, Relay, and 5-42 Off Delay, Relay.

Additional relay outputs can be added to the Adjustable frequency drive by using option module MCB 105.

5.4.8 Parallel Connection of Motors

The Adjustable frequency drive can control several parallel-connected motors. The total current consumption of the motors must not exceed the rated output current I_{INV} for the Adjustable frequency drive.

When motors are connected in parallel, 1-29 Automatic Motor Adaptation (AMA) cannot be used.

Problems may arise at start and at low RPM values if motor sizes are widely different because small motors' relatively high ohmic resistance in the stator calls for a higher voltage at start and at low RPM values.

The electronic thermal relay (ETR) of the Adjustable frequency drive cannot be used as motor protection for the individual motor of systems with parallel-connected motors. Provide further motor protection with, for example, thermistors in each motor or individual thermal relays (circuit breakers are not a suitable means of protection).

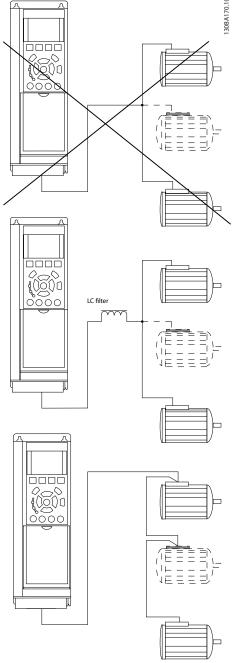
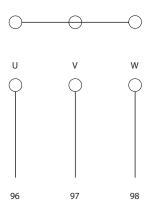
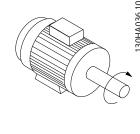
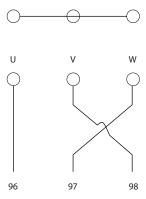


Figure 5.32


5.4.9 Direction of Motor Rotation


The default setting is clockwise rotation with the Adjustable frequency drive output connected as follows.


Terminal 96 connected to U-phase Terminal 97 connected to V-phase Terminal 98 connected to W-phase

The direction of motor rotation is changed by switching two motor phases.

Motor rotation check can be performed using *1-28 Motor Rotation Check* and following the steps shown in the display.

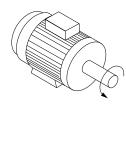


Figure 5.33

5.4.10 Motor Thermal Protection

The electronic thermal relay in the Adjustable frequency drive has received UL-approval for single motor protection, when 1-90 Motor Thermal Protection is set for ETR Trip and

1-24 Motor Current is set to the rated motor current (see motor nameplate).

5.4.11 Motor Insulation

For motor cable lengths ≤ than the maximum cable length listed in the General Specifications tables, the following motor insulation ratings are recommended because the peak voltage can be up to twice the DC link voltage, 2.8 times the AC line voltage due to transmission line effects in the motor cable. If a motor has lower insulation rating, it is recommended to use a du/dt or sine-wave filter.

Nominal AC Line Voltage	Motor Insulation
U _N ≤ 420 V	Standard U _{LL} = 1300V
420V < U _N ≤ 500 V	Reinforced U _{LL} = 1600V
500V < U _N ≤ 600 V	Reinforced U _{LL} = 1800V
600V < U _N ≤ 690 V	Reinforced U _{LL} = 2000V

Table 5.40

5.4.12 Motor Bearing Currents

It is recommended that motors of a rating 150 hp [110 kW] or higher operating via adjustable frequency drives should have NDE (Non-Drive End) insulated bearings installed to eliminate circulating bearing currents due to the physical size of the motor. To minimize DE (Drive End) bearing and shaft currents proper grounding of the drive, motor, driven machine, and motor to the driven machine is required. Although failure due to bearing currents is low and dependent on many different items, for security of operation the following are mitigation strategies which can be implemented.

Standard Mitigation Strategies:

- 1. Use an insulated bearing
- Apply rigorous installation procedures
 Ensure the motor and load motor are aligned
 Strictly follow the EMC Installation guideline
 Reinforce the PE so the high frequency impedance is lower in the PE than the input power leads.

Provide a good high frequency connection between the motor and the Adjustable frequency drive for instance by shielded cable which has a 360° connection in the motor and the Adjustable frequency drive

Make sure that the impedance from Adjustable frequency drive to building ground is lower that the grounding impedance of the machine. This can be difficult for pumps- Make a direct ground connection between the motor and load motor.

- 3. Apply conductive lubrication
- 4. Try to ensure that the line voltage is balanced to ground. This can be difficult for IT, TT, TN-CS or Grounded leg systems
- Use an insulated bearing as recommended by the motor manufacturer (note: Motors from reputable manufacturers will typically have these fitted as standard in motors of this size)

If found to be necessary and after consultation with Danfoss:

- 6. Lower the IGBT switching frequency
- 7. Modify the inverter waveform, 60° AVM vs. SFAVM
- 8. Install a shaft grounding system or use an isolating coupling between motor and load
- 9. Use minimum speed settings, if possible.
- 10. Use a dU/dt or sinus filter

5.5 Installation of Misc. Connections

5.5.1 RS-485 Bus Connection

One or more adjustable frequency drives can be connected to a control (or master) using the RS-485 standardized interface. Terminal 68 is connected to the P signal (TX+, RX+), while terminal 69 is connected to the N signal (TX-,RX-).

If more than one Adjustable frequency drive is connected to a master, use parallel connections.

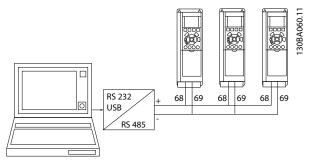


Figure 5.34

In order to avoid potential equalizing currents in the shield, ground the cable shield via terminal 61, which is connected to the frame via an RC link.

For EMC-compliant installation, refer to *5.7 EMC-correct Installation* .

Bus termination

The RS-485 bus must be terminated by a resistor network at both ends. For this purpose, set switch S801 on the control card to "ON".

For more information, see 5.2.14 Switches S201, S202, and S801.

Communication protocol must be set to 8-30 Protocol.

5.5.2 How to Connect a PC to the Adjustable Frequency Drive

To control or program the Adjustable frequency drive from a PC, install the PC-based Configuration Tool MCT 10 Set-up Software.

The PC is connected via a standard (host/device) USB cable, or via the RS-485 interface as shown in 5.5.1 Bus Connection

NOTE!

The USB connection is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals. The USB connection is connected to protection ground on the Adjustable frequency drive. Use only an isolated laptop for the PC connection to the USB connector on the Adjustable frequency drive.

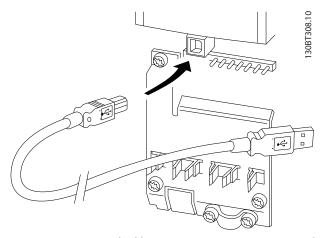


Figure 5.35 For control cable connections, see section on *Control Terminals*.

PC-based Configuration Tool MCT 10 Set-up Software

All adjustable frequency drives are equipped with a serial communication port. Danfoss provides a PC tool for communication between the PC and the Adjustable frequency drive, PC-based Configuration Tool MCT 10 Setup Software.

MCT 10 Set-up Software

MCT 10 Set-up Software has been designed as an easy to use interactive tool for setting parameters in our adjustable frequency drive.

The PC-based Configuration Tool MCT 10 Set-up Software is useful for:

- Planning a communication network offline. MCT 10 Set-up Software contains a complete Adjustable frequency drive database.
- Commissioning adjustable frequency drives online.
- Saving settings for all adjustable frequency drives.
- Replacing a Adjustable frequency drive in a network.
- Expanding an existing network.
- Drives developed in the future will be fully supported.

The PC-based Configuration Tool MCT 10 Set-up Software supports Profibus DP-V1 via a master class 2 connection. It makes it possible to read/write parameters online in a Adjustable frequency drive via the Profibus network. This will eliminate the need for an extra communication network. See *Instruction Manual, MG.33.Cx.yy and MN. 90.Ex.yy* for more information about the features supported by the Profibus DP V1 functions.

Save Drive Settings:

- 1. Connect a PC to the unit via the USB com port.
- Open PC-based Configuration Tool MCT 10 Set-up Software
- 3. Choose "Read from drive"
- 4. Choose "Save as"

All parameters are now stored on the PC.

Load Drive Settings:

- Connect a PC to the unit via the USB comport.
- Open PC-based Configuration Tool MCT 10 Set-up Software
- 3. Choose "Open". Stored files will be shown.
- 4. Open the appropriate file.
- 5. Choose "Write to drive".

All parameter settings are now transferred to the Adjustable frequency drive.

A separate manual for the PC-based Configuration Tool MCT 10 Set-up Software is available.

The PC-based Configuration Tool MCT 10 Set-up Software modules

The following modules are included in the software package:

Setting Copy t

MCT 10 Set-up Software

Setting parameters

Copy to and from adjustable frequency drives Documentation and print out of parameter settings incl. diagrams

Ext. User Interface

Preventive Maintenance Schedule Clock settings Timed Action Programming Smart Logic Controller Set-up

Table 5.41

Ordering number:

Please order the CD containing the PC-based Configuration Tool MCT 10 Set-up Software using code number 130B1000.

MCT 10 Set-up Software can also be downloaded from the Danfoss webpage: http://www.danfoss.com/BusinessAreas/DrivesSolutions/Softwaredownload/DDPC+Software+Program.htm.

5.5.3 MCT 31

The MCT 31 harmonic calculation PC tool enables easy estimation of the harmonic distortion in a given application. Both the harmonic distortion of Danfoss adjustable frequency drives as well as non-Danfoss adjustable frequency drives with different additional harmonic reduction devices, such as Danfoss AHF filters and 12-18 pulse rectifiers, can be calculated.

Ordering number:

Please order your CD containing the MCT 31 PC tool using code number 130B1031.

MCT 31 can also be downloaded from the Danfoss Internet: http://www.danfoss.com/BusinessAreas/DrivesSo-lutions/Softwaredownload/DDPC+Software+Program.htm.

5.6 Safety

5.6.1 High Voltage Test

Carry out a high voltage test by short-circuiting terminals U, V, W, L₁, L₂ and L₃. Energize maximum 2.15 kV DC for 380-500V adjustable frequency drives and 2.525 kV DC for 525-690 V adjustable frequency drives for one second between this short-circuit and the chassis.

AWARNING

When running high voltage tests of the entire installation, interrupt line power and the motor connection if the leakage currents are too high.

5.6.2 Safety Ground Connection

The Adjustable frequency drive has a high leakage current and must be grounded appropriately for safety reasons according to EN 50178.

AWARNING

The ground leakage current from the Adjustable frequency drive exceeds 3.5 mA. To ensure a good mechanical connection from the ground cable to the ground connection (terminal 95), the cable cross-section must be at least 0.016 in² [10 mm²] or two rated ground wires terminated separately.

5.7 EMC-correct Installation

5.7.1 Electrical Installation - EMC Precautions

The following is a guideline for good engineering practice when installing adjustable frequency drives. Follow these guidelines to comply with EN 61800-3 First environment. If the installation is in EN 61800-3 Second environment, i.e., industrial networks, or in an installation with its own transformer, deviation from these guidelines is allowed but not recommended. See also 2.2 CE labeling, 2.9.1 General Aspects of EMC Emissions and 2.9.3 EMC Test Results (Emission).

Good engineering practice to ensure EMC-correct electrical installation:

 Use only braided shielded/armored motor cables and braided shielded/armored control cables. The

- shield should provide a minimum coverage of 80%. The shield material must be metal, not limited to, but typically, copper, aluminum, steel or lead. There are no special requirements for the line cable.
- Installations using rigid metal conduits are not required to contain shielded cable, but the motor cable must be installed in a conduit separate from the control and line cables. Full connection of the conduit from the drive to the motor is required. The EMC performance of flexible conduits varies a lot and information from the manufacturer must be obtained.
- Connect the shield/armor/conduit to ground at both ends for motor cables as well as for control cables. In some cases, it is not possible to connect the shield at both ends. If so, connect the shield at the Adjustable frequency drive. See also 5.7.3 Grounding of Shielded/Armored Control Cables.
- Avoid terminating the shield/armor with twisted ends (pigtails). It increases the high frequency impedance of the shield, which reduces its effectiveness at high frequencies. Use low impedance cable clamps or EMC cable connectors instead.
- Avoid using non-shielded/unarmored motor or control cables inside cabinets housing the drive(s), whenever this can be avoided.

Leave the shield as close to the connectors as possible.

Figure 5.36 shows an example of an EMC-compliant electrical installation of an IP20 Adjustable frequency drive. The Adjustable frequency drive is fitted in an installation cabinet with an output contactor and connected to a PLC, which is installed in a separate cabinet. Other ways of performing the installation may result in an equally effective EMC performance, provided the above guidelines for engineering practice are followed.

If the installation is not carried out according to the guidelines, and if non-shielded cables and control wires are used, some emission requirements will not be fulfilled, although the immunity requirements will be. See 2.9.3 EMC Test Results (Emission).

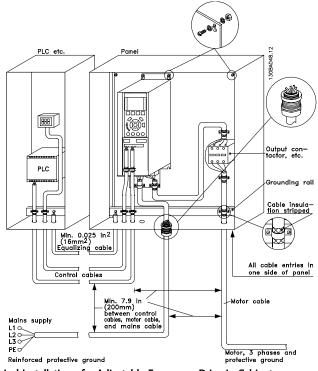


Figure 5.36 EMC-compatible Electrical Installation of a Adjustable Frequency Drive in Cabinet.

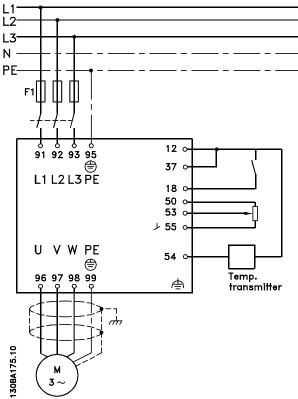


Figure 5.37 Electrical Connection Diagram.

5.7.2 Use of EMC-Correct Cables

Danfoss recommends braided shielded/armored cables to optimize EMC immunity of the control cables and the EMC emission from the motor cables.

The ability of a cable to reduce the in and outgoing radiation of electric noise depends on the transfer impedance (Z_T). The shield of a cable is normally designed to reduce the transfer of electric noise; however, a shield with a lower transfer impedance (Z_T) value is more effective than a shield with a higher transfer impedance (Z_T).

Transfer impedance (Z_T) is rarely stated by cable manufacturers, but it is often possible to estimate transfer impedance (Z_T) by assessing the physical design of the cable.

Transfer impedance (Z_T) can be assessed on the basis of the following factors:

- The conductibility of the shield material.
- The contact resistance between the individual shield conductors.
- The shield coverage, i.e., the physical area of the cable covered by the shield often stated as a percentage value.
- Shield type, i.e., braided or twisted pattern.
- a. Aluminum-clad with copper wire.
- b. Twisted copper wire or armored steel wire cable.
- c. Single-layer braided copper wire with varying percentage shield coverage.This is the typical Danfoss reference cable.
- d. Double-layer braided copper wire.
- e. Twin layer of braided copper wire with a magnetic, shielded/armored intermediate layer.
- f. Cable that runs in copper tube or steel tube.
- g. Lead cable with 0.043 in [1.1 mm] wall thickness.

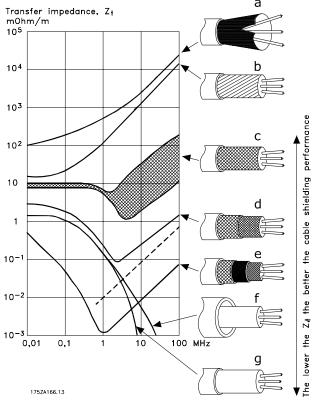


Figure 5.38

5.7.3 Grounding of Shielded/Armored Control Cables

Generally speaking, control cables must be braided and shielded/armored, and the shield must be connected by means of a cable clamp at both ends to the metal cabinet of the unit.

The drawing below indicates how correct grounding is carried out and what to do if in doubt.

a. Correct grounding

Control cables and cables for serial communication must be fitted with cable clamps at both ends to ensure the best possible electrical contact.

b. Wrong grounding

Do not use twisted cable ends (pigtails). They increase the shield impedance at high frequencies.

c. Protection with respect to ground potential between PLC and Adjustable frequency drive

If the ground potential between the Adjustable frequency drive and the PLC (etc.) is different, electric noise may occur that will disturb the entire system. Solve this problem by fitting an equalizing cable next to the control cable.

Minimum cable cross-section: 0.025 in² [16 mm²].

d. For 50/60 Hz ground loops

If very long control cables are used, 50/60 Hz ground loops may occur. Solve this problem by connecting one end of the shield to ground via a 100nF capacitor (keeping leads short).

e. >Cables for serial communication

Eliminate low-frequency noise currents between two adjustable frequency drives by connecting one end of the shield to terminal 61. This terminal is grounded via an internal RC link. Use twisted-pair cables to reduce the differential mode interference between the conductors.

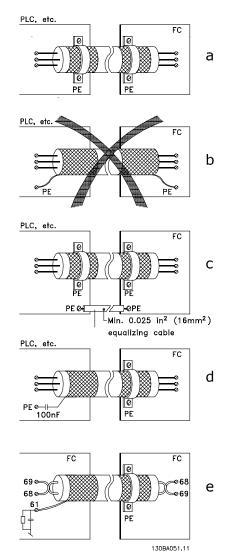


Figure 5.39

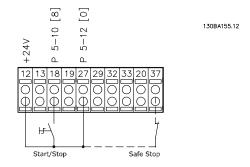
5.8 Residual Current Device

Use RCD relays, multiple protective grounding or grounding as extra protection, provided that local safety regulations are complied with.

If a ground fault appears, a DC content may develop in the faulty current.

If RCD relays are used, local regulations must be observed. Relays must be suitable for protection of 3-phase equipment with a bridge rectifier and for a brief discharge on power-up see 2.11 Ground Leakage Current for further information.

5


6 Application Examples

6.1.1 Start/Stop

Terminal 18 = start/stop 5-10 Terminal 18 Digital Input [8] Start

Terminal 27 = No operation 5-12 Terminal 27 Digital Input [0] No operation (Default coast inverse

5-10 Terminal 18 Digital Input = Start (default) 5-12 Terminal 27 Digital Input = coast inverse (default)

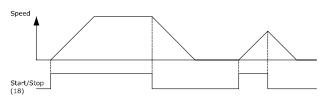
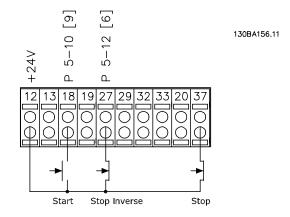


Figure 6.1 Terminal 37: Available only with Safe Stop Function


6.1.2 Pulse Start/Stop

Terminal 18 = start/stop 5-10 Terminal 18 Digital Input [9] Latched start

Terminal 27= Stop 5-12 Terminal 27 Digital Input [6] Stop inverse

5-10 Terminal 18 Digital Input = Latched start

5-12 Terminal 27 Digital Input = Stop inverse

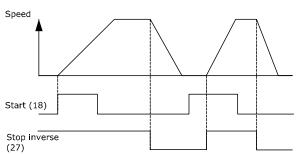


Figure 6.2 Terminal 37: Available only with Safe Stop Function

6

6.1.3 Potentiometer Reference

Voltage reference via a potentiometer.

3-15 Reference 1 Source [1] = Analog Input 53

6-10 Terminal 53 Low Voltage = 0V

6-11 Terminal 53 High Voltage = 10V

6-14 Terminal 53 Low Ref./Feedb. Value = 0 RPM

6-15 Terminal 53 High Ref./Feedb. Value = 1500 RPM

Switch S201 = OFF(U)

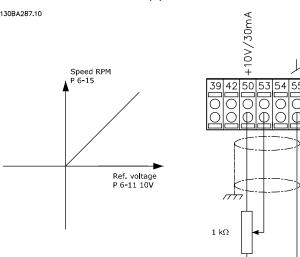


Figure 6.3

6.1.4 Automatic Motor Adaptation (AMA)

AMA is an algorithm to measure the electrical motor parameters on a motor at standstill. This means that AMA itself does not supply any torque.

AMA is useful when commissioning systems and optimizing the adjustment of the Adjustable frequency drive to the applied motor. This feature is particularly used where the default setting does not apply to the connected motor.

1-29 Automatic Motor Adaptation (AMA) allows a choice of complete AMA with determination of all electrical motor parameters or reduced AMA with determination of the stator resistance Rs only.

The duration of a total AMA varies from a few minutes on small motors to more than 15 minutes on large motors.

Limitations and preconditions:

 For the AMA to determine the motor parameters optimally, enter the correct motor nameplate

- data in 1-20 Motor Power [kW] to 1-28 Motor Rotation Check.
- For the best adjustment of the Adjustable frequency drive, carry out AMA on a cold motor.
 Repeated AMA runs may lead to a heating of the motor, which results in an increase of the stator resistance, Rs. Normally, this is not critical.
- AMA can only be carried out if the rated motor current is minimum 35% of the rated output current of the Adjustable frequency drive. AMA can be carried out on up to one oversize motor.
- It is possible to carry out a reduced AMA test with a sine-wave filter installed. Avoid carrying out a complete AMA with a sine-wave filter. If an overall setting is required, remove the sine-wave filter while running a total AMA. After completion of the AMA, reinsert the sine-wave filter.
- If motors are coupled in parallel, use only a reduced AMA, if any.
- Avoid running a complete AMA when using synchronous motors. If synchronous motors are applied, run a reduced AMA and manually set the extended motor data. The AMA function does not apply to permanent magnet motors.
- The Adjustable frequency drive does not produce motor torque during an AMA. During an AMA, it is imperative that the application does not force the motor shaft to run, which is known to happen with windmilling in ventilation systems, for example. This disturbs the AMA function.
- AMA cannot be activated when running a PM motor (when 1-10 Motor Construction is set to [1] PM non-salient SPM).

6.1.5 Smart Logic Control

A useful facility in the VLT® HVAC Drive Adjustable frequency drive is the Smart Logic Control (SLC). In applications where a PLC is generating a simple sequence, the SLC may take over elementary tasks from the main control.

SLC is designed to act from event send to or generated in the Adjustable frequency drive. The Adjustable frequency drive will then perform the pre-programmed action.

6.1.6 Smart Logic Control Programming

The Smart Logic Control (SLC) is essentially a sequence of user defined actions (see 13-52 SL Controller Action) executed by the SLC when the associated user defined

event (see 13-51 SL Controller Event) is evaluated as TRUE by the SLC.

Events and actions are each numbered and are linked in pairs called states. This means that when event [1] is fulfilled (attains the value TRUE), action [1] is executed. After this, the conditions of event [2] will be evaluated and if evaluated TRUE, action [2]will be executed and so on. Events and actions are placed in array parameters.

Only one *event* will be evaluated at any time. If an *event* is evaluated as FALSE, nothing happens (in the SLC) during the present scan interval and no other *events* will be evaluated. This means that when the SLC starts, it evaluates *event* [1] (and only *event* [1]) each scan interval. Only when *event* [1] is evaluated TRUE, the SLC executes *action* [1] and starts evaluating *event* [2].

It is possible to program from 0 to 20 *events* and *actions*. When the last *event / action* has been executed, the sequence starts over again from *event* [1] / action [1]. The figure shows an example with three *events / actions*:

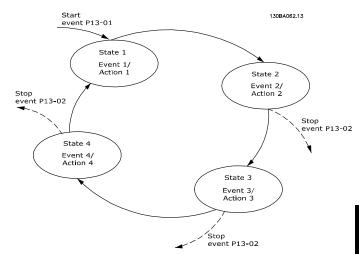


Figure 6.4

6.1.7 SLC Application Example

One sequence 1:

Start - ramp-up - run at reference speed 2 sec - ramp-down and hold shaft until stop.

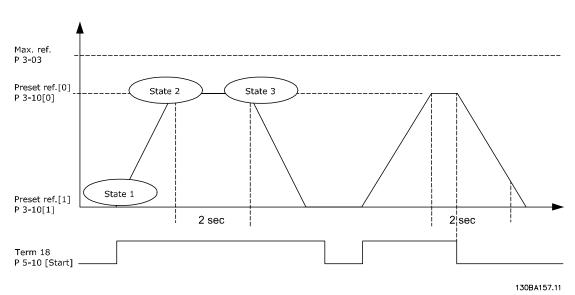


Figure 6.5

Set the ramping times in 3-41 Ramp 1 Ramp Up Time and 3-42 Ramp 1 Ramp Down Time to the desired times $t_{ramp} = \frac{t_{acc} \times n_{norm}(par. \ 1 \ - \ 25)}{ref[RPM]}$

Set term 27 to No Operation (5-12 Terminal 27 Digital Input)

Set Preset reference 0 to first preset speed (3-10 Preset Reference [0]) in percentage of Max reference speed (3-03 Maximum Reference). Ex.: 60%

Set preset reference 1 to second preset speed (3-10 Preset Reference [1] Ex.: 0% (zero).

Set the timer 0 for constant running speed in 13-20 SL Controller Timer [0]. Ex.: 2 sec.

Set Event 1 in 13-51 SL Controller Event [1] to True [1] Set Event 2 in 13-51 SL Controller Event [2] to On Reference [4]

Set Event 3 in 13-51 SL Controller Event [3] to Time Out 0 [30]

Set Event 4 in 13-51 SL Controller Event [4] to False [0]

Set Action 1 in 13-52 SL Controller Action [1] to Select preset 0 [10]

Set Action 2 in 13-52 SL Controller Action [2] to Start Timer 0 [29]

Set Action 3 in 13-52 SL Controller Action [3] to Select preset 1 [11]

Set Action 4 in 13-52 SL Controller Action [4] to No Action [1]

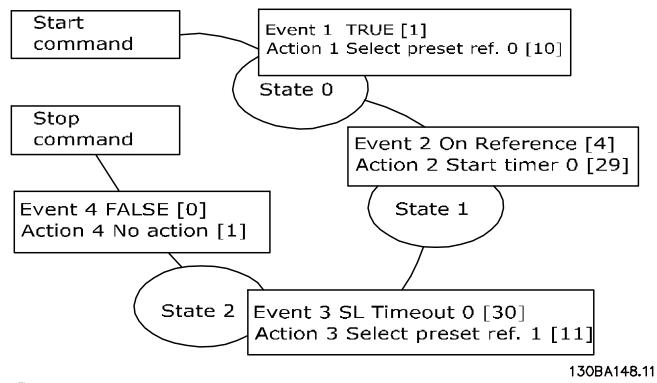


Figure 6.6

Set the Smart Logic Control in 13-00 SL Controller Mode to ON.

Start / stop command is applied on terminal 18. If stop signal is applied, the Adjustable frequency drive will ramp down and go into free mode.

6.1.8 BASIC Cascade Controller

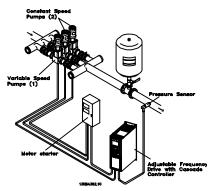


Figure 6.7

The BASIC Cascade Controller is used for pump applications where a certain pressure ("head") or level needs to be maintained over a wide dynamic range. Running a large pump at variable speed over a wide range is not an ideal solution because of low pump efficiency, and because there is a practical limit of about 25% rated full load speed for running a pump.

In the BASIC Cascade Controller, the Adjustable frequency drive controls a variable-speed motor as the variable-speed pump (lead) and can stage up to two additional constant-speed pumps on and off. By varying the speed of the initial pump, variable-speed control of the entire system is provided. This maintains constant pressure while eliminating pressure surges, resulting in reduced system stress and quieter operation in pumping systems.

Fixed Lead Pump

The motors must be of equal size. The BASIC Cascade Controller allows the Adjustable frequency drive to control up to three equal size pumps using the drives two built-in relays. When the variable pump (lead) is connected directly to the Adjustable frequency drive, the other two pumps are controlled by the two built-in relays. When lead pump alternations is enabled, pumps are connected to the built-in relays and the Adjustable frequency drive is capable of operating two pumps.

Lead Pump Alternation

The motors must be of equal size. This function makes it possible to cycle the Adjustable frequency drive between the pumps in the system (maximum of two pumps). In this operation, the run time between pumps is equalized, thus reducing the required pump maintenance and increasing reliability and system lifetime. The alternation of the lead pump can take place at a command signal or at staging (adding another pump).

The command can be a manual alternation or an alternation event signal. If the alternation event is selected, the lead pump alternation takes place every time the event occurs. Selections include whenever an alternation timer expires, at a predefined time of day or when the lead pump goes into sleep mode. Staging is determined by the actual system load.

A separate parameter limits alternation only to take place if total capacity required is > 50%. Total pump capacity is determined as lead pump plus fixed-speed pumps capacities.

Bandwidth Management

In cascade control systems, to avoid frequent switching of fixed-speed pumps, the desired system pressure is kept within a bandwidth rather than at a constant level. Staging bandwidth provides the required bandwidth for operation. When a large and quick change in system pressure occurs, the override bandwidth overrides the staging bandwidth to prevent immediate response to a short duration pressure change. An override bandwidth timer can be programmed to prevent staging until the system pressure has stabilized and normal control has been established.

When the Cascade Controller is enabled and running normally and the Adjustable frequency drive issues a trip alarm, the system head is maintained by staging and destaging fixed-speed pumps. To prevent frequent staging and de-staging and minimize pressure fluctuations, a wider fixed-speed bandwidth is used instead of the staging bandwidth.

6.1.9 Pump Staging with Lead Pump Alternation

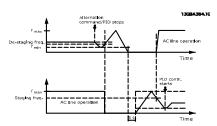
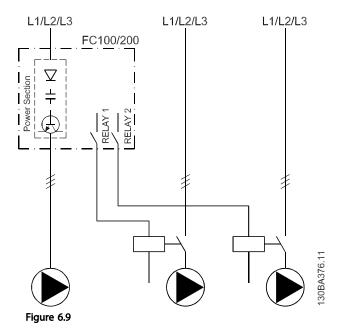


Figure 6.8

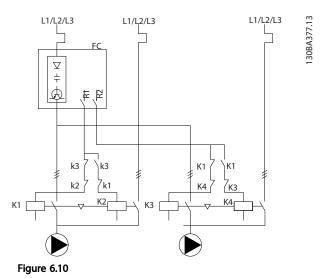
With lead pump alternation enabled, a maximum of two pumps are controlled. At an alternation command, the lead pump will ramp to minimum frequency (fmin), and after a delay, it will ramp to maximum frequency (fmax). When the speed of the lead pump reaches the de-staging frequency, the fixed-speed pump will be cut out (destaged). The lead pump continues to ramp up and then ramps down to a stop and the two relays are cut out.

After a time delay, the relay for the fixed-speed pump cuts in (staged) and this pump becomes the new lead pump. The new lead pump ramps up to maximum speed and then down to minimum speed when ramping down and reaching the staging frequency, the old lead pump is now cut in (staged) on line power as the new fixed-speed pump.

If the lead pump has been running at minimum frequency (fmin) for a programmed amount of time, with a fixed-speed pump running, the lead pump contributes little to the system. When the programmed value of the timer expires, the lead pump is removed, avoiding a heat water-circulation problem.


6.1.10 System Status and Operation

If the lead pump goes into sleep mode, the function is displayed on the LCP. It is possible to alternate the lead pump on a sleep mode condition.


When the Cascade Controller is enabled, the operation status for each pump and the Cascade Controller is displayed on the LCP. Information displayed includes:

- Pumps Status, is a readout of the status for the relays assigned to each pump. The display shows pumps that are disabled, off, running on the Adjustable frequency drive or running on line power/ the motor starter.
- Cascade Status, is a readout of the status for the Cascade Controller. The display shows the Cascade Controller is disabled, all pumps are off, and emergency has stopped all pumps, all pumps are running, fixed-speed pumps are being staged/de-staged and lead pump alternation is occurring.
- De-stage at No-Flow ensures that all fixed-speed pumps are stopped individually until the no-flow status disappears.

6.1.11 Fixed Variable Speed Pump Wiring Diagram

6.1.12 Lead Pump Alternation Wiring Diagram

Every pump must be connected to two contactors (K1/K2 and K3/K4) with a mechanical interlock. Thermal relays or other motor protection devices must be applied according to local regulation and/or individual demands.

- RELAY 1 (R1) and RELAY 2 (R2) are the built-in relays in the Adjustable frequency drive.
- When all relays are de-energized, the first built-in relay to be energized will cut in the contactor corresponding to the pump controlled by the relay. For example, RELAY 1 cuts in contactor K1, which becomes the lead pump.
- K1 blocks for K2 via the mechanical interlock preventing line power from being connected to the output of the Adjustable frequency drive (via K1).
- Auxiliary break contact on K1 prevents K3 from cutting in.
- RELAY 2 controls contactor K4 for on/off control of the fixed speed pump.
- At alternation, both relays de-energize, and RELAY 2 will be energized as the first relay.

6

6.1.13 Cascade Controller Wiring Diagram

The wiring diagram shows an example with the built-in BASIC Cascade Controller with one variable-speed pump (lead) and two fixed-speed pumps, a 4-20 mA transmitter and system safety interlock.

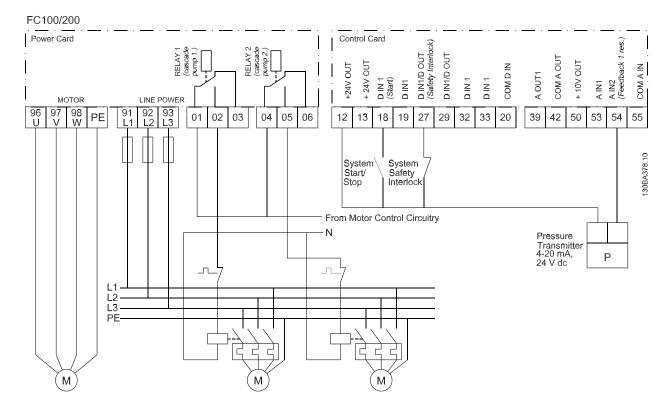


Figure 6.11

6.1.14 Start/Stop Conditions

Commands assigned to digital inputs. See Digital Inputs, parameter group 5-1*.

	Variable-speed pump (lead)	Fixed-speed pumps
Start (SYSTEM START /STOP)	Ramps up (if stopped and there is a	Staging (if stopped and there is a demand)
	demand)	
Lead Pump Start	Ramps up if SYSTEM START is active	Not affected
Coast (EMERGENCY STOP)	Coast to stop	Cut out (built in relays are de-energized)
External Interlock	Coast to stop	Cut out (built in relays are de-energized)

Table 6.1

Application Examples VLT® HVAC Drive Design Guide

Function of buttons on LCP:

	Variable-speed pump (lead)	Fixed-speed pumps
Hand On	Ramps up (if stopped by a normal stop	De-staging (if running)
	command) or stays in operation if already	
	running.	
Off	Ramps down	De-staging
Auto On	Starts and stops according to commands	Staging/De-staging
	sent via terminals or serial bus.	

Table 6.2

6

7 RS-485 Installation and Set-up

7.1 RS-485 Installation and Set-up

RS-485 is a two-wire bus interface compatible with multidrop network topology, i.e., nodes can be connected as a bus, or via drop cables from a common trunk line. A total of 32 nodes can be connected to one network segment. Repeaters divide network segments. Please note that each repeater functions as a node within the segment in which it is installed. Each node connected within a given network must have a unique node address across all segments. Terminate each segment at both ends using either the termination switch (S801) of the adjustable frequency drives or a biased termination resistor network. Always use shielded twisted pair (STP) cable for bus cabling, and always follow good common installation practice. Low-impedance ground connection of the shield at every node is important, including at high frequencies. Thus, connect a large surface of the shield to ground, for example, with a cable clamp or a conductive cable connector. It may be necessary to apply potentialequalizing cables to maintain the same ground potential throughout the network - particularly in installations with long cables.

To prevent impedance mismatch, always use the same type of cable throughout the entire network. When connecting a motor to the Adjustable frequency drive, always use shielded motor cable.

Cable: Shielded twisted pair (STP)	
Impedance: 120Ω	
Cable length: Max. 3,396 ft [1,200 m] (including drop lines)	
Max. 1,640 ft [500 m] station-to-station	

Table 7.1

7.1.1 Network Connection

One or more adjustable frequency drives can be connected to a control (or master) using the RS-485 standardized interface. Terminal 68 is connected to the P signal (TX+, RX+), while terminal 69 is connected to the N signal (TX-,RX-). See drawings in 5.7.3 Grounding of Shielded/Armored Control Cables

If more than one Adjustable frequency drive is connected to a master, use parallel connections.

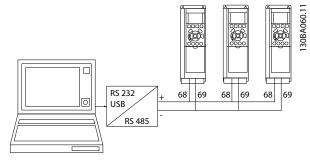


Figure 7.1

In order to avoid potential equalizing currents in the shield, ground the cable shield via terminal 61, which is connected to the frame via an RC link.

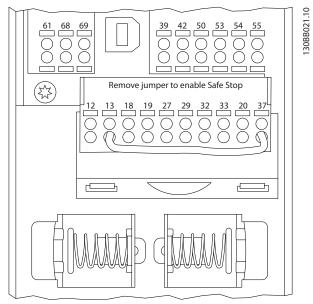


Figure 7.2 Control Card Terminals

7.1.2 Adjustable Frequency Drive Hardware Setup

Use the terminator dip switch on the main control board of the Adjustable frequency drive to terminate the RS-485 bus.

Figure 7.3 Terminator Switch Factory Setting

The factory setting for the dip switch is OFF.

7.1.3 Adjustable Frequency Drive Parameter Settings for Modbus Communication

The following parameters apply to the RS-485 interface (FC-port):

Parameter	Function
8-30 Protocol	Select the application protocol to run on
	the RS-485 interface
8-31 Address	Set the node address. Note: The address
	range depends on the protocol selected in
	8-30 Protocol
8-32 Baud Rate	Set the baud rate. Note: The default baud
	rate depends on the protocol selected in
	8-30 Protocol
8-33 Parity / Stop	Set the parity and number of stop bits.
Bits	Note: The default selection depends on the
	protocol selected in 8-30 Protocol
8-35 Minimum	Specify a minimum delay time between
Response Delay	receiving a request and transmitting a
	response. This can be used for overcoming
	modem turnaround delays.
8-36 Maximum	Specify a maximum delay time between
Response Delay	transmitting a request and receiving a
	response.
8-37 Maximum	Specify a maximum delay time between
Inter-Char Delay	two received bytes to ensure timeout if
	transmission is interrupted.

Table 7.2

7.1.4 EMC Precautions

The following EMC precautions are recommended in order to achieve interference-free operation of the RS-485 network.

Relevant national and local regulations, for example regarding protective ground connection, must be observed. The RS-485 communication cable must be kept away from motor and brake resistor cables to avoid coupling of high frequency noise from one cable to another. Normally a distance of 200mm (8 inches) is sufficient, but keeping the greatest possible distance between the cables is generally recommended, especially where cables run in parallel over long distances. When crossing is unavoidable, the RS-485 cable must cross motor and brake resistor cables at an angle of 90 degrees.

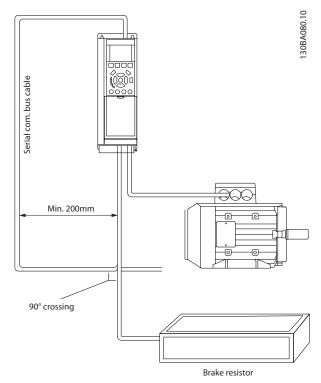


Figure 7.4

7.2 Adjustable Frequency Protocol Overview

The adjustable frequency drive protocol, also referred to as adjustable frequency drive bus or standard bus, is the Danfoss standard serial communication bus. It defines an access technique according to the master-slave principle for communications via a serial bus.

One master and a maximum of 126 slaves can be connected to the bus. The master selects the individual slaves via an address character in the message. A slave itself can never transmit without first being requested to do so, and direct message transfer between the individual slaves is not possible. Communications occur in the halfduplex mode.

The master function cannot be transferred to another node (single-master system).

The physical layer is RS-485, thus utilizing the RS-485 port built into the Adjustable frequency drive. The FC protocol supports different message formats:

- A short format of 8 bytes for process data.
- A long format of 16 bytes that also includes a parameter channel.
- A format used for texts.

7.2.1 FC with Modbus RTU

The FC protocol provides access to the control Word and bus reference of the Adjustable frequency drive.

The control word allows the Modbus master to control several important functions of the Adjustable frequency drive:

- Start
- Stop of the Adjustable frequency drive in various ways:

Coast stop

Quick stop

DC Brake stop Normal (ramp) stop

- Reset after a fault trip
- Run at a variety of preset speeds
- Run in reverse
- Change of the active set-up
- Control of the two relays built into the Adjustable frequency drive

The bus reference is commonly used for speed control. It is also possible to access the parameters, read their values, and where possible, write values to them. This permits a range of control options, including controlling the setpoint of the Adjustable frequency drive when its internal PID controller is used.

7.3 Network Configuration

7.3.1 Adjustable Frequency Drive Set-up

Set the following parameters to enable the FC protocol for the Adjustable frequency drive.

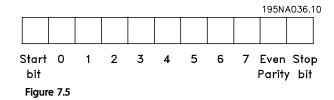

Parameter Number	Setting
8-30 Protocol	FC
8-31 Address	1–126
8-32 Baud Rate	2400–115200
8-33 Parity / Stop	Even parity, 1 stop bit (default)
Bits	

Table 7.3

7.4 FC Protocol Message Framing Structure

7.4.1 Content of a Character (byte)

Each character transferred begins with a start bit. Then 8 data bits are transferred, corresponding to a byte. Each character is secured via a parity bit. This bit is set at "1" when it reaches parity. Parity is when there is an equal number of 1s in the 8 data bits and the parity bit in total. A stop bit completes a character, thus consisting of 11 bits in all.

7.4.2 Message Structure

Each message has the following structure:

- 1. Start character (STX)=02 Hex
- 2. A byte denoting the message length (LGE)
- 3. A byte denoting the Adjustable frequency drive address (ADR)

A number of data bytes (variable, depending on the type of message) follows.

A data control byte (BCC) completes the message.

Figure 7.6

7.4.3 Message Length (LGE)

The message length is the number of data bytes plus the address byte ADR and the data control byte BCC.

The length of messages with 4 data bytes is LGE = 4 + 1 + 1 = 6 bytes The length of messages with 12 data bytes is LGE = 12 + 1 + 1 = 14 bytes The length of messages containing texts is 10^{11} +n bytes

7.4.4 Adjustable Frequency Drive Address (ADR)

Two different address formats are used.

The address range of the Adjustable frequency drive is either 1-31 or 1-126.

1. Address format 1-31:

Bit 7 = 0 (address format 1-31 active)

Bit 6 is not used

Bit 5 = 1: Broadcast, address bits (0-4) are not used

Bit 5 = 0: No Broadcast

Bit 0-4 = Adjustable frequency drive address 1-31

2. Address format 1-126:

Bit 7 = 1 (address format 1-126 active)

Bit 0-6 = Adjustable frequency drive address 1-126

Bit 0-6 = 0 Broadcast

The slave returns the address byte unchanged to the master in the response message.

7.4.5 Data Control Byte (BCC)

The checksum is calculated as an XOR-function. Before the first byte in the message is received, the calculated checksum is 0.

7.4.6 The Data Field

The structure of data blocks depends on the type of message. There are three message types, and the type applies for both control messages (master=>slave) and response messages (slave=>master).

The three types of message are:

Process block (PCD)

The PCD is made up of a data block of 4 bytes (two words) and contains:

- Control word and reference value (from master to slave)
- Status word and present output frequency (from slave to master)

¹⁾ The 10 represents the fixed characters, while the "n" is variable (depending on the length of the text).

130BA269.10

Figure 7.7

VLT® HVAC Drive Design Guide

Parameter block

The parameter block is used to transfer parameters between master and slave. The data block is made up of 12 bytes (6 words) and also contains the process block.

Figure 7.8

Text block

The text block is used to read or write texts via the data block.

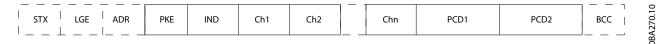


Figure 7.9

7.4.7 The PKE Field

The PKE field contains two sub-fields: Parameter command and response AK, and parameter number PNU:

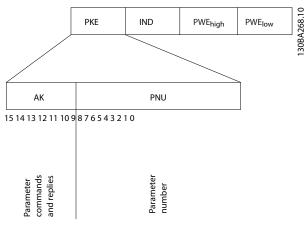


Figure 7.10

Bits no. 12-15 transfer parameter commands from master to slave and return processed slave responses to the master.

Parameter commands master ⇒ slave							
Bit no.				Parameter command			
15	14	13	12				
0	0	0	0	No command			
0	0	0	1	Read parameter value			
0	0	1	0	Write parameter value in RAM (word)			
0	0	1	1	Write parameter value in RAM (double word)			
1	1	0	1	Write parameter value in RAM and EEPROM (double word)			
1	1	1	0	Write parameter value in RAM and EEPROM (word)			
1	1	1	1	Read/write text			

Table 7.4

Response slave ⇒master							
Bit no.				Response			
15	14	13	12				
0	0	0	0	No response			
0	0	0	1	Parameter value transferred (word)			
0	0	1	0	Parameter value transferred (double word)			
0	1	1	1	Command cannot be performed			
1	1	1	1	text transferred			

Table 7.5

If the command cannot be performed, the slave sends this response:

0111 Command cannot be performed

- and issues the following fault report in the parameter value (PWE):

PWE low (Hex)	Fault Report				
0	The parameter number used does not exit.				
1	There is no write access to the defined parameter				
2	Data value exceeds the parameter's limits				
3	The sub index used does not exit.				
4	The parameter is not the array type.				
5	The data type does not match the defined parameter				
11	Data change in the defined parameter is not possible in the adjustable frequency drive's present mode.				
	Certain parameters can only be changed when the motor is turned off				
82	There is no bus access to the defined parameter				
83	Data change is not possible because the factory set-up is selected.				

Table 7.6

7.4.8 Parameter Number (PNU)

Bits no. 0-11 transfer parameter numbers. The function of the relevant parameter is defined in the parameter description in .

7.4.9 Index (IND)

The index is used together with the parameter number to read/write-access parameters with an index, e.g., 15-30 Alarm Log: Error Code. The index consists of 2 bytes, a low byte and a high byte.

Only the low byte is used as an index.

7.4.10 Parameter Value (PWE)

The parameter value block consists of 2 words (4 bytes), and the value depends on the defined command (AK). The master prompts for a parameter value when the PWE block contains no value. To change a parameter value (write), write the new value in the PWE block and send from the master to the slave.

When a slave responds to a parameter request (read command), the present parameter value in the PWE block is transferred and returned to the master. If a parameter contains not a numerical value but several data options, e.g., *0-01 Language* where [0] corresponds to English, and [4] corresponds to Danish, select the data value by entering the value in the PWE block. See Example - Selecting a data value. Serial communication is only capable of reading parameters containing data type 9 (text string).

15-40 FC Type to 15-53 Power Card Serial Number contain data type 9.

For example, read the unit size and AC line voltage range in 15-40 FC Type. When a text string is transferred (read), the length of the message is variable, and the texts are of different lengths. The message length is defined in the second byte of the message, LGE. When using text transfer the index character indicates whether it is a read or a write command.

To read a text via the PWE block, set the parameter command (AK) to 'F' Hex. The index character high-byte must be "4".

Some parameters contain text that can be written to via the serial bus. To write a text via the PWE block, set the parameter command (AK) to 'F' Hex. The index characters high-byte must be "5".

	PKE	IND	PWE high PWE low	5.10
Read text	Fx xx	04 00		30BA27
Write text	Fx xx	05 00] -	130

Figure 7.11

7.4.11 Data Types Supported by the Adjustable Frequency Drive

Unsigned means that there is no operational sign in the telegram.

Data types	Description
3	Integer 16
4	Integer 32
5	Unsigned 8
6	Unsigned 16
7	Unsigned 32
9	Text string
10	Byte string
13	Time difference
33	Reserved
35	Bit sequence

Table 7.7

7.4.12 Conversion

The various attributes of each parameter are displayed in the section Factory Settings. Parameter values are transferred as whole numbers only. Conversion factors are therefore used to transfer decimals.

4-12 Motor Speed Low Limit [Hz] has a conversion factor of 0.1.

To preset the minimum frequency to 10 Hz, transfer the value 100. A conversion factor of 0.1 means that the value transferred is multiplied by 0.1. The value 100 is thus perceived as 10.0.

Examples:

0s --> conversion index 0 0.00s --> conversion index -2 0ms --> conversion index -3 0.00ms --> conversion index -5

Conversion index	Conversion factor
100	
75	
74	
67	
6	1000000
5	100000
4	10000
3	1000
2	100
1	10
0	1
-1	0.1
-2	0.01
-3	0.001
-4	0.0001
-5	0.00001
-6	0.000001
-7	0.0000001

Table 7.8 Conversion Table

7.4.13 Process Words (PCD)

The block of process words is divided into two blocks of 16 bits, which always occur in the defined sequence.

PCD 1	PCD 2
Control message (master⇒ slave Control word)	Reference value
Control message (slave ⇒ master) Status	Present output
word	frequency

Table 7.9

7.5 Examples

7.5.1 Writing a Parameter Value

Change 4-14 Motor Speed High Limit [Hz] to 100 Hz. Write the data in EEPROM.

PKE = E19E Hex - Write single word in *4-14 Motor Speed High Limit [Hz]*

IND = 0000 Hex

PWEHIGH = 0000 Hex

PWELOW = 03E8 Hex - Data value 1000, corresponding to 100 Hz, see Conversion.

The telegram will look like this:

30BA092.10

30BA093.10

30BA094.10

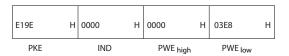


Figure 7.12

NOTE!

4-14 Motor Speed High Limit [Hz] is a single word, and the parameter command for write in EEPROM is "E". Parameter number 4-14 is 19E in hexadecimal.

The response from the slave to the master will be:

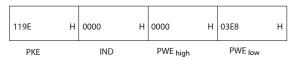


Figure 7.13

7.5.2 Reading a Parameter Value

Read the value in 3-41 Ramp 1 Ramp Up Time

PKE = 1155 Hex - Read parameter value in 3-41 Ramp 1 Ramp Up Time

IND = 0000 Hex

PWEHIGH = 0000 Hex

PWELOW = 0000 Hex

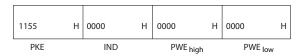


Figure 7.14

If the value in 3-41 Ramp 1 Ramp Up Time is 10 s, the response from the slave to the master will be:

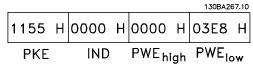


Figure 7.15

3E8 Hex corresponds to 1000 decimal. The conversion index for 3-41 Ramp 1 Ramp Up Time is -2, i.e., 0.01. 3-41 Ramp 1 Ramp Up Time is of the type Unsigned 32.

7.6 Modbus RTU Overview

7.6.1 Assumptions

Danfoss assumes that the installed controller supports the interfaces in this document, and strictly observes all requirements and limitations stipulated in the controller and Adjustable frequency drive.

7.6.2 What the User Should Already Know

The Modbus RTU (Remote Terminal Unit) is designed to communicate with any controller that supports the interfaces defined in this document. It is assumed that the user has full knowledge of the capabilities and limitations of the controller.

7.6.3 Modbus RTU Overview

Regardless of the type of physical communication networks, the Modbus RTU Overview describes the process a controller uses to request access to another device. This process includes how the Modbus RTU responds to requests from another device, and how errors are detected and reported. It also establishes a common format for the layout and contents of message fields.

During communications over a Modbus RTU network, the protocol determines:

How each controller learns its device address

Recognizes a message addressed to it

Determines which actions to take

Extracts any data or other information contained in the message

If a reply is required, the controller constructs the reply message and sends it.

Controllers communicate using a master-slave technique in which only one device (the master) can initiate transactions (called queries). The other devices (slaves) respond by supplying the requested data to the master or taking the action requested in the query.

The master can address individual slaves or initiate a broadcast message to all slaves. Slaves return a message (called a response) to queries that are addressed to them individually. No responses are returned to broadcast queries from the master. The Modbus RTU protocol establishes the format for the master's query by placing into it the device (or broadcast) address, a function code defining the requested action, any data to be sent and an error-checking field. The slave's response message is also constructed using Modbus protocol. It contains fields

confirming the action taken, any data to be returned and an error-checking field. If an error occurs in receipt of the message, or if the slave is unable to perform the requested action, the slave will construct an error message, and send it in response, or a timeout occurs.

7.6.4 Adjustable Frequency Drive with Modbus RTU

The Adjustable frequency drive communicates in Modbus RTU format over the built-in RS-485 interface. Modbus RTU provides access to the control word and bus reference of the Adjustable frequency drive.

The control word allows the Modbus master to control several important functions of the Adjustable frequency drive:

- Start
- Stop of the Adjustable frequency drive in various ways:

Coast stop

Quick stop

DC Brake stop

Normal (ramp) stop

- Reset after a fault trip
- Run at a variety of preset speeds
- Run in reverse
- Change the active set-up
- Control the adjustable frequency drive's built-in relay

The bus reference is commonly used for speed control. It is also possible to access the parameters, read their values, and where possible, write values to them. This permits a range of control options, including controlling the setpoint of the Adjustable frequency drive when its internal PI controller is used.

7.7 Network Configuration

7.7.1 Adjustable Frequency Drive with Modbus RTU

To enable Modbus RTU on the Adjustable frequency drive, set the following parameters

Parameter	Setting
8-30 Protocol	Modbus RTU
8-31 Address	1 - 247
8-32 Baud Rate	2400 - 115200
8-33 Parity / Stop Bits	Even parity, 1 stop bit (default)

Table 7.10

7.8 Modbus RTU Message Framing Structure

7.8.1 Adjustable Frequency Drive with Modbus RTU

The controllers are set up to communicate on the Modbus network using RTU (Remote Terminal Unit) mode, with each byte in a message containing two 4-bit hexadecimal characters. The format for each byte is shown in *Table 7.11*.

Start	Data byte					Stop/	Stop			
bit					parity					

Table 7.11

Coding System	8-bit binary, hexadecimal 0-9, A-F. 2	
	hexadecimal characters contained in each 8-	
	bit field of the message	
Bits Per Byte	1 start bit	
	8 data bits, least significant bit sent first	
	1 bit for even/odd parity; no bit for no	
	parity	
	1 stop bit if parity is used; 2 bits if no parity	
Error Check Field	Cyclical Redundancy Check (CRC)	

Table 7.12

7.8.2 Modbus RTU Message Structure

The transmitting device places a Modbus RTU message into a frame with a known beginning and ending point. This allows receiving devices to begin at the start of the message, read the address portion, determine which device is addressed (or all devices, if the message is broadcast), and to recognize when the message is completed. Partial messages are detected, and errors are set as a result. Characters for transmission must be in hexadecimal 00 to FF format in each field. The Adjustable frequency drive continuously monitors the network bus, also during 'silent' intervals. When the first field (the address field) is received, each Adjustable frequency drive or device decodes it to determine which device is being addressed. Modbus RTU messages addressed to zero are broadcast messages. No response is permitted for broadcast messages. A typical message frame is shown in Table 7.13.

Start	Address	Function	Data	CRC	End
				check	
T1-T2-T3-	8 bits	8 bits	N x 8	16 bits	T1-T2-T3-
T4			bits		T4

Table 7.13 Typical Modbus RTU Message Structure

7.8.3 Start/Stop Field

Messages start with a silent period of at least 3.5 character intervals. This is implemented as a multiple of character intervals at the selected network baud rate (shown as Start T1-T2-T3-T4). The first field to be transmitted is the device address. Following the last transmitted character, a similar period of at least 3.5 character intervals marks the end of the message. A new message can begin after this period. The entire message frame must be transmitted as a continuous stream. If a silent period of more than 1.5 character intervals occurs before completion of the frame, the receiving device flushes the incomplete message and assumes that the next byte will be the address field of a new message. Similarly, if a new message begins prior to 3.5 character intervals after a previous message, the receiving device will consider it a continuation of the previous message. This will cause a timeout (no response from the slave), since the value in the final CRC field will not be valid for the combined messages.

7.8.4 Address Field

The address field of a message frame contains 8 bits. Valid slave device addresses are in the range of 0–247 decimal. The individual slave devices are assigned addresses in the range of 1 – 247. (0 is reserved for broadcast mode, which

all slaves recognize.) A master addresses a slave by placing the slave address in the address field of the message. When the slave sends its response, it places its own address in this address field to let the master know which slave is responding.

7.8.5 Function Field

The function field of a message frame contains 8 bits. Valid codes are in the range of 1-FF. Function fields are used to send messages between master and slave. When a message is sent from a master to a slave device, the function code field tells the slave what kind of action to perform. When the slave responds to the master, it uses the function code field to indicate either a normal (errorfree) response, or that some kind of error occurred (called an exception response). For a normal response, the slave simply echoes the original function code. For an exception response, the slave returns a code that is equivalent to the original function code with its most significant bit set to logic 1. In addition, the slave places a unique code into the data field of the response message. This tells the master what kind of error occurred, or the reason for the exception. Please also refer to 7.8.10 Function Codes Supported by Modbus RTU and 7.8.11 Modbus Exception Codes

7.8.6 Data Field

The data field is constructed using sets of two hexadecimal digits, in the range of 00 to FF hexadecimal. These are made up of one RTU character. The data field of messages sent from a master to slave device contains additional information that the slave must use to take the action defined by the function code. This can include items such as coil or register addresses, the quantity of items to be handled and the count of actual data bytes in the field.

7.8.7 CRC Check Field

Messages include an error-checking field, operating on the basis of a Cyclical Redundancy Check (CRC) method. The CRC field checks the contents of the entire message. It is applied regardless of any parity check method used for the individual characters of the message. The CRC value is calculated by the transmitting device, which appends the CRC as the last field in the message. The receiving device recalculates a CRC during receipt of the message and compares the calculated value to the actual value received in the CRC field. If the two values are unequal, a bus timeout results. The error-checking field contains a 16-bit binary value implemented as two 8-bit bytes. When this is done, the low-order byte of the field is appended first,

followed by the high-order byte. The CRC high-order byte is the last byte sent in the message.

7.8.8 Coil Register Addressing

In Modbus, all data are organized in coils and holding registers. Coils hold a single bit, whereas holding registers hold a 2-byte word (i.e., 16 bits). All data addresses in Modbus messages are referenced to zero. The first occurrence of a data item is addressed as item number

zero. For example: The coil known as 'coil 1' in a programmable controller is addressed as coil 0000 in the data address field of a Modbus message. Coil 127 decimal is addressed as coil 007EHEX (126 decimal). Holding register 40001 is addressed as register 0000 in the data address field of the message. The function code field already specifies a 'holding register' operation. Therefore, the '4XXXX' reference is implicit. Holding register 40108 is

addressed as register 006BHEX (107 decimal).

Coil Number	Descripti	on	Signal Direction
1-16	Adjustab	le frequency drive control word (see table below)	Master to slave
17-32	Adjustab	le frequency drive speed or setpoint reference Range 0x0 – 0xFFFF	Master to slave
	(-200%	~200%)	
33-48	Adjustab	le frequency drive status word (see table below)	Slave to master
49-64	Open-loc	pp mode: Adjustable frequency drive output frequency Closed-loop	Slave to master
	mode: A	djustable frequency drive feedback signal	
65	Paramete	er write control (master to slave)	Master to slave
	0 =	Parameter changes are written to the RAM of the Adjustable	
		frequency drive	
	1 =	Parameter changes are written to the RAM and EEPROM of the	
		Adjustable frequency drive.	
66-65536	Reserved		

Table 7.14

Coil	0	1			
01	Preset reference LSB				
02	Preset reference MSB				
03	DC brake	No DC brake			
04	Coast stop	No coast stop			
05	Quick stop	No quick stop			
06	Freeze freq.	No freeze freq.			
07	Ramp stop	Start			
08	No reset	Reset			
09	No jog	Jog			
10	Ramp 1	Ramp 2			
11	Data not valid	Data valid			
12	Relay 1 off	Relay 1 on			
13	Relay 2 off	Relay 2 on			
14	Set up LSB				
15	Set up MSB				
16	No reversing	Reversing			
Adjustab	Adjustable frequency drive control word (FC profile)				

Table 7.15

Coil	0	1			
33	Control not ready	Control ready			
34	Adjustable frequency drive	Adjustable frequency drive			
	not ready	ready			
35	Coasting stop	Safety closed			
36	No alarm	Alarm			
37	Not used	Not used			
38	Not used	Not used			
39	Not used	Not used			
40	No warning	Warning			
41	Not at reference	At reference			
42	Hand mode	Auto mode			
43	Out of freq. range	In frequency range			
44	Stopped	Running			
45	Not used	Not used			
46	No voltage warning	Voltage warning			
47	Not in current limit	Current limit			
48	No thermal warning	Thermal warning			
Adjustab	Adjustable frequency drive status word (FC profile)				

Table 7.16

Holding registers	folding registers				
Register Number	Description				
00001-00006	Reserved				
00007	Last error code from an FC data object interface				
00008	Reserved				
00009	Parameter index*				
00010-00990	000 parameter group (parameters 001 through 099)				
01000-01990	100 parameter group (parameters 100 through 199)				
02000-02990	200 parameter group (parameters 200 through 299)				
03000-03990	300 parameter group (parameters 300 through 399)				
04000-04990	400 parameter group (parameters 400 through 499)				
49000-49990	4900 parameter group (parameters 4900 through 4999)				
50000	Input data: Adjustable frequency drive control word register (CTW).				
50010	Input data: Bus reference register (REF).				
50200	Output data: Adjustable frequency drive status word register (STW).				
50210	Output data: Adjustable frequency drive main actual value register (MAV).				

Table 7.17

^{*} Used to specify the index number to be used when accessing an indexed parameter.

7.8.9 How to Control the Adjustable Frequency Drive

This section describes codes which can be used in the function and data fields of a Modbus RTU message.

7.8.10 Function Codes Supported by Modbus RTU

Modbus RTU supports use of the following function codes in the function field of a message.

Function	Function Code
Read coils	1 hex
Read holding registers	3 hex
Write single coil	5 hex
Write single register	6 hex
Write multiple coils	F hex
Write multiple registers	10 hex
Get comm. event counter	B hex
Report slave ID	11 hex

Table 7.18

Function	Function Code	Sub- function code	Sub-function
Diagnostic	8	1	Restart communication
s		2	Return diagnostic register
		10	Clear counters and
			diagnostic register
		11	Return bus message count
		12	Return bus communication
			error count
		13	Return bus exception error
			count
		14	Return slave message count

Table 7.19

7.8.11 Modbus Exception Codes

For a full explanation of the structure of an exception code response, please refer to , *Function Field*.

Modbus Exception Codes		
Co	Name	Meaning
de		

	Modbus Exception Codes		
1	Illegal	The function code received in the query is	
	function	not an allowable action for the server (or	
		slave). This may be because the function	
		code is only applicable to newer devices	
		and was not implemented in the unit	
		selected. It could also indicate that the	
		server (or slave) is in the wrong state to	
		process a request of this type, for example	
		because it is not configured and is being	
		asked to return register values.	
2	Illegal data	The data address received in the query is	
	address	not an allowable address for the server (or	
		slave). More specifically, the combination of	
		reference number and transfer length is	
		invalid. For a controller with 100 registers, a	
		request with offset 96 and length 4 would	
		succeed, a request with offset 96 and length	
		5 will generate exception 02.	
3	Illegal data	A value contained in the query data field is	
	value	not an allowable value for server (or slave).	
		This indicates a fault in the structure of the	
		remainder of a complex request, such as	
		that the implied length is incorrect. It specif-	
		ically does NOT mean that a data item	
		submitted for storage in a register has a	
		value outside the expectation of the	
		application program, since the Modbus	
		protocol is unaware of the significance of	
		any particular value of any particular	
		register.	
4	Slave device	An unrecoverable error occurred while the	
	failure	server (or slave) was attempting to perform	
		the requested action.	

Table 7.20

7.9 How to Access Parameters

7.9.1 Parameter Handling

The PNU (Parameter Number) is translated from the register address contained in the Modbus read or write message. The parameter number is translated to Modbus as (10 x parameter number) DECIMAL.

7.9.2 Storage of Data

The Coil 65 decimal determines whether data written to the Adjustable frequency drive are stored in EEPROM and RAM (coil 65 = 1) or only in RAM (coil 65 = 0).

7.9.3 IND

The array index is set in Holding Register 9 and used when accessing array parameters.

7.9.4 Text Blocks

Parameters stored as text strings are accessed in the same way as the other parameters. The maximum text block size is 20 characters. If a read request for a parameter is for more characters than the parameter stores, the response is truncated. If the read request for a parameter is for fewer characters than the parameter stores, the response is padded with spaces.

7.9.5 Conversion Factor

The different attributes for each parameter can be seen in the section on factory settings. Since a parameter value can only be transferred as a whole number, a conversion factor must be used to transfer decimals.

7.9.6 Parameter Values

Standard Data Types

Standard data types are int16, int32, uint8, uint16 and uint32. They are stored as 4x registers (40001 – 4FFFF). The parameters are read using function 03HEX "Read Holding Registers." Parameters are written using the function 6HEX "Preset Single Register" for 1 register (16 bits), and the function 10HEX "Preset Multiple Registers" for 2 registers (32 bits). Readable sizes range from 1 register (16 bits) up to 10 registers (20 characters).

Non standard Data Types

Non standard data types are text strings stored as 4x registers (40001–4FFFF). The parameters are read using function 03HEX "Read Holding Registers" and written using function 10HEX "Preset Multiple Registers." Readable sizes range from 1 register (2 characters) up to 10 registers (20 characters).

7.10 Examples

The following examples illustrate various Modbus RTU commands. If an error occurs, please refer to the Exception Codes section.

7.10.1 Read Coil Status (01 HEX)

Description

This function reads the ON/OFF status of discrete outputs (coils) in the Adjustable frequency drive. Broadcast is never supported for reads.

Query

The query message specifies the starting coil and quantity of coils to be read. Coil addresses start at zero, i.e., coil 33 is addressed as 32.

Example of a request to read coils 33-48 (Status Word) from slave device 01.

Field Name	Example (HEX)
Slave Address	01 (Adjustable frequency drive
	address)
Function	01 (read coils)
Starting Address HI	00
Starting Address LO	20 (32 decimals) Coil 33
No. of Points HI	00
No. of Points LO	10 (16 decimals)
Error Check (CRC)	-

Table 7.21

Response

The coil status in the response message is packed as one coil per bit of the data field. Status is indicated as: 1 = ON; 0 = OFF. The LSB of the first data byte contains the coil addressed in the query. The other coils follow toward the high order end of this byte, and from 'low order to high order' in subsequent bytes.

If the returned coil quantity is not a multiple of eight, the remaining bits in the final data byte will be padded with zeros (toward the high order end of the byte). The Byte Count field specifies the number of complete bytes of data.

Field Name	Example (HEX)
Slave Address	01 (Adjustable frequency drive
	address)
Function	01 (read coils)
Byte Count	02 (2 bytes of data)
Data (Coils 40-33)	07
Data (Coils 48-41)	06 (STW=0607hex)
Error Check (CRC)	-

Table 7.22

NOTE!

Coils and registers are addressed explicit with an off-set of -1 in Modbus.

For example, Coil 33 is addressed as Coil 32.

7.10.2 Force/Write Single Coil (05 HEX)

Description

This function forces the coil to either ON or OFF. When broadcast the function forces the same coil references in all attached slaves.

Query

The query message specifies the coil 65 (parameter write control) to be forced. Coil addresses start at zero, i.e., coil 65 is addressed as 64. Force Data = 00 00HEX (OFF) or FF 00HEX (ON).

Field Name	Example (HEX)
Slave Address	01 (Adjustable frequency drive
	address)
Function	05 (write single coil)
Coil Address HI	00
Coil Address LO	40 (64 decimal) Coil 65
Force Data HI	FF
Force Data LO	00 (FF 00 = ON)
Error Check (CRC)	-

Table 7.23

Response

The normal response is an echo of the query, which is returned after the coil state has been forced.

Field Name	Example (HEX)
Slave Address	01
Function	05
Force Data HI	FF
Force Data LO	00
Quantity of Coils HI	00
Quantity of Coils LO	01
Error Check (CRC)	-

Table 7.24

7.10.3 Force/Write Multiple Coils (0F HEX)

This function forces each coil in a sequence of coils to either ON or OFF. When broadcast the function forces the same coil references in all attached slaves.

The query message specifies the coils 17 to 32 (speed setpoint) to be forced.

NOTE!

Coil addresses start at zero, i.e., coil 17 is addressed as 16.

Field Name	Example (HEX)
Slave Address	01 (Adjustable frequency drive
	address)
Function	0F (write multiple coils)
Coil Address HI	00
Coil Address LO	10 (coil address 17)
Quantity of Coils HI	00
Quantity of Coils LO	10 (16 coils)
Byte Count	02
Force Data HI	20
(Coils 8-1)	
Force Data LO	00 (ref. = 2000hex)
(Coils 10-9)	
Error Check (CRC)	-

Table 7.25

Response

The normal response returns the slave address, function code, starting address, and quantity of coils forced.

Field Name	Example (HEX)
Slave Address	01 (Adjustable frequency drive
	address)
Function	0F (write multiple coils)
Coil Address HI	00
Coil Address LO	10 (coil address 17)
Quantity of Coils HI	00
Quantity of Coils LO	10 (16 coils)
Error Check (CRC)	-

Table 7.26

7.10.4 Read Holding Registers (03 HEX)

Description

This function reads the contents of holding registers in the slave.

Query

The query message specifies the starting register and quantity of registers to be read. Register addresses start at zero, i.e., registers 1-4 are addressed as 0-3.

Example: Read 3-03 Maximum Reference, register 03030.

Field Name	Example (HEX)
Slave Address	01
Function	03 (read holding registers)
Starting Address HI	OB (Register address 3029)
Starting Address LO	05 (Register address 3029)
No. of Points HI	00
No. of Points LO	02 - (Par. 3-03 is 32 bits long, i.e.,
	2 registers)
Error Check (CRC)	-

Table 7.27

Response

The register data in the response message are packed as two bytes per register, with the binary contents rightjustified within each byte. For each register, the first byte contains the high order bits and the second contains the low order bits.

Example: Hex 0016E360 = 1.500.000 = 1500 RPM.

Field Name	Example (HEX)
Slave Address	01
Function	03
Byte Count	04
Data HI	00
(Register 3030)	
Data LO	16
(Register 3030)	
Data HI	E3
(Register 3031)	
Data LO	60
(Register 3031)	
Error Check	-
(CRC)	

Table 7.28

7.10.5 Preset Single Register (06 HEX)

Description

This function presets a value into a single holding register.

Query

The query message specifies the register reference to be preset. Register addresses start at zero, i.e., register 1 is addressed as 0.

Example: Write to 1-00 Configuration Mode, register 1000.

Field Name	Example (HEX)
Slave Address	01
Function	06
Register Address HI	03 (Register address 999)
Register Address LO	E7 (Register address 999)
Preset Data HI	00
Preset Data LO	01
Error Check (CRC)	-

Table 7.29

Response

The normal response is an echo of the query, returned after the register contents have been passed.

Field Name	Example (HEX)
Slave Address	01
Function	06
Register Address HI	03
Register Address LO	E7
Preset Data HI	00
Preset Data LO	01
Error Check (CRC)	-

Table 7.30

7.10.6 Preset Multiple Registers (10 HEX)

Description

This function presets values into a sequence of holding registers.

Query

The query message specifies the register references to be preset. Register addresses start at zero, i.e., register 1 is addressed as 0. Example of a request to preset two registers (set parameter 1-24 = 738 (7.38 A)):

Field Name	Example (HEX)	
Slave Address	01	
Function	10	
Starting Address HI	04	
Starting Address LO	19	
No. of Registers HI	00	
No. of registers LO	02	
Byte Count	04	
Write Data HI	00	
(Register 4: 1049)		
Write Data LO	00	
(Register 4: 1049)		
Write Data HI	02	
(Register 4: 1050)		
Write Data LO	E2	
(Register 4: 1050)		
Error Check (CRC)	-	

Table 7.31

Response

The normal response returns the slave address, function code, starting address and quantity of preset registers.

Field Name	Example (HEX)
Slave Address	01
Function	10
Starting Address HI	04
Starting Address LO	19
No. of Registers HI	00
No. of registers LO	02
Error Check (CRC)	-

Table 7.32

7.11 Danfoss FC Control Profile

7.11.1 Control Word According to FC Profile (8-10 Control Profile = FC profile)

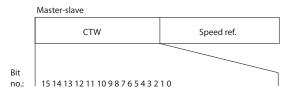


Figure 7.16

Bit	Bit value = 0	Bit value = 1
00	Reference value	external selection lsb
01	Reference value	external selection msb
02	DC brake	Ramp
03	Coasting	No coasting
04	Quick stop	Ramp
05	Hold output	use ramp
	frequency	
06	Ramp stop	Start
07	No function	Reset
08	No function	Jog
09	Ramp 1	Ramp 2
10	Data invalid	Data valid
11	No function	Relay 01 active
12	No function	Relay 02 active
13	Parameter set-up	selection Isb
14	Parameter set-up	selection msb
15	No function	Reverse

Table 7.33

Explanation of the Control Bits

Bits 00/01

Bits 00 and 01 are used to choose between the four reference values, which are pre-programmed in *3-10 Preset Reference* according to the following table:

Programmed ref. value	Parameter	Bit 01	Bit 00
1	3-10 Preset	0	0
	Reference [0]		
2	3-10 Preset	0	1
	Reference [1]		
3	3-10 Preset	1	0
	Reference [2]		
4	3-10 Preset	1	1
	Reference [3]		

Table 7.34

NOTE!

Make a selection in 8-56 Preset Reference Select to define how Bit 00/01 gates with the corresponding function on the digital inputs.

Bit 02, DC brake:

Bit 02 = '0' leads to DC braking and stop. Set braking current and duration in 2-01 DC Brake Current and 2-02 DC Braking Time. Bit 02 = '1' leads to ramping.

130BA274.10

Bit 03, Coasting:

Bit 03 = '0': The Adjustable frequency drive immediately "lets go" of the motor, (the output transistors are "shut off") and it coasts to a standstill. Bit 03 = '1': The Adjustable frequency drive starts the motor if the other starting conditions are met.

Make a selection in 8-50 Coasting Select to define how Bit 03 gates with the corresponding function on a digital input.

Bit 04, Quick stop:

Bit 04 = '0': Makes the motor speed ramp down to stop (set in 3-81 Quick Stop Ramp Time).

Bit 05, Hold output frequency

Bit 05 = '0': The present output frequency (in Hz) freezes. Change the frozen output frequency only by means of the digital inputs (5-10 Terminal 18 Digital Input to 5-15 Terminal 33 Digital Input) programmed to Speed up and Slow-down.

NOTE!

If Freeze output is active, the Adjustable frequency drive can only be stopped by the following:

- Bit 03 Coasting stop
- Bit 02 DC braking
- Digital input (5-10 Terminal 18 Digital Input to 5-15 Terminal 33 Digital Input) programmed to DC braking, Coasting stop, or Reset and coasting stop.

Bit 06, Ramp stop/start:

Bit 06 = '0': Causes a stop and makes the motor speed ramp down to stop via the selected ramp-down parameter. Bit 06 = '1': Permits the Adjustable frequency drive to start the motor, if the other starting conditions are met.

Make a selection in 8-53 Start Select to define how Bit 06 Ramp stop/start gates with the corresponding function on a digital input.

<u>Bit 07, Reset:</u> Bit 07 = '0': No reset. Bit 07 = '1': Resets a trip. Reset is activated on the leading edge of the signal, i.e., when changing from logic '0' to logic '1'.

Bit 08, Jog:

Bit 08 = '1': The output frequency is determined by 3-19 Jog Speed [RPM].

Bit 09, Selection of ramp 1/2:

Bit 09 = "0": Ramp 1 is active (3-41 Ramp 1 Ramp Up Time to 3-42 Ramp 1 Ramp Down Time). Bit 09 = "1": Ramp 2 (3-51 Ramp 2 Ramp Up Time to 3-52 Ramp 2 Ramp Down Time) is active.

Bit 10, Data not valid/Data valid:

Tell the Adjustable frequency drive whether to use or ignore the control word. Bit 10 = '0': The control word is ignored. Bit 10 = '1': The control word is used. This function is relevant because the message always contains the control word, regardless of the message type. Thus, you can turn off the control word if you do not want to use it when updating or reading parameters.

Bit 11, Relay 01:

Bit 11 = "0": Relay not activated. Bit 11 = "1": Relay 01 activated provided that *Control word bit 11* is chosen in *5-40 Function Relay*.

Bit 12, Relay 04:

Bit 12 = "0": Relay 04 is not activated. Bit 12 = "1": Relay 04 is activated provided that *Control word bit 12* is chosen in 5-40 Function Relay.

Bit 13/14, Selection of set-up:

Use bits 13 and 14 to choose from the four menu set-ups according to the table shown.

Set-up	Bit 14	Bit 13
1	0	0
2	0	1
3	1	0
4	1	1

Table 7.35

The function is only possible when *Multi Set-ups* is selected in *0-10 Active Set-up*.

Make a selection in *8-55 Set-up Select* to define how Bit 13/14 gates with the corresponding function on the digital inputs.

Bit 15 Reverse:

Bit 15 = '0': No reversing. Bit 15 = '1': Reversing. In the default setting, reversing is set to digital in 8-54 Reversing Select. Bit 15 causes reversing only when Ser. communication, Logic or or Logic and is selected.

7.11.2 Status Word According to FC Profile (STW) (8-10 Control Profile = FC profile)

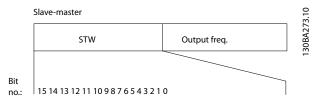


Figure 7.17

Bit	Bit = 0	Bit = 1
00	Control not ready	Control ready
01	Drive not ready	Drive ready
02	Coasting	Enable
03	No error	Trip
04	No error	Error (no trip)
05	Reserved	-
06	No error	Triplock
07	No warning	Warning
08	Speed ≠ reference	Speed = reference
09	Local operation	Bus control
10	Out of frequency limit	Frequency limit OK
11	No operation	In operation
12	Drive OK	Stopped, auto start
13	Voltage OK	Voltage exceeded
14	Torque OK	Torque exceeded
15	Timer OK	Timer exceeded

Table 7.36

Explanation of the Status Bits

Bit 00, Control not ready/ready:

Bit 00 = '0': The Adjustable frequency drive trips. Bit 00 = '1': The Adjustable frequency drive controls are ready but the power component does not necessarily receive any power supply (in case of external 24V supply to controls).

Bit 01, Drive ready:

Bit 01 = '1': The Adjustable frequency drive is ready for operation but the coasting command is active via the digital inputs or via serial communication.

Bit 02, Coasting stop:

Bit 02 = '0': The Adjustable frequency drive releases the motor. Bit 02 = '1': The Adjustable frequency drive starts the motor with a start command.

Bit 03, No error/trip:

Bit 03 = 0: The Adjustable frequency drive is not in fault mode. Bit 03 = 1: The Adjustable frequency drive trips. To re-establish operation, enter [Reset].

Bit 04, No error/error (no trip):

Bit 04 = '0': The Adjustable frequency drive is not in fault mode. Bit 04 = "1": The Adjustable frequency drive shows an error but does not trip.

Bit 05, Not used:

Bit 05 is not used in the status word.

Bit 06, No error / triplock:

Bit 06 = '0': The Adjustable frequency drive is not in fault mode. Bit 06 = "1": The Adjustable frequency drive is tripped and locked.

Bit 07, No warning/warning:

Bit 07 = '0': There are no warnings. Bit 07 = '1': A warning has occurred.

Bit 08, Speed≠ reference/speed = reference:

Bit 08 = '0': The motor is running but the present speed is different from the preset speed reference. For example, it might be the case when the speed ramps up/down during start/stop. Bit 08 = '1': The motor speed matches the preset speed reference.

Bit 09, Local operation/bus control:

Bit 09 = '0': [STOP/RESET] is activated on the control unit or *Local control* in *3-13 Reference Site* is selected. You cannot control the Adjustable frequency drive via serial communication. Bit 09 = '1' It is possible to control the Adjustable frequency drive via the serial communication bus / serial communication.

Bit 10, Out of frequency limit:

Bit 10 = '0': The output frequency has reached the value in 4-11 Motor Speed Low Limit [RPM] or 4-13 Motor Speed High Limit [RPM]. Bit 10 = "1": The output frequency is within the defined limits.

Bit 11, No operation/in operation:

Bit 11 = '0': The motor is not running. Bit 11 = '1': The Adjustable frequency drive has a start signal or the output frequency is greater than 0 Hz.

Bit 12, Drive OK/stopped, autostart:

Bit 12 = '0': There is no temporary overtemperature in the inverter. Bit 12 = '1': The inverter stops because of overtemperature, but the unit does not trip and will resume operation once the overtemperature stops.

Bit 13, Voltage OK/limit exceeded:

Bit 13 = '0': There are no voltage warnings. Bit 13 = '1': The DC voltage in the intermediate circuit of the adjustable frequency drive is too low or too high.

Bit 14, Torque OK/limit exceeded:

Bit 14 = '0': The motor current is lower than the torque limit selected in *4-18 Current Limit*. Bit 14 = '1': The torque limit in *4-18 Current Limit* is exceeded.

Bit 15, Timer OK/limit exceeded:

Bit 15 = '0': The timers for motor thermal protection and thermal protection are not exceeded 100%. Bit 15 = '1': One of the timers exceeds 100%.

All bits in the STW are set to '0' if the connection between the Interbus option and the Adjustable frequency drive is lost, or an internal communication problem has occurred.

7.11.3 Bus Speed Reference Value

Speed reference value is transmitted to the Adjustable frequency drive in a relative value in %. The value is transmitted in the form of a 16-bit word; in integers (0-32767) the value 16384 (4000 Hex) corresponds to 100%. Negative figures are formatted by means of 2's complement. The Actual Output frequency (MAV) is scaled in the same way as the bus reference.

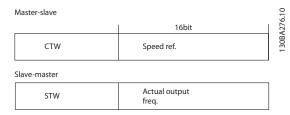


Figure 7.18

The reference and MAV are scaled as follows:

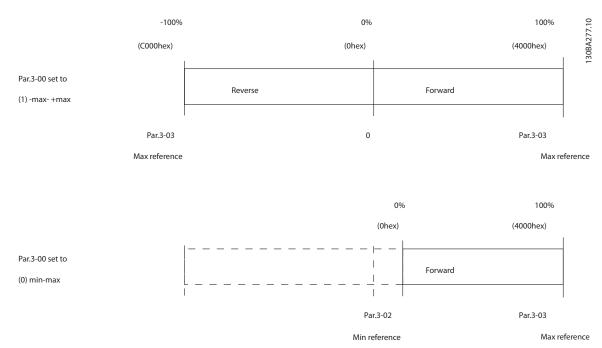


Figure 7.19

8 General Specifications and Troubleshooting

8.1 Line Power Supply Tables

Line power supply 200–240	V AC - Normal overload 110% for 1 mi	nute				
Adjustable Frequency Drive		P1K1	P1K5	P2K2	P3K0	P3K7
Typical Shaft Output [kW]		1.1	1.5	2.2	3	3.7
IP 20 / Chassis				-		
(A2+A3 may be converted to	o IP21 using a conversion kit. (Please	A2	A2	A2	А3	A3
see also items Mechanical m	nounting in the Instruction Manual	AZ	AZ	AZ	AS	AS
and IP 21/Type 1 Enclosure k	it in the Design Guide.))					
IP 55 / NEMA 12		A4/A5	A4/A5	A4/A5	A5	A5
IP 66 / NEMA 12		A5	A5	A5	A5	A5
Typical Shaft Output [hp] at	208 V	1.5	2.0	2.9	4.0	4.9
Output current						
28.10	Continuous (3 x 200–240 V) [A]	6.6	7.5	10.6	12.5	16.7
130BA058.10	Intermittent (3 x 200–240 V) [A]	7.3	8.3	11.7	13.8	18.4
	Continuous kVA (208 V AC) [kVA]	2.38	2.70	3.82	4.50	6.00
	Max. cable size:					
	(line power, motor, brake) [mm² /AWG] ²⁾			4/10		
Max. input current						
	Continuous (3 x 200–240 V) [A]	5.9	6.8	9.5	11.3	15.0
308A057.10	Intermittent (3 x 200–240 V) [A]	6.5	7.5	10.5	12.4	16.5
BA0	Max. pre-fuses ¹⁾ [A]	20	20	20	32	32
130	Environment					
_	Estimated power loss at rated max. load [W] 4)	63	82	116	155	185
	Weight enclosure IP20 [kg]	4.9	4.9	4.9	6.6	6.6
	Weight enclosure IP21 [kg]	5.5	5.5	5.5	7.5	7.5
	Weight enclosure IP55 [kg]	9.7/13.5	9.7/13.5	9.7/13.5	13.5	13.5
	Weight enclosure IP 66 [kg]	9.7/13.5	9.7/13.5	9.7/13.5	13.5	13.5
	Efficiency 3)	0.96	0.96	0.96	0.96	0.96

Table 8.1 Line Power Supply 200–240 V AC

Line power supply 3×20	Line power supply 3 x 200–240 VAC - Normal overload 110% for 1 minute									
IP 20 / Chassis (B3+4 and	IP 20 / Chassis (B3+4 and C3+4 may be converted to IP21 using a conversion kit. (Please									
see also items <i>Mechanica kit</i> in the Design Guide.))	see also items <i>Mechanical mounting</i> in the Instruction Manual and <i>IP 21/Type 1 Enclosure kit</i> in the Design Guide.))	B3	B3	B3	B4	B4	ប	υ	Q	4
IP 21 / NEMA 1		B1	B1	B1	B2	5	D	D	2	2
IP 55 / NEMA 12		B1	B1	B1	B2	C	D	ū	2	2
IP 66 / NEMA 12		B1	B1	B1	B2	D	D	D	7	2
Adjustable Frequency Drive	ive	P5K5	P7K5	P11K	P15K	P18K	P22K	P30K	P37K	P45K
Typical Shaft Output [kW]		5.5	7.5	11	15	18.5	22	30	37	45
	Typical Shaft Output [hp] at 208 V	7.5	10	15	20	25	30	40	20	09
Output current										
	Continuous (3 × 200–240 V) [A]	24.2	30.8	46.2	59.4	74.8	88.0	115	143	170
		16/6			35/2		35/2		70/3/0	185/ kcmil350
	Continuous (3 × 200–240 V) [A]	22.0	28.0	42.0	54.0	68.0	80.0	104.0	130.0	154.0
0	Intermittent (3 x 200–240 V) [A]	24.2	30.8	46.2	59.4	74.8	88.0	114.0	143.0	169.0
1.880	Max. pre-fuses ¹⁾ [A]	63	63	63	80	125	125	160	200	250
0BA0	Environment:									
) E1	Estimated power loss at rated max. load [W] ⁴⁾	269	310	447	602	737	845	1140	1353	1636
	Weight enclosure IP20 [kg]	12	12	12	23.5	23.5	35	35	50	50
	Weight enclosure IP21 [kg]	23	23	23	27	45	45	45	65	65
	Weight enclosure IP55 [kg]	23	23	23	27	45	45	45	65	65
<u></u>	Weight enclosure IP 66 [kg]	23	23	23	27	45	45	45	65	65
	Efficiency ³⁾	96.0	96.0	96.0	96.0	96.0	0.97	0.97	0.97	0.97
	Intermittent (3 × 200–240 V) [A]	26.6	33.9	50.8	65.3	82.3	8.96	127	157	187
	Continuous	1	,	,		0	1			,
	kVA (208 V AC) [kVA]	8./	1.1.1	16.6	4.12	76.9	31./	4.14	5.15	7.10
	Max. cable size:									
	(line power, motor, brake) [mm² /AWG] ²⁾		10/7		35/2		50/1/0 (B4=35/2)		95/4/0	120/250 MCM

Table 8.2 Line Power Supply 3 \times 200–240 V AC

Line Power Supply 3 x 380–48	Line Power Supply 3 x 380–480V AC - Normal overload 110% for 1 minute							
Adjustable Frequency Drive		P1K1	P1K5	P2K2	P3K0	P4K0	P5K5	P7K5
Typical Shaft Output [kW]		1.1	1.5	2.2	3	4	5.5	7.5
Typical Shaft Output [hp] at 460V	00/	1.5	2.0	2.9	4.0	5.0	7.5	10
IP20/Chassis (A2+A3 may be citems <i>Mechanical mounting</i> in	IP20/Chassis (A2+A3 may be converted to IP21 using a conversion kit. (Please see also items Mechanical mounting in the Instruction Manual and IP 1/Type 1 Enclosure kit in the	A2	A2	A2	A2	A2	A 3	A3
Design Guide.))	מוכ וויסנימכונים שמים זו אלגי ביניססמים או מיכ	4	7	į	į	į	?	2
IP55/NEMA 12		A4/A5	A4/A5	A4/A5	A4/A5	A4/A5	A5	A5
IP66/NEMA 12		A4/A5	A4/A5	A4/A5	A4/A5	A4/A5	A5	A5
Output current								
0 l	Continuous (3 x 380–440V) [A]	3	4.1	5.6	7.2	10	13	16
1.820	Intermittent (3 x 380–440V) [A]	3.3	4.5	6.2	7.9	11	14.3	17.6
0A86	Continuous (3 x 441–480 V) [A]	2.7	3.4	4.8	6.3	8.2	=	14.5
DEI	Intermittent (3 x 441–480 V) [A]	3.0	3.7	5.3	6.9	0.6	12.1	15.4
D	Continuous kVA (400V AC) [kVA]	2.1	2.8	3.9	5.0	6.9	0.6	11.0
	Continuous kVA (460V AC) [kVA]	2.4	2.7	3.8	5.0	6.5	8.8	11.6
	Max. cable size:							
	(line power, motor, brake)				0//0			
	[[mm²/ AWG] ²⁾				4/10			
Max. input current								
	Continuous	7.7	3.7	0	ע	0 6	11.7	144
	(3 × 380–440 V) [A]	.:.		8	3	2:	<u>:</u>	-
	Intermittent	0 %	7 1	r.	7.3	00	12.0	15.8
	(3 × 380–440 V) [A]	2	-	5	7: /	0::0	15.7	
	Continuous (3 × 441–480 W fa)	2.7	3.1	4.3	5.7	7.4	6.6	13.0
01.	[0 × +++ +00 v] [1 v]							
∠ \$0 ∀ \$	menmicem (3 x 441–480 V) [A]	3.0	3.4	4.7	6.3	8.1	10.9	14.3
1308	Max. pre-fuses ¹⁾ [A]	10	10	20	20	20	32	32
D	Environment							
	Estimated power loss	01	Ç	0	7,	,	101	710
	at rated max. load [W] ⁴⁾	00	70	00	<u>0</u>	+7	<u> </u>	667
	Weight enclosure IP20 (lb [kg])	10.6 [4.8]	10.8 [4.9]	10.8 [4.9]	10.8 [4.9]	10.8 [4.9]	14.6 [6.6]	14.6 [6.6]
	Weight enclosure IP21 (lb [kg])							
	Weight enclosure IP55 (lb [kg])	21.4/29.8	21.4/29.8	21.4/29.8	21.4/29.8	21.4/29.8	31.3 [14.2]	31.3 [14.2]
		[9.7/13.5]	[9.7/13.5]	[9.7/13.5]	[9.7/13.5]	[9.7/13.5]		
	Weight enclosure IP66 (lb [kg])	21.4/29.8 [9.7/13.5]	21.4/29.8 [9.7/13.5]	21.4/29.8 [9.7/13.5]	21.4/29.8 [9.7/13.5]	21.4/29.8 [9.7/13.5]	31.3 [14.2]	31.3 [14.2]
	Efficiency 3)	96.0	0.97	0.97	76:0	0.97	0.97	0.97

Table 8.3 Line Power Supply 3 x 380-480V AC

Line Power Supply 3 x	Line Power Supply 3 x 380–480V AC - Normal overload 110% for 1 minute	ninute									
Adjustable Frequency Drive	Jrive	P11K	P15K	P18K	P22K	P30K	P37K	P45K	P55K	P75K	P90K
Typical Shaft Output [kW]	W]	11	15	18.5	22	30	37	45	55	75	90
Typical Shaft Output [hp] at 460 V	p] at 460 V	15	20	25	30	40	20	09	75	100	125
IP20/Chassis											
(B3+4 and C3+4 may b	(B3+4 and C3+4 may be converted to IP21 using a conversion kit	B3	B3	B3	84	8	B4	ღ	ღ	2	2
(Please contact Danfoss)	()										
IP21/NEMA 1		B1	B1	B1	B2	B2	U	C	Cl	2	2
IP55/NEMA 12		B1	B1	B1	B2	B2	ū	D	D	2	2
IP66/NEMA 12		B1	B1	B1	B2	B2	ū	D	Ü	2	2
Output current											
	Continuous (3 x 380–439V) [A]	24	32	37.5	44	61	73	06	106	147	177
0	Intermittent (3 x 380–439V) [A]	26.4	35.2	41.3	48.4	67.1	80.3	66	117	162	195
1.88	Continuous (3 x 440–480V) [A]	21	27	34	40	52	65	80	105	130	160
0A8	Intermittent (3 x 440–480V) [A]	23.1	29.7	37.4	44	61.6	71.5	88	116	143	176
081	Continuous kVA (400V AC) [kVA]	16.6	22.2	56	30.5	42.3	9.05	62.4	73.4	102	123
D	Continuous kVA 460V AC) [kVA]	16.7	21.5	27.1	31.9	41.4	51.8	63.7	83.7	104	128
	Max. cable size:										
	(line power, motor, brake) [mm²/		10/7		35/2	/2		50/1/0		95/	120/
	AWG] ²⁾					ı		(B4=35/2)		4/0	MCM250
	With line power disconnect switch included:			16/6			35/2	35/2		70/3/0	185/ kcmil350
Max. input current											
	Continuous (3 x 380–439V) [A]	22	59	34	40	55	99	82	96	133	161
	Intermittent (3 x 380439V) [A]	24.2	31.9	37.4	44	60.5	72.6	90.2	106	146	177
0	Continuous (3 x 440–480V) [A]	19	25	31	36	47	59	73	95	118	145
1.72	Intermittent (3 x 440–480V) [A]	20.9	27.5	34.1	39.6	51.7	64.9	80.3	105	130	160
0A80	Max. pre-fuses ¹⁾ [A]	63	63	63	63	80	100	125	160	250	250
130	Environment										
D •	Estimated power loss at rated max. load [W, hp] ⁴⁾	278, 0.37	392, 0.53	465, 0.62	525, 0.70	698, 0.94	739, 0.99	843, 1.13	1083, 1.45	1384, 1.86	1474, 1.98
	Weight enclosure IP20 (Ib [kg])	26.5 [12]	26.5 [12]	26.5 [12]	51.8 [23.5]	51.8 [23.5]	51.8 [23.5]	77.2 [35]	77.2 [35]	164 [50]	164 [50]
	Weight enclosure IP21 (Ib [kg])	9.1 [23]	9.1 [23]	9.1 [23]	59.5 [27]	59.5 [27]	99.2 [45]	99.2 [45]	99.2 [45]	143.3 [65]	143.3 [65]
	Weight enclosure IP55 (Ib [kg])	9.1 [23]	9.1 [23]	9.1 [23]	59.5 [27]	59.5 [27]	99.2 [45]	99.2 [45]	99.2 [45]	143.3 [65]	143.3 [65]
	Weight enclosure IP66 (Ib [kg])	9.1 [23]	9.1 [23]	9.1 [23]	59.5 [27]	59.5 [27]	99.2 [45]	99.2 [45]	99.2 [45]	143.3 [65]	143.3 [65]
	Efficiency ³⁾	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.99

Table 8.4 Line Power Supply 3 \times 380–480V AC

Line power supply 3 x	Line power supply 3 x 525–600 VAC Normal overload 110% for 1 mi	110% f	or 1 min	inute														
Size:		P1K1	P1K5	P2K2	P3K0	P3K P4K0 7	KO P5K5	<5 P7K5	(5 P11K	K P15K	K P18K	K P22K	P30K	P37K	P45K	P55K	P75K	P90K
Typical Shaft Output [kW]	[kW]	=	1.5	2.2	m	3.7 4	5.5	5 7.5	11	15	18.5	22	30	37	45	55	75	8
IP 20 / Chassis		A3	A3	A3	A3	A2 A3	3 A3	3 A3	3 B3	B3	B3	84	B4	B4	უ	ဗ	C4	7
IP 21 / NEMA 1		A3	A3	A3	A3	A2 A3	3 A3	3 A3		B1		B2	B2	บ	ט	ט	2	2
IP 55 / NEMA 12		A5	A5	A5	A5	A5 A5	5 A5	5 A5	5 81	B1	B1	B2	B2	ū	ū	ū	2	2
IP 66 / NEMA 12		A5	A5	A5	A5	A5 A5	5 A5	5 A5	5 81	B1	B1	B2	B2	ū	ū	ū	C	2
Output current																		
	Continuous (3 × 525–550 V) [A]	2.6	2.9	4.1	5.2	- 6.4	4 9.5	5 11.5	5 19	23	28	36	43	54	92	87	105	137
	Intermittent (3 x 525–550 V) [A]	2.9	3.2	4.5	5.7	- 7.0	0 10.5	.5 12.7	7 21	25	31	40	47	59	72	96	116	151
	Continuous (3 × 525–600 V) [A]	2.4	2.7	3.9	4.9	- 6.1	1 9.0	0 11.0	0 18	22	27	34	4	52	62	83	100	131
01.8	Intermittent (3 x 525–600 V) [A]	5.6	3.0	4.3	5.4	- 6.7	7 9.9	9 12.1	1 20	24	30	37	45	27	89	16	110	144
30BA058	Continuous kVA (525 V AC) [kVA]	2.5	2.8	3.9	5.0	- 6.1	1 9.0	0 11.0	0 18.1	1 21.9) 26.7	34.3	4	51.4	61.9	82.9	100	130.5
	Continuous kVA (575 V AC) [kVA]	2.4	2.7	3.9	4.9	- 6.1	1 9.0	0 11.0	0 17.9	9 21.9	9 26.9	33.9	40.8	51.8	61.7	82.7	9.66	130.5
<u>†</u>	Max. cable size, IP 21/55/66				/4					/01			25/		/05	/c	/56	120/ MCM2
	(line power, motor, brake) [mm²]/[AWG] ²⁾				10					7			4		-1	1/0	4/0	50
	Max. cable size, IP 20 (line power, motor, brake) [mm²]/[AWG] ²⁾				10					16/			35/		5(50/	95/	150/ MCM2 50 ⁵⁾
	With line power disconnect switch included:				4/10						16/6				35/2	-	70/3/0	185/ kcmil3 50

Table 8.5 $^{\rm 5)}$ With brake and load sharing 95/ 4/0

Line power sup	Line power supply 3 x 525–600 VACNormal overload 110% for 1	overload	110% fo	r 1 minu	minute - continued	tinued													
Size:		P1K1	P1K1 P1K5 P2K2	P2K2	P3K0	P3K F	P4K0	P5K5 F	P7K5	P11K	P15K	P18K	P22K	P30K	P37K	P45K	P55K	P75K	P90K
Max. input current	ent																		
	Continuous (3 × 525–600 V) [A]	2.4	2.7	4.1	5.2	,	5.8	8.6	10.4	17.2	20.9	25.4	32.7	39	49	59	78.9	95.3	124.3
01.72	Intermittent (3 x 525–600 V) [A]	2.7	3.0	4.5	5.7	ı	6.4	9.5	11.5	19	23	78	36	43	54	65	87	105	137
0A86	Max. pre-fuses ¹⁾ [A]	10	10	20	70	,	20	32	32	63	63	63	63	80	100	125	160	250	250
130	Environment:																		
D	Estimated power loss at rated max. load [W] ⁴⁾	20	65	92	122		145	195	261	300	400	475	525	700	750	850	1100	1400	1500
	Weight enclosure IP20 [kg]	6.5	6.5	6.5	6.5	,	6.5	9.9	9.9	12	12	12	23.5	23.5	23.5	35	35	20	20
	Weight enclosure IP21/55 [lb][kg]	13.5	13.5	13.5	13.5	13.5	13.5	14.2	14.2	23	23	23	27	27	27	45	45	65	65
	Efficiency ⁴⁾	0.97	0.97	0.97	0.97	,	0.97	0.97	0.97	0.98	0.98	86.0	96.0	96.0	0.98	96:0	0.98	96.0	0.98

Table 8.6 ⁵⁾ With brake and load sharing 95/ 4/0

8.1.1 Line Power Supply High Power

Line Power Supply	3 x 380–480 VAC					
		P110	P132	P160	P200	P250
	Typical Shaft output at 400 V [kW]	110	132	160	200	250
	Typical Shaft output at 460 V [HP]	150	200	250	300	350
	Enclosure IP21	D1	D1	D2	D2	D2
	Enclosure IP54	D1	D1	D2	D2	D2
	Enclosure IP00	D3	D3	D4	D4	D4
	Output current					
	Continuous (at 400 V) [A]	212	260	315	395	480
	Intermittent (60 sec overload) (at 400 V) [A]	233	286	347	435	528
	Continuous (at 460/ 480 V) [A]	190	240	302	361	443
	Intermittent (60 sec overload) (at 460/480 V) [A]	209	264	332	397	487
	Continuous KVA (at 400 V) [KVA]	147	180	218	274	333
	Continuous KVA (at 460 V) [KVA]	151	191	241	288	353
Max. input current						
	Continuous (at 400 V) [A]	204	251	304	381	463
	Continuous (at 460/ 480 V) [A]	183	231	291	348	427
	Max. cable size, line power motor, brake and load share [mm² (AWG²))]	2 x 70 (2 x 2/0)	2 x 70 (2 x 2/0)	2 x 150 (2 x 300 mcm)	2 x 150 (2 x 300 mcm)	2 x 150 (2 x 300 mcm)
	Max. external pre-fuses [A] ¹	300	350	400	500	630
	Estimated power loss at rated max. load [W, hp] ⁴⁾ , 400 V	3234, 4.34	3782, 5.07	4213, 5.65	5119, 6.86	5893, 7.90
	Estimated power loss at rated max. load [W, hp] ⁴⁾ , 460 V	2947, 3.95	3665, 4.91	4063, 5.45	4652, 6.24	5634, 7.56
	Weight, enclosure IP21, IP 54 (lb [kg])	96	104	125	136	151
	Weight, enclosure IP00 (lb [kg])	82	91	112	123	138
	Efficiency ⁴⁾			0.98		
	Output frequency			0-800 Hz		
	Heatsink overtemp. trip Power card ambient trip	194°F [90°C]	230°F [110°C]	230°F [110°C] 140°F [60°C]	230°F [110°C]	230°F [110°C]

Table 8.7

Line Power Supply 3 x 3	380–480 VAC				
		P315	P355	P400	P450
	Typical Shaft output at 400 V [kW]	315	355	400	450
	Typical Shaft output at 460 V [HP]	450	500	600	600
	Enclosure IP21	E1	E1	E1	E1
	EnclosureIP54	E1	E1	E1	E1
	Enclosure IP00	E2	E2	E2	E2
	Output current				
	Continuous	600	650	745	200
	(at 400 V) [A]	600	658	745	800
N SERVER.	Intermittent (60 sec overload) (at 400 V) [A]	660	724	820	880
	Continuous				
	(at 460/ 480 V) [A]	540	590	678	730
	Intermittent (60 sec overload) (at 460/480 V) [A]	594	649	746	803
	Continuous KVA	44.6	454	516	554
	(at 400 V) [KVA]	416	456	516	554
	Continuous KVA	430	470	540	582
	(at 460 V) [KVA]	430	470	340	362
Max. input current					
novas to	Continuous	590	647	733	787
	Continuous (at 460/ 480 V) [A]	531	580	667	718
	Max. cable size, line power, motor	4x240	4x240	4x240	4x240
	and load share [mm² (AWG²)]	(4x500 mcm)	(4x500 mcm)	(4x500 mcm)	(4x500 mcm)
	Max. cable size, brake [mm² (AWG²)	2 x 185	2 x 185	2 x 185	2 x 185
	Max. Cable Size, brake [IIIII (AWG)	(2 x 350 mcm)			
	Max. external pre-fuses [A] ¹	700	900	900	900
	Estimated power loss	6790, 9.11	7701, 10.33	8879, 11.91	9670, 12.97
	at rated max. load [W, hp] ⁴⁾ , 400 V	0770, 5111	7761, 18155	00,2,	5676, 12.57
	Estimated power loss	6082, 8.16	6953, 9.32	8089, 10.85	8803, 11.81
	at rated max. load [W, hp] ⁴⁾ , 460 V	0002, 0.10	1	1	
	Weight,	579.8 [263]	595.3 [270]	599.7 [272]	690 [313]
	enclosure IP21, IP 54 (lb [kg])				
	Weight,	487.2 [221]	515.9 [234]	520.3 [236]	610.7 [277]
	enclosure IP00 (lb [kg])				
	Efficiency ⁴⁾		0.98		
	Output frequency		0-600		
	Heatsink overtemp. trip		230°F [11		
	Power card ambient trip		154°F [6	8 CJ	

Table 8.8

Line Power Supply	/ 3 x 380–480 VAC						
Line Tower Supply	7 3 X 300-400 VAC	P500	P560	P630	P710	P800	P1M0
	Typical Shaft output at 400 V [kW]	500	560	630	710	800	1000
	Typical Shaft output at 460 V [HP]	650	750	900	1000	1200	1350
	Enclosure IP21, 54 without/ with options cabinet	F1/F3	F1/F3	F1/F3	F1/F3	F2/F4	F2/F4
Output current							
	Continuous (at 400 V) [A]	880	990	1120	1260	1460	1720
	Intermittent (60 sec overload) (at 400 V) [A]	968	1089	1232	1386	1606	1892
	Continuous (at 460/ 480 V) [A]	780	890	1050	1160	1380	1530
	Intermittent (60 sec overload) (at 460/480 V) [A]	858	979	1155	1276	1518	1683
	Continuous KVA (at 400 V) [KVA]	610	686	776	873	1012	1192
	Continuous KVA (at 460 V) [KVA]	621	709	837	924	1100	1219
Max. input current							
	Continuous	857	964	1090	1227	1422	1675
	(at 400 V) [A] Continuous (at 460/480 V) [A]	759	867	1022	1129	1344	1490
	Max. cable size,motor [mm ² (AWG ²))]	733	8x15	50	1125		150
	Max. cable size, line power			8x24	40		
	F1/F2 [mm ² (AWG ²⁾)]			(8x500	mcm)		
	Max. cable size, line power F3/F4 [mm² (AWG²)]			8x45 (8x900			
	Max. cable size, loadsharing [mm² (AWG²)]			4x12 (4x250			
	Max. cable size, brake [mm² (AWG²))		4x18 (4x350				185 mcm)
	Max. external pre-fuses [A] 1	16	000	20	00	25	00
	Est. power loss at rated max. load [W,hp] ⁴⁾ , 400 V, F1 & F2	10647, 14.28	12338, 16.55	13201, 17.70	15436, 20.70	18084, 24.25	20358, 27.30
	Est. power loss at rated max. load [W, hp] ⁴⁾ , 460 V, F1 & F2	9414, 12.62	11006, 14.76	12353, 16.57	14041, 18.83	17137, 22.98	17752, 23.81
	Max. added losses of A1 RFI, Circuit Breaker or Disconnect, & Contactor, F3 & F4	963, 1.29	1054, 1.41	1093, 1.47	1230, 1.65	2280, 3.06	2541, 3.41
	Max Panel Options Losses			400, 0			
	Weight,	2213 [1004]/	2213 [1004]/	2213 [1004]/	2213 [1004]/	2747[1246]/	2747[1246]/
	enclosure IP21, IP54 (lb [kg])	2863 [1299]	2863 [1299]	2863 [1299]	2863 [1299]	3397[1541]	3397[1541]
	Weight Rectifier Module (lb [kg]) Weight Inverter	224.9 [102]	224.9 [102]	224.9 [102]	224.9 [102]	299.8 [136]	299.8 [136]
	Weight Inverter Module (lb [kg])	224.9 [102]	224.9 [102]	224.9 [102]	299.8 [136]	224.9 [102]	224.9 [102]
	Efficiency ⁴⁾ Output frequency			0.99			
	Heatsink overtemp. trip			0–600 203°F [
	Power card ambient trip			154°F [
	Tower card ambient trip			134 [00 C]		

8.1.2 Line Power Supply 3 x 525–690V AC

			Normal overload 110% for 1 minute	ad 110% for	1 minute						
Size:		P11K	P15K	P18K	P22K	P30K	P37K	P45K	P55K	P75K	P90K
Typical Shaft Output [kW]		11	15	18.5	22	30	37	45	22	75	06
Typical Shaft Output [HP] at 575V	at 575V	10	16.4	20.1	24	33	40	50	09	75	100
IP21 / NEMA 1		B2	B2	B2	B2	B2	C	C2	C5	C5	C
IP55 / NEMA 12		B2	B2	B2	B2	B2	2	2	2	2	2
Output current											
	Continuous	,	,	,,	o c	ć	ç		ţ	7	100
	(3 x 525–550 V) [A]	4	<u>6</u>	73	87	30	43	54	65	/8	501
013	Intermittent (3 x 525–550 V) [A]	15.4	20.9	25.3	30.8	39.6	47.3	59.4	71.5	95.7	115.5
80BA058	Continuous (3 x 551–690 V) [A]	13	18	22	27	34	41	52	62	83	100
ı (Intermittent (3 x 551–690V) [A]	14.3	19.8	24.2	29.7	37.4	45.1	57.2	68.2	91.3	110
	Continuous kVA (550V AC) [kVA]	13.3	18.1	21.9	26.7	34.3	41	51.4	61.9	82.9	100
	Continuous kVA (575V AC) [kVA]	12.9	17.9	21.9	26.9	33.8	40.8	51.8	61.7	82.7	9.66
	Continuous kVA (690V AC) [kVA]	15.5	21.5	26.3	32.3	40.6	49	62.1	74.1	99.2	119.5
	Max. cable size (line power, motor, brake) [mm²]/[AWG] ²⁾			35 1/0					95 4/0		
Max. input current											
	Continuous (3 x 525–690 V) [A]	15	19.5	24	29	36	49	59	71	87	66
01:250	Intermittent (3 x 525–690V) [A]	16.5	21.5	26.4	31.9	39.6	53.9	64.9	78.1	95.7	108.9
¥808	Max. pre-fuses ¹⁾ [A]	63	63	63	63	80	100	125	160	160	160
Εl	Environment:										
D †	Estimated power loss at rated max. load [W, hp] ⁴⁾	201, 0.27	285, 0.38	335, 0.45	375, 0.50	430, 0.58	592, 0.79	720, 0.97	880, 1.18	1200, 1.61	1440, 1.93
	Weight:										
	IP21 (lb [kg])	59.5 [27]	59.5 [27]	59.5 [27]	59.5 [27]	59.5 [27]	143.3 [65]	143.3 [65]	143.3 [65]	143.3 [65]	143.3 [65]
	IP55 (lb [kg])	59.5 [27]	59.5 [27]	59.5 [27]	59.5 [27]	59.5 [27]	143.3 [65]	143.3 [65]	143.3 [65]	143.3 [65]	143.3 [65]
	Efficiency 4)	0.98	86.0	0.98	0.98	86.0	0.98	0.98	0.98	0.98	0.98
1) For type of fuse see 5.2.8 Fuses	.8 Fuses										

2) American Wire Gauge

3) Measured using 16 ft [5 m] shielded motor cables at rated load and rated frequency

4) The typical power loss is at normal load conditions and expected to be within +/- 15% (tolerance relates to variety in voltage and cable conditions).

Values are based on a typical motor efficiency (eff2/eff3 border line). Lower efficiency motors will also add to the power loss in the Adjustable frequency drive and vice versa.

If the switching frequency is raised from nominal, the power losses may rise significantly.

LCP and typical control card power consumptions are included. Further options and customer load may add up to 0.04 hp [30 Watts] to the losses. (Though typically only 0.005 hp [4 Watts] extra for a fully

Although measurements are made with state of the art equipment, some measurement inaccuracy must be allowed for (+/- 5%). oaded control card or options for slot A or slot B, each). ⁵⁾ Motor and line cable: 300MCM/150mm²

Continuous (at 550V) [A] Continuous (at 575V) [A] 124 151 189 234 286 Continuous (at 690V) [A] Max. cable size, line power motor, load share and brake [mm² (AWG)] Max. external pre-fuses [A] 1 250 315 350 350 400 Estimated power loss at rated max. load [W,hp] 4), 600V Estimated power loss at rated max. load [W, hp] 4), 690V Weight, Enclosure IP21, IP54 (lb [kg]) 211.6 [96] 229.3 275.6 [104] 299. 299. 299. 299. 209.	Line Power Supply 3	x 525–690V AC					
Typical Shaft output at 575V [HP] Typical Shaft output at 690V [kW] Typical Shaft output at 690V [kW] Typical Shaft output at 690V [kW] Enclosure IP21 Enclosure IP54 Enclosure IP60 Du D1 D1 D1 D1 D2 D2 D2 D3 D3 D4 D4 D4 D4 D4 D5 D6 D6 D7 D7 D7 D7 D8 D8 D8 D8 D9 D8 D9			P110	P132	P160	P200	P250
Typical Shaft output at 690V [kW]		Typical Shaft output at 550V [kW]	90	110	132	160	200
Enclosure IP21 Enclosure IP34 Enclosure IP60 Enclosure IP60 D1 D1 D1 D2 D2 D2 Enclosure IP60 D2 D3 D3 D4 D4 D4 D4 D5 D6 Continuous (at 550V) [A] Intermittent (60 sec overload)(at 550V) [A] Continuous(at 575/690V) [A] Intermittent (60 sec overload) (at 575/690V) [A] Intermittent (60 sec overload) (at 575/690V) [A] Intermittent (60 sec overload) (at 575/690V) [A] Continuous KN/A(at 575V) [KVA] Intermittent (60 sec overload) (at 575/690V) [A] Intermittent (60 sec overload		Typical Shaft output at 575V [HP]	125	150	200	250	300
Enclosure IP54 Enclosure IP00 Du Da		Typical Shaft output at 690V [kW]	110	132	160	200	250
Enclosure IPO0 Output current Continuous (at 550V) [A] Intermittent (60 sec overload)(at 550V) [A] Intermittent (60 sec overload)(at 550V) [A] Intermittent (60 sec overload) (at 575/690V) [A] Intermittent (60 sec overload) (at 575/6		Enclosure IP21	D1	D1	D1	D2	D2
Output current Continuous (at 550V) [A] 137 162 201 253 303 (at 550V) [A] 1137 162 201 253 303 (at 550V) [A] 1151 178 221 278 333 (Continuous (at 575/690V) [A] 131 155 192 242 290 Intermittent (60 sec overload) (at 575/690V) [A] 131 155 192 242 290 Continuous KVA(st 550V) [KVA] 130 154 191 241 289 Continuous KVA(st 650V) [KVA] 157 185 229 289 347 Max. input current Continuous (at 550V) [A] 130 158 198 245 299 Continuous (at 550V) [A] 124 151 189 234 286 Continuous (at 690V) [A] 128 155 197 240 296 Max. cable size, line power motor, load share and brake [mm² (AWGi) 2 × 70 2 × 2/0 2 × 150 (2 × 2/0)		Enclosure IP54	D1	D1	D1	D2	D2
Continuous (at 550V) [A] 137 162 201 253 303 (at 550V) [A] 151 178 221 278 333 (continuous (at 575/690V) [A] 131 155 192 242 290 (intermittent (60 sec overload) (at 575/690V) [A] 131 155 192 242 290 (intermittent (60 sec overload) (at 575/690V) [A] 131 155 192 242 290 (intermittent (60 sec overload) (at 575/690V) [A] 131 154 191 241 266 319 (continuous KVA(at 550V) [KVA] 131 154 191 241 289 (continuous KVA(at 575V) [KVA] 130 154 191 241 289 (continuous KVA(at 575V) [KVA] 157 185 229 289 347 (intermittent) [Available of Continuous (at 575V) [A] 130 158 198 245 299 289 347 (intermittent) [Available of Continuous (at 575V) [A] 124 151 189 234 286 (intermittent) [Available of Continuous (at 575V) [A] 124 151 189 234 286 (intermittent) [Available of Continuous (at 575V) [A] 124 151 189 234 286 (intermittent) [Available of Continuous (at 575V) [A] 124 151 189 234 286 (intermittent) [Available of Continuous (at 575V) [A] 124 151 189 234 286 (intermittent) [Available of Continuous (at 575V) [A] 124 151 189 234 286 (intermittent) [Available of Continuous (at 575V) [A] 124 151 189 234 286 (intermittent) [Available of Continuous (at 575V) [A] 124 151 189 234 286 (intermittent) [Available of Continuous (at 575V) [A] 124 151 189 234 286 (intermittent) [Available of Continuous (at 575V) [A] 250 315 350 350 400 (intermittent) [Available of Continuous (at 575V) [A] 2533, 3.40 2963, 3.97 3430, 4.60 3612, 4.84 4292, 5.76 5156, 6.91 5.76 510 (intermittent) [Available of Continuous (at 575V) [A] 275.6 (intermittent) [Available of Continuous (at 575V) [A] 289 299 200.6 [A] 246.9 (intermittent) [Available of Continuous (at 575V) [A] 246.9 (intermittent) [Available of Continuous (at 575V) [A] 230°F (intermittent) [Available of Continuous (Enclosure IP00	D2	D3	D3	D4	D4
(at 550V) [A]		Output current					
Intermittent (60 sec overload)(at 550V) [A] 137 151 178 221 278 333 333 154 191 241 229 242 290 289 347 240		Continuous		162	201	252	202
Continuous(at 575/690V) [A]		(at 550V) [A]	137	162	201	253	303
Intermittent (60 sec overload) (at 575/690V) [A]		Intermittent (60 sec overload)(at 550V) [A]	151	178	221	278	333
Continuous KVA(at 550V) [KVA] Continuous KVA(at 575V) [KVA] Continuous KVA(at 575V) [KVA] Continuous KVA(at 690V) [KVA] Max. input current Continuous (at 550V) [A] Continuous (at 575V) [A] 130 158 198 245 299 246 286 270 271 200 2		Continuous(at 575/690V) [A]	131	155	192	242	290
Continuous KVA(at 575V) [KVA] 130 154 191 241 289 347 Max. Input current Continuous (at 550V) [A] 130 158 198 245 299 Continuous (at 550V) [A] 130 158 198 245 299 Continuous (at 575V) [A] 124 151 189 234 286 Continuous (at 690V) [A] 128 155 197 240 296 Max. cable size, line power motor, load share and brake [mm² (AWG)] 250 315 350 350 400 Estimated power loss at rated max. load [W,hp] 40, 600V Weight, Enclosure IP21, IP54 (lb [kg]) 2662, 3.57 3430, 4.60 3612, 4.84 4292, 5.76 5156, 6.91 5.76 Weight, Enclosure IP20 (lb [kg]) 180.8 [82] 200.6 [91] 246.9 [112] 271.2 [123] 275.6 [104] 271.2 [123		Intermittent (60 sec overload) (at 575/690V) [A]	144	171	211	266	319
Continuous (at 550V) [A] 157 185 229 289 347 Max. Input current Continuous (at 550V) [A] 130 158 198 245 299 Continuous (at 575V) [A] 124 151 189 234 286 Continuous (at 690V) [A] 128 155 197 240 296 Max. cable size, line power motor, load share and brake [mm² (AWG)] 2x 70 (2 x 2/0) 2 x 150 (2 x 300 mcm) Max. external pre-fuses [A] 1 250 315 350 350 400 Estimated power loss at rated max. load [W,hp] 4), 600V 2533, 3.40 2963, 3.97 3430, 4.60 4051, 5.43 4867, 6.53 Estimated power loss at rated max. load [W, hp] 4), 690V 2662, 3.57 3430, 4.60 3612, 4.84 5.76 5.76 5.76 690V Weight, Enclosure IP21, IP54 (lb [kg]) 211.6 [96] 229.3 [104] 246.9 [112] 271.2 [123] Efficiency 4) 0.98 Output frequency 0.98 Output frequency 185°F [85°C] 194°F 230°F 230°F 230°F [110°C] [110°C] [110°C]		Continuous KVA(at 550V) [KVA]	131	154	191	241	289
Max. Input current Continuous (at 550V) [A] Continuous (at 575V) [A] Continuous (at 575V) [A] Continuous (at 690V) [A] Liza 151 Lisa 234 Lisa 299 Continuous (at 690V) [A] Liza 155 Liga 234 Lisa 286 Continuous (at 690V) [A] Liza 155 Liga 240 Liga 296 Max. cable size, line power motor, load share and brake [mm² (AWG)] Max. external pre-fuses [A] 1 Liga 250 Liga 315 Liga 350		Continuous KVA(at 575V) [KVA]	130	154	191	241	289
Continuous (at 550V) [A] Continuous (at 575V) [A] 124 151 189 234 286 Continuous (at 690V) [A] Max. cable size, line power motor, load share and brake [mm² (AWG)] Max. external pre-fuses [A] 1 250 315 350 350 400 Estimated power loss at rated max. load [W,hp] 4), 600V Estimated power loss at rated max. load [W,hp] 4), 690V Weight, Enclosure IP21, IP54 (lb [kg]) Weight, Enclosure IP00 (lb [kg]) Efficiency 4) Output frequency Heatsink overtemp. trip 180 Estimated power loss at rated max. load [W,hp] 4), 690Cl 180 Estimated power loss at rated max. load [W,hp] 4), 690V 211.6 [96] 180 180 180 180 180 180 180 18		Continuous KVA(at 690V) [KVA]	157	185	229	289	347
Continuous (at 575V) [A] 124 151 189 234 286 Continuous (at 690V) [A] Max. cable size, line power motor, load share and brake [mm² (AWG)] Max. external pre-fuses [A] 1 250 315 350 400 Estimated power loss at rated max. load [W,hp] 4), 600V Estimated power loss at rated max. load [W, hp] 4), 699V Weight, Enclosure IP21, IP54 (lb [kg]) Weight, Enclosure IP00 (lb [kg]) Efficiency 4) Output frequency Heatsink overtemp. trip 185°F [85°C] 128 155 197 240 296 350 400 22 × 70 (2 × 2/0) 2 × 150 (2 × 300 mcm) 2 × 70 (2 × 2/0) 2 × 150 (2 × 300 mcm) 3430, 4.60 4051, 5.43 4867, 6.53 4867, 6.53 5156, 6.91 576 [104] [125] 299.8 [136] 180.8 [82] 200.6 [91] [112] 271.2 [123] Efficiency 4) Output frequency Heatsink overtemp. trip	Max. input current						
Continuous (at 690V) [A] Max. cable size, line power motor, load share and brake [mm² (AWG)] Max. external pre-fuses [A] 1 Estimated power loss at rated max. load [W,hp] 4), 600V Estimated power loss at rated max. load [W, hp] 4), 690V Weight, Enclosure IP21, IP54 (lb [kg]) Weight, Enclosure IP00 (lb [kg]) Efficiency ⁴⁾ Output frequency Heatsink overtemp. trip 128 155 197 240 296 127 (2 x 20) 2 x 150 (2 x 300 mcm) 2 x 70 (2 x 2/0) 2 x 150 (2 x 300 mcm) 3 430, 4.60 4051, 5.43 4867, 6.53 4867, 6.53 4867, 6.53 211.6 [96] 229.3 275.6 [104] [125] 299.8 [136] 211.6 [96] 180.8 [82] 200.6 [91] 246.9 [112] 271.2 [123] Efficiency ⁴⁾ 0.98 Output frequency 185°F [85°C] 194°F 230°F 230°F 230°F 230°F [110°C] [110°C]	THE COURSE	Continuous (at 550V) [A]	130	158	198	245	299
Max. cable size, line power motor, load share and brake [mm² (AWG)] Max. external pre-fuses [A] 1 Estimated power loss at rated max. load [W,hp] 4), 600V Estimated power loss at rated max. load [W, hp] 4), 690V Weight, Enclosure IP21, IP54 (Ib [kg]) Weight, Enclosure IP00 (Ib [kg]) Efficiency4) Output frequency Heatsink overtemp. trip Max. external pre-fuses [A] 1 2 x 70 (2 x 2/0) 2 x 150 (2 x 300 mcm) 2 x 70 (2 x 2/0) 2 x 150 (2 x 300 mcm) 2 x 150 (2 x 300 mcm) 2 x 70 (2 x 2/0) 2 x 150 (2 x 300 mcm) 4867, 6.53 4867, 6.53 5156, 6.91 229.3 275.6 [104] [125] 299.8 [136] 299.8 [136] 180.8 [82] 200.6 [91] 246.9 [112] 271.2 [123] Efficiency4) O-600 Hz Heatsink overtemp. trip		Continuous (at 575V) [A]	124	151	189	234	286
brake [mm² (AWG)] Max. external pre-fuses [A] 1 Estimated power loss at rated max. load [W,hp] 4), 600V Estimated power loss at rated max. load [W, hp] 4), 690V Weight, Enclosure IP21, IP54 (lb [kg]) Weight, Enclosure IP00 (lb [kg]) Efficiency ⁴⁾ Output frequency Heatsink overtemp. trip Draw (AWG)] 2 x 70 (2 x 2/0) 2 x 150 (2 x 300 mcm) 400 4051, 5.43 4867, 6.53 2662, 3.57 3430, 4.60 3612, 4.84 229.3 [104] 229.3 [125] 299.8 [136] 299.8 [136] 246.9 [112] 271.2 [123]		Continuous (at 690V) [A]	128	155	197	240	296
Estimated power loss at rated max. load [W,hp] ⁴⁾ , 600V Estimated power loss at rated max. load [W, hp] ⁴⁾ , 690V Weight, Enclosure IP21, IP54 (lb [kg]) Weight, Enclosure IP00 (lb [kg]) Estimated power loss at rated max. load [W, hp] ⁴⁾ , 690V 2662, 3.57 3430, 4.60 3612, 4.84 4292, 5.76 5156, 6.91 211.6 [96] Weight, Enclosure IP00 (lb [kg]) 180.8 [82] 200.6 [91] Efficiency ⁴⁾ Output frequency Heatsink overtemp. trip 185°F [85°C] 194°F 230°F 230°F 230°F [110°C] [110°C] [110°C]		•	2	x 70 (2 x 2/0))	2 x 150 (2	x 300 mcm)
600V Estimated power loss at rated max. load [W, hp] 4), 690V Weight, Enclosure IP21, IP54 (lb [kg]) Weight, Enclosure IP00 (lb [kg]) Efficiency ⁴⁾ Output frequency Heatsink overtemp. trip 2533, 3.40 2963, 3.97 3430, 4.60 5.43 4292, 5.76 2662, 3.57 3430, 4.60 3612, 4.84 4292, 5.76 [104] [125] 275.6 [104] [125] 299.8 [136] 211.6 [96] 180.8 [82] 200.6 [91] 180.9 200.6 [91] 180		Max. external pre-fuses [A] ¹	250	315	350	350	400
690V Weight, Enclosure IP21, IP54 (lb [kg]) Weight, Enclosure IP00 (lb [kg]) Weight, Enclosure IP00 (lb [kg]) Efficiency ⁴⁾ Output frequency Heatsink overtemp. trip 2662, 3.57 3430, 4.60 3612, 4.84 5.76 5156, 6.91 229.3 [104] [125] 299.8 [136] 299.8 [136] 299.8 [136] 299.8 [136] 299.8 [136] 299.8 [136] 299.8 [136] 299.8 [136] 299.8 [136] 246.9 [112] 271.2 [123] 290.6 [91] 246.9 [112] 271.2 [123] 290.6 [91] 246.9 [112] 271.2 [123] 290.6 [91] 246.9 [112] 271.2 [123]		•	2533, 3.40	2963, 3.97	3430, 4.60		4867, 6.53
Weight, Enclosure IP21, IP54 (lb [kg]) 211.6 [96] [104] [125] 299.8 [136] Weight, Enclosure IP00 (lb [kg]) 180.8 [82] 200.6 [91] 246.9 [112] 271.2 [123] Efficiency ⁴) 0.98 Output frequency 0-600 Hz Heatsink overtemp. trip 185°F [85°C] 194°F [90°C] 230°F [110°C] 230°F [110°C] [110°C] [110°C]		•	2662, 3.57	3430, 4.60	3612, 4.84		5156, 6.91
Weight, Enclosure IP00 (lb [kg]) 180.8 [82] 200.6 [91] [112] 271.2 [123] Efficiency ⁴⁾ 0.98 Output frequency 0-600 Hz Heatsink overtemp. trip 185°F [85°C] 194°F 230°F 230°F 230°F [110°C] 230°F [110°C]		Weight, Enclosure IP21, IP54 (lb [kg])	211.6	5 [96]			299.8 [136]
Output frequency Heatsink overtemp. trip 0-600 Hz 185°F [85°C]		Weight, Enclosure IP00 (lb [kg])	180.8	3 [82]	200.6 [91]		271.2 [123]
Heatsink overtemp. trip 185°F [85°C] 194°F 230°F 230°F 230°F [110°C] [110°C]		Efficiency ⁴⁾			0.98		
Heatsink overtemp. trip 185°F [85°C] [90°C] [110°C] [110°C] [110°C]		Output frequency			0-600 Hz		
		Heatsink overtemp. trip	185°F [85°C]				
		Power card ambient trip		1			

Table 8.11

Line Power Supply 3 x 525-	690V AC			
		P315	P400	P450
	Typical Shaft output at 550V [kW]	250	315	355
	Typical Shaft output at 575V [HP]	350	400	450
	Typical Shaft output at 690V [kW]	315	400	450
	Enclosure IP21	D2	D2	E1
	Enclosure IP54	D2	D2	E1
	Enclosure IP00	D4	D4	E2
	Output current			
	Continuous			
	(at 550V) [A]	360	418	470
	Intermittent (60 sec overload)			
	(at 550V) [A]	396	460	517
	Continuous			
	(at 575/690V) [A]	344	400	450
	Intermittent (60 sec overload)			
	(at 575/690V) [A]	378	440	495
	Continuous KVA			
	(at 550V) [KVA]	343	398	448
	Continuous KVA			
	(at 575V) [KVA]	343	398	448
	Continuous KVA			
	(at 690V) [KVA]	411	478	538
Max. input current	(60 01 01) [1111]			
	Continuous			
	(at 550V) [A]	355	408	453
	Continuous (at 575V) [A]	339	390	434
	Continuous (at 690V) [A]	352	400	434
	Max. cable size, line power, motor and	2 x 150	2 x 150	4 x 240
	load share [mm² (AWG)]	(2 x 300 mcm)	(2 x 300 mcm)	(4 x 500 mcm)
		2 x 150	2 x 150	2 x 185
	Max. cable size, brake [mm² (AWG)]	(2 x 300 mcm)	(2 x 300 mcm)	(2 x 350 mcm)
	Max. external pre-fuses [A] ¹	500	550	700
	Estimated power loss			
	at rated max. load [W, hp] ⁴⁾ , 600V	5493, 7.37	5852, 7.85	6132, 8.22
	Estimated power loss			
	at rated max. load [W, hp] ⁴⁾ , 690V	5821, 7.81	6149, 8.25	6440, 8.64
	Weight,			
	enclosure IP21, IP54 (lb [kg])	332.9 [151]	363.8 [165]	579.8 [263]
	Weight,			
	enclosure IP00 (lb [kg])	304.2 [138]	332.9 [151]	487.2 [221]
	Efficiency ⁴⁾		0.98	
	Output frequency	0-600 Hz	0–500 Hz	0-500 Hz
	Heatsink overtemp. trip	230°F [110°C]	230°F [110°C]	230°F [110°C]
	Power card ambient trip	140°F [60°C]	140°F [60°C]	154.4°F [68°C]
	Tower card ambient trip	170 1 [00 C]	170 1 [00 C]	13-1, [00 C]

Table 8.12

Line Power Supply 3 x 525-6	590V AC			
		P500	P560	P630
	Typical Shaft output at 550V [kW]	400	450	500
	Typical Shaft output at 575V [HP]	500	600	650
	Typical Shaft output at 690V [kW]	500	560	630
	Enclosure IP21	E1	E1	E1
	Enclosure IP54	E1	E1	E1
	Enclosure IP00	E2	E2	E2
	Output current			
	Continuous	522	506	630
	(at 550V) [A]	523	596	630
	Intermittent (60 sec overload)	575	656	602
	(at 550V) [A]	575	656	693
	Continuous			
	(at 575/690V) [A]	500	570	630
	Intermittent (60 sec overload)			
	(at 575/690V) [A]	550	627	693
	Continuous KVA			
	(at 550V) [KVA]	498	568	600
	Continuous KVA			
	(at 575V) [KVA]	498	568	627
	Continuous KVA			
	(at 690V) [KVA]	598	681	753
Max. input current	(at 6564) [itting			
	Continuous			
→ \	(at 550V) [A] Continuous (at 575V) [A]	482	549	607
	Continuous (at 690V) [A]	482	549	607
	Max. cable size, line power, motor and load share [mm² (AWG)]	4x240 (4x500 mcm)	4x240 (4x500 mcm)	4x240 (4x500 mcm)
	May cable size byske [see-2 (AMC)]	2 x 185	2 x 185	2 x 185
	Max. cable size, brake [mm² (AWG)]	(2 x 350 mcm)	(2 x 350 mcm)	(2 x 350 mcm)
	Max. external pre-fuses [A] ¹	700	900	900
	Estimated power loss	coop 2.25	0242 4442	0244 12 12
	at rated max. load [W, hp] ⁴⁾ , 600 V	6903, 9.26	8343, 11.19	9244, 12.40
	Estimated power loss			
	at rated max. load [W, hp] ⁴⁾ , 690V	7249, 9.72	8727, 11.70	9673, 12.97
	Weight,			
	enclosure IP21, IP54 (lb [kg])	579.8 [263]	599.7 [272]	690 [313]
	Weight,			
	enclosure IP00 (lb [kg])	487.2 [221]	520.3 [236]	610.7 [277]
	Efficiency ⁴⁾		0.98	
	Output frequency		0-500Hz	
	Heatsink overtemp. trip		230°F [110°C]	
	Power card ambient trip		154.4°F [68°C]	
	. over cara amorene arp		134.41 [00 C]	

Table 8.13

Line Power Supply	3 x 525–690V AC						
		P710	P800	P900	P1M0	P1M2	P1M4
	Typical Shaft output at 550V [kW]	560	670	750	850	1000	1100
	Typical Shaft output at 575V [HP]	750	950	1050	1150	1350	1550
	Typical Shaft output at 690V [kW]	710	800	900	1000	1200	1400
	Enclosure IP21, 54 without/ with options cabinet	F1/ F3	F1/ F3	F1/ F3	F2/F4	F2/ F4	F2/F4
	Output current						
	Continuous (at 550V) [A]	763	889	988	1108	1317	1479
	Intermittent (60 s overload, at 550V) [A]	839	978	1087	1219	1449	1627
	Continuous (at 575/690V) [A]	730	850	945	1060	1260	1415
	Intermittent (60 s overload, at 575/690V) [A]	803	935	1040	1166	1386	1557
	Continuous KVA (at 550V) [KVA]	727	847	941	1056	1255	1409
	Continuous KVA (at 575V) [KVA]	727	847	941	1056	1255	1409
	Continuous KVA (at 690V) [KVA]	872	1016	1129	1267	1506	1691

Table 8.14

Line Power Supply	3 x 525–690V AC						
		P710	P800	P900	P1M0	P1M2	P1M4
Max. input current							
No.	Continuous (at 550V) [A]	743	866	962	1079	1282	1440
	Continuous (at 575V) [A]	711	828	920	1032	1227	1378
-	Continuous (at 690V) [A]	711	828	920	1032	1227	1378
	Max. cable size,motor [mm ² (AWG ²⁾)]		8x150 (8x300 mcm)			12x150 (12x300 mcm))
	Max. cable size, line power F1/F2 [mm² (AWG²)]			8x24 (8x500			
	Max. cable size, line power F3/F4 [mm² (AWG²)]			8x45 8x900			
	Max. cable size, loadsharing [mm ² (AWG ²⁾)]			4x12 (4x250			
	Max. cable size, brake [mm² (AWG²))		4x185 (4x350 mcm)			6x185 (6x350 mcm)	
	Max. external pre-fuses [A] 1)		16	00		2000	2500
	Est. power loss at rated max. load [W, hp] ⁴⁾ , 600V, F1 & F2	10771, 14.44	12272, 16.46	13835, 18.55	15592, 20.91	18281, 24.52	20825, 27.93
	Est. power loss at rated max. load [W, hp] ⁴⁾ , 690V, F1 & F2	11315, 15.17	12903, 17.30	14533, 19.49	16375, 21.96	19207, 25.76	21857, 29.31
	Max. added losses of Circuit Breaker or Disconnect & Contactor, F3 & F4	427, 0.57	532, 0.71	615, 0.82	665, 0.89	863, 1.16	1044, 1.40
	Max Panel Options Losses			400, 0	0.54		
	Weight,enclosure IP21, IP54 (lb [kg])	2213 / 2863 [1004 / 1299]	2213 / 2863 [1004 / 1299]	2213 / 2863 [1004 / 1299]	2747 / 3397 [1246 / 1541]	2747 / 3397 [1246 / 1541]	2822 / 3472 [1280 / 1575]
	Weight, Rectifier Module (lb [kg])	224.9 [102]	224.9 [102]	224.9 [102]	299.8 [136]	299.8 [136]	299.8 [136]
	Weight, Inverter Module (lb [kg])	224.9 [102]	224.9 [102]	299.8 [136]	224.9 [102]	224.9 [102]	299.8 [136]
	Efficiency ⁴⁾			0.9	8		
	Output frequency			0-500	OHz		
	Heatsink overtemp. trip			203°F [95°C]		
	Power card amb. trip			154.4°F	[68°C]		

Table 8.15

General Specifications and ...

- 1) For type of fuse, see 5.2.8 Fuses
- 2) American Wire Gauge.
- 3) Measured using 16.4 ft [5 m] shielded motor cables at rated load and rated frequency.
- 4) The typical power loss is at nominal load conditions and expected to be within +/-15% (tolerance relates to variety in voltage and cable conditions). Values are based on a typical motor efficiency (eff2/eff3 border line). Motors with lower efficiency will also add to the power loss in the Adjustable frequency drive and opposite. If the switching frequency is increased comed to the default setting, the power losses may rise significantly. LCP and

typical control card power consumptions are included. Further options and customer load may add up to 30W to the losses. (Though typical, only 4 W extra for a fully loaded control card, or options for slot A or slot B, each.) Although measurements are made with state of the art equipment, some measurement inaccuracy must be allowed for (+/-5%).

8.2 General Specifications

Line	power	supply	(I 1.	12.	13)
	DOWCI	JUPPIY	\L I,	,	LJ/

Supply voltage 200–240 V ±10%, 380–480 V ±10%, 525–690 V ±10%

AC line voltage low / line drop-out:

During low AC line voltage or a line drop-out, the adjustable frequency drive continues until the intermediate circuit voltage drops below the minimum stop level, which corresponds typically to 15% below the adjustable frequency drive's lowest rated supply voltage. Power-up and full torque cannot be expected at AC line voltage lower than 10% below the adjustable frequency drive's lowest rated supply voltage.

Supply frequency	50/60 Hz ±5%
Max. imbalance temporary between line phases	3.0% of rated supply voltage
True Power Factor ()	≥ 0.9 nominal at rated load
Displacement Power Factor (cos) near unity	(> 0.98)
Switching on input supply L1, L2, L3 (power-ups) ≤ enclosure type A	maximum twice/min.
Switching on input supply L1, L2, L3 (power-ups) ≥ enclosure type B, C	maximum once/min.
Switching on input supply L1, L2, L3 (power-ups) ≥ enclosure type D, E, F	maximum once/2 min.
Environment according to EN60664-1	overvoltage category lll / pollution degree 2

The unit is suitable for use on a circuit capable of delivering not more than 100.000 RMS symmetrical Amperes, 480/600 V maximum.

Motor output (U, V, W)

Output voltage	0–100% of supply voltage
Output frequency	0-1000Hz*
Switching on output	Unlimited
Ramp times	1–3600 sec.

^{*} Dependent on power size.

Torque characteristics

Starting torque (Constant torque)	maximum 110% for 1 min.*
Starting torque	maximum 135% up to 0.5 sec.*
Overload torque (Constant torque)	maximum 110% for 1 min.*

^{*}Percentage relates to the adjustable frequency drive's nominal torque.

Cable lengths and cross-sections

Max. motor cable length, shielded/armored

Max. motor cable length, non-shielded/unarmored	VLT® HVAC Drive: 984 ft [300 m]
Max. cross-section to motor, line power, load sharing and bra	ke *
Maximum cross-section to control terminals, rigid wire	0.0023 in ² [1.5 mm ²]/16 AWG (2 x 0.0012 in ² [0.75 mm ²])
Maximum cross-section to control terminals, flexible cable	0.00016 in ² [1 mm ²]/18 AWG
Maximum cross-section to control terminals, cable with enclo	sed core 0.0008 in ² [0.5 mm ²]/20 AWG
Minimum cross-section to control terminals	0.00039 in ² [0.25 mm ²]

^{*} See Line Power Supply tables for more information!

Digital inputs

Programmable digital inputs	4 (6)
Terminal number	18, 19, 27 ¹⁾ , 29 ¹⁾ , 32, 33,
Logic	PNP or NPN
Voltage level	0-24 V DC
Voltage level, logic'0' PNP	< 5 V DC
Voltage level, logic'1' PNP	> 10 V DC
Voltage level, logic '0' NPN	> 19 V DC
Voltage level, logic '1' NPN	< 14 V DC
Maximum voltage on input	28 V DC

VLT® HVAC Drive: 492 ft [150 m]

Input resistance, R_i approx. 4 $k\Omega$

All digital inputs are galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

1) Terminals 27 and 29 can also be programmed as output.

Analog inputs

Analog inputs	
Number of analog inputs	2
Terminal number	53, 54
Modes	Voltage or current
Mode select	Switch S201 and switch S202
Voltage mode	Switch S201/switch S202 = OFF (U)
Voltage level	: 0 to + 10V (scaleable)
Input resistance, R _i	approx. 10 kΩ
Max. voltage	± 20V
Current mode	Switch S201/switch S202 = ON (I)
Current level	0/4 to 20mA (scaleable)
Input resistance, R _i	approx. 200 Ω
Max. current	30mA
Resolution for analog inputs	10 bit (+ sign)
Accuracy of analog inputs	Max. error 0.5% of full scale
Bandwidth	200Hz

The analog inputs are galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

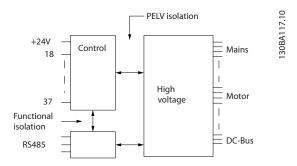


Figure 8.1

Programmable pulse inputs	2
Terminal number pulse	29, 33
Max. frequency at terminal, 29, 33	110 kHz (push-pull driven)
Max. frequency at terminal, 29, 33	5kHz (open collector)
Min. frequency at terminal 29, 33	4Hz
Voltage level	see section on Digital input
Maximum voltage on input	28V DC
Input resistance, R _i	approx. 4kΩ
Pulse input accuracy (0.1–1 kHz)	Max. error: 0.1% of full scale
Analog output	
Number of programmable analog outputs	1
Terminal number	42
Current range at analog output	0/4–20mA
Max. resistor load to common at analog output	500 Ω
Accuracy on analog output	Max. error: 0.8% of full scale
Resolution on analog output	8 bit

The analog output is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

General Specifications and ...

VLT® HVAC Drive Design Guide

Terminal number	68 (P,TX+, RX+), 69 (N,TX-, RX-)
Terminal number 61	Common for terminals 68 and 69

The RS-485 serial communication circuit is functionally seated from other central circuits and galvanically isolated from the supply voltage (PELV).

Digital output

Programmable digital/pulse outputs	2
Terminal number	27, 29 ¹⁾
Voltage level at digital/frequency output	0-24V
Max. output current (sink or source)	40mA
Max. load at frequency output	1 kΩ
Max. capacitive load at frequency output	10nF
Minimum output frequency at frequency output	0Hz
Maximum output frequency at frequency output	32kHz
Accuracy of frequency output	Max. error: 0.1% of full scale
Resolution of frequency outputs	12 bit

1) Terminal 27 and 29 can also be programmed as input.

The digital output is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

Control card, 24 V DC output

Terminal number	12, 13
Max. load	200mA

The 24 V DC supply is galvanically isolated from the supply voltage (PELV), but has the same potential as the analog and digital inputs and outputs.

Relay outputs

Programmable relay outputs	2
Relay 01 Terminal number	1-3 (break), 1-2 (make)
Max. terminal load (AC-1) ¹⁾ on 1-3 (NC), 1-2 (NO) (Resistive load)	240V AC, 2A
Max. terminal load (AC-15) ¹⁾ (Inductive load @ cosφ 0.4)	240V AC, 0.2 A
Max. terminal load (DC-1) ¹⁾ on 1-2 (NO), 1-3 (NC) (Resistive load)	60V DC, 1A
Max. terminal load (DC-13) ¹⁾ (Inductive load)	24V DC, 0.1A
Relay 02 Terminal number	4-6 (break), 4-5 (make)
Max. terminal load (AC-1) ¹⁾ on 4-5 (NO) (Resistive load) ²⁾³⁾	400V AC, 2 A
Max. terminal load (AC-15) ¹⁾ on 4-5 (NO) (Inductive load @ cosφ 0.4)	240V AC, 0.2 A
Max. terminal load (DC-1) ¹⁾ on 4-5 (NO) (Resistive load)	80V DC, 2 A
Max. terminal load (DC-13) ¹⁾ on 4-5 (NO) (Inductive load)	24V DC, 0.1A
Max. terminal load (AC-1) ¹⁾ on 4-6 (NC) (Resistive load)	240V AC, 2 A
Max. terminal load (AC-15) ¹⁾ on 4-6 (NC) (Inductive load @ cosφ 0.4)	240V AC, 0.2A
Max. terminal load (DC-1) ¹⁾ on 4-6 (NC) (Resistive load)	50V DC, 2 A
Max. terminal load (DC-13) ¹⁾ on 4-6 (NC) (Inductive load)	24V DC, 0.1 A
Min. terminal load on 1-3 (NC), 1-2 (NO), 4-6 (NC), 4-5 (NO)	24V DC 10mA, 24V AC 20mA
Environment according to EN 60664-1	overvoltage category III/pollution degree 2

1) IEC 60947 parts 4 and 5

The relay contacts are galvanically isolated from the rest of the circuit by reinforced isolation (PELV).

- 2) Overvoltage Category II
- 3) UL applications 300V AC 2A

Control card, 10 V DC output

Terminal number	50
Output voltage	10.5V±0.5V
Max. load	25mA

The 10V DC supply is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

General Specifications and ...

Control characteristics Resolution of output frequency at 0–1000Hz	+/- 0.003Hz
System response time (terminals 18, 19, 27, 29, 32, 33)	
Speed control range (open-loop)	1:100 of synchronous speed
Speed accuracy (open-loop)	30–4000 rpm: Maximum error of ±8 rpm
All control characteristics are based on a 4-pole asynchr	
Surroundings	
Enclosure type A	IP 20/Chassis, IP 21kit/Type 1, IP55/Type12, IP 66/Type12
Enclosure type B1/B2	IP 21/Type 1, IP55/Type12, IP 66/12
Enclosure type B3/B4	IP20/Chassis
Enclosure type C1/C2	IP 21/Type 1, IP55/Type 12, IP66/12
Enclosure type C3/C4	IP20/Chassis
Enclosure type D1/D2/E1	IP21/Type 1, IP54/Type12
Enclosure type D3/D4/E2	IP00/Chassis
Enclosure type F1/F3	IP21, 54/Type1, 12
Enclosure type F2/F4	IP21, 54/Type1, 12
Enclosure kit available ≤ enclosure type D	IP21/NEMA 1/IP 4x on top of enclosure
Vibration test enclosure A, B, C	1.0 g
Vibration test enclosure D, E, F	0.7 g
Relative humidity	5%–95% (IEC 721-3-3; Class 3K3 (non-condensing) during operation
Aggressive environment (IEC 60068-2-43) H ₂ S test	class Kd
Test method according to IEC 60068-2-43 H2S (10 days	5)
Ambient temperature (at 60 AVM switching mode)	
- with derating	max. 122°F [55°C] ⁷⁾
- with full output power of typical EFF2 motors (up to	90% output current) max. 122°F [50°C] ¹⁾
- at full continuous FC output current	max. 113°F [45°C] ¹⁾
1) For more information on derating see 8.6 Special Cond	
Minimum ambient temperature during full-scale opera	
Minimum ambient temperature at reduced performance	
Temperature during storage/transport	-13°-+149°/158°F [-25°-+65°/70°C]
Maximum altitude above sea level without derating	3280 ft [1000 m]
Maximum altitude above sea level with derating	9842 ft [3000 m]
Derating for high altitude, see 8.6 Special Conditions	70-12 It [5000 III]
,	
EMC standards, Emission	EN 61800-3, EN 61000-6-3/4, EN 55011, IEC 61800-3
	EN 61800-3, EN 61000-6-1/2,
EMC standards, Immunity	EN 61000-4-2, EN 61000-4-3, EN 61000-4-4, EN 61000-4-5, EN 61000-4-6
See 8.6 Special Conditions	
Control card performance	
Scan interval	5ms
Control card, USB serial communication	
USB standard	1.1 (Full speed)
USB plug	USB type B "device" plug

VLT® HVAC Drive Design Guide

CAUTION

Connection to PC is carried out via a standard host/device USB cable.

The USB connection is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals. The USB connection is <u>not</u> galvanically isolated from protection ground. Use only isolated laptop/PC as connection to the USB connector on Adjustable frequency drive or an isolated USB cable/drive.

Protection and Features

- Electronic thermal motor protection against overload.
- Temperature monitoring of the heatsink ensures that the Adjustable frequency drive trips if the temperature reaches 203°F ± 9°F [95°C ± 5°C]. An overload temperature cannot be reset until the temperature of the heatsink is below 158°F ± 9°F [70°C ± 5°C] (Guideline these temperatures may vary for different power sizes, enclosures, etc.). The Adjustable frequency drive has an auto derating function to avoid it's heatsink reaching 203°F [95°C].
- The Adjustable frequency drive is protected against short-circuits on motor terminals U, V, W.
- If a line phase is missing, the Adjustable frequency drive trips or issues a warning (depending on the load).
- Monitoring of the intermediate circuit voltage ensures that the Adjustable frequency drive trips if the intermediate circuit voltage is too low or too high.
- The Adjustable frequency drive is protected against ground faults on motor terminals U, V, W.

8.3 Efficiency

Efficiency of the Adjustable frequency drive (nyLT)

The load on the Adjustable frequency drive has little effect on its efficiency. In general, the efficiency is the same at the rated motor frequency $f_{M,N}$, even if the motor supplies 100% of the rated shaft torque or only 75%, i.e., in case of part loads.

This also means that the efficiency of the Adjustable frequency drive does not change even if other U/f characteristics are chosen.

However, the U/f characteristics influence the efficiency of the motor.

The efficiency declines a little when the switching frequency is set to a value greater than 5 kHz. The efficiency will also be slightly reduced if the AC line voltage is 480 V, or if the motor cable is longer than 98 ft [30 m].

Adjustable frequency drive efficiency calculation

Calculate the efficiency of the Adjustable frequency drive at different loads based on *Figure 8.2*. The factor in this graph must be multiplied with the specific efficiency factor listed in the specification tables:

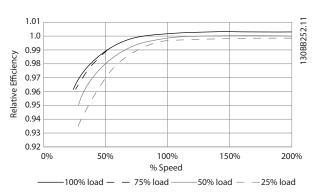


Figure 8.2 Typical Efficiency Curves

Example: Assume a 75 hp [55 kW], 380–480V AC Adjustable frequency drive at 25% load at 50% speed. The graph is showing 0.97 - rated efficiency for a 75 hp [55kW] FC is 0.98. The actual efficiency is then: 0.97x0.98=0.95.

Efficiency of the motor (nmotor)

The efficiency of a motor connected to the adjustable frequency drive depends on magnetizing level. In general, the efficiency is just as good as with line power operation. The efficiency of the motor depends on the type of motor.

In the range of 75–100% of the rated torque, the efficiency of the motor is practically constant, both when it is controlled by the Adjustable frequency drive and when it runs directly on line power.

In small motors, the influence from the U/f characteristic on efficiency is marginal. However, in motors from 15 hp [11 kW] and up, the advantages are significant.

In general, the switching frequency does not affect the efficiency of small motors. Motors from 15 hp [11 kW] and up have their efficiency improved (1–2%). This is because the sine shape of the motor current is almost perfect at high switching frequency.

Efficiency of the system (η_{SYSTEM})

To calculate the system efficiency, the efficiency of the Adjustable frequency drive (η_{VLT}) is multiplied by the efficiency of the motor (η_{MOTOR}):

 $\eta_{\text{SYSTEM}} = \eta_{\text{VLT}} \ x \ \eta_{\text{MOTOR}}$

8.4 Acoustic noise

The acoustic noise from the Adjustable frequency drive comes from three sources:

- 1. DC intermediate circuit coils.
- 2. Integrated fan.

3. RFI filter choke.

Typical values are measured at a distance of 3.28 ft. [1 m] from the unit:

Enclosure	At reduced fan speed (50%) [dBA] ***	Full fan speed [dBA]
A2	51	60
A3	51	60
A5	54	63
B1	61	67
B2	58	70
В3	59.4	70.5
B4	53	62.8
C1	52	62
C2	55	65
C3	56.4	67.3
C4	-	-
D1/D3	74	76
D2/D4	73	74
E1/E2*	73	74
**	82	83
F1/F2/F3/F4	78	80

^{* 425} hp [315kW], 380–480V AC and 600–675 [450–500kW], 525–690V AC only.

Table 8.16

8.5 Peak voltage on motor

When a transistor in the inverter bridge switches, the voltage across the motor increases by a du/dt ratio depending on:

- the motor cable (type, cross-section, length, shielded or non-shielded)
- inductance

The natural induction causes an overshoot UPEAK in the motor voltage before it stabilizes itself at a level depending on the voltage in the intermediate circuit. The rise time and the peak voltage UPEAK affect the service life of the motor. If the peak voltage is too high, motors without phase coil insulation are especially affected. If the motor cable is short (by a few yards), the rise time and peak voltage are lower.

If the motor cable is long (328 ft [100 m]), the rise time and peak voltage increases.

In motors without phase insulation paper or other insulation reinforcement suitable for operation with voltage supply (such as a Adjustable frequency drive), fit a sine-wave filter on the output of the Adjustable frequency drive.

To obtain approximate values for cable lengths and voltages not mentioned below, use the following rules of thumb:

- 1. Rise time increases/decreases proportionally with cable length.
- U_{PEAK} = DC link voltage x 1.9 (DC link voltage = AC line voltage x 1.35).
- 3. $dU \mid dt = \frac{0.8 \times U_{PEAK}}{Risetime}$

Data are measured according to IEC 60034-17. Cable lengths are in meters.

Adjustable Frequency Drive, P5K5, T2					
Cable AC line Rise time Vpeak dU/dt					
length (ft [m])	voltage [V]	[µsec]	[kV]	[kV/µsec]	
118.1 [36]	240	0.226	0.616	2.142	
164 [50]	240	0.262	0.626	1.908	
328 [100]	240	0.650	0.614	0.757	
492.1 [150]	240	0.745	0.612	0.655	

Table 8.17

^{**} Remaining E1/E2 power sizes.

^{***} For D, E and F sizes, reduced fan speed is at 87%, measured at 200V.

Adjustable Frequency Drive, P7K5, T2						
Cable AC line Rise time dU/dt						
length (ft [m])	voltage [V]	[µsec]	011893-0001	[kV/µsec]		
16.4 [5]	230	0.13	0.510	3.090		
164 [50]	230	0.23	0.590	2.034		
328 [100]	230	0.54	0.580	0.865		
492.1 [150]	230	0.66	0.560	0.674		

Table 8.18

General Specifications and ...

Adjustable Frequency Drive, P11K, T2					
Cable Rise time Vpeak dU/dt					
length (ft [m])		[µsec]	[kV]	[kV/µsec]	
118.1 [36]	240	0.264	0.624	1.894	
446.2 [136]	240	0.536	0.596	0.896	
492.1 [150]	240	0.568	0.568	0.806	•

Table 8.19

Adjustable Frequency Drive, P15K, T2					
Cable AC line Rise time Vpeak dU/dt					
length (ft [m])	voltage [V]	[µsec]	[kV]	[kV/µsec]	
98.4 [30]	240	0.556	0.650	0.935	
328 [100]	240	0.592	0.594	0.807	
492.1 [150]	240	0.708	0.575	0.669	

Table 8.20

Adjustable Frequency Drive, P18K, T2					
Cable	AC line	Rise time	Vpeak	dU/dt	
length (ft [m])	voltage [V]	[µsec]	[kV]	[kV/µsec]	
118.1 [36]	240	0.244	0.608	1.993	
446.2 [136]	240	0.568	0.580	0.832	
492.1 [150]	240	0.720	0.574	0.661	

Table 8.21

Adjustable Frequency Drive, P22K, T2					
Cable	AC line	Rise time	Vpeak	dU/dt	
length (ft [m])	voltage [V]	[µsec]	[kV]	[kV/µsec]	
118.1 [36]	240	0.244	0.608	1.993	
446.2 [136]	240	0.560	0.580	0.832	
492.1 [150]	240	0.720	0.574	0.661	

Table 8.22

Adjustable Frequency Drive, P30K, T2					
Cable	AC line	Rise time	Vpeak	dU/dt	
length (ft [m])	voltage [V]	[µsec]	[kV]	[kV/µsec]	
49.2 [15]	240	0.194	0.626	2.581	
164 [50]	240	0.252	0.574	1.929	
492.1 [150]	240	0.444	0.538	0.977	

Adjustable Frequency Drive, P37K, T2					
Cable AC line Rise time Vpeak dU/dt					
length (ft [m])	voltage [V]	[µsec]	[kV]	[kV/µsec]	
98.4 [30]	240	0.300	0.598	1.593	
328 [100]	240	0.536	0.566	0.843	
492.1 [150]	240	0.776	0.546	0.559	

Table 8.24

Adjustable Frequency Drive, P45K, T2					
Cable AC line Rise time Vpeak dU/dt					
length (ft [m])	voltage [V]	[µsec]	[kV]	[kV/µsec]	
98.4 [30]	240	0.300	0.598	1.593	
328 [100]	240	0.536	0.566	0.843	
492.1 [150]	240	0.776	0.546	0.559	

Table 8.25

Adjustable Frequency Drive, P1K5, T4					
Cable AC line Rise time Vpeak dU/dt					
length (ft [m])	voltage [V]	[µsec]	[kV]	[kV/µsec]	
16.4 [5]	400	0.640	0.690	0.862	
164 [50]	400	0.470	0.985	0.985	
492.1 [150]	400	0.760	1.045	0.947	

Table 8.26

Adjustable Frequency Drive, P4K0, T4					
Cable	AC line	Rise time	Vpeak	dU/dt	
length (ft [m])	voltage [V]	[µsec]	[kV]	[kV/µsec]	
16.4 [5]	400	0.172	0.890	4.156	
164 [50]	400	0.310		2.564	
492.1 [150]	400	0.370	1.190	1.770	

Table 8.27

Adjustable Frequency Drive, P7K5, T4					
Cable AC line Rise time Vpeak dU/dt					
length (ft [m])	voltage [V]	[µsec]	[kV]	[kV/µsec]	
16.4 [5]	400	0.04755	0.739	8.035	
164 [50]	400	0.207	1.040	4.548	
492.1 [150]	400	0.6742	1.030	2.828	

Table 8.28

Adjustable Frequency Drive, P11K, T4					
Cable AC line Rise time Vpeak dU/dt					
length (ft [m])	voltage [V]	[µsec]	[kV]	[kV/µsec]	
49.2 [15]	400	0.408	0.718	1.402	
328 [100]	400	0.364	1.050	2.376	
492.1 [150]	400	0.400	0.980	2.000	

General Specifications and ...

VLT® HVAC Drive Design Guide

Adjustable Frequency Drive, P15K, T4					
Cable AC line Rise time Vpeak dU/dt					
length (ft [m])	voltage [V]	[µsec]	[kV]	[kV/µsec]	
118.1 [36]	400	0.422	1.060	2.014	
328 [100]	400	0.464	0.900	1.616	
492.1 [150]	400	0.896	1.000	0.915	

Table 8.30

Adjustable Frequency Drive, P18K, T4					
Cable AC line Rise time Vpeak dU/dt					
length (ft [m])	voltage [V]	[µsec]	[kV]	[kV/µsec]	
118.1 [36]	400	0.344	1.040	2.442	
328 [100]	400	1.000	1.190	0.950	
492.1 [150]	400	1.400	1.040	0.596	

Table 8.31

Adjustable Frequency Drive, P22K, T4					
Cable AC line Rise time Vpeak dU/dt					
length (ft [m])	voltage [V]	[µsec]	[kV]	[kV/µsec]	
118.1 [36]	400	0.232	0.950	3.534	
328 [100]	400	0.410	0.980	1.927	
492.1 [150]	400	0.430	0.970	1.860	

Table 8.32

Adjustable Frequency Drive, P30K, T4					
Cable AC line Rise time Vpeak dU/dt					
length (ft [m])	voltage [V]	[µsec]	[kV]	[kV/µsec]	
49.2 [15]	400	0.271	1.000	3.100	
328 [100]	400	0.440	1.000	1.818	
492.1 [150]	400	0.520	0.990	1.510	

Table 8.33

Adjustable Frequency Drive, P37K, T4					
Cable	dU/dt				
length (ft [m])	voltage	[µsec]	[kV]	[kV/µsec]	
16.4 [5]	480	0.270	1.276	3.781	
164 [50]	480	0.435	1.184	2.177	
328 [100]	480	0.840	1.188	1.131	
492.1 [150]	480	0.940	1.212	1.031	

Adjustable Frequency Drive, P45K, T4				
Cable	dU/dt			
length (ft [m])	voltage [V]	[µsec]	[kV]	[kV/µsec]
118.1 [36]	400	0.254	1.056	3.326
164 [50]	400	0.465	1.048	1.803
328 [100]	400	0.815	1.032	1.013
492.1 [150]	400	0.890	1.016	0.913

Table 8.35

Adjustable Frequency Drive, P55K, T4					
Cable AC line Rise time Vpeak dU/dt				dU/dt	
length (ft [m])	voltage [V]	[µsec]	[kV]	[kV/µsec]	
32.8 [10]	400	0.350	0.932	2.130	

Table 8.36

Adjustable Frequency Drive, P75K, T4					
Cable AC line Rise time Vpeak dU/dt					
length (ft [m])	voltage [V]	[µsec]	[kV]	[kV/µsec]	
16.4 [5]	480	0.371	1.170	2.466	

Table 8.37

Adjustable Frequency Drive, P90K, T4					
Cable AC line Rise time Vpeak dU/dt				dU/dt	
length (ft [m])	voltage [V]	[µsec]	[kV]	[kV/µsec]	
16.4 [5]	400	0.364	1.030	2.264	

Table 8.38

High Power Range:

Adjustable Frequency Drive, P110 - P250, T4					
Cable AC line Rise time Vpeak dU/dt				dU/dt	
length (ft [m])	voltage [V]	[µsec]	[kV]	[kV/µsec]	
98.4 [30]	400	0.34	1.040	2.447	

Table 8.39

Adjustable Frequency Drive, P315 - P1M0, T4					
Cable	AC line	Rise time	Vpeak	dU/dt	
length (ft [m])	voltage [V]	[µsec]	[kV]	[kV/µsec]	
98.4 [30]	500	0.71	1.165	1.389	
98.4 [30]	400	0.61	0.942	1.233	
98.4 [30]	500 ¹	0.80	0.906	0.904	
98.4 [30]	400 ¹	0.82	0.760	0.743	
1) With Danfoss dU/dt	filter.	•	•	•	

Adjustable Frequency Drive, P110 - P400, T7					
Cable	AC line	Rise time	Vpeak	dU/dt	
length [m]	voltage [V]	[µsec]	[kV]	[kV/µsec]	
98.4 [30]	690	0.38	1.513	3.304	
98.4 [30]	575	0.23	1.313	2.750	
98.4 [30]	690 1)	1.72	1.329	0.640	
1) With Danfoss dU/dt filter.					

Table 8.41

Adjustable Frequency Drive, P450 - P1M4, T7					
Cable	AC line	Rise time	Vpeak	dU/dt	
length (ft [m])	voltage [V]	[µsec]	[kV]	[kV/µsec]	
98.4 [30]	690	0.57	1.611	2.261	
98.4 [30]	575	0.25		2.510	
98.4 [30]	690 ¹⁾	1.13	1.629	1.150	
1) With Danfoss dU/dt	filter.			•	

Table 8.42

8.6 Special Conditions

8.6.1 Purpose of Derating

Take derating into account when using the Adjustable frequency drive at low air pressure (heights), at low speeds, with long motor cables, cables with a large cross-section or at high ambient temperature. The required action is described in this section.

8.6.2 Derating for Ambient Temperature

90% Adjustable frequency drive output current can be maintained up to max. 122°F [50° C] ambient temperature.

With a typical full load current of EFF 2 motors, full output shaft power can be maintained up to 122°F [50°C]. For more specific data and/or derating information for other motors or conditions, please contact Danfoss.

8.6.3 Automatic Adaptations to Ensure Performance

The Adjustable frequency drive constantly checks for critical levels of internal temperature, load current, high voltage on the intermediate circuit and low motor speeds. As a response to a critical level, the Adjustable frequency drive can adjust the switching frequency and/or change the switching pattern in order to ensure the performance of the Adjustable frequency drive. The capability to automatically reduce the output current extends the acceptable operating conditions even further.

8.6.4 Derating for Low Air Pressure

The cooling capability of air is decreased at a lower air pressure.

Below 3,280 ft [1,000 m] altitude no derating is necessary but above 3,280 ft [1,000 m] the ambient temperature (T_{AMB}) or max. output current (l_{out}) should be derated in accordance with the diagram shown.

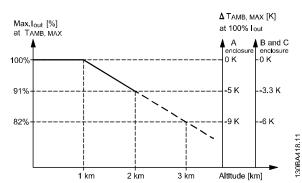


Figure 8.3 Derating of output current versus altitude at T_{AMB, MAX} for frame sizes A, B and C. At altitudes above 6561 ft [2 km], please contact Danfoss regarding PELV.

An alternative is to lower the ambient temperature at high altitudes and thereby ensure 100% output current at high altitudes. As an example of how to read the graph, the

situation at 6,500 ft [2 km] is elaborated. At a temperature of 113°F [45°C] ($T_{AMB, MAX}$ - 3.3 K), 91% of the rated output current is available. At a temperature of 107°F [41.7°C], 100% of the rated output current is available.

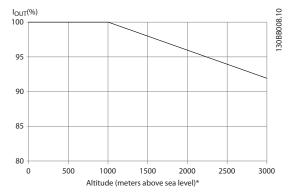


Figure 8.4

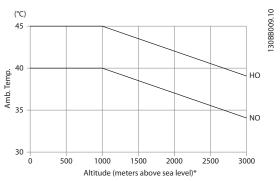


Figure 8.5

Derating of output current versus altitude at $T_{\text{AMB, MAX}}$ for frame sizes D, E and F.

8.6.5 Derating for Running at Low Speed

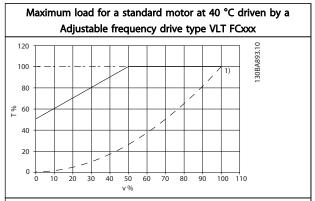
When a motor is connected to a Adjustable frequency drive, it is necessary to make sure that the cooling of the motor is adequate.

The level of heating depends on the load on the motor as well as the operating speed and time.

Constant torque applications (CT mode)

A problem may occur at low RPM values in constant torque applications. In a constant torque application, a motor may overheat at low speeds due to less cooling air from the motor integral fan.

Therefore, if the motor is to be run continuously at an RPM value lower than half of the rated value, the motor must


be supplied with additional air-cooling (or a motor designed for this type of operation may be used).

An alternative is to reduce the load level of the motor by choosing a larger motor. However, the design of the Adjustable frequency drive puts a limit to the motor size.

Variable (quadratic) torque applications (VT)

In VT applications such as centrifugal pumps and fans, where the torque is proportional to the square of the speed and the power is proportional to the cube of the speed, there is no need for additional cooling or de-rating of the motor.

In the graphs shown below, the typical VT curve is below the maximum torque with de-rating and maximum torque with forced cooling at all speeds.

Legend: — — — Typical torque at VT load — → → Max torque with forced cooling — — Max torque

Note 1) Oversynchronous speed operation will result in the available motor torque decreasing inversely proportional to the increase in speed. This must be considered during the design phase to avoid overloading the motor.

Table 8.43

8.7 Troubleshooting

A warning or an alarm is signaled by the relevant LED on the front of the Adjustable frequency drive and indicated by a code on the display.

A warning remains active until its cause is no longer present. Under certain circumstances operation of the motor may still be continued. Warning messages may be critical, but are not necessarily so.

In the event of an alarm, the Adjustable frequency drive will have tripped. Alarms must be reset to restart operation once their cause has been rectified.

This may be done in four ways:

- 1. By using the [RESET] control button on the LCP.
- 2. Via a digital input with the "Reset" function.
- Via serial communication/optional serial communication bus.
- 4. By resetting automatically using the [Auto Reset] function, which is a default setting for VLT® HVAC Drive, see 14-20 Reset Mode in the FC 100 Programming Guide MGxxyy

NOTE!

After a manual reset using the [RESET] button on the LCP, the [Auto On] or [Hand On] button must be pressed to restart the motor.

If an alarm cannot be reset, the reason may be that its cause has not been rectified, or the alarm is trip-locked (see also *Table 8.44*).

ACAUTION

Alarms that are trip-locked offer additional protection, means that the line power supply must be switched off before the alarm can be reset. After being switched back on, the Adjustable frequency drive is no longer blocked and may be reset as described above once the cause has been rectified.

Alarms that are not trip-locked can also be reset using the automatic reset function in *14-20 Reset Mode* (Warning: automatic wake-up is possible!)

If a warning and alarm is marked against a code in the table on the following page, this means that either a warning occurs before an alarm, or it can be specified whether it is a warning or an alarm that is to be displayed for a given fault.

This is possible, for instance, in 1-90 Motor Thermal Protection. After an alarm or trip, the motor carries on coasting, and the alarm and warning flash on the Adjustable frequency drive. Once the problem has been rectified, only the alarm continues flashing.

NOTE!

No missing motor phase detection (no 30-32) and no stall detection is active when *1-10 Motor Construction* is set to [1] PM non-salient SPM.

No.	Description	Warning	Alarm/ Trip	Alarm/Trip Lock	Parameter Reference
1	10 Volts low	Х			
2	Live zero error	(X)	(X)		6-01
3	No motor	(X)			1-80
4	Mains phase loss	(X)	(X)	(X)	14-12
5	DC link voltage high	X			
6	DC link voltage low	X			
7	DC overvoltage	X	Х		
8	DC undervoltage	X	Х		
9	Inverter overloaded	X	Х		
10	Motor ETR overtemperature	(X)	(X)		1-90
11	Motor thermistor over temperature	(X)	(X)		1-90
12	Torque limit	X	Х		
13	Overcurrent	X	Х	Х	
14	Earth fault	X	Х	Х	
15	Hardware mismatch		Х	Х	
16	Short Circuit		Х	Х	
17	Control word timeout	(X)	(X)		8-04
18	Start failed		Х		
23	Internal Fan Fault	X			
24	External Fan Fault	X			14-53
25	Brake resistor short-circuited	Х			
26	Brake resistor power limit	(X)	(X)		2-13
27	Brake chopper short-circuited	Х	Х		
28	Brake check	(X)	(X)		2-15

No.	Description	Warning	Alarm/ Trip	Alarm/Trip Lock	Parameter Reference
29	Drive overtemperature	Х	Х	Х	
30	Motor phase U missing	(X)	(X)	(X)	4-58
31	Motor phase V missing	(X)	(X)	(X)	4-58
32	Motor phase W missing	(X)	(X)	(X)	4-58
33	Soft-charge fault		Х	X	
34	Fieldbus (serial communication bus) fault	Х	Х		
35	Out of frequency ranges	Х	Х		
36	Mains failure	Х	Х		
37	Phase Imbalance	Х	Х		
38	Internal fault		Х	X	
39	Heatsink sensor		Х	Х	
40	Overload of Digital Output Terminal 27	(X)			5-00, 5-01
41	Overload of Digital Output Terminal 29	(X)			5-00, 5-02
42	Overload of Digital Output On X30/6	(X)			5-32
42	Overload of Digital Output On X30/7	(X)			5-33
46	Pwr. card supply	(7.5)	Х	Х	
47	24 V supply low	X	X	X	
48	1.8 V supply low		X	X	
49	Speed limit	X	(X)	Λ	1-86
50	AMA calibration failed		X		1 00
51	AMA check Unom and Inom		X		
	AMA low Inom		X		
52			+		
53	AMA motor too big		X		
54	AMA motor too small		X		
55	AMA Parameter out of range		X		
56	AMA times at		X		
57	AMA timeout		X		
58	AMA internal fault	X	Х		
59	Current limit	X			
60	External Interlock	X			
62	Output Frequency at Maximum Limit	X			
64	Voltage Limit	X			
65	Control Board Over-temperature	X	Х	X	
66	Heatsink Temperature Low	X			
67	Option Configuration has Changed		X		
68	Safe Stop	(X)	X ¹⁾		5-19
69	Pwr. Card Temp		Х	X	
70	Illegal FC configuration			X	
71	PTC 1 Safe Stop	X	X ¹⁾		
72	Dangerous Failure			X ¹⁾	
73	Safe Stop Auto Restart				
76	Power Unit Set-up	X			
79	Illegal PS config		Х	Х	
80	Drive Initialized to Default Value		Х		
91	Analog input 54 wrong settings			Х	
92	NoFlow	Х	Х		22-2*
93	Dry Pump	Х	Х		22-2*
94	End of Curve	Х	Х		22-5*
95	Broken Belt	Х	Х		22-6*

<u>Danfvšš</u>

General Specifications and ... VLT® HVAC Drive Design Guide

No.	Description	Warning	Alarm/	Alarm/Trip Lock	Parameter Reference
			Trip	-	
96	Start Delayed	Х			22-7*
97	Stop Delayed	Х			22-7*
98	Clock Fault	Х			0-7*
201	Fire M was Active				
202	Fire M Limits Exceeded				
203	Missing Motor				
204	Locked Rotor				
243	Brake IGBT	Х	Χ		
244	Heatsink temp	Х	Χ	Χ	
245	Heatsink sensor		Χ	Χ	
246	Pwr.card supply		Χ	X	
247	Pwr.card temp		Х	Х	
248	Illegal PS config		Х	Х	
250	New spare parts			Х	
251	New Type Code		Х	Х	

Table 8.44 Alarm/Warning code list

- (X) Dependent on parameter
- 1) Cannot be Auto reset via 14-20 Reset Mode

A trip is the action when an alarm has appeared. The trip will coast the motor and can be reset by pressing the reset button or make a reset by a digital input (parameter group 5-1* [1]). The original event that caused an alarm cannot damage the Adjustable frequency drive or cause dangerous conditions. A trip lock is an action when an alarm occurs, which may cause damage to Adjustable frequency drive or connected parts. A trip lock situation can only be reset by power cycling.

LED indication				
Warning	yellow			
Alarm	flashing red			
Trip locked	yellow and red			

Table 8.45

Alarm \	Alarm Word and Extended Status Word					
Bit	Hex	Dec	Alarm Word	Warning Word	Extended Status Word	
0	00000001	1	Brake Check	Brake Check	Ramping	
1	00000002	2	Pwr. Card Temp	Pwr. Card Temp	AMA Running	
2	00000004	4	Earth fault	Ground fault	Start CW/CCW	
3	00000008	8	Ctrl.Card Temp	Ctrl.Card Temp	Slow-down	
4	00000010	16	Ctrl. Word TO	Ctrl. Word TO	Catch Up	
5	00000020	32	Overcurrent	Over Current	Feedback High	
6	00000040	64	Torque Limit	Torque Limit	Feedback Low	
7	00000080	128	Motor Th Over	Motor Th Over	Output Current High	
8	00000100	256	Motor ETR Over	Motor ETR Over	Output Current Low	
9	00000200	512	Inverter Overld.	Inverter Overld.	Output Freq High	
10	00000400	1024	DC undervolt	DC undervolt	Output Freq Low	
11	00000800	2048	DC overvolt	DC overvolt	Brake Check OK	
12	00001000	4096	Short Circuit	DC Voltage Low	Braking Max	
13	00002000	8192	Soft-charge Fault	DC Voltage High	Braking	
14	00004000	16384	Mains ph. Loss	Line ph. Loss	Out of Speed Range	
15	0008000	32768	AMA Not OK	No Motor	OVC Active	
16	00010000	65536	Live Zero Error	Live Zero Error		
17	00020000	131072	Internal Fault	10 V low		
18	00040000	262144	Brake Overload	Brake Overload		
19	00080000	524288	U phase Loss	Brake Resistor		
20	00100000	1048576	V phase Loss	Brake IGBT		
21	00200000	2097152	W phase Loss	Speed Limit		
22	00400000	4194304	Fieldbus Fault	Serial Communication Bus Fault		
23	0080000	8388608	24 V Supply Low	24V Supply Low		
24	01000000	16777216	Mains Failure	Line Failure		
25	02000000	33554432	1.8V supply low	Current Limit		
26	04000000	67108864	Brake Resistor	Low Temp		
27	08000000	134217728	Brake IGBT	Voltage Limit		
28	10000000	268435456	Option Change	Unused		
29	20000000	536870912	Drive Initialized	Unused		
30	4000000	1073741824	Safe Stop	Unused		
31	80000000	2147483648	Mech. brake low (A63)	Extended Status Word		

Table 8.46 Description of Alarm Word, Warning Word and Extended Status Word

The alarm words, warning words and extended status words can be read out via serial bus or optional serial communication bus for diagnosis. See also 16-90 Alarm Word, 16-92 Warning Word and 16-94 Ext. Status Word.

8.7.1 Alarm Words

16-90 Alarm Word

Bit	Alarm Word
(Hex)	(16-90 Alarm Word)
0000001	
00000002	Power card over temperature
0000004	Earth fault
8000000	
0000010	Control word timeout
00000020	Overcurrent
00000040	
0800000	Motor thermistor over temp.
00000100	Motor ETR overtemperature
00000200	Inverter overloaded
00000400	DC link under voltage
00000800	DC link over voltage
00001000	Short circuit
00002000	
00004000	Mains phase loss
0008000	AMA not OK
00010000	Live zero error
00020000	Internal fault
00040000	
00080000	Motor phase U is missing
00100000	Motor phase V is missing
00200000	Motor phase W is missing
00800000	Control Voltage Fault
01000000	
02000000	VDD, supply low
0400000	Brake resistor short circuit
08000000	Brake chopper fault
10000000	Earth fault DESAT
2000000	Drive initialized
4000000	Safe Stop [A68]
80000000	

Table 8.47 Table 8.48

16-91 Alarm Word 2

Bit	Alarm Word 2
(Hex)	(16-91 Alarm Word 2)
0000001	
00000002	Reserved
0000004	Service Trip, Typecode / Spare part
8000000	Reserved
00000010	Reserved
00000020	
00000040	
00000080	
00000100	Broken Belt
00000200	Not used
00000400	Not used
00000800	Reserved
00001000	Reserved
00002000	Reserved
00004000	Reserved
0008000	Reserved
00010000	Reserved
00020000	Not used
00040000	Fans error
00080000	ECB error
00100000	Reserved
00200000	Reserved
00400000	Reserved
00800000	Reserved
01000000	Reserved
02000000	Reserved
04000000	Reserved
08000000	Reserved
10000000	Reserved
20000000	Reserved
4000000	PTC 1 Safe Stop [A71]
80000000	Dangerous Failure [A72]

8.7.2 Warning Words

16-92 Warning Word

Bit	Warning Word
(Hex)	(16-92 Warning Word)
0000001	
0000002	Power card over temperature
0000004	Earth fault
0000008	
0000010	Control word timeout
00000020	Overcurrent
0000040	
00000080	Motor thermistor over temp.
00000100	Motor ETR overtemperature
00000200	Inverter overloaded
00000400	DC link under voltage
00000800	DC link over voltage
00001000	
00002000	
00004000	Mains phase loss
0008000	No motor
00010000	Live zero error
00020000	
00040000	
00080000	
00100000	
00200000	
00400000	
00800000	
01000000	
02000000	Current limit
04000000	
08000000	
1000000	
2000000	
4000000	Safe Stop [W68]
80000000	Not used

16-93 Warning Word 2

Bit	Warning Word 2
(Hex)	(16-93 Warning Word 2)
0000001	
0000002	
0000004	Clock Failure
8000000	Reserved
0000010	Reserved
00000020	
0000040	
00000080	End of Curve
00000100	Broken Belt
00000200	Not used
00000400	Reserved
00000800	Reserved
00001000	Reserved
00002000	Reserved
00004000	Reserved
0008000	Reserved
00010000	Reserved
00020000	Not used
00040000	Fans warning
00080000	
00100000	Reserved
00200000	Reserved
00400000	Reserved
00800000	Reserved
01000000	Reserved
02000000	Reserved
04000000	Reserved
08000000	Reserved
1000000	Reserved
2000000	Reserved
4000000	PTC 1 Safe Stop [W71]
80000000	Reserved

Table 8.49 Table 8.50

8.7.3 Extended Status Words

Extended status word, 16-94 Ext. Status Word

Bit	Extended Status Word
(Hex)	(16-94 Ext. Status Word)
0000001	Ramping
00000002	AMA tuning
0000004	Start CW/CCW
8000000	Not used
0000010	Not used
00000020	Feedback high
00000040	Feedback low
0800000	Output current high
00000100	Output current low
00000200	Output frequency high
00000400	Output frequency low
00000800	Brake check OK
00001000	Braking max
00002000	Braking
00004000	Out of speed range
0008000	OVC active
00010000	AC brake
00020000	Password Timelock
00040000	Password Protection
00080000	Reference high
00100000	Reference low
00200000	Local Ref./Remote Ref.
00400000	Reserved
0080000	Reserved
01000000	Reserved
02000000	Reserved
04000000	Reserved
08000000	Reserved
10000000	Reserved
2000000	Reserved
4000000	Reserved
80000000	Reserved

Extended status word 2, 16-95 Ext. Status Word 2

Bit	Extended Status Word 2 (16-95 Ext. Status
(Hex)	Word 2)
0000001	Off
0000002	Hand / Auto
0000004	Not used
00000008	Not used
0000010	Not used
00000020	Relay 123 active
0000040	Start Prevented
00000080	Control ready
00000100	Drive ready
00000200	Quick Stop
00000400	DC Brake
00000800	Stop
00001000	Standby
00002000	Freeze Output Request
00004000	Freeze Output
0008000	Jog Request
00010000	Jog
00020000	Start Request
00040000	Start
00080000	Start Applied
00100000	Start Delay
00200000	Sleep
00400000	Sleep Boost
00800000	Running
01000000	Bypass
02000000	Fire Mode
04000000	Reserved
08000000	Reserved
10000000	Reserved
20000000	Reserved
4000000	Reserved
80000000	Reserved

Table 8.51 Table 8.52

8.7.4 Fault Messages

The warning/alarm information below defines each warning/alarm condition, provides the probable cause for the condition, and details a remedy or troubleshooting procedure.

WARNING 1, 10 Volts low

The control card voltage is below 10V from terminal 50. Remove some of the load from terminal 50, as the 10V supply is overloaded. Max. 15 mA or minimum 590Ω .

This condition can be caused by a short in a connected potentiometer or improper wiring of the potentiometer.

Troubleshooting

Remove the wiring from terminal 50. If the warning clears, the problem is with the customer wiring. If the warning does not clear, replace the control card.

WARNING/ALARM 2, Live zero error

This warning or alarm will only appear if programmed by the user in 6-01 Live Zero Timeout Function. The signal on one of the analog inputs is less than 50% of the minimum value programmed for that input. This condition can be caused by broken wiring or faulty device sending the signal.

Troubleshooting

Check connections on all the analog input terminals. Control card terminals 53 and 54 for signals, terminal 55 common. MCB 101 terminals 11 and 12 for signals, terminal 10 common. MCB 109 terminals 1, 3, 5 for signals, terminals 2, 4, 6 common).

Check that the Adjustable frequency drive programming and switch settings match the analog signal type.

Perform Input Terminal Signal Test.

WARNING/ALARM 4, Mains phase loss

A phase is missing on the supply side, or the line voltage imbalance is too high. This message also appears for a fault in the input rectifier on the Adjustable frequency drive. Options are programmed at 14-12 Function at Mains Imbalance.

Troubleshooting

Check the supply voltage and supply currents to the Adjustable frequency drive.

WARNING 5, DC link voltage high

The intermediate circuit voltage (DC) is higher than the high voltage warning limit. The limit is dependent on the Adjustable frequency drive voltage rating. The unit is still active.

WARNING 6, DC link voltage low

The intermediate circuit voltage (DC) is lower than the low voltage warning limit. The limit is dependent on the Adjustable frequency drive voltage rating. The unit is still active.

WARNING/ALARM 7, DC overvoltage

If the intermediate circuit voltage exceeds the limit, the Adjustable frequency drive trips after a time.

Troubleshooting

Connect a brake resistor

Extend the ramp time

Change the ramp type

Activate the functions in 2-10 Brake Function

Increase 14-26 Trip Delay at Inverter Fault

WARNING/ALARM 8, DC undervoltage

If the intermediate circuit voltage (DC link) drops below the under voltage limit, the Adjustable frequency drive checks if a 24V DC backup supply is connected. If no 24V DC backup supply is connected, the Adjustable frequency drive trips after a fixed time delay. The time delay varies with unit size.

Troubleshooting

Check that the supply voltage matches the Adjustable frequency drive voltage.

Perform input voltage test

Perform soft charge circuit test

WARNING/ALARM 9, Inverter overload

The Adjustable frequency drive is about to cut out because of an overload (too high current for too long). The counter for electronic, thermal inverter protection gives a warning at 98% and trips at 100%, while giving an alarm. The Adjustable frequency drive *cannot* be reset until the counter is below 90%.

The fault is that the Adjustable frequency drive is overloaded by more than 100% for too long.

Troubleshooting

Compare the output current shown on the LCP with the Adjustable frequency drive rated current.

Compare the output current shown on the LCP with measured motor current.

Display the Thermal Drive Load on the LCP and monitor the value. When running above the Adjustable frequency drive continuous current rating, the counter should increase. When running below the Adjustable frequency drive continuous current rating, the counter should decrease.

See the derating section in the *Design Guide* for more details if a high switching frequency is required.

WARNING/ALARM 10, Motor overload temperature

According to the electronic thermal protection (ETR), the motor is too hot. Select whether the Adjustable frequency drive gives a warning or an alarm when the counter reaches 100% in *1-90 Motor Thermal Protection*. The fault occurs when the motor is overloaded by more than 100% for too long.

Troubleshooting

Check for motor overheating.

Check if the motor is mechanically overloaded.

Check that the motor current set in 1-24 Motor Current is correct.

Ensure that Motor data in parameters 1-20 through 1-25 are set correctly.

If an external fan is in use, check in 1-91 Motor External Fan that it is selected.

Running AMA in 1-29 Automatic Motor Adaptation (AMA) may tune the Adjustable frequency drive to the motor more accurately and reduce thermal loading.

WARNING/ALARM 11, Motor thermistor over temp

The thermistor might be disconnected. Select whether the Adjustable frequency drive gives a warning or an alarm in 1-90 Motor Thermal Protection.

Troubleshooting

Check for motor overheating.

Check if the motor is mechanically overloaded.

When using terminal 53 or 54, check that the thermistor is connected correctly between either terminal 53 or 54 (analog voltage input) and terminal 50 (+10V supply) and that the terminal switch for 53 or 54 is set for voltage. Check 1-93 Thermistor Source selects terminal 53 or 54.

When using digital inputs 18 or 19, check that the thermistor is connected correctly between either terminal 18 or 19 (digital input PNP only) and terminal 50. Check *1-93 Thermistor Source* selects terminal 18 or 19.

WARNING/ALARM 12, Torque limit

The torque has exceeded the value in 4-16 Torque Limit Motor Mode or the value in 4-17 Torque Limit Generator Mode. 14-25 Trip Delay at Torque Limit can change this from a warning only condition to a warning followed by an alarm.

Troubleshooting

If the motor torque limit is exceeded during ramp-up, extend the ramp-up time.

If the generator torque limit is exceeded during ramp-down, extend the ramp-down time.

If torque limit occurs while running, possibly increase the torque limit. Be sure the system can operate safely at a higher torque.

Check the application for excessive current draw on the motor.

WARNING/ALARM 13, Over current

The inverter peak current limit (approximately 200% of the rated current) is exceeded. The warning lasts about 1.5 secs., then the Adjustable frequency drive trips and issues an alarm. This fault may be caused by shock loading or fast acceleration with high inertia loads. If extended mechanical brake control is selected, trip can be reset externally.

Troubleshooting

Remove power and check if the motor shaft can be turned.

Check that the motor size matches the Adjustable frequency drive.

Check parameters 1-20 through 1-25. for correct motor data.

ALARM 14, Ground fault

There is current from the output phases to ground, either in the cable between the Adjustable frequency drive and the motor or in the motor itself.

Troubleshooting:

Remove power to the Adjustable frequency drive and repair the ground fault.

Check for ground faults in the motor by measuring the resistance to ground of the motor leads and the motor with a megohmmeter.

ALARM 15, Hardware mismatch

A fitted option is not operational with the present control board hardware or software.

Record the value of the following parameters and contact your Danfoss supplier:

15-40 FC Type

15-41 Power Section

15-42 Voltage

15-43 Software Version

15-45 Actual Typecode String

15-49 SW ID Control Card

15-50 SW ID Power Card

15-60 Option Mounted

15-61 Option SW Version (for each option slot)

ALARM 16, Short circuit

There is short-circuiting in the motor or motor wiring.

Remove power to the Adjustable frequency drive and repair the short circuit.

WARNING/ALARM 17, Control word timeout

There is no communication to the Adjustable frequency drive.

The warning will only be active when 8-04 Control Word Timeout Function is NOT set to OFF.

If 8-04 Control Word Timeout Function is set to Stop and Trip, a warning appears and the Adjustable frequency drive ramps down until it stops then displays an alarm.

Troubleshooting:

Check connections on the serial communication cable.

Increase 8-03 Control Word Timeout Time

Check the operation of the communication equipment.

Verify a proper installation based on EMC requirements.

ALARM 18, Start failed

The speed has not been able to exceed 1-77 Compressor Start Max Speed [RPM] during start within the allowed time. (set in 1-79 Compressor Start Max Time to Trip). This may be caused by a blocked motor.

WARNING 23, Internal fan fault

The fan warning function is an extra protective function that checks if the fan is running/mounted. The fan warning can be disabled in *14-53 Fan Monitor* ([0] Disabled).

For the D, E, and F Frame filters, the regulated voltage to the fans is monitored.

Troubleshooting

Check for proper fan operation.

Cycle power to the Adjustable frequency drive and make sure that the fan operates briefly at start-up.

Check the sensors on the heatsink and control card.

WARNING 24, External fan fault

The fan warning function is an extra protective function that checks if the fan is running/mounted. The fan warning can be disabled in *14-53 Fan Monitor* ([0] Disabled).

Troubleshooting

Check for proper fan operation.

Cycle power to the Adjustable frequency drive and make sure that the fan operates briefly at start-up.

Check the sensors on the heatsink and control card.

WARNING 25, Brake resistor short circuit

The brake resistor is monitored during operation. If a short circuit occurs, the brake function is disabled and the warning appears. The Adjustable frequency drive is still operational but without the brake function. Remove power to the Adjustable frequency drive and replace the brake resistor (see 2-15 Brake Check).

WARNING/ALARM 26, Brake resistor power limit

The power transmitted to the brake resistor is calculated as a mean value over the last 120 seconds of run time. The calculation is based on the intermediate circuit voltage and the brake resistance value set in 2-16 AC brake Max.

Current. The warning is active when the dissipated braking is higher than 90% of the brake resistance power. If Trip [2] is selected in 2-13 Brake Power Monitoring, the Adjustable frequency drive will trip when the dissipated braking energy reaches 100%.

WARNING/ALARM 27, Brake chopper fault

The brake transistor is monitored during operation and if a short circuit occurs, the brake function is disabled and a warning is issued. The Adjustable frequency drive is still operational but, since the brake transistor has short-circuited, substantial power is transmitted to the brake resistor, even if it is inactive.

Remove power to the Adjustable frequency drive and remove the brake resistor.

WARNING/ALARM 28, Brake check failed

The brake resistor is not connected or not working. Check 2-15 Brake Check.

ALARM 29, Heatsink temp

The maximum temperature of the heatsink has been exceeded. The temperature fault will not reset until the temperature falls below a defined heatsink temperature. The trip and reset points are different based on the Adjustable frequency drive power size.

Troubleshooting

Check for the following conditions.

Ambient temperature too high.

Motor cable too long.

Incorrect airflow clearance above and below the Adjustable frequency drive

Blocked airflow around the Adjustable frequency drive.

Damaged heatsink fan.

Dirty heatsink.

ALARM 30, Motor phase U missing

Motor phase U between the Adjustable frequency drive and the motor is missing.

Remove power from the Adjustable frequency drive and check motor phase U.

ALARM 31, Motor phase V missing

Motor phase V between the Adjustable frequency drive and the motor is missing.

Remove power from the Adjustable frequency drive and check motor phase V.

ALARM 32, Motor phase W missing

Motor phase W between the Adjustable frequency drive and the motor is missing.

Remove power from the Adjustable frequency drive and check motor phase W.

ALARM 33, Inrush fault

Too many power-ups have occurred within a short time period. Let the unit cool to operating temperature.

WARNING/ALARM 34, communication fault

The serial communication bus on the communication option card is not working.

WARNING/ALARM 36, Mains failure

This warning/alarm is only active if the supply voltage to the Adjustable frequency drive is lost and 14-10 Mains Failure is NOT set to [0] No Function. Check the fuses to the Adjustable frequency drive and line power supply to the unit.

ALARM 38, Internal fault

When an internal fault occurs, a code number defined in the table below is displayed.

Troubleshooting

Cycle power

Check that the option is properly installed

Check for loose or missing wiring

It may be necessary to contact your Danfoss supplier or service department. Note the code number for further troubleshooting directions.

No.	Text
0	Serial port cannot be initialized. Contact your
	Danfoss supplier or Danfoss Service Department.
256-258	Power EEPROM data is defective or too old
512-519	Internal fault. Contact your Danfoss supplier or
	Danfoss Service Department.
783	Parameter value outside of min/max limits
1024-1284	Internal fault. Contact your Danfoss supplier or the
	Danfoss Service Department.

No.	Text
1299	Option SW in slot A is too old
1300	Option SW in slot B is too old
1302	Option SW in slot C1 is too old
1315	Option SW in slot A is not supported (not allowed)
1316	Option SW in slot B is not supported (not allowed)
1318	Option SW in slot C1 is not supported (not
	allowed)
1379-2819	Internal fault. Contact your Danfoss supplier or
	Danfoss Service Department.
2820	LCP stack overflow
2821	Serial port overflow
2822	USB port overflow
3072-5122	Parameter value is outside its limits
5123	Option in slot A: Hardware incompatible with
	control board hardware
5124	Option in slot B: Hardware incompatible with
	control board hardware
5125	Option in slot C0: Hardware incompatible with
	control board hardware
5126	Option in slot C1: Hardware incompatible with
	control board hardware
5376-6231	Internal fault. Contact your Danfoss supplier or
	Danfoss Service Department.

Table 8.53

ALARM 39, Heatsink sensor

No feedback from the heatsink temperature sensor.

The signal from the IGBT thermal sensor is not available on the power card. The problem could be on the power card, on the gate drive card, or the ribbon cable between the power card and gate drive card.

WARNING 40, Overload of digital output terminal 27

Check the load connected to terminal 27 or remove short-circuit connection. Check 5-00 Digital I/O Mode and 5-01 Terminal 27 Mode.

WARNING 41, Overload of digital output terminal 29

Check the load connected to terminal 29 or remove short-circuit connection. Check 5-00 Digital I/O Mode and 5-02 Terminal 29 Mode.

WARNING 42, Overload of digital output on X30/6 or overload of digital output on X30/7

For X30/6, check the load connected to X30/6 or remove the short-circuit connection. Check 5-32 Term X30/6 Digi Out (MCB 101).

For X30/7, check the load connected to X30/7 or remove the short-circuit connection. Check 5-33 Term X30/7 Digi Out (MCB 101).

ALARM 45, Earth fault 2

Ground fault on start-up.

Troubleshooting

Check for proper grounding and loose connections.

Check for proper wire size.

Check motor cables for short-circuits or leakage currents.

ALARM 46, Power card supply

The supply on the power card is out of range.

There are three power supplies generated by the switch mode power supply (SMPS) on the power card: 24V, 5V, +/- 18V. When powered with 24V DC with the MCB 107 option, only the 24V and 5V supplies are monitored. When powered with three phase AC line voltage, all three supplies are monitored.

Troubleshooting

Check for a defective power card.

Check for a defective control card.

Check for a defective option card.

If a 24V DC power supply is used, verify proper supply power.

WARNING 47, 24V supply low

The 24 V DC is measured on the control card. The external 24V DC backup power supply may be overloaded, otherwise contact your Danfoss supplier.

WARNING 48, 1.8V supply low

The 1.8V DC supply used on the control card is outside of allowable limits. The power supply is measured on the control card. Check for a defective control card. If an option card is present, check for an overvoltage condition.

WARNING 49, Speed limit

When the speed is not within the specified range in 4-11 Motor Speed Low Limit [RPM] and 4-13 Motor Speed High Limit [RPM], the Adjustable frequency drive will show a warning. When the speed is below the specified limit in 1-86 Trip Speed Low [RPM] (except when starting or stopping) the Adjustable frequency drive will trip.

ALARM 50, AMA calibration failed

Contact your Danfoss supplier or Danfoss Service Department.

ALARM 51, AMA check Unom and Inom

The settings for motor voltage, motor current, and motor power are wrong. Check the settings in parameters 1-20 to 1-25.

ALARM 52, AMA low Inom

The motor current is too low. Check the setting in 4-18 Current Limit.

ALARM 53, AMA motor too big

The motor is too big for the AMA to operate.

ALARM 54, AMA motor too small

The motor is too small for the AMA to operate.

ALARM 55, AMA Parameter out of range

The parameter values of the motor are outside of the acceptable range. AMA will not run.

56 ALARM, AMA interrupted by user

The AMA has been interrupted by the user.

ALARM 57, AMA internal fault

Try to restart AMA again. Repeated restarts may overheat the motor.

ALARM 58, AMA internal fault

Contact your Danfoss supplier.

WARNING 59, Current limit

The current is higher than the value in 4-18 Current Limit. Ensure that Motor data in parameters 1-20 through 1-25 are set correctly. Possibly increase the current limit. Be sure the system can operate safely at a higher limit.

WARNING 60, External interlock

A digital input signal is indicating a fault condition external to the Adjustable frequency drive. An external interlock has commanded the Adjustable frequency drive to trip. Clear the external fault condition. To resume normal operation, apply 24V DC to the terminal programmed for external interlock. Reset the Adjustable frequency drive.

WARNING 62, Output frequency at maximum limit

The output frequency has reached the value set in 4-19 Max Output Frequency. Check the application to determine the cause. Possibly increase the output frequency limit. Be sure the system can operate safely at a higher output frequency. The warning will clear when the output drops below the maximum limit.

WARNING/ALARM 65, Control card over temperature

The cut-out temperature of the control card is 176°F [80°C].

Troubleshooting

- Check that the ambient operating temperature is within limits.
- Check for clogged filters.
- Check fan operation.
- Check the control card.

WARNING 66, Heatsink temperature low

The Adjustable frequency drive is too cold to operate. This warning is based on the temperature sensor in the IGBT module.

Increase the ambient temperature of the unit. Also, a trickle amount of current can be supplied to the Adjustable frequency drive whenever the motor is stopped by setting 2-00 DC Hold/Preheat Current at 5% and 1-80 Function at Stop

ALARM 67, Option module configuration has changed

One or more options have either been added or removed since the last power-down. Check that the configuration change is intentional and reset the unit.

ALARM 68, Safe stop activated

Loss of the 24V DC signal on terminal 37 has caused the filter to trip. To resume normal operation, apply 24V DC to terminal 37 and reset the filter.

ALARM 69, Power card temperature

The temperature sensor on the power card is either too hot or too cold.

Troubleshooting

Check that the ambient operating temperature is within limits.

Check for clogged filters.

Check fan operation.

Check the power card.

ALARM 70, Illegal Adjustable frequency drive configuration

The control card and power card are incompatible. Contact your supplier with the type code of the unit from the nameplate and the part numbers of the cards to check compatibility.

ALARM 71, PTC 1 safe stop

Safe Stop has been activated from the MCB 112 PTC Thermistor Card (motor too warm). Normal operation can be resumed when the MCB 112 applies 24 V DC to T-37 again (when the motor temperature reaches an acceptable level) and when the digital Input from the MCB 112 is deactivated. When that happens, a reset signal must be is be sent (via Bus, Digital I/O, or by pressing [RESET]).

ALARM 72, Dangerous failure

Safe Stop with Trip Lock. The dangerous failure alarm is issued if the combination of safe stop commands is unexpected. This is the case if the MCB 112 VLT enables X44/10 but safe stop is somehow not enabled. Furthermore, if the MCB 112 is the only device using safe stop (specified through selection [4] or [5] in 5-19 Terminal 37 Safe Stop), an unexpected combination is activation of safe stop without the X44/10 being activated. The following table summarizes the unexpected combinations that lead to Alarm 72. Note that if X44/10 is activated in selection 2 or 3, this signal is ignored! However, the MCB 112 will still be able to activate Safe Stop.

ALARM 80, Drive initialized to default value

Parameter settings are initialized to default settings after a manual reset. Reset the unit to clear the alarm.

ALARM 92, No-flow

A no-flow condition has been detected in the system. 22-23 No-Flow Function is set for alarm. Troubleshoot the system and reset the Adjustable frequency drive after the fault has been cleared.

ALARM 93, Dry pump

A no-flow condition in the system with the Adjustable frequency drive operating at high speed may indicate a dry pump. 22-26 Dry Pump Function is set for alarm. Troubleshoot the system and reset the Adjustable frequency drive after the fault has been cleared.

ALARM 94, End of curve

Feedback is lower than the setpoint. This may indicate leakage in the system. 22-50 End of Curve Function is set for alarm. Troubleshoot the system and reset the Adjustable frequency drive after the fault has been cleared.

ALARM 95, Broken belt

Torque is below the torque level set for no load, indicating a broken belt. 22-60 Broken Belt Function is set for alarm. Troubleshoot the system and reset the Adjustable frequency drive after the fault has been cleared.

ALARM 96, Start delayed

Motor start has been delayed due to short-cycle protection. 22-76 Interval between Starts is enabled. Troubleshoot the system and reset the Adjustable frequency drive after the fault has been cleared.

WARNING 97, Stop delayed

Stopping the motor has been delayed due to short cycle protection. 22-76 Interval between Starts is enabled. Troubleshoot the system and reset the Adjustable frequency drive after the fault has been cleared.

WARNING 98, Clock fault

Time is not set or the RTC clock has failed. Reset the clock in *0-70 Date and Time*.

WARNING 200, Fire mode

This indicates the Adjustable frequency drive is operating in fire mode. The warning clears when fire mode is removed. See the fire mode data in the alarm log.

WARNING 201, Fire Mode was Active

This indicates the Adjustable frequency drive had entered fire mode. Cycle power to the unit to remove the warning. See the fire mode data in the alarm log.

WARNING 202, Fire mode limits exceeded

While operating in fire mode one or more alarm conditions have been ignored which would normally trip the unit. Operating in this condition voids unit warranty. Cycle power to the unit to remove the warning. See the fire mode data in the alarm log.

WARNING 203, Missing motor

With a Adjustable frequency drive operating multi-motors, an underload condition was detected. This could indicate a missing motor. Inspect the system for proper operation.

WARNING 204, Locked rotor

With a Adjustable frequency drive operating multi-motors, an overload condition was detected. This could indicate a locked rotor. Inspect the motor for proper operation.

WARNING 250, New spare part

A component in the Adjustable frequency drive has been replaced. Reset the Adjustable frequency drive for normal operation.

WARNING 251, New type code

The power card or other components have been replaced and the type code changed. Reset to remove the warning and resume normal operation.

Index

Index

A
Abbreviations0-2
Accessory Bags 4-5
Acoustic Noise
Adjustable
Frequency Drive Hardware Setup6-2
Frequency Drive Set-up
Frequency Drive With Modbus RTU6-11
Aggressive Environments 1-3
Air Humidity 1-3
Alarm Words
Alarm/Warning Code List7-31
Alarms And Warnings7-28
Aluminum Conductors4-12
AMA5-2
Analog
I/O Option MCB 1092-6
I/O Selection2-6
Inputs 0-3, 7-36, 0-4, 7-18
Output
Outputs - Terminal X30/5+82-2
Voltage Inputs - Terminal X30/10-122-2
Application Examples1-14
Automatic
Adaptations To Ensure Performance
Motor Adaptation 5-2
Motor Adaptation (AMA)4-26
AWG
В
BACnet
Balancing Contractor1-20
Basic Wiring Example
Battery Backup Of Clock Function
Better Control 1-12
Brake 1 42
Function
Resistor Cabling
Resistor Calculation1-42
Resistor Temperature Switch
Resistors
Braking Braking
Energy0-4, 1-42
Branch Circuit Protection
Break-away Torque 0-3

Building	
Management System	
Management System, BMS	
Bypass Frequency Ranges	1-17
C	
Cable	
Clamp	
Clamps Length And Cross-section	
Lengths And Cross-sections	
Caution	
CAV System	
CE Conformity And Labeling	
Central VAV Systems	
•	
Clockwise Rotation	
Closed-loop Control For A Ventilation System	
CO2 Sensor	
Coasting6-2	21, 0-3, 6-20
Communication Option	7-39
Comparison Of Energy Savings	1-10
Condenser Pumps	1-19
Conducted Emission	1-35
Connector/Conduit Entry - IP21 (NEMA 1) And IP5	
	4-13
·	
·	4-13
Constant	4-13 1-16
Constant Air Volume Torque Applications (CT Mode)	4-13 1-16
Constant Air Volume Torque Applications (CT Mode) Control Cable Terminals	4-13 1-16 7-28
Constant Air Volume Torque Applications (CT Mode) Control Cable Terminals4-34, 4-11, 4-24	4-13 1-16 7-28 4-22 1, 4-10, 4-24
Constant Air Volume Torque Applications (CT Mode) Control Cable Terminals	4-13 1-16 7-28 4-22 1, 4-10, 4-24 7-20
Constant Air Volume Torque Applications (CT Mode) Control Cable Terminals	4-13 1-16 7-28 4-22 1, 4-10, 4-24 7-20
Constant Air Volume Torque Applications (CT Mode) Control Cable Terminals	4-13 1-16 7-28 4-22 1, 4-10, 4-24 7-20 7-19
Constant Air Volume Torque Applications (CT Mode) Control Cable Terminals	4-13 1-16 7-28 4-22 I, 4-10, 4-24 7-20 7-19 7-19
Constant Air Volume Torque Applications (CT Mode) Control Cable Terminals	4-13 1-16 7-28 4-22 I, 4-10, 4-24 7-20 7-19 7-19
Constant Air Volume Torque Applications (CT Mode) Control Cable Terminals	4-13 1-16 7-28 4-22 1, 4-10, 4-24 7-20 7-19 7-19 7-19 7-20
Constant Air Volume Torque Applications (CT Mode) Control Cable Terminals	4-13 1-16 4-22 I, 4-10, 4-24 7-20 7-19 7-19 7-19 7-20 7-20
Constant Air Volume Torque Applications (CT Mode)	4-13 1-16 7-28 4-22 1, 4-10, 4-24 7-19 7-19 7-19 7-20 7-20 1-22
Constant Air Volume	4-13 1-16 7-28 4-22 l, 4-10, 4-24 7-20 7-19 7-19 7-20 7-20 1-22 1-23
Constant Air Volume Torque Applications (CT Mode)	4-13 1-16 7-28 4-22 1, 4-10, 4-24 7-20 7-19 7-19 7-20 7-20 1-22 1-23 1-23
Constant Air Volume	4-13 1-16 7-28 4-22 1, 4-10, 4-24 7-20 7-19 7-19 7-20 7-20 1-22 1-23 1-23
Constant Air Volume	4-13 1-16 7-28 4-22 1, 4-10, 4-24 7-19 7-19 7-19 7-20 1-22 1-23 4-22 6-19
Constant Air Volume	4-13 1-16 7-28 4-22 1, 4-10, 4-24 7-19 7-19 7-19 7-20 1-22 1-25 4-22 6-19
Constant Air Volume	4-13 1-16 4-22 1, 4-10, 4-24 7-19 7-19 7-19 7-20 1-22 1-23 4-22 4-22 4-6
Constant Air Volume	4-13 1-16 7-28 4-22 7-20 7-19 7-20 7-20 1-22 1-23 4-22 6-19 7-28 4-6
Air Volume	4-13 1-16 7-28 4-22 1, 4-10, 4-24 7-19 7-19 7-20 1-22 1-23 4-22 6-19 7-28 4-6 1-17 hts. 0-1
Constant Air Volume	4-13 1-16 7-28 4-22 7-20 7-19 7-19 7-20 7-20 1-22 1-25 4-22 4-6 4-6 1-17 hts 0-1
Constant Air Volume	4-13 1-16 7-28 4-22 7-20 7-19 7-19 7-20 7-20 1-22 1-25 4-22 4-6 4-6 1-17 hts 0-1

		Extreme Running Conditions	1-42
D			
Dampers	1-15	F	
Data Types Supported By The Adjustable Frequency I	Drive	Fan System Controlled By Adjustable Frequency Dr	ives 1-13
	6-9	Fault Messages	7-36
DC		FC	
Brake		Profile	
Link		With Modbus RTU	6-3
Definitions	0-3	Feedback	. 7-39, 7-41
Derating	7.26	Field Mounting	4-8
Derating For Ambient Temperature		Final Set-Up And Test	4-25
For Low Air Pressure		Flow Meter	
For Running At Low Speed	7-28	Frame Size F Panel Options	
DeviceNet	3-7	•	
Differential Pressure	1-22	Freeze Output	
Digital		Function Codes Supported By Modbus RTU	6-15
Input	7-37	Fuse Tables	4-19
Inputs - Terminal X30/1-4		Fuses	7-39, 4-15
Inputs:			
Outputs - Terminal X30/5-7		G	
Direction Of Motor Rotation		General	
		Aspects Of EMC Emissions	1-32
Disposal Instructions		Aspects Of Harmonics Emission	
Drive Configurator		Specifications	
DU/dt Filters	2-16	Ground Leakage Current	. 4-34, 1-39
		Grounding	
E		Grounding Of Shielded/Armored Control Cables	
Efficiency	7-21	Of Shielded/Affilored Control Cables	4-37
Electrical			
Installation4-10, 4		Н	
Installation - EMC Precautions		Harmonic Filters	3-9
Terminals	1-4	Harmonics	
EMC Directive 2004/108/EC	1.2	Emission Requirements Test Results (Emission)	
Precautions			1-30
Test Results		High Power Series AC Line Input And Motor Connectic	ns 1-0
Emission Requirements	1-33	Voltage Test	
Enclosure Knock-outs		Hold Output Frequency	6-20
Energy Savings		How	
Equalizing Cable		To Connect A PC To The Adjustable Frequency D	rive 4-32
•		To Control The Adjustable Frequency Drive	6-15
ETR			
Evaporator Flow Rate		1	
Example Of Closed-loop PID Control	1-29	I/Os For Setpoint Inputs	2-6
Extended		IEC Emergency Stop With Pilz Safety Relay	2-12
Status WordStatus Word 2		IGVs	
	/-33	Immunity Requirements	
External 24V DC Supply	2-5	Index (IND)	
Fan Supply		Input Terminals	
		mout rerminais	7-36

Installation At High Altitudes	1-1
Insulation Resistance Monitor (IRM)2	-11
Intermediate Circuit 1-42, 7-21, 7-	-22
IP 21/Type 1 Enclosure Kit2	-14
IP21/IP41/ TYPE 1 Enclosure Kit2	-13
J	
Jog 0-3, 6-	-20
L	
Laws Of Proportionality	1-9
LCP	0-4
Lead Pump Alternation Wiring Diagram	5-6
Lifting4	4-7
Line	
Drop-out	
Power Disconnectors	
Power Supply 3 X 525–690V AC	-10 -11
Literature	
Load Drive Settings4	-33
Load Drive Settings4	-33
Local (Hand On) And Remote (Auto On) Control	
Local	-24
Local (Hand On) And Remote (Auto On) Control 1-	-24 -20
Local (Hand On) And Remote (Auto On) Control	-24 -20
Local (Hand On) And Remote (Auto On) Control	-24 -20
Local (Hand On) And Remote (Auto On) Control	-24 -20 -20
Local (Hand On) And Remote (Auto On) Control	-24 -20 -20
Local (Hand On) And Remote (Auto On) Control	-24 -20 -20
Local (Hand On) And Remote (Auto On) Control	-24 -20 -20
Local (Hand On) And Remote (Auto On) Control	-24 -20 -20 -12 -32 2-3
Local (Hand On) And Remote (Auto On) Control	-24 -20 -20 -12 -32 2-3 -33
Local (Hand On) And Remote (Auto On) Control	-24 -20 -20 -12 -32 2-3 -33
Local (Hand On) And Remote (Auto On) Control	-24 -20 -20 -12 -32 2-3 -33 4-2 4-3
Local (Hand On) And Remote (Auto On) Control	-24 -20 -20 -12 -32 2-3 -33 4-2 4-3 4-6
Local (Hand On) And Remote (Auto On) Control	-24 -20 -20 -12 -32 2-3 -33 4-2 4-3 4-6
Local (Hand On) And Remote (Auto On) Control	-24 -20 -20 -12 -32 2-3 -33 4-2 4-3 4-6 6-5
Local (Hand On) And Remote (Auto On) Control	-24 -20 -20 -12 -32 2-3 -33 4-2 4-3 4-6 6-5

Index

Motor	
Bearing Currents	
Cables	- ,
Current	
Data	
Nameplate	
Output	
Parameters	
Phases	
Power	
Protection	•
Thermal Protection	
Voltage	-
-	
Motor-generated Overvoltage	
Multiple Pumps	
Multi-zone Control	2-6
N	
Nameplate Data	4-25
NAMUR	2-11
Network Connection	6-1
Ni 1000 Temperature Sensor	
Non-UL Fuses 200V To 480V	
NOTI-OL Fuses 2007 10 4007	4-10
0	
Options And Accessories	2-1
Ordering Numbers	2 1
Numbers: DU/dt Filters, 380–480V AC	
Numbers: DU/dt Filters, 525–600/690V AC	
Numbers: Harmonic Filters	
Numbers: High Power Kits	
Numbers: Options And Accessories	
Numbers: Sine-wave Filter Modules, 200–500 VAC	
Numbers: Sine-Wave Filter Modules, 525–600/690	
	3-14
Output	
Current	7-36
Filters	
Performance (U, V, W)	
Outputs For Servos	
Outputs 1 of Servos	2-0
P	
Parallel Connection Of Motors	4-30
Parameter	
Number (PNU)	6-7
Values	6-16
Payback Period	1-12
PC Software Tools	
PC-based Configuration Tool MCT 10 Set-up Softwar	
Peak Voltage On Motor	/-22

PELV - Protective Extra Low Voltage	1-39
PLC	4-37 S
Potentiometer Reference	. 5-2 Safe
Power	Stop1-4
Factor	Stop Installation 1-7 . 0-5
Factor Correction	1-12 Safety
Primary Pumps	1-20 Category 3 (EN 954-1)
Principle Diagram	
Profibus	Regulations1-1
Profibus	Requirements Of Mechanical Installation 4-8
DP-V1	
Programmable Minimum Frequency Setting	1-17 Secondary Pumps 1-22
Programming	Serial
Programming	
Order	1-31 Communication Port 0-4
Protection	Set Speed Limit And Ramp Time 4-26
Protection1-4,	Snieided/armored
And Features	Shielded/armored
Protocol Overview	Shielding Of Cables 4-12
Pt1000 Temperature Sensor	. 2-6 Short Circuit (Motor Phase – Phase) 1-42
Public Supply Network	1-36 Sine-wave Filters 2-16
Pulse	_
Inputs	1 . C . I
Start/Stop	Logic Control Programming 5-2
Pump Impeller	1-19 Soft-starter1-12
	Software
R	Version
Radiated Emission	
Rated Motor Speed	· 0-3 Space Heaters And Thermostat 2-11
RCD	Star/Delta Starter1-12
RCD	Ctort/Ctor
(Residual Current Device)	2-11 Start/Stop5-1
Read Holding Registers (03 HEX)	6-17 Conditions5-8
Real-time Clock (RTC)	· 2-7 Static Overload In VVCplus Mode 1-43
Reference Handling	1-28 Status Word 6-21
Relay	Stopping Category 0 (EN 60204-1)1-8
Option MCB 105	. 2-3 Succeedul AMA 4.26
Output	4-29
Outputs	11,
Removal Of Knockouts For Extra Cables	•
Reset	•
Residual Current Device	3
Return Fan	1-15 Frequency7-36, 4-12 On The Output
Rise Time	7-22
RS-485 Bus Connection	Symbols0-2 4-32
	System Status And Operation 5-6

The	
Clear Advantage - Energy Savings	1-8
EMC Directive (2004/108/EC)	
Low-voltage Directive (2006/95/EC)	
Machinery Directive (2006/42/EC)	
Thermistor	
Throttling Valve	
Tightening Of Terminals	
Torque Characteristics	7-17
Transmitter/sensor Inputs	
Troubleshooting	7-36, 7-28
Tuning The Drive Closed-loop Controller	1-32
Туре	
Code String High Power	
Code String Low And Medium Power	3-2
U	
UL Fuses, 200–240V	4-17
Unsuccessful AMA	4-26
USB Connection	
Use Of EMC-Correct Cables	
V	
Variable Variable	
(quadratic) Torque Applications (VT)	
Air Volume	
Control Of Flow And Pressure	
Varying Flow Over 1 Year	
VAV	
Vibration And Shock	1-4
Vibrations	1-17
Voltage Level	7-17
WCplus	0-5
W	
Warning	4.4
Against Unintended Start Words	
What	, 5
Is CE Conformity And Labeling?	1-2
ls Covered	1-2