

Design Guide VLT[®] Compressor Drive CDS 803

vlt-drives.danfoss.com

Contents

Design Guide

Contents

1 Introduction	5
1.1 Purpose of the Manual	5
1.2 Document and Software Version	5
1.3 Safety Symbols	5
1.4 Abbreviations	5
1.5 Additional Resources	6
1.6 Definitions	6
1.7 Power Factor	8
2 Product Overview	9
2.1 Safety	9
2.2 CE Labelling	10
2.3 Air Humidity	11
2.4 Aggressive Environments	11
2.5 Vibration and Shock	12
2.6 Control Structures	12
2.6.1 Control Structure Open Loop	12
2.6.2 Local (Hand On) and Remote (Auto On) Control	12
2.6.3 Control Structure Closed Loop	13
2.6.4 Feedback Conversion	13
2.6.5 Reference Handling	14
2.6.6 Closed-loop Set-up Quick Guide	15
2.6.7 Tuning the Drive Closed-loop Controller	18
2.6.8 Manual PI Adjustment	18
2.7 General Aspects of EMC	19
2.7.1 General Aspects of EMC Emissions	19
2.7.2 Emission Requirements	20
2.7.3 EMC Test Results	21
2.8 Harmonics	21
2.8.1 Overview of Harmonics Emission	21
2.8.2 Harmonics Emission Requirements	21
2.8.3 Harmonics Test Results (Emission)	22
2.8.4 Immunity Requirements	22
2.9 Galvanic Isolation (PELV)	22
2.10 Ground Leakage Current	23
2.11 Extreme Running Conditions	23
3 Selection	24
3.1 Options and Accessories	24
3.1.1 Local Control Panel (LCP)	24

	3.1.2 Mounting of LCP in Panel Front	24
	3.1.3 IP21/TYPE 1 Enclosure Kit	25
	3.1.4 Decoupling Plate	26
4	How to Order	27
	4.1 Configuration	27
	4.2 Ordering Numbers	28
5	How to Install	29
	5.1 Mechanical Dimensions	29
	5.1.1 Dimensions	29
	5.1.2 Shipping Dimensions	29
	5.1.3 Side-by-side Installation	30
	5.2 Electrical Data	31
	5.2.1 Electrical Overview	31
	5.2.2 Electrical Installation in General	32
	5.2.3 Connecting to Mains and Compressor	32
	5.2.4 Fuses	34
	5.2.5 EMC Compliant Electrical Installation	35
	5.2.6 Control Terminals	37
6	How to Program	38
	6.1 Programming with MCT 10 Set-up Software	38
	6.2 Local Control Panel (LCP)	38
	6.3 Menus	39
	6.3.1 Status Menu	39
	6.3.2 Quick Menu	39
	6.3.3 Main Menu	47
	6.4 Quick Transfer of Parameter Settings between Multiple Frequency Converters	48
	6.5 Readout and Programming of Indexed Parameters	48
	6.6 Initialize the Frequency Converter to Default Settings in two Ways	48
7	RS485 Installation and Set-up	49
	7.1 RS485	49
	7.1.1 Overview	49
	7.1.2 Network Connection	50
	7.1.3 Frequency Converter Hardware Set-up	50
	7.1.4 Parameter Settings for Modbus Communication	50
	7.1.5 EMC Precautions	51
	7.2 FC Protocol Overview	51
	7.3 Network Configuration	52
	7.4 FC Protocol Message Framing Structure	52

	7.4.1 Content of a Character (byte)	52
	7.4.2 Telegram Structure	52
	7.4.3 Telegram Length (LGE)	52
	7.4.4 Frequency Converter Address (ADR)	52
	7.4.5 Data Control Byte (BCC)	52
	7.4.6 The Data Field	53
	7.4.7 The PKE Field	54
	7.4.8 Parameter Number (PNU)	54
	7.4.9 Index (IND)	54
	7.4.10 Parameter Value (PWE)	54
	7.4.11 Data Types Supported by the Frequency Converter	55
	7.4.12 Conversion	55
	7.4.13 Process Words (PCD)	55
7.5	5 Examples	55
7.6	6 Modbus RTU Overview	56
	7.6.1 Prerequisite Knowledge	56
	7.6.2 What the User Should Already Know	56
	7.6.3 Overview	56
	7.6.4 Frequency Converter with Modbus RTU	57
7.7	7 Network Configuration	57
7.8	3 Modbus RTU Message Framing Structure	57
	7.8.1 Introduction	57
	7.8.2 Modbus RTU Telegram Structure	57
	7.8.3 Start/Stop Field	58
	7.8.4 Address Field	58
	7.8.5 Function Field	58
	7.8.6 Data Field	58
	7.8.7 CRC Check Field	58
	7.8.8 Coil Register Addressing	58
	7.8.9 How to Control the Frequency Converter	60
	7.8.10 Function Codes Supported by Modbus RTU	60
	7.8.11 Modbus Exception Codes	61
7.9	How to Access Parameters	61
	7.9.1 Parameter Handling	61
	7.9.2 Storage of Data	61
7.1	0 Examples	62
	7.10.1 Read Coil Status (01 hex)	62
	7.10.2 Force/Write Single Coil (05 hex)	62
	7.10.3 Force/Write Multiple Coils (0F hex)	63
	7.10.4 Read Holding Registers (03 hex)	63

Dantoss
0

7.10.5 Preset Single Register (06 hex)	64
7.10.6 Preset Multiple Registers (10 hex)	64
7.11 Danfoss FC Control Profile	65
7.11.1 Control Word According to FC Profile (8-10 Protocol = FC profile)	65
7.11.2 Status Word According to FC Profile (STW) (<i>parameter 8-30 Protocol</i> = FC pro- file)	66
7.11.3 Bus Speed Reference Value	68
8 General Specifications	
8.1 Mains Supply Specifications	69
8.1.1 Mains Supply 3x200–240 V AC	69
8.1.2 Mains Supply 3x380–480 V AC	70
8.2 General Specifications	71
8.3 Acoustic Noise or Vibration	74
8.4 Derating according to Ambient Temperature and Switching Frequency	75
ĸ	76
	 7.11 Danfoss FC Control Profile 7.11.1 Control Word According to FC Profile (8-10 Protocol = FC profile) 7.11.2 Status Word According to FC Profile (STW) (parameter 8-30 Protocol = FC profile) 7.11.3 Bus Speed Reference Value neral Specifications 8.1 Mains Supply Specifications 8.1.1 Mains Supply 3x200–240 V AC 8.1.2 Mains Supply 3x380–480 V AC 8.2 General Specifications 8.3 Acoustic Noise or Vibration 8.4 Derating according to Ambient Temperature and Switching Frequency

1 Introduction

1.1 Purpose of the Manual

This design guide is intended for project and systems engineers, design consultants, and application and product specialists. Technical information is provided to understand the capabilities of the frequency converter for integration into motor control and monitoring systems. Details concerning operation, requirements, and recommendations for system integration are described. Information is proved for input power characteristics, output for motor control, and ambient operating conditions for the frequency converter.

Also included are:

- Safety features.
- Fault condition monitoring.
- Operational status reporting.
- Serial communication capabilities.
- Programmable options and features.

Also provided are design details such as:

- Site requirements.
- Cables.
- Fuses.
- Control wiring.
- Unit sizes and weights.
- Other critical information necessary to plan for system integration.

Reviewing the detailed product information in the design stage enables developing a well-conceived system with optimal functionality and efficiency.

VLT[®] is a registered trademark.

1.2 Document and Software Version

This manual is regularly reviewed and updated. All suggestions for improvement are welcome. *Table 1.1* shows the document version and the corresponding software version.

Edition	Remarks	Software version
MG18N2xx	-	1.20

Table 1.1 Document and Software Version

1.3 Safety Symbols

The following symbols are used in this manual:

Indicates a potentially hazardous situation that could result in death or serious injury.

ACAUTION

Indicates a potentially hazardous situation that could result in minor or moderate injury. It can also be used to alert against unsafe practices.

NOTICE

Indicates important information, including situations that can result in damage to equipment or property.

1.4 Abbreviations

°C	Degrees celsius
A	Ampere/AMP
AC	Alternating current
AMA	Automatic motor adaptation
AUG.	American wire gauge
DC	Direct current
EMC	Electro magnetic compatibility
ETR	Electronic thermal relay
FC	Frequency converter
f _{M,N}	Nominal motor frequency
g	Gram
Hz	Hertz
l _{INV}	Rated inverter output current
ILIM	Current limit
I _{M,N}	Nominal motor current
I _{VLT,MAX}	The maximum output current
I _{VLT,N}	The rated output current supplied by the
	frequency converter
kHz	Kilohertz
LCP	Local control panel
m	Meter
mA	Milliampere
МСТ	Motion control tool
mH	Millihenry inductance
min	Minute
ms	Millisecond
nF	Nanofarad
Nm	Newton meters
ns	Synchronous motor speed
P _{M,N}	Nominal motor power

Danfoss

VLT[®] Compressor Drive CDS 803

Printed circuit board
Protective extra low voltage
Regenerative terminals
Revolutions per minute
Second
Torque limit
Nominal motor voltage
Volts

Table 1.2 Abbreviations

1.5 Additional Resources

- VLT® Compressor Drive CDS 803 Quick Guide provides basic information on mechanical dimensions, installation and programming.
- VLT[®] Compressor Drive CDS 803 Programming Guide provides information on how to program and includes complete parameter descriptions.
- VLT® Compressor Drive CDS 803 Design Guide entails all technical information about the frequency converter and customer design and applications.
- MCT 10 Set-up Software enables the user to configure the frequency converter from a Windows[™] based PC environment.

Danfoss technical literature is available in print from a local Danfoss Sales Office or at:

vlt-drives.danfoss.com/Support/Technical-Documentation/

1.6 Definitions

Frequency converter

IVLT.MAX

The maximum output current.

IVLT,N

The rated output current supplied by the frequency converter.

UVLT, MAX

The maximum output voltage.

Input

The connected compressor	Group	Reset, coasting stop, reset
can start and stop with LCP	1	and coasting stop, quick-
and the digital inputs.		stop, DC braking, stop,
Functions are divided into 2		and the [Off] key.
groups.		Start, pulse start,
Functions in group 1 have	Group	reversing, start reversing,
higher priority than	2	3 .
functions in group 2.		jog, and freeze output

Table 1.3 Control Commands

Compressor

fjog

The motor frequency when the jog function is activated (via digital terminals).

fм

The motor frequency.

fMAX The maximum compressor frequency.

fMIN

The minimum compressor frequency.

f_{M,N}

The rated motor frequency (nameplate data).

М

The motor current.

IM,N

The rated motor current (nameplate data).

nм.N

The nominal motor speed (nameplate data).

Рм, N

The rated motor power (nameplate data).

Uм

The instant motor voltage.

Um,n

The rated motor voltage (nameplate data).

Break-away torque

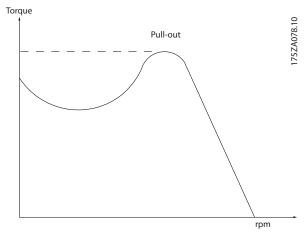


Illustration 1.1 Break-away Torque

ηνιτ

The efficiency of the frequency converter is defined as the ratio between the power output and the power input.

Start-disable command

A stop command belonging to the group 1 control commands, see Table 1.3.

Stop command

See control commands, Table 1.3.

References

Analog reference

A signal transmitted to the analog inputs 53 or 54, can be voltage or current.

Bus reference

A signal transmitted to the serial communication port (FC port).

Preset reference

A defined preset reference to be set from -100% to +100% of the reference range. Selection of 8 preset references via the digital terminals.

Refmax

Determines the relationship between the reference input at 100% full scale value (typically 10 V, 20 mA) and the resulting reference. The maximum reference value set in *parameter 3-03 Maximum Reference*.

Refmin

Determines the relationship between the reference input at 0% value (typically 0 V, 0 mA, 4 mA) and the resulting reference. The minimum reference value set in *parameter 3-02 Minimum Reference*.

Miscellaneous

Analog inputs

The analog inputs are used for controlling various functions of the frequency converter. There are 2 types of analog inputs:

- Current input, 0–20 mA, and 4–20 mA.
- Voltage input, 0–10 V DC.

Analog outputs

The analog outputs can supply a signal of 0-20 mA, 4-20 mA, or a digital signal.

Automatic Motor Adaptation, AMA

AMA algorithm determines the electrical parameters for the connected compressor at standstill.

Digital inputs

The digital inputs can be used for controlling various functions of the frequency converter.

Digital outputs

The frequency converter features 2 solid-state outputs that can supply a 24 V DC (maximum 40 mA) signal.

Relay outputs

The frequency converter features 2 programmable relay outputs.

ETR

Electronic thermal relay is a thermal load calculation based on present load and time. Its purpose is to estimate the compressor temperature.

Initializing

If initializing is carried out (*parameter 14-22 Operation Mode*), the programmable parameters of the frequency converter return to their default settings. *Parameter 14-22 Operation Mode* does not initialize

communication parameters.

Intermittent duty cycle

An intermittent duty rating refers to a sequence of duty cycles. Each cycle consists of an on-load and an off-load period. The operation can be either periodic duty or none-periodic duty.

LCP

The local control panel (LCP) makes up a complete interface for control and programming of the frequency converter. The control panel is detachable and can be installed up to 3 m (9.8 ft) from the frequency converter, that is, in a front panel with the installation kit option.

lsb

Least significant bit.

МСМ

Short for Mille Circular Mil, an American measuring unit for cable cross-section. 1 MCM \equiv 0.5067 mm².

msb

Most significant bit.

On-line/Off-line parameters

Changes to on-line parameters are activated immediately after the data value is changed. To activate the off-line parameters, press [OK].

PI controller

The PI controller maintains the desired speed, pressure, temperature, and so on, by adjusting the output frequency to match the varying load.

RCD

Residual current device.

Set-up

Parameter settings in 2 set-ups can be saved. Change between the 2 parameter set-ups and edit 1 set-up, while another set-up is active.

Slip compensation

The frequency converter compensates for the compressor slip by giving the frequency a supplement that follows the measured compressor load keeping the compressor speed almost constant.

Smart logic control (SLC)

The SLC is a sequence of user-defined actions executed when the associated user-defined events are evaluated as true by the SLC.

Thermistor

A temperature-dependent resistor placed where the temperature is to be monitored (frequency converter or compressor).

Trip

A state entered in fault situations, for example, if the frequency converter is subject to an overtemperature or when the frequency converter is protecting the compressor, process, or mechanism. Restart is prevented until the cause of the fault has disappeared and the trip state is canceled by activating reset or, sometimes, by

Introduction

being programmed to reset automatically. Do not use trip for personal safety.

Trip lock

A state entered in fault situations when the frequency converter is protecting itself and requiring physical intervention, for example, if the frequency converter is subject to a short circuit on the output. A locked trip can only be canceled by cutting off mains, removing the cause of the fault, and reconnecting the frequency converter. Restart is prevented until the trip state is canceled by activating reset or, sometimes, by being programmed to reset automatically. Trip lock may not be used for personal safety.

VT characteristics

Variable torque characteristics used for pumps and fans.

VVC⁺

If compared with standard voltage/frequency ratio control, voltage vector control (VVC⁺) improves the dynamics and the stability, both when the speed reference is changed and in relation to the load torque.

1.7 Power Factor

The power factor indicates to which extent the frequency converter imposes a load on the mains supply. The power factor is the ratio between I_1 and I_{RMS} , where I_1 is the fundamental current, and I_{RMS} is the total RMS current including harmonic currents. The lower the power factor, the higher the I_{RMS} for the same kW performance.

 $Power \ factor = \frac{\sqrt{3} \times U \times I_{1 \times COS\varphi}}{\sqrt{3} \times U \times I_{RMS}}$

The power factor for 3-phase control:

 $\begin{aligned} Power \ factor &= \frac{I_1 \times cos \varphi 1}{I_{RMS}} = \frac{I_1}{I_{RMS}} since \ cos \varphi 1 = 1\\ I_{RMS} &= \sqrt{I_1^2 + I_5^2 + I_7^2 + \ldots + I_n^2} \end{aligned}$

A high-power factor indicates that the different harmonic currents are low.

The frequency converters built-in DC coils produce a highpower factor, which minimizes the imposed load on the mains supply. Danfoss

2 Product Overview

2.1 Safety

2.1.1 Safety Precautions

Safety regulations

- Disconnect the frequency converter from mains, before carrying out repair work. Check that the mains supply has been disconnected and that the necessary time has passed before removing compressor and mains plugs.
- The [Off/Reset] key does not disconnect the equipment from mains and is thus not to be used as a safety switch.
- Establish correct protective earthing of the equipment, protect the user against supply voltage, and protect the compressor against overload in accordance with applicable national and local regulations.
- The ground leakage currents are higher than 3.5 mA.
- Set protection against motor overload in parameter 1-90 Motor Thermal Protection. If this function is desired, set parameter 1-90 Motor Thermal Protection to data value [4], [6], [8], [10] ETR trip or data value [3], [5], [7], [9] ETR warning.

NOTICE

The function is initialized at 1.16 x rated motor current and rated motor frequency. For the North American market: The ETR functions provide class 20 motor overload protection in accordance with NEC.

- Do not remove the plugs for the compressor and mains supply while the frequency converter is connected to mains. Check that the mains supply has been disconnected and that the necessary time has elapsed before removing compressor and mains plugs.
- Check that all voltage inputs have been disconnected and that the necessary time has elapsed before commencing repair work.

Installation at high altitudes

At altitudes above 2000 m (6561 ft), contact Danfoss regarding PELV.

HIGH VOLTAGE

Frequency converters contain high voltage when connected to AC mains input power. Qualified personnel only should perform installation, start up, and maintenance. Failure to perform installation, start up, and maintenance by qualified personnel could result in death or serious injury.

UNINTENDED START

When the frequency converter is connected to AC mains, the motor may start at any time. The frequency converter, motor, and any driven equipment must be in operational readiness. Failure to be in operational readiness when the frequency converter is connected to AC mains could result in death, serious injury, equipment, or property damage.

DISCHARGE TIME

The frequency converter contains DC-link capacitors, which can remain charged even when the frequency converter is not powered. High voltage can be present even when the warning LED indicator lights are off. Failure to wait the specified time after power has been removed before performing service or repair work can result in death or serious injury.

- Stop the motor.
- Disconnect AC mains and remote DC-link power supplies, including battery back-ups, UPS, and DC-link connections to other frequency converters.
- Disconnect or lock PM motor.
- Wait for the capacitors to discharge fully. The minimum duration of waiting time is specified in *Table 2.1*.
- Before performing any service or repair work, use an appropriate voltage measuring device to make sure that the capacitors are fully discharged.

Voltage [V]	Cooling capacity [TR]	Minimum waiting time
		(minutes)
3x200	4–6.5	15
3x400	4–5	4
3x400	6.5	15

Table 2.1 Discharge Time

Equipment containing electrical
components cannot be disposed of
together with domestic waste.
It must be separately collected with
electrical and electronic waste according
to local and currently valid legislation.

2.2 CE Labelling

2.2.1 CE Conformity and Labeling

What is CE conformity and labeling?

The purpose of CE labelling is to avoid technical trade obstacles within EFTA and the EU. The EU has introduced the CE label as a simple way of showing whether a product complies with the relevant EU directives. The CE label says nothing about the specifications or quality of the product. Frequency converters are regulated by 3 EU directives:

The machinery directive (98/37/EEC)

All machines with critical moving parts are covered by the machinery directive of January 1, 1995. Since a frequency converter is largely electrical, it does not fall under the machinery directive. However, if a frequency converter is supplied for use in a machine, Danfoss provides information on safety aspects relating to the frequency converter. Danfoss does this with a manufacturer's declaration.

The Low Voltage Directive (73/23/EEC)

Frequency converters must be CE labeled in accordance with the Low Voltage Directive of January 1, 1997. The directive applies to all electrical equipment and appliances used in the 50–1000 V AC and the 75–1500 V DC voltage ranges. Danfoss CE-labels in accordance with the directive and issues a declaration of conformity on request.

The EMC directive (89/336/EEC)

EMC is short for electromagnetic compatibility. The presence of electromagnetic compatibility means that the mutual interference between different components/ appliances does not affect the way the appliances work. The EMC directive came into effect January 1, 1996. Danfoss CE-labels in accordance with the directive and issues a declaration of conformity after request. To carry out EMC-correct installation, see the instructions in this design guide. In addition, Danfoss specifies which standards our products comply with. Danfoss offers the filters presented in the specifications and provide other types of assistance to ensure the optimum EMC result.

The frequency converter is most often used by professionals of the trade as a complex component forming part of a larger appliance, system, or installation. Note that the responsibility for the final EMC properties of the appliance, system or installation rests with the installer.

2.2.2 What is Covered

The EU Guidelines on the Application of Council Directive 89/336/EEC outline 3 typical situations of using a frequency converter. See *chapter 2.2.3 Danfoss Frequency Converter and CE Labelling* for EMC coverage and CE labelling.

- The frequency converter is sold directly to the end-consumer. The frequency converter is for example sold to a DIY market. The end-consumer is a layman. The end-consumer installs the frequency converter himself for use with a hobby machine, a kitchen appliance, and so on. For such applications, the frequency converter must be CE labeled in accordance with the EMC directive.
- The frequency converter is sold for installation in a plant. The plant is built up by professionals of the trade. It could be a production plant or a heating/ventilation plant designed and installed by professionals of the trade. Neither the frequency converter nor the finished plant has to be CE labeled under the EMC directive. However, the unit must comply with the basic EMC requirements of the directive. This is ensured by using components, appliances, and systems that are CE labeled under the EMC directive.
- The frequency converter is sold as part of a complete system. The system is being marketed as complete and could for example, be an air-conditioning system. The complete system must be CE labeled in accordance with the EMC directive. The manufacturer can ensure CE labelling under the EMC directive either by using CE labeled components or by testing the EMC of the system. It is not necessary to test the entire system if only CE labeled components are selected.

2.2.3 Danfoss Frequency Converter and CE Labelling

CE labelling is a positive feature when used for its original purpose, that is, to facilitate trade within the EU and EFTA.

However, CE labelling may cover many different specifications. Check what a given CE label specifically covers.

The covered specifications can be different and a CE label may therefore give the installer a false feeling of security when using a frequency converter as a component in a system or an appliance.

Danfoss CE labels the frequency converters in accordance with the Low Voltage Directive. This means that if the frequency converter is installed correctly, Danfoss guarantees compliance with the Low Voltage Directive. Danfoss issues a declaration of conformity that confirms our CE labelling in accordance with the Low Voltage Directive.

The CE label also applies to the EMC directive if the instructions for EMC-correct installation and filtering are followed. On this basis, a declaration of conformity in accordance with the EMC directive is issued.

The Design Guide offers detailed instructions for installation to ensure EMC-correct installation. Furthermore, Danfoss specifies which our different products comply with.

Danfoss provides other types of assistance that can help to obtain the best EMC result.

2.2.4 Compliance with EMC Directive 89/336/EEC

As mentioned, the frequency converter is mostly used by professionals of the trade as a complex component forming part of a larger appliance, system, or installation. Note that the responsibility for the final EMC properties of the appliance, system, or installation rests with the installer. As an aid to the installer, Danfoss has prepared EMC installation guidelines for the power drive system. If the EMCcorrect instructions for installation are followed, the standards and test levels stated for power drive systems are complied with.

2.3 Air Humidity

The frequency converter has been designed to meet the IEC/EN 60068-2-3 standard, EN 50178 9.4.2.2 at 50 $^\circ\text{C}$ (122 $^\circ\text{F}$).

2.4 Aggressive Environments

A frequency converter contains many mechanical and electronic components. All are to some extent vulnerable to environmental effects.

Do not install the frequency converter in environments with airborne liquids, particles, or gases that may affect or damage the electronic components. Failure to take necessary protective measures increases the risk of stoppages, potentially causing equipment damage and personnel injury.

Liquids can be carried through the air and condense in the frequency converter and may cause corrosion of components and metal parts. Steam, oil, and salt water may cause corrosion of components and metal parts. In such environments, use equipment with enclosure rating IP54. As an extra protection, coated printed circuit boards can be ordered as an option (standard on some power sizes).

Airborne particles such as dust may cause mechanical, electrical, or thermal failure in the frequency converter. A typical indicator of excessive levels of airborne particles is dust particles around the frequency converter fan. In dusty environments, use equipment with enclosure rating IP54 or a cabinet for IP20/TYPE 1 equipment.

In environments with high temperatures and humidity, corrosive gases such as sulphur, nitrogen, and chlorine compounds causes chemical processes on the frequency converter components.

Such chemical reactions rapidly affect and damages the electronic components. In such environments, mount the equipment in a cabinet with fresh air ventilation, keeping aggressive gases away from the frequency converter. An extra protection in such areas is a coating of the printed circuit boards, which can be ordered as an option.

Before installing the frequency converter, check the ambient air for liquids, particles, and gases. This is done by observing existing installations in this environment. Typical indicators of harmful airborne liquids are water or oil on metal parts, or corrosion of metal parts.

Excessive dust particle levels are often found on installation cabinets and existing electrical installations. One indicator of aggressive airborne gases is blackening of copper rails and cable ends on existing installations. 2

2.5 Vibration and Shock

The frequency converter has been tested according to the procedure based on the shown standards, *Table 2.2*.

The frequency converter complies with requirements that exist for units mounted on the walls and floors of

2.6 Control Structures

Select open loop or closed loop in *parameter 1-00 Configuration Mode*.

2.6.1 Control Structure Open Loop

production premises, and in panels bolted to walls or floors.

IEC/EN 60068-2-6	Vibration (sinusoidal) - 1970
IEC/EN 60068-2-64	Vibration, broad-band random

Table 2.2 Standards

30BB892.10 100% Reference handling P 4-14 Remote Motor speed P 3-4* Ramp 1 reference high limit [Hz] P 3-5* Ramp 2 0% To motor Remote control Auto mode Reference Ramp Hand mode Local 100% Local P 4-12 reference Motor speed scaled to Hz low limit [Hz] -100% P 4-10 Motor speed LCP Hand on, direction off and auto on keys Illustration 2.1 Open-loop Structure

In the configuration shown in Illustration 2.1,

parameter 1-00 Configuration Mode is set to [0] Open loop. The resulting reference from the reference handling system or the local reference is received and fed through the ramp limitation and speed limitation before being sent to the motor control. The output from the motor control is then limited by the maximum frequency limit.

2.6.2 Local (Hand On) and Remote (Auto On) Control

The frequency converter can be operated manually via the local control panel (LCP) or remotely via analog/digital inputs or serial bus. If allowed in *parameter 0-40 [Hand on] Key on LCP, parameter 0-44 [Off/Reset] Key on LCP,* and *parameter 0-42 [Auto on] Key on LCP*, it is possible to start and stop the frequency converter via LCP by pressing [Hand On] and [Off/Reset]. Alarms can be reset via the [Off/Reset] key.

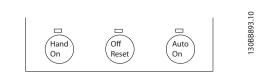


Illustration 2.2 LCP Keys

Local reference forces the configuration mode to open loop, independent on the setting of *parameter 1-00 Configuration Mode*.

Local reference is restored at power-down.

The internal controller allows the frequency converter to become a part of the controlled system. The frequency converter receives a feedback signal from a sensor in the system. It then compares this feedback to a setpoint reference value and determines the error, if any, between these 2 signals. It then adjusts the speed of the motor to correct this error.

For example, consider an application where the speed is to be controlled so that the static pressure in a pipe is constant. The desired static pressure value is supplied to the frequency converter as the setpoint reference. A static pressure sensor measures the actual static pressure in the pipe and supplies this to the frequency converter as a feedback signal. If the feedback signal is greater than the setpoint reference, the frequency converter slows down to reduce the pressure. In a similar way, if the pipe pressure is lower than the setpoint reference, the frequency converter automatically speeds up to increase the pressure provided by the pump.

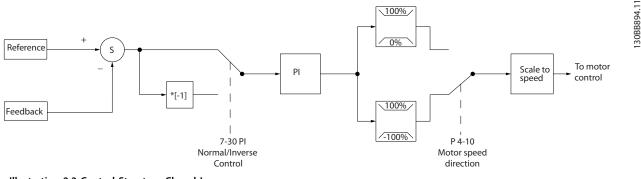


Illustration 2.3 Control Structure Closed Loop

2.6.3 Control Structure Closed Loop

While the default values for the frequency converter's closed-loop controller often provides satisfactory performance, the control of the system can often be optimized by adjusting some of the closed-loop controller's parameters.

2.6.4 Feedback Conversion

In some applications, it may be useful to convert the feedback signal. One example of this is using a pressure signal to provide flow feedback. Since the square root of pressure is proportional to flow, the square root of the pressure signal yields a value proportional to the flow. See *Illustration 2.4.*

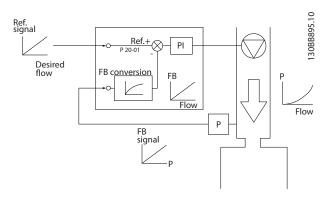


Illustration 2.4 Feedback Signal Conversion

Dantoss

2.6.5 Reference Handling

Details for open loop and closed loop operation.

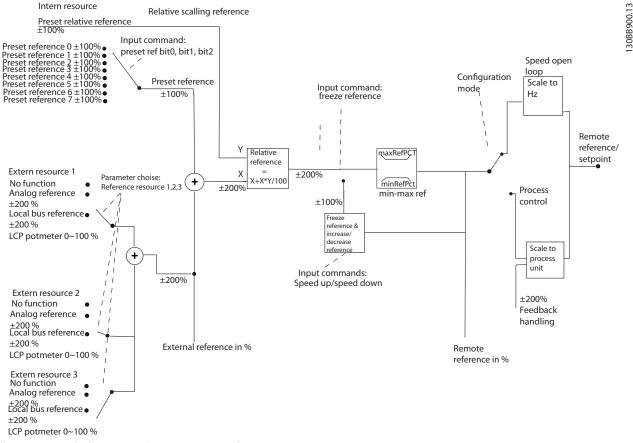


Illustration 2.5 Block Diagram Showing Remote Reference

The remote reference consists of:

- Preset references;
- External references (analog inputs and serial communication bus references);
- The preset relative reference;
- Feedback-controlled setpoint

Up to 8 preset references can be programmed in the frequency converter. The active preset reference can be selected using digital inputs or the serial communications bus. The reference can also be supplied externally, most commonly from an analog input. This external source is selected by 1 of the 3 reference source parameters (*parameter 3-15 Reference 1 Source*,

parameter 3-16 Reference 2 Source, and

parameter 3-17 Reference 3 Source). All reference resources and the bus reference are added to produce the total external reference. The external reference, the preset reference, or the sum of the 2 can be selected to be the active reference. Finally, this reference can by be scaled using *parameter 3-14 Preset Relative Reference*.

The scaled reference is calculated as follows: Reference = $X + X \times \left(\frac{Y}{100}\right)$

Where X is the external reference, the preset reference or the sum of these and Y is *parameter 3-14 Preset Relative Reference* in [%].

If Y, *parameter 3-14 Preset Relative Reference*, is set to 0%, the reference is not affected by the scaling.

Danfoss

14

Product Overview

Design Guide

130BD875.12

2.6.6 Closed-loop Set-up Quick Guide

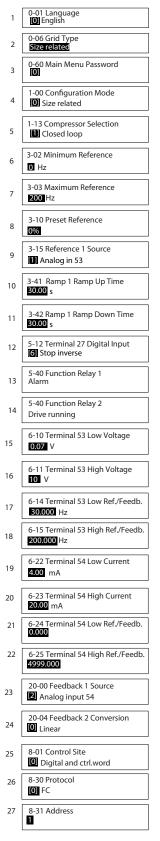


Illustration 2.6 Closed-loop Set-up Quick Guide

Danfoss

Danfoss

Product Overview

Closed-loop quick guide

5	
	7

Parameter	Option	Default	Function
Parameter 0-01 Language	[0] English	0	Select the language for the display.
	[1] Deutsch		
	[2] Francais		
	[3] Dansk		
	[4] Spanish		
	[5] Italiano		
	[28] Bras.port		
Parameter 0-06 GridType	[0] 200-240 V/50 Hz/IT-grid	Size related	Select the operating mode for restart after
	[1] 200-240 V/50 Hz/Delta	Dize related	reconnection of the frequency converter to
	[2] 200-240 V/50 Hz		mains voltage after power-down.
	[10] 380-440 V/50 Hz/IT-grid		
	[11] 380-440 V/50 Hz/Delta		
	[12] 380-440 V/50 Hz		
	[20] 440-480 V/50 Hz/IT-grid		
	[21] 440-480 V/50 Hz/Delta		
	[22] 440-480 V/50 Hz		
	[30] 525-600 V/50 Hz/IT-grid		
	[31] 525-600 V/50 Hz/Delta		
	[32] 525-600 V/50 Hz		
	[100] 200-240 V/60 Hz/IT-grid		
	[101] 200-240 V/60 Hz/Delta		
	[102] 200-240 V/60 Hz		
	[110] 380-440 V/60 Hz/IT-grid		
	[111] 380-440 V/60 Hz/Delta		
	[112] 380-440 V/60 Hz		
	[120] 440-480 V/60 Hz/IT-grid		
	[121] 440-480 V/60 Hz/Delta		
	[122] 440-480 V/60 Hz		
	[130] 525-600 V/60 Hz/IT-grid		
	[131] 525-600 V/60 Hz/Delta		
	[132] 525-600 V/60 Hz		
Parameter 0-60 Main Menu Password	0-999	0	Define the password for access to the LCP.
Parameter 1-00 Configuration Mode	[0] Open loop	[0] Open loop	-
r drameter i oo conngaration moac			l Select closed loon
		[0] Open loop	Select closed loop.
Devenuetor 1 12 Communication	[3] Closed loop		
Parameter 1-13 Compressor Selection	[3] Closed loop [24] VZH028-R410A	Size related	Select closed loop. Select which compressor to use.
Parameter 1-13 Compressor Selection	[3] Closed loop [24] VZH028-R410A [25] VZH035-R410A		
	[3] Closed loop [24] VZH028-R410A [25] VZH035-R410A [26] VZH044-R410A	Size related	Select which compressor to use.
Parameter 1-13 Compressor Selection Parameter 3-02 Minimum Reference	[3] Closed loop [24] VZH028-R410A [25] VZH035-R410A		Select which compressor to use. The minimum reference is the lowest value
	[3] Closed loop [24] VZH028-R410A [25] VZH035-R410A [26] VZH044-R410A	Size related	Select which compressor to use. The minimum reference is the lowest value obtainable by summing all references.
Parameter 1-13 Compressor Selection Parameter 3-02 Minimum Reference Parameter 3-03 Maximum Reference	[3] Closed loop [24] VZH028-R410A [25] VZH035-R410A [26] VZH044-R410A	Size related	Select which compressor to use. The minimum reference is the lowest value
Parameter 3-02 Minimum Reference	[3] Closed loop [24] VZH028-R410A [25] VZH035-R410A [26] VZH044-R410A -49999.0 - 200 Hz	Size related	Select which compressor to use. The minimum reference is the lowest value obtainable by summing all references.
Parameter 3-02 Minimum Reference Parameter 3-03 Maximum Reference	[3] Closed loop [24] VZH028-R410A [25] VZH035-R410A [26] VZH044-R410A -49999.0 - 200 Hz	Size related	Select which compressor to use. The minimum reference is the lowest value obtainable by summing all references. The maximum reference is the highest value
Parameter 3-02 Minimum Reference Parameter 3-03 Maximum Reference Parameter 3-10 Preset Reference	[3] Closed loop [24] VZH028-R410A [25] VZH035-R410A [26] VZH044-R410A -4999.0 - 200 Hz 0 - 200 Hz	Size related 0 Hz 200 Hz	Select which compressor to use. The minimum reference is the lowest value obtainable by summing all references. The maximum reference is the highest value obtainable by summing all references
Parameter 3-02 Minimum Reference Parameter 3-03 Maximum Reference Parameter 3-10 Preset Reference	 [3] Closed loop [24] VZH028-R410A [25] VZH035-R410A [26] VZH044-R410A -4999.0 - 200 Hz 0 - 200 Hz -100 - 100 % 	Size related 0 Hz 200 Hz 0 %	Select which compressor to use. The minimum reference is the lowest value obtainable by summing all references. The maximum reference is the highest value obtainable by summing all references Set up a fix setpoint preset reference [0].
Parameter 3-02 Minimum Reference Parameter 3-03 Maximum Reference Parameter 3-10 Preset Reference	 [3] Closed loop [24] VZH028-R410A [25] VZH035-R410A [26] VZH044-R410A -4999.0 - 200 Hz 0 - 200 Hz -100 - 100 % [0] No function 	Size related 0 Hz 200 Hz 0 %	Select which compressor to use. Select which compressor to use. The minimum reference is the lowest value obtainable by summing all references. The maximum reference is the highest value obtainable by summing all references Set up a fix setpoint preset reference [0]. Select the input to be used for the reference
Parameter 3-02 Minimum Reference	 [3] Closed loop [24] VZH028-R410A [25] VZH035-R410A [26] VZH044-R410A -4999.0 - 200 Hz 0 - 200 Hz -100 - 100 % [0] No function [1] Analog in 53 	Size related 0 Hz 200 Hz 0 %	Select which compressor to use. Select which compressor to use. The minimum reference is the lowest value obtainable by summing all references. The maximum reference is the highest value obtainable by summing all references Set up a fix setpoint preset reference [0]. Select the input to be used for the reference
Parameter 3-02 Minimum Reference Parameter 3-03 Maximum Reference Parameter 3-10 Preset Reference	 [3] Closed loop [24] VZH028-R410A [25] VZH035-R410A [26] VZH044-R410A -4999.0 - 200 Hz 0 - 200 Hz -100 - 100 % [0] No function [1] Analog in 53 [2] Analog in 54 [7] Pulse input 29 	Size related 0 Hz 200 Hz 0 %	Select which compressor to use. The minimum reference is the lowest value obtainable by summing all references. The maximum reference is the highest value obtainable by summing all references Set up a fix setpoint preset reference [0]. Select the input to be used for the reference
Parameter 3-02 Minimum Reference Parameter 3-03 Maximum Reference Parameter 3-10 Preset Reference Parameter 3-15 Reference 1 Source	 [3] Closed loop [24] VZH028-R410A [25] VZH035-R410A [26] VZH044-R410A -4999.0 - 200 Hz 0 - 200 Hz -100 - 100 % [0] No function [1] Analog in 53 [2] Analog in 54 [7] Pulse input 29 [11] Local bus reference 	Size related 0 Hz 200 Hz 0 % [1] Analog in 53	Select which compressor to use. The minimum reference is the lowest value obtainable by summing all references. The maximum reference is the highest value obtainable by summing all references Set up a fix setpoint preset reference [0]. Select the input to be used for the reference signal.
Parameter 3-02 Minimum Reference Parameter 3-03 Maximum Reference Parameter 3-10 Preset Reference Parameter 3-15 Reference 1 Source Parameter 3-41 Ramp 1 Ramp Up	 [3] Closed loop [24] VZH028-R410A [25] VZH035-R410A [26] VZH044-R410A -4999.0 - 200 Hz 0 - 200 Hz -100 - 100 % [0] No function [1] Analog in 53 [2] Analog in 54 [7] Pulse input 29 	Size related 0 Hz 200 Hz 0 %	Select which compressor to use. The minimum reference is the lowest value obtainable by summing all references. The maximum reference is the highest value obtainable by summing all references Set up a fix setpoint preset reference [0]. Select the input to be used for the reference signal. Ramp-up time from 0 to parameter 1-25 Motor
Parameter 3-02 Minimum Reference Parameter 3-03 Maximum Reference Parameter 3-10 Preset Reference	 [3] Closed loop [24] VZH028-R410A [25] VZH035-R410A [26] VZH044-R410A -4999.0 - 200 Hz 0 - 200 Hz -100 - 100 % [0] No function [1] Analog in 53 [2] Analog in 54 [7] Pulse input 29 [11] Local bus reference 	Size related 0 Hz 200 Hz 0 % [1] Analog in 53	Select which compressor to use. The minimum reference is the lowest value obtainable by summing all references. The maximum reference is the highest value obtainable by summing all references Set up a fix setpoint preset reference [0]. Select the input to be used for the reference signal.

Product Overview

Design Guide

Parameter	Option	Default	Function		
Parameter 5-12 Terminal 27 Digital	[0] No operation	[6] Stop inverse	Select the input function for terminal 27.		
Input	[1] Reset				
	[2] Coast inverse				
	[3] Coast and reset inverse				
	[4] Quick stop inverse				
	[5] DC-brake inverse				
	[6] Stop inverse				
	[7] External Interlock				
	[8] Start				
	[9] Latched start				
	[10] Reversing				
	[11] Start reversing				
	[14] Jog				
	[16] Preset ref bit 0				
	[17] Preset ref bit 1				
	[18] Preset ref bit 2				
	[19] Freeze reference				
	[20] Speed up				
	[22] Speed down				
	[23] Set-up select bit 0				
	[34] Ramp bit 0				
	[52] Run permissive				
	[53] Hand start				
	[54] Auto start				
	[60] Counter A (up)				
	[61] Counter A (down)				
	[62] Reset Counter A				
	[63] Counter B (up)				
	[64] Counter B (down)				
	[65] Reset Counter B				
Parameter E 40 Eurotion Polau [0]		Alarm	To control output relay 1, select this function.		
Parameter 5-40 Function Relay [0]	See parameter 5-40 Function	Aldrift			
Function relay	Relay	Drive market	To control control and a 2 colored this for all of		
Parameter 5-40 Function Relay [1]	See parameter 5-40 Function	Drive running	To control output relay 2, select this function.		
unction relay	Relay		<u> </u>		
Parameter 6-10 Terminal 53 Low	0-10 V	0.07 V	Enter the voltage that corresponds to the low		
/oltage			reference value.		
Parameter 6-11 Terminal 53 High	0-10 V	10 V	Enter the voltage that corresponds to the high		
/oltage			reference value.		
Parameter 6-14 Terminal 53 Low Ref./	-4999 - 4999	30	Enter the reference value that corresponds to		
eedb. Value			the voltage set in <i>parameter 6-10 Terminal 53</i>		
			Low Voltage.		
Parameter 6-15 Terminal 53 High Ref./	/ -4999 - 4999	200	Enter the reference value that corresponds to		
Feedb. Value			the voltage set in parameter 6-11 Terminal 53		
			High Voltage.		
Parameter 6-22 Terminal 54 Low	0.00-20.00 mA	4.00 mA	Enter the current that corresponds to the low		
Current			reference value.		
Parameter 6-23 Terminal 54 High	0-10 V	10 V	Enter the current that corresponds to the high		
Current			reference value.		

Danfoss

2

Feedb. Value

Feedb. Value

Parameter 6-24 Terminal 54 Low Ref./

Parameter 6-25 Terminal 54 High Ref./

-0.00-20.00 mA

-4999 - 4999

20.00 mA

Size related

Enter the reference value that corresponds to the current set in parameter 6-20 Terminal 54

Enter the reference value that corresponds to

the current set in parameter 6-21 Terminal 54

Low Voltage.

High Voltage.

Parameter	Option	Default	Function
Parameter 8-01 Control Site	[0] Digital and ctrl.word	[0] Digital and	Select if digital, bus, or a combination of both
	[1] Digital only	ctrl.word	should control the frequency converter.
	[2] Controlword only		
Parameter 8-30 Protocol	[0] FC	[0] FC	Select the protocol for the integrated RS485
	[2] Modbus RTU		port.
Parameter 8-32 Baud Rate	[0] 2400 Baud	[2] 9600 Baud	Select the baud rate for the RS485 port.
	[1] 4800 Baud		
	[2] 9600 Baud		
	[3] 19200 Baud		
	[4] 38400 Baud		
	[5] 57600 Baud		
	[6] 76800 Baud		
	[7] 115200 Baud		
Parameter 20-00 Feedback 1 Source	[0] No function	[0] No function	Select which input is used as the source of
	[1] Analog Input 53		the feedback signal.
	[2] Analog Input 54		
	[3] Pulse input 29		
	[100] Bus Feedback 1		
	[101] Bus Feedback 2		
Parameter 20-01 Feedback 1	[0] Linear	[0] Linear	Select how the feedback should be calculated
Conversion	[1] Square root		

Table 2.3 Closed-loop Applications Set-up

2.6.7 Tuning the Drive Closed-loop Controller

Once the frequency converter's closed-loop controller has been set up, test the performance of the controller. Often, its performance may be acceptable using the default values of *parameter 20-93 PI Proportional Gain* and *parameter 20-94 PI Integral Time*. However, sometimes it may be helpful to optimize these parameter values to provide faster system response while still controlling speed overshoot.

2.6.8 Manual PI Adjustment

- 1. Start the compressor.
- Set parameter 20-93 PI Proportional Gain to 0.3 and increase it until the feedback signal begins to oscillate. If necessary, start and stop the frequency converter or make step changes in the setpoint reference to attempt to cause oscillation. Next, reduce the PI proportional gain until the feedback signal stabilizes. Then reduce the proportional gain by 40–60%.
- 3. Set *parameter 20-94 PI Integral Time* to 20 s and reduce it until the feedback signal begins to oscillate. If necessary, start and stop the frequency converter or make step changes in the setpoint reference to attempt to cause oscillation. Next, increase the PI integral time until the feedback signal stabilizes. Then increase of the integral time by 15–50%.

Danfoss

2.7 General Aspects of EMC

2.7.1 General Aspects of EMC Emissions

Frequency converter (and other electrical devices) generate electronic or magnetic fields that may interfere with their environment. The electromagnetic compatibility (EMC) of these effects depends on the power and the harmonic characteristics of the devices.

Uncontrolled interaction between electrical devices in a system can degrade compatibility and impair reliable operation. Interference may take the form of mains harmonics distortion, electrostatic discharges, rapid voltage fluctuations, or high frequency interference. Electrical devices generate interference along with being affected by interference from other generated sources.

Burst transient usually occur at frequencies in the range 150 kHz to 30 MHz. Airborne interference from the frequency converter system in the range 30 MHz to 1 GHz is generated from the inverter, motor cable, and the compressor. Capacitive currents in the motor cable coupled with a high dU/dt from the compressor voltage generate leakage currents, as shown in *Illustration 2.7*.

The use of a screened motor cable increases the leakage current (see *Illustration 2.7*) because screened cables have higher capacitance to ground than unscreened cables. If the leakage current is not filtered, it causes greater interference on the mains in the radio frequency range below approximately 5 MHz. Since the leakage current (I_1) is carried back to the unit through the screen (I_3), there is in principle only a small electro-magnetic field (I_4) from the screened motor cable according to *Illustration 2.7*.

The screen reduces the radiated interference, but increases the low-frequency interference on the mains. Connect the motor cable screen to the frequency converter enclosure and on the compressor enclosure. This is best done by using integrated screen clamps to avoid twisted screen ends (pigtails). Pigtails increase the screen impedance at higher frequencies, which reduces the screen effect and increases the leakage current (I₄).

If a screened cable is used for relay, control cable, signal interface, and brake, mount the screen on the enclosure at both ends. In some situations, however, it is necessary to break the screen to avoid current loops.

If the screen is to be placed on a mounting plate for the frequency converter, use a metal mounting plate to convey the screen currents back to the unit. Moreover, ensure good electrical contact from the mounting plate through the mounting screws to the frequency converter chassis.

When unscreened cables are used, some emission requirements are not complied with, although most immunity requirements are observed.

To reduce the interference level from the entire system (unit+installation), make compressor and brake cables as short as possible. Avoid placing cables with a sensitive signal level alongside compressor and brake cables. Radio interference higher than 50 MHz (airborne) is especially generated by the control electronics.

2

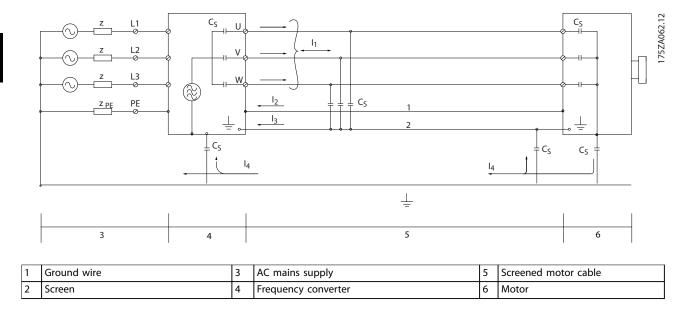


Illustration 2.7 Generation of Leakage Currents

2.7.2 Emission Requirements

The EMC product standard for frequency converters defines 4 categories (C1, C2, C3, and C4) with specified requirements for emission and immunity. *Table 2.4* states the definition of the 4 categories and the equivalent classification from EN 55011.

Category	Definition	Equivalent emission class in EN 55011
C1	Frequency converters installed in the first environment (home and office) with a supply voltage less than 1000 V.	Class B
C2	Frequency converters installed in the first environment (home and office) with a supply voltage less than 1000 V, which are not plug-in and not movable, and must be installed and commissioned by a professional.	Class A Group 1
С3	Frequency converters installed in the second environment (industrial) with a supply voltage lower than 1000 V.	Class A Group 2

Category	Definition	Equivalent emission class in EN 55011
C4	Frequency converters installed in	No limit line.
	the second environment with a	Make an EMC
	supply voltage equal to or above	plan.
	1000 V or rated current equal to or	
	above 400 A or intended for use in	
	complex systems.	

Danfoss

Table 2.4 Correlation between IEC 61800-3 and EN 55011

When the generic (conducted) emission standards are used, the frequency converters are required to comply with the limits in *Table 2.5*.

Environment	Generic emission standard	Equivalent emission class in EN 55011
First	EN/IEC 61000-6-3 Emission	Class B
environment	standard for residential,	
(home and	commercial, and light	
office)	industrial environments.	
Second	EN/IEC 61000-6-4 Emission	Class A Group 1
environment	standard for industrial	
(industrial	environments.	
environment)		

Table 2.5 Correlation between Generic Emission Standards and EN 55011

Design Guide

2.7.3 EMC Test Results

The following test results have been obtained using a system with a frequency converter, a screened control cable, a control box with potentiometer, and a motor screened cable.

RFI										
filter	Conduct emission. Maximum screened cable length [m]					Radiated	emission			
type										
		Inductrial o	nvironment		Housing, t	rades, and	Indu	strial	Housing, t	rades, and
		industrial e	Invironment		light in	dustries	enviro	nment	light in	dustries
	EN 55011	Class A2	EN 55011	Class A1	EN 5501	1 Class B	EN 55011	Class A1	EN 5501	1 Class B
	Without	With	Without	With	Without	With	Without	With	Without	With
	external	external	external	external	external	external	external	external	external	external
	filter	filter	filter	filter	filter	filter	filter	filter	filter	filter
H4 RFI	filter (Class A	1)								
CDS										
803	-	-	25	50	-	20	Yes	Yes	-	No
IP20										

Table 2.6 Test Results

2.8 Harmonics

2.8.1 Overview of Harmonics Emission

A frequency converter takes up a non-sinusoidal current from mains, which increases the input current I_{RMS} . A non-sinusoidal current is transformed with a Fourier analysis and split into sine-wave currents with different frequencies, that is, different harmonic currents I_n with 50 Hz basic frequency:

	l ₁	I5	I7
Hz	50	250	350

Table 2.7 Harmonic Currents

The harmonics do not affect the power consumption directly, but increase the heat losses in the installation (transformer, cables). So, in plants with a high percentage of rectifier load, maintain harmonic currents at a low level to avoid overload of the transformer and high temperature in the cables.



Illustration 2.8 Intermediate Circuit Coils

NOTICE

Some of the harmonic currents might disturb communication equipment connected to the same transformer or cause resonance with power factor correction batteries. To ensure low harmonic currents, the frequency converter is equipped with intermediate circuit coils as standard. This normally reduces the input current I_{RMS} by 40%.

The voltage distortion on the mains supply voltage depends on the size of the harmonic currents multiplied by the mains impedance for the frequency in question. The total voltage distortion THD is calculated based on the individual voltage harmonics using this formula:

 $THD \% = \sqrt{U_{\overline{5}}^2 + U_{\overline{7}}^2 + ... + U_{\overline{N}}^2}$ $(U_N\% \text{ of } U)$

2.8.2 Harmonics Emission Requirements

Equipment connected to the public supply network

Options	Definition
1	IEC/EN 61000-3-2 Class A for 3-phase balanced
	equipment (for professional equipment only up to 1
	kW total power).
2	IEC/EN 61000-3-12 Equipment 16–75 A and profes-
	sional equipment as from 1 kW up to 16 A phase
	current.

Table 2.8 Connected Equipment

Janfoss

2.8.3 Harmonics Test Results (Emission)

Power sizes up to PK75 in T4 and P3K7 in T2 complies with IEC/EN 61000-3-2 Class A. Power sizes from P1K1 and up to P18K in T2 and up to P90K in T4 complies with IEC/EN 61000-3-12, Table 4.

	Individual Harmonic Current In/I1 (%)					
	I5	I7	I11	I ₁₃		
Actual 6.0–10 kW,						
IP20, 200 V	32.6	16.6	8.0	6.0		
(typical)						
Limit for R _{sce} ≥120	40	25	15	10		
	Harmonic current distortion factor (%)					
	TH	ID	P	WHD		
Actual 6.0–10 kW,	20 44.4			41.4		
200 V (typical)	39		41.4			
Limit for R _{sce} ≥120	4	8	46			

Table 2.9 Harmonic Current 6.0-10 kW, 200 V

	Individual Harmonic Current In/I1 (%)				
	I5	I ₇	I ₁₁	I ₁₃	
Actual 6.0–10 kW,					
IP20, 380–480 V	36.7	20.8	7.6	6.4	
(typical)					
Limit for R _{sce} ≥120	40	25	15	10	
	Harmonic current distortion factor (%)				
	TH	ID	PWHD		
Actual 6.0–10 kW,					
380–480 V	44.4		40.8		
(typical)					
Limit for R _{sce} ≥120	4	8	46		

Table 2.10 Harmonic Current 6.0-10 kW, 380-480 V

It is the responsibility of the installer or user of the equipment to ensure, by consultation with the distribution network operator if necessary, that the equipment is connected only to a supply with a short circuit power S_{sc} greater than or equal to specified above. Other power sizes can be connected to the public supply network by consultation with the distribution network operator.

Compliance with various system level guidelines: The harmonic current data in *Table 2.9* to are given in accordance with IEC/EN 61000-3-12 regarding the power drive systems product standard. They may be used as the basis for calculation of the harmonic currents' influence on the power supply system and for the documentation of compliance with relevant regional guidelines: IEEE 519-1992; G5/4.

If there is a need for further reduction of harmonic currents, passive or active filters in front of the frequency converters can be installed. Consult Danfoss for further information.

2.8.4 Immunity Requirements

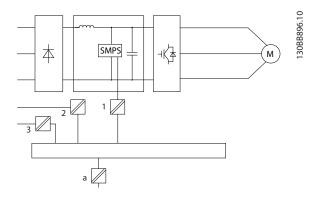
The immunity requirements for frequency converters depend on the environment where they are installed. The requirements for the industrial environment are higher than the requirements for the home and office environment. All Danfoss frequency converters comply with the requirements for the industrial environment and therefore comply also with the lower requirements for home and office environment with a large safety margin.

2.9 Galvanic Isolation (PELV)

2.9.1 PELV - Protective Extra Low Voltage

PELV offers protection by way of extra low voltage. Protection against electric shock is ensured when the electrical supply is of the PELV type and the installation is made as described in local/national regulations on PELV supplies.

All control terminals and relay terminals 01–03/04–06 comply with PELV (Protective Extra Low Voltage) (Does not apply to grounded Delta leg above 440 V).


Galvanic (ensured) isolation is obtained by fulfilling requirements for higher isolation and by providing the relevant creapage/clearance distances. These requirements are described in the EN 61800-5-1 standard.

The components that make up the electrical isolation, as described, also comply with the requirements for higher isolation and the relevant test as described in EN 61800-5-1.

The PELV galvanic isolation can be shown in Illustration 2.9.

To maintain PELV, all connections made to the control terminals must be PELV, for example, the thermistor must be reinforced/double insulated.

Design Guide

1	Power supply (SMPS)
2	Optocouplers, communication between AOC and BOC
3	Custom relays
а	Control card terminals

Illustration 2.9 Galvanic Isolation

ACAUTION

Installation at high altitude: At altitudes above 2000 m (6562 ft), contact Danfoss regarding PELV.

2.10 Ground Leakage Current

DISCHARGE TIME

Touching the electrical parts could be fatal - even after the equipment has been disconnected from mains. Also make sure that other voltage inputs have been disconnected, such as load sharing (linkage of DC intermediate circuit), and the compressor connection for kinetic back-up.

Before touching any electrical parts, wait at least the amount of time indicated in *Table 2.1*.

Shorter time is allowed only if indicated on the nameplate for the specific unit.

NOTICE

Leakage current

The ground leakage current from the frequency converter exceeds 3.5 mA. To ensure that the ground cable has a good mechanical connection to the ground connection, the cable cross-section must be at least 10 mm² (8 AWG) Cu or 16 mm² (6 AWG) Al or 2 rated ground wires terminated separately. Residual current device protection RCD This product can cause a DC current in the protective conductor. Where a residual current device (RCD) is used for protection in case of direct or indirect contact, only an RCD of Type B is allowed on the supply side of this product. Otherwise, another protective measure shall be applied, such as separation from the environment by double or reinforced insulation, or isolation from the supply system by a transformer.See also Application Note

Protection against Electrical Hazards. Protective earthing of the frequency converter and the use of RCDs must always follow national and local regulations.

2.11 Extreme Running Conditions

Short circuit (compressor phase - phase)

Current measurement in each of the 3 compressor phases or in the DC-link, protects the frequency converter against short circuits. A short circuit between 2 output phases causes an overcurrent in the inverter. The inverter is turned off individually when the short circuit current exceeds the permitted value (*Alarm 16, Trip Lock*).

For information about protecting the frequency converter against a short circuit at the load sharing and brake outputs, see the design guidelines.

Switching on the output

Switching on the output between the compressor and the frequency converter is fully permitted. The frequency converter is not damaged in any way by switching on the output. However, fault messages may appear.

Mains drop-out

During a mains drop-out, the frequency converter keeps running until the DC-link voltage drops below the minimum stop level, which is typically 15% below the frequency converter's lowest rated supply voltage. The mains voltage before the drop-out and the compressor load determines how long it takes for the frequency converter to coast.

Dantoss

3 Selection

3.1 Options and Accessories

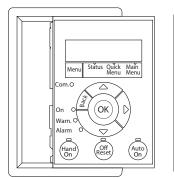
3.1.1 Local Control Panel (LCP)

Ordering number	Description
120Z0581	LCP for all IP20 units

Table 3.1 Ordering Number

Enclosure	IP55 front
Maximum cable length to unit	3 m (10 ft)
Communication std.	RS485

Table 3.2 Technical Data


3.1.2 Mounting of LCP in Panel Front

Ordering number	Description
132B0201	LCP kit for remote mounting

Table 3.3 Ordering Number

Step 1

Fit gasket on LCP.

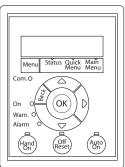


Illustration 3.1 Fit Gasket

Step 2

Place LCP on panel, see dimensions of hole on *Illustration 3.2.*

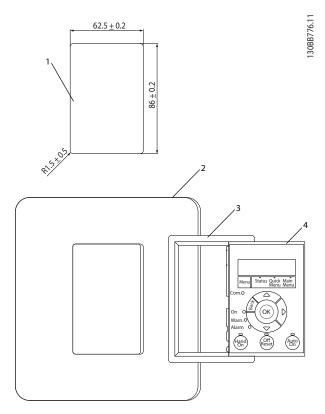


Illustration 3.2 Place LCP on Panel

Step 3

130BB775.12

Place bracket on back of the LCP, then slide down. Tighten screws and connect cable female side to LCP.

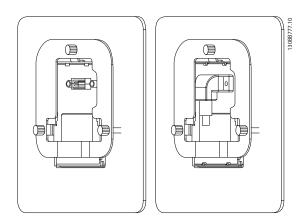
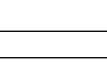
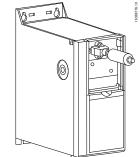



Illustration 3.3 Place Bracket on LCP

Danfoss

3


3

Design Guide

Step 4

Selection

Connect cable to frequency converter.

NOTICE

To fasten connector to the frequency converter, use the provided thread cutting screws, tightening torque 1.3 Nm.

3.1.3 IP21/TYPE 1 Enclosure Kit

Illustration 3.4 Connect Cable

IP21/TYPE 1 is an optional enclosure element available for IP20 units. If the enclosure kit is used, an IP20 unit is upgraded to comply with enclosure IP21/TYPE 1.

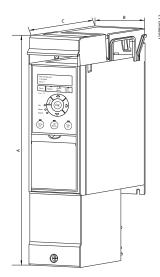


Illustration 3.5 H3-H5

Enclosure	Cooling	capacity	Height [mm/ (in)] A	Width [mm/ (in)] B	Depth [mm/ (in)] C	IP21 kit ordering number	Type 1 kit ordering number
-	3x200-240 V	3x380–480 V	-	-	-	-	-
H3	-	4–5 TR	346 (13.6)	106 (4.2)	210 (8.3)	132B0214	132B0224
H4	4–5 TR	6.5 TR	374 (14.7)	141 (5.6)	245 (9.6)	132B0215	132B0225
H5	6.5 TR	_	418 (16.5)	161 (6.3)	260 (10.2)	132B0216	132B0226

Table 3.4 Enclosure Kit Specifications

3.1.4 Decoupling Plate

Use the decoupling plate for EMC-correct installation.

Shown here on an H3 enclosure.

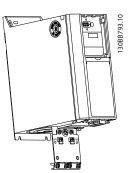


Illustration 3.6 Decoupling Plate

	Length [mm/(in)]	Width [mm/(in)]
H3	80.8 (3.2)	72.0 (2.8)
H4/H5	85.0 (3.3)	84.8 (3.3)

Table 3.5 Dimensions, Decoupling Plate

	Cooling c	Decoupling plate	
Enclosure	3x200–240 V	3x380–480 V	-
H3	-	4–5 TR	120Z0582
H4	4–5 TR	6.5 TR	120Z0583
H5	6.5 TR	_	120Z0583

Table 3.6 Decoupling Plate Specifications

3

Danfoss

Danfoss

4 How to Order

4.1 Configuration

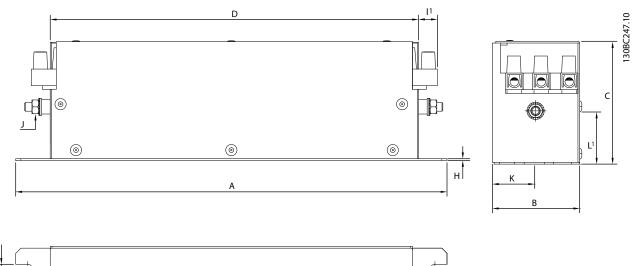
4.1.1 Type Code String

C D S 8 0 3 P T H X X X S X X X A X B X C X X X D X	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	.10
	С	D	S	8	0	3	Р				Т					Н		Х			Х	Х	Х	S	Х	Х	Х	Х	А	Х	В	Х	С	Х	Х	х	Х	D	Х	938
																																								30BC

Illustration 4.1 Type Code

Description	Position	Possible option
Product group & FC series	1–6	CDS 803
Power rating	7–10	6.0–10 kW (P6K0–P10K)
Number of phases	11	Three phases (T)
Mains voltage	11–12	T2: 200–240 V AC
		T4: 380–480 V AC
Enclosure	13–15	E20: IP20/Chassis
RFI filter	16–17	H4: RFI filter class A1
Brake	18	X: No brake chopper included
Display	19	A: Alpha numeric local control panel
		X: No local control panel
Coating PCB	20	X: No coated PCB
		C: Coated PCB
Mains option	21	X: No mains option
Adaption	22	X: No adaption
Adaption	23	X: No adaption
Software release	24–27	SXXXX: Latest release - std. software
Software language	28	X: Standard
A options	29–30	AX: No A options
B options	31–32	BX: No B options
C0 options MCO	33–34	CX: No C options
C1 options	35	X: No C1 options
C option software	36–37	XX: No options
D options	38–39	DX: No D0 options

Table 4.1 Type Code Descriptions


4.2 Ordering Numbers

4.2.1 External RFI Filter

External filters to fulfill A1 50 m/B1 20 m.

Power	Туре	Α	В	С	D	Е	F	G	н	Ι	J	к	L1	Torque [Nm	Weight [kg	Ordering
size 380-480 V														(in-lb)]	(lb)]	number
[kW/(hp)]							[mm	(in)]								
6-7.5 (8-10)	FN3258-16-45	250	45	70	220	235	25	4.5	1	10.6	M5	22.5	31	0.7–0.8	0.8 (1.8)	132B0245
		(9.8)	(1.8)	(2.8)	(8.7)	(9.2)	(1)	(0.2)	(0.04)	(0.4)		(0.9)	(1.2)	(6.2–7.1)		
10 (13)	FN3258-30-47	270	50	85	240	255	30	5.4	1	10.6	M5	25	40	1.9–2.2	1.2 (2.6)	132B0246
		(10.6)	(2)	(3.3)	(9.4)	(10)	(1.2)	(0.2)	(0.04)	(0.4)		(1)	(1.6)	(16.8–19.5)		

Table 4.2 RFI Filters - Details



Illustration 4.2 RFI Filter

<u>Danfoss</u>

<u>Danfvšš</u>

Design Guide

5 How to Install

5.1 Mechanical Dimensions

5.1.1 Dimensions

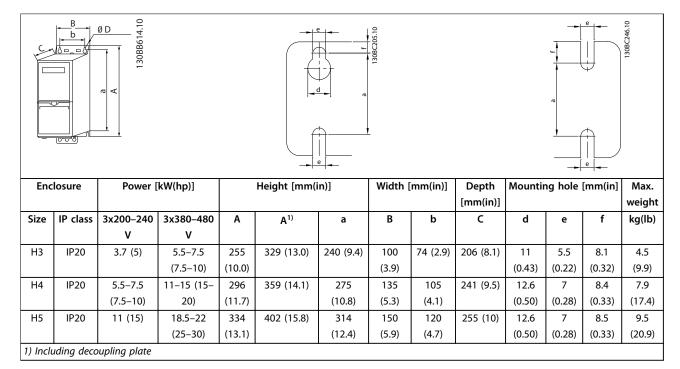


Table 5.1 Dimensions, Enclosure Sizes

NOTICE

The dimensions are only for the physical units. When installing in an application, allow space above and below the units for cooling. The amount of space for free air passage is listed in *Table 5.3*.

5.1.2 Shipping Dimensions

Enclosure size	H3	H4	H5
mains voltage			
200–240 V AC [kW(hp)]	3.7 (5)	5.5-7.5 (7.5-10)	11 (15)
380-480 V AC [kW(hp)]	5.5-7.5 (7.5-10)	11–15 (15–20)	18.5–22 (25–30)
IP protection rating	•		
Maximum weight [kg(lb)]	4.5 (9.9)	7.9 (17.4)	9.5 (20.9)
Shipping dimensions	•		
Height [mm(in)]	330 (13.0)	380 (15.0)	420 (16.5)
Width [mm(in)]	188 (7.4)	250 (9.8)	290 (11.4)
Depth [mm(in)]	282 (11.1)	375 (14.8)	375 (14.8)

Table 5.2 Shipping Dimensions

5.1.3 Side-by-side Installation

The frequency converter can be mounted side-by-side but requires the clearance above and below for cooling.

		Power	[kW(hp)]	Clearance above/below [mm(in)]
Size	IP class	3x200–240 V	3x380–480 V	
H3	IP20	3.7 (5)	5.5–7.5 (7.5–10)	100 (4)
H4	IP20	5.5–7.5 (7.5–10)	11–15 (15–20)	100 (4)
H5	IP20	11 (15)	18.5–22 (25–30)	100 (4)

Table 5.3 Clearance Required for Cooling

5

NOTICE With IP21/NEMA Type1 option kit mounted, a distance of 50 mm (2 in) between the units is required.

5.1.4 Field Mounting

For field mounting, IP21/NEMA Type 1 kits are recommended.

Design Guide

5.2 Electrical Data

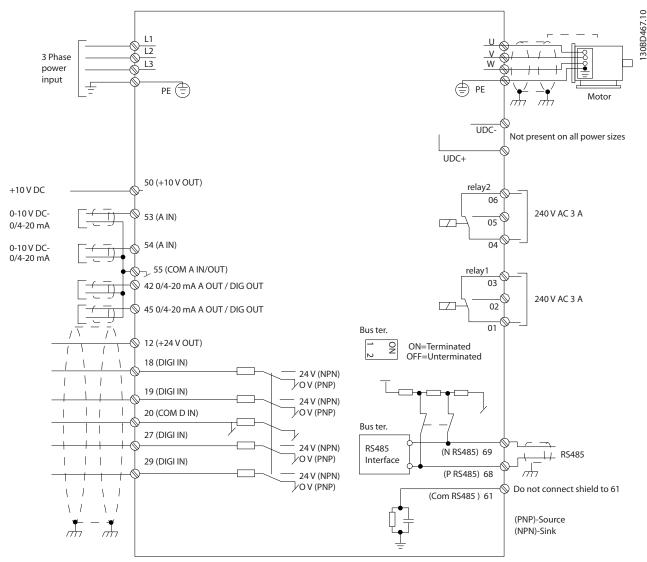


Illustration 5.1 Basic Wiring Schematic Drawing

<u>Danfvšš</u>

5.2.2 Electrical Installation in General

All cabling must comply with national and local regulations on cable cross-sections and ambient temperature. Copper conductors required, (75 $^{\circ}$ C/167 $^{\circ}$ F) recommended.

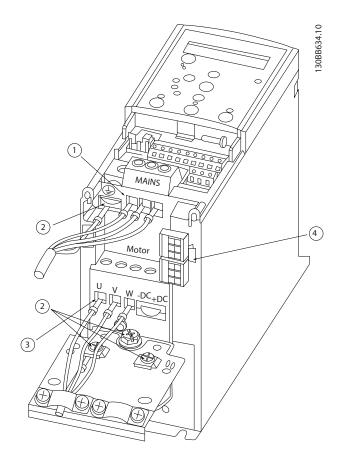
Enclosure		Torque [Nm(in-lb)]						
Enclosure	IP class	Line	Compressor	DC connection	Control	Ground	Relay	
			connection		terminals			
H3	IP20	1.4 (12.4)	0.8 (7.1)	0.8 (7.1)	0.5 (4.4)	0.8 (7.1)	0.5 (4.4)	
H4	IP20	1.2 (10.6)	1.2 (10.6)	1.2 (10.6)	0.5 (4.4)	0.8 (7.1)	0.5 (4.4)	
H5	IP20	1.2 (10.6)	1.2 (10.6)	1.2 (10.6)	0.5 (4.4)	0.8 (7.1)	0.5 (4.4)	

Table 5.4 Enclosure H3–H5

5.2.3 Connecting to Mains and Compressor

The frequency converter is designed to operate Danfoss VZH Compressors. For maximum cross-section on wires, see *chapter 8.2 General Specifications*.

- To comply with EMC emission specifications, use a shielded/armored compressor cable and connect this cable to both the decoupling plate and the compressor metal.
- Keep compressor cable as short as possible to reduce the noise level and leakage currents.
- For further details on mounting of the decoupling plate, see *VLT®* Compressor Drive CDS 803 Decoupling Plate Installation Instructions.
- Also see chapter 5.2.5 EMC Compliant Electrical Installation.


Connecting to mains and compressor

- 1. Mount the ground wires to ground terminal.
- 2. Connect compressor to terminals U, V, and W, see *Table 5.5*.

U	T1
V	T2
W	Т3

Table 5.5 Connection of Compressor to Terminals

3. Mount mains supply to terminals L1, L2, and L3 and tighten.

1	Line
2	Ground
3	Compressor
4	Relays

Illustration 5.2 H3-H5 Enclosure IP20 200-240 V 4-6.5 tons IP20 380-480 V 4-6.5 tons Design Guide

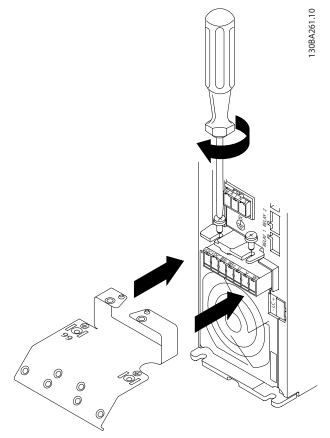


Illustration 5.3 Mount the 2 screws in the mounting plate, slide it into place and tighten fully.

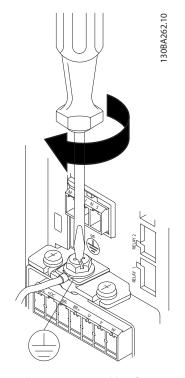


Illustration 5.5 When mounting cables, first mount and tighten the ground cable.

Illustration 5.6 Mount mains plug and tighten wires.

5

<u>Danfvšš</u>

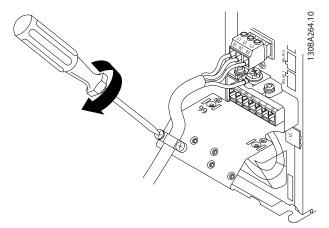


Illustration 5.7 Tighten support bracket on mains wires.

5.2.4 Fuses

Branch circuit protection

To protect the installation against electrical and fire hazard, all branch circuits in an installation, switch gear, machines, and so on, must be short circuit and overcurrent protected according to national and local regulations.

Short-circuit protection

Danfoss recommends using the fuses listed in *Table 5.6* to protect service personnel or equipment if there is an internal failure in the unit or a short circuit on the DC-link. The frequency converter provides full short-circuit protection if there is a short circuit on the compressor.

Overcurrent protection

To avoid overheating of the cables in the installation, provide overload protection. Overcurrent protection must always be carried out according to local and national regulations. Design circuit breakers and fuses for protection in a circuit capable of supplying a maximum of 100000 Arms (symmetrical), 480 V maximum.

UL/Non UL compliance

To ensure compliance with UL or IEC 61800-5-1, use the fuses listed in Table 5.6.

NOTICE

In the event of malfunction, failure to follow the protection recommendation may result in damage to the frequency converter.

	Fuse						
		Non-UL					
CDS 803	Bussmann	Bussmann	Bussmann	Bussmann	Maximum fuse		
CD3 803	Type RK5	Type RK1	Type J	Туре Т	Type G		
3x200-240 V IP20		•		•	•		
4 TR/VZH028	FRS-R-50	KTN-R50	JKS-50	JJN-50	50		
5 TR/VZH035	FRS-R-50	KTN-R50	JKS-50	JJN-50	50		
6.5 TR/VZH044	FRS-R-80	KTN-R80	JKS-80	JJN-80	65		
3x380-480 V IP20				•	•		
4 TR/VZH028	FRS-R-25	KTS-R25	JKS-25	JJS-25	25		
5 TR/VZH035	FRS-R-25	KTS-R25	JKS-25	JJS-25	25		
6.5 TR/VZH044	FRS-R-50	KTS-R50	JKS-50	JJS-50	50		

Table 5.6 Fuses

Danfoss

5.2.5 EMC Compliant Electrical Installation

General points to be observed to ensure EMC-correct electrical installation.

- Use only shielded/armored motor cables and shielded/armored control cables.
- Connect the screen to ground at both ends.
- Avoid installation with twisted screen ends (pigtails), since this ruins the screening effect at high frequencies. Use the cable clamps provided instead.
- It is important to ensure good electrical contact from the installation plate through the installation screws to the metal cabinet of the frequency converter.
- Use star washers and galvanically conductive installation plates.
- Do not use unshielded/unarmored motor cables in the installation cabinets.

Danfoss

5

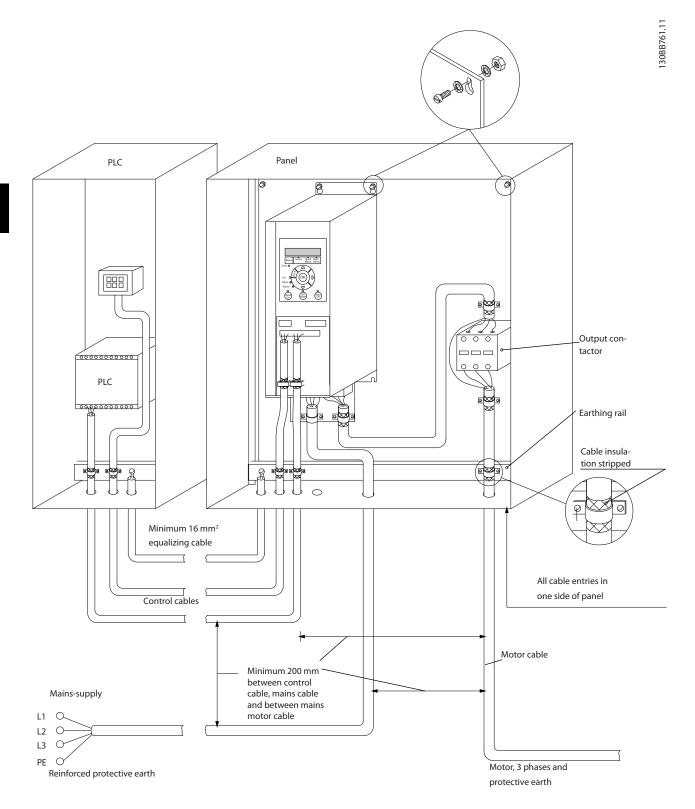


Illustration 5.8 EMC-correct Electrical Installation

NOTICE

For North America use metal conduits instead of shielded cables.

Design Guide

5.2.6 Control Terminals

Illustration 5.9 Location of Control Terminals

- 1. To activate the snap, place a screwdriver behind the terminal cover.
- 2. Tilt the screwdriver outwards to open the cover.

Control terminals

To make the compressor run:

- 1. Apply start signal on terminal 18.
- 2. Connect terminals 12, 27, and terminal 53, 54, or 55.

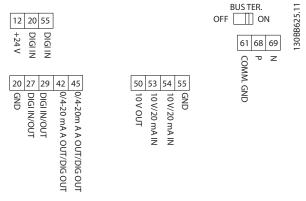


Illustration 5.10 Control Terminals

Set the functions of digital input 18, 19, and 27 in *parameter 5-00 Digital Input Mode* (PNP is default value). Set the function of digital input 29 in *parameter 5-03 Digital Input 29 Mode* (PNP is default value).

6.1 Programming with MCT 10 Set-up Software

The frequency converter can be programmed from the LCP, or from a PC via the RS485 COM port by installing the MCT 10 Set-up Software. Refer to *chapter 1.5 Additional Resources* for more details about the software.

6.2 Local Control Panel (LCP)

The LCP is divided into 4 functional sections.

- A. Display
- B. Menu key
- C. Navigation keys and indicator lights
- D. Operation keys and indicator lights

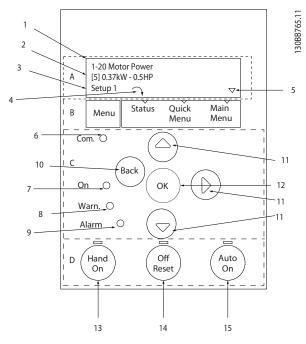


Illustration 6.1 Local Control Panel (LCP)

A. Display

The LCD-display is illuminated with 2 alphanumeric lines. All data is displayed on the LCP.

Illustration 6.1 describes the information that can be read from the display.

1	Parameter number and name.
2	Parameter value.
3	Set-up number shows the active set-up and the edit set- up. If the same set-up acts as both active and edit set-up, only that set-up number is shown (factory setting). When active and edit set-up differ, both numbers are shown in the display (set-up 12). The number flashing, indicates the edit set-up.
4	Motor direction is shown to the bottom left of the display – indicated by a small arrow pointing either clockwise or counterclockwise.
5	The triangle indicates if the LCP is in <i>Status</i> , <i>Quick Menu</i> , or <i>Main Menu</i> .

Table 6.1 Legend to Illustration 6.1, Part I

B. Menu key

Press [Menu] to select among *Status*, *Quick Menu*, or *Main Menu*.

C. Navigation keys and indicator lights

6	Com. LED: Flashes when bus communication is
	communicating.
7	Green LED/On: Control section is working
	correctly.
8	Yellow LED/Warn.: Indicates a warning.
9	Flashing Red LED/Alarm: Indicates an alarm.
10	[Back]: For moving to the previous step or
	layer in the navigation structure.
11	[▲] [▼] [▶]: For navigating among parameter
	groups and parameters, and within
	parameters. They can also be used for setting
	local reference.
12	[OK]: For selecting a parameter and for
	accepting changes to parameter settings.

Table 6.2 Legend to Illustration 6.1, Part II

D. Operation keys and indicator lights

13	[Hand On]: Starts the motor and enables control of the frequency converter via the LCP. NOTICE [2] coast inverse is the default option for parameter 5-12 Terminal 27 Digital Input. If there is no 24 V supply to terminal 27, [Hand On] does not start the motor. Connect terminal 12 to terminal 27.
14	[Off/Reset]: Stops the motor (Off). If in alarm mode, the alarm is reset.
15	[Auto On]: The frequency converter is controlled either via control terminals or serial communication.

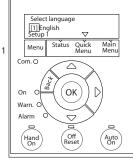
Table 6.3 Legend to Illustration 6.1, Part III

6.3 Menus

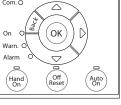
6.3.1 Status Menu

In the Status menu, the selection options are:

- Motor frequency [Hz], parameter 16-13 Frequency.
- Motor current [A], parameter 16-14 Motor current.
- Motor speed reference in percentage [%], parameter 16-02 Reference [%].
- Feedback, parameter 16-52 Feedback[Unit].
- Motor power parameter 16-10 Power [kW] for kW, parameter 16-11 Power [hp] for hp. If parameter 0-03 Regional Settings is set to [1] North America, motor power is shown in hp instead of kW.
- Custom readout *parameter 16-09 Custom Readout*.


6.3.2 Quick Menu

Use the Quick Menu to program the most common functions. The Quick Menu consists of:

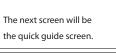

- Quick guide for open-loop applications.
- Closed-loop set-up quick guide.
- Changes made.
- Compressor functions.

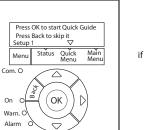
... the CDS 803 Quick Menu starts

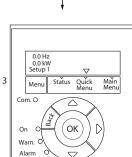
At power-up the user is asked to choose the prefered laguage.

2

Hand







Auto

OK

Off Reset

Off Reset Hand Status Screen

The quick guide can always be entered via the Quick Menu!

Auto

Illustration 6.2 Open-Loop Applications

Select Language Ø English Setup 1 ▼	4
Select Grid Type Size related Setup 1	5
Select Main Menu Password Setup 1	6
Select Compressor Selection Size related Setup 1	7
Select Max. reference 200 Hz Setup 1	8
Select Reference 1 Source Analog in 53 Setup 1	9
Select Ramp 1 Ramp Up Time 30 s Setup 1	10
Select Ramp 1 Ramp Down Time 30 s Setup 1	11
Select Terminal 27 Digital In Stop inverse Setup 1 V	12
Select Relay 1 Alarm Setup 1	13
Select Relay 2 Drive Running Setup 1	14
Select Terminal 53 Low Voltage 0.07 V Setup 1	15
Select Terminal 53 High Voltage 10 V Setup 1	16
Select Control Site O Digital and ctrl.word Setup 1	17
Select Protocol OFC Setup 1	18
Select Address 1 Setup 1	19
Jecup i 🔻	

130BD873.13

<u>Danfvšš</u>

Design Guide

The Start-up quick guide for open-loop applications

Parameter	Option	Default	Function
Parameter 0-01 Language	[0] English	[0] English	Select the language for the display.
	[1] Deutsch		
	[2] Francais		
	[3] Dansk		
	[4] Spanish		
	[5] Italiano		
	[28] Bras.port		
Parameter 0-06 GridType	[0] 200–240 V/50 Hz/IT-grid	Size related	Select operating mode for restart after
-diameter 0-00 Gharype	[1] 200–240 V/50 Hz/Delta	Size related	
			reconnection of the frequency converter to
	[2] 200–240 V/50 Hz		mains voltage after power-down.
	[10] 380–440 V/50 Hz/IT-grid		
	[11] 380–440 V/50 Hz/Delta		
	[12] 380–440 V/50 Hz		
	[20] 440–480 V/50 Hz/IT-grid		
	[21] 440–480 V/50 Hz/Delta		
	[22] 440–480 V/50 Hz		
	[30] 525–600 V/50 Hz/IT-grid		
	[31] 525–600 V/50 Hz/Delta		
	[32] 525–600 V/50 Hz		
	[100] 200–240 V/60 Hz/IT-grid		
	[101] 200–240 V/60 Hz/Delta		
	[102] 200–240 V/60 Hz		
	[110] 380–440 V/60 Hz/IT-grid		
	[111] 380–440 V/60 Hz/Delta		
	[112] 380–440 V/60 Hz		
	[120] 440–480 V/60 Hz/IT-grid		
	-		
	[121] 440–480 V/60 Hz/Delta		
	[122] 440–480 V/60 Hz		
	[130] 525-600 V/60 Hz/IT-grid		
	[131] 525–600 V/60 Hz/Delta		
	[132] 525–600 V/60 Hz		
Parameter 0-60 Main Menu Password	0–999	0	Define the password for access to the LCP.
Parameter 1-13 Compressor Selection	[24] VZH028-R410A	Size related	Select which compressor to use.
	[25] VZH035-R410A		
	[26] VZH044-R410A		
Parameter 3-03 Maximum Reference	0–200 Hz	200 Hz	The maximum reference is the highest
			obtainable by summing all references.
Parameter 3-15 Reference 1 Source	[0] No function	[1] Analog in 53	Select the input to be used for the reference
	[1] Analog in 53		signal.
	[2] Analog in 54		
	[7] Pulse input 29		
	[11] Local bus reference		
		20.00 c	Demo un time from 0 to second to 1 25 11 to
Parameter 3-41 Ramp 1 Ramp Up	0.05–3600.0 s	30.00 s	Ramp-up time from 0 to <i>parameter 1-25 Motor</i>
Time			Nominal Speed.
Parameter 3-42 Ramp 1 Ramp Down	0.05–3600.0 s	30.00 s	Ramp-down time from nominal motor speed
			to 0.

<u>Danfoss</u>

<u>Danfoss</u>

How to Program

VLT[®] Compressor Drive CDS 803

Parameter	Option	Default	Function
Parameter 5-12 Terminal 27 Digital	[0] No operation	[6] Stop inverse	Select the input function for terminal 27.
Input	[1] Reset		
	[2] Coast inverse		
	[3] Coast and reset inverse		
	[4] Quick stop inverse		
	[5] DC-brake inverse		
	[6] Stop inverse		
	[7] External Interlock		
	[8] Start		
	[9] Latched start		
	[10] Reversing		
	[11] Start reversing		
	[14] Jog		
	[16] Preset ref bit 0		
	[17] Preset ref bit 1		
	[18] Preset ref bit 2		
	[19] Freeze reference		
	[20] Speed up		
	[22] Speed down		
	[23] Set-up select bit 0		
	[34] Ramp bit 0		
	[52] Run permissive		
	[53] Hand start		
	[54] Auto start		
	[60] Counter A (up)		
	[61] Counter A (down)		
	[62] Reset Counter A		
	[63] Counter B (up)		
	[64] Counter B (down)		
	[65] Reset Counter B		
Development of the Competition Delay [0]		A1	
Parameter 5-40 Function Relay [0]	See parameter 5-40 Function	Alarm	Select the function to control output relay 1.
Function relay	Relay	·	
Parameter 5-40 Function Relay [1]	See parameter 5-40 Function	Drive running	Select the function to control output relay 2.
Function relay	Relay		
Parameter 6-10 Terminal 53 Low	0–10 V	0.07 V	Enter the voltage that corresponds to the low
Voltage			reference value.
Parameter 6-11 Terminal 53 High	0–10 V	10 V	Enter the voltage that corresponds to the high
Voltage			reference value.
Parameter 8-01 Control Site	[0] Digital and ctrl.word	[0] Digital and	Select if digital, bus, or a combination of both
	[1] Digital only	ctrl. word	should control the frequency converter.
	[2] Controlword only		
Parameter 8-30 Protocol	[0] FC	[0] FC	Select the protocol for the integrated RS485
	[2] Modbus RTU		port.
Parameter 8-32 Baud Rate	[0] 2400 Baud [1]	9600	Select the baud rate for the RS485 port.
	4800 Baud		
	*[2] 9600 Baud		
	[3] 19200 Baud		
	4] 38400 Baud		
	5] 57600 Baud		
	[6] 76800 Baud		
	[7] 115200 Baud		

Table 6.4 Open-loop Applications Set-up

The Start-up quick guide for compressor functions

Illustration 6.3 Compressor Function Quick Guide

Compressor function quick guide

Parameter	Option	Default	Function
Parameter 28-00 Short Cycle	[0] Disabled	[1] Enabled	Select if short cycle protection is to be used.
Protection	[1] Enabled		
Parameter 28-01 Interval between	0–3600 s	300 s	Enter the minimum allowed time between
Starts			starts.
Parameter 28-02 Minimum Run Time	10-3600 s	60 s	Enter the minimum allowed time to run
			before stop.
Parameter 28-10 Oil Return	[0] Off	[1] On	Select if oil return management is to be used.
Management	[1] On		
Parameter 28-13 Boost Duration	60–300 s	60 s	Enter the boost duration for the oil return.

Table 6.5 Compressor Function

The Start-up quick guide for compressor closed-loop applications

130BD875.12

1	0-01 Language O English
2	0-06 Grid Type Size related
3	0-60 Main Menu Password
4	1-00 Configuration Mode O Size related
5	1-13 Compressor Selection Closed loop
6	3-02 Minimum Reference
7	3-03 Maximum Reference 2000 Hz
8	3-10 Preset Reference 0%
9	3-15 Reference 1 Source Analog in 53
10	3-41 Ramp 1 Ramp Up Time 30.00 s
11	3-42 Ramp 1 Ramp Down Time 30.000 s
12	5-12 Terminal 27 Digital Input
13	5-40 Function Relay 1 Alarm
14	5-40 Function Relay 2 Drive running
15	6-10 Terminal 53 Low Voltage 0.07 V
16	6-11 Terminal 53 High Voltage
17	6-14 Terminal 53 Low Ref./Feedb. 30.000 Hz
18	6-15 Terminal 53 High Ref./Feedb. 200.000 Hz
19	6-22 Terminal 54 Low Current 4.00 mA
20	6-23 Terminal 54 High Current 20.00 mA
21	6-24 Terminal 54 Low Ref./Feedb. 0.000
22	6-25 Terminal 54 High Ref./Feedb. 4999.000
23	20-00 Feedback 1 Source Analog input 54
24	20-04 Feedback 2 Conversion
25	8-01 Control Site Digital and ctrl.word
26	8-30 Protocol O FC
27	8-31 Address

Illustration 6.4 Closed-loop Quick Guide

Design Guide

Closed-loop quick guide

Parameter	Option	Default	Function
Parameter 0-01 Language	[0] English	0	Select the language for the display.
	[1] Deutsch		
	[2] Francais		
	[3] Dansk		
	[4] Spanish		
	[5] Italiano		
	[28] Bras.port		
Parameter 0-06 GridType	[0] 200–240 V/50 Hz/IT-grid	Size related	Select the operating mode for restart after
	[1] 200–240 V/50 Hz/Delta		reconnection of the frequency converter to
	[2] 200–240 V/50 Hz		mains voltage after power-down.
	[10] 380–440 V/50 Hz/IT-grid		
	[11] 380–440 V/50 Hz/Delta		
	[12] 380–440 V/50 Hz		
	[20] 440–480 V/50 Hz/IT-grid		
	[21] 440–480 V/50 Hz/Delta		
	[22] 440–480 V/50 Hz		
	[30] 525–600 V/50 Hz/IT-grid		
	[31] 525–600 V/50 Hz/Delta		
	[32] 525–600 V/50 Hz		
	[32] 323-000 V/30 Hz [100] 200-240 V/60 Hz/IT-grid		
	3		
	[101] 200–240 V/60 Hz/Delta		
	[102] 200–240 V/60 Hz		
	[110] 380–440 V/60 Hz/IT-grid		
	[111] 380–440 V/60 Hz/Delta		
	[112] 380–440 V/60 Hz		
	[120] 440–480 V/60 Hz/IT-grid		
	[121] 440–480 V/60 Hz/Delta		
	[122] 440–480 V/60 Hz		
	[130] 525–600 V/60 Hz/IT-grid		
	[131] 525–600 V/60 Hz/Delta		
	[132] 525–600 V/60 Hz		
Parameter 0-60 Main Menu Password	0–999	0	Define the password for access to the LCP.
Parameter 1-00 Configuration Mode	[0] Open loop	[0] Open loop	Select closed loop.
	[3] Closed loop		
Parameter 1-13 Compressor Selection	[24] VZH028-R410A	Size related	Select the used compressor.
	[25] VZH035-R410A		
	[26] VZH044-R410A		
Demonstration 2 02 Minimum Defenses	4000 0 000 11		T
Parameter 3-02 Minimum Reference	-4999.0 – 200 Hz	0 Hz	The minimum reference is the lowest value
Parameter 3-02 Minimum Reference	-4999.0 – 200 Hz	0 Hz	obtainable by summing all references.
Parameter 3-02 Minimum Reference Parameter 3-03 Maximum Reference	-4999.0 – 200 Hz 0–200 Hz	0 Hz 200 Hz	
			obtainable by summing all references.
			obtainable by summing all references. The maximum reference is the highest
Parameter 3-03 Maximum Reference	0–200 Hz	200 Hz	obtainable by summing all references. The maximum reference is the highest obtainable by summing all references.
Parameter 3-03 Maximum Reference Parameter 3-10 Preset Reference	0–200 Hz -100 – 100 %	200 Hz	obtainable by summing all references.The maximum reference is the highest obtainable by summing all references.Set up a fix setpoint in preset reference [0].
Parameter 3-03 Maximum Reference Parameter 3-10 Preset Reference	0–200 Hz -100 – 100 % [0] No function	200 Hz	obtainable by summing all references.The maximum reference is the highest obtainable by summing all references.Set up a fix setpoint in preset reference [0].Select the input to be used for the reference
Parameter 3-03 Maximum Reference Parameter 3-10 Preset Reference	0–200 Hz -100 – 100 % [0] No function [1] Analog in 53 [2] Analog in 54	200 Hz	obtainable by summing all references.The maximum reference is the highest obtainable by summing all references.Set up a fix setpoint in preset reference [0].Select the input to be used for the reference
Parameter 3-03 Maximum Reference Parameter 3-10 Preset Reference	0–200 Hz -100 – 100 % [0] No function [1] Analog in 53	200 Hz	obtainable by summing all references.The maximum reference is the highest obtainable by summing all references.Set up a fix setpoint in preset reference [0].Select the input to be used for the reference
Parameter 3-03 Maximum Reference Parameter 3-10 Preset Reference Parameter 3-15 Reference 1 Source	0–200 Hz -100 – 100 % [0] No function [1] Analog in 53 [2] Analog in 54 [7] Pulse input 29 [11] Local bus reference	200 Hz 0% [1] Analog in 53	obtainable by summing all references.The maximum reference is the highest obtainable by summing all references.Set up a fix setpoint in preset reference [0].Select the input to be used for the reference signal.
Parameter 3-03 Maximum Reference Parameter 3-10 Preset Reference Parameter 3-15 Reference 1 Source Parameter 3-41 Ramp 1 Ramp Up	0-200 Hz -100 - 100 % [0] No function [1] Analog in 53 [2] Analog in 54 [7] Pulse input 29	200 Hz	obtainable by summing all references. The maximum reference is the highest obtainable by summing all references. Set up a fix setpoint in preset reference [0]. Select the input to be used for the reference signal. Ramp-up time from 0 to parameter 1-25 Motor
Parameter 3-03 Maximum Reference Parameter 3-10 Preset Reference Parameter 3-15 Reference 1 Source	0–200 Hz -100 – 100 % [0] No function [1] Analog in 53 [2] Analog in 54 [7] Pulse input 29 [11] Local bus reference	200 Hz 0% [1] Analog in 53	obtainable by summing all references.The maximum reference is the highest obtainable by summing all references.Set up a fix setpoint in preset reference [0].Select the input to be used for the reference

<u>Danfoss</u>

<u>Danfoss</u>

How to Program

VLT[®] Compressor Drive CDS 803

Parameter	Option	Default	Function
Parameter 5-12 Terminal 27 Digital	[0] No operation	[6] Stop inverse	Select the input function for terminal 27.
Input	[1] Reset		
	[2] Coast inverse		
	[3] Coast and reset inverse		
	[4] Quick stop inverse		
	[5] DC-brake inverse		
	[6] Stop inverse		
	[7] External Interlock		
	[8] Start		
	[9] Latched start		
	[10] Reversing		
	[11] Start reversing		
	[14] Jog		
	[16] Preset ref bit 0		
	[17] Preset ref bit 1		
	[18] Preset ref bit 2		
	[19] Freeze reference		
	[20] Speed up		
	[20] Speed up [22] Speed down		
	[23] Set-up select bit 0		
	[34] Ramp bit 0		
	[52] Run permissive		
	[53] Hand start		
	[54] Auto start		
	[60] Counter A (up)		
	[61] Counter A (down)		
	[62] Reset Counter A		
	[63] Counter B (up)		
	[64] Counter B (down)		
	[65] Reset Counter B		
Parameter 5-40 Function Relay [0]	See parameter 5-40 Function	Alarm	Select the function to control output relay 1.
Function relay	Relay		
Parameter 5-40 Function Relay [1]	See parameter 5-40 Function	Drive running	Select the function to control output relay 2.
Function relay	Relay		
Parameter 6-10 Terminal 53 Low	0–10 V	0.07 V	Enter the voltage that corresponds to the low
Voltage			reference value.
Parameter 6-11 Terminal 53 High	0–10 V	10 V	Enter the voltage that corresponds to the high
Voltage			reference value.
Parameter 6-14 Terminal 53 Low Ref./	-4999 – 4999	30	Enter the reference value that corresponds to
Feedb. Value			the voltage set in <i>parameter 6-10 Terminal 53</i>
			Low Voltage.
Parameter 6-15 Terminal 53 High Ref./	-4999 – 4999	200	Enter the reference value that corresponds to
Feedb. Value		200	the voltage set in <i>parameter 6-11 Terminal 53</i>
			High Voltage.
	0.00.20.00	4.00	3 3
Parameter 6-22 Terminal 54 Low	0.00–20.00 mA	4.00 mA	Enter the current that corresponds to the low
Current			reference value.
Parameter 6-23 Terminal 54 High	0–10 V	10 V	Enter the current that corresponds to the high
Current			reference value.
Parameter 6-24 Terminal 54 Low Ref./	-0.00–20.00 mA	20.00 mA	Enter the reference value that corresponds to
Feedb. Value			the current set in parameter 6-20 Terminal 54
			Low Voltage.
Parameter 6-25 Terminal 54 High Ref./	-4999 – 4999	Size related	Enter the reference value that corresponds to
Feedb. Value			the current set in parameter 6-21 Terminal 54
	1		High Voltage.

Design Guide

Parameter	Option	Default	Function
Parameter 8-01 Control Site	[0] Digital and ctrl.word	[0] Digital and	Select if digital, bus, or a combination of both
	[1] Digital only	ctrl.word	should control the frequency converter.
	[2] Controlword only		
Parameter 8-30 Protocol	[0] FC	[0] FC	Select the protocol for the integrated RS485
	[2] Modbus RTU		port.
Parameter 8-32 Baud Rate	[0] 2400 Baud	[2] 9600 Baud	Select the baud rate for the RS485 port.
	[1] 4800 Baud		
	[2] 9600 Baud		
	[3] 19200 Baud		
	[4] 38400 Baud		
	[5] 57600 Baud		
	[6] 76800 Baud		
	[7] 115200 Baud		
Parameter 20-00 Feedback 1 Source	[0] No function	[0] No function	Select which input to use as the source of the
	[1] Analog Input 53		feedback signal.
	[2] Analog Input 54		
	[3] Pulse input 29		
	[100] Bus Feedback 1		
	[101] Bus Feedback 2		
Parameter 20-01 Feedback 1	[0] Linear	[0] Linear	Select how to calculate the feedback.
Conversion	[1] Square root		

Table 6.6 Closed-loop Applications Set-up

Changes made

Changes Made lists all parameters changed from default settings.

- The list shows only parameters which have been changed in the current edit set-up.
- Parameters which have been reset to default values are not listed.
- The message *Empty* indicates that no parameters have been changed.

To change parameter settings

- 1. To enter the *Quick Menu*, press [Menu] until indicator in display is placed above *Quick Menu*.
- Press [▲] [▼] to select quick guide, closed-loop set-up, compressor set-up, or changes made, then press [OK].
- 3. Press [▲] [▼] to browse through the parameters in the *Quick Menu*.
- 4. Press [OK] to select a parameter.
- Press [▲] [▼] to change the value of a parameter setting.
- 6. Press [OK] to accept the change.
- 7. Press either [Back] twice to enter *Status*, or press [Menu] once to enter *Main Menu*.

The Main Menu accesses all parameters

- 1. Press [Menu] until indicator in display is placed above *Main Menu*.
- Press [▲] [▼] to browse through the parameter groups.
- 3. Press [OK] to select a parameter group.
- Press [▲] [▼] to browse through the parameters in the specific group.
- 5. Press [OK] to select the parameter.
- 6. Press [▲] [▼] to set/change the parameter value.

6.3.3 Main Menu

Press [Main Menu] to access and program all parameters. The main menu parameters can be accessed readily unless a password has been created via *parameter 0-60 Main Menu Password*.

For most applications, it is not necessary to access the main menu parameters. The quick menu provides the simplest and quickest access to the typical required parameters.

Danfoss

6.4 Quick Transfer of Parameter Settings between Multiple Frequency Converters

When the set-up of a frequency converter is completed, it is recommended to store the data in the LCP or on a PC via MCT 10 Set-up Software.

Data transfer from the frequency converter to the LCP:

- 1. Go to parameter 0-50 LCP Copy.
- 2. Press [OK].
- 3. Select [1] All to LCP.
- 4. Press [OK].

Connect the LCP to another frequency converter and copy the parameter settings to this frequency converter as well.

Data transfer from the LCP to the frequency converter:

- 1. Go to parameter 0-50 LCP Copy.
- 2. Press [OK].
- 3. Select [2] All from LCP.
- 4. Press [OK].

6.5 Readout and Programming of Indexed Parameters

Select the parameter, press [OK], and press []/[v] to scroll through the indexed values. To change the parameter value, select the indexed value and press [OK]. Change the value by pressing []/[v]. Press [OK] to accept the new setting. Press [Cancel] to abort. Press [Back] to leave the parameter.

6.6 Initialize the Frequency Converter to Default Settings in two Ways

There are 2 ways to initialize the frequency converter to the default settings.

Recommended initialization

- 1. Select parameter 14-22 Operation Mode.
- 2. Press [OK].
- 3. Select [2] Initialisation and Press [OK].
- 4. Power off the frequency converter and wait until the display turns off.
- 5. Reconnect the mains supply. The frequency converter is now reset, except the following parameters:
 - Parameter 1-06 Clockwise Direction
 - Parameter 8-30 Protocol
 - Parameter 8-31 Address

- Parameter 8-32 Baud Rate
- Parameter 8-33 Parity / Stop Bits
- Parameter 8-35 Minimum Response Delay
- Parameter 8-36 Maximum Response Delay
- Parameter 8-37 Maximum Inter-char delay
- Parameter 8-70 BACnet Device Instance
- Parameter 8-72 MS/TP Max Masters
- Parameter 8-73 MS/TP Max Info Frames
- Parameter 8-74 "I am" Service
- Parameter 8-75 Intialisation Password
- Parameter 15-00 Operating hours to parameter 15-05 Over Volt's
- Parameter 15-03 Power Up's
- Parameter 15-04 Over Temp's
- Parameter 15-05 Over Volt's
- Parameter 15-30 Alarm Log: Error Code
- 15-4* Drive identification parameters

2-finger initialization

The other way to initialize the frequency converter to default settings is through 2-finger initialization, which is described in the following steps.

- 1. Power off the frequency converter.
- 2. Press [OK] and [Menu].
- Power up the frequency converter while still pressing the keys for 10 s.
- 4. The frequency converter is now reset, except the following parameters:
 - Parameter 15-00 Operating hours
 - Parameter 15-03 Power Up's
 - Parameter 15-04 Over Temp's
 - Parameter 15-05 Over Volt's
 - 15-4* Drive identification parameters

Initialization of parameters is confirmed by *alarm 80, Drive initialised* in the display after the power cycle.

7 RS485 Installation and Set-up

7.1 RS485

7.1.1 Overview

RS485 is a 2-wire bus interface compatible with multi-drop network topology, that is, nodes can be connected as a bus, or via drop cables from a common trunk line. A total of 32 nodes can be connected to 1 network segment. Repeaters divide network segments, see *Illustration 7.1*.

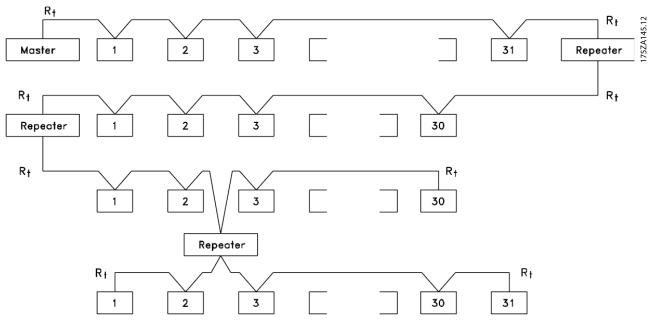


Illustration 7.1 RS485 Bus Interface

NOTICE

Each repeater functions as a node within the segment in which it is installed. Each node connected within a given network must have a unique node address across all segments.

Terminate each segment at both ends, using either the termination switch (S801) of the frequency converters or a biased termination resistor network. Always use screened twisted pair (STP) cable for bus cabling, and follow good common installation practice.

Low-impedance ground connection of the screen at every node is important, including at high frequencies. Thus, connect a large surface of the screen to ground, for example with a cable clamp or a conductive cable gland. It may be necessary to apply potential-equalising cables to maintain the same earth potential throughout the network - particularly in installations with long cables. To prevent impedance mismatch, always use the same type of cable throughout the entire network. When connecting a motor to the frequency converter, always use screened motor cable.

Cable	Screened twisted pair (STP)
Impedance [Ω]	120
Cable length	Maximum 1200 (including drop lines)
[m]	Maximum 500 station-to-station

Table 7.1 Cable Specifications

7.1.2 Network Connection

Connect the frequency converter to the RS485 network as follows (see also *Illustration 7.2*):

- 1. Connect signal wires to terminal 68 (P+) and terminal 69 (N-) on the main control board of the frequency converter.
- 2. Connect the cable shield to the cable clamps.

NOTICE

To reduce noise between conductors, use shielded, twisted-pair cables

Illustration 7.2 Network Connection

7.1.3 Frequency Converter Hardware Set-up

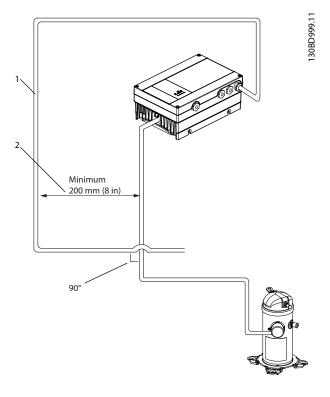
Use the terminator dip switch on the main control board of the frequency converter to terminate the RS485 bus.

The factory setting for the dip switch is OFF.

7.1.4 Parameter Settings for Modbus Communication

Parameter	Function
Parameter 8-30 Prot	Select the application protocol to run for
ocol	the RS485 interface.
Parameter 8-31 Add	Set the node address.
ress	NOTICE
	The address range depends on the
	protocol selected in
	parameter 8-30 Protocol.
Parameter 8-32 Bau	Set the baud rate.
d Rate	NOTICE
	The default baud rate depends on the
	protocol selected in
	parameter 8-30 Protocol.
Parameter 8-33 Pari	Set the parity and number of stop bits.
ty / Stop Bits	NOTICE
	The default selection depends on the
	protocol selected in
	parameter 8-30 Protocol.
Parameter 8-35 Min	Specify a minimum delay time between
imum Response	receiving a request and transmitting a
Delay	response. This function is for overcoming
	modem turnaround delays.
Parameter 8-36 Ma	Specify a maximum delay time between
ximum Response	transmitting a request and receiving a
Delay	response.
Parameter 8-37 Ma	If transmission is interrupted, specify a
ximum Inter-char	maximum delay time between 2 received
delay	bytes to ensure timeout.
	NOTICE
	The default selection depends on the
	protocol selected in
	parameter 8-30 Protocol.

Table 7.2 Modbus Communication Parameter Settings



7.1.5 EMC Precautions

To achieve interference-free operation of the RS485 network, Danfoss recommends the following EMC precautions.

NOTICE

Observe relevant national and local regulations, for example regarding protective earth connection. To avoid coupling of high-frequency noise between the cables, the RS485 communication cable must be kept away from motor and brake resistor cables. Normally, a distance of 200 mm (8 inches) is sufficient. Maintain the greatest possible distance between the cables, especially where cables run in parallel over long distances. When crossing is unavoidable, the RS485 cable must cross motor and brake resistor cables at an angle of 90°.

1	Fieldbus cable			
2	Minimum 200 mm (8 in) distance			

Illustration 7.3 Minimum Distance between Communication and Power Cables

7.2 FC Protocol Overview

7.2.1 Overview

The FC protocol, also referred to as FC fieldbus, is the Danfoss standard fieldbus. It defines an access technique according to the master/slave principle for communications via a fieldbus.

1 master and a maximum of 126 slaves can be connected to the bus. The master selects the individual slaves via an address character in the telegram. A slave itself can never transmit without first being requested to do so, and direct message transfer between the individual slaves is not possible. Communications occur in the half duplex mode. The master function cannot be transferred to another node (single-master system).

The physical layer is RS485, thus utilizing the RS485 port built into the frequency converter. The FC protocol supports different telegram formats:

- A short format of 8 bytes for process data.
- A long format of 16 bytes that also includes a parameter channel.
- A format used for texts.

7.2.2 FC with Modbus RTU

The FC protocol provides access to the control word and bus reference of the frequency converter.

The control word allows the Modbus master to control several important functions of the frequency converter:

- Start.
- Stop of the frequency converter in various ways:
 - Coast stop.
 - Quick stop.
 - DC Brake stop.
 - Normal (ramp) stop.
- Reset after a fault trip.
- Run at various preset speeds.
- Run in reverse.
- Change of the active set-up.
- Control of the 2 relays built into the frequency converter.

The bus reference is commonly used for speed control. It is also possible to access the parameters, read their values, and where possible, write values to them. Accessing the parameters offers a range of control options, including controlling the setpoint of the frequency converter when its internal PI controller is used.

7.3 Network Configuration

To enable the FC protocol for the frequency converter, set the following parameters.

Parameter	Setting
Parameter 8-30 Protocol	FC
Parameter 8-31 Address	1–126
Parameter 8-32 Baud	2400–115200
Rate	
Parameter 8-33 Parity /	Even parity, 1 stop bit (default)
Stop Bits	

Table 7.3 Parameters to Enable the Protocol

7.4 FC Protocol Message Framing Structure

7.4.1 Content of a Character (byte)

Each character transferred begins with a start bit. Then 8 data bits are transferred, corresponding to a byte. Each character is secured via a parity bit. This bit is set at 1 when it reaches parity. Parity is when there is an equal number of 1 s in the 8 data bits and the parity bit in total. A stop bit completes a character, thus consisting of 11 bits in all.

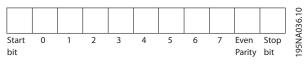


Illustration 7.4 Content of a Character

7.4.2 Telegram Structure

Each telegram has the following structure:

- 1. Start character (STX)=02 hex.
- 2. A byte denoting the telegram length (LGE).
- 3. A byte denoting the frequency converter address (ADR).

Several data bytes (variable, depending on the type of telegram) follow.

A data control byte (BCC) completes the telegram.

						4099.10
STX	(LGE	ADR	DATA	BCC	195N/

Illustration 7.5 Telegram Structure

7.4.3 Telegram Length (LGE)

The telegram length is the number of data bytes plus the address byte ADR and the data control byte BCC.

4 data bytes	LGE=4+1+1=6 bytes
12 data bytes	LGE=12+1+1=14 bytes
Telegrams containing texts	10 ¹⁾ +n bytes

Table 7.4 Length of Telegrams

1) The 10 is the fixed characters, while the n is variable (depending on the length of the text).

7.4.4 Frequency Converter Address (ADR)

Address format 1-126

- Bit 7 = 1 (address format 1–126 active).
- Bit 0–6 = frequency converter address 1–126.
- Bit 0–6 = 0 broadcast.

The slave returns the address byte unchanged to the master in the response telegram.

7.4.5 Data Control Byte (BCC)

The checksum is calculated as an XOR-function. Before the first byte in the telegram is received, the calculated checksum is 0.

Danfoss

Design Guide

7.4.6 The Data Field

The structure of data blocks depends on the type of telegram. There are 3 telegram types, and the type applies for both control telegrams (master \Rightarrow slave) and response telegrams (slave \Rightarrow master).

The 3 types of telegram are:

- Process block (PCD)
- Parameter block
- Text block

Process block (PCD)

The PCD is made up of a data block of 4 bytes (2 words) and contains:

- Control word and reference value (from master to slave).
- Status word and present output frequency (from slave to master).

г — —					<u> </u>	0
STX	LGE	ADR	PCD1	PCD2	BCC	.69
L	\Box					BA2
						30

Illustration 7.6 Process Block

Parameter block

The parameter block is used to transfer parameters between master and slave. The data block is made up of 12 bytes (6 words) and also contains the process block.

	1						1 — —	2
STX LGE ADR	PKE	IND	PWEhigh	PWElow	PCD1	PCD2		BA271.
								130

Illustration 7.7 Parameter Block

Text block

The text block is used to read or write texts via the data block.

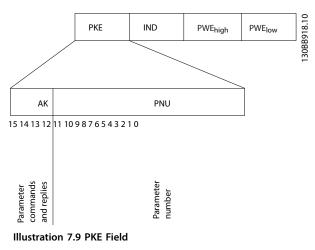

 PKE	IND	Ch1	Ch2	Chn	PCD1	PCD2	BCC	A270.10
								130B

Illustration 7.8 Text Block

7.4.7 The PKE Field

The PKE field contains 2 subfields:

- Parameter command and response (AK)
- Parameter number (PNU)

Bits 12–15 transfer parameter commands from master to slave and return processed slave responses to the master.

Param	Parameter commands master⇒slave						
Bit nu	Bit number			Parameter command			
15	14	13	12				
0	0	0	0	No command.			
0	0	0	1	Read parameter value.			
0	0	1	0	Write parameter value in RAM (word).			
0	0	1	1	Write parameter value in RAM (double word).			
1	1	0	1	Write parameter value in RAM and EEPROM (double word).			
1	1	1	0	Write parameter value in RAM and EEPROM (word).			
1	1	1	1	Read text.			

Table 7.5 Parameter Commands

Response slave⇒master						
Bit number				Response		
15	14	13	12			
0	0	0	0	No response.		
0	0	0	1	Parameter value transferred (word).		
0	0	1	0	Parameter value transferred (double word).		
0	1	1	1	Command cannot be performed.		
1	1	1	1	Text transferred.		

Table 7.6 Response

If the command cannot be performed, the slave sends this response 0111 Command cannot be performed and issues the following fault report in Table 7.7.

Fault code	FC specification
0	Illegal parameter number.
1	Parameter cannot be changed.
2	Upper or lower limit is exceeded.
3	Subindex is corrupted.
4	No array.
5	Wrong data type.
6	Not used.
7	Not used.
9	Description element is not available.
11	No parameter write access.
15	No text available.
17	Not applicable while running.
18	Other errors.
100	-
>100	-
130	No bus access for this parameter.
131	Write to factory set-up is not possible.
132	No LCP access.
252	Unknown viewer.
253	Request is not supported.
254	Unknown attribute.
255	No error.

Table 7.7 Slave Report

7.4.8 Parameter Number (PNU)

Bit numbers 0–11 transfer parameter numbers. The function of the relevant parameter is defined in the parameter description in *chapter 6 How to Program*.

7.4.9 Index (IND)

The index is used with the parameter number to read/ write access parameters with an index, for example, *parameter 15-30 Alarm Log: Error Code*. The index consists of 2 bytes; a low byte, and a high byte.

Only the low byte is used as an index.

7.4.10 Parameter Value (PWE)

The parameter value block consists of 2 words (4 bytes), and the value depends on the defined command (AK). The master prompts for a parameter value when the PWE block contains no value. To change a parameter value (write), write the new value in the PWE block and send from the master to the slave.

RS485 Installation and Set-...

When a slave responds to a parameter request (read command), the present parameter value in the PWE block is transferred and returned to the master. If a parameter contains several data options, for example *parameter 0-01 Language*, select the data value by entering the value in the PWE block. Serial communication is only capable of reading parameters containing data type 9 (text string).

Parameter 15-40 FC Type to parameter 15-53 Power Card Serial Number contain data type 9.

For example, read the unit size and mains voltage range in *parameter 15-40 FC Type*. When a text string is transferred (read), the length of the telegram is variable, and the texts are of different lengths. The telegram length is defined in the 2nd byte of the telegram (LGE). When using text transfer, the index character indicates whether it is a read or a write command.

To read a text via the PWE block, set the parameter command (AK) to F hex. The index character high-byte must be 4.

7.4.11 Data Types Supported by the Frequency Converter

Unsigned means that there is no operational sign in the telegram.

Data types	Description
3	Integer 16
4	Integer 32
5	Unsigned 8
6	Unsigned 16
7	Unsigned 32
9	Text string

Table 7.8 Data Types

7.4.12 Conversion

The *programming guide* contains the descriptions of attributes of each parameter. Parameter values are transferred as whole numbers only. Conversion factors are used to transfer decimals.

Parameter 4-12 Motor Speed Low Limit [Hz] has a conversion factor of 0.1. To preset the minimum frequency to 10 Hz, transfer the value 100. A conversion factor of 0.1 means that the value transferred is multiplied by 0.1. The value 100 is thus perceived as 10.0.

Conversion index	Conversion factor
74	3600
2	100
1	10
0	1
-1	0.1
-2	0.01
-3	0.001
-4	0.0001
-5	0.00001

Table 7.9 Conversion

7.4.13 Process Words (PCD)

The block of process words is divided into 2 blocks of 16 bits, which always occur in the defined sequence.

PCD 1	PCD 2
Control telegram (master⇒slave control word)	Reference value
Control telegram (slave⇒master) status word	Present output
	frequency

Table 7.10 Process Words (PCD)

7.5 Examples

7.5.1 Writing a Parameter Value

Change *parameter 4-14 Motor Speed High Limit [Hz]* to 100 Hz.

Write the data in EEPROM.

PKE = E19E hex - Write single word in parameter 4-14 Motor Speed High Limit [Hz]:

- IND = 0000 hex.
- PWEHIGH = 0000 hex.
- PWELOW = 03E8 hex.

Data value 1000, corresponding to 100 Hz, see *chapter 7.4.12 Conversion*.

The telegram looks like Illustration 7.10.

E19E	н	0000	Н	0000	н	03E8	Н
PKE		IND		PWE high		PWE low	
	_	40 T I					

Illustration 7.10 Telegram

30BA092.10

NOTICE

Parameter 4-14 Motor Speed High Limit [Hz] is a single word, and the parameter command for write in EEPROM is *E. Parameter 4-14 Motor Speed High Limit* [Hz] is 19E in hexadecimal.

The response from the slave to the master is shown in *Illustration 7.11*.

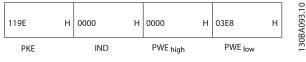


Illustration 7.11 Response from Master

7.5.2 Reading a Parameter Value

Read the value in parameter 3-41 Ramp 1 Ramp Up Time.

PKE = 1155 hex - Read parameter value in parameter 3-41 Ramp 1 Ramp Up Time:

- IND = 0000 hex.
- $PWE_{HIGH} = 0000$ hex.
- $PWE_{LOW} = 0000$ hex.

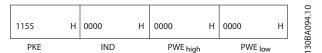


Illustration 7.12 Telegram

If the value in *parameter 3-41 Ramp 1 Ramp Up Time* is 10 s, the response from the slave to the master is shown in *Illustration 7.13*.

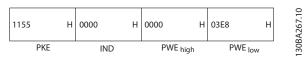


Illustration 7.13 Response

3E8 hex corresponds to 1000 decimal. The conversion index for *parameter 3-41 Ramp 1 Ramp Up Time* is -2, that is, 0.01.

Parameter 3-41 Ramp 1 Ramp Up Time is of the type Unsigned 32.

7.6 Modbus RTU Overview

7.6.1 Prerequisite Knowledge

Danfoss assumes that the installed controller supports the interfaces in this manual, and strictly observes all requirements and limitations stipulated in the controller and frequency converter.

The built-in Modbus RTU (remote terminal unit) is designed to communicate with any controller that supports the interfaces defined in this manual. It is assumed that the user has full knowledge of the capabilities and limitations of the controller.

7.6.2 What the User Should Already Know

The built-in Modbus RTU (Remote Terminal Unit) is designed to communicate with any controller that supports the interfaces defined in this manual. It is assumed that the user has full knowledge of the capabilities and limitations of the controller.

7.6.3 Overview

Regardless of the type of physical communication networks, this section describes the process a controller uses to request access to another device. This process includes how the Modbus RTU responds to requests from another device, and how errors are detected and reported. It also establishes a common format for the layout and contents of telegram fields.

During communications over a Modbus RTU network, the protocol:

- Determines how each controller learns its device address.
- Recognizes a telegram addressed to it.
- Determines which actions to take.
- Extracts any data or other information contained in the telegram.

If a reply is required, the controller constructs the reply telegram and sends it.

Controllers communicate using a master/slave technique in which only the master can initiate transactions (called queries). Slaves respond by supplying the requested data to the master, or by acting as requested in the query. The master can address individual slaves, or initiate a broadcast telegram to all slaves. Slaves return a response to queries that are addressed to them individually. No responses are returned to broadcast queries from the master. The Modbus RTU protocol establishes the format for the master query by providing the following information:

- The device (or broadcast) address.
- A function code defining the requested action.
- Any data to be sent.
- An error-checking field.

The response telegram of the slave device is also constructed using Modbus protocol. It contains fields confirming the action taken, any data to be returned, and an error-checking field. If an error occurs in receipt of the telegram, or if the slave is unable to perform the requested action, the slave constructs and sends an error message. Alternatively, a timeout occurs.

7.6.4 Frequency Converter with Modbus RTU

The frequency converter communicates in Modbus RTU format over the built-in RS485 interface. Modbus RTU provides access to the control word and bus reference of the frequency converter.

The control word allows the Modbus master to control several important functions of the frequency converter:

- Start.
- Various stops:
 - Coast stop.
 - Quick stop.
 - DC brake stop.
 - Normal (ramp) stop.
- Reset after a fault trip.
- Run at various preset speeds.
- Run in reverse.
- Change the active set-up.
- Control built-in relay of the frequency converter.

The bus reference is commonly used for speed control. It is also possible to access the parameters, read their values, and, where possible, write values to them. Accessing the parameters offers a range of control options, including controlling the setpoint of the frequency converter when its internal PI controller is used.

7.7 Network Configuration

To enable Modbus RTU on the frequency converter, set the following parameters:

Parameter	Setting
Parameter 8-30 Protocol	Modbus RTU
Parameter 8-31 Address	1–247
Parameter 8-32 Baud Rate	2400–115200
Parameter 8-33 Parity / Stop Bits	Even parity, 1 stop bit
	(default)

Table 7.11 Network Configuration

7.8 Modbus RTU Message Framing Structure

7.8.1 Introduction

The controllers are set up to communicate on the Modbus network using RTU (remote terminal unit) mode, with each byte in a telegram containing 2 4-bit hexadecimal characters. The format for each byte is shown in *Table 7.12*.

Start bit		Data	ı byte	5		Stop/ parity	Stop

Table 7.12 Format for Each Byte

Coding system	8-bit binary, hexadecimal 0–9, A–F.2 hexadecimal characters contained in each8-bit field of the telegram.			
Bits per byte	 1 start bit. 8 data bits, least significant bit sent first. 1 bit for even/odd parity; no bit for no parity. 1 stop bit if parity is used; 2 bits if no parity. 			
Error check field	Cyclic redundancy check (CRC).			

Table 7.13 Byte Details

7.8.2 Modbus RTU Telegram Structure

The transmitting device places a Modbus RTU telegram into a frame with a known beginning and ending point. This allows receiving devices to begin at the start of the telegram, read the address portion, determine which device is addressed (or all devices, if the telegram is broadcast), and to recognize when the telegram is completed. Partial telegrams are detected and errors set as a result. Characters for transmission must be in hexadecimal 00–FF format in each field. The frequency converter continuously monitors the network bus, also during silent intervals. When the first field (the address field) is received, each frequency converter or device decodes it to determine which device is being addressed. Modbus RTU telegrams addressed to 0 are broadcast telegrams. No response is permitted for broadcast telegrams. A typical telegram frame is shown in *Table 7.14*.

Start	Address	Function	Data	CRC check	End
T1-T2-T3- T4	8 bits	8 bits	N x 8 bits	16 bits	T1-T2-T3- T4

Table 7.14 Typical Modbus RTU Telegram Structure

7.8.3 Start/Stop Field

Telegrams start with a silent period of at least 3.5 character intervals. The silent period is implemented as a multiple of character intervals at the selected network baud rate (shown as Start T1-T2-T3-T4). The first field to be transmitted is the device address. Following the last transmitted character, a similar period of at least 3.5 character intervals marks the end of the telegram. A new telegram can begin after this period.

Transmit the entire telegram frame as a continuous stream. If a silent period of more than 1.5 character intervals occurs before completion of the frame, the receiving device flushes the incomplete telegram and assumes that the next byte is the address field of a new telegram. Similarly, if a new telegram begins before 3.5 character intervals after a previous telegram, the receiving device considers it a continuation of the previous telegram. This behavior causes a timeout (no response from the slave), since the value in the final CRC field is not valid for the combined telegrams.

7.8.4 Address Field

The address field of a telegram frame contains 8 bits. Valid slave device addresses are in the range of 0–247 decimal. The individual slave devices are assigned addresses in the range of 1–247. (0 is reserved for broadcast mode, which all slaves recognize.) A master addresses a slave by placing the slave address in the address field of the telegram. When the slave sends its response, it places its own address in this address field to let the master know which slave is responding.

7.8.5 Function Field

The function field of a telegram frame contains 8 bits. Valid codes are in the range of 1–FF. Function fields are used to send telegrams between master and slave. When a telegram is sent from a master to a slave device, the function code field tells the slave what kind of action to

perform. When the slave responds to the master, it uses the function code field to indicate either a normal (errorfree) response, or that some kind of error occurred (called an exception response).

For a normal response, the slave simply echoes the original function code. For an exception response, the slave returns a code that is equivalent to the original function code with its most significant bit set to logic 1. In addition, the slave places a unique code into the data field of the response telegram. This code tells the master what kind of error occurred, or the reason for the exception. Also refer to *chapter 7.8.10 Function Codes Supported by Modbus RTU* and *chapter 7.8.11 Modbus Exception Codes*.

7.8.6 Data Field

The data field is constructed using sets of 2 hexadecimal digits, in the range of 00–FF hexadecimal. These digits are made up of 1 RTU character. The data field of telegrams sent from a master to a slave device contains additional information which the slave must use to perform accordingly. The information can include items such as:

- Coil or register addresses.
- The quantity of items to be handled.
- The count of actual data bytes in the field.

7.8.7 CRC Check Field

Telegrams include an error-checking field, operating based on a cyclic redundancy check (CRC) method. The CRC field checks the contents of the entire telegram. It is applied regardless of any parity check method used for the individual characters of the telegram. The transmitting device calculates the CRC value and appends the CRC as the last field in the telegram. The receiving device recalculates a CRC during receipt of the telegram and compares the calculated value to the actual value received in the CRC field. Two unequal values result in bus timeout. The error-checking field contains a 16-bit binary value implemented as 2 8-bit bytes. After the implementation, the low-order byte of the field is appended first, followed by the high-order byte. The CRC high-order byte is the last byte sent in the telegram.

7.8.8 Coil Register Addressing

In Modbus, all data is organized in coils and holding registers. Coils hold a single bit, whereas holding registers hold a 2 byte word (that is 16 bits). All data addresses in Modbus telegrams are referenced to 0. The first occurrence of a data item is addressed as item number 0. For example: The coil known as coil 1 in a programmable controller is addressed as coil 0000 in the data address field of a Modbus telegram. Coil 127 decimal is addressed as coil 007Ehex (126 decimal).

Holding register 40001 is addressed as register 0000 in the data address field of the telegram. The function code field already specifies a holding register operation. Therefore, the 4XXXX reference is implicit. Holding register 40108 is addressed as register 006Bhex (107 decimal).

Coil	Description	Signal		
number		direction		
1–16	Frequency converter control word	Master to slave		
	(see Table 7.16).			
17–32	Frequency converter speed or	Master to slave		
	setpoint reference range 0x0–			
	0xFFFF (-200% ~200%).			
33–48	Frequency converter status word	Slave to master		
	(see Table 7.17).			
49–64	Open-loop mode: Frequency			
	converter output frequency.	Slave to master		
	Closed-loop mode: Frequency			
	converter feedback signal.			
	Parameter write control (master to			
	slave).			
	0 = Parameter changes are written			
65	to the RAM of the frequency	Master to slave		
05	converter.	Master to slave		
	1 = Parameter changes are written			
	to the RAM and EEPROM of the			
	frequency converter.			
66–65536	Reserved.	-		

Table 7.15 Coil Register

Coil		1			
01	Preset reference lsb				
02	Preset reference msb				
03	DC brake	No DC brake			
04	Coast stop	No coast stop			
05	Quick stop	No quick stop			
06	Freeze frequency	No freeze frequency			
07	Ramp stop	Start			
08	No reset	Reset			
09	No jog	Jog			
10	Ramp 1	Ramp 2			
11	Data not valid	Data valid			
12	Relay 1 off	Relay 1 on			
13	Relay 2 off Relay 2 on				
14	Set up lsb				
15	-				
16	No reversing	Reversing			

Table 7.16 Frequency Converter Control Word (FC Profile)

Coil	0	1
33	Control not ready	Control ready
34	Frequency converter not	Frequency converter ready
	ready	
35	Coast stop	Safety closed
36	No alarm	Alarm
37	Not used	Not used
38	Not used	Not used
39	Not used	Not used
40	No warning	Warning
41	Not at reference	At reference
42	Hand mode	Auto mode
43	Out of frequency range	In frequency range
44	Stopped	Running
45	Not used	Not used
46	No voltage warning	Voltage warning
47	Not in current limit	Current limit
48	No thermal warning	Thermal warning

Table 7.17 Frequency Converter Status Word (FC Profile)

Danfoss

Bus	Bus	PLC	Content	Access	Description
address	register ¹⁾	register			
0	1	40001	Reserved		Reserved for legacy frequency converters VLT^{\otimes} 5000 and
				_	VLT [®] 2800.
1	2	40002	Reserved		Reserved for legacy frequency converters VLT^{\circledast} 5000 and
				_	VLT [®] 2800.
2	3	40003	Reserved		Reserved for legacy frequency converters $\text{VLT}^{\textcircled{8}}$ 5000 and
				_	VLT [®] 2800.
3	4	40004	Free	-	-
4	5	40005	Free	-	-
5	6	40006	Modbus configuration	Read/Write	TCP only. Reserved for Modbus TCP
					(parameter 12-28 Store Data Values and
					parameter 12-29 Store Always - stored in, for example,
					EEPROM).
6	7	40007	Last fault code	Read only	Fault code received from parameter database, refer to
					WHAT 38295 for details.
7	8	40008	Last error register	Read only	Address of register with which last error occurred, refer
					to WHAT 38296 for details.
8	9	40009	Index pointer	Read/Write	Sub index of parameter to be accessed. Refer to WHAT
					38297 for details.
9	10	40010	Parameter 0-01 Language	Dependent on	Parameter 0-01 Language (Modbus register = 10
				parameter	parameter number)
				access	20 bytes space reserved for parameter in Modbus map.
19	20	40020	Parameter 0-02 Motor Speed	Dependent on	Parameter 0-02 Motor Speed Unit
			Unit	parameter	20 bytes space reserved for parameter in Modbus map.
				access	
29	30	40030	Parameter 0-03 Regional	Dependent on	Parameter 0-03 Regional Settings
			Settings	parameter	20 bytes space reserved for parameter in Modbus map.
				access	

Table 7.18 Address/Registers

1) Value written in the Modbus RTU telegram must be 1 or less than the register number. For example, Read Modbus Register 1 by writing value 0 in the telegram.

7.8.9 How to Control the Frequency Converter

This section describes codes which can be used in the function and data fields of a Modbus RTU telegram.

7.8.10 Function Codes Supported by Modbus RTU

Modbus RTU supports use of the following function codes in the function field of a telegram.

Function	Function code (hex)
Read coils	1
Read holding registers	3
Write single coil	5
Write single register	6
Write multiple coils	F
Write multiple registers	10
Get comm. event counter	В
Report slave ID	11

Table 7.19 Function Codes

Design Guide

Function	Function	Subfunction	Subfunction
	code	code	
Diagnostics	8	1	Restart communication.
		2	Return diagnostic
			register.
		10	Clear counters and
			diagnostic register.
		11	Return bus message
			count.
		12	Return bus communi-
			cation error count.
		13	Return slave error count.
		14	Return slave message
			count.

Table 7.20 Function Codes

7.8.11 Modbus Exception Codes

For a full explanation of the structure of an exception code response, refer to *chapter 7.8.5 Function Field*.

Code	Name	Meaning
1	Illegal	The function code received in the query is
	function	not an allowable action for the server (or
		slave). This may be because the function
		code is only applicable to newer devices,
		and was not implemented in the unit
		selected. It could also indicate that the
		server (or slave) is in the wrong state to
		process a request of this type, for example
		because it is not configured and is being
		asked to return register values.
2	Illegal data	The data address received in the query is
	address	not an allowable address for the server (or
		slave). More specifically, the combination
		of reference number and transfer length is
		invalid. For a controller with 100 registers,
		a request with offset 96 and length 4
		succeeds, while a request with offset 96
		and length 5 generates exception 02.
3	Illegal data	A value contained in the query data field
	value	is not an allowable value for server (or
		slave). This indicates a fault in the
		structure of the remainder of a complex
		request, such as that the implied length is
		incorrect. It does NOT mean that a data
		item submitted for storage in a register
		has a value outside the expectation of the
		application program, since the Modbus
		protocol is unaware of the significance of
		any value of any register.

0	Code	Name	Meaning
F	4	Slave device	An unrecoverable error occurred while the
		failure	server (or slave) was attempting to
			perform the requested action.

Table 7.21 Modbus Exception Codes

7.9 How to Access Parameters

7.9.1 Parameter Handling

The PNU (parameter number) is translated from the register address contained in the Modbus read or write message. The parameter number is translated to Modbus as (10 x parameter number) *decimal*. Example: Reading *parameter 3-12 Catch up/slow Down Value* (16 bit): The holding register 3120 holds the parameters value. A value of 1352 (decimal), means that the parameter is set to 12.52%

Reading *parameter 3-14 Preset Relative Reference* (32 bit): The holding registers 3410 and 3411 hold the parameters values. A value of 11300 (*decimal*), means that the parameter is set to 1113.00.

For information on the parameters, size, and conversion index, see the *programming guide*.

7.9.2 Storage of Data

The coil 65 decimal determines whether data written to the frequency converter is stored in EEPROM and RAM (coil 65=1), or only in RAM (coil 65=0).

7.9.3 IND (Index)

Some parameters in the frequency converter are array parameters, for example *parameter 3-10 Preset Reference*. Since the Modbus does not support arrays in the holding registers, the frequency converter has reserved the holding register 9 as pointer to the array. Before reading or writing an array parameter, set the holding register 9. Setting holding register to the value of 2 causes all following read/write to array parameters to be to the index 2.

7.9.4 Text Blocks

Parameters stored as text strings are accessed in the same way as the other parameters. The maximum text block size is 20 characters. If a read request for a parameter is for more characters than the parameter stores, the response is truncated. If the read request for a parameter is for fewer characters than the parameter stores, the response is space filled.

7.9.5 Conversion Factor

A parameter value can only be transferred as a whole number. To transfer decimals, use a conversion factor.

7.9.6 Parameter Values

Standard data types

Standard data types are int 16, int 32, uint 8, uint 16, and uint 32. They are stored as 4x registers (40001–4FFFF). The parameters are read using function 03 hex *read holding registers*. Parameters are written using the function 6 hex *preset single register* for 1 register (16 bits), and the function 10 hex *preset multiple registers* for 2 registers (32 bits). Readable sizes range from 1 register (16 bits) up to 10 registers (20 characters).

Non-standard data types

Non-standard data types are text strings and are stored as 4x registers (40001–4FFFF). The parameters are read using function 03 hex *read holding registers* and written using function 10 hex *preset multiple registers*. Readable sizes range from 1 register (2 characters) up to 10 registers (20 characters).

7.10 Examples

The following examples show various Modbus RTU commands.

7.10.1 Read Coil Status (01 hex)

Description

This function reads the ON/OFF status of discrete outputs (coils) in the frequency converter. Broadcast is never supported for reads.

Query

The query telegram specifies the starting coil and quantity of coils to be read. Coil addresses start at 0, that is, coil 33 is addressed as 32.

Example of a request to read coils 33–48 (status word) from slave device 01.

Field name	Example (hex)
Slave address	01 (frequency converter address)
Function	01 (read coils)
Starting address HI	00
Starting address LO	20 (32 decimals) coil 33
Number of points HI	00
Number of points LO	10 (16 decimals)
Error check (CRC)	-

Table 7.22 Query

Response

The coil status in the response telegram is packed as 1 coil per bit of the data field. Status is indicated as: 1=ON; 0=OFF. The lsb of the first data byte contains the coil addressed in the query. The other coils follow toward the high-order end of this byte, and from low order to high order in subsequent bytes.

If the returned coil quantity is not a multiple of 8, the remaining bits in the final data byte are padded with 0s (toward the high-order end of the byte). The byte count field specifies the number of complete bytes of data.

Field name	Example (hex)
Slave address	01 (frequency converter address)
Function	01 (read coils)
Byte count	02 (2 bytes of data)
Data (coils 40–33)	07
Data (coils 48–41)	06 (STW=0607hex)
Error check (CRC)	-

Table 7.23 Response

NOTICE

Coils and registers are addressed explicitly with an offset of -1 in Modbus. For example, coil 33 is addressed as coil 32.

7.10.2 Force/Write Single Coil (05 hex)

Description

This function forces the coil to either ON or OFF. When broadcast, the function forces the same coil references in all attached slaves.

Query

The query telegram specifies the coil 65 (parameter write control) to be forced. Coil addresses start at 0, that is, coil 65 is addressed as 64. Force data = 00 00 hex (OFF) or FF 00 hex (ON).

Field name	Example (hex)
Slave address	01 (Frequency converter address)
Function	05 (write single coil)
Coil address HI	00
Coil address LO	40 (64 decimal) Coil 65
Force data HI	FF
Force data LO	00 (FF 00 = ON)
Error check (CRC)	-

Table 7.24 Query

62

Response

The normal response is an echo of the query, returned after the coil state has been forced.

Field name	Example (hex)
Slave address	01
Function	05
Force data HI	FF
Force data LO	00
Quantity of coils HI	00
Quantity of coils LO	01
Error check (CRC)	-

Table 7.25 Response

7.10.3 Force/Write Multiple Coils (0F hex)

Description

This function forces each coil in a sequence of coils to either on or off. When broadcasting, the function forces the same coil references in all attached slaves.

Query

The query telegram specifies the coils 17–32 (speed setpoint) to be forced.

NOTICE

Coil addresses start at 0, that is, coil 17 is addressed as 16.

Field name	Example (hex)
Slave address	01 (frequency converter address)
Function	0F (write multiple coils)
Coil address HI	00
Coil address LO	10 (coil address 17)
Quantity of coils HI	00
Quantity of coils LO	10 (16 coils)
Byte count	02
Force data HI	20
(Coils 8–1)	
Force data LO	00 (reference=2000 hex)
(Coils 16–9)	
Error check (CRC)	-

Table 7.26 Query

Response

The normal response returns the slave address, function code, starting address, and quantity of coils forced.

Field name	Example (hex)
Slave address	01 (frequency converter address)
Function	0F (write multiple coils)
Coil address HI	00
Coil address LO	10 (coil address 17)
Quantity of coils HI	00
Quantity of coils LO	10 (16 coils)
Error check (CRC)	-

Table 7.27 Response

7.10.4 Read Holding Registers (03 hex)

Description

This function reads the contents of holding registers in the slave.

Query

The query telegram specifies the starting register and quantity of registers to be read. Register addresses start at 0, that is, registers 1–4 are addressed as 0–3.

Example: Read *parameter 3-03 Maximum Reference*, register 03030.

Field name	Example (hex)
Slave address	01
Function	03 (Read holding registers)
Starting address HI	0B (Register address 3029)
Starting address LO	D5 (Register address 3029)
Number of points HI	00
Number of points LO	02 – (parameter 3-03 Maximum
	Reference is 32 bits long, that is, 2
	registers)
Error check (CRC)	-

Table 7.28 Query

Response

The register data in the response telegram is packed as 2 bytes per register, with the binary contents right justified within each byte. For each register, the 1st byte contains the high-order bits, and the 2nd contains the low-order bits.

Example: hex 000088B8=35.000=35 Hz.

Field name	Example (hex)
Slave address	01
Function	03
Byte count	04
Data HI (register 3030)	00
Data LO (register 3030)	16
Data HI (register 3031)	E3
Data LO (register 3031)	60
Error check (CRC)	-

Table 7.29 Response

7.10.5 Preset Single Register (06 hex)

Description

This function presets a value into a single holding register.

Query

The query telegram specifies the register reference to be preset. Register addresses start at 0, that is, register 1 is addressed as 0.

Example: Write to *parameter 1-00 Configuration Mode*, register 1000.

Field name	Example (hex)
Slave address	01
Function	06
Register address HI	03 (register address 999)
Register address LO	E7 (register address 999)
Preset data HI	00
Preset data LO	01
Error check (CRC)	-

Table 7.30 Query

Response

The normal response is an echo of the query, returned after the register contents have been passed.

Field name	Example (hex)
Slave address	01
Function	06
Register address HI	03
Register address LO	E7
Preset data HI	00
Preset data LO	01
Error check (CRC)	-

Table 7.31 Response

7.10.6 Preset Multiple Registers (10 hex)

Description

This function presets values into a sequence of holding registers.

Query

The query telegram specifies the register references to be preset. Register addresses start at 0, that is, register 1 is addressed as 0. Example of a request to preset 2 registers (set *parameter 1-24 Motor Current* to 738 (7.38 A)):

Field name	Example (hex)
Slave address	01
Function	10
Starting address HI	04
Starting address LO	07
Number of registers HI	00
Number of registers LO	02
Byte count	04
Write data HI (Register 4: 1049)	00
Write data LO (Register 4: 1049)	00
Write data HI (Register 4: 1050)	02
Write data LO (Register 4: 1050)	E2
Error check (CRC)	-

Table 7.32 Query

Response

The normal response returns the slave address, function code, starting address, and quantity of registers preset.

Field name	Example (hex)	
Slave address	01	
Function	10	
Starting address HI	04	
Starting address LO	19	
Number of registers HI	00	
Number of registers LO	02	
Error check (CRC)	-	

Table 7.33 Response

7.11 Danfoss FC Control Profile

7.11.1 Control Word According to FC Profile (8-10 Protocol = FC profile)

Illustration 7.14 Control Word According to FC Profile

Bit	Bit value=0	Bit value=1
00	Reference value	External selection lsb
01	Reference value	External selection msb
02	DC brake	Ramp
03	Coasting	No coasting
04	Quick stop	Ramp
05	Hold output	Use ramp
	frequency	
06	Ramp stop	Start
07	No function	Reset
08	No function	gol
09	Ramp 1	Ramp 2
10	Data invalid	Data valid
11	Relay 01 open	Relay 01 active
12	Relay 02 open	Relay 02 active
13	Parameter set-up	Selection lsb
15	No function	Reverse

Table 7.34 Control Word According to FC Profile

Explanation of the control bits

Bits 00/01

Bits 00 and 01 are used to select between the 4 reference values, which are pre-programmed in *parameter 3-10 Preset Reference* according to *Table 7.35*.

Programmed	Parameter	Bit	Bit
reference		01	00
value			
1	Parameter 3-10 Preset Reference [0]	0	0
2	Parameter 3-10 Preset Reference [1]	0	1
3	Parameter 3-10 Preset Reference [2]	1	0
4	Parameter 3-10 Preset Reference [3]	1	1

Table 7.35 Control Bits

NOTICE

Make a selection in *parameter 8-56 Preset Reference Select* to define how bit 00/01 gates with the corresponding function on the digital inputs.

Bit 02, DC brake

Bit 02=0 leads to DC braking and stop. Set braking current and duration in *parameter 2-01 DC Brake Current* and *parameter 2-02 DC Braking Time*. Bit 02=1 leads to ramping.

Bit 03, Coasting

Bit 03=0: The frequency converter immediately releases the compressor, (the output transistors are shut off) and it coasts to a standstill.

Bit 03=1: The frequency converter starts the compressor if the other starting conditions are met.

Make a selection in *parameter 8-50 Coasting Select* to define how bit 03 gates with the corresponding function on a digital input.

Bit 04, Quick stop

Bit 04=0: Makes the compressor speed ramp down to stop (set in *parameter 3-81 Quick Stop Ramp Time*).

Bit 05, Hold output frequency

Bit 05=0: The present output frequency (in Hz) freezes. Change the frozen output frequency only with the digital inputs (*parameter 5-10 Terminal 18 Digital Input* to *parameter 5-13 Terminal 29 Digital Input*) programmed to *Speed up=21* and *Slow down=22*.

NOTICE

If freeze output is active, the frequency converter can only be stopped by the following:

- Bit 03 Coasting stop
- Bit 02 DC braking
- Digital input (parameter 5-10 Terminal 18 Digital Input to parameter 5-13 Terminal 29 Digital Input) programmed to [5] DC braking, [2] Coasting stop, or [3] Reset and coasting stop.

Bit 06, Ramp stop/start

Bit 06=0: Causes a stop and makes the compressor speed ramp down to stop via the selected ramp down parameter. Bit 06=1: Permits the frequency converter to start the compressor, if the other starting conditions are met.

Make a selection in *parameter 8-53 Start Select* to define how bit 06 Ramp stop/start gates with the corresponding function on a digital input.

Bit 07, Reset

Bit 07=0: No reset.

Bit 07=1: Resets a trip. Reset is activated on the signal's leading edge, that is, when changing from logic 0 to logic 1.

Bit 08, Jog

Bit 08=1: The output frequency is determined by *parameter 3-11 Jog Speed [Hz]*.

Bit 09, Selection of ramp 1/2

Bit 09=0: Ramp 1 is active (*parameter 3-41 Ramp 1 Ramp Up Time* to *parameter 3-42 Ramp 1 Ramp Down Time*). Bit 09=1: Ramp 2 (*parameter 3-51 Ramp 2 Ramp Up Time* to *parameter 3-52 Ramp 2 Ramp Down Time*) is active.

Bit 10, Data not valid/Data valid

Tell the frequency converter whether to use or ignore the control word.

Bit 10=0: The control word is ignored.

Bit 10=1: The control word is used. This function is relevant because the telegram always contains the control word, regardless of the telegram type. Turn off the control word if not wanting to use it when updating or reading parameters.

Bit 11, Relay 01

Bit 11=0: Relay not activated.

Bit 11=1: Relay 01 activated provided that [36] Control word bit 11 is selected in parameter 5-40 Function Relay.

Bit 12, Relay 02

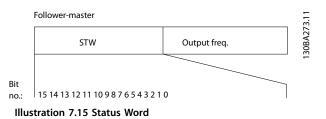
Bit 12=0: Relay 02 is not activated. Bit 12=1: Relay 02 is activated provided that [37] Control word bit 12 is selected in parameter 5-40 Function Relay.

Bit 13, Selection of set-up

Use bit 13 to select from the 2 menu set-ups according to *Table 7.36*.

Set-up	Bit 13
1	0
2	1

The function is only possible when [9] Multi Set-Ups is selected in parameter 0-10 Active Set-up.


Make a selection in *parameter 8-55 Set-up Select* to define how bit 13 gates with the corresponding function on the digital inputs.

Bit 15 Reverse

Bit 15=0: No reversing.

Bit 15=1: Reversing. In the default setting, reversing is set to digital in *parameter 8-54 Reversing Select*. Bit 15 causes reversing only when serial communication, logic, or logic and is selected.

7.11.2 Status Word According to FC Profile (STW) (*parameter 8-30 Protocol* = FC profile)

Bit	Bit=0	Bit=1	
00	Control not ready	Control ready	
01	Drive not ready	Drive ready	
02	Coasting	Enable	
03	No error	Trip	
04	No error	Error (no trip)	
05	Reserved	-	
06	No error	Triplock	
07	No warning	Warning	
08	Speed≠reference	Speed=reference	
09	Local operation	Bus control	
10	Out of frequency limit	Frequency limit OK	
11	No operation	In operation	
12	Drive OK	Stopped, auto start	
13	Voltage OK	Voltage exceeded	
14	Torque OK	Torque exceeded	
15	Timer OK	Timer exceeded	

Table 7.36 Status Word According to FC Profile

Explanation of the status bits

Bit 00, Control not ready/ready

Bit 00=0: The frequency converter trips.

Bit 00=1: The frequency converter controls are ready but the power component does not necessarily receive any power supply (in case of external 24 V supply to controls).

Bit 01, Drive ready

Bit 01=0: The frequency converter is not ready.

Bit 01=1: The frequency converter is ready for operation, but the coasting command is active via the digital inputs or via serial communication.

Bit 02, Coasting stop

Bit 02=0: The frequency converter releases the compressor. Bit 02=1: The frequency converter starts the compressor with a start command.

Bit 03, No error/trip

Bit 03=0: The frequency converter is not in fault mode. Bit 03=1: The frequency converter trips. To re-establish operation, press [Reset].

Bit 04, No error/error (no trip)

Bit 04=0: The frequency converter is not in fault mode. Bit 04=1: The frequency converter shows an error but does not trip.

Bit 05, Not used

Bit 05 is not used in the status word.

Bit 06, No error / triplock

Bit 06=0: The frequency converter is not in fault mode. Bit 06=1: The frequency converter is tripped and locked.

Bit 07, No warning/warning

Bit 07=0: There are no warnings. Bit 07=1: A warning has occurred.

Bit 08, Speed≠reference/speed=reference

Bit 08=0: The compressor runs but the present speed is different from the preset speed reference. It might, for example, be the case when the speed ramps up/down during start/stop.

Bit 08=1: The compressor speed matches the preset speed reference.

Bit 09, Local operation/bus control

Bit 09=0: [Off/Reset] is activate on the control unit or [2] *Local* in *parameter 3-13 Reference Site* is selected. It is not possible to control the frequency converter via serial communication.

Bit 09=1: It is possible to control the frequency converter via the fieldbus/serial communication.

Bit 10, Out of frequency limit

Bit 10=0: The output frequency has reached the value in *parameter 4-12 Motor Speed Low Limit [Hz]* or *parameter 4-14 Motor Speed High Limit [Hz]*. Bit 10=1: The output frequency is within the defined limits.

Bit 11, No operation/in operation

Bit 11=0: The compressor does not run. Bit 11=1: The coasting has a start signal or the output frequency is greater than 0 Hz.

Bit 12, Drive OK/stopped, autostart

Bit 12=0: There is no temporary overtemperature on the inverter.

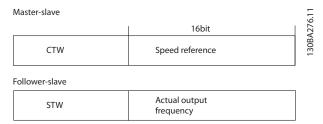
Bit 12=1: The inverter stops because of overtemperature, but the unit does not trip and resumes operation once the overtemperature stops.

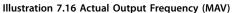
Bit 13, Voltage OK/limit exceeded

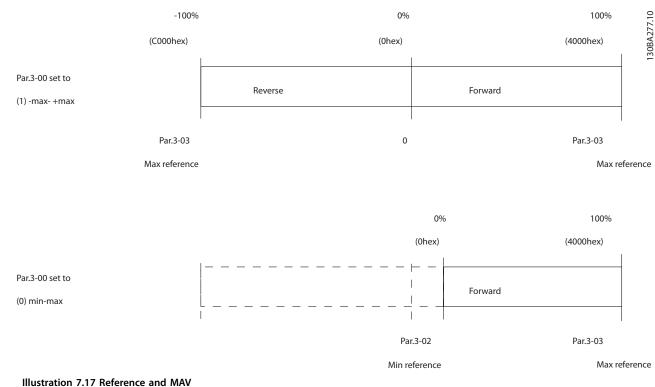
Bit 13=0: There are no voltage warnings. Bit 13=1: The DC voltage in the frequency converter's intermediate circuit is too low or too high.

Bit 14, Torque OK/limit exceeded

Bit 14=0: The compressor current is lower than the torque limit selected in *parameter 4-18 Current Limit*. Bit 14=1: The torque limit in *parameter 4-18 Current Limit* is exceeded.


Bit 15, Timer OK/limit exceeded


Bit 15=0: The timers for compressor thermal protection and thermal protection are not exceeded 100%. Bit 15=1: One of the timers exceeds 100%.


7.11.3 Bus Speed Reference Value

The reference and MAV are scaled as follows:

Speed reference value is transmitted to the frequency converter in a relative value in %. The value is transmitted in the form of a 16-bit word. The integer value 16384 (4000 hex) corresponds to 100%. Negative figures are formatted using 2's complement. The actual output frequency (MAV) is scaled in the same way as the bus reference.

Design Guide

8 General Specifications

8.1 Mains Supply Specifications

8.1.1 Mains Supply 3x200-240 V AC

Frequency converter	4 TR/VZH028	5 TR/VZH035	6.5 TR/VZH044
Typical shaft output [kW]	6.0	7.5	10
IP20 enclosure protection rating	H4	H4	H5
Maximum cable size in terminals (mains, compressor) [mm ² /AWG]	16/6	16/6	16/6
Output current	•		•
Continuous	20.7	25.9	33.7
(3x200–240 V) [A]			
Intermittent	-	-	37.1
(3x200–240 V) [A]			
Maximum input current	·		•
Continuous	23.0	28.3	37.0
3x200–240 V) [A]			
Intermittent	-	-	41.5
(3x200–240 V) [A]			
Maximum mains fuses, see Table 5.6			
Estimated power loss [W], Best case/typical ¹⁾	182/	229/	369/
	204	268	386
Weight enclosure protection P20 [kg/(lb)]	7.9 (17.4)	7.9 (17.4)	9.5 (21)
Efficiency [%], best case/	97.3/	98.5/	97.2/
typical ¹⁾	97.0	97.1	97.1

Table 8.1 3x200-240 V AC

1) At rated load conditions.

8.1.2 Mains Supply 3x380-480 V AC

Frequency converter	4 TR/VZH028	5 TR/VZH035	6.5 TR/VZH044
Typical shaft output [kW]	6.0	7.5	10
IP20 enclosure protection rating	H3	H3	H4
Maximum cable size in terminals (mains, compressor) [mm ² /AWG]	4/10	4/10	16/6
Output current			-
Continuous (3x380–440 V) [A]	11.6	14.3	16.4
Intermittent (3x380–440 V) [A]	-	-	18.0
Continuous (3x440–480 V) [A]	9.8	12.3	15.5
Intermittent (3x440–480 V) [A]	-	-	17.0
Maximum input current			
Continuous (3x380–440 V) [A]	12.7	15.1	18.0
Intermittent (3x380–440 V) [A]	-	-	19.8
Continuous (3x440–480 V) [A]	10.8	12.6	17.0
Intermittent (3x440–480 V) [A]	-	-	18.7
Maximum mains fuses			
Estimated power loss [W],	104/131	159/198	248/274
best case/typical ¹⁾			
Weight enclosure protection IP20 [kg/(lb)]	4.3 (9.5)	4.5 (9.9)	7.9 (17.4)
Efficiency [%],	98.4/98.0	98.2/97.8	98.1/97.9
best case/typical ¹⁾			

8

Table 8.2 3x380-480 V AC

1) At rated load conditions.

Design Guide

8.2 General Specifications

Protection and features

- Electronic thermal compressor protection against overload.
- Temperature monitoring of the heat sink ensures that the frequency converter trips if there is overtemperature.
- The frequency converter is protected against short circuits between compressor terminals U, V, W.
- When a compressor phase is missing, the frequency converter trips and issues an alarm.
- When a mains phase is missing, the frequency converter trips or issues a warning (depending on the load).
- Monitoring of the DC-link voltage ensures that the frequency converter trips, when the DC-link voltage is too low or too high.
- The frequency converter is protected against ground faults on compressor terminals U, V, W.

Mains supply (L1, L2, L3)

Supply voltage	200–240 V ±10%
Supply voltage	380-480 V ±10%
Supply frequency	50/60 Hz
Maximum imbalance temporary between mains phases	3.0% of rated supply voltage
True power factor (λ)	≥0.9 nominal at rated load
Displacement power factor (cosφ) near unity	(>0.98)
Switching on the input supply L1, L2, L3 (power-ups)	Maximum 2 times/minute
Environment according to EN 60664-1	Overvoltage category III/pollution degree 2
The unit is suitable for use on a circuit capable of delivering not m	ore than 100000 RMS symmetrical Amperes, 240/480 V
maximum.	

Compressor output (U, V, W)	
Output voltage	0–100% of supply voltage
Output frequency	0–200 Hz (VVC ⁺), 0–400 Hz (u/f)
Switching on output	Unlimited
Ramp times	0.05–3600 s

Cable lengths and cross-sections

Maximum compressor cable length, screened/armoured (EMC-correct installation)	See chapter 2.7.3 EMC Test Results
Maximum compressor cable length, unscreened/unarmoured	50 m (164 ft)
Maximum cross-section to compressor, mains ¹⁾	
Cross-section DC terminals for filter feedback on enclosure sizes H1–H3, I2, I3, I4	4 mm ² /11 AWG
Cross-section DC terminals for filter feedback on enclosure sizes H4–H5	16 mm²/6 AWG
Maximum cross-section to control terminals, rigid wire	2.5 mm ² /14 AWG)
Maximum cross-section to control terminals, flexible cable	2.5 mm ² /14 AWG)
Minimum cross-section to control terminals	0.05 mm ² /30 AWG

1) See chapter 8.1.2 Mains Supply 3x380–480 V AC for more information.

Danfoss

Programmable digital inputs	4
Terminal number	18, 19, 27, 29
Logic	PNP or NPN
Voltage level	0–24 V DC
Voltage level, logic 0 PNP	<5 V DC
Voltage level, logic 1 PNP	>10 V DC
Voltage level, logic 0 NPN	>19 V DC
Voltage level, logic 1 NPN	<14 V DC
Maximum voltage on input	28 V DC
Input resistance, R _i	Approximately 4 kΩ
Digital input 29 as thermistor input	Fault: >2.9 k Ω and no fault: <800 Ω
Digital input 29 as pulse input	Maximum frequency 32 kHz push-pull-driven & 5 kHz (O.C.)

Number of analog inputs	2
Terminal 53 mode	Parameter 6-19 Terminal 53 mode: 1=voltage, 0=current
Terminal 54 mode	Parameter 6-29 Terminal 54 mode: 1=voltage, 0=current
Voltage level	0–10 V
Input resistance, R _i	Approximately 10 kΩ
Maximum voltage	20 V
Current level	0/4–20 mA (scalable)
Input resistance, R _i	<500 Ω
Maximum current	29 mA
Resolution on analog input	10 bit

Analog output	
Number of programmable analog outputs	2
Terminal number	42, 45 ¹⁾
Current range at analog output	0/4–20 mA
Maximum load to common at analog output	500 Ω
Maximum voltage at analog output	17 V
Accuracy on analog output	Maximum error: 0.4% of full scale
Resolution on analog output	10 bit

1) Terminals 42 and 45 can also be programmed as digital outputs.

Digital output	
Number of digital outputs	4
Terminals 27 and 29	
Terminal number	27, 29 ¹
Voltage level at digital output	0–24 V
Maximum output current (sink and source)	40 mA
Terminals 42 and 45	
Terminal number	42, 45 ²⁾
Voltage level at digital output	17 V
Maximum output current at digital output	20 mA
Maximum load at digital output	1 kΩ

1) Terminals 27 and 29 can also be programmed as input.

2) Terminals 42 and 45 can also be programmed as analog output.

The digital outputs are galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

Control card, RS485 serial communication

Terminal number	68 (P, TX+, RX+), 69 (N, TX-, RX-)
Terminal number	61 common for terminals 68 and 69

<u>Danfoss</u>

General Specifications

Design Guide

Control card, 24 V DC output

Terminal number	12
Maximum load	80 mA

Relay output

Programmable relay output	2
Relay 01 and 02 01-	03 (NC), 01–02 (NO), 04–06 (NC), 04–05 (NO)
Maximum terminal load (AC-1) ¹⁾ on 01–02/04–05 (NO) (Resistive load)	250 V AC, 3 A
Maximum terminal load (AC-15) ¹⁾ on 01–02/04–05 (NO) (Inductive load @ cosφ 0	0.4) 250 V AC, 0.2 A
Maximum terminal load (DC-1) ¹⁾ on 01–02/04–05 (NO) (Resistive load)	30 V DC, 2 A
Maximum terminal load (DC-13) ¹⁾ on 01–02/04–05 (NO) (Inductive load)	24 V DC, 0.1 A
Maximum terminal load (AC-1) ¹⁾ on 01–03/04–06 (NC) (Resistive load)	250 V AC, 3 A
Maximum terminal load (AC-15) ¹⁾ on 01–03/04–06 (NC) (Inductive load @ $\cos \phi$ 0	.4) 250 V AC, 0.2 A
Maximum terminal load (DC-1) ¹⁾ on 01–03/04–06 (NC) (Resistive load)	30 V DC, 2 A
Minimum terminal load on 01–03 (NC), 01–02 (NO)	24 V DC 10 mA, 24 V AC 20 mA
Environment according to EN 60664-1	Overvoltage category III/pollution degree 2

1) IEC 60947 parts 4 and 5.

Control card, 10 V DC output	
Terminal number	50
Output voltage	10.5 V ±0.5 V
Maximum load	25 mA
Surroundings	
Enclosure	IP20
Enclosure kit available	IP21, TYPE 1
Vibration test	1.0 g
Maximum relative humidity	5–95% (IEC 60721-3-3; Class 3K3 (non-condensing) during operation
Aggressive environment (IEC 60721-3-3), c	coated (standard) Class 3C3
Test method according to IEC 60068-2-43	H2S (10 days)
Ambient temperature	50 °C (122 °F)

Derating for high ambient temperature, see chapter 8.4 Derating according to Ambient Temperature and Switching Frequency.

Minimum ambient tempera	ture during full-scale operation	0 °C (32 °F)
Minimum ambient tempera	ture at reduced performance	-20 °C (-4 °F)
Temperature during storage	e/transport	-30 to +65/70 °C (-22 to +149/158 °F)
Maximum altitude above se	ea level without derating	1000 m (3280 ft)
Maximum altitude above se	ea level with derating	3000 m (9843 ft)
Derating for high altitude, s	see chapter 8.4 Derating according to	Ambient Temperature and Switching Frequency.
Safety standards		EN/IEC 61800-5-1, UL 508C
EMC standards, Emission		EN 61800-3, EN 61000-6-3/4, EN 55011, IEC 61800-3
EMC standards,	EN 61800-3, EN 61000-3-12,	EN 61000-6-1/2, EN 61000-4-2, EN 61000-4-3, EN 61000-4-4, EN
Immunity		61000-4-5, EN 61000-4-6

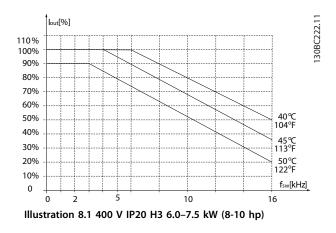
8.3 Acoustic Noise or Vibration

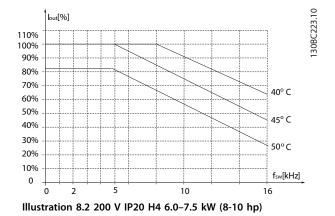
If the compressor or the equipment driven by the compressor - for example, a fan - is making noise or vibrations at certain frequencies, configure the following parameters or parameter groups to reduce or eliminate the noise or vibrations:

- Parameter group 4-6* Speed Bypass.
- Set parameter 14-03 Overmodulation to [0] Off.
- Switching pattern and switching frequency parameter group 14-0* Inverter Switching.
- Parameter 1-64 Resonance Dampening.

The acoustic noise from the frequency converter comes from 3 sources:

- DC intermediate circuit coils
- Integral fan
- RFI filter choke


Enclosure	Level [dBA]
H3	53.8
H4	64
H5	63.7


Table 8.3 Typical Values Measured at a Distance of 1 m from the Unit

8.4 Derating according to Ambient Temperature and Switching Frequency

The ambient temperature measured over 24 hours should be at least 5 °C (41 °F) lower than the maximum ambient temperature. If the frequency converter is operated at high ambient temperature, the constant output current should be decreased. If the ambient temperature is higher than 50 °C (122 °F) or the installation by altitude is higher than 1000 m (3281 ft), a larger CDS 803 drive might be needed to run an undersized compressor. Consult Danfoss for support.

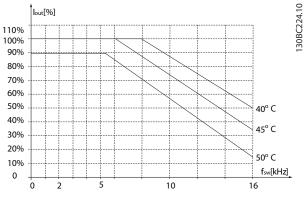


Illustration 8.3 400 V IP20 H4 10 kW (10 hp)

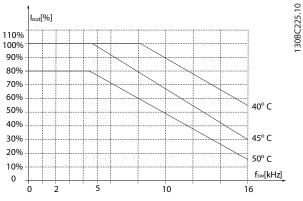


Illustration 8.4 200 V IP20 H5 10 kW (10 hp)

Index

А Aggressive environment...... 11 Air humidity...... 11 Analog input...... 72 Analog inputs...... 6 Analog output...... 72

В

Break-away torque

С

Cable
Compressor cable 19
Motor cable 20
Cable lengths 71
CE conformity and labeling 10
Changes made 39
Circuit breaker 34
Closed-loop quick guide 16
Closed-loop set-up quick guide 39
Coasting 6, 65, 66
Compressor output (U, V, W) 71
Compressor phases 23
Compressor protection 71
Connecting, mains, and compressor
Control card RS485 serial communication
Control card, 10 V DC output 73
Control structure closed loop 13
Control structure open loop 12
Control terminal
Control Word
Control Word 65
Control Word
Control Word
Control Word
Control Word

DC brake	65
Decoupling plate	26
Definition	20
Definitions	6
Digital input	
Discharge time	9, 10
Display	
Disposal	10
Drive closed-loop controller, tuning	

Ε

Earth leakage current 23
Earth leakage protection 19
Electrical installation, EMC compliant
Electrical installation, general 32
Electrical overview
EMC 19, 20 plan
Emissions
EMC Directive (89/336/EEC)
EMC Directive 89/336/EEC 11
EMC precautions 51
Emission requirements 19
Environment Industrial
Extreme running conditions

F

FC profile	
FC with Modbus RTU	51
Protocol overview	51
FC Profile	65
Feedback conversion	13
Field mounting	30
Freeze output	6
Function code	60
Fuse	34

G

Galvanic isolation	22
General Specifications	71

Н

Hardware set-up 5	50
-------------------	----

υ

Data type, supported...... 55

21
19
21
21
22
55
1

I

Immunity requirement 22
Immunity requirements 19
IND 54
Index (IND) 54
Indicator light 38
Initialization 48
Initialization, 2-finger 48
Input supply, switching on71
Installation, high altitudes
Intermediate circuit 74
IP21/TYPE 1 enclosure kit 25

J

Jog	6, 65
-----	-------

Κ

Kit, IP21/TYPE 1 enclosure	25

L

LCP	6, 7, 12, 38
LCP copy	
Leakage current	23
Literature	6
Local (hand on) control	12
Low-voltage Directive (73/23/EEC)	10

Μ

Machinery Directive (98/37/EEC)	10
Mains drop-out	23
Mains supply	8
Mains supply (L1, L2, L3)	71
Mains supply, 3x200–240 V AC	69
Mains supply, 3x380–480 V AC	70
Manual PI adjustment	
Menu key	38
Menus	39
Modbus communication	50

Modbus exception code	61
Modbus RTU	57
Modbus RTU overview	56
Motor set-up	39
Motor thermal protection	67

Ν

Navigation key	38
Network configuration	57
Network connection	50

0

Operation key	38
Options	24
Order, how to	27
Outputs Digital output	72
Overcurrent protection	34

Ρ

Parameter number (PNU) 54
PELV, Protective Extra Low Voltage 22
Pl adjustment, manual 18
PNU
Power Input power
Power factor
Precautions, EMC 51
Program, how to
Programming Programming
Protection 11, 22, 23, 34
Protection and features 71
Public supply network 21

Q

Quick guide, closed-loop set-up	39
Quick guide, open-loop applications	39
Quick menu	39
Quick transfer	48

R

Rated motor speed	6
RCD	23
Read holding registers (03 hex)	63
Readout/programming, indexed parameter	48

Recommended initialization	48
Reference handling	14
Remote (auto on) control	12
Requirements, harmonics emission	21
Residual Current Device	23
RS485	49
RS485 RS485	51
RS485 installation and set-up	49

S

Serial communication port	. 6
Set-up, hardware	50
Shock 1	12
Short circuit (compressor phase – phase)	23
Side-by-side installation	30
Specifications, general	71
Status menu	39
Status Word	66
Surroundings	73
Switching on the output2	23

Т

Telegram length (LGE)	52
Terminals Terminal 50	
THD	21
Thermistor	6
Total voltage distortion	21
Type code string	27

U

UL compliance 3	34
-----------------	----

V

Vibration	12
Voltage distortion	21
VVC+	8

Danfoss

Danfoss A/S Ulsnaes 1 DK-6300 Graasten vlt-drives.danfoss.com

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.

