VACON CX /CXL/CXS FREQUENZUMRICHTER

Profibus DP Feldbus Zusatzkarte

BETRIEBSANLEITUNG

Änderungen vorbehalten

KUNDENNAHE KOMPETENZ

INHALT

1.	ALLGEMEINES	3
2.	BUS-SPEZIFIKATION	4
2.1	1 Allgemeines	4
2.2	2 Profibuskabel	4
3.	PROFIBUS DP	6
3.1	1 Allgemeines	6
3.2	2 Profil	6
4.	INSTALLATION DER ZUSATZKARTE	7
5	ANSCHLÜSSE	9
-	A Zuratalandaria	•
5.	1 Zusatzkarteniayout	9
5.4 5.1	2 Ptouarklammananaschlüssa	9
5.0	5 Steuerkiemmenanschlusse	10
6.		11
7.	VACON CX PROFIBUS-SCHNITTSTELLE	12
7.1	1 Allaemeines	12
7.2	2 PPO-Typen	12
7.3	3 Prozess Daten (Process Data)	15
	7.3.1 Steuerwort (Control Word)	16
	7.3.2 Statuswort (Status Word)	16
	7.3.3 Antriebszustand (State Machine)	17
	7.3.4 Drehzahl-Sollwert (Speed Reference)	18
	7.3.5 Drehzahl-Istwert (Actual Value)	19
	7.3.6 PD1-PD4	19
7.4	4 Parameter Daten (Parameter Data)	20
	7.4.1 Istwerte (Actual Values)	20
	7.4.2 Parameter Lesen und Schreiben (Read and Write)	21
	7.4.3 Fehlercode	21
8.	FEHLERSUCHE	22
9.	TYPENDATEI	23
9 -	1 GSD-Datei (GSD-file)	
0.		
ANL	AGE 1: ISTWERTAUSWAHL	25
ANL	AGE 2. SIEMENS S7 KONFIGURATION	26

1. ALLGEMEINES

Die Vacon Frequenzumrichter können durch Verwendung der Profibus-Zusatzkarte an den Profibus DP angeschlossen werden. Die Umrichter können dann vom Busmaster gesteuert, überwacht und programmiert werden.

Zusätzlich sind folgende Steuerklemmen auf der Feldbuskarte:

- 4 digitale Eingänge (fest programmiert)
- 4 digitale Ausgänge (fest programmiert)
- 1 Relaisausgang (fest programmiert)
- Thermistoreingang (zum direkten Anschluß der Motor-Thermistoren)
- Encodereingang

Die Feldbus-Zusatzkarten werden im Umrichtergehäuse installiert am dafür vorgesehenen Zusatzkartenplatz (nicht CXS).

Die Steueranschlüsse sind vom Netzpotential getrennt und die Masse (GND) ist über die Parallelschaltung eines 1 M Ω Widerstandes und eines 4.7 nF Kondensators mit dem Gehäuse (Erde) verbunden. Die Masse (GND) kann auch direkt mit dem Gehäuse verbunden werden durch Umstecken des Steckers X9 (GND ON/OFF) in ON-Position *. Die digitalen Kontakteingänge sind von Masse (GND) getrennt.

Die internen Bauteile und Reglerplatinen (ausgenommen die galvanisch getrennten Steuerklemmen) führen Netzspannung wenn der Vacon CX/CXL/CXS an das speisende Netz angeschlossen ist. Diese Spannnung ist gefährlich und kann zu schweren oder gar tödlichen Verletzungen bei Berührung führen.

Die Steuerklemmen sind galvanisch isoliert vom Netzpotential, jedoch können an die Steuerklemmen gefährliche Spannungen angeschlossen sein und auch dann noch anliegen, wenn der Vacon CX/CXL/CXS vom Netz abgeschaltet ist. Daher vor Arbeiten am Umrichter dessen Spannungsfreiheit mit einem geeigneten Meßgerät prüfen.

* Werkseinstellung für X9 ist GND OFF- Position)

2. BUS-SPEZIFIKATION

2.1 Allgemeines

Profibus DP -	Interface	9-pin DSUB Anschlußstecker (female)			
Anschlüsse	Datenübertragung	RS-485, Halbduplex			
	Übertragungskabel	Verdrillte Leitung (1 Paar und Schirm)			
	Elektrische Isolation	500 V DC			
Zusätzliche Steuer-	Digitale Eingänge (4 St.)	24 V: "0" $\leq \! 10$ V, "1" $\geq \! 18$ V, $R_i = 5$ $k\Omega$			
anschlüsse	Digitale Ausgänge (4 St.)	Open collector Ausgang, 50 mA/48 V			
	Relaisausgang (1 St.)	Max.Schaltspannung: 300 V DC, 250 V AC Max.Schaltbelastung: 8 A / 24 V DC 0,4 A / 300 V AV 2 kVA / 250 V DC			
	Thermistoreingang (1 St.)	Max. Dauerstrom: 2 A rms $R_{\rm ex} = 4.7 \text{ kO}$			
	Encodereingang	$V_{trip} = 4.7 \ 122$			
	Licodereingang	5 V: "0" ≤2 V, "1" ≥3 V, R _i = 330 Ω			
	Hilfsspannungsausgang	24 V (±20%), max 50 mA			
El. Sicherheit		Erfüllt EN50178			

Kommunikationsprotokoll	Profibus DP	
PPO Typen	1	
	2	
	3	
	4	
Kommunikationsparameter		
- Adressen	1 bis 127	
- Baud Rate	9.6 kBaud bis 12 MBaud	

Tabelle 2-1. Profibus Kommunikationsdaten

2.2 Profibuskabel

Die Profibusgeräte sind untereinander durch eine Busstruktur elektrisch verbunden. Bis zu 32 Geräte (Master oder Slaves) können in einem Segment angeschlossen werden. Der Bus wird abgeschlossen am Anfang und Ende eines jeden Segmentes durch einen Bus-Abschlußwiderstand (siehe Bild 2-1). Um einen fehlerfreien Betrieb zu gewährleisten, müssen die Busabschlußwiderstände immer an Spannung liegen. Werden mehr als 32 Geräte angeschlossen, müssen Repeater (Busverstärker) verwendet werden, um die einzelnen Bussegmente aneinander zu schalten.

Die maximale Kabellänge hängt von der Übertragungsgeschwindigkeit und dem Kabeltyp ab (siehe Tabelle 2-2). Die angegebene Kabellänge kann durch Repeater erhöht werden. Die Verwendung von mehr als 3 Repeatern wird nicht empfohlen.

Parameter	Kabeltyp A	Kabeltyp B	
Impedanz	135 165 Ω	100 130 Ω	
	(3 bis 20 Mhz)	(f > 100kHz)	
Kapazität	< 30 pF/m	< 60 pF/m	
Widerstand	< 110 Ω / km	-	
Drahtabstand	> 0,64 mm	> 0,53 mm	
Drahtquerschnitt	> 0,34 mm ²	> 0,22 mm ²	

Tabelle 2-2 Leitungsparameter

Baud rate (kbit/s)	9.6	19.2	93.75	187.5	500	1500	3000-12000
Länge Ka.typ A (m)	1200	1200	1200	1000	400	200	100
Länge Ka.typ B (m)	1200	1200	1200	600	200	-	-

Tabelle 2-3 Leitungslänge in Abhängigkeit der Übertragungsgeschwindigkeit

Folgende Kabel können verwendet werden:

sigonao naboi nomin		
Belden	Profibus Datenkabel	3079A
Olflex	Profibuskabel	21702xx
Siemens	SINEC L2 LAN Kabel für Profibus	6XV1 830-0AH10

3. PROFIBUS DP

3.1 Allgemeines

PROFIBUS ist ein offener, genormter Feldbus für einen weiten Anwendungsbereich. Anbieterunabhängigkeit und Offenheit wird garantiert durch die PROFIBUS-Norm EN 50 170. Mit PROFIBUS, können somit Geräte verschiedener Anbieter kommunizieren ohne spezielle Anpassungen. PROFIBUS kann eingesetzt werden sowohl für sehr schnelle, kritische Datenübertragung als auch für komplexe Kommunikationsaufgaben. Die PROFIBUS Familie besteht aus 3 kompatiblen Versionen.

PROFIBUS-DP

Optimiert für sehr schnelle und kostengünstige Kommunikation. Diese PROFIBUS Version ist speziell für die Kommunikation zwischen Automationssystemen und Feldgeräten konzipiert. Mit PROFIBUS-DP kann parallele, herkömmliche Verdrahtung mit 24V oder 0..20mA Signalpegel ersetzt werden.

PROFIBUS-PA

PROFIBUS-PA ist speziell für die Prozessautomation geeignet. Auch in Sicherheitszonen können Sensoren und Aktoren über den Bus verbunden und betrieben werden. PROFIBUS-PA erlaubt Datenkommunikation und Spannungsversorgung über den Bus mit 2 Draht Technologie entsprechend dem internationalen Standard IEC 1158-2.

PROFIBUS-FMS

PROFIBUS-FMS ist als Kommunikationsbus auf der Prozessleitebene vorgesehen. Der FMS-Service eröffnet eine Vielzahl von Anwendungsmöglichkeiten und gewährleistet hohe Flexibilität. PROFIBUS-FMS ist geeignet für umfangreiche und komplexe Kommunikationsaufgaben.

PROFIBUS spezifiziert die technischen und funktionellen Charakteristiken eines seriellen Feldbussystemes, mit welchem dezentralisierte digitale Regler zusammengeschaltet und von der Feldebene zur Zellenebene (Prozessleitebene) verbunden werden können. PROFIBUS unterscheidet zwischen Masterund Slavegeräten selbstständig, sodaß auch Multimasterbetrieb möglich ist.

Mastergeräte bestimmen die Kommunikation auf dem Bus. Ein Master kann eine Nachricht senden ohne eine externe Aufforderung (Request), sofern er zu diesem Zeitpunkt die Bus-Zugriffsrechte hat (Token). Die Mastergeräte werden im Profibusprotokoll auch aktive Stationen genannt.

Slavegeräte sind Peripheriegeräte. Typische Slavegeräte sind Ein/Ausgabe-Geräte, Ventile, Antriebe und Transmitter. Die Slaves haben keine eigenen Buszugriffsrechte und sie können nur eine erhaltene Nachricht bestätigen oder Nachrichten zum Master senden, sofern die Aufforderung hierzu besteht. Slaves werden auch passive Stationen genannt.

3.2 Profil

Das PROFIBUS-DP Protokoll definiert, wie die Daten über den Bus übertragen werden müssen. Die Daten werden nicht durch das PROFIBUS-DP Übertragungsprotokoll bestimmt.Erklärungen und Definitionen sind im PROFIBUS Profil gegeben. Zusätzlich spezifiziert das Profil, wie PROFIBUS-DP für die verschiedenen Anwendungen zu benutzen ist. Das folgende PROFIBUS-DP Profil wird in den VACON CX Profibus Zusatzkarten benutzt.

Profil für drehzahlregelbare Antriebe (3.071)

Führende Hersteller elektrischer Antriebstechnik haben das PROFIDRIVE Profil festgelegt. Das Profil spezifiziert, wie die Umrichter parametriert werden können und wie die Sollwerte und Istwerte übertra-gen werden müssen. Hierdurch können Antriebe verschiedener Anbieter an den Bus angeschlossen werden. Das Profil enthält Spezifikationen für Drehzahlregelung und Positionierung. Es definiert die

Antriebsfunktionen, lässt jedoch auch genügend Freiraum für spezielle Erweiterungen und weiter-gehende Entwicklungen.

4. INSTALLATION DER ZUSATZKARTE

BEACHTE ! Diese Installationsanweisungen sind nur zu beachten, wenn die Feldbuskarte separat geliefert wurde. Andernfalls wird die Zusatzkarte direkt im Werk eingebaut.

Vor Installations- oder Inbetriebnahmearbeiten sind die Sicherheitsinstruktionen entsprechend der "Betriebsanleitung Vacon CX/CXL/CXS Frequenzumrichter", Kapitel 2, sorgfältig zu lesen. Prüfen Sie ob alle Teile der Zusatzkarte geliefert wurden: Zusatzkarte, Plastikabdeckung, Stromversorgungskabel, Datenkabel und Erdungsschraube.

Die Zusatzkarte wird auf den Zusatzkartenplatz innerhalb des Umrichters installiert, siehe Bild 4-1. Bei der Umrichterserie CXS wird die Zusatzkarte in einem externen Kartenhalter befestigt.

Α	Steuertafelhalterung und Zugentlastungsschiene auf der Reglerplatine entfernen. Stecker X4 von der Reglerkarte abziehen (1).
В	Stromversorgungskabel an Klemmleiste X5 (2) und Datenkabel an Klemmleiste X14 (3).auf der Reglerkarte anschließen. (Das Stromversorgungskabel kann auch an Klemmleiste X6 angeschlossen werden, falls das Netzteilkabel an Klemmleiste X5 angeschlossen ist).
С	Datenkabel S-förmig so weit wie möglich vom Tranformater der Netzteilkarte verlegen (4) bevor die Plastikabdeckung über der Reglerkarte angebracht wird.
D	Schutzfilm der Plastikabdeckung entfernen und die Abdeckung über der Reglerkarte anbringen. Richtige Position der Abdeckung beachten (5).
ш	Feldbuskarte über die Plastikabdeckung installieren und in die Nuten der Schraubbolzen drücken. Stabilen Sitz der Zusatzkarte prüfen. Falls erforderlich, Regler A4 (6) und Kondensator C59 (7) auf der Reglerkarte vorsichtig leicht abknicken.
F	Stromversorgungskabel an Klemmleiste X6 (8) und Datenkabel an Klemmleiste X14 (9) der Zusatzkarte anschließen.
G	Stecker X4, welcher von der Reglerkarte entfernt wurde, in Klemme X9 der Zusatzkarte stecken (10) entweder in ON oder OFF Position, siehe auch Seite 3.
H	Zugentlastungsschiene (falls vorhanden) entsprechend Bild 4-1 installieren (11).
Ι	Erdungsschraube festdrehen (12).
J	Steuertafelhalterung wieder installieren und ggf. Steuerleitungen an die Klemmleiste an- schließen.
Κ	Wird der Encodereingang benutzt und der Encoder hat 5V Betriebsspannung, muß der Stecker X4 von der Reglerkarte in Klemme X15, siehe Bild 5-1, der Zusatzkarte gesteckt werden.

Tabelle 4-1.

Seite 8

Bild 4-1. Feldbuskarte installiert im Umrichter über der Reglerkarte

Feldbuskarte

5 ANSCHLÜSSE

5.1 Zusatzkartenlayout

Diagnose LEDs:

- H1 **Rot.** Datenaustausch über Bus. Die rote LED erlischt, wenn Datenaustausch zustande kommt.
- H1 leuchtet, wenn die Feldbuskarte nicht bereit ist zum Datenaustausch.H3 Grün. Versorgungsspannung.
 - H3 leuchtet, wenn die Feldbuskarte an Versorgungsspannung liegt.

5.2 Profibus Anschlußbelegung

Schraubklemmleiste X5: (Abschlußwiderstände sind nicht im Lieferumfang enthalten)

Signal	Klemmleiste X5	Beschreibung	Bus-Abschlußwider- stände für letztes
Schirm	X5-241	Kabelschirm	Busgerat. 390 Q
VP	X5-242	Spannungsvers. für Bus-Abschlußwiderstand	
RxD/TxD-P	X5-243	Receive/Transmission data Positiv (B)	
RxD/TxD-N	X5-244	Receive/Transmission data Negativ (A)	
DGND	X5-245	Data Ground (Masse)	

Tabelle 5-1. Klemmleiste X5

Beachte! Ist der Vacon das letzte Gerät am Bus, müssen die Busabschlußwiderstände an Klemmleiste X5 angeschlossen werden (siehe Tabelle 5-1).

5.3 Steuerklemmenanschlüsse

	Klem	me	Signal	Beschreibung
	206	+24 V	Steuer-Ref.spannung	Spg.vers. f. pot.freie Kontakte usw., max. 0.05 A
	207	GND	Masse	Masse f. Sollwerte u. Steuersignale
	208	COME	Gem. Bezug f. DIE1-DIE4	An GND or +24 V anschließen
	209	DIE1	Programmierbar: Externer Fehler ODER	Kontakt offen = kein Fehler Kontakt geschlossen = Fehler
			Auswahl aktiver Steuerplatz	Kontakt offen = VACON Steuerklemmen Kontakt geschl. = Feldbus
	. 210	DIE2	START Freigabe	Kontakt offen = Freigabe Kontakt geschlossen = keine Freigabe
	211	DIE3	Beschl / Bremszeit Auswahl	Kontakt offen = Zeit 1 gewählt Kontakt geschl. = Zeit 2 gewählt
	212	DIE4	Jogging Drehzahl	Kontakt offen = Keine Reaktion Kontakt geschl. = Jogging Drehzahl
	213			Nicht benutzt
\frown	214	DIE6A+	Pulseingang A	
(Enco-)	215	DIE6A-	(differentieller Eingang)	
der	216	DIE7B+	Pulseingang B	90 Grad Phasenverschiebung zu
	217	DIE7B-	(differentieller Eingang)	Pulseingang A
	218	DOE1	Encoderausgang Drehricht.	
	219	DOE2	Encoderausgang 1/64	
	220			Nicht benutzt
Anschluß —	221	Tl+	Thermistoreingang	
Motorthermistor —	222	TI-		
	225	RO4/1		Relaisausgang 4, FEHLER
	226	RO4/2		
	231	DOE3	Open collector Ausgang 3	BETRIEBSBEREIT
	232	GND	Masse	Masse f. Sollwerte u. Steuersignale
	233	DOE4	Open collector Ausgang 4	BETRIEB
	234	GND	Masse	Masse f. Sollwerte u. Steuersignale

Bild 5-2. Steueranschlüsse

Beachte! Thermistor-Eingangsklemmen (221 und 222) müssen gebrückt werden, falls kein Thermistor angeschlossen wird.

BETRIEBSBEREIT = EIN, wenn Netzspannung anliegt und der VACON betriebsbereit ist BETRIEB = EIN, wenn START-Befehl gegeben wurde

FEHLER = EIN, wenn ein Fehler aufgetreten ist

6. INBETRIEBNAHME

Zunächst prüfen, ob der Frequenzumrichter ordnungsgemäß in Betrieb genommen wurde. Falls nicht, Inbetriebnahme des Umrichters gemäß Betriebsanleitung CX/CXL/CXS (Kapitel 8) durchführen.

Inbetriebnahme der Profibus-Zusatzkarte:

Prüfen ob die Multi-Purpose II - Applikation (oder z.B. die Feldbus Applikation) gewählt ist.
 Parameter P0.1 = 0 (Feldbus Applikation)

Weitere Information über die Parametrierung finden Sie im Kapitel 7 der Vacon CX/CXL/CXS - Betriebsanleitung.

Anfahrtest:

AM ANTRIEB

- 1. Prüfen ob der aktive Steuerplatz die Steuerklemmleiste ist (nicht die Steuertafel)
- 2. Parameter P10.1 (Feldbus Steuerung) auf 1 setzen (Ein)

MASTER SOFTWARE

- 1. Steuerwort-Wert auf **0hex** setzen.
- 2. Steuerwort-Wert auf **47Fhex** setzen.
- 3. Frequenzumrichter-Status ist jetzt BETRIEB (RUN)
- 4. Sollwert (Reference value) auf 5000 setzen (=50,00%).
- 5. Der Istwert (Actual value) ist nun 5000 und die Ausgangsfrequenz ist 25,00 Hz
- 6. Steuerwort-Wert auf **7Dhex** setzen.
- 7. Frequenzumrichter-Status ist jetzt STOP

Falls das Statuswort-Bit 3 = 1, dann ist ein Fehler aufgetreten Frequenzumrichter-Status ist **FEHLER** (FAULT).

7. VACON CX PROFIBUS-SCHNITTSTELLE

Funktionen der Vacon CX Profibus-Schnittstelle:

- Direkte Steuerung des Vacon CX (z.B. Start, Stop, Drehrichtung, Sollwert, Fehler-Reset)
- Zugriff auf alle Vacon CX Parameter
- Vacon CX Statusüberwachung (z.B. Ausgangsfrequenz, Motorstrom, Fehlercodes..)

7.1 Allgemeines

Der Datenaustausch zwischen Profibus DP Master und den Slaves erfolgt über das Eingangs/ Ausgangs-Datenfeld. Der Master schreibt an das Ausgangsdatenfeld des Slaves und der Slave antwortet, indem er den Inhalt seines Eingangsdatenfeldes an den Master zurücksendet. Die Protokollform der Eingangs/Ausgangs-Daten ist in einem Profil definiert. Das Profil für drehzahl-geregelte Antriebe (3.071) ist das PROFIDRIVE-Profil (siehe auch Kapitel 3).

Der Vacon CX Frequenzumrichter kann vom Profibus DP Master mit allen nach PROFIDRIVE definierten PPO-Typen gesteuert werden (siehe Kapitel 7.2). Wenn der Feldbus als aktiver Frequenz-umrichter-Steuerplatz vorgewählt wurde, kann der Frequenzumrichter vom Profibus DP Master gesteuert werden. Unabhängig vom aktiven Steuerplatz können die Betriebsdaten des Frequenzumrichters abgefragt und überwacht werden (Monitoring) und seine Parameter vom Profibus DP Master verändert werden.

7.2 PPO-Typen

PPOs (Parameter/Process Data Object) sind Kommunikationsprotokolle des PROFIBUS DP.

PPOs im VACON CX:

PD Process Data

(Prozessdaten)

 -
 1 1
 _
 _

ID byte1					ID by	e2						
15	14	13	12	11	10	9	8	7 6 5 4 3 2 1 0				0
Aufforderung/Antwort SM				Parameter Nummer								

SM: Spontaneous bit (nicht verwendet))

Aufforderungs-/Antwort-Typen

Auffordg.	Funktion
0	keine Aufforderung
1	Leseparameterwert (Wort)
2	Schreibparameterwert (Wort)

Antwort	Funktion
0	keine Antwort
1	Parameterwert bereit (Wort)
7	Auffordg. zurückgewiesen(+Fehlercode)

Fehler Nummer (wenn Antwort = 7)

Fehler Nummer	Beschreibung
0	ungültiger Parameter
1	Parameter kann nur gelesen werden – Read only - (z.B. Istwerte)
2	Parameterwert ist außerhalb des zulässigen Einstellbereiches
17	Auffordg. temporär zurückgewiesen (kann z.B. nur im STOP Status verändert werden))
18	anderer Fehler
101	unbekannter Aufforderungstyp

Beispiel 1, (PPO1-Modus):

Parameter Nr. 102 lesen (Par 1.2).

Frequenumrichter starten und Geschwindigkeits-Sollwert auf 50,00% setzen.

Befehl Master \rightarrow Slave:

ID	1066 hex	1 – Parameterwert lesen
		066 - Parameter 102 (= Maximalfrequenz)
IND	0000 hex	0000 – keine Bedeutung
VALUE	0000 0000 hex	0000 - keine Bedeutung
CW	047F hex	04 7F- Startbefehl (siehe Kapitel Steuerwort und Umrichterstatus)
REF	1388 hex	Sollwert 50,00% (= 25,00 Hz wenn Par. für Min. Frequenz = 0 Hz
		und Max. Frequenz = 50 Hz)

PPO1 Datenpaket:

10	66	00	00	00	00	00	00	04	7F	13	88

Rückantwort	Slave \rightarrow Master:	

ID	1066 hex	1 - Parameterwert bereit
		066 - Parameter 102 (= Maximalfrequenz)
IND	0000 hex	0000 – keine Bedeutung
VALUE	0000 0032 hex	0000 0032 - Parameterwert = 32hex (50 Hz)
SW	0000 hex	0000 - Frequenzumrichterstatus (siehe Kapitel Steuerwort und
		Umrichterstatus)
ACT	0000 hex	Istfrequenz 0,00% (= 0,00 Hz wenn Par. für Min. Frequenz = 0 Hz
		und Max. Frequenz = 50 Hz)

PPO1 Datenpaket:

ſ	10	00	00	00	00	00	00	00	00	00	00	00
	10	66	00	(0)	(0)	(0)	00	- 32	00	00	00	00
. L	.•			*	•					•	,	

Beispiel 2, (PPO1-Modus):

In Parameter Nr. 701 (Par 7.1) den Wert 2 schreiben.

Startbefehl aufrecht erhalten und Geschwindigkeits-Sollwert auf 75,00% setzen.

Befehl Master \rightarrow Slave:

ID	22BD hex	2 – Parameterwert schreiben
		2BD - Parameter 701 (= Antwort auf Sollwertfehler)
IND	0000 hex	0000 – keine Bedeutung
VALUE	0000 0002 hex	0000 0002 – Parameterwert
CW	047F hex	04 7F- Startbefehl (siehe Kapitel Steuerwort und Umrichterstatus)
REF	1D4C hex	Sollwert 75,00% (= 37,50 Hz wenn Par. für Min. Frequenz = 0 Hz
		und Max. Frequenz = 50 Hz)

PPO1 Datenpaket:

_												
	12	BD	00	00	00	00	00	02	04	7F	1D	4C
Rüc	kantwor	t Slave -	\rightarrow Master	:								
ID			12BD he	(10 - I	Paramete	ewert ber	reit					
				2BD	- Parame	eter 701	(= Antw	ort auf So	llwertfehl	er)		
IND			0000 he	0000	- keine E	Bedeutur	ng					
VAL	UE.	0000) 0032 he	0000	0032 – F	Paramete	erwert =	32HEX (50 Hz)			
SW			0337 he	0337	- Freque	nzumrich	nterstatu	ıs (siehe k	Kapitel St	euerwort	und	
				Umri	chterstat	us)						
ACT	-		09C4 he	s Istfre	quenz 25	5,00% (=	12,50 I	Hz wenn P	ar. für M	lin. Frequ	ienz = 0	Hz
				und I	Max. Free	quenz =	50 Hz)					
Vac	on Plc		Phone:	+358-2	201 2121		Fax: +	358-201 2	12 205	Service	:+358-40	-8371 150

PPO1 Datenpaket:

12	BD	00	00	00	00	00	00	03	37	09	C4

7.3 Prozess Daten (Process Data)

Die direkte Steuerung des Vacon CX (z.B. Start, Stop, Drehrichtung, Sollwert, Fehler Reset) und die Auswertung des Frequenzumrichter-Status (z.B. Ausgangsfrequenz, Motorstrom, Fehlercode ..) sind unter Verwendung der PPO Typen 1 bis 4 möglich.

	Profibus Karte	VACON CX
Р	PROZESSDATEN	Parameter
R O F	Ausgang (Output) CW (Steuerwort) REF (Sollwert)	
I B U S	PD1 PD2 PD3 PD4	Variablen
		Aktiver Fehlercode
D P		
M A S T		RUN/STOP DREHRICHTUNG FEHLER RESET
E R		Frequenz Sollwert (REF) (Frequenz Sollw. 2) (REF2)
	Eingang (Input) SW (Statuswort) ACT (Istwert) PD1 PD2 PD3	STEUERPLATZ BEREIT (ready state) BETRIEB (run state) DREHR. (direction state) FEHLER (fault state)
	PD4	Ausg.Frequ. (Output Frequ.)

Bild 7-1.

7.3.1 Steuerwort (Control Word)

Das Steuerwort ist der Steuerbefehl für den Antriebszustand (siehe Bild 7.1). Der Antriebszustand beschreibt den Umrichterstatus und mögliche Steuersequenzen des Antriebes. Der Steuerwort-Befehl besteht aus 16 bits mit der folgend aufgeführten Bedeutung:

Bit	Beschreibung	
	Wert = 0	Wert = 1
0	STOP 1 (mit Rampe)	ON 1
1	STOP 2 (trudeln)	ON 2
2	STOP 3 (an der Rampe)	ON 3
3	BETRIEB SPERREN (RUN DISABLE)	BETRIEB FREIGEBEN (RUN ENABLE)
4	Keine Aktion	START
5	Keine Aktion	START
6	Keine Aktion	START
7	Keine Aktion	FEHLERRESET (FAULT RESET) (0 -> 1)
8	Keine Aktion	Keine Aktion
9	Keine Aktion	Keine Aktion
10	FELDBUSSTEUERUNG AUS (Disable Profibus)	FELDBUSSTEUERUNG EIN (Enable Profibus)
11	Nicht verwendet	Nicht verwendet
12	Nicht verwendet	Nicht verwendet
13	Nicht verwendet	Nicht verwendet
14	Nicht verwendet	Nicht verwendet
15	Nicht verwendet	Nicht verwendet

7.3.2 Statuswort (Status Word)

Das Statuswort beinhaltet die Informationen und Meldungen über den aktuellen Status des Antriebes. Das Statuswort besteht aus 16 bits mit der folgend aufgeführten Bedeutung:

Bit	Beschreibung	
	Wert = 0	Wert = 1
0	NICHT BEREIT 1 (NOT READY 1) (Initial.)	BEREIT 1 (READY 1)
1	NICHT BEREIT 2 (NOT READY 2)	BEREIT 2 (READY 2)
2	GESPERRT (DISABLE)	FREIGABE (ENABLE)
3	KEIN FEHLER (NO FAULT)	FEHLER AKTIV (FAULT ACTIVE)
4	STOP 2 AUS (STOP 2 OFF)	STOP 2 EIN (STOP 2 ON)
5	STOP 3 AUS (STOP 3 OFF)	STOP 3 EIN (STOP 3 ON)
6	STARTFREIGABE (START ENABLE)	STARTSPERRE (START DISABLE)
7	KEINE WARNUNG (NO WARNING)	WARNUNG (WARNING)
8	SOLLWERT ≠ ISTWERT (REF ≠ ACT)	SOLLWERT = ISTWERT (REF = ACT)
9	FELDBUSSTEUERUNG DEAKTIV	FELDBUSSTEUERUNG AKTIV
10	Nicht verwendet	Nicht verwendet
11	Nicht verwendet	Nicht verwendet
12	FU gestoppt	FU in Betrieb
13	Nicht verwendet	Nicht verwendet
14	Nicht verwendet	Nicht verwendet
15	Nicht verwendet	Nicht verwendet

Tabelle 7-1. Das Statuswort

7.3.3 Antriebszustand (State Machine)

Der Antriebszustand beschreibt den Umrichterstatus und mögliche Steuersequenzen des Antriebes. Die Statusübertragung erfolgt durch den "Steuerwort" Parameter. Der "Statuswort" Parameter beinhaltet den aktuellen Status des Antriebes. Die Modes *INIT, STOP, BETRIEB (RUN)* und *FEHLER (FAULT)* (siehe Bild 7-1) entsprechen dem aktuellen Modus des Umrichters.

STARTSPERRE (<u>Bit6=1</u>) ist ein Teil des "Statuswortes". Bit0=0 ist ein Teil des "Steuerwortes".

Bild 7-2. Steuerzustände

7.3.4 Drehzahl-Sollwert (Speed Reference)

Frequenz-Sollwert für den Frequenzumrichter. Der Einstellbereich beträgt -10000... 10000; Prozentsatz des Frequenzbandes zwischen eingestellter Minimum- und Maximumfrequenz.

 -10000
 =
 100,00 %
 (Drehrichtung rückwärts)

 0
 =
 0,00 %
 (Drehrichtung vorwärts)

 10000
 =
 100,00 %
 (Drehrichtung vorwärts)

7.3.5 Drehzahl-Istwert (Actual Value)

Frequenz-Istwert der Ausgangsfrequenz zum Motor. Der Bereich beträgt -10000... 10000; Prozentsatz des Frequenzbandes zwischen eingestellter Minimum- und Maximumfrequenz.

-10000	=	100,00 %	(Drehrichtung rückwärts)
0	=	0,00 %	(Drehrichtung vorwärts)
10000	=	100,00 %	(Drehrichtung vorwärts)

7.3.6 PD1-PD4

Der Profibus DP Master kann die Istwerte des Antriebes mittels Prozessdaten-Variablen lesen. Jede der vier Prozessdaten-Variablen kann zur Anzeige einer der Betriebsdaten-Variablen oder eines Fehler-codes ausgewählt werden. Die Auswahl hierzu kann auf zwei verschiedene Arten erfolgen:

über den Master:	Parameter	916.1	PD1
		916.2	PD2
		916.3	PD3
		916.4	PD4
über das Steuerpanel:	Parameter	Prozessdaten 1	PD1
		Prozessdaten 2	PD2
		Prozessdaten 3	PD3
		Prozessdaten 4	PD4

Hierzu ist der Wert des Prozessdaten-Parameters auf die Nummer der anzuzeigenden Betriebsdaten-Variable (siehe Tabelle 7-1) bzw. für Fehlercode-Anzeige auf Nummer 99 zu setzen .

Bild 7-3. Auswahl der Prozessdaten-Variablen

7.4 Parameter Daten (Parameter Data)

Unter Verwendung der PPO Typen 1 bis 2 können die Umrichter-Variablen und Fehlercodes nur gelesen, die Umrichter-Parameter hingegen gelesen und geschrieben werden.

7.4.1 Istwerte (Actual Values)

Istwerte können mit Hilfe der "Parameter-Lese-Funktion" gelesen werden.

Profibus-Parameternummern für die Umrichter-Betriebsdaten (Monitoring-Variablen):

Profibus Parameternummer	Vacon Monitoring-Variable
1	n1
2	n2
98	n98

Nummer	Betriebsdatenname	Auflg.	Dim.	Beschreibung
n1	Ausgangsfrequenz	0,01	Hz	Frequenz zum Motor
n2	Motordrehzahl	1	UpM	Berechnete Motordrehzahl
n3	Motorstrom	0,1	Α	Gemessener Motorstrom
n4	Motordrehmoment	1	%	Berechnetes Istmoment/Nennmoment des FU
n5	Motorleistung	1	%	Berechnete Istleistung/Nennleistung des FU
n6	Motorspannung	1	V	Berechnete Motorspannung

n7	Zwischenkreisspannung	1	V	Gemessene Zwischenkreisspannung
n8	Temperatur	1	°C	Temperatur des Kühlkörpers des FU
n9	Betriebstagezähler		DD.dd	Betriebstage ¹⁾ , nicht rücksetzbar
n10	Set. Betriebsstundenzähl.		HH.hh	Betriebsstunden ²⁾ , rücksetzbar mit Paneltaster b3
n11	MWh-Zähler	0,001	MWh	Gesamt MWh, nicht rücksetzbar
n12	Set. MWh-Zähler	0,001	MWh	MWh, rücksetzbar mit Paneltaster b4
n13	Analogeingang Uin	0,01	V	Spannung am Analogeingang, Reglerkarte
n14	Stromanalogeingang lin	0,01	mA	Strom zum Analogeingang, Reglerkarte
n15	Status Dig.eingang Gr. A			0 = Offener Eing., 1 = Geschloss. Eing. (aktiv)
n16	Status Did.eingang Gr. B			0 = Offener Eingang, 1 = Geschloss. Eing. (aktiv)
n17	Status dig. u. Rel.ausg.			0 = Offener Ausgang, 1 = Geschloss. Ausg. (aktiv)
n18	Programmversion			Software-Programmversion
n19	Gerätenennleistung	0,1	kW	Nennleistung des Umrichters
n20	Motor-Übertemperatur	1	%	100%= Nenntemperatur des Motors
n21	Stat. Dig.eing. Zusatzkar.			0 = Offener Eingang, 1 = Geschloss. Eing. (aktiv)

DD = volle Tage, dd = Dezimalteil eines Tages
 HH = volle Stunden, hh = Dezimalteil einer Stunde

Tabelle 7-2 Betriebsdaten

7.4.2 Parameter Lesen und Schreiben (Read and Write)

Die Vacon Variablen und Parameter können mit Hilfe der "Parameter-Lese/Schreib-Funktion" gelesen und geschrieben werden.

Profibus-Parameternummern für die Umrichter-Parameter:

Profibus- Parameternumme r	Vacon Parametergruppe	Vacon Parameternummer
101 - 199	Gruppe 1	1 - 99
201 - 299	Gruppe 2	1 - 99
801 - 899	Gruppe 8	1 - 99
901 - 999	Profibus DP Parameter	
1001 - 1099	Gruppe 9	1 - 99
1901 - 1999	Gruppe 18	1 - 99

Parameternummern, Einstellbereiche und Auflösungen entnehmen Sie der Feldbus-Applikationsbeschreibung. Die Parameterwerte sind ohne Dezimalstellen einzugeben. Die Profibus DP Parametergruppe ist nur vom Profibus DP Master aus zugänglich, nicht jedoch vom VACON CX Steuerpanel.

7.4.3 Fehlercode

Wenn ein Fehler vorhanden ist, kann der Fehlercode mit Hilfe der "Parameter-Lese-Funktion" gelesen werden.

Profibus-Parameternummer für den Fehlercode:

Profibus Parameternummer	Vacon Variable
99	Aktiver Fehlercode

Weitere Information über die Fehlercodes finden Sie im Kapitel 9 der Vacon CX/CXL/CXS - Betriebsanleitung.

8. FEHLERSUCHE

Fehler	Mögliche Ursache	Fehlersuche
Fehler F19 ist aktiv am Vacon CX	Datenkabelverbindung zwischen	Installation prüfen
	arbeitet nicht	sten Vacon Service kontaktieren
Fehler F27 ist aktiv am Vacon CX	Profibus DP Master ist nicht aktiv und Steuerplatz ist Feldbus	System Master prüfen
H3 LED Grün leuchtet nicht	Stromversorgungskabel zwischen	Installation prüfen
(Versorgungsspannung).	Steuerkarte und Profibuskarte	Ist die Installation in Ordnung näch-
	arbeitet nicht	sten Vacon Service kontaktieren
H1 LED Rot leuchtet	Feldbuskarte hat kein oder ein	Konfiguration des Profibus DP
(Datenaustausch nicht bereit)	nicht korrektes Parametrierungs-	Masters prüfen.
und n22 = 0	telegramm empfangen.	
	defektes Buskabel	Buskabel prüfen
H1 LED Rot leuchtet (Datenaustausch nicht bereit) und n22 = 1	Feldbuskarte hat kein oder ein nicht korrektes Konfigurations- telegramm empfangen.	Typendatei (type files) (GSD) prüfen

Tabelle 8-1. Fehler

9. Typendatei

9.1 GSD-Datei (GSD-file)

#Profibus_DP		
GSD_Revision	=	1
Vendor_Name	=	"Vaasa Control"
Model Name	=	"Vacon CX2020PT"
Revision	=	"1.0"
Ident Number	=	0x9500
Protocol Ident	=	0
Station Type	=	0
FMS supp	=	1
Hardware Release	=	
Software Release	=	"SW1.0"
9.6 SUDD	=	1
19 2 supp	=	1
93 75 SUDD	=	1
1875 supp	=	1
500 supp	_	1
	_	1
	_	1
	_	1
	_	1
IZM_Supp	_	1 60
MaxISUL_9.0	_	60
MaxISUI_19.2	_	60
Maxisur_93.75	=	60
Maxisur_187.5	=	100
MaxIsdr_500	=	100
MaxIsdr_1.5M	=	150
MaxTsdr_3M	=	250
Max'l'sdr_6M	=	450
MaxTsdr_12M	=	800
Redundancy	=	0
Repeater_Ctrl_Sig	=	0
24V_Pins	=	0
Implementation_Type	=	"Profibus for Vacon CX
Freeze_Mode_supp	=	1
Sync_Mode_supp	=	1
Auto_Baud_supp	=	1
Set_Slave_Add_supp	=	0
Min_Slave_Intervall	=	20
Modular_Station	=	1
Max_Module	=	4
Max_Input_Len	=	20
Max_Output_Len	=	20
Max_Data_Len	=	40
Modul_Offset	=	0
Fail_Safe	=	1
Max_Diag_Data_Len	=	6
Module = "VACON PPO	1"	0xF3, 0xF1
EndModule;		
Module = "VACON PPO	2 "	0xF3, $0xF5$
EndModule;		
Module = "VACON PPO	3 "	0xF1
EndModule;		

"

Module = "VACON PPO 4" 0xF5
EndModule;

Anlage 1: Istwertauswahl

Die Werksvorgabe für den Istwert ist die Motordrehzahl in Prozent der Maximaldrehzahl, siehe Seite 18.

Als *Istwert* können auch andere Betriebsdaten ausgewählt werden. Die *Istwertauswahl* erfolgt mit den Bits 11...15 des Steuerwortes. Mit diesen Bits kann als Istwert einer der Betriebsdaten oder der aktive Fehlercode ausgewählt werden.

Steuerwo	ort				Beschreibung
bit 15	bit 14	bit 13	bit 12	bit 11	
0	0	0	0	0	Werkseinstellung, Istdrehzahl (%)
0	0	0	0	1	n1 (siehe Tabelle 0-1)
0	0	0	1	0	n2 (siehe Tabelle 0-1)
0	0	0	1	1	n3 (siehe Tabelle 0-1)
1	1	1	0	1	n29 (siehe Tabelle 0-1)
1	1	1	1	0	Aktiver Fehlercode
1	1	1	1	1	Werkseinstellung, Istdrehzahl (%)

Zur Auswahl wird Steuerwort (bits 15...11) codiert wiefolgt:

Nummer	Betriebsdatenname	Auflsg	Ein-	Beschreibung
4	· · · · ·		neit	
<u>n1</u>	Ausgangstrequenz	0,01	HZ	Frequenz zum Motor
n2	Motordrehzahl	1	Upm	Berechnete Motordrehzahl
n3	Motorstrom	0,1	A	Gemessener Motorstrom
n4	Motordrehmoment	1	%	Berechnetes Istmoment/Nennmoment des FU
n5	Motorleistung	1	%	Berechnete Istleistung/Nennleistung des FU
n6	Motorspannung	1	V	Berechnete Motorspannung
n7	DC-Spannung	1	V	Gemessene Zwischenkreisspannung
n8	Temperatur	1	°C	Kühlkörpertemperatur des FU
n9	Betriebstagezähler		DD.dd	Gesamt-Betriebstage ¹⁾ , nicht rücksetzbar
n10	"Set"-		HH.hh	Rücksetzbarer Betriebsstundenzähler ²⁾ , mit
	Betriebsstundenzähler			programmierbarem Drucktaster b3
n11	MWh-Zähler	0,001	MWh	Gesamt MWh-Verbrauch, nicht rücksetzbar
n12	"Set"-MWh-Zähler	0,001	MWh	MWh-Verbrauch, rücksetzbar mit programmierbarem
				Drucktaster b4
n13	Analogeingang "U"	0,01	V	Analogeingangsspannung an Uin+ (Reglerkarte)
n14	Analogeingang "I"	0,01	mA	Analogeingangsstrom an KI. l _{in} + u. l _{in} - (Reglerkarte)
n15	Staus Digitaleing., Gr. A			0 = offener Eing., 1 = geschl. Eing. (aktiv)
n16	Staus Digitaleing., Gr. B			0 = offener Eing., 1 = geschl. Eing. (aktiv)
n17	Status Digital- und Relais-			0 = offener Eing., 1 = geschl. Eing. (aktiv)
	ausgänge			
n18	Programmversion			Nummer der Software-Programmversion
n19	Gerätenennleistung	0,1	kW	Zeigt Gerätenennleistung an
n20	Motor-Temperatur	1	%	100%= Temperatur des Motors ist auf den Nennwert
				gestiegen

DD = volle Tage, dd = Dezimalteil eines Tages
 HH = volle Stunden, hh = Dezimalteil

einer Stunde Tabelle 0-1: Betriebsdaten

Anlage 2. Siemens S7 Konfiguration

Anschluß der Vacon Frequenzumrichter an Siemens S7 über Profibus DP

1. Konfiguration der SIEMENS S7

- 1. Update STEP 7 "Hardware Catalog"
 - Kopieren Sie Datei vaco9500.GSD (vom FCProfi support disk) nach Ordner \STEP7\S7DATA\GSD (ver. 3.x, Name des Ordners hängt von der Step 7 Version ab)

In der STEP 7 "Hardware Konfiguration" im Editor Menü **Optionen > Update DDB Datei** anwählen.

- Der "Hardware Catalog" ist jetzt im Ordner Profibus DP \ Zusätzliche Feldgeräte\ Sonstige\ Vacon CX202OPT
- 2. S7 als DP Master konfigurieren
 - Bustyp auswählen
 - Profibusstation setzen (Adresse)
 - Übertragungsrate auswählen
 - Busprofil als Distribution I/O auswählen
- 3. Vacon als DP Slave konfigurieren
 - Vom "Hardware Catalog" **Profibus > Zusätzliche Feldgeräte > Sonstige** auswählen.
 - Drag and drop Vacon CX202OPT zum Bus
 - PPO Typ auswählen

- Vacon's Profibusadresse setzen
- STEP 7 reserviert die E/A Adresse f
 ür den DP Slave (h
 ängt vom ausgew
 ählten PPO Typ ab)
- 4. Die Konfiguration speichern und in die SPS laden
- 5. Fehler OBs in die SPS laden
 - OB86 und OB122 sind notwendig
 - Die Obs müssen nicht programmiert, aber benutzt werden (andernfalls wird die CPU durch Fehler gestoppt).

2. Buskabel an den Vacon installieren

- 1. Buskabel
 - Es wird empfohlen, den Buskabel-Schirm am Umrichter zu erden (Anschluß an Umrichtererde)
 - Der Buskabel-Schirm kann direkt oder über einen RC Filter an die Umrichtererde angeschlossen werden, Klemme X17 verwenden (siehe Profibus Betriebsanleitung, Seite 9)
- 2. Busabschluß
 - Wenn der Vacon das letzte Feldgerät am Bus ist, muß der Busabschluß installiert werden. Die Widerstände an die entsprechenden Klemmen anschließen (siehe Profibus Betriebsanleitung, Seite 9).

3. Vacon Parametereinstellungen

- 1. Folgende Parameter prüfen:
 - (Feldbus Applikation 9.1, 9.7, 9.8, 9.9, 9.10, 9.11, 9.12, 9.13) (Mehrzweck II Applikation 10.1, 10.7, 10.8, 10.9, 10.10, 10.11, 10.12, 10.13)
 - Aktiver Steuerplatz (Par 9.1/Par10.1) = Feld Bus (1)
 - Profibus Slaveadresse für den Vacon gleich wie die in der SPS setzen
 - Profibus Baud rate auf AUTO oder wie die in der SPS setzen

- PPO Typ wie den in der SPS setzen
- Netzspannung des Umrichters aus- und wiedereinschalten

4. Inbetriebnahme

- 1. Kommunikation
 - Den Vacon Umrichter an das Netz anschließen und Netzspannung einschalten
 - Master auf RUN Status setzen.
 - Die rote LED auf der Vacon Profibuskarte leuchtet nicht, falls die Kommunikation in Ordnung ist.
- 2. Fehlersuche
 - Netzspannung des Vacon Umrichters aus- und wiedereinschalten. Die Profibuskarte ließt die Parametereinstellungen nach Einschalten der Netzspannung
 - Betriebsdaten n22 (Steuertafeldisplay) und die LEDs auf der Profibuskarte (siehe Profibus Betriebsanleitung) prüfen
 - Bei Kommunikationsfehlern, Baud rate verändern (i.A. kleiner)
 - STEP 7 "hardware diagnostic" starten und CPU "diagnostic buffer" lesen

5. S7 Steuerinterface über Profibus

Mit PPO3 (2 Worte IN, 2 Worte OUT) kann direkt auf die Steuerbefehle zugegriffen werden. Die anderen PPOs nutzen Funktionsblöcke.

- 1. SPS Adresse
 - Die Steuerung benötigt minimal 4 Adressen (Worte). 2 Eingänge und 2 Ausgänge
 - Mit einem Eingangswort (IN) kann das Statuswort und der Istwert des Umrichters gelesen werden.

- Mit einem Ausgangswort (OUT) kann das Steuerwort und der Drehzahl-Sollwert in den Umrichter geschrieben werden.
- 2. Steuerung mit SPS
 - Status einlesen in die SPS (PIW)
 - Istwert in die SPS einlesen (PIW)
 - Steuerwort in den Umrichter schreiben (PQW)
 - Drehzahlsollwert in den Umrichter schreiben (PQW)
 - Die Drehrichtung des Motors kann durch einen Drehzahlsollwert mit Vorzeichen geändert werden. Negativer Wert (-1...-10000) bedeutet Linksdrehrichtung und positiver Wert (0...10000) bedeutet Rechtsdrehrichtung.

8. Inbetriebnahmetest

Zunächst:

- Prüfen, ob der aktive Steuerplatz <u>nicht</u> die Steuertafel ist. (Siehe Vacon CX/CXL/CXS Betriebsanleitung, Kap. 7.)
- Parameter Feldbussteuerung (Par9.1/Par10.1) auf 1 setzen (EIN).

SPS

- Wert **0hex** in das Steuerwort schreiben.
- Wert 47Fhex in das Steuerwort schreiben.
- Frequenzumrichterstatus ist BETRIEB (RUN)
- Wert **5000** als Sollwert schreiben (=50,00%).
- Istwert ist 5000 und die Umrichterausgangsfrequenz ist 25,00 Hz
- Wert **7Dhex** in das Steuerwort schreiben.

Frequenzumrichterstatus ist STOP

Ud00349b.doc 18.10.2000

VAASA CONTROL OY PL 25 Runsorintie 7 65381 VAASA Tel: +358-201 212 Fax: +358-201 212 205 Service: +358-040-8371 150 E-mail: vacon@vacon.com http://www.vacon.com