Dezentrale Lösungen

www.danfoss.com/drives

Projektierungs-
handbuch

Dezentrale Lösungen
Dezentrale Lösungen - Projektierungshandbuch

Inhaltsverzeichnis

Das dezentrale Konzept .. 5
 Einleitung ... 5
 Vorteile der dezentralen Auslegung ... 6
 Anwendungsbeispiele ... 13
 Produktdesign .. 19
 Bestellformular - DMS 300 .. 23
 Bestellformular - FCD 300 .. 26
 PC-Softwaretools .. 27
 Zubehör für DMS 300 und FCD 300 .. 27
 Kommunikation ... 30
 Fachgerechte Installation ... 33
 Wartung der dezentralen Produkte von Danfoss ... 37

Einführung, DMS 300 .. 38
 Betriebsanleitung .. 39
 In diesem Handbuch verwendete Symbole ... 39
 Allgemeine Warnung .. 39
 Sicherheitsbestimmungen ... 39
 Warnung vor unbeabsichtigtem Anlaufen .. 39
 Vermeiden von Beschädigungen des DMS ... 39

Mechanische Einzelheiten, DMS 300 .. 40
 Beschreibung ... 40
 Allgemeiner Aufbau ... 40
 Konstruktion .. 40
 Erforderliches Werkzeug .. 40
 Wandmontage .. 40
 Am Motor montiert .. 40
 Belüftung .. 41

Elektrische Anschlüsse, DMS 300 .. 42
 Netzstromanschluss .. 42
 Leistungsfaktorkorrektur .. 42
 Steuerkabel .. 42
 Motorthermistor .. 43
 Serielle Kommunikation .. 43
 Erdung .. 43
 Hochspannungswarnung ... 43
 Galvanische Trennung (PELV) .. 43
 Schaltplan ... 44

Einstellung des DMS 300 ... 45
 Einstellungen ... 45
 Start/Stopp-Profil einstellung .. 45
 Tabelle für die Start/Stopp-Profil einstellung: .. 45
 Auswahl der Abschaltungsklasse: ... 46
 Auswahltabelle für die Abschaltungsklasse: : .. 46
 Vollast-Stromeinstellung: .. 46
 FLC-Einstelltabelle: ... 47
 Vervollständigen der Installation: ... 47

MG.90.F3.03 - VLT ist ein eingetragenes Warenzeichen vom Danfoss
Einzelnheiten zum Betrieb, DMS 300 ... 48
Betrieb .. 48
Einschalten des DMS .. 48
Motor starten .. 48
Lösen der Bremse .. 48
Arbeiten mit der AS-i-Schnittstelle .. 48
Beschreibung von mit dem DMS verwendeten AS-i-Profilei 48
Maßnahmen bei Störungen ... 49
Deutung der *Alarm* LED .. 50

Spezifikationen und Bestellcodes, DMS 300 ... 51
Allgemeine technische Daten .. 51
Nennströme (AC53a-Nennwerte) ... 51
Bestelltypcode: .. 52
Zertifizierungen ... 52
Sicherungen .. 52
Besondere Varianten: .. 54
Motoranschluss .. 54
Angaben zur Profibus-Konnektivität .. 55
Profibus DP Slave 6 E/DC 24 V, 4 A/DC 24 V/1A ... 55
Bits-Tabelle in Steuerungs- und Zustandswort ... 56
Profibus-Stecker PCB 4 x M12 ... 56
Profibus-Adresseneinstellung: DIP-Schalter SW3 ... 57

Einleitung zu FCD 300 .. 58
Software-Version .. 58
Allgemeine Warnung ... 59
Diese Bestimmungen dienen Ihrer Sicherheit ... 59
Warnung vor unbeabsichtigtetem Anlaufen ... 59
Technologie ... 60
CE-Zeichen .. 62

Installation, FCD 300 .. 64
Mechanische Abmessungen .. 64
Abmessungen, FCD, Motormontage ... 64
Mechanische Abmessungen, Einzelmontage ... 64
Mechanische Installation ... 65
Allgemeine Informationen zur elektrischen Installation .. 68
Ohne Einbaugehäuse erworbene elektronische Teil ... 68
EMV-gemäße elektrische Installation .. 70
Erdung abgeschirmter Steuerkabel ... 72
Schaubild ... 73
RFI-Schalter J1, J2 ... 73
Position der Klemmen ... 74
Netzanschluß ... 76
Vorsicherungen .. 76
Motoranschluß ... 76
Drehrichtung des Motors ... 76
Netz- und Motoranschluss mit Umschalter .. 76
Anschluss von HAN 10E Motorstecker für T73 ... 77
Parallelschaltung von Motoren ... 77
Motorkabel .. 77
Thermischer Motorschutz ... 78
Dezentrale Lösungen - Projektierungshandbuch

Bremswiderstand ... 78
Steuerung der mechanischen Bremse 78
Elektrische Installation, Steuerkabel 79
Anschluss von Sensoren an M12-Stecker für T53, T63, T73 80
Elektrische Installation, Steuerklemmen 80
PC-Kommunikation .. 81
Relaisanschluß ... 81
Anschlußbeispiele ... 83

Programmierung, FCD 300 ... 87
LCP 2 Bedieneinheit, Option ... 87
Parameterwahl ... 90
Betrieb und Display .. 92
Parametersatzkonfiguration ... 92
Last und Motor ... 100
Gleichspannungsbremse ... 104
Motortyp, Par. 147 - FCD 300 .. 109
Sollwerte & Grenzwerte ... 110
Sollwertverarbeitung ... 110
Sollwert-Funktion .. 114
Ein- und Ausgänge ... 119
Sonderfunktionen ... 129
PID-Funktionen ... 131
Istwertverarbeitung .. 133
Seriente Kommunikation mit FCD 300 140
Steuerwort gemäß FC-Protokoll .. 144
Zustandswort gemäß FC-Profil .. 146
Schnelles E/A-FC-Profil ... 147
Steuerwort gemäß Feldbusprofi .. 147
Zustandswort gemäß Profidrive-Protokoll 148
Seriente Kommunikation .. 151
Technische Funktionen ... 159

Alles über den FCD 300 .. 164
Dynamische Bremse .. 164
Interner Bremswiderstand .. 167
Besondere Bedingungen ... 170
Galvanische Trennung (PELV) .. 170
Ableitströme und RCD-Relais .. 171
Extreme Betriebsbedingungen ... 171
dU/dt am Motor ... 172
Schalten am Eingang .. 172
Störgeräusche ... 172
Temperaturabhängige Taktfrequenz 172
Luftdruckabhängige Leistungsreduzierung 172
Leistungsreduzierung beim Betrieb mit niedriger Drehzahl 173
Motorkabelänge ... 173
Vibrationen und Erschütterungen 173
Luftfeuchtigkeit .. 173
UL-Standard ... 173
Wirkungsgrad ... 173
Störungen/Oberwellen in der Netzversorgung 174
Leistungsfaktor .. 174
Emissionstestergebnisse nach generischen Normen und PDS-Produktstandard 174
Dezentrale Lösungen - Projektierungshandbuch

Immunitätstestergebnisse gemäß generischen Standards, PDS-Produktnormen und Grundstandards .. 175
Aggressive Umgebungen .. 177
Reinigung .. 177
Statusmeldungen .. 179
Warn- und Alarmmeldungen .. 179
Warnwörter, erweiterte Zustandswörter und Alarmwörter 182
Allgemeine technische Daten .. 184
Technische Daten, Netzversorgung 3 x 380-480 V 189
Weitere Literatur ... 190
Im Lieferumfang enthalten .. 190
Werkseinstellungen .. 191

Index ... 199
Einführung

Durch die weiteren Verbesserungen im Bereich der Halbleiter und der damit verbundenen Technologien - z. B. der Feldbus-Technologie - ist es nun wieder möglich, Antriebe in unmittelbarer Nähe der Motoren zu installieren und so die Vorteile der dezentralen Installation zu nutzen, jedoch ohne die Nachteile der ersten ölgefüllten Frequenzumrichter in Kauf nehmen zu müssen.

In der Industrie geht man davon aus, dass in wenigen Jahren bis zu 30 % aller Antriebsinstallationen dezentral installiert sein werden, und der Trend zur verteilten intelligenten Steuerung ist unbestritten, da immer mehr Bauteile und Anwendungen für die dezentrale Installation entwickelt werden.

Dieses Buch bietet eine allgemeine Einführung in die grundlegenden Eigenschaften der dezentralen Installationskonzepte für die Motorsteuerung und zeigt die Unterschiede zur zentralisierten Steuerung auf. Es hilft Ihnen bei der Wahl des geeignetsten Konzepts und führt Sie durch den Auswahlprozess der entsprechenden Produkte.

Ferner enthält es umfassende Informationen zu den dezentralen Produkten von Danfoss.
Vorteile der dezentralen Anordnung

Im Folgenden wird die dezentrale Installation des Frequenzumrichters und der Motoranlasser beschrieben, hier als Motorsteuerung bezeichnet.

Es gibt zwei räumliche Konzepte für die Installation der Motorsteuerung in einem Werk, im folgenden "zentrale" und "dezentrale" Installation bezeichnet. Die beiden Typen sind in der Abbildung dargestellt.

In einer zentralen Installation
- ist die Motorsteuerung an einer zentralen Stelle platziert.

In einer dezentralen Installation
- ist die Motorsteuerung im Werk verteilt, immer in der Nähe des Motors oder am Motor montiert, der gesteuert wird.

Dezentralisiert bedeutet nicht "ohne Schaltschrank", sondern lediglich, dass die enorme Größe dank neuerartiger Konstruktionen der Komponenten, die dezentral installiert sind, reduziert werden kann. Es müssen weiterhin Schaltschränke für die Stromversorgung und für die übergreifende Steuerung vorhanden sein, und es gibt Fälle, besonders in der verarbeitenden Industrie, z. B. in Bereichen des Explosionsschutzes, wo zentrale Schaltschränke die bevorzugte Lösung bleiben.

Das Platzieren der fortschrittlichen und zuverlässigen Elektronik, die für einen reibungslosen, reaktionsstarken und sparsamen Betrieb des Motors erforderlich ist, neben - oder auf - dem Motor, vereinfacht die Modularisierung und reduziert Kabelkosten und EMV-Störungen drastisch. Weitere Vorteile:

- riesige Motorsteuerungsschränke in langen Reihen zentraler Bedienelemente werden vermieden.
- Es werden weniger Arbeiten für den Einbau und die Verdrahtung langer abgeschirmter Motorkabel mit speziell notwendigen EMV-Anschlüssen nötig.
- Die Wärmeableitung von der Versorgungselektronik wird vom Bedienelement in das Werk verlegt.
- Standardisierte Maschinenbauteile durch Modularisierung verringern Konstruktions- und Inbetriebnahmezeiten.
- Die Inbetriebnahme ist leichter und schneller.

Die dezentrale Motorsteuerung gewinnt trotz der Vorteile der zentralen Steuerung immer mehr an Bedeutung:

- kein zusätzlicher Raum rund um den Motor oder in der Nähe des Motors notwendig.
- keine Steuerkabel-Verdrahtung im Werk.
- Unabhängigkeit der Werksumgebung.

Direkte Kostenermäßnisse

Das Einsparpotenzial bei Kabeln ist beträchtlich, wie im folgenden Beispiel beschrieben.

Zentrale Installation

Die Frequenzumrichter sind abstandsgetreu mit einem Abstand L zwischen den einzelnen Frequenzumrichtern und einem Abstand h zwischen den Reihen angeordnet, ebenso mit einem Abstand h vom zentralen Stromeingangs/-schrank zur ersten Reihe. Es gibt n Reihen und N Frequenzumrichter in jeder Reihe.
Dezentrale Verkabelung

Die Abbildung zeigt, wie die dreiphasigen Stromnetzkabel mit Leitungsschleifen von einem Motor (Frequenzumrichter) zum nächsten verlegt werden können. Das Kableinsparpotential ist in Abbildung 4 dargestellt. Bei einem Abstand von 10 m zwischen den Motoren und 20 m zwischen den Reihen, zeigt sich das Kableinsparpotential in der Abbildung als Funktion.

Das Einsparpotential allein bei der Länge des Netzanschlusskabels ist enorm. Die Abbildung zeigt nur das Potential in Bezug auf Netzanschlusskabel.

Die Ergebnisse für unabgeschirmte / abgeschirmte Kabel und Kabelabmessungen trägt zu den Vorteilen der dezentralen Installation bei.

Realer Fall

Die Berechnung einer speziellen typischen Abfüllanlage mit 91 Motoren (1,5 kW), unter Berücksichtigung der Kabelabmessungen, ergab das folgende Einsparpotential für Kabel und Klemmen:

- Kabelklemmen werden von 455 auf 352 reduziert.
- EMV Kabelklemmen werden durch die Verwendung von Motorsteuerungen mit integriertem Wartungsschalter von 364 auf 182 reduziert.
- Die Länge des Netzanschlusskabels wird von 6468m auf 1180m reduziert, eine Verringerung von 5288m, außerdem werden keine abgeschirmten sondern standardmäßige Installationskabel verwendet.

Informieren Sie sich im folgenden Kapitel Vorteilhafte Installationspraktiken über Einzelheiten.

■ Minimaler Bedarf an zusätzlichen Feldbus-Kabeln.

Die Ersparnisse bei den Netzanschlusskabeln werden nicht durch die zusätzlichen Kosten für teure Feldbus-Kabel ausgeglichen. Mehr Feldbus-Kabel werden bei einer dezentralen Installation benötigt, doch da ohnehin Feldbus-Kabel im Werk verteilt werden müssen, um Sensoren oder...

15NA332.10

Kableinsparpotential in einer veranschaulichten Installation.

15NA332.10

Cable savings [m]
Moters per branch 4 6 8

Number of branches

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

14,000 12,000 10,000 8,000 6,000 4,000 2,000 0

Weniger Schränke, Kühlung und Kabelpritschen

Kürzere Inbetriebnahmezeiten

Bei dezentralen Lösungen ist die Inbetriebnahmezeit beim Endnutzer erheblich reduziert - besonders wenn die Feldbus-Kommunikation mit der dezentralen Motorsteuerung kombiniert wird.

Dezentrale Brauerei-Installation

Eine australische Brauerei hat eine Anlage von 96 dezentralen Danfoss-Frequenzumrichtern installiert, die mit DeviceNet verbunden wurden. Enorme Zeiteinsparungen wurden erzielt, da die Inbetriebnahme der regelbaren Drehzahl-Frequenzumrichter in nur wenigen Tagen durchgeführt werden konnte. Die Brauerei schätzt eine Einsparung von mehr als AUD 100.000 im Vergleich zu traditioneller zentraler Installation.

Konstruktionseinsparungen

Endnutzer wollen die endgültige Entscheidung über neue Einrichtungen verschieben - und die Produktion so schnell wie möglich beginnen, wenn die Entscheidung getroffen ist. Zeiten für "Abfall"-Entwicklung und Einführung auf dem Markt müssen reduziert werden. Dies drückt sowohl auf die Entwicklungsphase wie auch die Phase der Inbetriebnahme.

Modularisierung kann die Vorlaufzeit minimieren. Sogar Hersteller von großen Produktionseinrichtungen oder -anlagen verwenden Modularisierung um die Vorlaufzeit zu reduzieren. Bis zu 40-50 % der gesamten Zeit von Entwicklung bis zur laufenden Herstellung können eingespart werden.

Das Konzept der Modularisierung ist von Geräten wie PCs und Autos bekannt. Module mit genau beschriebenen Funktionen und Schnittstellen werden in diesen Produkten verwendet. Das gleiche Konzept kann für die Herstellung angewandt werden, auch wenn bestimmte physikalische Beschränkungen eine Rolle spielen.

Zentraler Schrank

In einer wirklich modularen Maschine sind alle Grundelemente in sich abgeschlossen und brauchen nichts außer Elektrizität, Wasser, verdichtete Luft o. ä., um zu funktionieren.

Modularisierung erfordert daher die Weiterleitung von Meldungen an die einzelnen Abschnitte und Module.
Dezentrale Lösungen - Projektierungshandbuch

Natürlich können zentrale Installationen modularisiert sein, doch dann sind die Motorsteuerungen räumlich getrennt vom Rest der Module.

Vorinstallierte Intelligenz

Verbesserte EMV

Anpassungen an Standard- und Spezialmotoren

Danfoss-Vorgelegemotor mit FCD 300.

Minimale thermische Verluste

Schlanke Gleichstrom-Verbindungen

Zur Umrichtung der Frequenz, um die Drehzahl eines AC-Motors zu verändern, benötigt man zwei Stufen: einen Gleichrichter und einen Wechselrichter. Da der Gleichrichter selbst eine wellige Gleichstromspannung erzeugt, wird oft ein Kondensator integriert, um die Spannung für den Wechselrichter zu glätten. Eine Verbindung zwischen Gleichrichter und Wechselrichter durch einen kleinen Kondensator, um die Spannung zu glätten, nennt man "schlanke DC-Verbindung". Mit einer schlanken DC-Verbindung kann der Wechselrichter nicht ganz die gleiche Spannungsamplitude erzeugen, wie die mit dem Stromnetz erzeugte, was zu einer geringeren Effizienz führt. Eine spezielle Pulsbreiten-Modulation kann zum Ausgleich der Wellen einer schlanken DC-Verbindung verwendet werden. In diesem Fall ist die Ausgangsspannung für den Motor immer noch nicht so hoch wie die Versorgungsspannungen, was zu einem höheren Verbrauch von Motorstrom bis zu 10 % führt, was die

Prinzip eines Frequenzumrichters mit DC-Verbindungsspule

Bei der Danfoss-Ausstattung werden Spulen in die DC-Verbindung in allen Frequenzumrichtern eingebracht, wie in der Abbildung dargestellt. Auf diese Weise wird eine hohe DC-Verbindungsspannung mit einer sehr geringen Spannungswelligkeit erzeugt und die elektrische Stärke des Frequenzumrichters in Bezug auf Stromstöße verbessert.

Weitere Vorteile sind die längere Lebensdauer der Kondensatoren, die reduzierte Oberwellenstörung des Stromnetzes und ein Anfangsdrehmoment von 150-160 %.

Danfoss hat sich zum Ziel gesetzt, hocheffiziente Frequenzumrichter anzubieten, die auch die Effizienz der Motoren verbessern. Teure Übergrößen und uneffizienter Betrieb müssen vermieden werden.

Umgebungstechnische Überlegungen

Alle Ecken sind abgerundet, um Staubablagerungen zu vermeiden, und die Abstände zwischen den Rippen ermöglicht eine Hochdruck-Luftreinigung, Schlauchreinigung und leichtes Reinigen mit einer Bürste.

Wasseransammlungen im Gehäuse können durch Membranen verhindert werden, die keine Flüssigkeit hereinlassen, Dampf dagegen durchlassen, wie bei Stoffen für Outdoor-Kleidung. Danfoss bietet eine spezielle Kabelstopfbuchse aus dieser Art Material, um das Problem zu beseitigen. Die Kabelstopfbuchse sollte für Anwendungen mit häufigen Temperaturschwankungen und in feuchter Umgebung verwendet werden, sowie in Geräten, die nur tagsüber benutzt werden, bei denen die Innentemperatur während der Nacht auf die Umgebungstemperatur herabsinkt.

■ Flexibilität bei der Installation

Die dezentralen Lösungen von Danfoss bieten eine außerordentlich hohe Flexibilität bei der Installation. Diese Flexibilität wird durch eine Reihe besonderer Vorteile möglich:

- Montierbar auf Danfoss Getriebemotoren
- Dezentraler Schaltschrankeinbau möglich
- Hand-Bedienfelder
- PC-Software für Konfiguration und Protokollierung
- Ein- oder zweiseitige Installation
- Optionaler Service-Schalter
- Optionaler Bremschopper und -widerstand
- Optionale externe 24-V-Notstromversorgung
- Optionale M12-Anschlüsse für externe Sensoren
- Optionaler Han 10E Motorstecker
- Feldbusunterstützung (Profibus DP V1, DeviceNet, AS-interface)
- Kompatibilität mit Standard-Netzsystemen (TN, TT, IT, Dreieckerdung)

Näheres dazu ist dem Kapitel Produktprogramm für dezentrale Produkte zu entnehmen.
Anwendungsbeispiele

Getränkeindustrie - Flaschenabfüllanlage

FCD 300 in einem Förderband zur Flaschenabfüllung

Vorteile:
- Geringerer Platzbedarf für die Schaltschrank dank dezentraler Installation aller Antriebe
- Weniger Kabel, da mehrere Antriebe über den gleichen Schaltkreis gespeist werden können
- Einfache Initialisierung über den Feldbus, da das Protokoll die Übertragung vollständiger Parameter zulässt. Nach Einstellung eines Antriebs kann das Basisprogramm auf jeden beliebigen anderen dezentralen Antrieb kopiert werden
- Die FCD-Motorleistung ist allen anderen Typen deutlich überlegen
- Vorhandene Motoren nahezu aller Marken und Typen sind mit FCD nachrüstbar
- Das aseptische IP66-Gehäuse ist ideal für feuchte Umgebungen
- Alles in einem Gehäuse: z. B. Service-Schalter, Profibus und Spannungsschleifen
Getränkeindustrie - Verpackungsmaschine

In die Verpackungsmaschine integrierte dezentrale Motorsteuerungen

Vorteile:

- Verteilung der Motorsteuerungen in der Anlage schafft Platz für andere Schaltschranknutzungen
- Die Anzahl der Antriebe in einer Anwendung kann ohne Schaltschrankweiterung erhöht werden
- Das IP66-Gehäuse ist einfach zu reinigen und beständig gegen starke Reinigungsmittel
- Gleiche Flexibilität wie bei zentral installierten Motorsteuerungen. Dezentrale Motorsteuerungen lassen sich an alle Standard-Wechselstrommotoren anpassen und verfügen über die gleiche Benutzeroberfläche und die gleichen Steckernummern
- Integrierter Profibus

Integrierter Profibus
Dezentrale Lösungen - Projektierungshandbuch

Nahrungsmittelindustrie - Kakaopulverproduktion

Alte Lösung: Motorsteuerung - dezentraler Schaltschrank

Neue Lösung: Echte dezentrale Motorsteuerung

Vorteile:

- Einfache Erweiterung der Anlagenkapazität
- Keine Schalttafel erforderlich
- LED-Statusanzeige
- Integrierter Service-Schalter
- Hohe Schutzart (IP66)
- Kostengünstige Installation
- Geringerer Platzbedarf für die neue Lösung
Förderband in der Nahrungsmittelindustrie

Effiziente Raumnutzung in der Nahrungsmittelindustrie mit dezentralen Motorsteuerungen von Danfoss

Vorteile:

- Die Anzahl der Antriebe in einer Anwendung kann ohne Schalttafelweiterung erhöht werden
- Das IP66-Gehäuse ist einfach zu reinigen und beständig gegen starke Reinigungsmittel
- Schmutzabweisende Oberfläche und Konstruktion verhindert das Anhaften von Schmutz und Produktrückständen am Antrieb
- Ausführungen zur Motor- oder Wandmontage erhältlich
- Gleiche Flexibilität wie bei zentral installierten Motorsteuerungen. Dezentrale Motorsteuerungen lassen sich an alle Standard-Wechselstrommotoren anpassen und verfügen über die gleiche Benutzeroberfläche und die gleichen Steckernummern
- Integrierter Profibus
- In das Einbaugehäuse integrierte Schnellservice-Stecker
Automobilindustrie - Hebezeug und Förderbänder

Vorteile:
- Mühelose Installation
- Optionale AS-i- oder Profibus-Steuerung
- Sensoreingang innerhalb der physikalischen Gerätegröße verfügbar
- Separate 24-V-Vorsorgung für Sensoren und Bus
- Eingebaute Bremsversorgung und -steuerung
- Einfach einsteckbare Fernsteuerung
- In das Einbaugehäuse integrierter Schleifen-Stecker (T-Stecker)
- Geringe Installations- und Bauteilkosten
- Keine zusätzlichen kostspieligen EMV-Stecker erforderlich
- Kompakt und platzsparend
- Mühelose Installation und Initialisierung
- Motormistor-Überwachungseingang

Dezentrale Installation in der Automobilindustrie
Nachrüstung vorhandener Anwendungen

Nachrüstung einer vorhandenen Anwendung mit Drehzahlregelung

Vorteile:

- Dank dezentraler Motorsteuerungen kein großer Schaltschrank erforderlich
- Keine kostspielige Verkabelung: Alle Motoren werden mit vorhandenen Leistungskabeln, Rohren und lokalen Schaltern betrieben
- Alle Motorsteuerungen können via Profibus über den vorhandenen zentralen Schaltschrank gesteuert werden
■ Produktprogramm für dezentrale Produkte

Das dezentrale Konzept von Danfoss beinhaltet Motorsteuerungen jeder Art - von Motorstartern/Softstartern bis hin zu Frequenzumrichtern.

Motorstarter und Softstarter (DMS 300) sorgen dafür, dass Ihre Anwendung sanfter und intelligenter anläuft und stoppt als bei normalem DOL-Betrieb (direktes Einschalten), haben darüber hinaus jedoch keinen Einfluss auf den Betrieb.

Frequenzumrichter (FCD 300) werden für folgende Anforderungen eingesetzt:

- Variable Drehzahl
- Präzise Drehzahl
- Definierte Drehzahlrampen bei Start und/oder Stopp
- Kürzere Stoppzeiten (Bremsen)

Danfoss bietet dezentrale Motorsteuerungen von 0,18 kW bis 3 kW an (Anschluss an Motoren mit bis zu 4 KW/5 PS). Dieses Kapitel enthält Informationen zu verschiedenen optionalen Funktionen und dem verfügbaren Zubehör.

■ Flexible Installationsoptionen

Die dezentralen Motorsteuerungen der Serien FCD 300 und DMS 300 von Danfoss können mit den folgenden Optionen - die jeweils spezifische Vorteile bieten - an die Einbausituation angepasst werden:

1. Alleinstehend nahe dem Motor ("Wandmontage")

 Motormarke frei wählbar
 Einfaches Nachrüsten des vorhandenen Motors
 Einfache Motorschnittstelle (kurzes Kabel)
 Mühlloser Zugang für Diagnose und optimale Wartungsfreundlichkeit

2. Montage direkt am Motor ("Motormontage")

 Große Auswahl an Motormarken
 Kein abgeschirmtes Motorkabel erforderlich

3. "Vormontiert" an Danfoss Bauer Getriebemotoren

 Feste Motor/Elektronik-Kombination aus einer Hand
 Mühllose Montage, nur eine Einheit
 Kein abgeschirmtes Motorkabel erforderlich
 Klare Verantwortlichkeit für die Gesamtlösung

Da die elektronischen Bauteile identisch sind - gleiche Klemmenfunktionen, ähnlicher Betrieb und ähnliche Bau- und Ersatzteile für alle Antriebe - sind die drei Montagekonzepte frei kombinierbar.
Ein Produkt konfigurieren
Die dezentralen Motorsteuerungsreihen DMS 300 und FCD 300 werden mit einem Typencode konfiguriert (siehe auch Bestellen):

DMS 330 P T4 P66 XX D0 Fxx Txx C0
FCD 3xx P T4 P66 R1 XX Dx Fxx Txx C0

Netzspannung
DMS 300/FCD 300 sind für 3-phasige Netzspannung 380-480 V lieferbar.

Wahl des Motoranlassers
Der Motoranlasser DMS 300 deckt den ganzen Leistungsbereich von 0,18-3 kW in einem Gerät ab.

Wahl des Frequenzumrichters
Ein Frequenzumrichter muss auf der Grundlage des gegebenen Motorstroms bei maximaler Last des Geräts ausgewählt werden. Der Nennausgangstrom des Frequenzumrichters IINV. muss gleich oder größer als der erforderliche Motorstrom sein.

<table>
<thead>
<tr>
<th>Typ</th>
<th>PnV [kW]</th>
<th>PS</th>
</tr>
</thead>
<tbody>
<tr>
<td>303</td>
<td>0.37</td>
<td>0.50</td>
</tr>
<tr>
<td>305</td>
<td>0.55</td>
<td>0.75</td>
</tr>
<tr>
<td>307</td>
<td>0.75</td>
<td>1.0</td>
</tr>
<tr>
<td>311</td>
<td>1.1</td>
<td>1.5</td>
</tr>
<tr>
<td>315</td>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>322</td>
<td>2.2</td>
<td>3.0</td>
</tr>
<tr>
<td>330</td>
<td>3.0</td>
<td>4.0</td>
</tr>
<tr>
<td>335**</td>
<td>3.3</td>
<td>5.0*</td>
</tr>
</tbody>
</table>

* Netz-/Motorspannung 3 x 460-480 V
** t_amb max. 35° C.

Gehäuse
DMS 300 / FCD 300 Geräte sind standardmäßig wasser- und staubgeschützt. Weitere Informationen finden Sie im Abschnitt Technische Daten.

Bremse

Externe 24 V-Versorgung
Eine externe 24 V DC-Versorgung für den Steuerteil ist bei den Ausführungen EX und EB des FCD 300 erhältlich.
Dezentrale Lösungen - Projektierungshandbuch

- zeigen die beiden Tabellen. Kurzerklärungen einer Funktion sind unterstrichen.

Technische Daten und Details finden Sie unter Technische Angaben.

■ Ausführungen im Installationsgehäuse

Anschlüsse rechts
Kabeleinführungsoffnungen für alle Kabeleinführungen sind nur auf der rechten Seite (Sicht vom Antriebsende des Motors) vorgesehen. Diese Ausführung ist sinnvoll, wenn die Kabeleinführung nur aus einer Richtung erfolgen soll (nur Serie FCD 300).

Anschlüsse auf zwei Seiten
Kabeleinführungsoffnungen für Kabeleinführungen sind auf beiden Seiten vorgesehen, sodass das Kabel aus beiden Richtungen eingeführt werden kann.

Es sind Verschraubungen mit metrischem Gewinde und NPT-Gewinde erhältlich (ausgewählte Optionen).

Stekbare Verbindungen und Möglichkeit zur Verlegung der Netzversorgung über Leitungsschleifen zwischen Frequenzumrichtern (4 mm²-Leitung).

Der untere Teil enthält gut gegen Staub, Strahlwasser und Reinigungsmittel geschützte Federzugklemmen-Anschlüsse und Schleifeneinrichtungen für Leistungs- und Feldbuskabel. (Nicht bei DMS 300 ST und SB.)

Serviceschalter auf der rechten Seite (Sicht vom Antriebsende des Motors). Ein verriegelbarer Schalter, integriert im Gehäuse zur Trennung von Motor oder Frequenzumrichter.

4 Sensorstecker; M12 auf der rechten Seite (Sicht von Antriebsende des Motors). Durchschleifen von 2 ext. 24 V-Versorgungen.

Stekbare Verbindungen dezentraler E/A wie Sensoren und die externe Stromversorgung dieser Sensoren.

Motorstecker HARTING 10 E auf der rechten Seite (Sicht vom Antriebsende des Motors), verkabelt nach DESINA-Norm (siehe Elektrische Installation).

DMS 300 Dezentraler elektronischer Motoranlasser

DMS 300 - Kombination verschiedener Ausführungen

Installationsmerkmale

<table>
<thead>
<tr>
<th>Montage</th>
<th>Motor</th>
<th>Wand</th>
<th>Motor</th>
<th>Wand</th>
<th>Motor</th>
<th>Wand</th>
<th>Wand</th>
<th>Wand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steckbar</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Wartungsschalter

- - - - X X - -

Sensorstecker

- - - - - - 4 x M12 4 x M12

Motorstecker

- - - - - - - -

Bestellcodes

DMS 330 P T4 P66 XX D0 Fxx Txx C0

Metrisches Gewinde (NPT-Gewinde)

<table>
<thead>
<tr>
<th></th>
<th>T10</th>
<th>T50</th>
<th>T12</th>
<th>T52</th>
<th>T22</th>
<th>T62</th>
<th>T53</th>
<th>T73</th>
</tr>
</thead>
</table>

Funktionsmerkmale

Grundfunktionen (siehe unten)

<table>
<thead>
<tr>
<th></th>
<th>ST</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Bremsssteuerung</td>
<td>SB</td>
<td></td>
</tr>
</tbody>
</table>

+ Stromüberwachung

- EX

+ Stromüberwachung + Bremssteuerung

EB

+ Stromüberwachung + Bremssteuerung + Reversierung

ER

Kommunikation

Kein Bus F00 -

AS-Schnittstelle F70

Profibus F12*

F12

- = nicht lieferbar

* fragen Sie den Vertrieb von Danfoss nach der Verfügbarkeit

Grundfunktionen

Elektronischer Start/Stopp des Motors

Weicher Start/Stopp

Erweiterte Funktionen

Reversierung für bidirektionalen Betrieb des Motors

Bremssteuerung und Versorgung der elektromechanischen Bremse

Strom-Überwachung für elektronischen Motorschutz

MG.90.F3.03 - VLT ist ein eingetragenes Warenzeichen vom Danfoss
Dezentrale Lösungen - Projektierungshandbuch

Bestellformular - DMS 300

DMS 300 - P - T4 - P66 - DO - F - T - CO

Versorgungsspannungen
350: 3,0 kW

Anwendungsbereich: Prozess
Netzspannung
5 x 380-480V

Gehäuseschutzklasse IP66

Hardware-Vorlonle
Standard
Standard mit Bremse
Erweitert
Erweitert mit Bremse
Erweitert mit Bremse und Reversierung

Display
Kein Display

Feldbus
Ohne Feldbus
Profibus DP 12 Mbaud
AS-1 bus

Ausnahmen:
Nur zusammen mit 113, 153 & 173
Nicht zusammen mit ST & SB

Klemmenanschlüsse

Anschlusskosten
Doppelseitig - metrisch, am Motor montiert, keine Stecker
Doppelseitig - metrisch, am Motor montiert
Doppelseitig - metrisch, am Motor montiert, Sensorstecker
Service-Schalter - metrisch, am Motor montiert
Doppelseitig - metrisch, an der Wand montiert, keine Stecker
Doppelseitig - metrisch, an der Wand montiert
Doppelseitig - metrisch, an der Wand montiert, Stecker
Service-Schalter - metrisch, an der Wand montiert

Nur zusammen mit ST & SB
Nicht zusammen mit ST & SB
Nicht zusammen mit ST & SB
Nicht zusammen mit ST & SB und nur zusammen mit F12
Nicht zusammen mit ST & SB
Nicht zusammen mit ST & SB
Nicht zusammen mit ST & SB
Nicht zusammen mit ST & SB und nur zusammen mit F12

Vollständig konforme Beschichtung
Ohne Beschichtung

MG.90.F3.03 - VLT ist ein eingetragenes Warenzeichen vom Danfoss
FCD 300 Dezentraler Frequenzumrichter

FCD 300: Kombination verschiedener Ausführungen

<table>
<thead>
<tr>
<th>Installationsmerkmale</th>
<th>Montage</th>
<th>Motor</th>
<th>Wand</th>
<th>Motor</th>
<th>Wand</th>
<th>Motor</th>
<th>Wand</th>
<th>Wand</th>
<th>Wand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kabeleinlässe</td>
<td>Rechte Seite</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Wartungsschalter</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sensorstecker</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4x M12</td>
<td>4x M12</td>
</tr>
<tr>
<td>Motorstecker</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ATEX 22</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bestellcodes</td>
<td>FCD 3xx P T4 P66 R1 XX Dx Fxx Txx C0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metrisches Gewinde (NPT-Gewinde)</th>
<th>T11</th>
<th>T51</th>
<th>T12</th>
<th>T52</th>
<th>T22</th>
<th>T62</th>
<th>T63</th>
<th>T73</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(T16)</td>
<td>(T56)</td>
<td>(T26)</td>
<td>(T66)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
</tbody>
</table>

| Display-Anschluss | Nicht lieferbar nur D0 | DC | DC |

<table>
<thead>
<tr>
<th>Funktionsmerkmale</th>
<th>Grundfunktionen (siehe unten)</th>
<th>ST</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 24 extern gesichert</td>
<td>EX</td>
<td></td>
</tr>
<tr>
<td>+ 24 extern gesichert + Dynamische Bremse + Bremssteuerung</td>
<td>EB</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kommunikation</th>
<th>RS 485</th>
<th>F00</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS-Schnittstelle</td>
<td>F70</td>
<td></td>
</tr>
<tr>
<td>Profibus 3 MB</td>
<td>F10</td>
<td></td>
</tr>
<tr>
<td>Profibus 12 MB</td>
<td>F12</td>
<td></td>
</tr>
<tr>
<td>DeviceNet</td>
<td>F30</td>
<td></td>
</tr>
</tbody>
</table>

* ATEX 22: Geeignet in staubiger Umgebung entsprechend der ATEX-Richtlinie (ATmosphäre EXplosive)

Grundfunktionen
- Einstellbare Motordrehzahl
- Definierte Drehzahlrampen - hoch und runter
- Funktionen und Betriebskonzepte ähnlich anderer VLT-Reihen.
- Elektronischer Motorschutz und Reversierung sind immer vorhanden

Erweiterte Funktionen
- 24 V externe Sicherung von Steuerung und Kommunikation
- Bremssteuerung und Versorgung der elektromechanischen Bremse

Dynamische Bremse (Bremswiderstand ist optional siehe Bremswiderstände)
Die nachstehenden Erklärungen beziehen sich auf das Bestellformular.

Leistungsgrößen (Positionen 1-6):
0,37 kW – 3,3 kW (Siehe Auswahltablelle Leistungsgrößen)

Anwendungsbereich (Position 7):
- P-Prozess

Netzspannung (Positionen 8-9):
- T4 - dreiphasige 380-480 V-Versorgungsspannung

Gehäuse (Positionen 10-12):
Das Gehäuse bietet Schutz gegenüber staubigen, feuchten und aggressiven Umgebungen.
- P66 - Geschütztes IP66-Gehäuse (zu Ausnahmen siehe Installationsgehäuse T00, T73)

Hardwareausführung (Positionen 13-14):
- ST - Standardhardware
- EX - externe 24 V-Stromversorgung für Steuerkarte
- EB - externe 24 V-Versorgung der Steuerkarte, der Steuerung und der Versorgung der mechanischen Bremse sowie eines zusätzlichen Bremschoppers.

EMV-Filter (Positionen 15-16):
- R1 - Konformität mit Filterklasse A1

Display-Einheit (LCP) (Positionen 17-18):
Anschlussmöglichkeit für Display und Tastatur
- D0 - Kein steckbarer Displayanschluss in der Einheit
- DC - Displayanschluss mit Stecker (nicht lieferbar für Installationsgehäuseausführungen mit Anschlüssen nur rechts*)

Feldbus-Optionskarte (Positionen 19-21):
Es ist eine große Auswahl an Hochleistungs-Feldbusoptionen verfügbar (integriert)
- F00 - Keine integrierte Feldbus-Option
- F10 - Profibus DP V0/V1 3 MBaud
- F12 - Profibus DP V0/V1 12 MBaud
- F30 - DeviceNet
- F70 - AS-Interface

Installationsgehäuse (Positionen 22-24):
- T00 - Kein Installationsgehäuse
- T11 - Installationsgehäuse, Motormontage, metrisches Gewinde, nur rechte Seite
- T12 - Installationsgehäuse, Motormontage, metrisches Gewinde, doppeleilig
- T16 - Installationsgehäuse, Motormontage, NPT-Gewinde, doppeleilig
- T22 - Installationsgehäuse, Motormontage, metrisches Gewinde, doppeleilig, Serviceschalter
- T26 - Installationsgehäuse, Motormontage, NPT-Gewinde, doppeleilig, Serviceschalter
- T51 - Installationsgehäuse, Wandmontage, metrisches Gewinde, nur rechte Seite
- T52 - Installationsgehäuse, Wandmontage, metrisches Gewinde, doppeleilig
- T56 - Installationsgehäuse, Wandmontage, NPT-Gewinde, doppeleilig
- T62 - Installationsgehäuse, Wandmontage, metrisches Gewinde, doppeleilig, Serviceschalter
- T66 - Installationsgehäuse, Wandmontage, NPT-Gewinde, doppeleilig, Serviceschalter
- T63 - Installationsgehäuse, Wandmontage, metrisches Gewinde, doppeleilig, Serviceschalter, Sensorstecker
- T73 - Installationsgehäuse, Wandmontage, metrisches Gewinde, doppeleilig, Motorstecker, Sensorstecker, Viton-Dichtung

Beschichtung (Positionen 25-26):
Das IP66-Gehäuse bietet dem Frequenzumrichter Schutz gegenüber aggressiven Umgebungen, wodurch beschichtete Leiterplatten praktisch überflüssig sind.
- C0 - Nicht beschichtete Platten
Dezentrale Lösungen - Projektierungshandbuch

Bestellformular - FCD 300

Leistungsgrößen

303
305
307
311
315
322
330
335

Anwendungsbereich

P

Netzspannung

T4

Gehäuse

P66

Hardware-Variante

ST

EX

EB

Funkentstörfilter

R1

Displayeinheit (LCF)

DD

DC

Feldbus-Optionskarte

F00

F10

F12

F30

F70

Einbaugehäuse

T00

T11

T12

T16

T22

T26

T51

T52

T56

T62

T63

T66

T73

Datenum

Kopieren Sie das Bestellformular. Füllen Sie es aus und senden bzw. faxen Sie es an Ihre Danfoss-Vertriebsstelle.
Dezentrale Lösungen - Projektierungshandbuch

PC-Softwaretools

PC-Software - MCT 10

Alle Frequenzumrichter sind mit einer seriellen Schnittstelle ausgerüstet. Wir bieten ein PC-Tool für den Datenaustausch zwischen PC und Frequenzumrichter an, die VLT Motion Control Tool Setup-Sofware MCT.

MCT 10 Konfigurationssoftware

MCT 10 wurde als anwendungsfreundliches interaktives Tool zum Einrichten von Parametern in unseren Frequenzumrichtern entwickelt. Die MCT 10 Konfigurationsssoftware eignet sich für folgende Anwendungen:
- Offline-Planung eines Datenaustauschnetzes
- MCT 10 enthält eine vollständige Frequenzumrichter-Datenbank
- Online-Inbetriebnahme von Frequenzumrichtern
- Speichern der Einstellungen aller Frequenzumrichter
- Austauschen eines Frequenzumrichters in einem Netzwerk
- Erweiterung bestehender Netzerke
- Künftig entwickelte Frequenzumrichter werden unterstützt.

MCT 10 Konfigurationssupport Profitbus DP-V1 über eine Verbindung der Masterklasse 2.

Bestellnummer:

Bestellen Sie Ihre CD mit der MCT 10-Konfigurationssoftware unter der Bestellnummer 130B1000.

Zubehör für DMS 300 und FCD 300

<table>
<thead>
<tr>
<th>Typ</th>
<th>Beschreibung</th>
<th>Bestellnr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCP2-Bedieneinheit</td>
<td>FCD LCP2-Bedieneinheit zur Programmierung des Frequenzumrichters</td>
<td>175N0131</td>
</tr>
<tr>
<td>Kabel für LCP2-Bedieneinheit</td>
<td>Kabel zwischen LCP2 und Frequenzumrichter</td>
<td>175N0162</td>
</tr>
<tr>
<td>LCP2-Fern-Einbausatz</td>
<td>FCD Fern-Einbausatz für LCP2-Bedieneinheit (einschl. 3 m Kabel, ohne LCP2)</td>
<td>175N0160</td>
</tr>
<tr>
<td>LOP-Einheit (Local Operation Pad)</td>
<td>FCD Die LOP-Einheit kann zur Einstellung des Sollwerts und von Start/Stopp über die Steuerklemmen verwendet werden</td>
<td>175N0128</td>
</tr>
<tr>
<td>Motoradapterplatte</td>
<td>DMS/FCD Platte für die Anpassung von Motoren, die nicht von Danfoss Bauer sind</td>
<td>175N2115</td>
</tr>
<tr>
<td>Membrane</td>
<td>DMS/FCD Membrane, die Kondensation verhindert</td>
<td>175N2116</td>
</tr>
<tr>
<td>Steckersatz für LCP2</td>
<td>FCD Stecker für LCP2 zur Montage im Anschlusskasten.</td>
<td>175N2118</td>
</tr>
<tr>
<td>Motorsternklemme</td>
<td>DMS/FCD Klemme für die Verbindung von Motorkabeln (Sternpunkt)</td>
<td>175N2119</td>
</tr>
<tr>
<td>Installationssatz</td>
<td>FCD Installationsatz zum Einbau in Schaltschränken</td>
<td>175N2207</td>
</tr>
<tr>
<td>M 12-Stecker</td>
<td>FCD z., B. für DeviceNet</td>
<td>175N2279</td>
</tr>
<tr>
<td>Viton-Dichtung</td>
<td>FCD 303-315 Für Einsatz in Lackiererei geeignet</td>
<td>175N2431</td>
</tr>
<tr>
<td>Viton-Dichtung</td>
<td>FCD 322-335 Für Einsatz in Lackiererei geeignet</td>
<td>175N2450</td>
</tr>
<tr>
<td>Datenkabel</td>
<td>FCD Für PC-Kommunikation</td>
<td>175N2491</td>
</tr>
<tr>
<td>Leiterplatterklemme</td>
<td>FCD Klemme für 24 V-Vertelung</td>
<td>175N2550</td>
</tr>
<tr>
<td>Ext. PE-Klemme</td>
<td>DMS/FCD Edelstahl</td>
<td>175N2703</td>
</tr>
<tr>
<td>Externe PE-Klemme</td>
<td>DMS/FDM Messing vernickelt</td>
<td>175N2704</td>
</tr>
</tbody>
</table>

Das Installationsgehäuse kann mit oder ohne abgedichtetem Stecker (IP 66) montiert werden, zum Anschluss des Displays LCP2 (Code DC). Der Stecker kann separat bestellt werden (nicht für einseitige Installationsgehäuse).
Dezentrale Lösungen - Projektierungshandbuch

LCP2 Tastatur/Display 175N0131 (für die FCD 300-Reihe)
Alfanumerisches Display zur Programmierung des Frequenzumrichters.

Kabel für LCP2 175N0162 (für die FCD 300-Reihe)
Vorkonfektioniertes Kabel zur Verwendung zwischen Frequenzumrichter und LCP2.

Datenkabel für PC-Kommunikation 175N2491 (für die FCD 300-Reihe)
Verbindet einen Umrichter (z. B. USB) mit dem LCP2-Stecker.

Fernbedienungseinbausatz für LCP2 175N0160 (für die FCD 300-Reihe)
Set für den permanenten Einbau des LCP2 in ein Gehäuse.

Lüftungsmembran 175N2116
Membran zur Vermeidung von Wasseransammlungen durch Kondensation in Gehäusen.

Sternpunktklemmen 175N2119

5-poliger M12 Stecker für z. B. DeviceNet 175N2279 (für die FCD 300-Reihe)
Der Stecker, Typ Mikro, M12 kann in das Stopfbuchsenloch des Installationsgehäuses eingebaut werden. Der Stecker kann auch für andere Zwecke verwendet werden, etwa zum Anschluss von Sensoren.

5-poliger M12-Stecker für AS-Schnittstelle 175N2281
Der Stecker, M12, kann in die Stopfbuchse des Installationsgehäuses eingebaut werden.

Viton-Dichtung für FCD 303-315 175N2431
Mit dieser Dichtung kann der FCD in Anstrichhallen z. B. in der Automobilindustrie verwendet werden.

Viton-Dichtung für FCD 322-335 175N2450
Mit dieser Dichtung kann der FCD in Anstrichhallen z. B. in der Automobilindustrie verwendet werden.

Bremswiderstände (nur für FCD 300)
Intern installierbare Bremswiderstände für Bremsung im Kurzzeitarbeitszyklus. Die Widerstände sind selbstschützend.
Einzellipulsbremsung ca. 0,6 kJ alle 1-2 Minuten.
Interne Bremswiderstände können bei FCD 303-315 mit Serviceschalter nicht installiert werden.

<table>
<thead>
<tr>
<th>Typ FCD</th>
<th>PMotor kW</th>
<th>Rmin.</th>
<th>R</th>
<th>Arbeitszyklus ca. %</th>
<th>Bestellnr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>303</td>
<td>0,37</td>
<td>520</td>
<td>1720</td>
<td>5</td>
<td>175N2154</td>
</tr>
<tr>
<td>305</td>
<td>0,55</td>
<td>405</td>
<td>1720</td>
<td>3</td>
<td>175N2154</td>
</tr>
<tr>
<td>307</td>
<td>0,75</td>
<td>331</td>
<td>1720</td>
<td>2</td>
<td>175N2154</td>
</tr>
<tr>
<td>311</td>
<td>1,1</td>
<td>243</td>
<td>350</td>
<td>1,5</td>
<td>175N2117</td>
</tr>
<tr>
<td>315</td>
<td>1,5</td>
<td>197</td>
<td>350</td>
<td>1</td>
<td>175N2117</td>
</tr>
<tr>
<td>322</td>
<td>2,2</td>
<td>140</td>
<td>350</td>
<td>1</td>
<td>175N2117</td>
</tr>
<tr>
<td>330</td>
<td>3,0</td>
<td>104</td>
<td>350</td>
<td>0,7</td>
<td>175N2117</td>
</tr>
<tr>
<td>335</td>
<td>3,3</td>
<td>104</td>
<td>350</td>
<td>0,5</td>
<td>175N2117</td>
</tr>
</tbody>
</table>

MG.90.F3.03 - VLT ist ein eingetragenes Warenzeichen vom Danfoss
Dezentrale Lösungen - Projektierungshandbuch

Flatpack-Bremswiderstände IP65

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>303 (400 V)</td>
<td>0.37</td>
<td>520</td>
<td>830 Ω / 100 W</td>
<td>20</td>
<td>1000</td>
<td>2397</td>
</tr>
<tr>
<td>305 (400 V)</td>
<td>0.55</td>
<td>405</td>
<td>830 Ω / 100 W</td>
<td>20</td>
<td>1000</td>
<td>2397</td>
</tr>
<tr>
<td>307 (400 V)</td>
<td>0.75</td>
<td>331</td>
<td>620 Ω / 100 W</td>
<td>14</td>
<td>1001</td>
<td>2396</td>
</tr>
<tr>
<td>311 (400 V)</td>
<td>1.10</td>
<td>243</td>
<td>430 Ω / 100 W</td>
<td>8</td>
<td>1002</td>
<td>2395</td>
</tr>
<tr>
<td>315 (400 V)</td>
<td>1.50</td>
<td>197</td>
<td>310 Ω / 200 W</td>
<td>16</td>
<td>0984</td>
<td>2400</td>
</tr>
<tr>
<td>322 (400 V)</td>
<td>2.20</td>
<td>140</td>
<td>210 Ω / 200 W</td>
<td>9</td>
<td>0987</td>
<td>2399</td>
</tr>
<tr>
<td>330 (400 V)</td>
<td>3.00</td>
<td>104</td>
<td>150 Ω / 200 W</td>
<td>5.5</td>
<td>0989</td>
<td>2398</td>
</tr>
<tr>
<td>335 (400 V)</td>
<td>3.30</td>
<td>104</td>
<td>150 Ω / 200 W</td>
<td>5.5</td>
<td>0989</td>
<td>2398</td>
</tr>
</tbody>
</table>

Einbauhalterung für Bremswiderstände

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bestellnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>303-315</td>
<td>175Nxxxx</td>
</tr>
<tr>
<td>322-335</td>
<td>2401</td>
</tr>
</tbody>
</table>

Wickeldraht-Bremswiderstände Arbeitszyklus 40 %

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>303 (400 V)</td>
<td>120</td>
<td>0.37</td>
<td>520</td>
<td>830</td>
<td>0.45</td>
<td>0.7</td>
<td>1976</td>
<td>1,5*</td>
</tr>
<tr>
<td>305 (400 V)</td>
<td>120</td>
<td>0.55</td>
<td>405</td>
<td>830</td>
<td>0.45</td>
<td>0.7</td>
<td>1976</td>
<td>1,5*</td>
</tr>
<tr>
<td>307 (400 V)</td>
<td>120</td>
<td>0.75</td>
<td>331</td>
<td>620</td>
<td>0.32</td>
<td>0.7</td>
<td>1910</td>
<td>1,5*</td>
</tr>
<tr>
<td>311 (400 V)</td>
<td>120</td>
<td>1.1</td>
<td>243</td>
<td>430</td>
<td>0.85</td>
<td>1.4</td>
<td>1911</td>
<td>1,5*</td>
</tr>
<tr>
<td>315 (400 V)</td>
<td>120</td>
<td>1.5</td>
<td>197</td>
<td>330</td>
<td>0.85</td>
<td>1.6</td>
<td>1912</td>
<td>1,5*</td>
</tr>
<tr>
<td>322 (400 V)</td>
<td>120</td>
<td>2.2</td>
<td>140</td>
<td>220</td>
<td>1.00</td>
<td>2.1</td>
<td>1913</td>
<td>1,5*</td>
</tr>
<tr>
<td>330 (400 V)</td>
<td>120</td>
<td>3.0</td>
<td>104</td>
<td>150</td>
<td>1.35</td>
<td>3.0</td>
<td>1914</td>
<td>1,5*</td>
</tr>
<tr>
<td>335 (400 V)</td>
<td>120</td>
<td>3.3</td>
<td>104</td>
<td>150</td>
<td>1.35</td>
<td>3.0</td>
<td>1914</td>
<td>1,5*</td>
</tr>
</tbody>
</table>

*Nationale und örtliche Vorschriften sind stets zu beachten.

PMotor : Nennmotorgröße für VLT-Typ
Rmin : Zulässiger Mindestbremswiderstand
Rrec : Empfohlener Bremswiderstand (Danfoss)
Pb, max : Nennleistung des Bremswiderstands laut Zulieferer
Therm. Relais : Auslösebremsstrom des Thermorelais
Bestellnummer : Bestellnummern für Bremswiderstände von Danfoss
Kabelquerschnitt : Empfohlener Mindestwert bei PVC-isoliertem Kupferkabel, 30 °C Umgebungstemperatur und normaler Wärmeableitung

Abmessungen der Wickeldraht-Bremswiderstände siehe Anleitung MI.90.FX.YY

Extern befestigte Bremswiderstände allgemein
Keine scharfen Reinigungsmittel verwenden. Reinigungsmittel müssen pH-neutral sein.

Entnehmen Sie die Abmessungen der Bremswiderstände dem Kapitel *Dynamische Bremse*.
Information und Kommunikation

Die Kommunikationsfähigkeit von Geräten und kontinuierlich transparente Informationskanäle sind für die Automatisierungskonzepte der Zukunft unverzichtbar.

Die IT bietet sich als Instrument zur Optimierung von Systemprozessen an und ermöglicht so die effizientere Nutzung von Energie, Material und Investitionen.

Industrielle Kommunikationssysteme haben hier eine Schlüsselfunktion.

Zellebene

Feldebene

Sensor-/Stellgliedebene

Binäre Signale von Sensoren und Stellgliedern werden ausschließlich zyklisch mittels Buskommunikation übertragen.

Profibus

Profibus gewährleistet die Kommunikation zwischen Geräten unterschiedlicher Hersteller ohne spezielle Anpassungen der Schnittstellen und kann sowohl für schnelle, zeitkritische Anwendungen als auch für komplexe Kommunikationsaufgaben eingesetzt werden. Dank der ständigen technischen Weiterentwicklungen ist Profibus weitgehend als das führende industrielle Kommunikationssystem der Zukunft anerkannt.

Über 2.000 Produkte von rund 250 Profibus-Anbietern sind heute erhältlich. Mehr als 6,5 Millionen Geräte aus den verschiedensten Produktbereichen sind installiert und kommen in mehr als 500.000 Anwendungen in der Fertigung und Prozessautomatisierung erfolgreich zum Einsatz.

Danfoss Drives bietet eine kostenoptimale Profibus-Lösung an.

- MCT-10 Softwaretool für den Zugriff via Standard-PC
- Einfache zweiadrige Verbindung
- Universelles, weltweit akzeptiertes Produkt
- Kompatibilität mit der internationalen Norm EM 50170
- Kommunikationsgeschwindigkeit von 12 MBaud
- Zugriff auf die Frequenzumrichter-Masterdatei erleichtert die Planung
- Entspricht der Richtlinie PROFIDRIVE
- Integrierte Lösung
- Alle Frequenzumrichter mit Profibus sind von der Profibus-Organisation zertifiziert
- Frequenzumrichter von Danfoss unterstützen Profibus DP V1

Profibus DP V1 für zwei verschiedene Einsatzzwecke

Feldbus-Systeme werden in modernen Automatisierungsanwendungen für zwei sehr unterschiedliche Zwecke mit sehr unterschiedlichen Anforderungen eingesetzt. Zum einen ist dies die Übertragung von Signalen, die den Prozess als solchen betreffen, zum anderen die Kommunikation für die Bereiche Wartung, Initialisierung und Setup.

Dies steht im Widerspruch zum zweiten Anwendungsbereich des Feldbus als zeitsparender Bus für Setup und Diagnose. Setup und Diagnose sind
Dezentrale Lösungen - Projektierungshandbuch

nicht zeitkritisch, finden nicht kontinuierlich statt, und setzen eine größere Datenmenge je Telegramm voraus. Zudem werden diese Informationen üblicherweise über einen PC oder ein Schnittstellengerät (HMI) und nicht wie bei der zyklischen Kommunikation über den Master (in der Regel ein SPS) gesteuert. Standard-Proﬁ bus unterstützt keine Netzwerke mit mehreren Mastern, daher müssen die Setup- und Diagnosedaten im vom Master verarbeiteten Standardtelegramm enthalten sein. Dadurch entstehen sehr lange und zeitaufwändige Telegramme, die Platz für nur sporadisch genutzte Informationen bieten müssen.

Master der Masterklasse 2 können im Proﬁ bus-Netz beliebig platziert werden, und der Kommunikationskanal kann jederzeit ohne Einfluss auf die zyklische Kommunikation geöffnet und geschlossen werden. So kann azyklische Kommunikation auch unabhängig von der zyklischen Kommunikation stattﬁ nden, z. B. zur Übertragung vollständiger Programme oder Parametersätze.

Vorteile für den Benutzer:

- Verbindung zu den Motorsteuerungen ist von jedem Teil des Netzwerks aus möglich
- Das vorhandene Netzwerk kann ohne Beeinträchtigung der zyklischen Kommunikation für Initialisierung, Setup und Diagnose genutzt werden
- DP-V2- und DP-V0-Knoten können im gleichen Netzwerk angeschlossen werden
- Keine umfangreichen Telegramme im SPS oder IPC erforderlich. Ein zweiter Master mit DP-V1-Unterstützung kann Setup-Aufgaben abwickeln

ACHTUNG!:

DP V1 ist nur mit Master-Kommunikationskarten möglich, die Masterklasse 2 unterstützen.

DeviceNet

DeviceNet ist eine Kommunikationsverbindung zum Anschluss industrieller Geräte an ein Netzwerk. Es basiert auf dem Broadcast-orientierten Kommunikationsprotokoll CAN (Controller Area Network).

Das CAN-Protokoll wurde ursprünglich für den europäischen Automobilmarkt entwickelt. Es sollte statt der kostspieligen Kabelbäume in Fahrzeugen verwendet werden. Folglich bietet das CAN-Protokoll schnelle Antwortzeiten und hohe Zuverlässigkeit für anspruchsvolle Anwendungen wie ABS-Bremsen und Airbags.

Das Danfoss-Konzept umfasst die kostenoptimale DeviceNet-Lösung

- Zyklische E/A-Kommunikation
- Azyklische Kommunikation – Direkter Datentransfer* UCMM-Meldungen (Unconnected Messages Manager) werden unterstützt
- Integrierte Lösung
- Einfache Konﬁ guration durch EDS-Dateien (Electronic Data Sheet)
- Liefert Spannungsversorgung für Feldbus
- Entspricht dem DeviceNet-Proﬁ eines AC/DC-Motors
- In Zusammenarbeit mit der Open DeviceNet Vendor Association (ODVA) deﬁ niertes Protokoll

AS-interface

InterBus

InterBus ist ein offener und nicht proprietärer Standard. Er entspricht der Norm EN 50254. Bei Verwendung dezentraler Motorsteuerungen mit integrierter
Feldbus-Kommunikation bietet sich die Möglichkeit zur Anbindung an ein InterBus-Netzwerk.

- Problemloser Anschluss
- Kompatibilität mit der internationalen Norm EM 50254
- E/A-basiertes Übertragungsprinzip, hohe Protokolleffizienz
- Tool zur vereinheitlichten Planung (z. B. CMD-Software)
- Die InterBus-Option ist vom Frauenhofer Institut zertifiziert

Mit dem Gateway IB-S/DP für Frequenzumrichter von Danfoss können bis zu 14 Frequenzumrichter unterschiedlicher Serien in einem InterBus-Netzwerk betrieben werden.

FC Protocol

Fachgerechte Installation

Flexible Installationsoptionen
Ein großer Vorteil des dezentralen Konzepts von Danfoss sind die Einsparungen bei den Installationskosten, teilweise bedingt durch die durchdachte zweiteilige Konstruktion des DMS 300/FCD 300.

Die gesamte elektrische Installation erfolgt im Inneren des Installationsgehäuses vor der Installation des Elektronikteils. Anschließend wird das Elektronikteil in das Installationsgehäuse eingesteckt, befestigt, und der Frequenzumrichter ist betriebsbereit.

Verlegung von Stromleitungen in Schleifen

Externe 24 V-Steuerungsversorgung

Die Installationsgehäuse T63 und T73 haben zusätzliche Durchschleifklemmen für 2 x 24 V mit 4 mm². Angeschlossene Sensoren können getrennt von der externen Versorgung des Steuerteils versorgt werden.
Beispiel für Verlegung von Leistungs- und Buskabeln in Schleifen
Richtlinien für die Auswahl von Kabeln und Sicherungen in einer Strom-Installation mit FCD und DMS-Produkten

Die Zahlen im folgenden Abschnitt beziehen sich auf die Abbildung.

5. Der Strom wird vom DMS* begrenzt, und bei Masse- und Kurzschluss durch den Unterbrecher (CB) geschützt.
7. Wenn sich die Installation auf einer Maschine befindet (EN 60204-1) und der Abstand zwischen T-Anschluss und dem FCD oder DMS* weniger als 3 m beträgt, kann ein kleineres Kabel verwendet werden, das der Stromkapazität für den nachgeschalteten FCD entspricht.

8. Der Auslösestrom des vorgeschalteten Unterbrechers darf nicht größer sein als die höchsten maximalen Vorsicherungen für den kleinsten nachgeschalteten FCD oder DMS.

Siehe Abschnitt Sicherungen für DMS-Koordinations-Klassen.

* nur erweiterte Versionen
Beispiel dezentraler Kabelabmessungen
Dezentrale Lösungen - Projektierungshandbuch

Service

Zentrale Frequenzumrichter von Danfoss haben Steckverbindungen, um Wartungsarbeiten durch schnelles und fehlerfreies Austauschen zu erleichtern. Das gleiche Konzept wird bei dezentralen Frequenzumrichtern angewendet und verbessert.

Plug-and-drive

Produktkonzept
Da das Installationsgehäuse nur Stecker, Anschlüsse und Niederdruck-Leiterplatten enthält, fällt es nur äußerst selten aus. Im Fall einer Störung im elektronischen Teil, entfernen Sie nur die sechs Schrauben, lösen Sie den elektronischen Teil und schließen Sie einen neuen an.

Sie brauchen nur standardmäßiges Installationsmaterial wie Kabelstopfbuchsen, Kabel usw. um einen dezentralen Frequenzumrichter von Danfoss in Betrieb zu nehmen oder zu warten. Spezielle Ausrüstung, wie Hybridkabel, die ein normaler Elektroinstallateur wahrscheinlich nicht auf Lager hat, wird nicht benötigt. Dies bietet hohe Flexibilität und maximale Betriebszeiten.

Produktkonzept
Da das Installationsgehäuse nur Stecker, Anschlüsse und Niederdruck-Leiterplatten enthält, fällt es nur äußerst selten aus. Im Fall einer Störung im elektronischen Teil, entfernen Sie nur die sechs Schrauben, lösen Sie den elektronischen Teil und schließen Sie einen neuen an.

Sie brauchen nur standardmäßiges Installationsmaterial wie Kabelstopfbuchsen, Kabel usw. um einen dezentralen Frequenzumrichter von Danfoss in Betrieb zu nehmen oder zu warten. Spezielle Ausrüstung, wie Hybridkabel, die ein normaler Elektroinstallateur wahrscheinlich nicht auf Lager hat, wird nicht benötigt. Dies bietet hohe Flexibilität und maximale Betriebszeiten.
DMS Serie 300

CE

UL US

VLT ist ein eingetragenes Warenzeichen vom Danfoss
Dezentrale Lösungen - Projektierungshandbuch

Betriebsanleitung
DMS-Version Nr.02

In diesem Handbuch verwendete Symbole
Beim Lesen des vorliegenden Handbuchs werden Sie auf verschiedene Symbole stoßen, die Textstellen kennzeichnen, bei denen besondere Aufmerksamkeit geboten ist. Es handelt sich um folgende Symbole:

ACHTUNG!
Bezeichnet einen wichtigen Hinweis

Bezeichnet einen allgemeinen Warnhinweis

Bezeichnet eine Warnung vor Hochspannung

Allgemeine Warnung

Sicherheitsbestimmungen
1. Bei Reparaturen muß die Stromversorgung des DMS abgeschaltet werden.
2. Der Befehl [COASTING STOP INVERSE] an das DMS unterbricht nicht die Netzspannung und darf deshalb nicht als Sicherheitsschalter benutzt werden.

Der Benutzer bzw. der Monteur ist dafür verantwortlich, dass eine ordnungsgemäße Erdung und Motorüberlastungsschutz entsprechend den vor Ort geltenden Sicherheitsvorschriften gewährleistet sind.

Warnung vor unbeabsichtigtem Anlaufen
1. Der Motor kann mit einem digitalen Befehl, einem Busbefehl oder lokalem Stoppbefehl angehalten werden, auch wenn der DMS an Netzstrom angeschlossen ist. Ist ein unbeabsichtigtes Anlaufen des Motors gemäß den Bestimmungen zur Personensicherheit jedoch unzulässig, so sind die oben genannten Stoppfunktionen nicht ausreichend.
2. Wenn in der Elektronik des DMS eine Fehlfunktion vorliegt, kann ein einmal gestoppter Motor wieder anlaufen.

Vermeiden von Beschädigungen des DMS
Bitte lesen Sie alle Anweisungen in diesem Handbuch durch und befolgen Sie sie.

Elektrostatische Schutzmaßnahmen:
Elektrostatische Entladung (ESD).
Bildruckimage

Beschreibung
Der DMS von Danfoss ist ein fortschrittlicher, elektronischer Motorstarter. Er besitzt sechs Hauptfunktionen:
1. Anlaufregelung, einschließlich Sanftanlauf.
2. Auslaufregelung, einschließlich Sanftauslauf.
3. Thermistor-Motorschutz
4. Elektronischer Motorschutz (optional).
5. Elektromechanischer Motorschutz (optional).
6. Überwachung der & Systemschnittstelle.

Allgemeiner Aufbau

Konstruktion
Der DMS besteht aus zwei trennbaren Teilen.
1. Installationsgehäuse, die untere Hälfte des Geräts. Das Installationsgehäuse besitzt eine Montagevorrichtung, Kabeleingänge und Erdungsstifte.
2. Elektronikmodul, die obere Hälfte des Geräts. Das Elektronikmodul enthält alle Stromkreise des DMS.

Erforderliches Werkzeug
Für die Installation des DMS ist kein Spezialwerkzeug erforderlich. Alle Stromanschlüsse erfolgen über Käfigzufederanschluss.

Wandmontage
Für eine bessere Kühlung muss das Gerät vertikal montiert werden. Waagerechter Einbau ist im Bedarfsfall zulässig.

Am Motor montiert
1. Entfernen Sie die Abdeckung des Motoranschlusskastens.
3. Schlagen Sie im DMS Installationsgehäuse die Stopfbuchse für das Motorkabel heraus (1 von 30 mm Durchmesser) für die Stromversorgung der Motorklemmen.

Abmessungszeichnung - DMS Wandmontage-Ausführung
Abmessungszeichnung - DMS Motormontage.

ACHTUNG!
Nicht bei direkter Sonneneinstrahlung oder in der Nähe von Heizgeräten montieren.

Belüftung
Der DMS wird durch Luftzirkulation gekühlt. Daher muss ein ungehindelter Luftstrom oberhalb und unterhalb des Motorstarters möglich sein. Bei Einbau des DMS in eine Schalttafel oder in ein anderes Gehäuse, muss sichergestellt sein, dass ein ausreichender Luftstrom durch das Gehäuse strömt, damit die Wärmeentwicklung begrenzt wird und die Temperatur im Gehäuse nicht über 40 °C steigt (der Wärmeverlust des DMS beträgt bei Nennstrom ca. 18 W).

Leistungsreduzierungskurve für Höhe

Leistungsreduzierungskurve für Temperatur
■ Netzstromanschluss

Schließen Sie den Netzstrom an die DMS-Eingangsklemmen 1/L1, 3/L2 & 5/L3 an. Die Klemmen der erweiterten Versionen des DMS erlauben die gezeigte Verlegung des Stromkabels.

Verlegen des Stromkabels - 3-phasige Netzspannung
Motorklemmen an DMS-Ausgangsklemmen 2/T1, 4/T2 & 6/T3 anschließen. Achten Sie auf die Phasenfolge, damit Sie die richtige Drehrichtung erhalten. Die Klemmen der erweiterten Version des DMS erlauben den parallelen Anschluss von zwei Motoren an einen DMS.
Max. Querschnitt: 4 mm² (10 AWG)

Sorgen Sie bei den Versionen ST & SB für eine Zugentlastung an Strom- und Steuerkabel, indem Sie die im DMS-Gerät mitgelieferte Kabelstütze wie gezeigt verwenden.

■ Leistungsfaktorkorrektur

Wenn ein DMS mit einer statischen Leistungsfaktorkorrektur betrieben wird, muss diese an die Versorgungsseite des DMS angeschlossen werden. Der Anschluss von Leistungsfaktorkorrektur-Kondensatoren an den Ausgang des DMS führt zur Beschädigung des Geräts.

■ Steuerkabel

Schließen Sie das Steuerkabel wie im Schaltplan beschrieben an.

Use of a screw driver to open the connector clamp for control terminals [Press to open the clamp]

Schließen Sie den Steuerstrom/AS-i-Schnittstelle an die dafür vorgesehenen Klemmen an.
Die Kontakte zur Regelung dieser Eingänge müssen für niedrige Spannung und niedrigen Strom geeignet sein (Gold Flash oder Ähnliches). Max. Querschnitt: 2,5 mm² (12 AWG)

Nur Kabel verwenden, die den örtlichen Bestimmungen entsprechen.

■ **Motorthermistor**

Wenn der Motor mit Thermistoren ausgerüstet ist, können diese direkt an den DMS angeschlossen werden. Entfernen Sie zum Anschluss der Thermistoren zuerst die Kurzschlussverbindung und schließen Sie dann die Thermistoren an die Kontakte 31A & 31B an.

Vwenden Sie doppelt isolierte Thermistoren, die PELV entsprechen.

■ **Serielle Kommunikation**

Der DMS kann mit AS-i- oder Profibus-Kommunikationsfähigkeiten ausgestattet werden.

AS-i- und Profibus-Schnittstellen sind Sonderausstattung.

Der AS-i Feldbus ist an die Klemmen 125 & 126 angeschlossen.

Einzelheiten zu Profibus-Anschlussmöglichkeiten sind am Ende des Handbuchs zu finden.

ACHTUNG!: Kommunikations- und Steuerkabel sollten in einem Abstand von mindestens 300 mm verlegt werden. Wenn dieser Abstand nicht eingehalten werden kann, sollte an eine magnetische Abschirmung gedacht werden (z.B. durch Verlegen der Kommunikations- und Steuerkabel durch ein eigenes Rohr), um induzierte Störungen durch Gleichtaktspannungen zu verringern.

■ **Erdung**

Stellen Sie sicher, dass das DMS-Gerät ordnungsgemäß geerdet ist. Verwenden Sie die für diesen Zweck vorgesehenen Erdungsstifte (4 x Größe M4).

Für den Typ T73 ist ein externer Erdungsstecker (Größe M8) vorhanden, um die Erdung zu erleichtern.

Um die IP-Schutzwert des DMS zu erhalten, müssen Sie alle ungenutzten Kabeleingänge mit Blindstopfen versehen (im Lieferumfang des DMS enthalten). Bei Geräten mit externen Steckern, müssen alle Stecker korrekt angeschlossen sein.

■ **Hochspannungswarnung**

Der DMS führt lebensgefährliche Spannung, wenn er an das Stromnetz angeschlossen ist. Stellen Sie sicher, dass der DMS ordnungsgemäß angeschlossen ist und vor dem Einschalten der Stromversorgung alle Sicherheitsmaßnahmen getroffen wurden.

■ **Galvanische Trennung (PELV)**

Alle Steuerklemmen und Klemmen für die serielle Kommunikation sind sicher vom Netzzotenzial getrennt, z.B. entsprechen sie den PELV-Anforderungen von EN/IEC 60947-1. Die PELV-Isolierung der Steuerungskarte ist garantiert, vorausgesetzt es sind nicht mehr als 300 V AC zwischen Phase und Erdung vorhanden.
Schaltplan

Notes:

1. All external wiring to be 2.5sq.mm (12AWG) maximum unless otherwise detailed.
2. For Standard DMS (versions S8/ST) all the connectors are located on the Electronics Module. For Extended DMS (versions EX/EB/EP) all the connectors are located on the Installation Box.
3. The Terminals in the Extended versions of the DMS allow two cables for looping the power line.
4. The control inputs are galvanically isolated.
Einstellungen

Einstellungen des DMS werden mit Hilfe des DIP-Schalter-Bedienfelds auf der Unterseite des Elektronikmoduls vorgenommen.

<table>
<thead>
<tr>
<th>Abschnitt</th>
<th>Schaltternr.</th>
<th>Beschreibung</th>
<th>Wert</th>
<th>Werkseinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>Start/Stopp-Profileinstellung</td>
<td>Auswahl von Rampenzeiten und Startspannung. Siehe nachstehende Tabelle.</td>
<td>Aus</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>Aus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>Aus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>Aus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Auswahl der Abschaltungsklasse</td>
<td>Siehe nachstehende Tabelle</td>
<td>Aus</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td>Aus</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>Nicht benutzt</td>
<td>3,2 A</td>
<td>Aus</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Vollast-Stromeinstellung (Hinweis: 0,1 A werden intern immer addiert)</td>
<td>1,6 A</td>
<td>Aus</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>0,8 A</td>
<td>Aus</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>0,4 A</td>
<td>Aus</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td>0,2 A</td>
<td>Aus</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td>Siehe nachstehende Tabelle</td>
<td>Aus</td>
</tr>
</tbody>
</table>

Hinweis: Grau markierte Einstellungen gelten nur für die erweiterten Versionen.

Start/Stopp-Profileinstellung

![Start-Stopp-Profileinstellung Diagramm](image-url)
Tabelle für die Start/Stopp-Profileinstellung:

<table>
<thead>
<tr>
<th>Start/Stopp-Profil</th>
<th>Anlaufleistung</th>
<th>Auslaufleistung</th>
<th>1 (A1)</th>
<th>2 (A2)</th>
<th>3 (A3)</th>
<th>4 (A4)</th>
<th>Startspannung (%)</th>
<th>Rampenzeit starten (s)</th>
<th>Rampenzeit stoppen (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Äquivalent zu DOL</td>
<td>Freilaufstopp</td>
<td>Aus</td>
<td>Aus</td>
<td>Aus</td>
<td>Aus</td>
<td>80</td>
<td>0.25</td>
<td>*</td>
</tr>
<tr>
<td>1</td>
<td>Schnellster</td>
<td></td>
<td>Aus</td>
<td>Aus</td>
<td>Aus</td>
<td>Ein</td>
<td>80</td>
<td>0.5</td>
<td>*</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>Aus</td>
<td>Aus</td>
<td>Ein</td>
<td>Aus</td>
<td>60</td>
<td>0.75</td>
<td>*</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>Aus</td>
<td>Ein</td>
<td>Aus</td>
<td>Ein</td>
<td>60</td>
<td>1.5</td>
<td>*</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>Aus</td>
<td>Ein</td>
<td>Aus</td>
<td>Aus</td>
<td>60</td>
<td>1.0</td>
<td>*</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Freilaufstopp</td>
<td>Aus</td>
<td>Ein</td>
<td>Aus</td>
<td>Ein</td>
<td>60</td>
<td>2</td>
<td>*</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>Aus</td>
<td>Ein</td>
<td>Ein</td>
<td>Aus</td>
<td>40</td>
<td>3</td>
<td>*</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>Aus</td>
<td>Ein</td>
<td>Ein</td>
<td>Ein</td>
<td>50</td>
<td>4</td>
<td>*</td>
</tr>
<tr>
<td>8</td>
<td>Langsamster</td>
<td></td>
<td>Ein</td>
<td>Aus</td>
<td>Aus</td>
<td>Aus</td>
<td>60</td>
<td>6</td>
<td>*</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>Ein</td>
<td>Aus</td>
<td>Aus</td>
<td>Ein</td>
<td>60</td>
<td>8</td>
<td>*</td>
</tr>
<tr>
<td>10</td>
<td>Schnellster</td>
<td>Schnellster</td>
<td>Ein</td>
<td>Aus</td>
<td>Ein</td>
<td>Aus</td>
<td>60</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>Ein</td>
<td>Aus</td>
<td>Ein</td>
<td>Ein</td>
<td>50</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>Ein</td>
<td>Ein</td>
<td>Aus</td>
<td>Ein</td>
<td>40</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>Ein</td>
<td>Ein</td>
<td>Aus</td>
<td>Ein</td>
<td>40</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>Ein</td>
<td>Ein</td>
<td>Aus</td>
<td>Ein</td>
<td>30</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>Langsamster</td>
<td>Langsamster</td>
<td>Ein</td>
<td>Ein</td>
<td>Ein</td>
<td>Ein</td>
<td>30</td>
<td>9</td>
<td>7</td>
</tr>
</tbody>
</table>

Hinweis: * weist darauf hin, dass "Rampenzeit stoppen" nicht vom DMS gesteuert wird. Motor führt einen Freilaufstopp durch. # Bei einigen Anwendungen kann die tatsächliche Rampenzeit an der Motorwelle von den Einstellungen abweichen.

Auswahl der Abschaltungsklasse:

Diese Einstellung gilt nur für die erweiterte Version des DMS.

Da diese Berechnung ständig stattfindet, macht der thermische Motorschutz Schutzsysteme wie "Excess Start Time", "Limited Starts per hour", usw., überflüssig. Kalibrieren Sie den thermischen Motorschutz des DMS auf die Abschaltungsklasse des angeschlossenen Motors. Die Motorabschaltklasse ist als die Zeitspanne definiert, die der Motor dem Strom eines festgebremsten Läufers widersteht. Die Motorabschaltklasse ist auf den Motorcurven oder dem Datenblatt zu finden. For example, if a given motor can withstand Locked Rotor Current for 10 sec, set Trip Class 10 (or lower) in the DMS. If in doubt, use "Trip Class 5", which is the Factory Default setting for this parameter. With this setting, the DMS will trip & protect the motor if the Locked Rotor current sustains for more than 5 secs. Use the DIP switches A5-A6 to choose the Trip Class.
Auswahltabelle für die Abschaltungsklasse:

<table>
<thead>
<tr>
<th>Abschaltungsklassen-Zeit (s)</th>
<th>5 (A5)</th>
<th>6 (A6)</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Aus</td>
<td>Aus</td>
<td>Abschaltung Klasse 5</td>
</tr>
<tr>
<td>10</td>
<td>Aus</td>
<td>Ein</td>
<td>Abschaltung Klasse 10</td>
</tr>
<tr>
<td>20</td>
<td>Ein</td>
<td>Aus</td>
<td>Abschaltung Klasse 20</td>
</tr>
<tr>
<td>0</td>
<td>Ein</td>
<td>Ein</td>
<td>Motorschutz aus</td>
</tr>
</tbody>
</table>

Vollast-Stromeinstellung:
Diese Einstellung gilt nur für die erweiterte Version des DMS und bezieht sich auf die ETR-Funktion. Sie kann evtl. nicht für Strombegrenzungen verwendet werden. Kalibrieren Sie den DMS entsprechend des Typschilds des angeschlossenen Motors "Full Load Current" (FLC). Verwenden Sie die fünf (5) DIP-Schalter B2-B6, um dem Motortypschild-FLC minus 0,1 A zu entsprechen. (0,1 A werden intern zu den von den DIP-Schaltern angezeigten FLC-Ampere-Werten hinzuzufügen).
Beachten Sie, dass Schalter B1 nicht verwendet wird.

FLC-Einstelltable:

<table>
<thead>
<tr>
<th>DIP-Schalter-Bits</th>
<th>Wert (A)</th>
<th>Beispiel-1 zur Einstellung FLC=4,3 A</th>
<th>Beispiel-2 zur Einstellung FLC=2,9 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (B2)</td>
<td>3,2</td>
<td>Ein</td>
<td>Aus</td>
</tr>
<tr>
<td>3 (B3)</td>
<td>1,6</td>
<td>Aus</td>
<td>Ein</td>
</tr>
<tr>
<td>4 (B4)</td>
<td>0,8</td>
<td>Ein</td>
<td>Ein</td>
</tr>
<tr>
<td>5 (B5)</td>
<td>0,4</td>
<td>Aus</td>
<td>Ein</td>
</tr>
<tr>
<td>6 (B6)</td>
<td>0,2</td>
<td>Ein</td>
<td>Aus</td>
</tr>
</tbody>
</table>

6,3 A, wenn B2 bis B6 EIN sind 0,1+3,2+0+0,8+0+0,2 = 4,3
Siehe Anmerkung
0,1+0+1,6+0,8+0,4+0 = 2,9
Siehe Anmerkung

Hinweis: 0,1 A werden intern zu den von den DIP-Schaltern angezeigten Werten hinzugefügt.

Vervollständigen der Installation:
Um die Installation zu vervollständigen, montieren Sie das DMS-Elektronikmodul an das DMS-Einbaugehäuse und sichern Sie es mit den mitgelieferten Schrauben. Das Anzugsdrehmoment für die Schrauben liegt zwischen 2,5 und 3 Nm.
Dezentrale Lösungen - Projektierungshandbuch

■ Betrieb
Nachdem der DMS eingebaut, verkabelt und gemäß den Anweisungen programmiert wurde, kann er in Betrieb genommen werden.

■ Einschalten des DMS
Die Stromversorgung des DMS kann jetzt eingeschaltet werden. Die "EIN" LED muss beim Einschalten des 24 V CD Steuerstroms aufleuchten.

■ Motor starten

Wenn die Drehrichtung falsch ist, Netzkabel oder Motorphasen vertauschen.

Durch Abklemmen der +24 V DC am inversen *Quittieren/Motorfreilauf-Eingang (27) wird der DMS ausgeschaltet und der Motor stoppt.

ACHTUNG!: Wenn die beiden Starteingänge CW & und CCW zusammen aktiv sind, stoppt der Motor.

■ Lösen der Bremse
(Nur für Ausführungen mit Bremsfunktion - Ausführungen SB, EB, ER).

ACHTUNG!: Die Stromversorgung des DMS ist für die Funktion der Bremsenlösung erforderlich. Der elektromechanische Bremseschutz ist nicht gegen Kurzschluss geschützt.

■ Arbeiten mit der AS-i-Schnittstelle
Das AS-i-Schaltprofil S-7.E wird verwendet und besitzt folgende Ein- und Ausgänge:

- Start CW (D0)
- Start CCW (D1)
- Brake Control (D2)
- Reset (D3)
- Ready output(D0)
- Run Output (D1)
- Fault Output (D2)

Die Profilcodes mit den verschiedenen Varianten sind:

- Profil 7E 1 für Erweiterung
- Profil 7E 3 für Erweiterung mit Bremse
- Profil 7E 4 für Erweiterung mit Bremse & Reversierung

MG.90.F3.03 - VLT ist ein eingetragenes Warenzeichen vom Danfoss
Beschreibung von mit dem DMS verwendeten AS-i-Profilen

<table>
<thead>
<tr>
<th>Bit</th>
<th>Typ für Host</th>
<th>Bedeutung</th>
<th>Host-Ebene</th>
<th>Direktstarter Profil 7E 1</th>
<th>Direktstarter mit Bremse Profil 7E 3</th>
<th>Reversierer mit Bremse Profil 7E 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0</td>
<td>Ausgang</td>
<td>Vorwärtslauf</td>
<td>0 1</td>
<td>Stopp - vorwärts Start - vorwärts</td>
<td>Stopp - vorwärts Start - vorwärts</td>
<td>Stopp - vorwärts Start - vorwärts</td>
</tr>
<tr>
<td>D1</td>
<td>Ausgang</td>
<td>Rückwärtslauf</td>
<td>0 1</td>
<td>Nicht benutzt</td>
<td>Nicht benutzt</td>
<td>Stopp - Rückwärts Start - rückwärts</td>
</tr>
<tr>
<td>D2</td>
<td>Ausgang</td>
<td>Bremse</td>
<td>0 1</td>
<td>Nicht benutzt</td>
<td>Motor blockiert</td>
<td>Motor blockiert</td>
</tr>
<tr>
<td>D3</td>
<td>Ausgang</td>
<td>Fehler-Rücksetzung</td>
<td>0 1</td>
<td>Keine Rücksetzung Rücksetzung</td>
<td>Keine Rücksetzung Rücksetzung</td>
<td>Keine Rücksetzung Rücksetzung</td>
</tr>
<tr>
<td>D0</td>
<td>Eingang</td>
<td>Bereit</td>
<td>0 1</td>
<td>Nicht bereit oder Fehler Bereit</td>
<td>Nicht bereit oder Fehler Bereit</td>
<td>Nicht bereit oder Fehler Bereit</td>
</tr>
<tr>
<td>D2</td>
<td>Eingang</td>
<td>Störung</td>
<td>0 1</td>
<td>Kein Fehler Störung</td>
<td>Kein Fehler Störung</td>
<td>Kein Fehler Störung</td>
</tr>
<tr>
<td>D3</td>
<td>Eingang</td>
<td>Nicht benutzt</td>
<td>0 1</td>
<td>Nicht benutzt</td>
<td>Nicht benutzt</td>
<td>Nicht benutzt</td>
</tr>
<tr>
<td>P0</td>
<td>Parameter</td>
<td>Nicht benutzt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>Parameter</td>
<td>Nicht benutzt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>Parameter</td>
<td>Nicht benutzt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>Parameter</td>
<td>Nicht benutzt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Das DMS kann mit Steuereingängen und einer AS-i-Schnittstelle betrieben werden. Das funktioniert wie folgt:

- **Start CW:** Logically "OR"ed – DMS wird gestartet, wenn einer der Eingänge aktiv ist.
- **Start CCW:** Logically "OR"ed – DMS wird gestartet, wenn einer der Eingänge aktiv ist.
- **Bremse:** Logically "OR"ed – gibt dem DMS den Befehl zum Lösen der Bremse, wenn einer der Eingänge aktiv ist.
- **Quittieren/Motorfreilauf invers:** Logically "AND"ed.

ACHTUNG!:
Beide Eingänge müssen aktiv sein, damit der DMS aktiviert wird. Wenn der AS-i-Bus für die Steuerung verwendet wird, muss der binäre, inverse Quittieren/Motorfreilauf-Eingang aktiv gehalten werden (z.B. an +24 V DC angeschlossen)

Konfigurieren des DMS mit einer Slave-Adresse:

Maßnahmen bei Störungen
Verwenden Sie den Quittiereingang (Quittieren/Motorfreilauf invers), um Störungen zu quittieren.

Wenn die "EIN" LED (grün) leuchtet, ist der Steuerstrom eingeschaltet.
Wenn die "Bus" LED (grün) leuchtet, ist die AS-i-Buskommunikation OK.
Wenn die "Alarm" LED (rot) leuchtet, ist der DMS im Alarm-/Abschaltzustand.

Deutung der "Alarm" LED

<table>
<thead>
<tr>
<th>Anzahl der Blinkzeichen</th>
<th>Abschaltzustand</th>
<th>Ursache & Maßnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eins (1)</td>
<td>Leistungsverlust oder SCR kurzgeschlossen</td>
<td>Spannungsversorgung prüfen. Dieser Test wird vor dem Start durchgeführt.</td>
</tr>
<tr>
<td>Drei (3)</td>
<td>Motorthermistor-Abschaltung</td>
<td>Ursache für die Motorüberhitzung suchen und beheben. Wenn an dem DMS keine Thermistoren angeschlossen sind, sicherstellen, dass am Motorthermistoreingang (Klemmen 31A & 31B) ein geschlossener Stromkreis vorhanden ist.</td>
</tr>
<tr>
<td>Vier (4)</td>
<td>Phasenfehler</td>
<td>Stromversorgung auf fehlende Phase prüfen. Diese Funktion ist bei jedem Start aktiv.</td>
</tr>
<tr>
<td>Fünf (5)</td>
<td>Richtungswechsel-Relais</td>
<td>Einheit ersetzen</td>
</tr>
</tbody>
</table>
Allgemeine technische Daten

Netzversorgung (L1, L2, L3, 125, 126, 127, 128):
Versorgungsspannung ... 3 x 380 V AC ~ 480 V AC +/- 10%
Versorgungsspannungs-Frequenz .. 45HZ ~ 65 Hz
Elektronik-Steuerspannung ... +24 V DC (20V bis 30V), 150 mA Nennwert

Steuereingänge
Start (Klemmen 18 & 19) .. Binär, 24 V DC, ca. 8 mA
Quittieren/Motorfreilauf invers (Klemme 27) Binär, 24 V DC, ca. 90 mA #
Elektromechanische Bremse lösen (Klemme 124) Binär, 24 V DC, ca. 8 mA

Die Steuereingänge sind für einen Anschluss an ein Gerät mit PNP-Ausgangsstufe geeignet.
ca. 20 mA für Standardversionen (SB & ST)

Ausgänge
Ausgang (Klemme 46) ... Binär, PNP-Ausgang, 24 V DC, max. 20 mA
Der Ausgang ist gegen Kurzschluss geschützt.

Ausgang der elektromechanischen Bremsenversorgung

Ausgang der elektromechanischen Bremsenversorgung (Klemmen 122 & 123) 180 V DC, max. 1,0 A *
* Die Ausgangsspannung der elektromechanischen Bremsenversorgung ist proportional zur Netzspannung, welche 180 V DC bei 400 V AC Netzspannung und 205 V DC bei 460 V AC Netzspannung beträgt.
Der Ausgang ist nicht gegen Kurzschluss geschützt.

Betriebstemperatur .. -10 bis +60 °C (über 40 °C mit Leistungsreduzierung)
Relative Feuchtigkeit ... 5 - 90% RH, nicht kondensierend
Gewicht ... 3,5 kg

Nennströme (AC53a-Nennwerte)
Diese Nennwerte gehen von einem Startstrom von 500% FLC aus. Alle Angaben sind A.

Dauer-Nennwerte (nicht umgangen) bei 40 °C Umgebungstemperatur, < 1000 Meter

<table>
<thead>
<tr>
<th>Anzahl Starts pro Stunde</th>
<th>Startzeit (s)</th>
<th>70%</th>
<th>50%</th>
<th>30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5</td>
<td>8,4</td>
<td>8,7</td>
<td>9,0</td>
</tr>
<tr>
<td>50</td>
<td>5</td>
<td>7,9</td>
<td>8,1</td>
<td>8,3</td>
</tr>
<tr>
<td>100</td>
<td>5</td>
<td>7,3</td>
<td>7,5</td>
<td>7,6</td>
</tr>
<tr>
<td>300</td>
<td>1</td>
<td>7,7</td>
<td>8,0</td>
<td>8,2</td>
</tr>
</tbody>
</table>

Bei Umgebungstemperaturen und Höhenangaben, die über den hier aufgelisteten Werten liegen, wenden Sie sich bitte an Danfoss.
Bestelltypcode:

Der DMS ist in folgenden Varianten erhältlich:

- Standard
- Standard mit Bremse
- Erweitert
- Erweitert mit Bremse
- Erweitert mit Bremse & Reversierung

Z.B. lautet die Teilenummer für ein eine motormontierte DMS-Einheit mit Reversierfunktion und ohne Feldbus-Anschluss wie folgt:

DMS330PT4P66ERD0F00T12C0

Zertifizierungen

Der DMS 300 hat CE, UL, cUL und C-tick Zertifizierungen. Einzelheiten sind zu finden unter:

CE:

Nennisolierspannung .. 500 V AC
Nennimpuls widersteht ... 2,0 kV (1,2/ 50 Mikrosekunden)
Geleitete und abgestrahlte Frequenzemissionen .. Klasse B geräß EN 55011
Elektrostatische Entladung, 4 kV-Kontakt und 8 kV-Luftentladung keine Auswirkung auf Betrieb
Elektromagnetisches Feld der Radiofrequenz 0,15 MHz bis 1,0 GHz keine Auswirkung auf Betrieb
Schnelle Transienten, 2,0 kV/ 5,0 kHz .. keine Auswirkung auf Betrieb
Einschaltstöße, 2,0 kV Leitung an Erdung, 1,0 kV Leitung an Leitung keine Auswirkung auf Betrieb
Spannungssenken und kurze Unterbrechungen ... keine Auswirkung auf Betrieb

Kurzschlussgetestet bei 5 kA-Stromversorgung, wenn durch Halbleitersicherungen (Typ 2 co-ordination) geschützt .. keine Beschädigungen am DMS 300, kein Schaden für Personen oder Anlagen

UL

Entspricht den Anforderungen der UL-Zertifizierung (Referenznummer E206590)

C-tick

Entspricht IEC/EN 60947-4-2

IP66

Schutzgrad des Gehäuses entspricht IEC/EN 60947-1.

Sicherungen

Bussmann, Hochgeschwindigkeitssicherung, quadratisches Gehäuse, Größe 000, 660 V, 20 A Nennleistung - Teilenr.: 170 M 1310 oder
Bussmann, "British Style", BS88, Typ CT, 690 V, 20 A Nennleistung - Teilenr.: 20CT
Besondere Varianten:
Zusätzlich zu den vorher beschriebenen Einbaugehäusen können DMS-Einheiten als Varianten mit zusätzlichen Funktionen und Optionen angeboten werden.
Beispiel 1
Variante T73: DMS-Erweiterungseinheit mit Profibus-Kommunikationsoption, 4 x M12 Sensorstecker (wie oben beschrieben), plus einen speziellen Harting-Stecker für Motoranschlüsse.

Bild einer DMS-Einheit mit Profibus-Karte, mit 4 x M12 Stecker für Sensoren und Harting-Stecker für Motoranschlüsse.

Motoranschluss
Der Motor muss gemäß DESINA-Norm mit einem HAN 10E-Steckerangeschlossen werden.

<table>
<thead>
<tr>
<th>Pin-Nr.</th>
<th>Funktion</th>
<th>Pin-Nr.</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Motor U</td>
<td>6–8</td>
<td>Nicht angeschlossen</td>
</tr>
<tr>
<td>2</td>
<td>Motor V</td>
<td>9</td>
<td>Motorthermistor A</td>
</tr>
<tr>
<td>3</td>
<td>Motor W</td>
<td>10</td>
<td>Motorthermistor B</td>
</tr>
<tr>
<td>4</td>
<td>Elektromechanische Bremse A</td>
<td>PE</td>
<td>Erdungsanschluss</td>
</tr>
<tr>
<td>5</td>
<td>Elektromechanische Bremse B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Beispiel 2

Der Service-Schalter kann entweder wie hier gezeigt zwischen die Netzversorgung der & DMS-Einheit oder zwischen DMS-Einheit und Motor angeschlossen werden.

Bild eines Service-Schalters mit Anschlussbeispielen des Service-Schalters.
Angaben zur Profibus-Konnektivität

ACHTUNG!: Bei Verwendung der Profibus-Schnittstelle erfolgt die vollständige Steuerung des DMS über Profibus. Die DMS-Steuerklemmen können nicht verwendet werden.

Die 24 V-Versorgung des Steuerteils wird an Klemmen 203(-) und 204(+) angeschlossen. Die Klemmen befinden sich auf der Profibus-Karte.

Profibus DP Slave 6 E/DC 24 V, 4 A/DC 24 V/1A

<table>
<thead>
<tr>
<th>Anschluss</th>
<th>Busanschluss</th>
<th>Federklemmenblock 2 x 2 x 2,5 mm². 69: A-Leitung RxD/TxD-N, grünes Kabel 68:B-Leitung RxD/TxD-P, rotes Kabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul mit Netzstrom versorgen</td>
<td>Spannungsbereich einschl. Brummen</td>
<td>20-30 V DC</td>
</tr>
<tr>
<td></td>
<td>Brummen</td>
<td>max. 10%</td>
</tr>
<tr>
<td></td>
<td>Stromverbrauch</td>
<td>Nennverbrauch 90 mA</td>
</tr>
<tr>
<td>Anschluss</td>
<td>Spannungsbereich einschl. Brummen</td>
<td>20-30 V DC</td>
</tr>
<tr>
<td>Stromversorgungsein-und ausgang</td>
<td>Anschluss</td>
<td>Federklemmenblock 2 x 2 x 2,5 mm². 201: DC 0 V, 202:DC 24 V</td>
</tr>
<tr>
<td></td>
<td>Galvanische Trennung</td>
<td>Isolierspannung 500 V DC zwischen Bus und Elektronik DC 2,5kV DC zwischen Stromversorgung des Moduls und Eingängen/ Ausgängen</td>
</tr>
<tr>
<td>Busschnittstelle</td>
<td>Bussystem</td>
<td>Profibus DP</td>
</tr>
<tr>
<td></td>
<td>Modultyp</td>
<td>Slave I/O-Modul</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td>DIN 19245</td>
</tr>
<tr>
<td></td>
<td>Datenbreite im Prozessbild</td>
<td>1 Byte Eingänge, 1 Byte Ausgänge</td>
</tr>
<tr>
<td></td>
<td>Feldbusregler</td>
<td>LSPM2</td>
</tr>
<tr>
<td></td>
<td>Bezeichner</td>
<td>0409 hex</td>
</tr>
<tr>
<td></td>
<td>Adressieren</td>
<td>Knoten-ID: 1-99 eingestellt von DIP-Schalter SW3</td>
</tr>
<tr>
<td></td>
<td>Baudrate</td>
<td>bis zu 12Mbaud, automatische Erkennung</td>
</tr>
</tbody>
</table>
Bits-Tabelle in Steuerungs- und Zustandswort

<table>
<thead>
<tr>
<th>Klemmenanschluss</th>
<th>Funktion</th>
<th>Profibus-Steuerwort</th>
<th>Profibus-Zustandswort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausgang 1</td>
<td>18</td>
<td>Start CW</td>
<td>Bit 0</td>
</tr>
<tr>
<td>Ausgang 2</td>
<td>19</td>
<td>Start CCW</td>
<td>Bit 1</td>
</tr>
<tr>
<td>Ausgang 3</td>
<td>27</td>
<td>Rücksetzung/Motorfreilauf invers</td>
<td>Bit 2</td>
</tr>
<tr>
<td>0 V</td>
<td>125 (203)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 24 V</td>
<td>126 (204)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eingang 1</td>
<td>M12, I1</td>
<td>Eingang</td>
<td>Bit 0</td>
</tr>
<tr>
<td>Eingang 2</td>
<td>M12, I2</td>
<td>Eingang</td>
<td>Bit 1</td>
</tr>
<tr>
<td>Eingang 3</td>
<td>M12, I3</td>
<td>Eingang</td>
<td>Bit 2</td>
</tr>
<tr>
<td>Eingang 4</td>
<td>M12, I4</td>
<td>Eingang</td>
<td>Bit 3</td>
</tr>
<tr>
<td>Eingang 5</td>
<td>46</td>
<td>Bereit</td>
<td>Bit 4</td>
</tr>
</tbody>
</table>

Die GSD-Datei finden Sie im Internet unter www.danfoss.com/drives

Profibus-Stecker PCB 4 x M12

<table>
<thead>
<tr>
<th>Eingänge</th>
<th>Nummer</th>
<th>4 x M12 Steckerbuchse IP67</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anschluss</td>
<td></td>
<td>M12 Steckerbuchse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 1: 24 V DC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 2: Nicht angeschlossen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 3: 0 V DC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 4: Eingang</td>
</tr>
</tbody>
</table>

MG.90.F3.03 - VLT ist ein eingetragenes Warenzeichen vom Danfoss
Profibus-Adresseneinstellung: DIP-Schalter SW3

<table>
<thead>
<tr>
<th>Adressen-Dezimalzahl</th>
<th>DIP 1</th>
<th>DIP 2</th>
<th>DIP 3</th>
<th>DIP 4</th>
<th>DIP 5</th>
<th>DIP 6</th>
<th>DIP 7</th>
<th>DIP 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>x 0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>x 1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>x 2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>x 3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>x 4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>x 5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>x 6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>x 7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>x 8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>x 9</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>0 x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1 x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2 x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3 x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4 x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5 x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6 x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7 x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8 x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9 x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Die Adresse 00 ist nicht erlaubt. Alle nicht in der Tabelle aufgelisteten Positionen sind ebenfalls nicht erlaubt. In solchen Fällen wird die Adresse 126dec verwendet.
Dieses Projektierungshandbuch ist auf die FCD Serie 300 Frequenzumrichter mit Softwareversionsnummer 1.5x anwendbar. Softwareversionsnummer: siehe Parameter 640 Softwareversionsnummer.

ACHTUNG!
Bezeichnet einen wichtigen Hinweis.

Bezeichnet eine allgemeine Warnung.

Bezeichnet eine Warnung vor Hochspannung.
Dezentrale Lösungen - Projektierungshandbuch

■ Allgemeine Warnung

■ Diese Bestimmungen dienen Ihrer Sicherheit

1. Bei Reparaturen muß die Stromversorgung des Frequenzumrichters abgeschaltet werden. Vergewissern Sie sich, daß die Netzversorgung unterbrochen und die erforderliche Zeit verstrichen ist, bevor Sie die den Wechselrichter aus der Anlage ausbauen.
4. Der Ableitstrom gegen Erde ist höher als 3,5 mA.

■ Warnung vor unbeabsichtigtem Anlaufen

1. Der Motor kann mit einem digitalen Befehl, einem Busbefehl oder Ort-Stopp angehalten werden, obwohl der Frequenzumrichter weiter unter Netzspannung steht, ist ein unbeabsichtigtes Anlaufen des Motors gemäß den Bestimmungen zur Personensicherheit jedoch unzulässig, so sind die oben genannten Stoppfunktionen nicht ausreichend.
3. Ist der Motor abgeschaltet, so kann er von selbst wieder anlaufen, sofern die Elektronik des Frequenzumrichters defekt ist, oder falls eine kurzfristige Überlastung oder ein Fehler in der Versorgungsspannung bzw. am Motoranschluß beseitigt wurde.

Warnung:

Das Berühren elektrischer Bauteile - auch wenn diese vom Netz getrennt sind! - kann extrem gefährlich sein.

FCD 300: Mindestens 4 Minuten warten.

195NA194.10
Dezentrale Lösungen - Projektierungshandbuch

■ Technologie

■ Regelprinzip
Ein Frequenzumrichter richtet die Netzwechselspannung in Gleichspannung gleich und wandelt diese anschließend in eine Wechselspannung mit variabler Amplitude und Frequenz um. Am Motor liegt somit eine variable Spannung und Frequenz an, wodurch eine unbegrenzte Drehzahlregelung von Standard-Wechselstrommotoren möglich ist.

1. Netzspannung
3 x 380 - 480 V AC, 50 / 60 Hz

2. Gleichrichter
Dreiphasen-Gleichrichterbrücke zur Gleichrichtung von Wechsel- in Gleichspannung.

3. Zwischenkreis
Gleichspannung &\(v_2\) x Netzspannung [V].

4. Zwischenkreisspulen
Glättung des Zwischenkreisstroms und Begrenzung der Belastung von Netz und Bauteilen (Netztransformator, Kabel, Sicherungen und Schütze).

5. Zwischenkreiskondensator
Glättung der Zwischenkreisspannung.

6. Wechselrichter
Umwandlung von Gleichspannung in eine variable Wechselspannung mit variabler Frequenz.

7. Motorspannung
Variable Wechselspannung, abhängig von der Versorgungsspannung.
Variable Frequenz: 0,2 - 132 / 1 - 1000 Hz.

8. Steuerkarte
Dies ist die Steuerung der Wechselrichters, die ein Impuls muster erzeugt, durch das die Gleichspannung in eine variable Wechselspannung mit variabler Frequenz umgewandelt wird.

■ Das dezentrale Konzept
Der FCD 300 "Adjustable Speed Drive" wurde z.B. für eine dezentrale Montage in der Nahrungsmittelindustrie, Automobilindustrie oder für andere Materialhandhabungsanwendungen konstruiert.

Mit dem FCD 300 ist die Nutzung des kostensparenden Potentials möglich, indem die Elektronik dezentral plaziert wird und zentrale Bedientafeln überflüssig werden, sowie Kosten, Raum und Aufwand für Installationen und Verkabelung gespart werden.

Der FCD 300 ist ein Teil der VLT Frequenzumrichter-Familie, was gleiche Funktionalität, Programmierung und Funktion wie bei den anderen Familienmitgliedern bedeutet.

■ FCD 300 Regelprinzip
Ein Frequenzumrichter ist ein elektronisches Gerät zur unbegrenzten Drehzahlregelung eines Wechselspannungsmotors. Der Frequenzumrichter regelt die Motordrehzahl durch Umwandlung der Netzspannung und -frequenz, z.B. 400 V / 50 Hz, in variable Werte. Von Frequenzumrichtern geregelte Wechselspannungsmotoren finden sich heute in allen Typen automatisierter Werke.

■ Programmierbare Ein- und Ausgänge in vier Parametersätzen
Bei der FCD 300 Serie können die verschiedenen Steureingänge und Signalausgänge programmiert sowie vier unterschiedliche anwenderdefinierte Parametersätze für alle Parameter gewählt werden. Die gewünschten Funktionen können vom Anwender
Dezentrale Lösungen - Projektierungshandbuch

leicht über das Bedienfeld bzw. die serielle Schnittstelle programmiert werden.

Siehe Abschnitt Galvanische Trennung (PELV) für weitere Informationen.

Netzabsicherung

Die FCD 300 Serie ist gegen gelegentlich im Netz auftretende Spannungsspitzen abgesichert, wie sie z.B. bei Kopplung mit einem Phasenkompensationssystem oder beim Durchbrennen von Sicherungen bei Blitzschlag vorkommen.

Die Motornennspannung und das volle Drehmoment können bis zu einer Unterspannung im Netz von ca. 10% beibehalten werden.

Da alle 400 V Geräte in der FCD 300 Serie über Zwischenkreisspulen verfügen, treten nur geringe harmonische Netzoberwellen auf. Hierdurch ergibt sich ein guter Leistungsfaktor (geringer Spitzenstrom), und die Belastung der Netzinstallation bleibt gering.

Erweiterter Motorschutz

Die FCD 300 Serie verfügt über einen integrierten elektronischen thermischen Motorschutz.

Der Frequenzumrichter berechnet die Motortemperatur auf der Basis von Strom, Frequenz und Zeit. Im Gegensatz zum herkömmlichen Bimetallschutz berücksichtigt der elektronische Schutz auch die geringere Kühlung bei niedrigen Frequenzen durch die geringere Lüfterdrehzahl (Motoren mit Eigenbelüftung).

Diese Funktion kann die einzelnen Motoren bei parallel geschalteten Motoren nicht schützen. Ansonsten kann der thermische Motorschutz mit einem Motorschutzschalter CTI verglichen werden.

Soll der Motor bestmöglich gegen Überhitzung bei Abdeckung oder Blockieren bzw. bei Lüfterausfall geschützt werden, so kann ein Thermistor integriert und an den Thermistoreingang des Frequenzwandlers (digitaler Eingang) angeschlossen werden, siehe Parameter 128 Thermischer Motorschutz.

ACHTUNG!

Diese Funktion kann die einzelnen Motoren bei parallel geschalteten Motoren nicht schützen.

Sichere galvanische Trennung

Bei der FCD 300 Serie werden alle digitalen Ein- und Ausgänge, analogen Ein- und Ausgänge und die Anschlüsse der seriellen Schnittstelle von oder in Verbindung mit Schaltkreisen versorgt, die den PELV-Anforderungen an das Netzpotential entsprechen. Auch die Relaisklemmen (max. 250 V) entsprechen PELV, so daß diese an das Netzpotential angeschlossen werden können.
CE-Zeichen

Was bedeutet das CE-Zeichen?

Die Maschinen-Richtlinie (98/37/EEC)

Die Niederspannungs-Richtlinie (73/23/EEC)

Die EMV-Richtlinie (89/336/EEC)

ATEX

Was ist ATEX?

Es wurde als praktisch empfunden, gefährliche Bereiche in Zonen einzustufen, je nach Möglichkeit des Vorhandenseins einer explosiven Gas-/Staub-Atmosphäre (siehe IEC 79-10). Diese Einstufung ermöglicht es, entsprechende Schutzsysteme für die jeweilige Zone zu finden.

Motoren mit regelbarer Frequenz und Spannung erfordern entweder:

- Maßnahmen (oder Ausstattungen) zur direkten Temperaturregelung durch eingegebene Temperatursensoren, wie in der Motordokumentation beschrieben, oder andere geeignete Maßnahmen, um die Oberflächentemperatur des Motorgehäuses einzuschränken. Die Schutzeinrichtung muss den Motor bei einer Störung abschalten. Die Kombination aus Motor und Frequenzumrichter muss nicht zusammen getestet werden, oder
- Der Motor muss für diese Aufgabe Typp-getestet sein, als Einheit zusammen mit dem Frequenzumrichter, wie in den Dokumenten entsprechend der IEC 79-0 beschrieben, und mit dem Schutzsystem ausgestattet sein.

FCD 300 und ATEX
Die folgenden Ausführungen des FCD 300 können direkt in Bereichen der Gruppe II, Kategorie 3 und Zone 22 installiert werden:
Bereiche der Gruppe II, Kategorie 3 und Zone 22 sind charakterisiert durch:

- Oberflächeninstallationen
- Explosive Atmosphäre ist unwahrscheinlich, wenn sie vorkommt, ist sie wahrscheinlich nur von kurzer Dauer und nicht bei normalem Betrieb.
- Das explosive Medium ist Staub.

Die maximale Oberflächentemperatur des FCD 300 bei extremen normalen Betrieb ist auf 135 °C begrenzt. Diese Temperatur muss unter der Zündtemperatur des vorhandenen Staubs liegen.

Der Monteur muss die Zone, die Kategorie und die Zündtemperatur des Staubs in der Umgebung des installierten FCD 300 bestimmen.

Richtige Installation nach ATEX

Die folgenden Aspekte müssen bei der Installation des FCD 300 in Umgebungen der ATEX-Zone 22 berücksichtigt werden:

- Der Motor muss vom Hersteller für regelbare Geschwindigkeitsanwendungen konstruiert, getestet und zertifiziert sein.
- Der Motor muss für den Betrieb in Zone 22 konstruiert sein, d. h. mit Schutzart "tD" entsprechend EN61241-0 und -1 oder EN50281-1-1.

- Der FCD muss entsprechend lokaler/nationaler Richtlinien ausreichend geerdet werden.

Ihre lokale Danfoss-Vertretung kann Ihnen mit einer Konformitätserklärung weiterhelfen.
Dezentrale Lösungen - Projektierungshandbuch

Abmessungen, FCD, Motormontage

Maße, Dimensionen in mm

<table>
<thead>
<tr>
<th>Dimension</th>
<th>FCD 303-315</th>
<th>FCD 322-335</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>192</td>
<td>258</td>
</tr>
<tr>
<td>A1</td>
<td>133</td>
<td>170</td>
</tr>
<tr>
<td>B</td>
<td>244</td>
<td>300</td>
</tr>
<tr>
<td>B1</td>
<td>300</td>
<td>367</td>
</tr>
<tr>
<td>B2</td>
<td>284</td>
<td>346</td>
</tr>
<tr>
<td>C</td>
<td>142</td>
<td>151</td>
</tr>
<tr>
<td>C1</td>
<td>145</td>
<td>154</td>
</tr>
</tbody>
</table>

Kabelbuchsengrößen: M16, M20, M25 x 1,5 mm

Platz für Kabeleingänge und Umschaltgriff 100-150 mm

Abstand bei mechanischer Installation
Alle Geräte benötigen über und unter dem Gehäuse einen Abstand von mindestens 100 mm zu anderen Bauteilen.
Mechanische Installation

Beachten Sie bitte die Anforderungen für integrierten Einbau und Fernenbau. Diese sind zur Vermeidung schwerer Personen- bzw. Sachschäden einzuhalten, insbesondere bei der Installation größerer Gerätetypen.

ACHTUNG!
Netzstrom erst einschalten, nachdem die 6 Schrauben festgezogen sind.

Der FCD 300 kann wie folgt eingesetzt werden:
- Allein stehend nahe dem Motor
- Am Motor befestigt

oder er kann vormontiert auf einem Danfoss Bauer-(Getriebe-)Motor geliefert werden. Wenden Sie sich für weitere Informationen bitte an Ihren Danfoss Bauer-Lieferanten.

Allein stehende Montage (Wandmontage)

Verwenden Sie Bolzen M6 für FCD 303-315 und M8 für FCD 322-335.
Siehe Maßblätter.

Motormontage
1. Bereiten Sie die Adapterplatte für die Montage an den Motor vor, indem Sie Befestigungslöcher und das Loch für die Kabel bohren.

2. Befestigen Sie die Platte mit der normalen Anschlusskastendichtung am Motor.

3. Schlagen Sie die 4 Schraubenlöcher für die Adapterplatte (äußere Löcher) heraus.

Zulässige Einbaupositionen
Dezentrale Lösungen - Projektierungshandbuch

Bodenansicht des FCD 303-315

Bodenansicht des FCD 322-330

MG.90.F3.03 - VLT ist ein eingetragenes Warenzeichen vom Danfoss
Allgemeine Informationen zur elektrischen Installation

Hochspannungswarnung

ACHTUNG!
Der Betreiber bzw. Elektroinstallateur ist für eine ordnungsgemäße Erdung und die Einhaltung der nationalen und örtlichen Sicherheitsbestimmungen verantwortlich.

Kabel

Das Steuerkabel und das Stromkabel sollten getrennt von den Motorkabeln installiert werden, um Geräuschübertragung zu vermeiden. In der Regel reicht ein Abstand von 20 cm, es empfiehlt sich jedoch, den Abstand so groß wie möglich zu wählen; dies besonders, wenn die Kabel parallel über größere Entfernungen installiert werden.

Kabelstopfbuchsen
Es muss sichergestellt sein, dass Kabelstopfbuchsen, die für die Umgebung passend sind, verwendet und sorgfältig montiert werden.

Abgeschirmte Kabel

Zusätzlicher Schutz
Fehlstrom-Schutzschalter, Nullung oder Erdung können ein zusätzlicher Schutz sein, vorausgesetzt, die örtlichen Sicherheitsnormen werden eingehalten. Bei Erdungsfehlern können Gleichspannungsanteile im Fehlstrom entstehen. Verwenden Sie niemals einen RCD (Fehlstrom-Schutzschalter) Typ A, da er für Fehlerströme mit Gleichspannungsanteil ungeeignet ist. Bei Verwendung von Fehlstrom-Schutzschaltern müssen die örtlichen Bestimmungen eingehalten werden. Wenn Fehlstrom-Schutzschalter verwendet werden, müssen sie geeignet sein für:

- den Schutz von Installationen mit Gleichspannungsanteil im Fehlstrom (Dreiphasen-Brückengleichrichter)
- kurzzeitiges Ableiten von Impulsstromspitzen beim Einschalten
- hohe Ableitströme.

Siehe auch RCD-Anwendungshinweise MN.90.GX.02.

Hochspannungsprüfung

Ohne Einbaugehäuse erworbene elektronische Teile
Wurde das elektronische Teil ohne das Einbaugehäuse von Danfoss erworben, muss die Erdung für hohen Ableitstrom geeignet sein. Es wird empfohlen, das Originaleinbaugehäuse oder den Originaleinbausatz 175N2207 von Danfoss zu verwenden.

Vorsicht

Schutzerdung
Der Metallstift an der/den Ecke(n) des Elektronikteils und die Bronzezeder an der/den Ecke(n) des Einbaugehäuses sind wichtig für die Schutzerdung. Achten Sie darauf, dass diese sich nicht lösen, entfernt oder beschädigt werden.
ACHTUNG!
Elektronische Bauteile nicht bei eingeschalteter Netzspannung anschließen oder abklemmen.

Schutzerdung
Die Erdung dient mehreren Zwecken.

- Schutzerdung (PE = Protective Earth)
 Die Anlage muss sorgfältig entsprechend lokalen Regelungen geerdet werden. Diese Anlage hat einen Ableitstrom von > 3,5 mA Wechselstrom. Sie muss so geerdet werden, dass sie den lokalen Regelungen für Anlagen mit hohen Ableitströmen entspricht. Dies bedeutet üblicherweise, dass die PE-Leiter mechanisch vergrößert (min. Querschnitt 10 mm²) oder verdoppelt werden müssen.

- Geräusche "klammern" (Hochfrequenzen)
 Für eine stabile Kommunikation zwischen den Einheiten müssen abgeschirmte Kommunikationskabel eingesetzt werden (1). Die Kabel müssen richtig befestigt werden, um die Klemmen abzuschirmen, die für diesen Zweck vorgesehen sind.

- Entzerrung der Spannung (Niedrigfrequenzen)
 Um Abgleichströme in der Abschirmung des Kommunikationskabels zu verringern, schließen Sie immer ein kurzes Erdungskabel zwischen die Einheiten des gleichen Kommunikationskabels (2) oder schließen Sie sie an einen geerdeten Rahmen an (3).

- Spannungsentzerrung: Es muss für alle aus Metall bestehenden Befestigungsbauteile des Motors ein Potenzialausgleich erfolgen.

PE-Anschlüsse, Spannungsentzerrungskabel und die Abschirmung der Kommunikationskabel müssen am gleichen Potential (4) angeschlossen werden.

Halten Sie den Leiter so kurz wie möglich und nutzen Sie die größtmögliche Oberfläche.

Die Numerierung bezieht sich auf die Abbildung.

Richtige Erdung der Installation
EMV-gemäße elektrische Installation

Allgemeine Hinweise für eine EMV-gemäße elektrische Installation:

- Nur abgeschirmte Motorkabel und abgeschirmte Steuerkabel verwenden.
- Abschirmung beidseitig erden.
- Installation mit verdrillten Abschirmungsenden (Pigtails) vermeiden, da diese die Abschirmung bei hohen Frequenzen beeinträchtigen. Statt dessen Kabelbügel verwenden.
- Entfernen Sie nicht die Kabelabschirmung zwischen Kabelbügel und Klemme.
Anwendung EMV-gemäßer Kabel

Z_T kann aufgrund folgender Faktoren beurteilt werden:
- Übergangswiderstand zwischen den Leitern des Abschirmmaterials.
- Schirmabdeckung, d.h. die durch den Schirm abgedeckte physische Fläche des Kabels. Sie wird häufig als Prozentwert angegeben und sollte mindestens 85% betragen.
- Art der Abschirmung (geflochten oder verdrillt). Empfohlen wird eine geflochtene Ausführung oder ein geschlossenes Rohr.

Obertragungsimpedanz, Z_T

Aluminium-Ummantelung mit Kupferdraht.

Gewundener Kupferdraht oder bewehrtes Stahldrahtkabel.

Einlagiges Kupferdrahtgeflecht mit schwankender prozentualer Schirmabdeckung.

Zweilagiges Kupferdrahtgeflecht.

Zweilagiges Kupferdrahtgeflecht mit magnetischer, abgeschirmter Zwischenlage.

In Kupfer- oder Stahlrohr geführtes Kabel.

Bleikabel mit 1,1 mm Wandstärke, Vollschatz.
Erdung abgeschirmter Steuerkabel

Steuerkabel müssen generell abgeschirmt und die Abschirmung beidseitig mittels Kabelbügeln mit dem Metallgehäuse des Gerätes verbunden werden.

Die Zeichnung unten zeigt, wie eine richtige Erdung durchzuführen ist, und was in Zweifelsfällen getan werden kann.

1. **Richtiges Erden**
 Steuerkabel und Kabel der seriellen Schnittstelle beidseitig mit Kabelbügeln befestigen, um bestmöglichen elektrischen Kontakt zu gewährleisten.

2. **Falsches Erden**
 Verdrillte Abschirmlitzen (sog. Pigtails) vermeiden, da diese die Schirmimpedanz bei höheren Frequenzen erhöhen.

3. **Schutz des Erdpotenzials zwischen SPS und VLT**
 Besteht zwischen dem VLT-Frequenzumrichter und der SPS (etc.) ein unterschiedliches Erdpotential, so können elektrische Störungen erzeugt werden, die das gesamte System beeinträchtigen. Das Problem kann durch Anbringen eines Ausgleichskabels gelöst werden, das neben das Steuerkabel gelegt wird. Kabelquerschnitt mindestens: 16 mm².

4. **50/60 Hz-Erdschleifen**
 Bei Verwendung sehr langer Steuerkabel können 50/60 Hz-Erdschleifen auftreten, die das gesamte System beeinträchtigen. Dieses Problem kann durch Verbinden eines Schirmendes über einen 100 nF Kondensator (möglichst kurze Anschlüsse) mit Erde gelöst werden.
■ Schaubild

* Integrierte Bremse, mechanische Bremsregelung und externe 24V sind Sonderzubehör.

■ RFI-Schalter J1, J2

Position der Klemmen

T11, T12, T16, T52, T56

Ausführungen T22, T26, T62, T66 mit Wartungsschalter
T73 Ausführung mit Motorstecker und Sensorstecker
Ausführung wird von Danfoss mit Verkabelung wie dargestellt geliefert

Ausführung T63 mit Wartungsschalter (kein Motorstecker)
Dezentrale Lösungen - Projektierungshandbuch

■ Netzanschluß

<table>
<thead>
<tr>
<th>Nr.</th>
<th>91</th>
<th>92</th>
<th>93</th>
<th>Netzspannung 3 x 380-480 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>L2</td>
<td>L3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td></td>
<td></td>
<td></td>
<td>Erdanschluß</td>
</tr>
</tbody>
</table>

ACHTUNG!
Bitte prüfen, ob die Netzspannung der auf dem Typenschild angegebenen Netzspannung des Frequenzumrichters entspricht.

Zur richtigen Bemessung des Kabelquerschnitts siehe Technische Daten.

■ Vorsicherungen
Für die vorschriftsmäßige Bemessung der Vorsicherungen siehe Technische Daten.

■ Motoranschluß

Schließen Sie den Motor an die Klemmen 96, 97, 98 und die Erdung an Klemme PE an.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>96</th>
<th>97</th>
<th>98</th>
<th>Motorspannung 0-100% der Netzspannung</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>V</td>
<td>W</td>
<td></td>
<td>3 Kabel aus Motor</td>
</tr>
<tr>
<td>U1</td>
<td>V1</td>
<td>W1</td>
<td></td>
<td>6 Kabel aus Motor, Dreieckanschluß</td>
</tr>
<tr>
<td>W2</td>
<td>U2</td>
<td>V2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U1</td>
<td>V1</td>
<td>W1</td>
<td></td>
<td>6 Kabel aus Motor, Sternanschluß</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>U2, V2, W2 müssen separat angeschlossen werden (optionaler Klemmenblock)</td>
</tr>
<tr>
<td>PE</td>
<td></td>
<td></td>
<td></td>
<td>Erdanschluß</td>
</tr>
</tbody>
</table>

Zur richtigen Bemessung des Kabelquerschnitts siehe Technische Daten.

ACHTUNG!
Bei Motoren ohne Phasentrennung muß ein LC-Filter am Ausgang des Frequenzumrichters montiert werden.

■ Drehrichtung des Motors

Die Werkseinstellung ist Rechtsdrehung, wobei der Ausgang des Frequenzumrichters folgendermaßen geschaltet ist:

Klemme 96 an U-Phase,
Klemme 97 an V-Phase,
Klemme 98 an W-Phase.

Die Drehrichtung kann durch Vertauschen zweier Phasen an den Motorklemmen umgekehrt werden.
Dezentrale Lösungen - Projektierungshandbuch

- Netz- und Motoranschluss mit Umschalter

- Parallelschaltung von Motoren

Der Frequenzumrichter kann mehrere parallelgeschaltete Motoren steuern. Wenn die Motoren verschiedene Drehzahlen haben sollen, müssen Motoren mit unterschiedlichen Nenndrehzahlen eingesetzt werden. Da sich die Drehzahl der Motoren gleichzeitig ändert, bleibt das Verhältnis zwischen den Nenndrehzahlen im gesamten Bereich gleich. Die Gesamtstromaufnahme der Motoren darf den maximalen Ausgangsnennstrom I_{INV} des Frequenzumrichters nicht übersteigen.

Beim sehr unterschiedlichen Motorgrößen können beim Anlaufen und bei niedrigen Drehzahlen Probleme auftreten. Der Grund hierfür ist, daß durch den relativ hohen ohmschen Widerstand im Stator kleiner Motoren eine höhere Spannung zum Anlaufen und bei niedrigen Drehzahlen erforderlich ist.

In Systemen mit parallelgeschalteten Motoren kann das elektronische Thermorelais (ETR) des Frequenzumrichters nicht als Motorschutz für einzelne Motoren eingesetzt werden. Aus diesem Grund muß ein zusätzlicher Motorschutz vorgesehen werden, z.B. Thermistoren in allen Motoren (bzw. individuelles Thermorelais).

ACHTUNG:

- Motorkabel

Zur richtigen Bemessung von Querschnitt und Länge der Motorkabel siehe Technische Daten. Befolgen Sie stets die nationalen und örtlichen Vorschriften zum Kabelquerschnitt.
ACHTUNG!

Werden nicht abgeschirmte Kabel verwendet, werden einige EMV-Anforderungen nicht erfüllt, siehe EMV-Prüfergebnisse im Projektierungshandbuch.

Thermischer Motorschutz

Das elektronische Thermorelais in UL-zugelassenen Frequenzumrichtern ist für Einzelmotorschutz UL-zugelassen, wenn Parameter 128 Therm. Motorschutz auf Abschalt Thermistor und Parameter 105 Motorstrom, IM, N auf den Motornennstrom (siehe Typenschild des Motors) programmiert wurden.

Bremswiderstand

<table>
<thead>
<tr>
<th>Nr.</th>
<th>81 (optionale Funktion)</th>
<th>82 (optionale Funktion)</th>
<th>Bremswiderstands klemmen</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-</td>
<td>R+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Entnehmen Sie Einzelheiten zur Auslegung von Bremswiderständen dem Kapitel Dynamische Bremse im Projektierungshandbuch MG.90.FX.YY.

ACHTUNG!

Beachten Sie, daß die Spannung an den Klemmen bis zu 850 V DC betragen kann.

Steuerung der mechanischen Bremse

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Funktion</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>122</td>
<td>(optionale)</td>
<td>(optionale)</td>
</tr>
<tr>
<td>123</td>
<td>(optionale)</td>
<td>(optionale)</td>
</tr>
</tbody>
</table>

Mechanische Bremse (UDC=0,45 X Netzspannung) max. 0,8 A

In Hebe-/Absenkanwendungen muß eine elektromagnetische Bremse gesteuert werden. Die Bremse wird über die speziellen Steuerungs-/Versorgungsklemmen 122/123 für mechanische Bremsen gesteuert. Wenn die Ausgangsfrequenz die in Parameter 138 eingestellte Bremsabschaltfrequenz überschreitet, wird die Bremse gelöst, wenn der Motorstrom den in Parameter 140 voreingestellten Wert überschreitet. Die Bremse wird aktiviert, wenn die Ausgangsfrequenz geringer als die in Parameter 139 eingestellte Brems einschalftfrequenz ist. Tritt für den Frequenzumrichter ein Alarmzustand oder eine Überspannung auf, so wird die mechanische Bremse sofort eingeschaltet.

Wird die spezielle mechanische Bremssteuerung/Stromversorgungsklemmen (122-123) nicht verwendet, wählen Sie für Anwendungen mit einer elektromagnetischen Bremse/mechanische Bremssteuerung in Parameter 323 oder 341 aus. Es kann ein Relaisausgang oder ein digitaler Ausgang (Klemme 46) verwendet werden. Für weitere Informationen siehe Anschluß der mechanischen Bremse.
Elektrische Installation, Steuerkabel

Bei sehr langen Steuerkabeln und analogen Signalen können abhängig von der Installation in seltenen Fällen 50/60 Hz-Brummschleifen durch von den Netzkabeln übertragene Störungen auftreten. In diesem Fall kann es erforderlich sein, die Abschirmung aufzutrennen und evtl. einen 100 nF-Kondensator zwischen Abschirmung und Gehäuse zu schalten.

Schalter S101-104
Busleitungsdrähte, Schalter auf EIN lassen
Anschluss von Sensoren an M12-Stecker
für T53, T63, T73

Die Spezifikationen für die Nennleistung finden Sie in der Betriebsanleitung MG.04.BX.YY, digitale Eingänge, Klemmen 18, 19, 29, 33. Die Klemmen 203/204 werden für die Sensorversorgung genutzt.
Klemme 203 = gemeinsam
Klemme 204 = +24 V
Die Klemmen 201/202 können für eine separate 24 V-Versorgung genutzt werden.

Elektrische Installation, Steuerklemmen
Zum richtigen Anschluss der Steuerkabel siehe Erdung abgeschirmerter Steuerkabel im Projektierungshandbuch.
Dezentrale Lösungen - Projektierungshandbuch

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-03</td>
<td>Die Relaisausgänge 01-03 können zur Statusanzeige und für Alarm- /Warnmeldungen benutzt werden.</td>
</tr>
<tr>
<td>12</td>
<td>24 V DC-Versorgungsspannung.</td>
</tr>
<tr>
<td>18-33</td>
<td>Digitaleingänge.</td>
</tr>
<tr>
<td>31a, 31b</td>
<td>Motorthermistor</td>
</tr>
<tr>
<td>42</td>
<td>Analogausgang für die Frequenzanzeige, Sollwert, Strom oder Drehmoment.</td>
</tr>
<tr>
<td>46</td>
<td>Digitaler Ausgang für die Statusanzeige, Warnungen oder Alarm, sowie Frequenzausgang.</td>
</tr>
<tr>
<td>50</td>
<td>+10 V DC-Versorgung. Spannung für Potentiometer</td>
</tr>
<tr>
<td>53</td>
<td>Analog Eingangseingang 0 - ±10 V DC.</td>
</tr>
<tr>
<td>60</td>
<td>Analog Stromeingang 0/4 - 20 mA.</td>
</tr>
<tr>
<td>67</td>
<td>+5 V DC Versorgungsspannung zum Profibus.</td>
</tr>
<tr>
<td>68, 69</td>
<td>serielle Schnittstelle für Feldbus*</td>
</tr>
<tr>
<td>70</td>
<td>Erdung für Klemmen 67, 68 und 69. Dieser Anschluss wird normalerweise nicht benutzt.</td>
</tr>
<tr>
<td>D</td>
<td>Reserviert für zukünftige Verwendung</td>
</tr>
<tr>
<td>V</td>
<td>+5 V, rot</td>
</tr>
<tr>
<td>P</td>
<td>RS 485(+), LCP2/PC, gelb</td>
</tr>
<tr>
<td>N</td>
<td>RS 485(-), LCP2/PC, grün</td>
</tr>
<tr>
<td>G</td>
<td>OV, blau</td>
</tr>
</tbody>
</table>

* Siehe VLT 2800/FCM 300/FCD 300 Profibus DP V1 Betriebsanleitungen (MG.90.AX.YY), VLT 2800/FCM 300 DeviceNet Betriebsanleitung (MG.90.BX.YY) or FCD 300 AS-Schnittstelle Betriebsanleitung (MG.04.EX.YY).

Für Varianten ohne Feldbus oder mit Profibus können Klemmen 88 und 69 verwendet werden, wenn die Profibus-Kommunikation gestoppt ist.

Relaisanschluss
Zur Programmierung des Relaisausgangs siehe Parameter 323 Relaisausgang.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-02</td>
<td>1 - 2 Schließer (Arbeitskontakt)</td>
</tr>
<tr>
<td>01-03</td>
<td>1 - 3 Öffner (Ruhekонтакт)</td>
</tr>
</tbody>
</table>

LCP 2-Stecker, optional
Ein LCP2-Steuergerät kann an einen optionalen Gehäusestecker angeschlossen werden. Bestellnummer: 175N0131. LCP-Bedieneinheiten mit der Bestellnummer 175Z0401 dürfen nicht angeschlossen werden.

Einbau einer externen 24V-Stromversorgung (optional)

ACHTUNG:
Zur Aufrechterhaltung der sicheren galvanischen Trennung (Typ PELV) an den Steuerklemmen des VLT Frequenzumrichters muß die angeschlossene 24-V-DC-Versorgung vom Typ PELV sein.

Vorsicht vor einem unbeabsichtigten Start des Motors, wenn der Netzstrom während der Funktion des 24 V-Notstromversorgung eingeschaltet wird.

PC-Kommunikation
Anschluss an Klemmen P und N für PC-Zugriff auf einzelne Parameter. Vor der automatischen Übertragung mehrerer Parameter sollten Motor und Feldbuskommunikation gestoppt werden.

Software-Version 1.5x
Ein FCD mit Feldbus zeigt den Zustand **FC bereit** auch bei Überbrückung der 24-27 und kann durch Digitaleingänge allein nicht in den Zustand **Motor dreh** gesetzt werden. Dazu muss einer der folgenden Parameter eingestellt werden:

- Par. 502 steht auf **Digitaleingang** oder **Bus und Klemme** oder

MG.90.F3.03 - VLT ist ein eingetragenes Warenzeichen vom Danfoss
- Par. 833 oder 928 steht auf Blockiert oder
- Par. 678 steht auf Standardversion.

Das Feldbus-Zustandswort bei Netz-Ein ist ggf. anders (typisch 0603h statt 0607h), bis das erste gültige Steuerwort gesendet wird. Nachdem das erste gültige Steuerwort gesendet ist (Bit 10 = Daten gültig), ist der Zustand genau so wie in früheren Software-Versionen.
Anschlußbeispiele

ACHTUNG!
Kabel nicht über die Stecker zur Elektronik verlegen.
Befestigungsschraube der PE-Anschlussfeder nicht lösen.
Dezentrale Lösungen - Projektierungshandbuch

ACHTUNG!:
In den nachstehenden Anschlußbeispielen ist zu beachten, daß die Werkseinstellung (ein) des Schalters S100 nicht geändert werden darf.

■ Start/Stopp 3:
Start/Stopp mit Klemme 18 und Motorfreilaufstopp mit Klemme 27.

Par. 302 Digitaleingang = Start [7]
Par. 304 Digitaleingang = Motorfreilaufstopp invers [2]

Für präzisen Start/Stopp werden die folgenden Einstellungen verwendet:
Par. 302 Digitaleingang = Präziser Start/Stopp [27]
Par. 304 Digitaleingang = Motorfreilaufstopp invers [2]

■ Pulsstart/-stopp

Par. 302 Digitaleingang = Puls-Start [8]
Par. 303 Digitaleingang = Stopp invers [6]
Par. 304 Digitaleingang = Motorfreilaufstopp invers [2]
Par. 305 Digitaleingang = Festdrehzahl [13]

■ Drehzahlkorrektur auf/ab
Drehzahlkorrektur auf/ab mit Klemmen 29/33.

Par. 302 Digitaleingang = Start [7]
Par. 303 Digitaleingang = Sollwert speichern [14]
Par. 305 Digitaleingang = Drehzahl auf [16]
Par. 307 Digitaleingang = Drehzahl ab [17]

■ Potentiometer Sollwert
Spannungssollwert über ein Potentiometer.

Par. 308 Analogeingang = Sollwert [1]
Par. 309 Klemme 53, min. Skalierung = 0 Volt
Par. 310 Klemme 53, max. Skalierung = 10 Volt

■ Anschluß eines zweiadrigen Transmitters
Anschluß eines zweiadrigen Transmitters als Istwertgeber an Klemme 60.

Par. 314 Analogeingang = Istwert [2]
Par. 315 Klemme 60, min. Skalierung = 4 mA
Par. 316 Klemme 60, max. Skalierung = 20 mA

■ 4-20 mA Sollwert
4-20 mA Sollwert an Klemme 60 und Drehzahlistwertsignal an Klemme 53.
Par. 100 Konfiguration = Drehzahlregelung mit Istwertrückführung [1]
Par. 308 Analogeingang = Istwert [2]
Par. 309 Klemme 53, min. Skalierung = 0 Volt
Par. 310 Klemme 53, max. Skalierung = 10 Volt
Par. 314 Analogeingang = Sollwert [1]
Par. 309 Klemme 60, min. Skalierung = 4 mA
Par. 310 Klemme 60, max. Skalierung = 20 mA

- 50 Hz links zu 50 Hz rechts
Mit intern montiertem Potentiometer.

Par. 105 Min. Sollwert = 50 Hz
Par. 302 Digitaleingang = Start [7]
Par. 304 Digitaleingang = Motorfreilauf
Stopp invers [2]
Par. 308 Analogeingang = Sollwert [1]
Par. 309 Klemme 53, min. Skalierung = 0 Volt
Par. 310 Klemme 53, max. Skalierung = 10 Volt

Festsollwerte
Umschaltung zwischen 8 Festsollwerten über zwei digitale Eingänge und Parametersatz 1 und Parametersatz 2. Par.

Parametersatz 1 enthält die folgenden Festsollwerte:
- Par. 215 Festsollwert 1 = 5,00 %
- Par. 216 Festsollwert 2 = 10,00 %
- Par. 217 Festsollwert 3 = 25,00 %
- Par. 218 Festsollwert 4 = 35,00 %

Parametersatz 2 enthält die folgenden Festsollwerte:
- Par. 215 Festsollwert 1 = 40,00 %
- Par. 216 Festsollwert 2 = 50,00 %
- Par. 217 Festsollwert 3 = 70,00%
- Par. 218 Festsollwert 4 = 100,00 %
Die Tabelle zeigt die resultierende Ausgangsfrequenz:

<table>
<thead>
<tr>
<th>Festsollwert, msb</th>
<th>Festsollwert, lsb</th>
<th>Parametersatzwahl</th>
<th>Ausgangsfrequenz [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>17.5</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>35</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>50</td>
</tr>
</tbody>
</table>

Anschluss der mechanischen Bremse

Verwendung der Klemme 122/123

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>302</td>
<td>+24V</td>
</tr>
<tr>
<td>304</td>
<td>Par. 122</td>
</tr>
<tr>
<td>323</td>
<td>Par. 123</td>
</tr>
</tbody>
</table>

Par. 302 Digitaleingang = Start [7]
Par. 304 Digitaleingang = Motorfreilaufstopp invers [2]

Siehe auch Par. 138, 139, 140

Mechanische Bremssteuerung [25] = "0" =>
Die Bremse ist geschlossen.
Mechanische Bremssteuerung [25] = "1" =>
Die Bremse ist offen.
Für detailliertere Parametereinstellungen siehe Steuerung der mechanischen Bremse.

ACHTUNG!

Internes Relais nicht für DC-Bremsen oder Bremsspannungen von mehr als 250 V verwenden.

Zählerstopp über Klemme 33

Das Startsignal (Klemme 18) muss aktiv, d.h. logisch '1' sein, bis die Ausgangsfrequenz dem Sollwert entspricht. Das Startsignal (Klemme 18 = logisch '0') muss dann entfernt werden, bevor der Zählerwert in Parameter 344 den Frequenzumrichter stoppen kann.

Par. 302 Digitaleingang = Start [7]
Par. 304 Digitaleingang = Motorfreilaufstopp invers [2]

Siehe auch Par. 138, 139, 140

Par. 307 Digitaleingang = Puls-Start [30]
Par. 343 Präzise Stoppfunktion = Zählerstopp mit Reset [1]
Par. 344 Zählerwert = 100000
LCP 2 Bedieneinheit, Option

Der FCD 300 kann mit einer Bedieneinheit (LCP 2) verbunden werden, die eine vollständige Schnittstelle für Betrieb und Programmierung des Frequenzumrichters darstellt. Die Bedieneinheit LCP 2 kann bis zu drei Meter vom Frequenzumrichter entfernt aufgestellt werden, z.B. auf einer Frontplatte unter Verwendung des Zubehörsatzes.

Die Funktionen der Bedieneinheit sind in fünf Gruppen aufgeteilt:
1. Display
2. Tasten zur Änderung der Displayfunktion
3. Tasten zur Änderung der Programmparameter
4. Leuchtanzeigen
5. Tasten für Ortsteuerung

Bedientasten für Parametereinstellungen

Die Bedientasten sind nach Funktionen aufgeteilt, wobei die Tasten zwischen dem Display und den Leuchtanzeigen für die Parametereinstellung einschließlich der Auswahl der Displayanzeige im Normalbetrieb dienen.

[DISPLAY/STATUS] dient zur Wahl der Anzeigeart oder zum Zurückkehren in den Displaymodus aus dem Schnellmenü oder Menümodus.

[QUICK MENU] bietet Zugriff auf die zum Schnellmenümodus gehörigen Parameter. Es kann direkt zwischen Schnellmenü- und Menümodus gewechselt werden.

[MENU] dient zum Programmieren sämtlicher Parameter. Es kann direkt zwischen Schnellmenü- und Menümodus gewechselt werden.

[CHANGE DATA] dient zum Ändern eines im Menü- oder Schnellmenümodus gewählten Parameters.

[CANCEL] wird benutzt, wenn eine Änderung des gewählten Parameters nicht ausgeführt werden soll.

[OK] dient zum Bestätigen der Änderung des gewählten Parameters.

[< >] dient zur Wahl der Parametergruppe und zur Bewegung des Cursors bei der Änderung numerischer Werte.
Leuchtanzeigen

Ganz unten auf dem Bedienfeld befinden sich eine rote Alarmleuchte, eine gelbe Warnleuchte und eine grüne Spannungsanzeigeluchte.

Beim Überschreiten bestimmter Grenzwerte wird die Alarm- und/oder Warnleuchte aktiviert, während gleichzeitig eine Status- oder Alarmanzeige auf dem Display erscheint.

ACHTUNG!

Die Spannungsanzeigeluchte leuchtet, wenn Spannung am Frequenzumrichter anliegt.

Ortsteuerung

- **[STOP/RESET]** dient zum Anhalten des angeschlossenen Motors oder zum Quittieren (Reset) des Frequenzumrichters nach einer Störung. Kann über Parameter 014 Ort Festdrehzahl aktiv oder inaktiv gewählt werden. Ist die Stoppfunktion aktiviert, so blinkt Displayzeile 2.

ACHTUNG!

Wenn keine externe Stoppfunktion und die [STOP/RESET] Taste als inaktiv gewählt ist, kann der Motor nur durch Abschalten der Spannung am Motor bzw. Frequenzumrichter gestoppt werden.

- **[JOG]** hebt die Ausgangsfrequenz zugunsten einer voreingestellten Frequenz auf, während die Taste gedrückt gehalten wird. Kann über Parameter 015 Ort Festdrehzahl aktiv oder inaktiv gewählt werden.

ACHTUNG!

Wenn die Tasten für Ortbetrieb inaktiv gewählt sind, werden sie sowohl dann aktiv, wenn der Frequenzumrichter über Parameter 002 Ort-/Fernsteuerung auf Ortsteuerung als auch auf Fernsteuerung eingestellt wird, ausgenommen [FWD/REV], die nur im Ortbetrieb aktiv ist.

Anzeigemodus

Umschalten zwischen den Modi AUTO und HAND

Durch Aufrufen der Funktion [DATEN ÄNDERN] im [DISPLAY-MODUS] wird die aktive Betriebsart des Frequenzumrichters angezeigt.

Modus über die Taste [+/-] wechseln [HAND...AUTO]

Im Modus [HAND] kann der Sollwert über die Tasten [+ und -] verändert werden.
<table>
<thead>
<tr>
<th>Betriebsdaten</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resultierender Sollwert</td>
<td>[%]</td>
</tr>
<tr>
<td>Resultierender Sollwert</td>
<td>[Einheit]</td>
</tr>
<tr>
<td>Istwert</td>
<td>[Einheit]</td>
</tr>
<tr>
<td>Ausgangsfrequenz</td>
<td>[Hz]</td>
</tr>
<tr>
<td>Ausgangsfrequenz x Skalierung</td>
<td>[-]</td>
</tr>
<tr>
<td>Motorstrom</td>
<td>[A]</td>
</tr>
<tr>
<td>Drehmoment-%</td>
<td>[%]</td>
</tr>
<tr>
<td>Leistung</td>
<td>[kW]</td>
</tr>
<tr>
<td>Leistung</td>
<td>[PS]</td>
</tr>
<tr>
<td>Motorspannung</td>
<td>[V]</td>
</tr>
<tr>
<td>Zwischenkreisspannung</td>
<td>[V]</td>
</tr>
<tr>
<td>Thermischer Motorschutz</td>
<td>[%]</td>
</tr>
<tr>
<td>Thermische Belastung</td>
<td>[%]</td>
</tr>
<tr>
<td>Betriebsstunden</td>
<td>[Stunden]</td>
</tr>
<tr>
<td>Digitaler Eingang</td>
<td>[Binärcode]</td>
</tr>
<tr>
<td>Pulseingang 29</td>
<td>[Hz]</td>
</tr>
<tr>
<td>Pulseingang 29</td>
<td>[Hz]</td>
</tr>
<tr>
<td>Pulseingang 33</td>
<td>[Hz]</td>
</tr>
<tr>
<td>Externer Sollwert</td>
<td>[%]</td>
</tr>
<tr>
<td>Zustandswort</td>
<td>[Hex]</td>
</tr>
<tr>
<td>Kühlkörpertemperatur</td>
<td>[°C]</td>
</tr>
<tr>
<td>Alarmwort</td>
<td>[Hex]</td>
</tr>
<tr>
<td>Steuerwort</td>
<td>[Hex]</td>
</tr>
<tr>
<td>Warnwort</td>
<td>[Hex]</td>
</tr>
<tr>
<td>Erweitertes Zustandswort</td>
<td>[Hex]</td>
</tr>
<tr>
<td>Analoger Eingang 53</td>
<td>[V]</td>
</tr>
<tr>
<td>Analoger Eingang 60</td>
<td>[mA]</td>
</tr>
</tbody>
</table>

Drei Betriebsvariablen können in der ersten Displayzeile und eine Betriebsvariable in der zweiten Displayzeile angezeigt werden. Die Programmierung erfolgt über die Parameter 009, 010, 011 und 012 Displayanzeige.

Anzeigezustände des Displays

Das Bedienfeld hat unterschiedliche Anzeigezustände, die von der für den Frequenzumrichter gewählten Betriebsart abhängen.

Anzeigezustand I:

Dieser Anzeigezustand ist Standard nach Inbetriebnahme bzw. Initialisierung.

Anzeigezustand II:

Anzeigezustand III:

Dieser Anzeigezustand wird aufgerufen, solange die [DISPLAY / STATUS] Taste gedrückt bleibt. Beim Loslassen der Taste erfolgt ein Wechsel zurück in Anzeigezustand II, es sei denn, die Taste wurde kürzer als ca. 1 s gedrückt - in diesem Fall erfolgt immer der Wechsel zurück in Anzeigezustand I.

Hier werden die Parameternamen und Einheiten der Betriebsvariablen in der ersten und zweiten Zeile angezeigt. Zeile 2 der Anzeige bleibt unverändert.

Anzeigezustand IV:

Hier werden die Parameternamen und Einheiten der Betriebsvariablen in der ersten und zweiten Zeile angezeigt. Zeile 2 der Anzeige bleibt unverändert.
Dieser Anzeigezustand kann während des Betriebs eingestellt werden, wenn ein anderer Parametersatz geändert werden soll, ohne den Frequenzumrichter anzuhalten. Diese Funktion wird in Parameter 005 Programmierungssatz aktiviert.

Die Nummer des Parametersatzes 2 blinkt rechts vom aktiven Satz.

Parametersatzwahl

Struktur des Schnellmenümodus gegenüber dem Menümodus
Neben einem Namen ist jedem Parameter auch eine Nummer zugeordnet, die unabhängig von der Programmierungsart gleich ist. Im Menümodus sind die Parameter in Gruppen aufgeteilt, wobei die erste Stelle der Parameternummer (von links) die Gruppennummer des jeweiligen Parameters angibt.

- Der Menümodus ermöglicht die Wahl und gewünschte Änderung aller Parameter. Allerdings werden abhängig von der in Parameter 100 Konfiguration getroffenen Auswahl einige Parameter ausgelöst.

Schnellmenü mit LCP 2 Bedieneinheit
Das Schnellmenü wird mit der [QUICK MENU] Taste gestartet, woraufhin die folgende Anzeige erscheint:

![Schnellmenü mit LCP 2 Bedieneinheit](image)

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Parameter Nr.</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>001</td>
<td>Sprache</td>
</tr>
<tr>
<td>2</td>
<td>102</td>
<td>Motorleistung [kW]</td>
</tr>
<tr>
<td>3</td>
<td>103</td>
<td>Motorspannung [V]</td>
</tr>
<tr>
<td>4</td>
<td>104</td>
<td>Motorfrequenz [Hz]</td>
</tr>
<tr>
<td>5</td>
<td>105</td>
<td>Motorstrom [A]</td>
</tr>
<tr>
<td>6</td>
<td>106</td>
<td>Motornenndrehzahl [Upm]</td>
</tr>
<tr>
<td>7</td>
<td>107</td>
<td>AMT</td>
</tr>
<tr>
<td>8</td>
<td>204</td>
<td>Minimaler Sollwert [Hz]</td>
</tr>
<tr>
<td>9</td>
<td>205</td>
<td>Maximaler Sollwert [Hz]</td>
</tr>
<tr>
<td>10</td>
<td>207</td>
<td>Rampenzeit auf [s]</td>
</tr>
<tr>
<td>11</td>
<td>208</td>
<td>Rampenzeit ab [s]</td>
</tr>
<tr>
<td>12</td>
<td>002</td>
<td>Betriebsart Ort/Fern</td>
</tr>
<tr>
<td>13</td>
<td>003</td>
<td>Ort-Sollwert [Hz]</td>
</tr>
</tbody>
</table>

Parameterwahl
Der Menümodus wird mit der [MENU] Taste eingeschaltet, woraufhin das Display folgende Anzeige bringt:

![Parameterwahl](image)

Zeile 3 des Displays zeigt Parametergruppennummer und -name.

Im Menümodus sind die Parameter nach Gruppen aufgeteilt. Die Wahl der Parametergruppe erfolgt mit den [< >] Tasten. Folgende Parametergruppen sind verfügbar:

<table>
<thead>
<tr>
<th>Gruppennr.</th>
<th>Parametergruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Bedienung und Anzeige</td>
</tr>
<tr>
<td>1</td>
<td>Motoranpassung</td>
</tr>
<tr>
<td>2</td>
<td>Soll- und Grenzwerte</td>
</tr>
<tr>
<td>3</td>
<td>Ein- und Ausgänge</td>
</tr>
<tr>
<td>4</td>
<td>Sonderfunktionen</td>
</tr>
<tr>
<td>5</td>
<td>Serielle Schnittstelle</td>
</tr>
<tr>
<td>6</td>
<td>Technische Funktionen</td>
</tr>
</tbody>
</table>
Nachdem die gewünschte Parametergruppe gewählt ist, kann jeder einzelne Parameter mit den [+ / -] Tasten gewählt werden:

Die dritte Zeile des Displays zeigt Parameternummer und -name; der Status bzw. Wert des gewählten Parameters erscheint in der vierten Zeile.

Ändern von Daten

Ändern eines Datenwertes

Handelt es sich bei dem gewählten Parameter um einen Datenwert, so kann der Wert mit den [+ / -] Tasten geändert werden.

Änderung eines numerischen Datenwerts

Stellt der gewählte Parameter einen numerischen Datenwert dar, so ist zunächst mit den [< >] Tasten die Ziffer zu wählen.

Die gewählte Ziffer kann dann beliebig mit den [+ / -] Tasten geändert werden:

Manuelle Initialisierung

ACHTUNG!:
Manuelle Initialisierung ist nicht über die LCP 2 175N0131 Bedieneinheit möglich. Eine Initialisierung über Par. 620 Betriebsart ist dennoch möglich:

Die folgenden Parameter werden bei der Initialisierung über Par. 620 Betriebsart nicht geändert:
- Par. 500 Adresse
- Par. 501 Baudrate
- Par. 600 Betriebsstunden
- Par. 601 Betriebsstunden
- Par. 602 kWh-Zähler
- Par. 603 Anzahl der Einschaltungen
- Par. 604 Anzahl der Übertemperaturen
- Par. 605 Anzahl der Überspannungen
- Par. 615-617 Fehlerprotokoll
- Par. 678 Steuerkarte konfigurieren
Betrieb und Display

001 Sprache

Sprachauswahl

Wert:
- Englisch (ENGLISH) [0]
- Deutsch (DEUTSCH) [1]
- Französisch (FRANCAIS) [2]
- Dänisch (DANSK) [3]
- Spanisch (ESPAÑOL) [4]
- Italienisch (ITALIANO) [5]

Funktion:
In diesem Parameter wird gewählt, in welcher Sprache die Anzeigen im Display erscheinen sollen, wenn die Bedieneinheit angeschlossen ist.

Beschreibung der Auswahl:
Wählbar sind die aufgeführten Sprachen. Die Werkseinstellung kann variieren.

002 Betriebsart (Ort/Fern)

Betreibsart

Wert:
- Fernsteuerung (FERN) [0]
- Ortsteuerung (ORT) [1]

Funktion:

Beschreibung der Auswahl:
Ist Fernsteuerung [0] gewählt, so kann der Frequenzumrichter gesteuert werden über:
1. Steuerklemmen oder serielle Schnittstelle.
2. Taste [START]. Diese kann jedoch Stoppbefehle, über die digitalen Eingänge oder die serielle Schnittstelle übertragen wurden, nicht außer Kraft setzen.
3. Tasten [STOP/RESET] und [JOG], sofern sie aktiv sind.

Ist Ortsteuerung [1] gewählt, kann der Frequenzumrichter gesteuert werden über:
2. Tasten [STOP/RESET] und [JOG], sofern sie aktiv sind.
3. Taste [FWD/REV], sofern diese über Parameter 016 Ort Reversierung, aktiv gewählt und Parameter

ACHTUNG!

003 Ortsollwert

Ortsollwert

Wert:
- Par. 013 Sollwert Ort Modus auf [1] oder [2]:
 0 - fₙₐₓₚ (Par. 202) ★ 50 Hz
- Par. 013 Sollwert Ort Modus auf [3] oder [4]:
 Refₘᵦᵣₐᵦᵣ - Refₘᵦᵦₘᵦᵦ (par. 204-205) ★ 0,0

Funktion:
In diesem Parameter kann manuell ein Ortsollwert eingestellt werden. Die Einheit des Ortsollwerts hängt von der in Parameter 100 Konfiguration gewählten Konfiguration ab.

Beschreibung der Auswahl:
Um den Ortsollwert benutzen zu können, muss Parameter 002 Betriebsart (Ort/Fern) auf Ort [1] eingestellt sein. Der Ortsollwert ist nicht über die serielle Kommunikation einstellbar.

Parametersatzkonfiguration

★ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert.

005 Programmierungssatz

(PAR-SATZ PROGRAM)

<table>
<thead>
<tr>
<th>Wert:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Werkseinstellung (WERKSEINSTELLUNG) [0]</td>
</tr>
<tr>
<td>Satz 1 (SATZ 1) [1]</td>
</tr>
<tr>
<td>Satz 2 (SATZ 2) [2]</td>
</tr>
<tr>
<td>Satz 3 (SATZ 3) [3]</td>
</tr>
<tr>
<td>Satz 4 (SATZ 4) [4]</td>
</tr>
<tr>
<td>Aktiver Satz (AKT. SATZ) [5]</td>
</tr>
</tbody>
</table>

Funktion:

Beschreibung der Auswahl:

ACHTUNG!:
Werden Daten im aktiven Satz geändert bzw. in diesen kopiert, so wirken sich die Änderungen unverzüglich auf die Funktion des Gerätes aus.

006 Par.satz Kopie

(KOPIER FUNKTION)

<table>
<thead>
<tr>
<th>Wert:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine Kopie (KEINE KOPIE) [0]</td>
</tr>
<tr>
<td>Kopie auf Satz 1 von # (SATZ 1 VON #) [1]</td>
</tr>
<tr>
<td>Kopie aktiver Satz auf Satz 2 von # (SATZ 2 VON #) [2]</td>
</tr>
<tr>
<td>Kopie aktiver Satz auf Satz 3 von # (SATZ 3 VON #) [3]</td>
</tr>
<tr>
<td>Kopie aktiver Satz auf Satz 4 von # (SATZ 4 VON #) [4]</td>
</tr>
<tr>
<td>Kopie aktiver Satz auf alle (KOPIE AUF ALLE VON #) [5]</td>
</tr>
</tbody>
</table>

Funktion:
Kopiert wird vom in Parameter 005 Programmierungssatz gewählten aktiven Satz auf den/die in diesem Parameter gewählten Satz/Sätze.
ACHTUNG!
Es kann nur im Stoppmodus kopiert werden (Motor durch Stopfbefehl angehalten).

Beschreibung der Auswahl:
Der Kopiervorgang beginnt, nachdem die gewünschte Kopierfunktion gewählt und die Taste [OK]/[CHANGE DATA] gedrückt wurde. Das Display zeigt an, daß der Kopiervorgang abläuft.

007 LCP-Kopie
(LCP-KOPIE)

Wert:
✭ Keine Kopie (KEINE KOPIE) [0]
Upload aller Parameter (UPL. ALLER PAR.) [1]
Download aller Parameter (DWNL. ALLER PAR.) [2]
Download leistungsabhängiger Parameter (DWNLOADFKT MENUES) [3]

Funktion:
Parameter 007 LCP-Kopie wird benutzt, wenn die integrierte Kopierfunktion des Bedienfelds verwendet werden soll. Die Funktion wird benutzt, wenn beim Umstellen des LCP 2-Bedienfelds alle Parametereinstellungen von einem Frequenzumrichter auf einen anderen übertragen werden sollen.

Beschreibung der Auswahl:
Wählen Sie Upload aller Parameter [1], wenn alle Parameterwerte auf das Bedienfeld übertragen werden sollen. Wählen Sie Download aller Parameter [2], wenn alle übertragenen Parameterwerte auf den Frequenzumrichter übertragen werden sollen, an dem das Bedienfeld montiert ist. Wählen Sie Download leistungsabhängiger Parameter [3], wenn nur die leistungsabhängigen Parameter heruntergeladen werden sollen. Dies ist immer dann der Fall, wenn ein Download auf einen Frequenzumrichter durchgeführt werden soll, der eine andere Nennleistung als der hat, von dem die Parametereinstellungen stammen.

ACHTUNG!
Uploads/Downloads sind nur im Stoppmodus möglich. Ein Download kann nur zu einem Frequenzumrichter mit der gleichen Software-Versionsnummer erfolgen (siehe Parameter 626 DatenbankIdentifikationsnummer).

008 Displayskalierung der Ausgangsfrequenz
(SKAL.MOT.FREQ.)

Wert:
0,01 - 100,00 ✭ 1,00

Funktion:

Beschreibung der Auswahl:
Stellen Sie den gewünschten Skalierungsfaktor ein.

009 Große Displayzeile
(DISPLAY ZEILE 2)

Wert:
Keine Anzeige (KEINE) [0]
Resultierender Sollwert [%] (SOLLWERT [%]) [1]
Resultierender Sollwert [Einheit] (SOLLWERT [EINHEIT]) [2]
Istwert [Einheit] (ISTWERT [EINHEIT]) [3]
✭ Frequenz [Hz] (FREQUENZ [HZ]) [4]
Ausgangsfrequenz x Skalierung (FREQUENZ X SKAL.) [5]
Motorstrom [A] (MOTORSTROM [A]) [6]
MOMENT [%] (MOMENT [%]) [7]
Leistung [kW] (LEISTUNG [KW]) [8]
Leistung [HP] (LEISTUNG [HP]) [9]
Motorspannung [V] (MOTORSPANNUNG [V]) [11]
DC-Spannung [V] (DC-Spannung [V]) [12]
Therm. Belast. Wechselrichter [%] (FC.-SCHUTZ [%]) [14]
Betriebsstunden [h] (BETRIEBSSTUNDEN) [15]
Digitaleingang [Bin] (DIGITALEINGANG [BIN]) [16]
Analogeingang 53 [V] (ANALOGEINGANG. 53 [V]) [17]
Analogeingang 60 [mA] (ANALOGEINGANG. 60 [MA]) [19]
Puls Sollwert [Hz] (PULS EINGANG 33 [HZ]) [20]
Externer Sollwert [%] (EXTERNER SOLLWERT [%]) [21]
Zustandswort [Hex] (ZUSTANDSWORT [HEX]) [22]

★ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert
Kühlkörperatemperatur [°C] [22]
(ΚΥΛΗΚΩΡΠΕΡΤΕΜΠ. [°C]) [25]
Alarmwort [Hex] (ALARMWORT [HEX]) [26]
Steuерwort [Hex] (STEUERWORT [HEX]) [27]
Warnwort [Hex] (WARNWORT [HEX]) [28]
Erweitertes Zustandwort [Hex] (ERWEITERTES ZUSTANDSWORT [HEX]) [29]
Warnung Kommunikationsoptionskarte (COMM OPT WARN. [HEX]) [30]
Pulszählert (PULSZÄHLER) [31]
Pulseingang 29 (PULSEINGANG 29) [32]

Funktion:

Beschreibung der Auswahl:
Keine Anzeige ist nur in den Parametern 010-012 Kleine Displayanzeige wählbar.

Frequenz [Hz] gibt die Ausgangsfrequenz des Frequenzwandlers an.

Ausgangsfrequenz x Skalierung [-] entspricht der aktuellen Ausgangsfrequenz \(f_m \) multipliziert mit dem in Parameter 008 Displayskalierung der Motorfrequenz eingestellten Faktor.

Drehmoment [%] gibt die aktuelle Motorlast im Verhältnis zu seinem Nennmoment an.

Leistung [kW] gibt die aktuell vom Motor aufgenommene Leistung in kW an.

Leistung [HP] gibt die aktuell vom Motor aufgenommene Leistung in amerikanischen PS (HP) an.

Motorspannung [V] gibt die Versorgungsspannung des Motors an.

Zwischenkreisspannung [V] gibt die Zwischenkreisspannung des Frequenzumrichters an.

Therm. Belast. Motor [%] gibt die berechnete/geschätzte thermische Belastung des Motors an. 100 % ist die Abschaltgrenze.

Therm. Belast. Wechselrichter [%] gibt die berechnete/geschätzte thermische Belastung des Frequenzumrichters an. 100 % ist die Abschaltgrenze.

Betriebsstunden [Stunden] gibt die Anzahl der Stunden an, die der Motor seit dem letzten Reset in Parameter 619 gelaufen ist. Rückstellen des Betriebsstundenzählers.

Digitaleingang [Binärcode] gibt den Signalzustand der 5 Digitaleingänge (18, 19, 27, 29 und 33) an. Klemme 18 entspricht dem am weitesten links stehenden Bit. '0' = Kein Signal, '1' = angeschlossenes Signal.

Analogeingang 53 [V] gibt den Spannungswert an Klemme 53 an.

Analogeingang 60 [mA] gibt den aktuellen Stromwert an Klemme 60 an.

Pulssollwert [Hz] gibt den an Klemme 33 angeschlossenen Sollwert in Hz an.

Angabe der Summe der externen Sollwerte in % (Summe aus analog/Bus/Puls/serielle Schnittstelle) im Bereich zwischen minimalen Sollwert, Ref Мин und maximalem Sollwert, Ref MAX.

Kühlkörperatemperatur [°C] gibt die aktuelle Kühlkörperatemperatur des Frequenzumrichters an. Die Abschaltgrenze beträgt 90 ± 10 °C, die Wiedereinschaltgrenze 70 ± 5 °C.

Dezentrale Lösungen - Projektierungshandbuch

Pulssollwert 29[Hz] gibt den an Klemme 29 angeschlossenen Sollwert in Hz an.

Puls Anzahl gibt die Anzahl der vom Gerät registrierten Pulse an.

<table>
<thead>
<tr>
<th>012 Kleine Displayanzeige 1.3</th>
<th>(DISPLAY ZEILE 1.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wert: Siehe Parameter 009 Große Displayanzeige.</td>
<td></td>
</tr>
</tbody>
</table>

Funktion:
Siehe Funktionsbeschreibung unter Parameter 010 Kleine Displayanzeige.

Beschreibung der Auswahl:
Siehe Parameter 009 Große Displayanzeige.

<table>
<thead>
<tr>
<th>013 Ort-Steuerung</th>
<th>(SOLLW. ORT MODUS)</th>
</tr>
</thead>
</table>

Funktion:
Hier wird die gewünschte Funktion gewählt, wenn in Parameter 002 Betriebsart (Ort/Fern) der Wert Ort-Betrieb [1] gewählt wurde.

Beschreibung der Auswahl:
Wenn Blockiert [0] gewählt wird, kann über Parameter 003 Ort Sollwert kein Sollwert eingestellt werden. Um Blockiert [0] zu ermöglichen, muss Parameter 002 Betriebsart Ort/Fern auf Fern-Betrieb [0] eingestellt sein.

Ort-Steuerung ohne Schupf [1] wird benutzt, wenn die Drehzahl des Motors über Parameter 003 Ort Sollwert eingestellt werden soll. Im Falle dieser Wahl wechselt Parameter 100 Konfiguration automatisch auf Drehzahlregelung mit Schupfkompensation [0].

Fern-Betrieb ohne Schupf [2] funktioniert wie Ort-Steuerung ohne Schupf [1], wobei der

★ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert
Frequenzumrichter hier jedoch auch über die Digitaleingänge gesteuert werden kann.

Ort-Steuerung wie Par. 100 [3] wird benutzt, wenn die Drehzahl des Motors über Parameter 003 Ort Sollwert eingestellt werden soll, jedoch ohne dass Parameter 100 Konfiguration automatisch auf Drehzahlregelung mit Schlupfkompensation [0] wechselt.

Fern-Betrieb wie Par. 100 [4] funktioniert wie Ort-Steuerung wie Par. 100 [3], wobei der Frequenzumrichter hier jedoch auch über die Digitaleingänge gesteuert werden kann.

Bei Wechsel von Fern-Betrieb auf Ort-Steuerung in Parameter 002 Betriebsart (Ort/Fern), während dieser Parameter auf Fern-Betrieb ohne Schlupf [1] eingestellt ist, werden die aktuelle Motorfrequenz und -drehrichtung beibehalten. Entspricht die aktuelle Motordrehrichtung nicht dem Reversiersignal (negativer Sollwert), so stellt sich der Sollwert auf 0.

Bei Wechsel von Fern-Betrieb auf Ort-Steuerung in Parameter 002 Betriebsart (Ort/Fern), während dieser Parameter auf Fern-Betrieb wie Par. 100 [4] eingestellt ist, wird der aktuelle Sollwert beibehalten. Ist das Sollwertsignal negativ, so stellt sich der Ortsollwert auf 0.

Bei Wechsel von Ort-Steuerung auf Fern-Betrieb in Parameter 002 Betriebsart (Ort/Fern), während dieser Parameter auf Fern-Betrieb eingestellt ist, wird der Ortsollwert durch das Fern-Sollwertsignal ersetzt.

Beschreibung der Auswahl:

Wird in diesem Parameter Blockiert [0] gewählt, so ist die Taste [STOP] nicht aktiv.

ACHTUNG:

Wenn Blockiert [0] gewählt wird, kann der Motor nicht über die [STOP]-Taste angehalten werden.

<table>
<thead>
<tr>
<th>015 Ort Festdrehzahl</th>
<th>(LOCAL JOGGING)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wert:</td>
<td></td>
</tr>
<tr>
<td>Blockiert (BLOCKIERT) [0]</td>
<td></td>
</tr>
<tr>
<td>Wirksam (WIRKSAM) [1]</td>
<td></td>
</tr>
</tbody>
</table>

Funktion:

In diesem Parameter kann auf dem LCP-Bedienfeld die Festdrehzahlfunktion an- und abgewählt werden.

Beschreibung der Auswahl:

Wird in diesem Parameter Blockiert [0] gewählt, so ist die Taste [JOG] nicht aktiv.

<table>
<thead>
<tr>
<th>016 Ort Reversierung</th>
<th>(TASTER REVERS.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wert:</td>
<td></td>
</tr>
<tr>
<td>Blockiert (BLOCKIERT) [0]</td>
<td></td>
</tr>
<tr>
<td>Wirksam (WIRKSAM) [1]</td>
<td></td>
</tr>
</tbody>
</table>

Funktion:

Beschreibung der Auswahl:

<table>
<thead>
<tr>
<th>017 Ort Abschaltquittierung</th>
<th>(TASTER RESET)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wert:</td>
<td></td>
</tr>
<tr>
<td>Blockiert (BLOCKIERT) [0]</td>
<td></td>
</tr>
<tr>
<td>Wirksam (WIRKSAM) [1]</td>
<td></td>
</tr>
</tbody>
</table>

Funktion:

In diesem Parameter kann auf dem Bedienfeld und LCP-Bedienfeld die Taste [STOP] an- und abgewählt werden.

Beschreibung der Auswahl:

Wird in diesem Parameter Blockiert [0] gewählt, so ist die Taste [STOP] nicht aktiv.

ACHTUNG:

Wenn Blockiert [0] gewählt wird, kann der Motor nicht über die [STOP]-Taste angehalten werden.

<table>
<thead>
<tr>
<th>014 Ort Stopp</th>
<th>(TASTER STOP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wert:</td>
<td></td>
</tr>
<tr>
<td>Blockiert (BLOCKIERT) [0]</td>
<td></td>
</tr>
<tr>
<td>Wirksam (WIRKSAM) [1]</td>
<td></td>
</tr>
</tbody>
</table>

Funktion:

In diesem Parameter kann auf dem Bedienfeld und LCP-Bedienfeld die Taste [STOP] an- und abgewählt werden.
Dezentrale Lösungen - Projektierungshandbuch

Funktion:
In diesem Parameter kann auf dem Bedienfeld die Quittierfunktion (Reset) an- und abgewählt werden.

Beschreibung der Auswahl:
Wird in diesem Parameter BLOCKIERT [0] gewählt, so ist die Quittierfunktion nicht aktiv.

ACHTUNG!:
Blockiert [0] nur dann wählen, wenn über die Digitaleingänge ein externes Quittiersignal angeschlossen ist.

018 Eingabesperre

Wert:
- Wirksam (DATENEING. WIRKSAM) [0]
- Dateneingabe gesperrt (DATENEING. GESPERRT) [1]

Beschreibung der Auswahl:
Wird in diesem Parameter [0] gewählt, so ist die Eingabesperre nicht aktiv.

019 Betriebszustand bei Netzeinschaltung, Ortbedienung

Wert:
- Auto-Neustart mit gespeichertem Sollwert (AUTO NEUSTART) [0]
- Zwangsstopp mit gespeichertem Sollwert (ORT=STOPOP) [1]
- Stopp, Ort-Sollwert wurde auf 0 gesetzt (ORT=STOPOP+SOLLW.=0) [2]

Beschreibung der Auswahl:
Wird in diesem Parameter [0] gewählt, so ist der Frequenzumrichter mit dem Ortsollwert (einzustellen in Parameter 003 Ortsollwert) und dem Start/Stop-Zustand anlaufen soll, die unmittelbar vom Abschalten der Versorgungsspannung über die Bedientasten vorgegeben waren.

ACHTUNG!:

020 Eingabesperre für Handbetrieb

Wert:
- Blockiert (BLOCKIERT) [0]
- Aktiv (WIRKSAM) [1]

Beschreibung der Auswahl:
Wird in diesem Parameter [0] gewählt, so ist das Handbetriebsmodul nicht aktiv.

Frequenzumrichter mit dem Ortsollwert

Beschreibung der Auswahl:
Wird in diesem Parameter [0] gewählt, so ist der Frequenzumrichter mit dem Ortsollwert (einzustellen in Parameter 003 Ortsollwert) und dem Start/Stop-Zustand anlaufen soll, die unmittelbar vom Abschalten der Versorgungsspannung über die Bedientasten vorgegeben waren.

ACHTUNG!:

020 Eingabesperre für Handbetrieb

Wert:
- Blockiert (BLOCKIERT) [0]
- Aktiv (WIRKSAM) [1]

Beschreibung der Auswahl:
Wird in diesem Parameter [0] gewählt, so ist das Handbetriebsmodul nicht aktiv.

ACHTUNG!:
Dieser Parameter ist nur für LCP 2 gültig.

Beschreibung der Auswahl:
Wird in diesem Parameter [0] gewählt, so ist das Handbetriebsmodul nicht aktiv.

Frequenzumrichter mit dem Ortsollwert

Beschreibung der Auswahl:
Wird in diesem Parameter [0] gewählt, so ist der Frequenzumrichter mit dem Ortsollwert (einzustellen in Parameter 003 Ortsollwert) und dem Start/Stop-Zustand anlaufen soll, die unmittelbar vom Abschalten der Versorgungsspannung über die Bedientasten vorgegeben waren.

ACHTUNG!:

ACHTUNG!:
Dieser Parameter ist nur für LCP 2 gültig.

Frequenzumrichter mit dem Ortsollwert

Beschreibung der Auswahl:
Wird in diesem Parameter [0] gewählt, so ist der Frequenzumrichter mit dem Ortsollwert (einzustellen in Parameter 003 Ortsollwert) und dem Start/Stop-Zustand anlaufen soll, die unmittelbar vom Abschalten der Versorgungsspannung über die Bedientasten vorgegeben waren.

ACHTUNG!:

ACHTUNG!:
Dieser Parameter ist nur für LCP 2 gültig.

Frequenzumrichter mit dem Ortsollwert

Beschreibung der Auswahl:
Wird in diesem Parameter [0] gewählt, so ist der Frequenzumrichter mit dem Ortsollwert (einzustellen in Parameter 003 Ortsollwert) und dem Start/Stop-Zustand anlaufen soll, die unmittelbar vom Abschalten der Versorgungsspannung über die Bedientasten vorgegeben waren.

ACHTUNG!:

ACHTUNG!:
Dieser Parameter ist nur für LCP 2 gültig.
024 Benutzerdefiniertes Schnellmenü

Wert:
- Blockiert (BLOCKIERT) [0]
- Wirksam (WIRKSAM) [1]

Funktion:
In diesem Parameter kann der Standard-Parametersatz für die Schnellmenütaste auf dem LCP 2-Bedienfeld ausgewählt werden. Mit dieser Funktion können in Parameter 025 Einst.Schnellmenü bis zu 20 Parameter für die Schnellmenü-Taste ausgewählt werden.

Beschreibung der Auswahl:

025 Einstellung Schnellmenü

Wert:
[Index 1 - 20] Wert: 0 - 999 ★ 000

Funktion:

Beschreibung der Auswahl:
Das Schnellmenü wird folgendermaßen eingestellt:
2. Index 1 zeigt den ersten Parameter im Schnellmenü. Mit den [+ / -] Tasten kann zwischen den Indexnummern gewechselt werden. Index 1 wählen.
4. [OK] drücken, wenn Index 1 auf 100 gesetzt ist.
5. Schritte 2 - 4 wiederholen, bis alle gewünschten Parameter für die Schnellmenü-Taste eingestellt sind.
6. [OK] drücken, um die Einstellung des Schnellmenüs abzuschließen.
WENN Parameter 100 Konfiguration für Index 1 gewählt ist, startet das Schnellmenü bei jedem Aktivieren des Schnellmenüs mit diesem Parameter.

Beachten Sie, dass Parameter 024 Schnellmenü und Parameter 025 Einst.Schnellmenü bei der Initialisierung auf die Werkseinstellung zurückgesetzt werden.

026 LED Status

Wert:
- Überlast (ÜBERLAST) [0]
- Therm. Warn./Alarm 36 (ÜBERTEMP) [1]
- Thermistor/ETR (THERM. MOTOR) [2]
- Digitaleingang 18 (DIGITALEINGANG 18) [3]
- Digitaleingang 19 (DIGITALEINGANG 19) [4]
- Digitaleingang 27 (DIGITALEINGANG 27) [5]
- Digitaleingang 29 (DIGITALEINGANG 29) [6]
- Digitaleingang 33 (DIGITALEINGANG 33) [7]
- Wie Relais Par. 323 (WIE RELAIS / P323) [8]
- Wie dig. Ausgang Par. 341 (WIE DIG. AUSG. / P341) [9]
- Wie mech. Bremsenausgang (WIE MECH. BREMSENAUSGANG) [10]

Funktion:
Dieser Parameter erlaubt dem Benutzer unter Verwendung der Status-LED verschiedene Situationen sichtbar zu machen.

Beschreibung der Auswahl:
Wählen Sie die sichtbar zu machende Funktion aus.

★ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert
■ Last und Motor

■ Konfiguration

100 Konfiguration

(WÖRTE: VLT ist ein eingetragenes Warenzeichen vom Danfoss)

<table>
<thead>
<tr>
<th>Wert:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drehzahlregelung ohne Istwertrückführung (MIT SCHLUPFKOMP) [0]</td>
</tr>
<tr>
<td>Drehzahlregelung mit Istwertrückführung (MIT RUECKFUEHR-PID) [1]</td>
</tr>
<tr>
<td>Prozeßregelung mit Istwertrückführung (PID-PROZESSION) [3]</td>
</tr>
</tbody>
</table>

Funktion:

Dieser Parameter dient zur Auswahl der Konfiguration, an die der Frequenzumrichter angepaßt werden soll. Hierdurch wird die Anpassung an eine gegebene Konfiguration einfach, da die Parameter, die in einer gegebenen Konfiguration nicht verwendet werden, nicht aktiviert werden können.

Beschreibung der Auswahl:

Wenn Drehzahlregelung mit Schlupfkompensation [0] gewählt wird, wird eine normale Drehzahlregelung (ohne Rückführsignal) mit automatischer Last- und Schlupfkompensation für eine konstante Drehzahl bei unterschiedlichen Lasten erzielt. Die Kompensationen sind aktiv, können aber ggf. in Parameter 134 Lastkompensation und Parameter 136 Schlupfausgleich ausgeschaltet werden.

101 Drehmomentkennlinie

(MOMENTKЕNNL.)

<table>
<thead>
<tr>
<th>Wert:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konstantes Drehmoment (KONSTANTES DREHMOMENT) [1]</td>
</tr>
<tr>
<td>Quadratisches Drehmoment niedrig (MOMENT: NIEDRIG) [2]</td>
</tr>
<tr>
<td>Quadratisches Drehmoment mittel (MOMENT: MITTEL) [3]</td>
</tr>
<tr>
<td>Quadratisches Drehmoment hoch (MOMENT: HOCH) [4]</td>
</tr>
<tr>
<td>Quadratisches Drehmoment niedrig mit CT-Start (QUADR.TIEF-CT START) [5]</td>
</tr>
<tr>
<td>Quadratisches Drehmoment mittel mit CT-Start (QUADR.MITT-CT START) [6]</td>
</tr>
<tr>
<td>Quadratisches Drehmoment hoch mit CT-Start (QUADR.HOCH-CT START) [7]</td>
</tr>
<tr>
<td>SONDERMOTOR MO. (SONDERMOTOR MO.) [8]</td>
</tr>
</tbody>
</table>

CT = Konstantmoment

Funktion:

In diesem Parameter kann das Prinzip für die Anpassung der U/f-Kennlinie des Frequenzumrichters an die Drehmomentkennlinie der Last angepaßt werden. Siehe Par. 135 U/f-Verhältnis.

Beschreibung der Auswahl:

ACHTUNG!

Last- und Schlupfkompensation ist bei Auswahl von quadratischem Drehmoment oder speziellem Motordrehmoment nicht aktiv.

● Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert

ACHTUNG!:

102 Motorleistung \(P_{M,N}\)

Wert:
0.18 - 4 kW ★ Abhängig vom Gerät

Funktion:
Hier muß ein Leistungswert [kW] \(P_{M,N}\) eingestellt werden, der der Motornennleistung entspricht. Werkseitig ist ein Nennleistungswert [kW] \(P_{M,N}\) eingestellt, der dem Gerätetyp entspricht.

Beschreibung der Auswahl:

103 Motorspannung \(U_{M,N}\)

Wert:
50 -999 V ★ 400 V

Funktion:
Hiermit wird die Nenn-Motorspannung \(U_{M,N}\) für entweder Stern- Y oder Dreieckschaltung \(\Delta\) eingestellt.

Beschreibung der Auswahl:
Unabhängig von der Netzspannung des Frequenzwandlers einen Wert wählen, der den Angaben auf dem Typenschild des Motors entspricht.

104 Motorfrequenz \(f_{M,N}\)

Wert:
24-1000 Hz ★ 50 Hz

Funktion:
Hier wird die Motornennfrequenz \(f_{M,N}\) eingestellt.

Beschreibung der Auswahl:
Einen Wert wählen, der den Angaben auf dem Typenschild des Motors entspricht.

105 Motorstrom \(I_{M,N}\)

Wert:
0.01 - \(I_{\text{MAX}}\) ★ abhängig von der Motorwahl

Funktion:
Der Motornennstrom \(I_{M,N}\) wird bei der Berechnung des Drehmoments und des thermischen Überlastschutzes im Frequenzumrichter berücksichtigt.

Beschreibung der Auswahl:

106 Motornenndrehzahl

Wert:
100 - \(f_{M,N}\) x 60 (max. 60000 UPM)
★ Abhängig von Parameter 104 Motorfrequenz, \(f_{M,N}\)

Funktion:
Hier ist der Wert aus den Typenschilddaten des Motors für die Motornenndrehzahl \(n_{M,N}\) einzugeben.

Beschreibung der Auswahl:
Einen Wert wählen, der den Angaben auf dem Typenschild des Motors entspricht.

★ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert

MG.90.F3.03 - VLT ist ein eingetragenes Warenzeichen vom Danfoss
ACHTUNG!:
Der max. Wert ist gleich \(f_{MN} \times 60 \). \(f_{MN} \) ist in Parameter 104 Motorfrequenz, \(f_{MN} \) einzustellen.

107 Automatische Motoranpassung, AMT
(MOTORANPASSUNG)

Wert:
★ Optimierung aus (MOTORANPASSUNG AUS) [0]
Motoranpassung an (MOTORANPASSUNG AN) [2]

Funktion:
Bei der automatischen Motoranpassung handelt es sich um einen Algorithmus, der den Statorwiderstand \(R_S \) misst, ohne dass sich die Motorachse dreht. Dies bedeutet, daß der Motor kein Drehmoment liefert. AMT ist bei der Grundeinstellung von Einheiten hilfreich, wenn der Frequenzwandler an den verwendeten Motor angepaßt werden soll. Die Funktion wird besonders dann benutzt, wenn die Werkseinstellung die Daten des Motors nicht ausreichend abdeckt.

Die AMT wird folgendermaßen durchgeführt:

AMT starten:
1. STOPP-Signal geben.
3. START-Signal geben und Parameter 107 Motoranpassung wird auf [0] zurückgesetzt, wenn die AMT abgeschlossen ist.

Die Werkseinstellung START erfordert den Anschluss der Klemmen 18 und 27 an Klemme 12.

AMT abschließen:
Die AMT wird durch ein QUITTIEREN-Signal abgeschlossen. Parameter 108 Statorwiderstand, \(R_S \) wird mit dem optimierten Wert aktualisiert.

AMT abbrechen:
Die AMT kann während der Optimierung durch ein STOPP-Signal abgebrochen werden.

Bei Benutzung der AMT-Funktion müssen die folgenden Punkte beachtet werden:
- Damit die AMT die Motorparameter so gut wie möglich definieren kann, müssen die richtigen Typenschilden für den am Frequenzwandler angeschlossenen Motor in die Parameter 102 bis 106 eingegeben werden.
- Das Display zeigt Alarmlmeldungen an, wenn während der Motoranpassung Fehler auftreten.
- Als Regel gilt, dass die AMT-Funktion den Wert \(R_S \) für Motoren messen kann, die 1-2 mal größer oder kleiner als die Nominalgröße des Frequenzwandlers sind.
- Zum Abbrechen der Motoranpassung die [STOP/RESET] Taste drücken.

ACHTUNG!:
AMT darf nicht bei parallelgeschalteten Motoren verwendet werden. Während einer AMT dürfen keine Änderungen der Parametersätze vorgenommen werden.

Beschreibung der Auswahl:
Motoranpassung an [2] wählen, wenn der Frequenzwandler eine automatische Motoranpassung durchführen soll.

108 Statorwiderstand \(R_S \)
(STATORWIDERSTAND)

Wert:
0.000 - X.XXX \(\Omega \) ★ abhängig von der Motorwahl

Funktion:
Nach Einstellung der Parameter 102-106 Typenschilddaten werden verschiedene Parameter einschließlich Statorwiderstand \(R_S \) automatisch eingestellt. Ein manuell eingegebener Wert für \(R_S \) muß für einen kalten Motor gelten. Die Wellenleistung kann durch Feineinstellung von \(R_S \) und \(X_S \) verbessert werden, siehe Verfahren unten.

ACHTUNG!:
Parameter 108 Statorwiderstand \(R_S \) und 109 Statorreaktanz \(X_S \) werden normalerweise nicht geändert, wenn die Typenschilddaten eingestellt wurden.

Beschreibung der Auswahl:
\(R_S \) kann folgendermaßen eingestellt werden:
1. Werkseinstellungen für \(R_S \) verwenden, die der Frequenzumrichter selbst auf Basis der Daten auf dem Typenschild des Motors wählt.
2. Der Wert wird vom Motorlieferanten angegeben.
3. Der Wert wird durch manuelle Messung ermittelt: \(R_S \) kann durch Messung des Widerstands
Dezentrale Lösungen - Projektierungshandbuch

R_{\text{PHASE-PHASE}} zwischen zwei Phasenklemmen berechnet werden. \(R_S = 0,5 \times R_{\text{PHASE-PHASE}} \).

4. \(R_S \) wird automatisch eingestellt, wenn die AMA abgeschlossen ist. Siehe Parameter 107 Automatische Motoranpassung.

109 Statorreaktanz \(X_S \)

Wert:

\[
0,00 - \text{XXX} \ \Omega \\
\text{✭ abhängig von der Motorwahl}
\]

Funktion:

Nach Einstellung der Parameter 102-106 Typenschilddaten werden verschiedene Parameter einschließlich Statorreaktanz \(X_S \) automatisch eingestellt. Die Wellenleistung lässt sich durch Einstellen von \(R_S \) und \(X_S \) verbessern. Vorgehensweise nachstehend beschrieben.

Beschreibung der Auswahl:

\(X_S \) kann folgendermaßen eingestellt werden:

1. Der Wert wird vom Motorlieferanten angegeben.
2. Der Wert wird durch manuelle Messung von \(X_S \) durch Anschluss eines Motors an das Netz und Messen der Phasenspannung \(U_m \) und des Leerlaufstroms \(I_L \) ermittelt.

\[
X_S = \frac{U_m}{\sqrt{3} I_L} - \frac{X_L}{2}
\]

\(X_L \): siehe Parameter 142.
3. Benutzung der Werkseinstellungen von \(X_S \), die der VLT-Frequenzumrichter selbst aufgrund der Daten auf dem Motortypenschild wählt.

119 Hohes Startmoment

Wert:

\[
0,0 - 0,5 \text{ s} \\
\text{✭ 0,0 s}
\]

Funktion:

Zur Gewährleistung eines hohen Anlaufmoments sind ca. 1,8 \(x I_{\text{INV}} \) für max. 0,5 s zulässig. Allerdings wird der Strom durch die Schutzgrenze des Frequenzumrichters (Wechselrichters) begrenzt. In der Einstellung 0 s ist das Startmoment nicht erhöht.

Beschreibung der Auswahl:

Stellen Sie die notwendige Zeit ein, in der ein hohes Startmoment beim Anlauf gewünscht wird.

120 Startverzögerung

Wert:

\[
0,0 - 10,0 \text{ s} \\
\text{✭ 0,0 s}
\]

Funktion:

Beschreibung der Auswahl:

Erforderliche Zeit vor Beginn der Beschleunigung eingeben.

121 Startfunktion

Wert:

\[
\text{Zeitverzögerung DC-Halten} \ (\text{ZEITVERZ. DC-HALTEN}) \ [0] \\
\text{Zeitverzögerung DC-Bremse} \ (\text{ZEITVERZ. DC-BREMSE}) \ [1] \\
\text{Zeitverzögerung Motorfrequenz} \ (\text{ZEITVERZ. MOTORFREQU.}) \ [2] \\
\text{Startfrequenz/rechtslauf} \ (\text{START FUNKT. RECHTS}) \ [3] \\
\text{Startfrequenz wie vorgewählten Drehrichtung} \ (\text{STARTFUNKT. WIE REF.}) \ [4]
\]

Funktion:

Hiermit wird der während der Startverzögerung (Parameter 120 Startverzögerung) erforderliche Modus eingestellt.

\[
\text{✭ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert}
\]

MG.90.F3.03 - VLT ist ein eingetragenes Warenzeichen vom Danfoss
Beschreibung der Auswahl:

Unabhängig vom Wert, den das Sollwertsignal annimmt, ist die Ausgangsfrequenz gleich der Einstellung in Parameter 130 Startfrequenz, und die Ausgangsspannung entspricht der Einstellung in Parameter 131 Startspannung. Diese Funktion wird typisch in Hub/Senkvorrichtungen verwendet.

Sie wird besonders in Anwendungen mit einem Konusanker-Motor eingesetzt, wo die Drehrichtung zu Beginn im Uhrzeigersinn erfolgt und dann von einer Sollrichtung gefolgt wird.

Die Drehrichtung des Motors erfolgt immer der Sollrichtung. Wenn das Sollwertsignal Null ist, hat die Ausgangsfrequenz 0 Hz, während die Ausgangsspannung der Einstellung in Parameter 131 Startspannung entspricht. Wenn das Sollwertsignal nicht Null ist, entspricht die Ausgangsfrequenz Parameter 130 Startfrequenz und die Ausgangsspannung Parameter 131 Startspannung. Diese Funktion wird typisch in Hub/Senkvorrichtungen mit Gegengewicht eingesetzt.

122 Stopffunktion

(STOPPFUNKTION)

Wert:

- Motorfreilauf (FREILAUF) [0]
- DC-Haltebremse (DC-HALT) [1]

Funktion:

Hiermit wird die Funktion des Frequenzumrichters eingestellt, nachdem die Ausgangsfrequenz geringer als der Wert in Parameter 123 Freq.Stoppfunkt. geworden ist, oder nach einem Stoppbefehl und wenn die Ausgangsfrequenz auf 0 Hz zurückgegangen ist.

Beschreibung der Auswahl:

Motorfreilauf [0] ist zu wählen, wenn die Motorsteuerung durch den Frequenzumrichter ausgeschaltet werden soll (Wechselrichter ausgeschaltet).

123 Mindestfrequenz für die Aktivierung der Funktion bei Stopp

(FREQ.STOPPFUNKT.)

Wert:

0,1 - 10 Hz ★ 0,1 Hz

Funktion:

In diesem Parameter wird die Ausgangsfrequenz eingestellt, bei der die in Parameter 122 Stopffunktion ausgewählte Funktion aktiviert werden soll.

Beschreibung der Auswahl:

Erforderliche Ausgangsfrequenz einstellen.

ACHTUNG:

Wenn Parameter 123 höher eingestellt ist als Parameter 130, dann wird die Startverzögerungsfunktion (Parameter 120 und 121) übersprungen.

ACHTUNG:

Gleichspannungsbremse

Bei einer Gleichspannungsbremsung wird dem Motor eine Gleichspannung zugeführt, wodurch die Motorwelle zum Stillstand kommt. In

★ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert
Parameter 132 DC-Bremsspannung kann die DC-Bremsspannung zwischen 0-100% eingestellt werden. Die maximale DC-Bremsspannung hängt von den gewählten Motordaten ab.

ACHTUNG!:
Die Gleichspannungsbremse darf nicht benutzt werden, wenn die Trägheit der Motorwelle mehr als 20 mal größer als die innere Trägheit des Motors ist.

<table>
<thead>
<tr>
<th>126 DC-Bremszeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(DC-BREMSZEIT)</td>
</tr>
<tr>
<td>Wert: 0 - 60 s ★ 10 s</td>
</tr>
<tr>
<td>Funktion: In diesem Parameter wird die DC-Bremszeit eingestellt, zu der Parameter 132 Spannung DC-Br aktiv werden soll.</td>
</tr>
<tr>
<td>Beschreibung der Auswahl: Gewünschte Zeit einstellen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>127 DC-Bremse Startfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>(DC-BR.STARTFREQ.)</td>
</tr>
<tr>
<td>Wert: 0,0 (AUS) - Par. 202 Obere Grenze Ausgangsfrequenz, f_MAX ★ OFF</td>
</tr>
<tr>
<td>Funktion: In diesem Parameter wird die Einschaltfrequenz der DC-Bremse eingestellt, bei der die DC-Bremse in Verbindung mit einem Stoppbefehl aktiviert wird.</td>
</tr>
<tr>
<td>Beschreibung der Auswahl: Erforderliche Frequenz einstellen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>128 Thermischer Motorschutz</th>
</tr>
</thead>
<tbody>
<tr>
<td>(THERM.MOTORSCH.)</td>
</tr>
<tr>
<td>Funktion: Der Frequenzwandler kann die Motortemperatur auf zwei unterschiedliche Weisen überwachen:</td>
</tr>
<tr>
<td>- Mit einem am Motor montierten PTC-Thermistor. Der Thermistor ist zwischen Klemme 31a/31b angeschlossen. Thermistor muss ausgewählt werden, wenn ein möglicherweise im Motor integrierter Thermistor in der Lage sein soll, den Frequenzumwandler im Falle einer Motorüberhitzung zu stoppen. Der Abschaltwiderstand beträgt 3 kΩ.</td>
</tr>
<tr>
<td>Wenn ein Motor statt dessen einen Klixon-Thermoschalter hat, kann dieser ebenfalls am Eingang angeschlossen werden. Bei parallelgeschalteten Motoren müssen die Thermistoren/Thermoschalter in Serie geschaltet werden (Gesamtwiderstand unter 3 kΩ).</td>
</tr>
<tr>
<td>- Berechnung der thermischen Belastung (ETR - Elektronischer Motorschutzschalter), basiert auf aktueller Belastung und Zeit. Dies wird vernünftig mit dem Motornennstrom I_N_M und der Motornennfrequenz f_N_M. Die Berechnungen berücksichtigen die notwendige Lastverringerung bei niedrigen Drehzahlen, wenn die innere Lüftung des Motors reduziert ist.</td>
</tr>
</tbody>
</table>

Beschreibung der Auswahl:

- Kein Motorschutz [0] ist zu wählen, wenn Warnung oder Abschaltung bei überlastetem Motor nicht erfolgen sollen.
- ETR Warn. ist zu wählen, wenn eine Warnung erfolgen soll, wenn der Motor nach den Berechnungen überlastet ist. Der Frequenzwandler kann auch so programmiert werden, daß er ein Warnsignal über den digitalen Ausgang gibt.
- ETR Abschaltung ist zu wählen, wenn eine Warnung erfolgen soll, wenn der Motor nach den Berechnungen überlastet ist.
- ETR Warnung 1-4 ist zu wählen, wenn eine Warnung erfolgen soll, wenn der Motor nach den Berechnungen überlastet ist. Der Frequenzwandler kann auch so programmiert werden, daß er ein Warnsignal über den digitalen Ausgang gibt. ETR Abschaltung 1-4 ist zu wählen, wenn eine Warnung erfolgen soll, wenn der Motor nach den Berechnungen überlastet ist.
- ETR Abschaltung ist zu wählen, wenn eine Warnung erfolgen soll, wenn der Motor nach den Berechnungen überlastet ist.

Funktion:

Beschreibung der Auswahl:

ACHTUNG!

Wenn Parameter 123 höher eingestellt ist als Parameter 130, dann wird die Startverzögerungsfunktion (Parameter 120 und 121) übersprungen.

Beschreibung der Auswahl:

= Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert
132 Spannung DC-Bremse
(SPANNUNG DC-BR)

| Wert: | 0 - 100% der max. DC-Bremsspannung ★ 0% |

Funktion:
In diesem Parameter wird die DC-Bremsspannung eingestellt, die bei Stopp aktiviert werden soll, wenn die in Parameter 127 DC-Bremse Startfrequenz eingestellte DC-Bremsfrequenz erreicht ist oder DC-Bremse invers über einen Digitaleingang bzw. die serielle Schnittstelle aktiv ist. Anschließend ist die DC-Bremsspannung für die in Parameter 126 DC-Bremszeit eingestellte Zeit aktiv.

Beschreibung der Auswahl:
Als Prozentwert der vom Motor abhängigen max. DC-Bremsspannung eingeben.

133 Spannungsanhebung
(SPANNUNGSANHEBUN)

| Wert: | 0,00 - 100,00 V ★ abhängig vom Gerät |

Funktion:
Durch diesen Parameter kann ein höheres Startmoment erreicht werden. Normalerweise benötigen kleinere Motore (< 1,0kw) eine höhere Spannungsanhebung.

Beschreibung der Auswahl:
Der Wert wird unter sorgfältiger Berücksichtigung der Tatsache gewählt, daß der Motorstart unter der aktuellen Last nur so gerademöglich ist.

Achtung: Wird eine zu hohe Spannungsanhebung gewählt, kann dies zu Übermagnetisierung und Überhitzung des Motors führen, und der Frequenzumrichter kann abschalten.

134 Lastkompensation
(LASTKOMP.)

| Wert: | 0,0 - 300,0% ★ 100,0% |

Funktion:

ACHTUNG:
Wird dieser Wert zu hoch eingestellt, kann der Frequenzumrichter wegen Überstrom abschalten.

Beschreibung der Auswahl:
Ist die Werkseinstellung nicht ausreichend, muß die Lastkompensation so eingestellt werden, daß ein Motorstart bei einer gegebenen Last möglich ist.

Achtung: Zu starke Lastkompensation kann zu Instabilität führen.

135 U/f-Verhältnis
(U/F-VERHAELTN)

| Wert: | 0,00 – 20,00 V/Hz ★ Abhängig vom Gerät |

Funktion:

Beschreibung der Auswahl:
Das U/f-Verhältnis wird nur dann geändert, wenn es unmöglich ist, die richtigen Motordaten in Parameter 102-109 einzustellen. Der in der Werkseinstellung programmierte Wert basiert auf Leerlaufbetrieb.
136 Schlupfausgleich

Wert:
-500 - +500% des Nenn-Schlupfausgleichs

Funktion:
Der Schlupfausgleich wird automatisch berechnet, d.h. auf Basis der Nenn-Motordrehzahl \(n_{M,N} \). In diesem Parameter kann der Schlupfausgleich fein eingestellt werden. Hierdurch werden Toleranzen des Wertes für \(n_{M,N} \) kompensiert. Schlupfausgleich ist nur dann aktiv, wenn die Auswahl *Mit Schlupfkomp.* [0] in Parameter 100 Konfiguration und *Konst.Moment* [1] in Parameter 101 Drehmomentkennlinie getroffen wurde.

Beschreibung der Auswahl:
Einen Prozentwert eingeben.

137 DC-Haltespannung

Wert:
0 - 100% der max. DC-Haltespannung

Funktion:
Dieser Parameter wird zum Halten des Motors (Haltemoment) bei Start/Stopp benutzt.

Beschreibung der Auswahl:
Dieser Parameter kann nur verwendet werden, wenn eine Auswahl für *DC-Halt* in Parameter 121 Startfunktion oder 122 Stoppfunktion getroffen wurde. Als Prozentwert der vom Motor abhängigen max. DC-Haltespannung eingeben.

138 Bremsabschaltfrequenz

Wert:
0,5 - 132,0/1000,0 Hz

Funktion:
Hier wird die Frequenz eingestellt, wann die mechanische Bremse über den in Parameter 323 Relais 1-3, Ausgang bzw. 341 Ausgang 46, digital definierten Ausgang gelöst aktiviert wird (optional auch 122 und 123).

Beschreibung der Auswahl:
Programmieren Sie die gewünschte Frequenz.

139 Bremseinschaltfrequenz

Wert:
0,5 - 132,0/1000,0 Hz

Funktion:
Hier wird die Frequenz eingestellt, wann die mechanische Bremse über den in Parameter 323 Relais 1-3, Ausgang bzw. 341 Ausgang 46, digital definierten Ausgang gelöst aktiviert wird (optional auch 122 und 123).

Beschreibung der Auswahl:
Programmieren Sie die gewünschte Frequenz.

140 Strom, Mindestwert

Wert:
0 % - 100 % des Wechselrichterausgangsstroms

Funktion:
Hiermit wird der Mindestwert des Motorstroms zum Lösen der mechanischen Bremse eingestellt. Die Stromüberwachung ist nur vom Stopp bis zu dem Punkt aktiv, an dem die Bremse gelöst wird.

Beschreibung der Auswahl:
Hierbei handelt es sich um eine zusätzliche Sicherheitsvorkehrung, die garantiert, dass bei Starten eines Hebe-/Absenkvorgangs die Last nicht verloren geht.

142 Streureaktanz \(X_L \)

Wert:
0,000 - XXX,XXX \(\Omega \)

Funktion:
Nach Einstellung der Parameter 102-106 Typenschilddaten verschiedene Parameter einschließlich der Streureaktanz \(X_L \) automatisch eingestellt. Die Wellenleistung kann durch Feineinstellung der Streureaktanz \(X_L \) verbessert werden.

ACHTUNG:
Parameter 142 Streureaktanz \(X_L \) wird normalerweise nicht geändert, wenn die Typenschilddaten 102-106 eingestellt wurden.

* = Werkseinstellung. \(\) = Displaytext. \[\] = bei Kommunikation über serielle Schnittstelle benutzter Wert
Beschreibung der Auswahl:

\[X_L \] kann folgendermaßen eingestellt werden:

1. Der Wert wird vom Motorlieferanten angegeben.
2. Benutzung der Werkseinstellungen von \(X_L \), die der Frequenzumrichter selbst aufgrund der Motor-Typenschilddaten wählt.

<table>
<thead>
<tr>
<th>144 Verstärkung Wechselspannungsbremse</th>
</tr>
</thead>
<tbody>
<tr>
<td>(VERST.AC-BR.)</td>
</tr>
<tr>
<td>Wert:</td>
</tr>
<tr>
<td>1,00 - 1,50 ★ 1,30</td>
</tr>
</tbody>
</table>

Funktion:
In diesem Parameter wird die Wechselspannungsbremse eingestellt. In Parameter 144 kann das Generatormoment eingestellt werden, das auf den Motor wirken kann, ohne daß die Zwischenkreisspannung den Warnpegel übersteigt.

Beschreibung der Auswahl:
Der Wert wird erhöht, wenn ein größeres mögliches Bremsmoment gewünscht wird. Wird 1,0 gewählt, so ist die Wechselspannungsbremse nicht aktiv.

ACHTUNG!
Wird der Wert in Par. 144 erhöht, so erhöht sich gleichzeitig der Motorstrom beträchtlich, wenn Generatorlasten wirken. Der Parameter sollte deshalb nur geändert werden, wenn durch Messungen garantiert ist, daß der Motorstrom in allen Betriebs situationen niemals den zulässigen Wert überschreitet. Bitte beachten: Der Strom kann nicht auf der Anzeige abgelesen werden.

<table>
<thead>
<tr>
<th>146 Spannungsvektor quittieren</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SP.VEKTOR QUITT.)</td>
</tr>
<tr>
<td>Wert:</td>
</tr>
<tr>
<td>*Aus (AUS) [0]</td>
</tr>
<tr>
<td>Quittieren (QUITTIEREN) [1]</td>
</tr>
</tbody>
</table>

Funktion:
Wenn der Spannungsvektor quittiert wird, wird er bei jedem neuen Prozeßbeginn auf den gleichen Startpunkt gesetzt.

Beschreibung der Auswahl:
Quittieren (1) wählen, wenn einmalige Prozesse jedesmal laufen, wenn sie auftreten. Hierdurch wird die Wiederholpräzision beim Stopp verbessert. Aus (0) z.B. zum Heben/Absenken oder bei Synchronmotoren benutzen. Es ist vorteilhaft, wenn Motor und Frequenzumrichter immer synchronisiert sind.

147 Motortyp
(MOTORTYP)

Wert:
*Allgemeine Informationen (ALLGEMEINE INFORMATIONEN) [0]
Danfoss Bauer (DANFOSS BAUER) [1]

Funktion:
Durch diesen Parameter wird der an den Frequenzumwandler angeschlossene Motortyp ausgewählt.

Beschreibung der Auswahl:
Der Wert kann im Allgemeinen für die meisten Motormarken ausgewählt werden. Wählen Sie “Danfoss Bauer” für optimale Einstellungen für Danfoss Bauer-Vorlegemotoren.
Sollwerte & Grenzwerte

200 Ausgangsfrequenz Bereich
(AUSGANGSFREQUENZ RNG/ROT)

<table>
<thead>
<tr>
<th>Wert</th>
<th>Eigenschaft</th>
</tr>
</thead>
<tbody>
<tr>
<td>★ Eine Richtung, 0 - 132 Hz</td>
<td></td>
</tr>
<tr>
<td>(132 Hz EINE RICHT.)</td>
<td></td>
</tr>
<tr>
<td>[0]</td>
<td></td>
</tr>
<tr>
<td>Beide Richtungen, 0 - 132 Hz</td>
<td></td>
</tr>
<tr>
<td>(132 Hz BEIDE RICHT.)</td>
<td></td>
</tr>
<tr>
<td>[1]</td>
<td></td>
</tr>
<tr>
<td>Linkslauf, 0 - 132 Hz</td>
<td></td>
</tr>
<tr>
<td>(132 Hz LINKSLAUF)</td>
<td></td>
</tr>
<tr>
<td>[2]</td>
<td></td>
</tr>
<tr>
<td>0-1000 Hz, Eine Richtung</td>
<td></td>
</tr>
<tr>
<td>(1000 Hz EINE RICHT.)</td>
<td></td>
</tr>
<tr>
<td>[3]</td>
<td></td>
</tr>
<tr>
<td>Beide Richtungen, 0 - 1000 Hz</td>
<td></td>
</tr>
<tr>
<td>(1000 Hz BEIDE RICHT.)</td>
<td></td>
</tr>
<tr>
<td>[4]</td>
<td></td>
</tr>
<tr>
<td>Linkslauf, 0 - 1000 Hz</td>
<td></td>
</tr>
<tr>
<td>(1000 Hz LINKSLAUF)</td>
<td></td>
</tr>
<tr>
<td>[5]</td>
<td></td>
</tr>
</tbody>
</table>

Funktion:
Mit Hilfe dieses Parameters kann eine unbeabsichtigte Drehrichtungsumkehr (Reversierung) verhindert werden. Außerdem kann eine höchstzulässige Ausgangsfrequenz gewählt werden, die unabhängig von der Einstellung anderer Parameter gelten soll. Wird nicht zusammen mit Prozessregelung mit Istwertrückführung in Parameter 100 Konfiguration benutzt.

Beschreibung der Auswahl:

201 Ausgangsfrequenzgrenze niedrig, f MIN
(MIN.FREQUENZ)

<table>
<thead>
<tr>
<th>Wert</th>
<th>Eigenschaft</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0 - f MAX</td>
<td>★ 0,0 Hz</td>
</tr>
</tbody>
</table>

Funktion:
In diesem Parameter kann für die Motorfrequenz eine Mindestgrenze gewählt werden, die die Mindestdrehzahl bestimmt, mit der der Motor laufen soll. Wenn Beide Richtungen in Parameter 200 Ausgangsfrequenz Bereich/Richtung gewählt wurde, ist die Mindestfrequenz ohne Bedeutung.

Beschreibung der Auswahl:
Einstellbar ist ein Wert von 0,0 Hz bis zu der in Parameter 202 Ausgangsfrequenzgrenze hoch, f MAX eingestellten Höchstfrequenz.

202 Ausgangsfrequenzgrenze hoch, f MAX
(MAX.FREQUENZ)

<table>
<thead>
<tr>
<th>Wert</th>
<th>Eigenschaft</th>
</tr>
</thead>
<tbody>
<tr>
<td>f MIN - 132/1000 Hz (Par. 200 Ausgangsfrequenz Bereich/Richtung)</td>
<td>★ 132 Hz</td>
</tr>
</tbody>
</table>

Funktion:
In diesem Parameter kann für die Ausgangsfrequenz eine Höchstgrenze gewählt werden, die die Höchstdrehzahl bestimmt, mit der der Motor laufen soll.

ACHTUNG:
Die Ausgangsfrequenz des Frequenzumrichters kann niemals einen Wert höher als 1/10 der Taktfrequenz (Parameter 411 Taktfrequenz) annehmen.

Beschreibung der Auswahl:
Einstellbar ist ein Wert von f MIN bis zu dem in Parameter 200 Ausgangsfrequenz Bereich/Richtung gewählten Wert.

Sollwertverarbeitung

Das folgende Blockdiagramm zeigt die Sollwertverarbeitung. Es zeigt, wie eine Änderung eines Parameters den resultierenden Sollwert beeinflussen kann.

Die Parameter 203 bis 205 Sollwert und Parameter 214 Sollwert-Funktion definieren, wie die Verarbeitung.
der Sollwerte erfolgen kann. Die erwähnten Parameter können mit und ohne Istwertrückführung aktiv sein.

Ferngesteuerte Sollwerte sind definiert als:
- Externe Sollwerte wie analoge Eingänge 53 und 60, Pulssollwerte über Klemme 33 und Sollwerte über die serielle Schnittstelle.
- Festsollwerte.

Es gibt auch einen unabhängigen Ort Sollwert in Parameter 003 Ort Sollwert, in dem der resultierende Sollwert mit den [+/-] Tasten eingestellt wird. Ist der Ort Sollwert gewählt, so ist der Ausgangsfrequenzbereich durch Parameter 201 Ausgangsfrequenzgrenze niedrig, fMIN und Parameter 202 Ausgangsfrequenzgrenze hoch, fMAX begrenzt.

Die Einheit des Ort-Sollwertes hängt ab von der Wahl in Parameter 100 Konfiguration.
Dezentrale Lösungen - Projektierungshandbuch

<table>
<thead>
<tr>
<th>203 Sollwertbereich</th>
<th>(SOLLWERTBEREICH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wert:</td>
<td>★Min. Sollwert - Max. Sollwert (MIN - MAX) [0] - Max. Sollwert - Max. Sollwert (-MAX - +MAX) [1]</td>
</tr>
</tbody>
</table>

Funktion:

Beschreibung der Auswahl:
Wählen Sie den gewünschten Bereich.

<table>
<thead>
<tr>
<th>204 Minimaler Sollwert, SOLLW.MIN</th>
<th>(MIN-SOLLWERT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wert:</td>
<td>Par. 100 Konfig. = Drehzahlregelung mit Schlupfkompensation [0]. -100.000,000 - Par. 205 SOLLW.MAX ★ 0,000 Hz Par. 100 Konfig. = mit Istwertrückführung [1]/[3]. -Par. 414 Minimaler Istwert - Par. 205 SOLLW.MAX ★ 0,000 Upm/par 416</td>
</tr>
</tbody>
</table>

Funktion:

Die Sollwerteinheit kann der folgenden Tabelle entnommen werden:

<table>
<thead>
<tr>
<th>Par. 100 Konfiguration</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drehzahlregelung mit Schlupfkompensation [0]</td>
<td>Hz</td>
</tr>
<tr>
<td>Drehzahlregelung mit Istwertrückführung [1]</td>
<td>Upm</td>
</tr>
<tr>
<td>Prozeßregelung mit Istwertrückführung [3]</td>
<td>Par. 416</td>
</tr>
</tbody>
</table>

Beschreibung der Auswahl:
Ein Minimaler Sollwert wird eingestellt, wenn der Motor mit einer gegebenen Mindestdrehzahl laufen soll, unabhängig davon, ob der resultierende Sollwert 0 ist.

<table>
<thead>
<tr>
<th>205 Maximaler Sollwert, SOLLW.MAX</th>
<th>(MAX-SOLLWERT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wert:</td>
<td>Par. 100 Konfig. = Drehzahlregelung mit Schlupfkompensation [0]. Par. 204 SOLLW.MIN - 1000,000 Hz ★ 50,000 Hz Par. 100 Konfig. = Mit Istwertrückführung [1]/[3]. Par. 204 SOLLW.MIN - Par. 415 Max. Istwert ★ 50,000 Upm/par 416</td>
</tr>
</tbody>
</table>

Funktion:

Die Sollwerteinheit kann der folgenden Tabelle entnommen werden:

<table>
<thead>
<tr>
<th>Par. 100 Konfiguration</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drehzahlregelung mit Schlupfkompensation [0]</td>
<td>Hz</td>
</tr>
<tr>
<td>Drehzahlregelung mit Istwertrückführung [1]</td>
<td>Upm</td>
</tr>
<tr>
<td>Prozeßregelung mit Istwertrückführung [3]</td>
<td>Par. 416</td>
</tr>
</tbody>
</table>

Beschreibung der Auswahl:
Ein Maximaler Sollwert wird eingestellt, wenn die Motordrehzahl max. den voreingestellten Wert betragen soll, unabhängig davon, ob der resultierende Sollwert höher als der Maximale Sollwert ist.

<table>
<thead>
<tr>
<th>206 Rampentyp</th>
<th>(RAMPENVERLAUF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wert:</td>
<td>★Linear (LINEAR) [0] Sinusförmig (SINUS-FORM) [1]</td>
</tr>
</tbody>
</table>

★ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert
Sinus2 förmig (SINUS 2-FORM) [2]

Funktion:
Zwischen linearem, sinustörmigem und sinus2 förmigem Rampentyp kann frei gewählt werden.

Beschreibung der Auswahl:
Wählen Sie den gewünschten Rampentyp abhängig von den Anforderungen an den Beschleunigungs-/Verzögerungsvorgang.

207 Rampenzeit Auf 1
(RAMPE AUF 1)

Wert:
0,02 - 3600,00 s ★ 3,00 s

Funktion:
Die Rampenzeit Auf ist die Beschleunigungszeit von 0 Hz bis zur Motornennfrequenz $f_{M,N}$ (Parameter 104 Motorfrequenz, $f_{M,N}$). Es wird vorausgesetzt, daß der Ausgangsstrom nicht die Stromgrenze erreicht (Einstellung in Parameter 221 Stromgrenze I_{LM}).

Beschreibung der Auswahl:
Programmieren Sie die gewünschte Rampenzeit Auf.

208 Rampenzeit Ab 1
(RAMPE AB 1)

Wert:
0,02 - 3600,00 s ★ 3,00 s

Funktion:
Die Rampenzeit Ab ist die Verzögerungszeit von der Motornennfrequenz $f_{M,N}$ (Parameter 104 Motorfrequenz, $f_{M,N}$) bis 0 Hz, vorausgesetzt, es entsteht im Wechselrichter keine Überspannung durch generatorischen Betrieb des Motors.

Beschreibung der Auswahl:
Programmieren Sie die gewünschte Rampenzeit Ab.

209 Rampenzeit Auf 2
(RAMPE AUF 2)

Wert:
0,02 - 3600,00 s ★ 3,00 s

Funktion:
Siehe Beschreibung von Parameter 207 Rampenzeit Auf 1.

Beschreibung der Auswahl:
Programmieren Sie die gewünschte Rampenzeit Auf. Der Wechsel von Rampe 1 auf Rampe 2 erfolgt über die Aktivierung des Signals Rampe 2 über einen Digitaleingang.

210 Rampenzeit Ab 2
(RAMPE AB 2)

Wert:
0,02 - 3600,00 s ★ 3,00 s

Funktion:
Siehe Beschreibung von Parameter 208 Rampenzeit Ab 1.

Beschreibung der Auswahl:
Programmieren Sie die gewünschte Rampenzeit Ab. Der Wechsel von Rampe 1 auf Rampe 2 erfolgt über die Aktivierung des Signals Rampe 2 über einen Digitaleingang.
211 Rampenzeit Festdrehzahl

(RAMPE JOG)

Wert:
0,02 - 3600,00 s ★ 3,00 s

Funktion:
Die Rampenzeit Festdrehzahl ist die Beschleunigungs-/Verzögerungszeit von 0 Hz bis zur Motornennfrequenz \(f_{M,N} \) (Parameter 104 Motorfrequenz, \(f_{M,N} \)). Es wird vorausgesetzt, daß der Ausgangsstrom nicht die Stromgrenze erreicht (Einstellung in Parameter 221 Stromgrenze \(I_{LM} \)).

Beschreibung der Auswahl:
Programmieren Sie die gewünschte Rampenzeit.

212 Rampenzeit Ab, Schnellstopp

(RAMPE Q-STOPP)

Wert:
0,02 - 3600,00 s ★ 3,00 s

Funktion:
Die Rampenzeit Ab, Schnellstopp ist die Verzögerungszeit von der Motornennfrequenz bis 0 Hz, vorausgesetzt, es entsteht im Wechselrichter keine Überspannung durch generatorischen Betrieb des Motors bzw. wenn der zurückgepeiste Strom die Stromgrenze überschreitet (Einstellung in Parameter 221 Stromgrenze \(I_{LM} \)). Schnellstopp wird über einen der digitalen Eingänge oder die serielle Schnittstelle aktiviert.

Beschreibung der Auswahl:
Programmieren Sie die gewünschte Rampenzeit Ab.

213 Frequenz Festdrehzahl - Jog

(FREQUENZ JOG)

Wert:
0,0 - Par. 202 Ausgangsfrequenzgrenze hoch, \(f_{MAX} \) ★ 10,0 Hz

Funktion:
Die Festdrehzahlfrequenz \(f_{JOG} \) ist bei aktiver Festdrehzahlfunktion eine feste Ausgangsfrequenz des Frequenzumrichters. Jog kann über die digitalen Eingänge, serielle Schnittstelle oder das Bedienfeld aktiviert werden, wenn diese Funktion in Parameter 015 Taster JOG Festdrehzahl aktiv eingestellt wurde.

Beschreibung der Auswahl:
Programmieren Sie die gewünschte Frequenz.

Sollwert-Funktion

Die folgenden Parameter werden eingestellt:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Par. 204</td>
<td>Minimaler Sollwert</td>
</tr>
<tr>
<td>Par. 205</td>
<td>Maximaler Sollwert</td>
</tr>
<tr>
<td>Par. 215</td>
<td>Festsollwert</td>
</tr>
<tr>
<td>Par. 308</td>
<td>Klemme 53, Analogersollwert</td>
</tr>
<tr>
<td>Par. 309</td>
<td>Klemme 53, min. Skalierung</td>
</tr>
<tr>
<td>Par. 310</td>
<td>Klemme 53, max. Skalierung</td>
</tr>
</tbody>
</table>

Wenn Parameter 214 Sollwertfunktion auf Addierend zum Sollwert [0] eingestellt wird, werden Festsollwerte (Par. 215-218) zu den externen Sollwerten als Prozentsatz des Sollwertbereichs hinzuzuegert. Der resultierende Sollwert wird über einen der digitalen Eingänge oder die serielle Schnittstelle aktiviert.

Par. 214 Sollwert-Funktion = Addierend zum Sollwert [0]:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Par. 204</td>
<td>Minimaler Sollwert</td>
</tr>
<tr>
<td>Sollwertbeitrag bei 4 Volt</td>
<td>16,0 Hz</td>
</tr>
<tr>
<td>Par. 215</td>
<td>Festsollwert</td>
</tr>
<tr>
<td>Sollwert resultierend</td>
<td>32,0 Hz</td>
</tr>
</tbody>
</table>

Wird Parameter 214 Sollwert-Funktion auf Erhöhung des Sollwertes - Relativ [1] eingestellt, so werden

★ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert
Die Festsollwerte (Par. 215-218) als Prozentwert zur Summe der externen Sollwerte addiert. Wird Klemme 53 verwendet, ist eine analoge Eingangsspannung von 4 Volt der resultierende Sollwert:

- Par. 214 Sollwert-Funktion = Relativ [1]:
 - Par. 204 Minimale Sollwert 10,0 Hz
 - Sollwertbeitrag bei 4 Volt 16,0 Hz
 - Par. 215 Festsetzung 2,4 Hz
 - Sollwert resultierend 28,4 Hz

- Par. 205 Ref. max. = 50
- Par. 204 Ref. min. = 10

215 Festsollwert 1 (FESTSOLLWERT 1)
- **Wert:** -100,00% - +100,00%
- **0,00%** des Sollwertbereichs/externen Sollwertes

Funktion:
In den Parametern 215-218 Festsollwert können vier Festsollwerte programmiert werden. Der Festsollwert kann als prozentualer Wert des Sollwertbereichs (Ref\textsubscript{MIN} - Ref\textsubscript{MAX}) oder als prozentualer Wert der übrigen externen Sollwerte eingegeben werden, je nachdem, welche Wahl in Parameter 214 Sollwert-Funktion getroffen wurde. Die Auswahl der Festsollwerte kann über die digitalen Eingänge oder die serielle Schnittstelle erfolgen.

Beschreibung der Auswahl:

ACHTUNG!
Bei Auswahl von Addieren zum Sollwert oder Erhöhen des Sollwertes-Relativ ist einer der Festsollwerte immer aktiv. Sollen die Festsollwerte keine Auswirkung haben, müssen sie auf 0% (Werkseinstellung) eingestellt werden.
219 Frequenzkorrektur Auf/ Ab

Wert:

0,00 - 100% des jeweiligen Sollwertes ★ 0,00%

Funktion:

In diesem Parameter kann der prozentuale Wert programmiert werden, der zu den Fern-Sollwerten addiert bzw. hiervon subtrahiert werden soll. Der Fern-Sollwert ist die Summe der Festsollwerte, analogen Sollwerte, Pulssollwerte und aller etwaigen Sollwerte der seriellen Schnittstelle.

Beschreibung der Auswahl:

Wenn Frequenzkorrektur Auf über einen digitalen Eingang aktiviert wird, wird der in Parameter 219 Frequenzkorrektur Auf/Ab festgelegte Wert zum Fern-Sollwert addiert. Wenn Frequenzkorrektur Ab über einen digitalen Eingang aktiviert wird, wird der in Parameter 219 Frequenzkorrektur Auf/Ab festgelegte Wert vom Fern-Sollwert subtrahiert.

221 Stromgrenze, I\textsubscript{LIM}

Wert:

0 - XXX,X % von par. 105 ★ 160 %

Funktion:

Hier wird der maximale Ausgangsstrom I\textsubscript{LIM} programmiert. Die Werkseinstellung entspricht dem maximalen Ausgangsstrom I\textsubscript{MAX}. Soll die Stromgrenze als Motorschutz verwendet werden, programmieren Sie den Motornennstrom. Wird die Stromgrenze auf über 100% (des Ausgangsstroms des Frequenzumrichters I\textsubscript{INV}) eingestellt, kann der Frequenzumrichter nur intermittierend, d.h. kurzzeitig betrieben werden. Nach einer Belastung mit mehr als I\textsubscript{INV} muß sichergestellt werden, daß die Last für einen ausreichenden Zeitraum geringer als I\textsubscript{INV} ist. Beachten Sie, daß bei Einstellung der Stromgrenze auf einen geringeren Wert als I\textsubscript{INV} das Beschleunigungsmoment im gleichen Umfang reduziert wird.

Beschreibung der Auswahl:

Programmieren Sie den maximalen Ausgangsstrom I\textsubscript{LIM}.

223 Warnung: Strom unterer Grenzwert, I\textsubscript{MIN} (I-MIN GRENZE)

Wert:

0,0 - Par. 224 Warnung: Strom oberer Grenzwert, I\textsubscript{MAX} (I-MAX GRENZE) ★ 0,0 A

Funktion:

Fällt der Ausgangsstrom unter die voreingestellte Grenze I\textsubscript{MIN} ab, erfolgt eine Warnung. Die Parameter 223-228 Warnfunktionen haben während des Hochlaufs nach einem Startbefehl und nach einem Stoppbefehl sowie während eines Stopps keine Funktion. Die Warnfunktionen werden aktiviert, wenn die Ausgangsspannung ihren resultierenden Sollwert erreicht hat. Die Signalausgänge können so programmiert werden, daß ein Warnsignal über Klemme 46 und über den Relaisausgang geben.

Beschreibung der Auswahl:

Die untere Ausgangsstrom-Warngrenze I\textsubscript{MIN} muß innerhalb des normalen Betriebsbereichs des Frequenzumrichters programmiert werden.

224 Warnung: Strom oberer Grenzwert, I\textsubscript{MAX} (I-MAX GRENZE)

Wert:

0 - I\textsubscript{MAX} ★ I\textsubscript{MAX-GRENZE}

Funktion:

Übersteigt der Ausgangsstrom die voreingestellte Grenze I\textsubscript{MAX}, so erfolgt eine Warnung. Die Parameter 223-228 Warnfunktionen haben während des Hochlaufs nach einem Startbefehl und nach einem Stoppbefehl sowie während eines Stopps keine Funktion. Die Warnfunktionen werden aktiviert, wenn die Ausgangsspannung ihren resultierenden Sollwert erreicht hat. Die Signalausgänge können so

★ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert

MG.90.F3.03 - VLT ist ein eingetragenes Warenzeichen vom Danfoss
programmiert werden, daß sie ein Warnsignal über Klemme 46 und über den Relaisausgang geben.

Beschreibung der Auswahl:

Der obere Signalwert des Ausgangsstroms \(I_{\text{MAX-GRRENZE}} \) muß innerhalb des normalen Betriebsbereichs des Frequenzumrichters programmiert sein. Siehe Zeichnung zu Parameter 223 Warnung: Strom unterer Grenzwert, \(I_{\text{MIN-GRRENZE}} \).

225 Warnung: Frequenz unterer Grenzwert, \(f_{\text{MIN-GRRENZE}} \)

Wert:
- 0,0 - Par. 226 Warn.: Frequenz oberer Grenzwert, \(f_{\text{MAX-GRRENZE}} \) ★ 0,0 Hz

Funktion:
Fällt die Ausgangsfrequenz unter die vorher angegebene Grenze \(f_{\text{MIN-GRRENZE}} \), erfolgt eine Warnung. Die Parameter 223-228 Warnfunktionen haben während des Hochlaufs nach einem Startbefehl und nach einem Stoppbefehl sowie während eines Stopps keine Funktion. Die Warnfunktionen werden aktiviert, wenn die Ausgangsfrequenz ihren resultierenden Sollwert erreicht hat. Die Signalausgänge können so programmiert werden, daß sie ein Warnsignal über Klemme 46 und über den Relaisausgang geben.

226 Warnung: Frequenz oberer Grenzwert, \(f_{\text{MAX-GRRENZE}} \)

Wert:
- Par. 200 Ausgangsfrequenz Bereich/Richtung = 0-132 Hz [0]/[1].
- Par. 225 \(f_{\text{MIN-GRRENZE}} \) = 132 Hz ★ 132,0 Hz

227 Warnung: Istwert unterer Grenzwert, \(ISTW_{\text{MIN-GRRENZE}} \)

Wert:
-100,000,000 - Par. 228 Warn.: \(ISTW_{\text{MAX-GRRENZE}} \) ★ -4000,000

Funktion:

228 Warnung: Istwert oberer Grenzwert, \(ISTW_{\text{MAX-GRRENZE}} \)

Wert:
- Par. 414 Minimaler Istwert, \(ISTW_{\text{MIN}} \) und 415 Maximaler Istwert, \(ISTW_{\text{MAX}} \) ★

Funktion:
Programmieren Sie den gewünschten Wert innerhalb des Istwertbereichs (Parameter 414 Minimaler Istwert \(ISTW_{\text{MIN}} \) und 415 Maximaler Istwert, \(ISTW_{\text{MAX}} \)).
228 Warnung: Istwert oberer Grenzwert, ISTW MAX-GRENZE (WARN.ISTW.HOCH)

Wert:
Par. 227 Warn.: ISTW_MIN-GRENZE - 100.000,000 ★ 4000,000

Funktion:
Übersteigt das Istwertsignal die voreingestellte Grenze ISTW MAX-GRENZE, erfolgt eine Warnung.

Beschreibung der Auswahl:
Programmieren Sie den gewünschten Wert innerhalb des Istwertbereichs (Parameter 414 Minimaler Istwert ISTWMIN und 415 Maximaler Istwert, ISTWMAX).

229 Frequenzüberbrückung, Bandbreite (BANDBR.FREQ. AUSB)

Wert:
0 (AUS) - 100 Hz ★ 0 Hz

Funktion:

Beschreibung der Auswahl:
Die in diesem Parameter eingestellte Bandbreite hat ihren Mittenwert auf den in den Parametern 230 Frequenzüberbrückung 1 und 231 Frequenzüberbrückung 2 eingestellten Werten.

230 Frequenzausblendung 1 (F1-AUSBLENDUNG)

231 Frequenzausblendung 2 (F2-AUSBLENDUNG)

Wert:

Funktion:
Bei einigen Systemen müssen aufgrund mechanischer Resonanzen in der Anlage bestimmte Ausgangsfrequenzen vermieden werden.

Beschreibung der Auswahl:
Programmieren Sie die auszublendenden Frequenzen. Siehe auch Parameter 229 Frequenzausblendung, Bandbreite.

★ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert
Ein- und Ausgänge

<table>
<thead>
<tr>
<th>Digitaleingänge</th>
<th>Anschlussnr.</th>
<th>18</th>
<th>19</th>
<th>27</th>
<th>29</th>
<th>33</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Par.-Nr.</td>
<td>302</td>
<td>303</td>
<td>304</td>
<td>305</td>
<td>307</td>
</tr>
<tr>
<td>Wert:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ohne Funktion</td>
<td>(OHNE FUNKTION)</td>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
<td>★[0]</td>
</tr>
<tr>
<td>Quittieren</td>
<td>(QUITTEIEN)</td>
<td>[1]</td>
<td>[1]</td>
<td>[1]</td>
<td>[1]</td>
<td>[1]</td>
</tr>
<tr>
<td>Reset und Motorfreilauf invers</td>
<td>(QUIT.T.FREIL)</td>
<td>[3]</td>
<td>[3]</td>
<td>★[3]</td>
<td>[3]</td>
<td>[3]</td>
</tr>
<tr>
<td>Start</td>
<td>(START)</td>
<td>★[7]</td>
<td>[7]</td>
<td>[7]</td>
<td>[7]</td>
<td>[7]</td>
</tr>
<tr>
<td>Puls-Start</td>
<td>(PULS-START)</td>
<td>[8]</td>
<td>[8]</td>
<td>[8]</td>
<td>[8]</td>
<td>[8]</td>
</tr>
<tr>
<td>Reversieren</td>
<td>(REVERSIERUNG)</td>
<td>[9]</td>
<td>★[9]</td>
<td>[9]</td>
<td>[9]</td>
<td>[9]</td>
</tr>
<tr>
<td>Reversierung + Start</td>
<td>(START + REVERSIERUNG)</td>
<td>[10]</td>
<td>[10]</td>
<td>[10]</td>
<td>[10]</td>
<td>[10]</td>
</tr>
<tr>
<td>Nur Start links wirksam</td>
<td>(START REVERS. WIRKSAM)</td>
<td>[12]</td>
<td>[12]</td>
<td>[12]</td>
<td>[12]</td>
<td>[12]</td>
</tr>
<tr>
<td>Festdrehzahl JOG</td>
<td>(FESTOREHZAHL (JOG))</td>
<td>[13]</td>
<td>[13]</td>
<td>[13]</td>
<td>★[13]</td>
<td>[13]</td>
</tr>
<tr>
<td>Sollwert speichern</td>
<td>(SOLLWERT SPEICHERN)</td>
<td>[14]</td>
<td>[14]</td>
<td>[14]</td>
<td>[14]</td>
<td>[14]</td>
</tr>
<tr>
<td>Drehzahl auf</td>
<td>(DREHZAHL AUF)</td>
<td>[16]</td>
<td>[16]</td>
<td>[16]</td>
<td>[16]</td>
<td>[16]</td>
</tr>
<tr>
<td>Drehzahl ab</td>
<td>(DREHZAHL AB)</td>
<td>[17]</td>
<td>[17]</td>
<td>[17]</td>
<td>[17]</td>
<td>[17]</td>
</tr>
<tr>
<td>Frequenzkorrektur auf</td>
<td>(FREQ.-KORREKTUR AUF)</td>
<td>[19]</td>
<td>[19]</td>
<td>[19]</td>
<td>[19]</td>
<td>[19]</td>
</tr>
<tr>
<td>Frequenzkorrektur ab</td>
<td>(FREQ.-KORREKTUR AB)</td>
<td>[20]</td>
<td>[20]</td>
<td>[20]</td>
<td>[20]</td>
<td>[20]</td>
</tr>
<tr>
<td>Rampe 2</td>
<td>(RAMPE 2)</td>
<td>[21]</td>
<td>[21]</td>
<td>[21]</td>
<td>[21]</td>
<td>[21]</td>
</tr>
<tr>
<td>Festsollwertanwahl, LSB</td>
<td>(FESTSOLLW.ANWAHL, LSB)</td>
<td>[22]</td>
<td>[22]</td>
<td>[22]</td>
<td>[22]</td>
<td>[22]</td>
</tr>
<tr>
<td>Festsollwertanwahl, MSB</td>
<td>(FESTSOLLW.MSB)</td>
<td>[23]</td>
<td>[23]</td>
<td>[23]</td>
<td>[23]</td>
<td>[23]</td>
</tr>
<tr>
<td>Festsollwert ein</td>
<td>(FESTSOLLW.EIN)</td>
<td>[24]</td>
<td>[24]</td>
<td>[24]</td>
<td>[24]</td>
<td>[24]</td>
</tr>
<tr>
<td>Präziser Stopp invers</td>
<td>(PRAEZ. STOPP INV.)</td>
<td>[26]</td>
<td>[26]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Präziser Start/Stopp</td>
<td>(PRAEZ. START/STOPP)</td>
<td>[27]</td>
<td>[27]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulsollwert</td>
<td>(SOLLWERT PULSE)</td>
<td>[28]</td>
<td>[28]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulsistwert</td>
<td>(PULS ISTWERT)</td>
<td>[29]</td>
<td>[29]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulseingang</td>
<td>(PULSEINGANG)</td>
<td>[30]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parametersatzauswahl, LSB</td>
<td>(PAR. SATZ ANWAHL LSB)</td>
<td>[31]</td>
<td>[31]</td>
<td>[31]</td>
<td>[31]</td>
<td>[31]</td>
</tr>
<tr>
<td>Parametersatzauswahl, masb</td>
<td>(PAR. SATZ ANWAHL MSB)</td>
<td>[32]</td>
<td>[32]</td>
<td>[32]</td>
<td>[32]</td>
<td>[32]</td>
</tr>
<tr>
<td>Quittieren und Start</td>
<td>(QUIT + START)</td>
<td>[33]</td>
<td>[33]</td>
<td>[33]</td>
<td>[33]</td>
<td>[33]</td>
</tr>
<tr>
<td>Drehgeber-Sollwert</td>
<td>(ENCODER-SOLLWERT)</td>
<td>[34]</td>
<td>[34]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drehgeber-Istwert</td>
<td>(ENCODER-ISTWERT)</td>
<td>[35]</td>
<td>[35]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drehgeberbereingang</td>
<td>(ENCODER-EINGANG)</td>
<td>[36]</td>
<td>[36]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 kann nicht gewählt werden, wenn Pulsausgang in Par. 341 Digitalausgang 46 Funktion gewählt ist.
2 Einstellungen sind für die Klemmen 29 und 33 identisch.

★ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert
Funktion:
In diesen Parametern 302-307 Digitaleingänge können verschiedene Funktionen in Bezug auf die Digitaleingänge (Klemmen 18-33) ausgewählt werden.

Beschreibung der Auswahl:
Ohne Funktion ist zu wählen, wenn der Frequenzumrichter auf die der Klemme zugeführten Signale nicht reagieren soll.

Freilaufstopp invers koppelt den Motor sofort vom Frequenzumrichter ab (Ausgangstransistoren werden abgeschaltet), sodass der Motor bis zum Stopp frei läuft. Logisch 0" führt zum Freilaufstopp.

Quittieren und Motorfreilauf invers dient zum gleichzeitigen Aktivieren von Motorfreilauf und Reset. Logisch 0" führt zu Freilaufstopp und Quittieren. Quittieren wird auf der Signalabfallflanke aktiviert.

Schnellstopp invers dient zum Aktivieren der in Parameter 212 Rampenzeit Ab, Schnellstopp programmierten Schnellstopprampe. Logisch 0" führt zu Schnellstopp.

Stopp invers, logisch 0" bedeutet, dass die Motordrehzahl gemäß der gewählten Rampe zum Stopp verringerter wird.

Keiner der o.a. Stoppbefehle darf für Reparaturzwecke benutzt werden. Vor Beginn der Reparaturarbeiten ist sicherzustellen, dass alle Spannungseingänge abgeschaltet sind und die erforderliche Zeit (4 Min) verstrichen ist.

Start ist zu wählen, wenn ein Start/Stopp-Befehl gewünscht wird. Logisch 1" = Start, logisch 0" = Stopp.

Nur Start rechts wirksam wird verwendet, wenn der Motor beim Start nur im Rechtslauf drehen soll. Sollte nicht bei Prozessregelung mit Rückführung angewendet werden.

Festdrehzahl (JOG) dient dazu, die Ausgangsfrequenz auf die in Parameter 213 JOG Festfrequenz einzustellen. Festdrehzahl (JOG) ist unabhängig von einem Startbefehl aktiv, allerdings nicht, wenn Freilaufstopp invers, Schnellstopp invers oder DC-Bremse aktiv sind.

Sollwert speichern speichert den aktuellen Sollwert. Der Sollwert kann nun nur mit Drehzahl auf und Drehzahl ab geändert werden. Ist Sollwert speichern aktiv, so wird der programmierte Sollwert nach einem Stoppbefehl und bei einem Netzausfall gespeichert.

Mit Ausgangsfrequenz speichern wird die aktuelle Ausgangsfrequenz (in Hz) gespeichert. Die Ausgangsfrequenz kann nun nur mit Drehzahl auf und Drehzahl ab geändert werden.

★ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert
ACHTUNG!:

Ist Ausgangsfrequenz speichern aktiv, kann der Frequenzumrichter nur gestoppt werden, wenn Freilaufstop invers, Schnellstoppe oder DC-Bremse über einen Digitaleingang gewählt ist.

Drehzahl auf und Drehzahl ab sind zu wählen, wenn eine digitale Steuerung der Drehzahl auf/ab gewünscht wird. Diese Funktion ist nur aktiv, wenn Sollwert speichern oder Ausgangsfrequenz speichern gewählt wurde. Ist Drehzahl auf aktiv, so werden der Sollwert bzw. die Ausgangsfrequenz erhöht; ist Drehzahl ab aktiv, so werden der Sollwert bzw. die Ausgangsfrequenz reduziert. Die Ausgangsfrequenz wird über die Rampenzeiten in den Parametern 209-210 Rampe 2 geändert. Ein Impuls (logisch 1 mindestens für 14 ms und Pausenzeit mindestens 14 ms) führt zu einer Drehzahlerhöhung von 0,1 % (Sollwert) bzw. 0,1 Hz (Ausgangsfrequenz). Beispiel:

<table>
<thead>
<tr>
<th>Klemme</th>
<th>Sollwert</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>33</td>
<td>speichern/ Ausg. speichern</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Keine Drehzahlerhöhung</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Drehzahl auf</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Drehzahl ab</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Drehzahl ab</td>
</tr>
</tbody>
</table>

Sollwert speichern kann auch geändert werden, wenn der Frequenzumrichter gestoppt ist. Der Sollwert wird auch bei Netztrennung gespeichert.

Frequenzkorrektur auf/ab ist zu wählen, wenn der Sollwert um einen in Parameter 219 Anpassungswert-% eingestellten Wert erhöht oder verringert werden soll.

<table>
<thead>
<tr>
<th>Frequenzkorrektur ab</th>
<th>Frequenzkorrektur auf</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Keine Änderung</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Beschl. um % Wert</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Verlangs. um % Wert</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Verlangs. um % Wert</td>
</tr>
</tbody>
</table>

Rampe 2 ist zu wählen, wenn zwischen Rampe 1 (Parameter 207-208) und Rampe 2 (Parameter 209-210) gewechselt werden soll. Logisch 0 " bewirkt Rampe 1 und logisch 1 " Rampe 2.

Festsollwarantanwahl, lsb und Festsollwerantanwahl, msb ermöglicht die Auswahl eines der vier Festsollwerte gemäß nachstehender Tabelle:

<table>
<thead>
<tr>
<th>Festsollwert</th>
<th>Festsollwert</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Festsollwert 1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Festsollwert 2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Festsollwert 3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Festsollwert 4</td>
</tr>
</tbody>
</table>

Präziser Stopp invers ist zu wählen, wenn eine hohe Genauigkeit bei der Wiederholung eines Stopfbefehls erzielt werden soll. Logisch 0 " bedeutet, dass die Motordrehzahl gemäß der gewählten Rampe zum Stopp verringert wird.

Präz. Start/Stopp ist zu wählen, wenn eine hohe Genauigkeit bei der Wiederholung eines Start-/Stopfbefehls erzielt werden soll.

Pulssollwert ist zu wählen, wenn eine Pulsfolge (Frequenz) als Sollwertsignal gewählt ist. 0 Hz entspricht Parameter 204 Min-Sollwert, Sollw_MIN. Die in Parameter 327/328 Pulse Max. 33/29 eingestellte Frequenz entspricht Parameter 205 Maximaler Sollwert, Sollw_MAX.

Pulsistwert ist zu wählen, wenn das Istwertsignal eine Pulsfolge (Frequenz) ist. In Parameter 327/328 Pulse Max. 33/29 wird die maximale Pulsistwertfrequenz eingestellt.

Quittieren und Start dient als Startfunktion. Liegen 24 V am Digitaleingang an, so wird der Frequenzumrichter zurückgesetzt, und der Motor läuft auf den Wert des Festsollwerts hoch.

Drehgeber-Sollwert ist zu wählen, wenn eine Pulsfolge (Frequenz) als Sollwertsignal gewählt ist. 0 Hz entspricht Parameter 204 Min-Sollwert,
Sollw_{MIN}. Die in Parameter 327/328 Pulse Max. 33/29 eingestellte Frequenz entspricht Parameter 205 Maximaler Sollwert, {\textit{Sollw}_{MAX}}.

Encoder-Istwert ist zu wählen, wenn das Istwertsignal eine Pulsfolge (Frequenz) ist. In Parameter 327/328 Pulse Max. 33/29 wird die maximale Pulsistwertfrequenz eingestellt.

Drehgebereingang ist zu wählen, wenn eine spezifische Anzahl von Pulsen zu Präziser Stopp führen muss. Siehe dazu Parameter 343 Präziser Stopp und Parameter 344 Zählerwert.

Alle Drehgebereinstellungen werden zusammen mit Zweispur-Drehgebbern mit Richtungserkennung verwendet.

Spur A an Klemme 29 angeschlossen.
Spur B an Klemme 33 angeschlossen.

308 Klemme 53, Analogeingangsspannung

Wert:
- Ohne Funktion (\textit{OHNE FUNKTION}) \[0\]
- Sollwert (\textit{SOLLWERT}) \[1\]
- Istwert (\textit{ISTWERT}) \[2\]
- Wobbel (\textit{WOBB. DELTA FREQ [%]}) \[10\]

Funktion:

Beschreibung der Auswahl:

Die Dreieckfrequenz kann über Analogeingang gesteuert werden. Ist \textit{WOBB. DELTA FREQ} als Analogeingang gewählt (Par. 308 oder Par. 314) ist der in Par. 702 gewählte Wert gleich 100 % des Analogeingangs.

Beispiel: Analogeingang = 4-20 mA, Dreieckfrequ. Par. 702 = 5 Hz → 4 mA = 0 Hz und 20 mA = 5 Hz. Bei Wahl dieser Funktion siehe Anleitung Wobbel MI28JXYY für weitere Informationen.

309 Klemme 53, min. Skalierung

Wert:
0,0 - 10,0 Volt ★ 0,0 Volt

Funktion:
In diesem Parameter wird der Signalwert eingestellt, der dem minimalen Sollwert bzw. minimalen Istwert, Parameter 204 Minimaler Sollwert, \textit{Ref_{MIN}} / 414 Minimaler Istwert, \textit{FB_{MIN}} entspricht.

Beschreibung der Auswahl:

310 Klemme 53, max. Skalierung

Wert:
0,0 - 10,0 Volt ★ 10,0 Volt

Funktion:
In diesem Parameter wird der Signalwert eingestellt, der dem maximalen Sollwert bzw. maximalen Istwert, Parameter 205 Maximaler Sollwert, \textit{Ref_{MAX}} / 414 Maximaler Istwert, \textit{FB_{MAX}} entspricht.

Beschreibung der Auswahl:

314 Klemme 60, Analogeingangsstrom

Wert:
- Ohne Funktion (\textit{OHNE FUNKTION}) \[0\]
- Sollwert (\textit{SOLLWERT}) \[1\]
- Istwert (\textit{ISTWERT}) \[2\]
- Wobbel (\textit{WOBB. DELTA FREQ [%]}) \[10\]

Funktion:
In diesem Parameter können die verschiedenen Funktionsmöglichkeiten des Eingangs an Klemme 60 MG.90.F3.03 - VLT ist ein eingetragenes Warenzeichen vom Danfoss

Beschreibung der Auswahl:

Ohne Funktion [0]. Ist zu wählen, wenn der Frequenzumrichter nicht auf die an diese Klemme angeschlossenen Signale reagieren soll. Sollwert [1]. Wenn diese Funktion gewählt ist, kann der Sollwert mit einem analogen Sollwertsignal geändert werden. Sind Sollwertsignale mit mehreren Eingängen verbunden, müssen diese Sollwertsignale addiert werden.

Die Dreieckfrequenz kann über Analogeingang gesteuert werden. Ist WOB. DELTA FREQ als Analogeingang gewählt (Par. 308 oder Par. 314) ist der in Par. 702 gewählte Wert gleich 100 % des Analogeingangs.

Beispiel: Analogeingang = 4-20 mA, Dreieckfreq. Par. 702 = 5 Hz → 4 mA = 0 Hz und 20 mA = 5 Hz. Bei Wahl dieser Funktion siehe Anleitung Wobbel MI28JXY für weitere Informationen.

315 Klemme 60, min. Skalierung

(EIN.60 SKAL-MIN)

| Wert: | 0,0 - 20,0 mA ★ 4,0 mA |

Funktion:

In diesem Parameter kann der Signalwert eingestellt werden, der dem minimalen Sollwert oder minimalen Istwert in Par. 204 Min. Sollwert, Ref$_{MIN}$ bzw. 414 Min. Istwert, FB$_{MIN}$ entspricht.

Beschreibung der Auswahl:

Gewünschten Stromwert einstellen. Soll die Timeout-Funktion verwendet werden (Parameter 317 Zeit nach Sollwertfehler und 318 Funktion nach Sollwertfehler), so muss der programmierte Wert höher als 2 mA sein.

316 Klemme 60, max. Skalierung

(EIN.60 SKAL-MAX)

| Wert: | 0,0 - 20,0 mA ★ 20,0 mA |

Funktion:

In diesem Parameter wird der Signalwert eingestellt, der dem maximalen Sollwert, Parameter 205 Maximaler Sollwert, Ref$_{MAX}$ entsprechen soll.

Beschreibung der Auswahl:

Gewünschten Stromwert einstellen.

317 Zeit nach Sollwertfehler

(ZEITN.SOLLW.FEHL)

| Wert: | 1 - 99 s ★ 10 s |

Funktion:

Fällt der Signalwert des an einer der Eingangsklemmen 53 bzw. 60 angeschlossenen Soll- bzw. Istwertsignals länger als die eingestellte Zeit unter 50% der minimalen Skalierung, so wird die in Parameter 318 Funktion nach Sollwertfehler eingestellte Funktion aktiviert.

Diese Funktion ist nur aktiv, wenn in Parameter 309 Klemme 53, min. Skalierung ein Wert höher als 1 Volt bzw. in Parameter 315 Klemme 60, min. Skalierung ein Wert höher als 2 mA gewählt wurde.

Beschreibung der Auswahl:

Erforderliche Zeit einstellen.

318 Funktion nach Sollwertfehler

(FUNKT.N.SOLLWF.)

Wert:

★ Ohne Funktion (AUS) [0]
Ausgangsfrequenz speichern (AUSGANG SPEICHERN) [1]
Stopp (STOppo) [2]
Festdrehzahl (FESTDREHZahl (JOG)) [3]
Max. Drehzahl (MAXIMALE DREHZahl) [4]
Stopp und Abschaltung (STOppo+ABSCHALtung) [5]

Funktion:

Dieser Parameter ermöglicht die Auswahl der Funktion, die nach Ablauf des Timeout (Parameter 317 Zeit nach Sollwertfehler) aktiviert werden soll. Tritt eine Timeout-Funktion gleichzeitig mit einer Bus-Timeout-Funktion (Parameter 513...
Dezentrale Lösungen - Projektierungshandbuch

Bus-Timeout-Zeit), so wird die Timeout-Funktion in Parameter 318 aktiviert.

Beschreibung der Auswahl:

Die Ausgangsfrequenz des Frequenzumrichters kann:
- auf dem aktuellen Wert gespeichert werden [1],
- bis zum Stopp fahren [2],
- bis zur Festdrehzahl fahren [3],
- bis zur max. Ausgangsfrequenz fahren [4],
- bis zum Stopp mit anschließender Abschaltung fahren [5].

319 Analogausgang Klemme 42
(FUNKTION AUS. 42)

Wert:
- Ohne Funktion (OHNE FUNKTION) [0]
- Externer Sollwert min.-max. 0-20 mA (SOLLW MIN-MAX = 0-20 MA) [1]
- Externer Sollwert min.-max. 4-20 mA (SOLLW MIN-MAX = 4-20 MA) [2]
- Istwert min.-max. 0-20 mA (FB MIN-MAX = 0-20 MA) [3]
- Istwert min.-max. 4-20 mA (FB MIN-MAX = 4-20 MA) [4]
- Ausgangsfrequenz 0-max 0-20 mA (0-FMAX. = 0-20 MA) [5]
- Ausgangsfrequenz 0-max 4-20 mA (0-FMAX. = 4-20 MA) [6]
- **Ausgangsstrom 0-IINV 0-20 mA (0-IINV = 0-20 MA) [7]
- Ausgangsstrom 0-IINV 4-20 mA (0-IINV = 4-20 MA) [8]
- Ausgangsleistung P-M,N 0-20 mA (0-PNOM = 0-20 MA) [9]
- Ausgangsleistung P-M,N 4-20 mA (0-PNOM = 4-20 MA) [10]
- Wechselrichtertemperatur 20-100 °C 0-20 mA (TEMP 20-100 C=0-20 MA) [11]
- Wechselrichtertemperatur 20-100 °C 4-20 mA (TEMP 20-100 C=4-20 MA) [12]

Funktion:
Der analoge Ausgang kann für die Angabe eines Prozesswertes dienen. Es ist die Auswahl aus den beiden Ausgangssignalen 0 - 20 mA und 4 - 20 mA möglich.

Bei Verwendung als Spannungsausgang (0 - 10 V) muss ein Abschlusswiderstand von 500 Ω gegen Masse (Klemme 55) geschaltet werden. Bei Verwendung als Stromausgang darf der Gesamtanschlusswiderstand 500 Ω nicht überschreiten.

Beschreibung der Auswahl:

Ohne Funktion. Wird gewählt, wenn der analoge Ausgang nicht benutzt wird.

Externer Sollw_MIN - Sollw_MAX 0-20 mA/4-20 mA. Es entsteht ein Ausgangssignal, das proportional zum resultierenden Sollwert im Intervall Minimaler Sollwert, Sollw_MIN - Maximaler Sollwert, Sollw_MAX (Parameter 204/205) ist.

SW_MIN-SW_MAX 0-20 mA/ 4-20 mA. Es entsteht ein Ausgangssignal, das proportional zum Istwert im Intervall Minimaler Istwert, Istw_MIN - Maximaler Istwert, Istw_MAX (Parameter 414/415) ist.

0 - f_MAX 0-20 mA/4-20 mA. Es entsteht ein Ausgangssignal, das proportional zur Ausgangsfrequenz im Intervall 0 - f_MAX (Parameter 202 Ausgangsfrequenzgrenze hoch, f_MAX) ist.

0 - I_INV 0-20 mA/4-20 mA. Es entsteht ein Ausgangssignal, das proportional zum Ausgangsstrom im Intervall 0 - I_INV ist.

0 - P_M,N 0-20 mA/4-20 mA. Es entsteht ein Ausgangssignal, das proportional zur aktuellen Ausgangsleistung ist. 20 mA entspricht dem in Parameter 102 Motorleistung, P_M,N eingestellten Wert.

0 - Temp.MAX 0-20 mA/4-20 mA. Es entsteht ein Ausgangssignal, das proportional zur aktuellen Kühlkörper temperatur ist. 0/4 mA entspricht einer Kühlköpftermperatur von weniger als 20 °C, und 20 mA entspricht 100 °C.

323 Relaisausgang 1-3
(AUSG. 1-3 RELAIS)

Wert:
- **Ohne Funktion (OHNE FUNKTION) [0]
- Frequenzumrichter bereit (INV BEREIT) [1]
- Freigabe keine Warnung (FREIG.KEINE WARN) [2]
- Motor dreht (MOTOR DREHT) [3]
- Sollwert entspricht Motordrehzahl, keine Warnung (SOLLW.=MOTOR DREHZ.K.WA) [4]
- Motor dreht, keine Warnung (MOTOR DREHT K. WARN) [5]
- Betrieb innerhalb der Grenzwerte, keine Warnung (LIMIT OK KEINE WARN) [6]
- Breit, keine Unter-/Überspannung (BER:KEINE U./UEBSP) [7]
- Alarm oder Warnung (ALARM OD. WARNUNG) [8]

★ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert

MG.90.F3.03 - VLT ist ein eingetragenes Warenzeichen vom Danfoss
Dezentrale Lösungen - Projektierungshandbuch

Strom höher als Stromgrenze, par.
(STROMGRENZE) [9]
Alarm (ALARMS) [10]
Ausgangsfrequenz höher als f_{MIN} Par. 225
(ÜBER MIN. WARNFREQ.) [11]
Ausgangsfrequenz niedriger als f_{MAX} Par. 226
(UNTER MAX. WARNFREQ.) [12]
Ausgangsstrom höher als I_{MIN} Par. 223
(UEBER MIN. WARNSTROM) [13]
Ausgangsstrom niedriger als I_{MAX} Par. 224
(UNTER MAX. WARNSTROM) [14]
Istwert höher als FB_{MIN} Par. 227
(ÜBER MIN.ISTWERT-B) [15]
Istwert niedriger als FB_{MAX} Par. 228
(UNTER MAX.ISTWERT-B) [16]
Relais 123 (RELAYS 123) [17]
Drehrichtung (REVERSIERUNG) [18]
Warnung Übertemperatur
(WARNUNG UEBERTEMP) [19]
Ortbetrieb (ORTBETRIEB) [20]
Nicht im Frequenzbereich Par. 225/226
(AUSSEHR.FREQ.GRENZE) [22]
Außerhalb des Strombereiches
(AUSSEHR.STROMGRENZE) [23]
Außerhalb des Istwertbereiches
(AUS ISTWERT.GRENZE) [24]
Mechanische Bremskontrolle
(STEUERUNGMECH.BREMSE) [25]
Steuerwort Bit 11
(STR.WORT BIT 11) [26]

Funktion:
Der Relaisausgang kann zur Statusangabe oder für eine Warnung benutzt werden. Der Ausgang wird aktiviert (1–2 geschlossen), wenn eine bestimmte Bedingung erfüllt ist.

Beschreibung der Auswahl:
Ohne Funktion. Ist zu wählen, wenn der Frequenzumrichter nicht auf Signale reagieren soll.
Frequenzumrichter bereit, die Versorgungsspannung liegt an der Steuerkarte des Frequenzumrichters an, und der Frequenzumrichter ist betriebsbereit.
Freigabe, keine Warnung, der Frequenzumrichter ist betriebsbereit, es wurde aber noch kein Startbefehl gegeben. Keine Warnung.
Motor dreht, es wurde ein Startbefehl gegeben.
Sollwert entspricht Motordrehzahl, keine Warnung, Drehzahl entspricht Sollwert.
Motor dreht, keine Warnung, es wurde ein Startbefehl gegeben. Keine Warnung.

Bereit - keine Über-/Unterspannung, der
Frequenzumrichter ist betriebsbereit; die Steuerkarte erhält Versorgungsspannung, und es liegen keine aktiven Steuersignale an den Eingängen an. Die Netzspannung liegt innerhalb der Spannungsgrenzen.

Alarm oder Warnung, der Ausgang wird durch einen Alarm oder eine Warnung aktiviert.

Stromgrenze, der Ausgangsstrom ist höher als der in Parameter 221 Stromgrenze I_{LM} programmierte Wert.

Alarm oder Warnung, der Ausgang wird durch einen Alarm aktiviert.

Ausgangsfrequenz höher als f_{MIN}, die Ausgangsfrequenz hat den in Parameter 225 eingestellten Wert überschritten Warnung: Frequenz unterer Grenzwert, f_{MIN}.

Ausgangsfrequenz niedriger als f_{MAX}, die Ausgangsfrequenz hat den in Parameter 226 eingestellten Wert unterschritten Warnung: Frequenz obere Grenze, f_{MAX}.

Ausgangsstrom höher als I_{MIN}, der Ausgangsstrom hat den in Parameter 223 eingestellten Wert überschritten Warnung: Strom unterer Grenzwert, I_{MIN}.

Ausgangsstrom niedriger als I_{MAX}, der Ausgangsstrom hat den in Parameter 224 eingestellten Wert unterschritten Warnung: Strom oberer Grenzwert, I_{MAX}.

Istwert höher als FB_{MIN}, der Istwert hat den in Parameter 227 eingestellten Wert Warnung: Istwert niedrig, ISTW_{TIEF}.

Istwert niedriger als FB_{MAX}, der Istwert hat den in Parameter 228 eingestellten Wert unterschritten Warnung: Strom oberer Grenzwert, I_{MAX}.

Relais 123, wird nur mit Profibus verwendet.
Reversierung Der Relaisausgang wird aktiviert, wenn der Motor vorwärts dreht. Wenn der Motor rückwärts dreht, ist der Wert 0 V DC.

Warnung Übertemperatur, die Temperaturgrenze ist entweder im Motor oder Frequenzumrichter oder an einem am digitalen Eingang angeschlossenen Thermistor überschritten.

★ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert

MG.90.F3.03 - VLT ist ein eingetragenes Warenzeichen vom Danfoss
Nicht im Frequenzbereich, die Ausgangsfrequenz ist außerhalb des in den Parametern 225 und 226 programmierten Bereichs.

Nicht im Strombereich, der Motorstrom ist außerhalb des in den Parametern 223 und 224 programmierten Bereichs.

Nicht im Istwertbereich, das Istwertsignal ist außerhalb des in den Parametern 227 und 228 programmierten Bereichs.

Steuerung mechanische Bremse, ermöglicht die Steuerung einer externen mechanischen Bremse (siehe Abschnitt zur Steuerung der mechanischen Bremse im Projektierungshandbuch).

Steuerwort Bit 11, Bit 11 des Steuerworts, der Relayausgang wird gemäß Bit 11 eingestellt/zurückgesetzt.

341 Digitalausgang Klemme 46

(DO 46 FUNKTION)

<table>
<thead>
<tr>
<th>Wert:</th>
</tr>
</thead>
<tbody>
<tr>
<td>★ Ohne Funktion (OHNE FUNKTION)</td>
</tr>
<tr>
<td>Wert [0] - [20] siehe Parameter 323</td>
</tr>
<tr>
<td>Pulssollwert (PULS-SOLLWERT)</td>
</tr>
<tr>
<td>Puls-Istwert, Puls-Sollwert (PULS-ISTWERT)</td>
</tr>
<tr>
<td>Ausgangsfrequenz (PULS AUSGANGSFREQ.)</td>
</tr>
<tr>
<td>Pulstrom (PULSSTROM)</td>
</tr>
<tr>
<td>Pulslänge (PULSLEISTUNG)</td>
</tr>
<tr>
<td>Pulstemperatur (PULSTEMP)</td>
</tr>
<tr>
<td>Steuerwort Bit 12 ([ISTR-WORT BIT 12])</td>
</tr>
</tbody>
</table>

Funktion:
Der digitale Ausgang kann zur Statusangabe oder für eine Warnung benutzt werden. Der digitale Ausgang (Klemme 46) gibt ein 24 V Gleichspannungssignal, wenn eine bestimmte Bedingung erfüllt ist.

Beschreibung der Auswahl:
Externer SollwMIN - SollwMAX Par. 0-342
Es ergibt sich ein Ausgangssignal, dem proportional zum resultierenden Sollwert im Intervall Minimaler Sollwert, SollwMIN - Maximaler Sollwert, SollwMAX (Parameter 204/205) ist.

IstwMIN - IstwMAX Par. 0-342
Es ergibt sich ein Ausgangssignal, dem proportional zum Istwert im Intervall Minimaler Istwert, IstwMIN - Maximaler Istwert, IstwMAX (Parameter 414/415) ist.

0 - fMAX Par. 0-342
Es ergibt sich ein Ausgangssignal, dem proportional zur Ausgangsfrequenz im Intervall 0 - fMAX (Parameter 202 Ausgangsfrequenzgrenze hoch, fMAX) ist.

0 - IINV. Par. 0-342.
Es ergibt sich ein Ausgangssignal, dem proportional zum Ausgangsstrom zwischen 0 - IINV ist.

0 - PM,N Par. 0-342.
Es ergibt sich ein Ausgangssignal, dem proportional zur aktuellen Ausgangsleistung ist. Par. 342 entspricht dem in Parameter 102 eingestellten Wert Motorleistung, PM,N.

0 - Temp.MAX Par. 0-342.
Es ergibt sich ein Ausgangssignal, dem proportional zur aktuellen Kühlkörpertemperatur ist. 0 Hz entspricht einer Kühlkörpertemperatur von weniger als 20 °C und 20 mA entspricht 100 °C.

★ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert.
Dezentrale Lösungen - Projektierungshandbuch

Steuwort Bit 12, Bit 12 des Steuerwortes. Der digitale Ausgang wird gemäß Bit 12 eingestellt/rückgesetzt.

342 Klemme 46, max. Pulswert
(AUS 46 MAX PULS)
Wert:
150 - 10000 Hz ★ 5000 Hz

Funktion:
Dieser Parameter dient zur Einstellung der Maximalfrequenz des Pulsausgangssignals.

Beschreibung der Auswahl:
Gewünschte Frequenz einstellen.

343 Präzise Stoppfunktion
(PRÄZISER STOPP)
Wert:
★ Präziser Start/Stopp (NORMAL) [0]
Zählerstopp mit Quittieren (ZÄHLSTOPP QUITTIEREN) [1]
Zählerstopp ohne Quittieren (ZÄHLSTOPP OHNE QUITTIEREN) [2]
Drehzahlkompensierter Stopp (DRZ KMP STOPP) [3]
Drehzahlkompensierter Zählerstopp mit Quittieren (DRZ KMP ZSTOPP M. QUITT.) [4]
Drehzahlkompensierter Zählerstopp ohne Quittieren (DRZ KMP ZSTOPP O. QUITT.) [5]

Funktion:
In diesem Parameter wird die auf einen Stoppbefehl folgende Stoppfunktion gewählt. Alle sechs Auswahlmöglichkeiten enthalten eine präzise Stopproutine und gewährleisten so eine hohe Wiederholgenauigkeit. Die Auswahlmöglichkeiten stellen Kombinationen der nachfolgend beschriebenen Funktionen dar.

ACHTUNG!:

Beschreibung der Auswahl:
Präziser Rampenstopp [0] wird gewählt, um eine hohe Wiederholgenauigkeit am Stoppunkt zu erzielen. Zählerstopp. Sobald der Frequenzumrichter ein Puls-Startsignal erhalten hat, läuft er, bis die anwenderprogrammierte Pulszahl an Klemme 33 empfangen wurde. Auf diese Weise aktiviert ein internes Stoppsignal den normalen Rampenstopp (Parameter 208).
Die Zählerfunktion wird auf der Flanke des Startsignals (beim Übergang von Stopp zu Start) aktiviert (startet die Zählung).
Drehzahlkompensierter Stopp. Um unabhängig von der aktuell Drehzahl eine präzise Am gleichen Punkt zu stoppen, wird ein empfangenes Stoppsignal intern verzögert, wenn die aktuelle Drehzahl geringer als die maximale Drehzahl ist (Einstellung in Parameter 202). Quittieren. Zählerstopp und Drehzahlkompensierter Stopp können mit oder ohne Quittieren kombiniert werden.
Zählerstopp mit Reset [1]. Nach jedem präzisen Stopp wird die Anzahl der während Rampe Ab auf 0 Hz gezählten Pulse zurückgesetzt.
Zählerstopp ohne Quittieren [2]. Die während Rampe Ab auf 0 Hz gezählte Anzahl von Pulsen wird vom Zählerwert in Parameter 344 subtrahiert.

344 Zählerwert
(ZÄHLERWERT)
Wert:
0 - 999999 ★ 100000 Pulse

Funktion:
In diesem Parameter kann der Zählerwert für die integrierte präzise Stoppfunktion (Parameter 343) gewählt werden.

Beschreibung der Auswahl:
Die Werkseinstellung ist 100000 Pulse. Die höchste Frequz (max. Auflösung), die an Klemme 33 registriert werden kann, beträgt 67,6 kHz.

349 Verzögerung Drehzahlkompensierung
(VERZ. DREHZKOMP)
Wert:
0 ms - 100 ms ★ 10 ms

Funktion:
In diesem Parameter kann die Systemverzögerungszeit (Sensor, SPS usw.) eingestellt werden. Bei drehzahlkompensiertem Stopp hat die Verzögerungszeit bei verschiedenen Frequenzen einen wesentlichen Einfluß darauf, wie gestoppt wird.

Beschreibung der Auswahl:
ACHTUNG!
Nur wirksam für drehzahlkompensierten Stopp.
Dezentrale Lösungen - Projektierungshandbuch

Sonderfunktionen

400 Bremsfunktion
(BREMSFUNKTION)

Wert:

★ Aus (AUS) [0]
Mit Bremswiderstand (BREMSWIDERSTAND) [1]
Wechselstrombremse (AC-BREMSE) [4]

Funktion:

Beschreibung der Auswahl:

ACHTUNG!
Eine geänderte Auswahl wird erst wirksam, wenn die Netzspannung getrennt und wieder angeschlossen wird.

405 Quittierfunktion
(QUITTIERUNGSART)

Wert:

★ Manuell quittieren (MANUELL TASTER O.KL.) [0]
1 x automatisch quittieren (1 X AUTOMATISCH) [1]
3 x automatisch quittieren (3 X AUTOMATISCH) [3]
10 x automatisch quittieren (10 X AUTOMATISCH) [10]
Quittieren beim Einschalten (QUITT. BEI EIN.) [11]

Funktion:

Dieser Parameter ermöglicht die Wahl, ob nach einer Abschaltung die Quittierung und der Neustart manuell erfolgen oder der Frequenzumrichter die Quittierung und den Neustart automatisch durchführen soll. Außerdem kann die Anzahl der
★ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert

Der Motor kann ohne Vorwarnung anlaufen.

406 Automatische Wiedereinschaltzeit
(MAX.WIEDEREIN-Z)

Wert:

0 - 10 s ★ 5 s

Funktion:

In diesem Parameter wird die Zeit eingestellt, die zwischen einer Abschaltung und der Einleitung der automatischen Quittierungsfunktion vergehen soll. Voraussetzung ist, daß automatisches Quittieren in Parameter 405 Quittierfunktion gewählt wurde.

Beschreibung der Auswahl: Erforderliche Zeit einstellen.

409 Zeitverzögerung Stromgrenze, I Lim
(ZEITVERZ.STR.GR)

Wert:

0 - 60 s (61=AUS) ★ AUS

Funktion:

Wenn der Frequenzumrichter registriert, daß der Ausgangsstrom die Stromgrenze I Lim (Parameter 221 Stromgrenze) während der eingestellten Zeit erreicht hat, schaltet er ab. Verwendung zum Schutz der Anwendung, ähnlich wie der ETR, falls angewählt, für den Motorschutz.

Die motor kann ohne Vorwarnung anlaufen.

MG.90.F3.03 - VLT ist ein eingetragenes Warenzeichen vom Danfoss
Parameter 409 Zeitverzögerung Stromgrenze, I_{LM} keine Funktion, d.h. es findet keine Abschaltung statt.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>411</td>
<td>Taktfrequenz (TAKTFREQUENZ)</td>
</tr>
<tr>
<td>Wert:</td>
<td>3000 - 14000 Hz ★ 4500 Hz</td>
</tr>
<tr>
<td>Beschreibung der Auswahl:</td>
<td>Bei laufendem Motor wird die Taktfrequenz in Parameter 411 Taktfrequenz auf ein möglichst geringes Motorgeräusch eingestellt.</td>
</tr>
</tbody>
</table>

ACHTUNG!:
Die Ausgangsfrequenz des Frequenzumrichters kann niemals einen Wert höher als 1/10 der Taktfrequenz annehmen.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>413</td>
<td>Übermodulationsfaktor (FAKTOR ÜBERMOD.)</td>
</tr>
<tr>
<td>Wert:</td>
<td>Aus (AUS) [0] ★ Ein (EIN) [1]</td>
</tr>
<tr>
<td>Funktion:</td>
<td>In diesem Parameter kann die Übermodulationsfunktion der Ausgangsspannung eingestellt werden.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>414</td>
<td>Minimaler Istwert, FBMIN (MIN. ISTWERT)</td>
</tr>
<tr>
<td>Wert:</td>
<td>-100,000,000 - Par. 415 FBMAX ★ 0,000</td>
</tr>
<tr>
<td>Funktion:</td>
<td>Parameter 414 Minimaler Istwert, FBMIN und 415 Maximaler Istwert, FB_MAX dienen zum Skalieren des Displays, so daß dieses das Istwertsignal in einer Prozeßeinheit proportional zum Eingangssignal anzeigt.</td>
</tr>
<tr>
<td>Beschreibung der Auswahl:</td>
<td>Den Wert einstellen, der im Display als minimaler Istwert am gewählten Istwert-Eingang angezeigt werden soll (Parameter 308/314 Analogeingänge).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>415</td>
<td>Maximaler Istwert, FBMAX (MAX. ISTWERT)</td>
</tr>
<tr>
<td>Wert:</td>
<td>FBMIN - 100,000,000 ★ 1500,000</td>
</tr>
<tr>
<td>Funktion:</td>
<td>Siehe Beschreibung zu Parameter 414 Minimaler Istwert, FB_MIN.</td>
</tr>
<tr>
<td>Beschreibung der Auswahl:</td>
<td>Den Wert einstellen, der bei Erreichen des maximalen Istwerts am gewählten Istwert-Eingang im Display angezeigt werden soll (Parameter 308/314 Analogeingänge).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>416</td>
<td>Anzeigewert (SOL-ISTW-EINHEIT)</td>
</tr>
</tbody>
</table>

★ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert
Dezentrale Lösungen - Projektierungshandbuch

Funktion:

Beschreibung der Auswahl:
Gewünschte Einheit für das Soll-/Istwertsignal wählen.

ID - Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert

Dezentrale Lösungen - Projektierungshandbuch

m³/St (M³/ST) [17]
kg/s (KG/S) [18]
kg/min (KG/MIN) [19]
kg/St. (KG/ST.) [20]
Tonen/min (T/MIN) [21]
Tonen/St (T/ST) [22]
Meter (M) [23]
Nm (NM) [24]
m/s (M/S) [25]
m/min (M/MIN) [26]
°F (°F) [27]
In wg (IN WG) [28]
Gallonen/s (GAL/S) [29]
Ft³/s (FT³/S) [30]
Gallonen/min (GAL/MIN) [31]
Ft³/min (FT³/MIN) [32]
Gallonen/St (GAL/ST) [33]
Ft³/St (FT³/ST) [34]
Lb/s (LB/S) [35]
Lb/min (LB/MIN) [36]
Lb/St (LB/ST) [37]
Lb ft (LB FT) [38]
Ft/s (FT/S) [39]
Ft/min (FT/MIN) [40]

FCD 300 Regler
Der FCD 300 hat zwei integrierte PID-Regler, einen zur Drehzahl- und einen zur Prozeßregelung. Drehzahlregelung und Prozeßregelung erfordern ein Istwertsignal zurück zu einem Eingang. Es gibt mehrere Einstellungen für beide PID-Regler, die in den selben Parametern erfolgen, aber die Wahl des Reglertyps beeinflußt die Auswahl, die in den gemeinsamen Parametern getroffen werden muß.

Drehzahlregelung

Diese PID-Regelung ist für Anwendungen optimiert, bei denen eine bestimmte Motordrehzahl konstant gehalten werden muß. Die spezifischen Parameter für die Drehzahlregelung sind Parameter 417 bis Parameter 421.

Prozeßregelung
Die PID-Regelung hält einen konstanten Prozeßmodus (Druck, Temperatur, Durchfluß usw.) bei und regelt die Motordrehzahl auf der Basis des Sollwert-/Einstellwert- und Istwertsignals.

Ein Transmitter liefert der PID-Regelung ein Istwertsignal vom Prozeß als einen Ausdruck des aktuellen Prozeßmodus. Das Istwertsignal ändert sich mit der Prozeßlast.

PID-Funktionen
Einstellung für Sollwert/Istwert
Wird Drehzahlregelung mit Istwertrückführung in Parameter 100 Konfiguration gewählt, so ist die Einheit für Soll-/Istwert immer Upm.

Wenn Prozeßregelung, Istwertrückführung in Parameter 100 gewählt wurde, wird die Konfiguration des Geräts in Parameter 416 definiert Prozeßeinheiten.

Istwert
Ein Istwertbereich muß für beide Regler voreingestellt werden. Dieser Istwertbereich begrenzt gleichzeitig den potentiellen Sollwertbereich so, daß wenn die Summe aller Sollwerte außerhalb des Istwertbereichs liegt, der Sollwert auf den Istwertbereich begrenzt wird.

Das Istwertsignal muß an eine Klemme am Frequenzwandler angeschlossen werden. Ist
Istwert an zwei Klemmen gleichzeitig gewählt, so werden die beiden Signale addiert. Verwenden Sie die nachstehende Übersicht, um festzulegen, welche Klemme benutzt und welche Parameter programmiert werden sollen.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Klemme</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puls</td>
<td>29, 33</td>
<td>305, 307, 327, 328</td>
</tr>
<tr>
<td>Spannung</td>
<td>53</td>
<td>308, 309, 310</td>
</tr>
<tr>
<td>Strom</td>
<td>60</td>
<td>314, 315, 316</td>
</tr>
<tr>
<td>Festwerte</td>
<td></td>
<td>215-218</td>
</tr>
<tr>
<td>Bussollwert</td>
<td>68+69</td>
<td></td>
</tr>
</tbody>
</table>

Für den Spannungsverlust in langen Signalkabeln kann eine Korrektur vorgenommen werden, wenn ein Signalgeber (Transmitter) mit Spannungsausgang verwendet wird. Die Korrektur erfolgt in Parametergruppe 300 Min./Max Skalierung.

Auch sind die Parameter 414/415 Min./Max. Istwert auf einen Wert in einer Prozeßeinheit einzustellen, der den minimalen und maximalen Skalierungspercenten für Signale entspricht, die an die Klemme angeschlossen sind.

Sollwert

In Parameter 205 Maximale Sollwert, RefMAX kann ein maximaler Sollwert eingestellt werden, der die Summe aller Sollwerte, d.h. den resultierenden Sollwert skaliert. Der minimale Sollwert in Parameter 204 drückt den Mindestwert aus, den der resultierende Sollwert annehmen kann.

Wird ein Stromsignal als Istwertsignal benutzt, so kann als Analogsollwert nur Spannung benutzt werden. Verwenden Sie die nachstehende Übersicht, um festzulegen, welche Klemme benutzt und welche Parameter programmiert werden sollen.

ACHTUNG!

Für nicht benutzte Klemmen empfiehlt sich die Einstellung ohne Funktion [0].

Differentiator-Verstärkungsgrenze

Tiefpaßfilter

Wenn das Rückführsignal sehr gestört sein sollte, kann es mit Hilfe eines integriertenTiefpaßfilter gedämpft werden. Eine geeignete Tiefpaßfilter-Zeitkonstante ist voreingestellt. Wird der Tiefpaßfilter auf 0,1 s eingestellt, so beträgt die Eckfrequenz 10 RAD/s entsprechend (10 / 2 x π) = 1,6 Hz. Dies bedeutet, daß alle Ströme/Spannungen gedämpft werden, die mit mehr als 1,6 Schwingungen pro Sekunde schwingen. Mit anderen Worten wird nur ein Istwertsignal geregelt, das mit einer Frequenz von weniger als 1,6 Hz schwingt. Die passende Zeitkonstante wird unter Drehzahlregelung in Parameter 421 Drehzahl PID Tiefpaßfilterzeit und unter Prozeßregelung in Parameter 444 gewählt. Prozeß PID Tiefpaßfilterzeit.
Inverse Regelung
Normale Regelung bedeutet, daß die Motordrehzahl erhöht wird, wenn der Sollwert/Einstellwert größer als das Istwertsignal ist. Soll invers geregelt werden, wobei die Drehzahl verringert wird, wenn der Sollwert/Einstellwert größer als das Istwertsignal ist, so muß Parameter 437 Prozeß PID normal/invers Regelung auf Invers programmiert werden.

Anti-Windup
Der Prozeßregler ist ab Werk mit aktiver Anti-Windup-Funktion eingestellt. Diese Funktion bewirkt, daß im Fall des Erreichens einer Frequenz-, Strom- oder Spannungsgrenze der Integrator auf einer Frequenz initialisiert wird, die der aktuellen Ausgangsfrequenz entspricht. Hierdurch wird die Integration einer Abweichung zwischen Sollwert und dem aktuellen Prozeßmodus vermieden, die mit einer Drehzahländerung nicht auszugleichen ist. Diese Funktion kann in Parameter 438 Prozeß PID anti windup abgeschaltet werden.

Istwertverarbeitung
Die Istwertverarbeitung ist im folgenden Diagramm gezeigt.
Das Diagramm zeigt, welche Parameter die Istwertverarbeitung beeinflussen und wie dies geschieht. Es kann zwischen Spannungs-, Strom- und Pulsistwertsignalen gewählt werden.

Anlaufverhältnisse
ACHTUNG!:
Die Parameter 417-421 werden nur benutzt, wenn in Parameter 100 Konfiguration die Einstellung Drehzahlregelung mit Istwerückführung [1] erfolgte.

417 Drehzahl PID Proportionalverstärkung

DRZ P-VERSTÄERK

Wert:
- 0,000 (AUS) -1,000 ★ 0,010

Funktion:
Proportionalverstärkung gibt an, um welchen Faktor die Regelabweichung (Abweichung zwischen Istwertsignal und Sollwert) verstärkt werden soll.

Beschreibung der Auswahl:
Eine schnelle Regelung wird bei hoher Verstärkung erzielt. Ist die Verstärkung jedoch zu hoch, so kann der Prozeß durch Übersteuerung instabil werden.

418 Drehzahl PID integrationszeit

DRZ INTEGR. ZEIT

Wert:
- 20,00 - 999,99 ms (1000 = AUS) ★ 100 ms

Funktion:
Die Integrationszeit bestimmt, wie lange der PID-Regler zum Ausgleichen der Regelabweichung benötigt. Je größer die Regelabweichung, desto stärker ist der Frequenzbeitrag des Integrators. Die Integrationszeit ist die Zeit, die der Integrator benötigt, um die gleiche Änderung wie die Proportionalverstärkung zu erzielen.

Beschreibung der Auswahl:
Eine schnelle Regelung wird bei kurzer Integrationszeit erzielt. Ist diese Zeit jedoch zu kurz, so kann der Prozeß instabil werden. Ist die Integrationszeit lang, so kann es zu großen Abweichungen vom gewünschten Sollwert kommen, da der Prozeßregler lange braucht, um die Regelabweichung auszugleichen.

419 Drehzahl PID Differentiationszeit

DRZ DIFF. ZEIT

Wert:
- 0,00 (AUS) - 200,00 ms ★ 20,00 ms

Funktion:
Der Differentiator reagiert nicht auf eine konstante Regelabweichung. Er wirkt nur bei Änderungen der Regelabweichung. Je schneller sich die Regelabweichung ändert, desto stärker wird die Verstärkung des Differentiators. Die Verstärkung ist proportional zur Geschwindigkeit, mit der sich die Regelabweichung ändert.

Beschreibung der Auswahl:
Eine schnelle Regelung wird bei einer langen Differentiationszeit erreicht. Ist diese Zeit jedoch zu lang, so kann der Prozeß instabil werden. Wenn die Differentiationszeit 0 ms beträgt, ist die D-Funktion nicht aktiv.

420 Drehzahl PID Diff.verstärk.grenze

DRZ BEGR.D-VERST

Wert:
- 5,0 - 50,0 ★ 5,0

Funktion:

Beschreibung der Auswahl:
Gewünschte Verstärkungsgrenze einstellen.

421 Drehzahl PID Tiefpaßfilterzeit

DRZ FILTER ZEIT

Wert:
- 20 - 500 ms ★ 100 ms

Funktion:
Beschreibung der Auswahl:
Wird eine Zeitkonstante (t) von 100 ms programmiert, so ist die Eckfrequenz des Tiefpaßfilters \(1/0,1 = 10 \text{ RAD/s} \) entsprechend \((10 / 2 \times \pi) = 1,6 \text{ Hz}\). Der Prozeßregler wird daher nur ein Istwertsignal regeln, das sich mit einer Frequenz von weniger als 1,6 Hz ändert. Ändert sich das Istwertsignal um mehr als 1,6 Hz, so wird es durch das Tiefpaßfilter gedämpft.

423 U1 Spannung

(U1 SPANNUNG)

Wert:
0,0 - 999,0 V ★ Par. 103

Funktion:

Beschreibung der Auswahl:
Ausgangsspannung (U1) für die erste Ausgangsfrequenz (F1), Parameter 424 F1 Frequenz einstellen.

424 F1 Frequenz

(F1-FREQUENZ)

Wert:
0,0 - Par. 426 F2 Frequenz ★ Par. 104 Motorfrequenz

Funktion:
Siehe Parameter 423 U1 Spannung.

Beschreibung der Auswahl:
Ausgangsfrequenz (F1) passend für die erste Ausgangsspannung (U1), Parameter 423 U1 Spannung einstellen.

425 U2 Spannung

(U2-SPANNUNG)

Wert:
0,0 - 999,0 V ★ Par. 103

Funktion:
Siehe Parameter 423 U1 Spannung.

Beschreibung der Auswahl:
Ausgangsspannung (U2) passend für die zweite Ausgangsfrequenz (F2), Parameter 426 F2 Frequenzeinstellen.

426 F2 Frequenz

(F2-FREQUENZ)

Wert:
Par. 424 F1 Frequenz - Par. 428 F3 Frequenz ★ Par. 104 Motorfrequenz

Funktion:
Siehe Parameter 423 U1 Spannung.

Beschreibung der Auswahl:
Ausgangsfrequenz (F2) passend für die zweite Ausgangsspannung (U2), Parameter 425 U2 Spannung einstellen.
427 U3 Spannung
(U3-SPANNUNG)
Wert:
0,0 - 999,0 V ★ Par. 103

Funktion:
Siehe Parameter 423 U1 Spannung.

Beschreibung der Auswahl:
Ausgangsspannung (U3) passend für die dritte Ausgangsfrequenz (F3), Parameter 428 F3 Frequenz einstellen.

428 F3 Frequenz
(F3-FREQUENZ)
Wert:
Par. 426 F2 Frequenz - 1000 Hz ★ Par. 104 Motorfrequenz

Funktion:
Siehe Parameter 423 U1 Spannung.

Beschreibung der Auswahl:
Ausgangsfrequenz (F3) passend für die dritte Ausgangsspannung (U3), Parameter 427 U3 Spannung einstellen.

ACHTUNG!:

437 Prozeß PID normal/invers Regelung
(PID NORM./INVERS)
Wert:
Normal (NORMAL) [0]
Invers (INVERTIERT) [1]

Funktion:
Hier kann gewählt werden, ob der Prozeßregler die Ausgangsfrequenz bei Regelabweichung zwischen Sollwert/Istwert und dem tatsächlichen Prozeßzustand erhöhen/verringern soll.

Beschreibung der Auswahl:
Wenn der Frequenzumrichter die Ausgangsfrequenz bei einem Anstieg des Istwertsignals erhöhen soll, Normal [0] wählen.

Wenn der Frequenzumrichter die Ausgangsfrequenz bei einem Anstieg des Istwertsignals erhöhen soll, Invers [1] wählen.

438 Prozeß PID anti windup
(PID ANTI WINDUP)
Wert:
Blockiert (BLOCKIERT) [0]
Wirksam (WIRKSAM) [1]

Funktion:
Hier kann gewählt werden, ob der Prozeßregler weiterhin mit dem Ausregeln einer Regelabweichung fortfahren soll, obwohl eine Erhöhung bzw. Verringerung der Ausgangsfrequenz nicht möglich ist.

Beschreibung der Auswahl:
Die Werkseinstellung ist Wirksam [1], was dazu führt, daß das Integrationsglied im Verhältnis zur aktuellen Ausgangsfrequenz initialisiert wird, wenn entweder die Stromgrenze, Spannungsgrenze oder die maximale bzw. minimale Frequenz erreicht ist. Der Prozeßregler schaltet erst dann wieder zu, wenn die Regelabweichung entweder Null ist oder ihr Vorzeichen geändert hat. Blockiert [0] ist zu wählen, wenn der Integrator weiterhin wegen der Regelabweichung integrieren soll, obwohl diese sich nicht ausregeln läßt.

ACHTUNG!:
Wird Blockiert [0] gewählt, so muß der Integrator bei einer Vorzeichenänderung der Regelabweichung erst von dem Niveau herabintegrieren, das durch eine frühere Regelabweichung erreicht wurde, bevor eine Änderung der Ausgangsfrequenz erfolgen kann.

439 Prozeß PID Startfrequenz
(PID-START FREQ.)
Wert:
fMIN - fMAX (Parameter 201/202) ★ Par. 201 Ausgangsfrequenz niedrig, fMIN

Funktion:
Bei einem Startsignal reagiert der Frequenzumrichter als Drehzahlregelung ohne Istwertrückführung und ändert sich erst dann in Regelung mit Istwertrückführung, wenn die programmierte Startfrequenz erreicht ist. Hierdurch kann eine Frequenz eingestellt werden, die der Drehzahl entspricht, mit der der

★ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert

MG.90.F3.03 - VLT ist ein eingetragenes Warenzeichen vom Danfoss
Prozeß normalerweise abläuft; somit lassen sich die gewünschten Prozeßbedingungen schneller erreichen.

Beschreibung der Auswahl:
Gewünschte Startfrequenz einstellen.

ACHTUNG!
Wenn der Frequenzumrichter vor Erreichen der gewünschten Startfrequenz die Stromgrenze erreicht, wird der Prozeßregler nicht aktiviert. Um den Regler dennoch aktivieren zu können, muß die Startfrequenz auf die gewünschte Ausgangsfrequenz verringert werden. Dies kann während des Betriebs erfolgen.

<table>
<thead>
<tr>
<th></th>
<th>440 Prozeß PID Proportionalverstärkung (PROZ. PROP.VERSTAERK.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wert:</td>
<td>0,0 - 10,00 ★ 0,01</td>
</tr>
</tbody>
</table>

Funktion:
Die Proportionalverstärkung gibt an, wie stark die Regelabweichung zwischen Sollwert- und Istwertsignal verstärkt werden soll.

Beschreibung der Auswahl:
Eine schnelle Regelung wird bei hoher Verstärkung erzielt. Ist die Verstärkung jedoch zu hoch, kann der Prozeß durch Übersteuerung instabil werden.

<table>
<thead>
<tr>
<th></th>
<th>441 Prozeß PID Integrationszeit (PID INTEGR. ZEIT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wert:</td>
<td>0,01 - 9999,99 (OFF) ★ OFF</td>
</tr>
</tbody>
</table>

Funktion:
Der Integrator bewirkt eine steigende Verstärkung bei einer konstanten Regelabweichung zwischen Sollwert- und Istwertsignal. Je größer die Abweichung, desto schneller der Anstieg der Verstärkung. Die Integrationszeit ist die Zeit, die der Integrator benötigt, um die gleiche Verstärkung wie die Proportionalverstärkung zu erzielen.

Beschreibung der Auswahl:
Eine schnelle Regelung wird bei kurzer Integrationszeit erzielt. Ist diese Zeit jedoch zu kurz, kann der Prozeß durch Übersteuerung instabil werden. Ist die Integrationszeit lang, so kann es zu großen Abweichungen vom gewünschten Sollwert kommen.

<table>
<thead>
<tr>
<th></th>
<th>442 Prozeß PID Differentiationszeit (PID DIFF. ZEIT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wert:</td>
<td>0,00 (OFF) - 10,00 s ★ 0,00s</td>
</tr>
</tbody>
</table>

Funktion:
Der Differentiator reagiert nicht auf eine konstante Regelabweichung. Er erzeugt nur dann eine Verstärkung, wenn sich die Regelabweichung ändert. Je schneller sich die Regelabweichung ändert, desto stärker wird die Verstärkung des Differentiators. Die Verstärkung ist proportional zur Geschwindigkeit, mit der sich die Regelabweichung ändert.

Beschreibung der Auswahl:
Bei langer Differentiationszeit wird eine schnelle Regelung erreicht. Ist diese Zeit jedoch zu lang, so kann der Prozeß durch Übersteuerung instabil werden.

<table>
<thead>
<tr>
<th></th>
<th>443 Prozeß PID Diff. Verstärk.Grenze (PID DIFF. VERST.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wert:</td>
<td>5,0 - 50,0 ★ 5,0</td>
</tr>
</tbody>
</table>

Funktion:
Für die Verstärkung des Differentiators kann eine Grenze eingestellt werden. Die Verstärkung des Differentiators steigt bei schnellen Abweichungen; es kann daher sinnvoll sein, diese Verstärkung zu begrenzen. Hierdurch wird eine reine Verstärkung des Differentiators bei langsamen Änderungen und eine konstante Verstärkung bei schnellen Regelabweichungen erzielt.

Beschreibung der Auswahl:
Gewünschte Grenze für die Differentiatorverstärkung einstellen.

<table>
<thead>
<tr>
<th></th>
<th>444 Prozeß PID Tiefpaßfilterzeit (PID FILTER ZEIT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wert:</td>
<td>0,02 - 10,00 ★ 0,02</td>
</tr>
</tbody>
</table>

Funktion:
Störungen des Istwertsignals werden durch ein Tiefpaßfilter erster Ordnung gedämpft, um ihren Einfluß...
auf die Prozeßregelung zu mindern. Dies kann z.B. von Vorteil sein, wenn das Signal stark gestört ist.

Beschreibung der Auswahl:

Gewünschte Zeitkonstante (t) wählen. Wird eine Zeitkonstante (t) von 0,1 s programmiert, so ist die Eckfrequenz des Tiefpaßfilters 1/0,1 = 10 RAD/s entsprechend (10 / (2 x π)) = 1,6 Hz. Der Prozeßregler wird daher nur ein Istwertsignal regeln, das sich mit einer Frequenz von weniger als 1,6 Hz ändert. Ändert sich das Istwertsignal um mehr als 1,6 Hz, so wird es durch das Tiefpaßfilter gedämpft.

Beschreibung der Auswahl:

Blockiert [0] wählen, wenn diese Funktion nicht gewünscht wird.

Einschränkungen:

- Zu geringe Trägheit führt zu einer Lastbeschleunigung, die gefährlich sein oder das richtige Abfangen eines drehenden Motors verhindern kann. Statt dessen DC Bremse wählen.
- Wird die Last z.B. durch den Motorleerlauf angetrieben, so kann das Gerät aufgrund von Überspannung abschalten.
- Die Fangschaltung funktioniert nicht bei Drehzahlen unter 250/min.

Beschreibung der Auswahl:

Der gewünschte Prozentwert kann zwischen f_MIN - f_MAX gewählt werden. Werte über 100 % werden benutzt, wenn die Sollwertänderungen nur gering sind.

Beschreibung der Auswahl:

Die Reglerbandbreite (Bandbreite) begrenzt den Ausgang des PID-Reglers als Prozentsatz der Motorfrequenz f_M,N.

Beschreibung der Auswahl:

Der gewünschte Prozentwert kann für die Motorfrequenz f_M,N gewählt werden. Bie reduzierter
Reglerbandbreite sind die Drehzahlschwankungen bei der Ersteinstellung geringer.

455 Frequenzbereichüberwachung

(FREQ.BER.UEBERW)

<table>
<thead>
<tr>
<th>Wert:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Blockiert</td>
<td>[0]</td>
</tr>
<tr>
<td>Wirksam</td>
<td>[1]</td>
</tr>
</tbody>
</table>

Funktion:

Dieser Parameter wird verwendet, wenn Warnung 35 Regelabweichung Frequenzbereich bei Prozeßregelung mit Istwertrückführung in der Anzeige abgeschaltet werden muß. Dieser Parameter beeinflußt nicht das Warnwort 2.

Beschreibung der Auswahl:

456 Bremsspannung reduzieren

(BREMSSP. RED.)

<table>
<thead>
<tr>
<th>Wert:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 200 V</td>
<td>★ 0</td>
</tr>
</tbody>
</table>

Funktion:

Einstellung der Spannung, um die der Wert für Widerstandsbremsung reduziert wird. Nur aktiv, wenn in Parameter 400 "Mit Bremswiderstand" gewählt ist.

Beschreibung der Auswahl:

Je mehr der Wert reduziert wird, um so schneller erfolgt die Reaktion auf eine generatorische Überlast. Sollte nur benutzt werden, wenn es Probleme mit Überspannung in den Zwischenkreisen gibt.

ACHTUNG!:

Eine geänderte Auswahl wird erst wirksam, wenn die Netzspannung getrennt und wieder angeschlossen wird.

★ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert

MG.90.F3.03 - VLT ist ein eingetragenes Warenzeichen vom Danfoss
■ Serielle Kommunikation mit FCD 300

■ Protokolle

Alle Frequenzumrichter verfügen serienmäßig über eine RS 485-Schnittstelle, die die Wahl zwischen zwei Protokollen ermöglicht. Die beiden in Parameter 512 Telegrammprofil wählbaren Protokolle sind:
- Profidrive
- FC Protocol

■ Telegrammübermittlung

Steuer- und Antworttelegramme
Die Telegrammübermittlung in einem Master-Slave-System wird vom Master gesteuert. Es können maximal 31 Slaves an einen Master angeschlossen werden, sofern keine Repeater verwendet werden. Werden Repeater verwendet, so können maximal 126 Slaves an einen Master angeschlossen werden.

Der Master sendet kontinuierlich an die Slaves adressierte Steuertelegramme und wartet auf deren Antworttelegramme. Die Antwortzeit eines Slave beträgt maximal 50 ms.

Nur wenn ein Slave ein fehlerfreies, an ihn adressiertes Telegramm empfangen hat, kann er ein Antworttelegramm senden.

Broadcast

Inhalt eines Byte
Jedes übertragene Byte beginnt mit einem Startbit. Danach werden 8 Datenbits übertragen, was einem Byte entspricht. Jedes Byte wird über ein Paritätsbit abgesichert, das auf "1" gesetzt wird, wenn Paritätsgleichheit gegeben ist (d.h. eine gleiche Anzahl binärer Einsen in den 8 Datenbits und dem Paritätsbit zusammen). Ein Byte endet mit einem Stoppbit und besteht somit insgesamt aus 11 Bits.

■ Telegrammaufbau

Jedes Telegramm beginnt mit einem Startbyte (STX) = 02 Hex, gefolgt von einem Byte zur Angabe der Telegrammlänge (LGE) und einem Byte, das die Adresse des Frequenzumrichters (ADR) angibt. Danach folgt eine Anzahl Datenbytes (variabel, abhängig von der Telegrammart). Das Telegramm schließt mit einem Datensteuerbyte (BCC).

Telegrammstruktur

Nach einem Antworttelegramm vom Slave muss eine Pause von mindestens 2 Byte (22 Bit) eingelegt werden, bevor der Master ein neues Telegramm senden kann. Bei einer Baudrate von 9600 Baud muss die Pause mindestens 2,3 ms dauern. Wenn der Master das Telegramm gesendet hat, darf die Antwortzeit des Slave zurück zum Master höchstens 20 ms betragen, und es wird eine Pause von 2 Byte eingelegt.

Die Zeit zwischen den einzelnen Bytes in einem Telegramm darf zwei Bytes nicht überschreiten, und das Telegramm muss innerhalb der 1,5fachen normalen Telegrammzeit übertragen sein. Bei einer Baudrate von 9600 Baud und einer Telegrammlänge von 16 Byte ist das Telegramm nach 27,5 ms übertragen.
Dezentrale Lösungen - Projektierungshandbuch

Telegrammlänge (LGE)
Die Telegrammlänge ist die Anzahl der Datenbytes plus Adressbyte ADR plus Datensteuerbyte BCC.

Die Länge der Telegramme mit 4 Datenbyte beträgt:
LGE = 4 + 1 + 1 = 6 Byte
Telegramme mit 12 Datenbyte haben folgende Länge:
LGE = 12 + 1 + 1 = 14 Byte
Die Länge von Telegrammen, die Texte enthalten, ist 10+n-Byte. 10 stellen die festen Zeichen dar, während das 'n' variabel ist (je nach Textlänge).

Frequenzumrichteradresse (ADR)
Es werden zwei verschiedene Adressformate verwendet, wobei der Adressbereich des Frequenzumrichters entweder 1-31 oder 1-126 ist.

1. Adressformat 1-31
Das Byte für den Adressbereich 1-31 hat folgendes Profil:

```
0 0 0 0 0 0 0 0
```

Bit 7 = 0 (Adressformat 1-31 aktiv)
Bit 6 wird nicht verwendet
Bit 5 = 1: Broadcast, Adressbits (0-4) werden nicht benutzt
Bit 5 = 0: Kein Broadcast
Bit 0-4 = Frequenzumrichteradresse 1-31

2. Adressformat 1-126
Das Byte für den Adressbereich 1-126 hat folgendes Profil:

```
1 1 1 1 1 1 1 1
```

Bit 7 = 1 (Adressformat 1-126 aktiv)
Bit 0-6 = Frequenzumrichteradresse 1-126
Bit 0-6 = 0 Broadcast

Der Slave sendet das Adressbyte in seinem Antworttelegramm an den Master unverändert zurück.

Beispiel:
Schreiben an Frequenzumrichteradresse 22 (16H) im Adressformat 1-31:

```
7 6 5 4 3 2 1 0
0 0 0 0 1 0 1 1 0
```

Datensteuerbyte (BCC)
Das Datensteuerbyte wird in diesem Beispiel erläutert:
Bevor das erste Byte im Telegram empfangen wird, beträgt die errechnete Prüfsumme (BCS) 0.

```
7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0
```

Wenn das erste Byte (02H) empfangen wurde:

BCS = BCC EXOR "erstes Byte"
(EXOR = exklusiv-oder)

```
1. Byte = 0 0 0 0 0 0 0 1 0 (02H)
BCS = 0 0 0 0 0 0 0 1 0 (02H)
```

Jedes nachfolgende Byte wird mit BCS EXOR verküpft und erzeugt ein neues BCC, z.B.:

```
2. Byte = 1 1 0 1 0 1 1 0 (D6H)
BCC = 1 1 0 1 0 1 0 1 0 (D6H)
```

MG.90.F3.03 - VLT ist ein eingetragenes Warenzeichen vom Danfoss
Datenbytes

Die Struktur der Datenblöcke hängt von der Telegrammart ab. Es gibt drei Telegrammarten, und die Telegrammart gilt sowohl für Steuer- (Master Slave) als auch Antworttelegramme (Slave Master).

Die drei Telegrammarten sind:
- Parameterblock zur Übertragung von Parametern zwischen Master und Slave. Der Datenblock besteht aus 12 Bytes (6 Wörtern) und enthält zudem den Prozeßblock.
- Der Prozeßblock besteht aus einem Datenblock mit vier Bytes (2 Wörtern) und enthält:
 - Steuerwort und Sollwert
 - Zustandswort und aktuelle Ausgangsfrequenz (vom Slave zum Master)
- Textblock zum Lesen oder Schreiben von Texten über den Datenblock.

Parameterbefehle und -antworten (AK).

Kann der Befehl nicht ausgeführt werden, so sendet der Slave diese Antwort: 0111 Befehl kann nicht ausgeführt werden und gibt eine der folgenden Fehlermeldungen im Parameterwert (PWE) ab:

<table>
<thead>
<tr>
<th>Antwort (0111)</th>
<th>Fehlermeldung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Die verwendete Parameternummer existiert nicht</td>
</tr>
<tr>
<td>1</td>
<td>Kein Schreibzugriff auf den definierten Parameter</td>
</tr>
<tr>
<td>2</td>
<td>Datenwert überschreitet Parameter-Grenzwerte</td>
</tr>
<tr>
<td>3</td>
<td>Benutzer Subindex existiert nicht</td>
</tr>
<tr>
<td>4</td>
<td>Parameter nicht vom Typ Matrix</td>
</tr>
<tr>
<td>5</td>
<td>Datentyp paßt nicht zum definierten Parameter</td>
</tr>
<tr>
<td>17</td>
<td>Datenänderung im aktuellen Modus des Frequenzumrichters nicht möglich. Bestimmte Parameter können nur bei ausgeschaltetem Motor geändert werden</td>
</tr>
<tr>
<td>130</td>
<td>Kein Buszugriff auf den definierten Parameter</td>
</tr>
<tr>
<td>131</td>
<td>Keine Datenänderung möglich, da Parametersatz Werkseinstellung gewählt ist.</td>
</tr>
</tbody>
</table>
Parameter (PNU)
Die Bits Nr. 0-10 dienen zur Übertragung der Parameternummer. Die Funktion des betreffenden Parameters ist der Parameterbeschreibung im Kapitel Programmierung zu entnehmen.

Index

![Index](image)

Der Index wird zusammen mit der Parameternummer für den Lese/Schreibzugriff auf Parameter mit einem Index verwendet, z.B. Parameter 615 Fehlercode. Der Index besteht aus 2 Bytes, einem Lowbyte und einem Highbyte, es wird aber nur das Lowbyte als Index benutzt.

Beispiel - Index:
Der erste Fehlercode (Index [1]) in Parameter 615 Fehlercode muß gelesen werden.
PKE = 1267 Hex (leser Parameter 615 Fehlercode.)
IND = 0001 Hex - Index Nr. 1.

![Index](image)

Parameterwert (PWE)

![Parameterwert](image)

Das Indexzeichen wird verwendet, um anzuzeigen, ob es sich um einen Lese- oder Schreibbefehl handelt. In einem Lesebefehl muß der Index das folgende Format haben:

![Index](image)

Einige Frequenzumrichter haben Parameter, in die Text geschrieben werden kann. Um einen Text über den PWE-Block schreiben zu können, muß der Parameterbefehl AK) auf ’F’ Hex gesetzt werden. Für einen Schreibbefehl muß der Text folgendes Format haben:

![Index](image)

Vom Frequenzumrichter unterstützte Datentypen:

<table>
<thead>
<tr>
<th>Datentyp</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Ganzzahl 16</td>
</tr>
<tr>
<td>4</td>
<td>Ganzzahl 32</td>
</tr>
<tr>
<td>5</td>
<td>Ohne Vorzeichen 8</td>
</tr>
<tr>
<td>6</td>
<td>Ohne Vorzeichen 16</td>
</tr>
<tr>
<td>7</td>
<td>Ohne Vorzeichen 32</td>
</tr>
<tr>
<td>9</td>
<td>Textblock</td>
</tr>
</tbody>
</table>

Ohne Vorzeichen bedeutet, daß im Telegramm kein Vorzeichen vorkommt.

Beispiel - Schreiben eines Parameterwertes:
Parameter 202 Ausgangsfrequenzgrenze hoch, fMAX soll auf 100 Hz geändert werden. Der Wert muß nach einem Netzausfall wieder aufgerufen werden und wird daher in das EEPROM geschrieben.
PKE = E0CA Hex - Schreiben für Parameter 202
Ausgangsfrequenzgrenze hoch, fMAX
IND = 0000 Hex
PWEHIGH = 0000 Hex
PWELOW = 03E8 Hex - Datenwert 1000 entsprechend 100 Hz, siehe Konvertierung.

Die Antwort des Slave an den Master lautet:

![Hex-Ausgabe]

Beispiel - Wahl eines Datenwertes:
PKE = E19F Hex - Schreiben für Parameter 416 Anzeigewert
IND = 0000 Hex
PWEHIGH = 0000 Hex
PWELOW = 0014 Hex - Datenoption kg/ST [20] wählen

Die Antwort des Slave an den Master lautet:

![Hex-Ausgabe]

Beispiel - Lesen eines Parameterwertes:
Der Wert in Parameter 207 Rampenzeit auf 1 soll ausgelesen werden.
Der Master sendet folgende Anfrage:
PKE = 10CE Hex - Lesen Parameter 207 Rampenzeit auf 1
IND = 0000 Hex
PWEHIGH = 0000 Hex
PWELOW = 0000 Hex

Wenn der Wert in Parameter 207 Rampenzeit auf 1 10 s ist, ist die Antwort des Slave an den Master:

![Hex-Ausgabe]

Das Kapitel Werkseinstellungen zeigt die verschiedenen Attribute für jeden Parameter. Da ein Parameterwert nur als Ganzzahl übertragen werden kann, muß ein Konvertierungsfaktor für Dezimalstellen verwendet werden.

Beispiel:
Parameter 201 Ausgangsfrequenzgrenze niedrig fMIN hat einen Konvertierungsfaktor von 0,1. Soll die Mindestfrequenz auf 10 Hz eingestellt werden, so muß der Wert 100 übertragen werden, da ein Konvertierungsfaktor von 0,1 bedeutet, daß der Wert mit 0,1 multipliziert wird. Der Wert 100 wird somit als 10,0 erkannt.

![Konvertierungstabelle]

Beispiel - Wahl eines Datenwertes:
PKE = E19F Hex - Schreiben für Parameter 416 Anzeigewert
IND = 0000 Hex
PWEHIGH = 0000 Hex
PWELOW = 0014 Hex - Datenoption kg/ST [20] wählen

Die Antwort des Slave an den Master lautet:

![Hex-Ausgabe]

Beispiel - Lesen eines Parameterwertes:
Der Wert in Parameter 207 Rampenzeit auf 1 soll ausgelesen werden.
Der Master sendet folgende Anfrage:
PKE = 10CE Hex - Lesen Parameter 207 Rampenzeit auf 1
IND = 0000 Hex
PWEHIGH = 0000 Hex
PWELOW = 0000 Hex

Wenn der Wert in Parameter 207 Rampenzeit auf 1 10 s ist, ist die Antwort des Slave an den Master:

![Hex-Ausgabe]

Konvertierung:

Das Kapitel Werkseinstellungen zeigt die verschiedenen Attribute für jeden Parameter. Da ein Parameterwert nur als Ganzzahl übertragen werden kann, muß ein Konvertierungsfaktor für Dezimalstellen verwendet werden.

Beispiel:
Parameter 201 Ausgangsfrequenzgrenze niedrig fMIN hat einen Konvertierungsfaktor von 0,1. Soll die Mindestfrequenz auf 10 Hz eingestellt werden, so muß der Wert 100 übertragen werden, da ein Konvertierungsfaktor von 0,1 bedeutet, daß der Wert mit 0,1 multipliziert wird. Der Wert 100 wird somit als 10,0 erkannt.

<table>
<thead>
<tr>
<th>Konvertierungs- index</th>
<th>Konvertierungsfaktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>0,1</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-1</td>
<td>0,1</td>
</tr>
<tr>
<td>-2</td>
<td>0,01</td>
</tr>
<tr>
<td>-3</td>
<td>0,001</td>
</tr>
<tr>
<td>-4</td>
<td>0,0001</td>
</tr>
<tr>
<td>-5</td>
<td>0,00001</td>
</tr>
</tbody>
</table>

Prozeßbytes

Der Block der Prozeßbytes ist in zwei Blöcke mit je 16 Bit aufgeteilt, die immer in der definierten Sequenz kommen.

Steuerwort gemäß FC-Protokoll

Das Steuerwort dient zum Senden von Befehlen von einem Master (z. B. einem PC) zu einem Slave (Frequenzumrichter).

Steuerwort gemäß FC-Protokoll

Das Steuerwort dient zum Senden von Befehlen von einem Master (z. B. einem PC) zu einem Slave (Frequenzumrichter).

Steuerwort gemäß FC-Protokoll

Das Steuerwort dient zum Senden von Befehlen von einem Master (z. B. einem PC) zu einem Slave (Frequenzumrichter).

![Diagramm]
Dezentrale Lösungen - Projektierungshandbuch

Bit	Bit = 0	Bit = 1
00 | Festsollw. Anwahl lsb | Festsollw. Anwahl msb
02 | DC-Bremse |
03 | Freilaufstopp |
04 | Schnellstopp |
05 | Ausgangsfrequenz speichern |
06 | Rampenstopp Start |
07 | Quittieren |
08 | Festdrehzahl JOG |
09 | Rampe 1 Rampe 2 |
10 | Daten nicht gültig Daten gültig |
11 | Ohne Funktion Relaisausgang |
12 | Ohne Funktion Digitalausgang |
13 | Parametersatzanwahl, lsb |
14 | Parametersatzanwahl, msb |
15 | Reversierung |

ACHTUNG!: In Parameter 508 Anwahl Festdrehzahl wird definiert, wie Bit 00/01 mit der entsprechenden Funktion an den Digitaleingängen verknüpft ist.

Bit 02, DC-Bremse:
Bit 02 = 0° bewirkt DC-Bremsspannung und Stopp. Bremsspannung und -dauer werden in den Parametern 132 Spannung DC-Bremse und Parameter 126 DC-Bremszeit voreingestellt. Hinweis: In Parameter 504 DC-Bremsung wird definiert, wie Bit 02 mit der entsprechenden Funktion an einem Digitaleingang verknüpft ist.

Bit 03, Freilaufstopp:
Bit 03 = 0° bewirkt, dass der Frequenzumrichter den Motor sofort abschaltet (die Ausgangstransistoren werden abgeschaltet), sodass der Motor im Freilauf ausläuft. Bei Bit 03 = 1° kann der Frequenzumrichter den Motor starten, wenn die anderen Startbedingungen erfüllt sind. Hinweis: In Parameter 502 Motorfreilauf wird definiert, wie Bit 03 mit der entsprechenden Funktion an einem Digitaleingang verknüpft ist.

Bit 04, Schnellstopp:
Bit 04 = 0° bewirkt einen Stopp, indem die Motordrehzahl über Parameter 212 Rampenzeit Ab, Schnellstopp bis zum Stopp reduziert wird.

Bit 05, Ausgangsfrequenz speichern:
Bei Bit 05 = 0° wird die aktuelle Ausgangsfrequenz (in Hz) gespeichert. Die gespeicherte Ausgangsfrequenz kann nun mit den auf Drehzahl auf und Drehzahl ab programmierten Digitaleingängen geändert werden.

ACHTUNG!: Ist Ausgangsfrequenz speichern aktiv, so kann der Frequenzumrichter nicht über Bit 06 Start oder einen Digitaleingang gestoppt werden. Der Frequenzumrichter kann nur durch Folgendes gestoppt werden:
• Bit 03, Freilaufstopp
• Bit 02, DC-Bremse
• Digitaleingang programmiert auf DC-Bremse, Freilaufstopp oder Reset und Freilaufstopp.

Bit 06, Rampenstopp/-start:
Bit 06 = 0° bewirkt einen Stopp, indem die Motordrehzahl über den entsprechenden Parameter für Rampenzeit Ab bis zum Stopp reduziert wird. Bei Bit 06 = 1° kann der Frequenzumrichter den Motor starten, wenn die anderen Startbedingungen erfüllt sind. Hinweis: In Parameter 505 Start wird definiert, wie Bit 06 mit der entsprechenden Funktion an einem Digitaleingang verknüpft ist.

Bit 07, Quittieren:
Bit 07 = 0° bewirkt kein Quittieren.
Bit 07 = 1° bewirkt das Quittieren einer Abschaltung. Quittieren wird auf der ansteigenden Signalfanke aktiviert, d. h. beim Übergang von logisch 0° zu logisch 1°.

Bit 08, Festdrehzahl JOG:
Bei Bit 08 = 1° wird die Ausgangsfrequenz durch Parameter 213 Frequenz JOG bestimmt.
Zustandswort gemäß FC-Profil

<table>
<thead>
<tr>
<th>Bit Nr.</th>
<th>Bit 0</th>
<th>Bit 1</th>
<th>Bit 2</th>
<th>Bit 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Steuerung bereit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>Antrieb bereit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>Motorfreilaufstop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>Keine Abschaltung</td>
<td>Abschaltung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>Nicht benutzt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>Nicht benutzt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>Abschaltblockierung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>Keine Warnung</td>
<td>Warnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>Drehzahl = Sollw.</td>
<td>Drehzahl = Sollw.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>Ortsteuerung</td>
<td>Ser. Schnittstelle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Außenhalb</td>
<td>Frequenzgrenze</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Motor läuft</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Spannungswarnung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Stromgrenze</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Thermische Warnung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Das Zustandswort dient dazu, einem Master (z.B. einem PC) den Zustand eines Slave (Frequenzumrichters) mitzuteilen. Slave → Master

Bit 00, Steuerung bereit:
Bit 00 = 1'. Der Frequenzwandler ist betriebsbereit.
Bit 00 = 0'. Der Frequenzwandler ist nicht betriebsbereit.

Bit 01, Antrieb bereit:
Bit 01 = 1'. Der Frequenzumrichter ist betriebsbereit, es ist aber ein aktiver Freilaufbefehl über die digitalen Eingänge oder die serielle Schnittstelle vorhanden.

Bit 02, Motorfreilaufstop:
Bit 02 = 0'. Der Frequenzwandler hat den Motor freigegeben.
Bit 02 = 1'. Der Frequenzumrichter kann den Motor starten, wenn ein Startbefehl gegeben wird.

Bit 03, Keine Abschaltung/Abschaltung:
Bei Bit 03 = 0' ist der Frequenzwandler nicht im Fehlermodus.
Bei Bit 03 = 1' hat der Frequenzwandler abgeschaltet und benötigt ein Zurücksetzsignal, um den Betrieb wieder aufzunehmen.

Bit 04, Nicht benutzt:
Bit 04 wird im Zustandswort nicht benutzt.

Bit 05, Nicht benutzt:
Bit 05 wird im Zustandswort nicht benutzt.

Bit 06, Abschaltspere:

Parametersatz Bit 14 Bit 13

<table>
<thead>
<tr>
<th>Parametersatz</th>
<th>Bit 14</th>
<th>Bit 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Die Funktion ist nur möglich, wenn in Parameter 004 Parametersatz Betrieb die Option Externe Anwahl gewählt ist.

Hinweis: In Parameter 507 Parametersatzanwahl wird definiert, wie Bit 13/14 mit der entsprechenden Funktion an den Digitalleitungen verknüpft ist.

Bit 15 Reversierung:
Bit 15 = 0* bewirkt keine Reversierung.
Bit 15 = 1* bewirkt eine Reversierung.

Hinweis: In der Werkseinstellung ist Reversierung in Parameter 506 Drehrichtung auf Digital eingestellt.
Bit 15 bewirkt eine Reversierung nur dann, wenn entweder Bus, Bus oder Klemme oder Bus und Klemme gewählt ist.
Beispiellich: Bei Bit 06 = '0' befindet sich der Frequenzwandler nicht im Abschaltsperrmodus. Bei Bit 06 = '1' befindet sich der Frequenzwandler nicht im Abschaltsperrmodus und kann erst nach dem Trennen der Stromversorgung zurückgesetzt werden. Die Abschaltung kann entweder über eine externe 24 V-Steuerungsnotversorgung oder nach dem erneuten Anschließen an die Stromversorgung zurückgesetzt werden.

Bit 07, Keine Warnung/Warnung:
Beispiellich: Bei Bit 07 = '0' sind keine Warnungen vorhanden. Bei Bit 07 = '1' ist eine Warnung vorhanden.

Bit 08, Drehzahl Ref./Drehzahl-Ref.:
Beispiellich: Bei Bit 08 = '0' läuft der Motor, die aktuelle Drehzahl ist aber anders als der voreingestellte Drehzahlsollwert. Dies kann z.B. bei der Drehzahlnachnahme/-abnahme beim Start/Stop der Fall sein.

Bit 09, Ort-Steuerung/serielle Kommunika-
tionssteuerung:
Beispiellich: Bei Bit 09 = '0' ist die Taste [STOP/RESET] auf der Bedieneinheit aktiviert, oder es ist Ortsteuerung in Parameter 002 Ort-/Fernsteuerung gewählt. Es ist nicht möglich, den Frequenzwandler über die serielle Schnittstelle zu steuern.

Bit 10, Nicht im Frequenzbereich:
Beispiellich: Bit 10 = '0', wenn die Ausgangsfrequenz den in Parameter 201 Ausgangsfrequenzgrenze niedrig oder Parameter 202 Ausgangsfrequenzgrenze hoch definierten Wert erreicht hat. Bit 10 = '1' bedeutet, daß die Ausgangsfrequenz innerhalb der definierten Grenzwerte liegt.

Bit 11, Motor läuft/läuft nicht:
Beispiellich: Bei Bit 11 = '0' läuft der Motor nicht. Bei Bit 11 = '1' hat der Frequenzumrichter ein Startsignal erhalten bzw. ist die Ausgangsfrequenz größer als 0 Hz.

Bit 13, Spannungswarnung hoch/niedrig:
Beispiellich: Bei Bit 13 = '0' sind keine Spannungswar-
nungen vorhanden. Bei Bit 13 = '1' ist die Gleichspannung im Zwischenkreis des Frequenzumrichters zu hoch oder zu niedrig.

Bit 14, Stromgrenzwert:
Beispiellich: Bei Bit 14 = '0' ist der Ausgangsstrom geringer als der Wert in Parameter 221 Stromgrenze \(I_{LIM} \). Bei Bit 14 = '1' ist der Ausgangsstrom größer als der Wert in Parameter 221 Stromgrenzwert \(I_{LIM} \) und der Frequenzumrichter schaltet nach einer voreingestellten Zeit ab.

Bit 15, Thermische Warnung:
Beispiellich: Bei Bit 15 = '0' ist keine thermische Warnung vorhanden. Bei Bit 15 = '1' ist die Temperaturgrenze im Motor, Frequenzwandler oder bei einem an einem digitalen Eingang angeschlossenen Thermistor überschritten.

Schnelles E/A-FC-Profil

<table>
<thead>
<tr>
<th>Bit</th>
<th>Bit =0</th>
<th>Bit =1</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Steuerung bereit</td>
<td>Steuerung bereit</td>
</tr>
<tr>
<td>01</td>
<td>FC bereit</td>
<td>FC bereit</td>
</tr>
<tr>
<td>02</td>
<td>Freilaufstopp</td>
<td>Freilaufstopp</td>
</tr>
<tr>
<td>03</td>
<td>Keine Abschaltung</td>
<td>Abschaltung</td>
</tr>
<tr>
<td>04</td>
<td>Unbenutzt</td>
<td>Unbenutzt</td>
</tr>
<tr>
<td>05</td>
<td>Digitaleingang 27: Eingang NIEDRIG/ 1: Eingang HOCH</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>Abschaltblockierung</td>
<td>Abschaltblockierung</td>
</tr>
<tr>
<td>07</td>
<td>Keine Warnung</td>
<td>Warnung</td>
</tr>
<tr>
<td>08</td>
<td>Drehzahl ≠ Sollw.</td>
<td>Drehzahl = Sollw.</td>
</tr>
<tr>
<td>09</td>
<td>Ort-Steuerung Ser.-Kommunikation</td>
<td>Ort-Steuerung Ser.-Kommunikation</td>
</tr>
<tr>
<td>10</td>
<td>Außenhalb Frequenzbereich</td>
<td>Frequenzbereich OK</td>
</tr>
<tr>
<td>11</td>
<td>Motor OK</td>
<td>Motor OK</td>
</tr>
<tr>
<td>12</td>
<td>Digitaleingang 18: Eingang NIEDRIG/ 1: Eingang HOCH</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Digitaleingang 19: Eingang NIEDRIG/ 1: Eingang HOCH</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Digitaleingang 29: Eingang NIEDRIG/ 1: Eingang HOCH</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Digitaleingang 33: Eingang NIEDRIG/ 1: Eingang HOCH</td>
<td></td>
</tr>
</tbody>
</table>

MG.90.F3.03 - VLT ist ein eingetragenes Warenzeichen vom Danfoss
Steuerwort gemäß Feldbusprofil.

Master → Slave

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit Nr.

Das Steuerwort dient zum Senden von Befehlen von einem Master (z. B. einem PC) zu einem Slave (Frequenzumrichter). Master → Slave.

Bit	**Bit 0**	**Bit 1**
00 | AUS 1 | EIN 1
01 | AUS 2 | EIN 2
02 | AUS 3 | EIN 3
03 | Motorfreilauf
04 | Schnellstop
05 | Ausgangsfrequenz speichern
06 | Rampenstopp | Start
07 | Reset
08 | Bus-Festdrehzahl 1
09 | Bus-Festdrehzahl 2
10 | Daten nicht gültig | Daten gültig
11 | Frequenzkorrektur ab
12 | Frequenzkorrektur auf
13 | Parametersatzwahl (lsb)
14 | Parametersatzwahl (msb)
15 | Reversierung

Bei Bit 00-01-02, OFF1-2-3/ON1-2-3:

- Bit 00-01-02 = '0' führt zum Rampenstopp unter Verwendung der Rampenzeiten in den Parametern 207/208 bzw. 209/210.
- Ist Relais 123 in Parameter 323 Relaisausgang gewählt, so wird das Ausgangsrelais bei einer Ausgangsfrequenz von 0 Hz aktiviert.

Beim Bit 00-01-02 = '1' kann der Frequenzumrichter den Motor starten, wenn die anderen Startbedingungen erfüllt sind.

Bit 03, Motorfreilauf:

Siehe Beschreibung unter Steuerwort gemäß FC-Protokoll.

Bit 04, Schnellstop:

Siehe Beschreibung unter Steuerwort gemäß FC-Protokoll.

Bit 05, Ausgangsfrequenz speichern:

Siehe Beschreibung unter Steuerwort gemäß FC-Protokoll.

Bit 06, Rampenstop/Start:

Siehe Beschreibung unter Steuerwort gemäß FC-Protokoll.

Bit 07, Quittieren:

Siehe Beschreibung unter Steuerwort gemäß FC-Protokoll.

Bit 08, Festdrehzahl 1:

Bei Bit 08 = '1' wird die Ausgangsfrequenz durch Parameter 509 Bus-Festdrehzahl 1 bestimmt.

Bit 09, Festdrehzahl 2:

Bei Bit 09 = '1' wird die Ausgangsfrequenz durch Parameter 510 Bus-Festdrehzahl 2 bestimmt.

Bit 10, Daten nicht gültig/Daten gültig:

Siehe Beschreibung unter Steuerwort gemäß Fach-FC-Protokoll.

Bit 11, Frequenzkorrektur ab:

Dient zur Reduzierung des Drehzahlsollwertes mit dem Wert in Parameter 219 Frequenzkorrektur Auf/Ab.

Bit 11 = '0' bewirkt keine Änderung des Sollwertes. Bei Bit 11 = '1' wird der Sollwert reduziert.

Bit 12, Frequenzkorrektur auf

Dient zur Erhöhung des Drehzahlsollwertes mit dem Wert in Parameter 219 Frequenzkorrektur Auf/Ab.

Bit 12 = '0' bewirkt keine Änderung des Sollwertes. Bei Bit 12 = '1' wird der Sollwert erhöht. Sind sowohl Frequenzkorrektur ab als auch Frequenzkorrektur auf aktiviert (Bits 11 and 12 = '1'), hat Verlangsamen die höchste Priorität, d.h., der Drehzahlsollwert wird verringert.

Bit 13/14, Parametersatzwahl:

Siehe Beschreibung unter Steuerwort gemäß FC-Protokoll.

Bit 15, Reversierung:

Siehe Beschreibung unter Steuerwort gemäß FC-Protokoll.

Zustandswort gemäß Profidrive-Protokoll

Slave → Master

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit Nr.

Das Zustandswort dient dazu, einem Master (z.B. einem PC) den Zustand eines Slave (Frequenzumrichters) mitzuteilen. Slave → Master.
Bit 00, Steuerung nicht bereit/Bereit:
Bei Bit 00 = '0' ist Bit 00, 01 oder 02 des Steuerwortes '0' (AUS1, AUS2 oder AUS3), oder der Frequenzumrichter hat abgeschaltet.
Bei Bit 00 = '1' ist der Frequenzumrichter betriebsbereit.

Bit 01, Antrieb bereit:
Siehe Beschreibung unter Zustandswort gemäß FC-Prokokoll.

Bit 02, Motorfreilaufstop:
Bei Bit 02 = '0' sind die Bits 00, 02 oder 03 im Steuerwort '0' (AUS1, AUS2 oder Motorfreilauf).
Bei Bit 02 = '1' sind die Bits 00, 01, 02 und 03 im Steuerwort '1', und der Frequenzumrichter hat nicht abgeschaltet.

Bit 03, Keine Abschaltung/Abschaltung:
Siehe Beschreibung unter Zustandswort gemäß FC-Prokokoll.

Bit 04, EIN 2/AUS 2:
Bei Bit 04 = '0' ist Bit 01 im Steuerwort = '1'.
Bei 04 = '1' ist Bit 01 im Steuerwort = '0'.

Bit 05, EIN 3/AUS 3:
Bei Bit 05 = '0' ist Bit 02 im Steuerwort = '1'.
Bei Bit 05 = '1' ist Bit 02 im Steuerwort = '0'.

Bit 06, Start möglich/Start nicht möglich:
Bit 06 = '1' nach Quittierung einer Abschaltung, nach Aktivierung von AUS2 oder AUS3 und nach Netzanschluss. Start möglich wird durch Einstellen von Bit 00 im Steuerwort auf '0' quittiert, und Bit 01, 02 und 10 werden auf '1' eingestellt.

Bit 07, Warnung:
Siehe Beschreibung unter Zustandswort gemäß FC-Prokokoll.

Bit 08, Drehzahl:
Siehe Beschreibung unter Zustandswort gemäß FC-Prokokoll.

Bit 09, Keine Warnung/Warnung:
Siehe Beschreibung unter Zustandswort gemäß FC-Prokokoll.

Bit 10, Drehzahl ≠ Sollw./Drehz. = Sollw.:
Siehe Beschreibung unter Zustandswort gemäß FC-Prokokoll.

Bit 11, Motor läuft/läuft nicht:
Siehe Beschreibung unter Zustandswort gemäß FC-Prokokoll.

Bit 13, Spannungswarnung hoch/niedrig:
Siehe Beschreibung unter Zustandswort gemäß FC-Prokokoll.

Bit 14, Stromgrenzwert:
Siehe Beschreibung unter Zustandswort gemäß FC-Prokokoll.

Bit 15, Thermische Warnung:
Siehe Beschreibung unter Zustandswort gemäß FC-Prokokoll.

Bussollwert

Der Bussollwert wird in Form eines 16-Bit-Wortes an den Frequenzumrichter übertragen. Der Wert wird in ganzen Zahlen 0 - ±32767 (±200%) übertragen. 16384 (4000 Hex) entspricht 100%.

Der Bussollwert hat folgendes Format: 0-16384 (4000 Hex) ≈ 0-100% (Par. 204 Minimaler Sollwert - Par. 205 Maximaler Sollwert).

Beispiel - Steuerwert und Bussollwert:
Der Frequenzumrichter soll einen Startbefehl erhalten, und der Sollwert soll auf 50% (2000 Hex) des Sollwertbereichs eingestellt werden.
Steuerwert = 047F Hex Startbefehl.
Sollwert = 2000 Hex 50% Sollwert.

<table>
<thead>
<tr>
<th>Steuerwort</th>
<th>Sollwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>047F Hex</td>
<td>2000 H</td>
</tr>
</tbody>
</table>

Der Frequenzumrichter soll einen Startbefehl erhalten, und der Sollwert soll auf -50% (-2000 Hex) des Sollwertbereichs eingestellt werden. Der Sollwert wird erst in ein Einerkomplement umgerechnet, und dann wird binär 1 addiert, um ein Zweierkomplement zu erhalten:

2000 Hex	0010 0000 0000 0000 0000
Einerkomplement	1101 1111 1111 1111 1111
Zweierkomplement	1110 0000 0000 0000 0000

+ 1

Steuerwort = 047F Hex Startbefehl
Sollwert = E000 Hex -50% Sollwert.

<table>
<thead>
<tr>
<th>Steuerwort</th>
<th>Sollwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>047F Hex</td>
<td>E000 H</td>
</tr>
</tbody>
</table>

Aktuelle Ausgangsfrequenz

Der Wert der aktuellen Ausgangsfrequenz des Frequenzumrichters wird als 16-Bit-Wort übertragen. Der Wert wird in ganzen Zahlen 0 - ±32767 (±200%) übertragen. 16384 (4000 Hex) entspricht 100%.

Die Ausgangsfrequenz hat folgendes Format:
0-16384 (4000 Hex) = 0-100% (Par. 201 Ausgangsfrequenzgrenze niedrig, Par. 202 Ausgangsfrequenzgrenze hoch).

Beispiel - Zustandswort und aktuelle Ausgangsfrequenz
Der Master erhält eine Zustandsmeldung vom Frequenzumrichter, daß die aktuelle Ausgangsfrequenz 50% des Ausgangsbereichs beträgt.
Par. 201 Ausgangsfrequenzgrenze niedrig = 0 Hz
Par. 202 Ausgangsfrequenzgrenze hoch = 50 Hz

Zustandswort = 0F03 Hex.
Ausgangsfrequenz = 2000 Hex 50% des Frequenzbereichs, entsprechend 25 Hz.
Serielle Kommunikation

Parameter 500 Adresse (BUS ADRESSE)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 - 247</td>
<td>1 - 255</td>
<td>1 - 247</td>
</tr>
<tr>
<td></td>
<td>★ 1</td>
<td>★ 1</td>
<td>★ 1</td>
</tr>
</tbody>
</table>

Funktion:
In diesem Parameter kann für jeden Frequenzumrichter eine Adresse in einem seriellen Kommunikationsnetz angegeben werden.

Beschreibung der Auswahl:
Die einzelnen Frequenzumrichter müssen eine eindeutige Adresse erhalten.
Sind mehr als 31 Geräte (Frequenzumrichter + Master) angeschlossen, so muß ein Verstärker (Repeater) benutzt werden.
Parameter 500 Adresse kann nicht über die serielle Schnittstelle gewählt werden, sondern muß an der Bedieneinheit eingestellt werden.

Parameter 501 Baudrate (BAUD-RATE)

<table>
<thead>
<tr>
<th>Wert:</th>
<th>300 Baud (300 BAUD)</th>
<th>600 Baud (600 BAUD)</th>
<th>1200 Baud (1200 BAUD)</th>
<th>2400 Baud (2400 BAUD)</th>
<th>4800 Baud (4800 BAUD)</th>
<th>9600 Baud (9600 BAUD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[0]</td>
<td>[1]</td>
<td>[2]</td>
<td>[3]</td>
<td>[4]</td>
<td>[5]</td>
</tr>
</tbody>
</table>

Funktion:
In diesem Parameter wird die Datenübertragungsgeschwindigkeit über die serielle Schnittstelle eingestellt. Die Baudrate ist als die Anzahl der pro Sekunde übertragenen Bits definiert.

Beschreibung der Auswahl:
Die Übertragungsgeschwindigkeit des Frequenzumrichters ist so zu programmieren, daß sie der Übertragungsgeschwindigkeit des Masters entspricht.
Parameter 501 Baudrate kann nicht über die serielle Schnittstelle gewählt werden, sondern muß an der Bedieneinheit eingestellt werden.

Parameter 502 Motorfreilauf (MOTORFREILAUF)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Funktion:
In den Parametern 502-508 kann man anwählen, ob der Frequenzumrichter über die Klemmen und/oder den Bus gesteuert werden soll.

Beschreibung der Auswahl:

ACHTUNG!
Beachten Sie, daß Motorfreilauf und Bit 03 im Steuerwort bei logisch '0' aktiv sind.

<table>
<thead>
<tr>
<th>Klemme [0]</th>
<th>Bus [1]</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Motorfreilauf</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Motor läuft</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Motor läuft</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Motor läuft</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Motorfreilauf</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Motor läuft</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Motorfreilauf</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Motor läuft</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Motorfreilauf</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Motor läuft</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Motor läuft</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Motor läuft</td>
</tr>
</tbody>
</table>

★ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert
Bus oder Klemme [3]

<table>
<thead>
<tr>
<th>Klemme</th>
<th>Bus</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Motorfreilauf</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Motorfreilauf</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Motorfreilauf</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Motor läuft</td>
</tr>
</tbody>
</table>

503 Schnellstopp
(SCHNELL-STOPP)

Wert:
- Klemme (KLEMME) [0]
- Bus (BUS) [1]
- Bus und Klemme (BUS UND KLEMME) [2]
- Bus oder Klemme (BUS ODER KLEMME) [3]

Funktion:
Siehe Beschreibung zu Parameter 502 Motorfreilauf.

Beschreibung der Auswahl:
Die nachstehende Tabelle zeigt für jede der folgenden Wahlmöglichkeiten, wann der Motor läuft und wann er im Schnellstoppmodus ist: Klemme [0], Bus [1], Bus und Klemme [2] oder Bus oder Klemme [3].

ACHTUNG!:
Beachten Sie, daß Schnellstopp invers und Bit 04 im Steuerwort bei logisch '0' aktiv sind.

<table>
<thead>
<tr>
<th>Klemme [0]</th>
<th>Bus</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Schnellstopp</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Schnellstopp</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Motor läuft</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Motor läuft</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bus [1]</th>
<th>Bus</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Schnellstopp</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Motor läuft</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Schnellstopp</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Motor läuft</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Schnellstopp</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Motor läuft</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Motor läuft</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Motor läuft</td>
</tr>
</tbody>
</table>

Bus oder Klemme [3]

<table>
<thead>
<tr>
<th>Klemme</th>
<th>Bus</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Schnellstopp</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Schnellstopp</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Schnellstopp</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Motor läuft</td>
</tr>
</tbody>
</table>

504 Gleichspannungsbremse
(DC-BREMSUNG)

Wert:
- Klemme (KLEMME) [0]
- Bus (BUS) [1]
- Bus und Klemme (BUS UND KLEMME) [2]
- Bus oder Klemme (BUS ODER KLEMME) [3]

Funktion:
Siehe Beschreibung zu Parameter 502 Motorfreilauf.

Beschreibung der Auswahl:

ACHTUNG!:
Beachten Sie, daß Gleichspannungsbremse invers und Bit 02 im Steuerwort bei logisch '0' aktiv sind.

<table>
<thead>
<tr>
<th>Klemme [0]</th>
<th>Bus</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Gleichspannungsbremse</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Gleichspannungsbremse</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Motor läuft</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Motor läuft</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bus [1]</th>
<th>Bus</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Gleichspannungsbremse</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Motor läuft</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Gleichspannungsbremse</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Motor läuft</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Gleichspannungsbremse</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Motor läuft</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Motor läuft</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Motor läuft</td>
</tr>
</tbody>
</table>

★ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert
Dezentrale Lösungen - Projektierungshandbuch

505 Start

(START)

Wert:
- Klemme (KLEMME) [0]
- Bus (BUS) [1]
- Bus und Klemme (BUS UND KLEMME) [2]
- Bus oder Klemme (BUS ODER KLEMME) [3]

Funktion:
Siehe Beschreibung zu Parameter 502 Motorfreilauf.

Beschreibung der Auswahl:

Klemme [0]

<table>
<thead>
<tr>
<th>Klemme</th>
<th>Bus</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Stopp</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Stopp</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Start</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Start</td>
</tr>
</tbody>
</table>

Bus [1]

<table>
<thead>
<tr>
<th>Klemme</th>
<th>Bus</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Stopp</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Stopp</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Start</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Start</td>
</tr>
</tbody>
</table>

Bus und Klemme [2]

<table>
<thead>
<tr>
<th>Klemme</th>
<th>Bus</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Stopp</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Stopp</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Stopp</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Start</td>
</tr>
</tbody>
</table>

Bus oder Klemme [3]

<table>
<thead>
<tr>
<th>Klemme</th>
<th>Bus</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Stopp</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Start</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Start</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Start</td>
</tr>
</tbody>
</table>

506 Drehrichtung

(DREHRICHTUNG)

Wert:
- Klemme (KLEMME) [0]
- Bus (BUS) [1]
- Bus und Klemme (BUS UND KLEMME) [2]
- Bus oder Klemme (BUS ODER KLEMME) [3]

Funktion:
Siehe Beschreibung zu Parameter 502 Motorfreilauf.

Beschreibung der Auswahl:
Die nachstehende Tabelle zeigt für jede der folgenden Wahlmöglichkeiten, wann der Motor im Rechtslauf und wann er im Linkslauf läuft: Klemme [0], Bus [1], Bus und Klemme [2] oder Bus oder Klemme [3].

Klemme [0]

<table>
<thead>
<tr>
<th>Klemme</th>
<th>Bus</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Rechtslauf</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Rechtslauf</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Linkslauf</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Linkslauf</td>
</tr>
</tbody>
</table>

Bus [1]

<table>
<thead>
<tr>
<th>Klemme</th>
<th>Bus</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Rechtslauf</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Linkslauf</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Rechtslauf</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Linkslauf</td>
</tr>
</tbody>
</table>

Bus und Klemme [2]

<table>
<thead>
<tr>
<th>Klemme</th>
<th>Bus</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Rechtslauf</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Rechtslauf</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Rechtslauf</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Linkslauf</td>
</tr>
</tbody>
</table>

Bus oder Klemme [3]

<table>
<thead>
<tr>
<th>Klemme</th>
<th>Bus</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Rechtslauf</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Linkslauf</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Linkslauf</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Linkslauf</td>
</tr>
</tbody>
</table>

507 Parametersatzanwahl

(PARAM.SATZ ANW.)

Wert:
- Klemme (KLEMME) [0]
- Serielle Kommunikation (BUS) [1]
- Bus und Klemme (BUS UND KLEMME) [2]
- Bus oder Klemme (BUS ODER KLEMME) [3]

★ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert
Funktion:

Siehe Beschreibung zu Parameter 502 Motorfreilauf.

Beschreibung der Auswahl:

Digitaler Eingang [0]

<table>
<thead>
<tr>
<th>Parametersatzzahl</th>
<th>Parametersatzzahl lsb</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Parametersatz 1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Parametersatz 2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Parametersatz 3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Parametersatz 4</td>
</tr>
</tbody>
</table>

Serielle Kommunikation [1]

<table>
<thead>
<tr>
<th>Parametersatzzahl</th>
<th>Parametersatzzahl lsb</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Parametersatz 1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Parametersatz 2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Parametersatz 3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Parametersatz 4</td>
</tr>
</tbody>
</table>

Bus und Klemme [2]

<table>
<thead>
<tr>
<th>Bus Parametersatzzahl</th>
<th>Bus Parametersatzzahl lsb</th>
<th>Dig. Parametersatzzahl</th>
<th>Dig. Parametersatzzahl lsb</th>
<th>Parametersatz Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Bus oder Klemme [3]

<table>
<thead>
<tr>
<th>Bus Parametersatzzahl</th>
<th>Bus Parametersatzzahl lsb</th>
<th>Dig. Parametersatzzahl</th>
<th>Dig. Parametersatzzahl lsb</th>
<th>Parametersatz Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

508 Anwahl Festsollwert (ANWAHL FESTDREHZ)

<table>
<thead>
<tr>
<th>Wert</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klemme (KLEMME) [0]</td>
<td>Siehe Beschreibung zu Parameter 502 Motorfreilauf.</td>
</tr>
</tbody>
</table>

509 Bus-Festdrehzahl 1 (BUS JOGDREHZ. 1)

Wert: 0,0 - Par. 202 Ausgangsfrequenzgrenze hoch

Funktion: Zeigt Parameter 512 Telegrammprofil die Wahl Profidrive [0], so können zwei Festdrehzahlen (Jog 1 bzw. Jog 2) über die serielle Schnittstelle gewählt werden. Die Funktion ist gleich wie in Parameter 213 Frequenz Festdrehzahl - Jog .

509 Bus-Festdrehzahl 2 (BUS JOGDREHZ. 2)

Wert: 10,0 Hz

Funktion: Zeigt Parameter 512 Telegrammprofil die Wahl Profidrive [0], so können zwei Festdrehzahlen (Jog 1 bzw. Jog 2) über die serielle Schnittstelle gewählt werden. Die Funktion ist gleich wie in Parameter 213 Frequenz Festdrehzahl - Jog .

★ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert
Beschreibung der Auswahl:
Die Festdrehzahlfrequenz \(f_{\text{JOG}} \) kann zwischen 0 Hz und \(f_{\text{MAX}} \) gewählt werden.

512 Telegramm-Profil

Wert:
- Profidrive (PROFIDRIVE) [0]
- FC-Protokoll (FC-PROTOKOLL) [1]
- Schnelles E/A-FC-Profil (SCHNELLES E/A-FC-PROFILE) [2]

Beschreibung der Auswahl:
Es kann zwischen drei verschiedenen Steuerwortprofilen gewählt werden.

Funktion:
Wählen Sie das gewünschte Steuerwortprofil.
Nähere Informationen zu Steuerwortprofilen siehe Serielle Schnittstelle für FCD 300.

513 Bus-Time-Out Zeit

Wert:
- 1 - 99 s [1 s]

Beschreibung der Auswahl:
Gewünschte Zeit einstellen.

514 Bus-Time-Out Funktion

Wert:
- Aus (AUS) [0]
- Ausgangsfrequenz speichern (AUSGANG SPEICHERN) [1]
- Stopp (STOP) [2]
- Festdrehzahl (FESTDREHZahl(JOG)) [3]
- Max. Drehzahl (MAX. DREHZahl) [4]
- Stopp und Abschaltung (STOPP UND ABSCHALT.) [5]

Beschreibung der Auswahl:
Wird diese Zeit überschritten, so wird ein Ausfall der seriellen Kommunikation angenommen, wobei die entsprechende Reaktion in Parameter 514 Bus-Time-Out Funktion einzustellen ist.

Funktion:
In diesem Parameter wird die voraussichtlich maximale Zeit eingestellt, die zwischen zwei aufeinanderfolgenden Telegrammen vergeht. Wird diese Zeit überschritten, so wird ein Ausfall der seriellen Kommunikation angenommen, wobei die entsprechende Reaktion in Parameter 514 Bus-Time-Out Funktion einzustellen ist.

MG.90.F3.03 - VLT ist ein eingetragenes Warenzeichen vom Danfoss
Dezentrale Lösungen - Projektierungshandbuch

515-544 Datenanzeige

<table>
<thead>
<tr>
<th>Par. Nr.</th>
<th>Beschreibung</th>
<th>Anzeigetext</th>
<th>Einheit</th>
<th>Aktualisierungsintervall</th>
</tr>
</thead>
<tbody>
<tr>
<td>515</td>
<td>Sollwert</td>
<td>(SOLLWERT %)</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>516</td>
<td>Sollwert [Einheit]</td>
<td>(SOLLWERT [EINH.])</td>
<td>Hz, min-1</td>
<td></td>
</tr>
<tr>
<td>517</td>
<td>Istwert [Einheit]</td>
<td>(ISTWERT [EINH.])</td>
<td>Par. 416</td>
<td></td>
</tr>
<tr>
<td>518</td>
<td>Frequenz</td>
<td>(FREQUENZ)</td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td>519</td>
<td>Frequenz x Skalierung</td>
<td>(FREQUENZ X SKAL.)</td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td>520</td>
<td>Motorstrom</td>
<td>(MOTORSTROM)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>521</td>
<td>Drehmoment</td>
<td>(MOMENT)</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>522</td>
<td>Leistung [kW]</td>
<td>(LEISTUNG [kW])</td>
<td>kW</td>
<td></td>
</tr>
<tr>
<td>523</td>
<td>Leistung [HP]</td>
<td>(LEISTUNG [HP])</td>
<td>HP</td>
<td></td>
</tr>
<tr>
<td>524</td>
<td>Motorspannung</td>
<td>(MOTORSPANNUNG)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>525</td>
<td>Zwischenkreisspannung</td>
<td>(DC-SPANNUNG)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>526</td>
<td>Thermischer Motorschutz</td>
<td>(TH.MOTORSCHUTZ)</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>527</td>
<td>Thermischer Wechselrichterschutz</td>
<td>(INV. THERMAL)</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>528</td>
<td>Digitaler Eingang</td>
<td>(DIGITALER EINGANG)</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td>529</td>
<td>Klemme 53, Analogeingang</td>
<td>(ANALOGEING. 53)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>531</td>
<td>Klemme 60, Analogeingang</td>
<td>(ANALOGEING. 60)</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>532</td>
<td>Klemme 33, Pulseingang</td>
<td>(PULSEINGANG 33)</td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td>533</td>
<td>Externer Sollwert</td>
<td>(ERW. REF. %)</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>534</td>
<td>Zustandswort, Hex</td>
<td>(ZUSTANDSWORT)</td>
<td>Hex</td>
<td></td>
</tr>
<tr>
<td>537</td>
<td>Invertortemperatur</td>
<td>(INVERTER TEMP.)</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>538</td>
<td>Alarmwort</td>
<td>(ALARMMWORT)</td>
<td>Hex</td>
<td></td>
</tr>
<tr>
<td>539</td>
<td>Steuerwort</td>
<td>(STEUERWORT)</td>
<td>Hex</td>
<td></td>
</tr>
<tr>
<td>540</td>
<td>Warnwort</td>
<td>(WARN WORT)</td>
<td>Hex</td>
<td></td>
</tr>
<tr>
<td>541</td>
<td>Erweitertes Zustandswort</td>
<td>(ERW. ZUSTANDSWORT)</td>
<td>Hex</td>
<td></td>
</tr>
<tr>
<td>544</td>
<td>Pulszähler</td>
<td>(PULSZÄHLER)</td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td>545</td>
<td>Anschluss 29, Pulseingang</td>
<td>(PULSEINGANG 29)</td>
<td>Hz</td>
<td></td>
</tr>
</tbody>
</table>

Funktion:
Diese Parameter können über die serielle Schnittstelle und über das LCP-Display ausgelesen werden. Siehe auch Parameter 009-012 Displayanzeige.

ACHTUNG!
Die Parameter 515-541 können nur über die serielle Schnittstelle ausgelesen werden.

Beschreibung der Auswahl:

Sollwert %, Parameter 515:
Gibt in Prozent den resultierenden Sollwert im Bereich Minimale Sollwert, Ref_MIN und maximalem Sollwert, Ref_MAX. Siehe auch Sollwertverarbeitung.

Sollwert [Einheit], Parameter 516:
Zeigt den resultierenden Sollwert in Hz im Betrieb ohne Istwertrückführung (Parameter 100) an. Bei einer Istwertrückführung wird die Sollwertsteuerung in Parameter 416 ausgewählt Prozeßeinheiten.

Istwert [Einheit], Parameter 517:
Angabe des resultierenden Istwerts mit der Einheit/Skalierung, die in den Parametern 414, 415 und 416 gewählt ist. Siehe auch Sollwertverarbeitung.

Frequenz [Hz], Parameter 518:
Zeigt die Ausgangsfrequenz des Frequenzumformers an.

Frequenz x Skalierung [-], Parameter 519:
Entspricht der aktuellen Motorfrequenz f_M multipliziert mit dem in Parameter 008 Displayskalierung der Ausgangsfrequenz.

Motorstrom [A], Parameter 520:
Angabe des Motorphasenstroms gemessen als Effektivwert.

Drehmoment [Nm], Parameter 521:
Angabe der aktuellen Motorlast im Verhältnis zum Nenndrehmoment des Motors.

★ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert

MG.90.F3.03 - VLT ist ein eingetragenes Warenzeichen vom Danfoss

156
Leistung [kW], Parameter 522:
Angabe der aktuellen Leistungsaufnahme des Motors in kW.

Leistung [HP], Parameter 523:
Angabe der aktuellen Leistungsaufnahme des Motors in amerikanischen PS (HP).

Motorspannung, Parameter 524:
Angabe der Spannung für den Motor.

Zwischenkreisspannung, Parameter 525:
Angabe der Zwischenkreisspannung im Frequenzwandler.

Thermischer Motorschutz [%], Parameter 526:
Angabe der berechneten/geschätzten thermischen Belastung des Motors. 100% ist die Abschaltgrenze. Siehe auch Parameter 128 Thermischer Motorschutz.

Thermischer Wechselrichterschutz [%], Parameter 527
Angabe der berechneten/geschätzten thermischen Belastung des Frequenzumrichters. 100% ist die Abschaltgrenze.

Digitaler Eingang, Parameter 528:
Angabe des Signalzustands der fünf digitalen Eingänge (18, 19, 27, 29 und 33). 18 entspricht dem am weitesten links stehenden Bit. ‘0’ = kein Signal, ‘1’ = Signal angeschlossen.

Klemme 53, analoger Eingang [V], Parameter 529:
Angabe des Spannungswerts für das Signal an Klemme 53.

Klemme 60 analoger Eingang [mA], Parameter 531:
Angabe des aktuellen Werts für das Signal an Klemme 60.

Pulseingang 33 [Hz], Parameter 532:
Angabe einer an Klemme 33 angeschlossenen Pulsfrequenz in Hz.

Externer Sollwert, Parameter 533:
Angabe der Summe der externen Sollwerte in % (Summe aus analog/Bus/Puls/serielle Schnittstelle) im Bereich zwischen minimalen Sollwert, Ref_MIN und maximalen Sollwert, Ref_MAX.

Zustandswort, Parameter 534:
Angabe des aktuellen Zustandsworts für den Frequenzwandler in Hex. Siehe Serielle Schnittstelle für VLT 2800.

Wechselrichtertemperatur, Parameter 537:
Zeigt die aktuelle Wechselrichtertemperatur im Frequenzwandler an. Die Abschaltgrenze beträgt 90-100 °C, die Wiedereinschaltgrenze 70 ± 5 °C.

Alarmwort, Parameter 538:
Angabe des aktuellen Alarmworts für den Frequenzwandler in Hex. Siehe Warnwort, erweitertes Zustandswort und Alarmwort.

Steuerwort, Parameter 539:
Angabe des aktuellen Steuerworts für den Frequenzwandler in Hex. Siehe Serielle Schnittstelle für FCD 300.

Warnwort, Parameter 540:
Angabe in Hex, ob für den Frequenzumrichter eine Warnung eingestellt ist. Siehe Warnwort, erweitertes Zustandswort und Alarmwort.

Warnwort 2, Parameter 541:
Angabe in Hex, ob für den Frequenzumrichter eine Warnung eingestellt ist. Siehe Warnwort, erweitertes Zustandswort und Alarmwort.

Pulszähler, Parameter 544:
Dieser Parameter kann über das Bedienfelddisplay (009–012) ausgelesen werden. Im Betrieb mit Zählerstopp ermöglicht dieser Parameter mit oder ohne Quittierung die vom Gerät registrierten Pulse anzuzeigen. Die höchste Frequenz beträgt 67,6 kHz, die geringste 5 Hz. Der Zähler wird zurückgesetzt, wenn der Zählerstopp erneut gestartet wird.

Pulseingang 29 [Hz], Parameter 545:
Angabe einer an Klemme 29 angeschlossenen Pulsfrequenz in Hz.

561 Protokoll (PROTOKOLL)

Wert:
★FC-Protokoll (FC) [1]
Metasys N2 (METASYS N2) [2]

Funktion:
Es kann zwischen zwei verschiedenen Protokollen gewählt werden.

Beschreibung der Auswahl:
Wählen Sie das gewünschte Steuerwortprotokoll.

★ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert

MG.90.F3.03 - VLT ist ein eingetragenes Warenzeichen vom Danfoss
Nähere Informationen zur Verwendung des Metasys N2-Protokolls finden Sie in MG91C1XX.

570 Modbus Parität und Nachrichtenrahmung
(M.BUS PAR./FRAME)

<table>
<thead>
<tr>
<th>Wert:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(EVEN / 1 STOPBIT)</td>
<td>[0]</td>
</tr>
<tr>
<td>(ODD/1 STOPBIT)</td>
<td>[1]</td>
</tr>
<tr>
<td>★ (NO PARITY/1 STOPBIT)</td>
<td>[2]</td>
</tr>
<tr>
<td>(NO PARITY/2 STOPBIT)</td>
<td>[3]</td>
</tr>
</tbody>
</table>

Funktion:
Dieser Parameter stellt die Modbus RTU-Schnittstelle des Frequenzumrichters für korrekte Kommunikation mit dem Master-Regler ein. Die Parität (EVEN (GERADE), ODD (UNGERADE) oder NO PARITY (KEINE PARITÄT)) muss in Übereinstimmung mit der Einstellung des Master-Reglers eingestellt werden.

Beschreibung der Auswahl:
Wählen Sie die Parität, die der Einstellung für den Modbus Master-Regler entspricht. Gerade oder ungerade Parität wird manchmal benutzt, damit ein übertragenes Wort auf Fehler geprüft werden kann. Da Modbus RTU das effizientere CRC-Fehlerprüfverfahren (Cyclic Redundancy Check) benutzt, wird Paritätsprüfung in Modbus RTU-Netzwerken nur selten verwendet.

571 Modbus-Timeout Kommunikation
(M.BUS KOM.TIME.)

<table>
<thead>
<tr>
<th>Wert:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10 ms - 2000 ms ★ 100 ms</td>
<td></td>
</tr>
</tbody>
</table>

Funktion:
Dieser Parameter bestimmt, wie lange das Modbus RTU des Frequenzumrichters zwischen den vom Master-Regler gesendeten Zeichen höchstens wartet. Wenn die eingestellt Zeit überschritten wird, geht die Modbus RTU-Schnittstelle davon aus, dass die Nachricht vollständig empfangen wurde.

Beschreibung der Auswahl:

★ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert
Technische Funktionen

600-605 Betriebsdaten

<table>
<thead>
<tr>
<th>Par. Nr.</th>
<th>Beschreibung</th>
<th>Anzeigetext</th>
<th>Einheit</th>
<th>Bereich</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>Betriebsstunden</td>
<td>(BETRIEBSSTUNDEN)</td>
<td>Stunden</td>
<td>0-130,000.0</td>
</tr>
<tr>
<td>601</td>
<td>Betriebsstunden</td>
<td>(MOTORLAUFSTUNDEN)</td>
<td>Stunden</td>
<td>0-130,000.0</td>
</tr>
<tr>
<td>602</td>
<td>kWh-Zähler</td>
<td>(kWh-ZÄHLER)</td>
<td>kWh</td>
<td>Abhängig vom Gerät</td>
</tr>
<tr>
<td>603</td>
<td>Anzahl d. Einschaltungen</td>
<td>(NETZEINSCHALT)</td>
<td>Anzahl</td>
<td>0-9999</td>
</tr>
<tr>
<td>604</td>
<td>Anzahl Temperaturüberschreitungen</td>
<td>(ÜBERTEMPERATUR)</td>
<td>Anzahl</td>
<td>0-9999</td>
</tr>
<tr>
<td>605</td>
<td>Anzahl Überspannungen</td>
<td>(ÜBERSPANNUNGEN)</td>
<td>Anzahl</td>
<td>0-9999</td>
</tr>
</tbody>
</table>

Funktion:
Diese Parameter können über die serielle Schnittstelle und über die Bedieneinheit ausgelesen werden.

Beschreibung der Auswahl:

Parameter 600, Betriebsstunden:

Parameter 601, Motorlaufstunden:
Gibt die Anzahl der Motorlaufstunden seit dem Rückstellen in Parameter 619 Rückstellen des Betriebsstundenzählers an. Der Wert wird stündlich und bei einem Netzausfall gespeichert.

Parameter 602, kWh-Zähler:

Parameter 603, Anzahl d. Einschaltungen:
Gibt die Anzahl der Einschaltungen der Betriebsspannung am Frequenzumrichter an.

Parameter 604, Anzahl d. Übertemperaturen:
Gibt die Anzahl der am Kühlkörper des Frequenzumrichters festgestellten Übertemperaturfehler an.

Parameter 605, Anzahl d. Überspannungen:

ACHTUNG!:
Die Parameter 615-617 Fehlerprotokoll können nicht über das integrierte Bedienfeld ausgelesen werden.

615 Fehlerprotokoll: Fehlercode

<table>
<thead>
<tr>
<th>Wert:</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Index 1 - 10] Fehlercode: 0 - 99</td>
</tr>
</tbody>
</table>

Funktion:

Beschreibung der Auswahl:
Angabe als ein Fehlercode, dessen Nummer sich auf eine Tabelle bezieht. Siehe Tabelle unter Übersicht der Warn- und Alarmmeldungen.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Beschreibung des Parameters</th>
</tr>
</thead>
</table>

ACHTUNG!

- Normalbetrieb [0] dient für den Normalbetrieb des Motors.
- Steuerkartentest [2] wird gewählt, wenn die analogen/digitalen Ein- und Ausgänge, die Relaisausgänge und die 10 V- und 24 V-Spannungen der Steuerkarte geprüft werden sollen. Der Test wird folgendermaßen durchgeführt:
 20 - 55 sind verbunden.
 42 - 60 sind verbunden.
 01 - 50 sind verbunden.
 02 - 53 sind verbunden.
 03 - 31B sind verbunden.
Folgendes Verfahren für den Steuerkarten-
test verwenden:
1. Steuerkartentest wählen.
2. Netzspannung abschalten und warten, bis die
 Displaybeleuchtung erlischt.
3. Anschlüsse nach Zeichnung und Beschreibung
 vornehmen.
5. Der Frequenzumwandler führt einen automatischen
 Test der Steuerkarte durch.

Wenn die LEDs einen Code blinken (4 LEDs
abwechselnd), ist der Steuerkartentest fehlgeschlagen
(siehe Abschnitt *Interne Fehler* für weitere
Informationen. Steuerkarte wechseln, um den
Frequenzwandler zu starten.
Wenn der Frequenzumwandler im Normal-
/Displaymodus startet, ist der Test erfolgreich
verlaufen. Nach Abnehmen des Teststeckers
ist der Frequenzumwandler betriebsbereit.
Parameter 620 *Betriebsart* wird automatisch auf
Normalbetrieb [0] eingestellt.

Initialisieren [3] wird gewählt, wenn die Werkseinstellung
des Gerätes benutzt werden soll.
Initialisierungsverfahren:
2. Netzspannung abschalten und warten, bis die
 Displaybeleuchtung erlischt.
4. Es erfolgt die Initialisierung für alle Parameter
 in allen Parametersätzen mit Ausnahme der
 Parameter 500 *Adresse*, 501 *Baudrate*, 600-605
 Betriebsdaten und 615-617 *Fehlerprotokoll* .

★ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert

MG.90.F3.03 - VLT ist ein eingetragenes Warenzeichen vom Danfoss
621-642 Typenschild

<table>
<thead>
<tr>
<th>Wert:</th>
<th>Anzeigetext</th>
</tr>
</thead>
<tbody>
<tr>
<td>Par. 621 Gerätetyp</td>
<td>(FU TYP)</td>
</tr>
<tr>
<td>Nr. 624 Softwareversion</td>
<td>(SOFTWARE VERSION)</td>
</tr>
<tr>
<td>625 LCP-Identifikationsnr.</td>
<td>(LCP VERSION)</td>
</tr>
<tr>
<td>626 Datenbank-Identifikationsnr.</td>
<td>(DATENBANK ID-NR)</td>
</tr>
<tr>
<td>627 Version Stromführ. Teile</td>
<td>(LEISTUNGST.ID-NR)</td>
</tr>
<tr>
<td>628 Anwendungsoption, Typ</td>
<td>(OPTION 1 BEST.NR)</td>
</tr>
<tr>
<td>630 Kommunikationsoption, Typ</td>
<td>(OPTION 2 BEST.NR)</td>
</tr>
<tr>
<td>632 BMC-Software-Identifikation</td>
<td>(BMC-SOFTWARE ID)</td>
</tr>
<tr>
<td>634 Geräteidentifikation für Kommunikation</td>
<td>(UNIT ID)</td>
</tr>
<tr>
<td>635 Software-Bestell Nr.</td>
<td>(SOFTWARE, BESTELLLNR.)</td>
</tr>
<tr>
<td>640 Softwareversion</td>
<td>(SOFTWARE VERSION)</td>
</tr>
<tr>
<td>641 BMC-Softwareidentifikation</td>
<td>(BMC2 SW)</td>
</tr>
<tr>
<td>642 Leistungskarten-Identifikation</td>
<td>(POWER ID)</td>
</tr>
</tbody>
</table>

Funktion:

Beschreibung der Auswahl:

Parameter 621 Typenschild: Frequenzumrichtertyp:

Gibt Typ und Netzspannung des Frequenzumrichters an.
Beispiel: FCD 311.380-480 V

Parameter 624 Typenschild: Softwareversion:

Gibt die aktuelle Softwareversionsnummer des Frequenzumrichters an.
Beispiel: V 1.00

Parameter 625 Typenschild: LCP-Identifikationsnummer:

Gibt die Identifikationsnummer der LCP-Bedieneinheit des Gerätes an.
Beispiel: ID 1,42 2 kB

Parameter 626 Typenschild: Datenbank-Identifikationsnummer:

Gibt die Identifikationsnummer der Software-Datenbank an.
Beispiel: ID 1,14.

Parameter 627 Typenschild: Leistungsteil-Identifikationsnummer:

Gibt die Identifikationsnummer des Leistungsteils des Gerätes an.
Beispiel: ID 1,15.

Parameter 628 Typenschild: Anwendungsoption, Typ:

Gibt die Typen der im Frequenzumrichter installierten Anwendungsoptionen an.

★ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert
678 Steuerkarte konfigurieren

(STEUERKARTE KONFIG.)

<table>
<thead>
<tr>
<th>Wert:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardversion (STANDARDVERSION)</td>
<td>[1]</td>
</tr>
<tr>
<td>Profibus 3 Mbaud-Version (PROFIBUS 3 MB VER.)</td>
<td>[2]</td>
</tr>
<tr>
<td>Profibus 12 Mbaud-Version (PROFIBUS 12 MB VER.)</td>
<td>[3]</td>
</tr>
</tbody>
</table>

Funktion:

Dieser Parameter ermöglicht die Konfiguration einer Profibus Control Card. Der Standardwert hängt vom Gerät ab, dass ebenfalls den maximal erreichbaren Wert aufweist. Das bedeutet, eine Steuerkarte kann nur mit einer niedrigeren Leistungsversion kombiniert werden.

★ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert
Dynamische Bremse

Mit dem FCD 300 kann die dynamische Bremse in Anwendungen auf zwei Arten verbessert werden, entweder mit Bremswiderständen oder mit der Wechselstrombremse.

Danfoss bietet eine vollständige Palette von Bremswiderständen für alle FCD 300 Frequenzumrichter an.

Der Bremswiderstand hat die Aufgabe, beim Bremsen eine Belastung des Zwischenkreises herbeizuführen und hierdurch sicherzustellen, daß die Bremsleistung vom Bremswiderstand absorbiert werden kann. Ohne Bremswiderstand würde die Zwischenkreisspannung bis zum Einsetzen der Schutzabschaltung weiter ansteigen. Der Vorteil bei der Verwendung eines Bremswiderstands ist, daß hohe Lasten wie Förderbänder schnell gebremst werden können.

Danfoss hat eine Lösung gewählt, in der der Bremswiderstand kein integraler Bestandteil des Frequenzumrichters ist. Der Anwender bietet sich hierdurch folgende Vorteile:
- Die Widerstands-Zykluszeit kann den Anforderungen entsprechend gewählt werden.
- Die beim Bremsen erzeugte Wärme kann aus dem Gehäuse geleitet und evtl. weiter genutzt werden.
- Keine Überhitzung elektronischer Bauteile, selbst wenn der Bremswiderstand überhitzt ist.

An die kleinen Bremsarbeitszyklen kann ein interner Bremswiderstand angebaut werden.

Wechselstrombremse ist eine integrierte Funktion für Anwendungen, bei denen begrenztes dynamisches Bremsen erforderlich ist. Mit der Wechselstrombremse kann die Bremsleistung im Motor statt im Bremswiderstand absorbiert werden. Die Funktion ist für Anwendungen gedacht, bei denen das erforderliche Bremsmoment weniger als 50% des Nennmoments beträgt. Wechselstrombremse wird in Par. 400 Bremsfunktion gewählt.

Berechnung des Bremswiderstands

Damit der Frequenzumrichter beim Bremsen des Motors nicht als Sicherheitsmaßnahme abschaltet, muß der Widerstandswert auf der Basis der Spitzenbremseleistung und der Zwischenkreisspannung gewählt werden.

\[
R_{\text{br}} = \frac{U_{\text{DC}}^2}{P_{\text{peak}}} \quad [\Omega]
\]

Es ist ersichtlich, daß der Bremswiderstand von der Zwischenkreisspannung (UDC) abhängt.

Bei Frequenzumrichtern mit einer Versorgungsspannung von 3 x 380 - 480 Volt, wird die Bremse bei 770 Volt (UDC) aktiv.

Nach Wahl kann auch de von Danfoss empfohlene Bremswiderstand verwendet werden (R_{\text{REC}}). Hierdurch wird gewährleistet, daß der Frequenzumrichter mit dem höchsten Bremsmoment (M_{\text{BR}}) der empfohlene Bremswiderstand kann der Bestelltable für Bremswiderstände entnommen werden. R_{\text{REC}} wird folgendermaßen berechnet:

\[
R_{\text{REC}} = \frac{U_{\text{DC}}^2}{P_{\text{Motor}} \times M_{\text{BR}} \times \eta_{\text{Motor}} \times \eta_{\text{INV}}} \quad [\Omega]
\]

ACHTUNG!:

Prüfen Sie, ob der Bremswiderstand eine Spannung von 850 Volt verträgt, wenn Sie keine Danfoss-Bremswiderstände benutzen.

\[
\eta_{\text{Motor}} \text{ liegt gewöhnlich bei } 0,90 \text{ und } \eta_{\text{INV}} \text{ ist gewöhnlich } 0,98. \text{ Für } 400 \text{ Volt, } R_{\text{REC}} \text{ bei } 160\% \text{ Bremsmoment wie folgt berechnet werden:}
\]

\[
400 \text{ Volt } R_{\text{REC}} = 4,90139 \times \frac{M_{\text{BR}}}{P_{\text{Motor}}} \text{ Volt} \quad [\Omega]
\]
ACHTUNG!
Der gewählte Bremswiderstand darf höchstens einen um 10% geringeren ohmschen Widerstand als der von Danfoss empfohlene haben. Bei Wahl eines Bremswiderstands mit einem geringeren Widerstand besteht die Gefahr von Überstrom, der das Gerät zerstören kann.

■ Berechnung der Bremsleistung

Bei der Berechnung der Bremsleistung muß sichergestellt werden, daß die mittlere und Spitzenleistung im Bremswiderstand abgeführt werden kann. Die mittlere Leistung wird durch die Periodendauer des Bremsvorgangs bestimmt, d.h. dadurch, wie lange die Bremse im Verhältnis zur Prozeßdauer betätigt wird. Die Spitzenleistung wird durch das Bremsmoment bestimmt, d.h. daß der Bremswiderstand beim Bremsen die Energiezufuhr abführen kann. Die Zeichnung verdeutlicht den Zusammenhang zwischen mittlerer und Spitzenleistung.

■ Berechnung der Spitzenleistung am Bremswiderstand

$P_{peak, MEC}$ ist die Spitzenleistung, mit der der Motor an der Motorwelle bremst. Sie wird folgendermaßen berechnet:

$$P_{peak, MEC} = \frac{P_{motor} \times M_{brems}}{100} \, [W]$$

P_{peak} gibt die Bremsleistung am Bremswiderstand an, wenn der Motor die Bremse betätigt. P_{peak} ist geringer als $P_{peak, MEC}$, da die Leistung durch den Wirkungsgrad des Motors und Frequenzumrichters reduziert wird. Die Spitzenleistung wird folgendermaßen berechnet:

$$P_{peak} = \frac{P_{motor} \times M_{brems} \times 100 \times \eta_{motor}}{100} \, [W]$$

Bei Wahl des von Danfoss empfohlenen Bremswiderstands (R_{REC}) ist gewährleistet, daß der Bremswiderstand ein Bremsmoment von 160% an der Motorwelle erzeugen kann.

■ Berechnung der mittleren Leistung am Bremswiderstand

Die mittlere Leistung wird durch die relative Dauer des Bremsvorgangs bestimmt, d.h. dadurch, wie lange die Bremse im Verhältnis zur Prozeßdauer betätigt wird. Der Arbeitszyklus des Bremsvorgangs wird folgendermaßen berechnet:

$$Arbeitszyklus = \frac{T_p \times 100}{T_p} \, [%]$$

$T_p =$ Die Prozeßzeit in Sekunden.
$T_b =$ Die Bremszeit in Sekunden.

Danfoss liefert Bremswiderstände mit variablen Arbeitszyklen bis zu 40%. Beispielsweise können bei einem Arbeitszyklus von 10% die Bremswiderstände P_{spitze} für 10% der Prozeßdauer aufnehmen. Die übrigen 90% der Periodendauer werden für das Abführen überschüssiger Wärme genutzt. Die mittlere Leistung bei 10% Arbeitszyklus kann folgendermaßen berechnet werden:

$$P_{avg} = P_{spitze} \times 10 \% \, [W]$$

Die Durchschnittsleistung bei 40% Arbeitszyklus kann folgendermaßen berechnet werden:

$$P_{avg} = P_{spitze} \times 40 \% \, [W]$$

Diese Berechnungen gelten für intermittierendes Bremsen mit Perioden bis 120 Sekunden.

ACHTUNG!
Perioden über 120 Sekunden können zur Überhitzung des Widerstands führen.

■ Kontinuierliches Bremsen

Für kontinuierliches Bremsen muß ein Bremswiderstand gewählt werden, bei dem die konstante Bremsleistung nicht die mittlere Leistung P_{avg} des Bremswiderstands übersteigt. Wenden Sie sich für weitere Informationen bitte an Ihren Danfoss-Lieferanten.
Optimales Widerstandsbremsen

\[
S = \frac{\text{Synchrondrehzahl}}{\text{Rotordrehzahl}} \times 100\% \quad \text{%}
\]

\[
\text{Einschaltfrequenz für Gleichstrombremsen} = 2 \times S \times f \times 100 \text{ Hz}
\]

Bremskabel

Max. Länge [m]: 10 m

Das Anschlußkabel des Bremswiderstands muß abgeschirmt sein. Die Abschirmung mit Kabelbügeln an der leitfähigen Rückseite des Frequenzumrichters und am Metallgehäuse des Bremswiderstands anschließen.

ACHTUNG!: Wenn keine Danfoss-Bremswiderstände benutzt werden, muß sichergestellt werden, daß die Induktion für den Bremswiderstand gering ist.
Sicherheitsmaßnahmen bei der Installation

Bei der Installation eines Bremswiderstands müssen die bestmöglichen Vorkehrungen zur Vermeidung von Überlastungen getroffen werden, da die durch einen Bremswiderstand erzeugte Abwärme eine Feuergefahr darstellen kann.

ACHTUNG!

Der Bremswiderstand muß auf nicht brennbarem Material montiert werden.

Zum Schutz der Installation ist ein Thermorelais als Schalter für den Frequenzumrichter montiert, der Frequenzumrichter bei zu hohem Bremsstrom abschaltet. Die 40% Bremswiderstände von Danfoss enthalten einen KLIXON-Schalter. Widerstände in Flachbauweise sind selbstschützend.

Die Bremsstromeneinstellung am Thermorelais wird folgendermaßen berechnet:

\[
I_{	ext{thermal}} = \sqrt{\frac{P_{AVU}}{R_{BR}}}
\]

\(R_{BR}\) ist der aktuelle Wert des Bremswiderstands. Die Zeichnung zeigt eine Installation mit einem Thermorelais.

\begin{itemize}
 \item **Interner Bremswiderstand**

 Für gelegentliches Bremsen oder Bremsen mit niedrigem Arbeitszyklus sind intern zu befestigende Bremswiderstände erhältlich. (Siehe Zubehör für den FCD 300).

 \item **Abmessungen der Flachbau-Bremswiderstände**

 100 W 200 W
\end{itemize}
Dezentrale Lösungen - Projektierungshandbuch

MG.90.F3.03 - VLT ist ein eingetragenes Warenzeichen vom Danfoss

Kabellänge 510 ± 40 mm

Kabellänge 750 mm
Abmessungen der Halterungen
Besondere Bedingungen

Galvanische Trennung (PELV)

Die nachfolgend aufgeführten Bauelemente sorgen für die sichere galvanische Trennung. Sie erfüllen die Anforderungen an erhöhte Isolation und die zugehörigen Tests nach EN 50 178.
1. Transformator und Optokoppler in der Spannungsversorgung.
2. Optokoppler zwischen Basis-Motorsteuerung und Steuerkarte
3. Isolation zwischen Steuerkarte und Leistungsteil.
4. Relaiskontakte und Klemmen für andere Schaltungen auf der Steuerkarte.

PELV-Isolation der Steuerkarte ist unter folgender Bedingung garantiert:
- Max. 300 V zwischen Phase und Erde.

Ein an die Klemmen 31a-31b angeschlossener Thermistor muß doppelt isoliert sein, um PELV zu erhalten. Danfoss Bauer liefert doppelt isolierte Thermistoren.
Dezentrale Lösungen - Projektierungshandbuch

■ Ableitströme und RCD-Relais

Ableitstrom zur Erde wird hauptsächlich durch die Kapazität zwischen den Motorphasen und der Abschirmung der Motorkabel verursacht. Wird ein Funkentstörfilter benutzt, so trägt es zu zusätzlichem Ableitstrom bei, da der Filterkreis über Kondensatoren mit Erde verbunden ist.

Die Größe des Ableitstroms hängt von den folgenden Faktoren ab (Angabe in der Reihenfolge der Bedeutung):
1. Länge des Motorkabels
2. Motorkabel abgeschirmt/nicht abgeschirmt
3. Hohe Taktfrequenz
4. Funkentstörfilter ja/nein
5. Motor am Standort geerdet/nicht geerdet

Der Ableitstrom ist bei Handhabung und Betrieb des Frequenzumrichters dann sicherheitsrelevant, wenn der Frequenzumrichter (aufgrund eines Fehlers) nicht geerdet ist.

ACHTUNG!

Da der Ableitstrom > 3,5 mA beträgt, muß eine verstärkte Erdung angeschlossen werden. Dies ist eine Anforderung zur Einhaltung der EN 50178. Niemals Fehlerstromschutzschalter (Typ A) verwenden, die nicht für DC-Fehlerströme aus Drehstrom-Gleichrichterlasten geeignet sind.

Wenn Fehlerstromschutzschalter verwendet werden, müssen sie geeignet sein für:
- den Schutz von Installationen mit Gleichspannungsanteil im Fehlstrom (Drehstrom-Gleichrichterbrücke),
- kurzzeitiges Ableiten von Impulsstromspitzen beim Einschalten,
- hohen Ableitstrom (300 mA)

■ Extreme Betriebsbedingungen

Kurzschluß

Der Wechselrichter schaltet sich nach 5-10 µs ab, und der Frequenzumrichter zeigt einen Fehlercode an; dies hängt allerdings von der Impedanz und der Motorfrequenz ab.

Erdungsfehler

Das IGBT-Modul schaltet bei einem Erdschluss an einer der beiden Motorklemmen U, V, W (96, 97, 98) innerhalb von 100 µs ab; dies hängt allerdings von der Impedanz und der Motorfrequenz ab.

Schalten am Ausgang

Generatorische Überspannung

Die Spannung in den Zwischenkreisen steigt, wenn der Motor als Generator arbeitet. Das IGBT-Modul schaltet zum Schutz des Frequenzumrichters ab, wenn eine bestimmte Spannung erreicht ist.

Generatorische Überspannung kann in zwei Fällen auftreten:
1. Die Last treibt den Motor an, d.h., die Last erzeugt Energie.
2. Bei Verzögerung (Rampe ab), wenn das Trägheitsmoment hoch, die Last gering und die Rampe-ab-Zeit zu kurz ist, um die Energie als Verlust an den Frequenzumrichter, den Motor und die Installation abzugeben. Der Regler versucht, die Rampe, wenn möglich, zu korrigieren.

Der Fehler kann durch einen Bremswiderstand beseitigt werden, sofern der Frequenzumrichter über ein integriertes Bremsmodul verfügt. Wenn der Frequenzumrichter kein integriertes Bremsmodul hat, kann eine Wechselspannungsbremse verwendet werden, siehe Parameter 400 Bremsfunktion. Siehe Abschnitt Bremswiderstände.

Statische Überlastung

Wenn der Frequenzumrichter überlastet ist (Stromgrenze in Parameter 221 Stromgrenze \(I_{\text{Lim}} \) ist erreicht), reduziert der Regler die Ausgangsfrequenz, um die Belastung zu reduzieren.
Bei extremer Überlastung kann ein Ausgangsstrom auftreten, der den Frequenzumrichter nach ca. 1,5 s abschalten lässt. Siehe Parameter 409 Zeitverzögerung Stromgrenze, \(I_{LM} \). Eine extreme Überlastung führt zu einer Reduzierung der Taktfrequenz auf 3000 Hz.

dU/dt am Motor
Wenn ein Transistor im Wechselrichter öffnet, steigt die Spannung an den Motorklemmen um ein Spannungs-/Zeitverhältnis (dU/dt) an, das bestimmt wird durch:
- Motorkabel (Typ, Querschnitt, Induktion, Kapazität, Länge, abgeschirmt/nicht abgeschirmt)
- Netzzspannung

Selbstinduktion im Motorkabel führt zu einem Überschwingen \(U_{PEAK} \) der Ausgangsspannung bei jedem Öffnen eines Transistors im Wechselrichter. Nach \(U_{PEAK} \) stabilisiert sich die Ausgangsspannung auf einen Pegel, der von der Zwischenkreisspannung bestimmt wird. \(U_{PEAK} \) und dU/dt beeinflussen die Lebensdauer des Motors, dies gilt besonders für Motoren ohne Phasentrennungspapier. Bei kurzem Motorkabel (wenige Meter) ist das Überschwingen \(U_{PEAK} \) gering, während dU/dt hoch ist. Wenn die Kabellänge größer geworden ist, vergrößert sich \(U_{PEAK} \) während dU/dt kleiner wird.

Schalten am Eingang
Die Wartezeit zwischen dem Schalten der Netzzspannung an den Klemmen 91, 92 und 93 muss mindestens 30 s betragen. Anlaufzeit ca. 2,3 s

Störgeräusche
Die Störgeräusche vom Frequenzumrichter stammen aus zwei Quellen:
1. DC-Zwischenkreisspulen,
2. Wechselrichter.

Nachfolgend sind typische, in einem Abstand von 1 m vom Gerät und bei Vollast gemessene Werte angegeben:
- FCD 303-335 3 x 400 V: 52 dB(A).

Leistungsreduzierung wegen erhöhter Umgebungstemperatur
Die Umgebungstemperatur (\(T_{AMB,MAX} \)) ist die maximal zulässige Temperatur. Der über 24 h gemessene Durchschnittswert (\(T_{AMB,AVG} \)) muss mindestens 5 °C darunter liegen. Wird der Frequenzumrichter bei Temperaturen über 40 °C betrieben, so ist eine Reduzierung des Dauerausgangsstroms notwendig.

Temperaturabhängige Taktfrequenz
Diese Funktion ermöglicht die höchstmögliche Taktfrequenz ohne thermische Überlastung des Frequenzwandlers. Die innere Temperatur stellt das Maß dafür dar, wie die Taktfrequenz auf der Last, der Umgebungstemperatur, der Netzzspannung und der Kabellänge basieren kann. Diese Funktion gewährleistet, daß der Frequenzwandler die Taktfrequenz automatisch zwischen \(f_{SW,min} \) und \(f_{SW,max} \) einstellt (Parameter 411), siehe Abbildung unten.

Luftdruckabhängige Leistungsreduzierung
Unterhalb einer Höhe von 1000 m über dem Meeresspiegel ist keine Leistungsreduzierung nötig. Oberhalb von 1000 m müssen die Umgebungstemperatur (\(T_{AMB} \)) oder der max. Ausgangsstrom
(I_{\text{MAX}}) entsprechend dem nachstehenden Diagramm reduziert werden:
1. Höhenabhängige Ausgangsstromreduzierung bei $T_{\text{AMB}} = \text{max.} \ 40^\circ\text{C}$.
2. Höhenabhängige Reduzierung von T_{AMB} bei 100% Ausgangsstrom.

![Diagramm](image-url)

Leistungsreduzierung beim Betrieb mit niedriger Drehzahl

Motorkabelänge
Der Frequenzumrichter wurde mit einem 10 m langen unabgeschirmten und einem 10 m langen abgeschirmten Kabel geprüft und ist für den Betrieb mit einem Motorkabel mit Nennquerschnitt ausgelegt.

Vibrationen und Erschütterungen
Der Frequenzumrichter wurde mit einem der folgenden Normen entsprechenden Verfahren geprüft:

Luftfeuchtigkeit
Der Frequenzumrichter wurde gemäß der Norm IEC 68-2-3, EN 50178 Pkt. 9.4.2.2/ DIN 40040 Klasse E bei 40 °C konstruiert. Zyklische Dampfhitze IEC 68-2-30. 100% Luftfeuchtigkeit mit Temperaturzyklus.

UL-Standard
Dieses Gerät ist UL-zugelassen.

Wirkungsgrad
Um den Energieverbrauch so gering wie möglich zu halten, ist es sehr wichtig, den Wirkungsgrad eines Systems zu optimieren. Der Wirkungsgrad sollte bei jedem einzelnen Systembauteil so hoch wie möglich sein.

Wirkungsgrad von Frequenzumrichtern (η_{INV})
Die Belastung des Frequenzumrichters hat nur eine geringe Auswirkung auf seinen Wirkungsgrad. Allgemein ist der Wirkungsgrad bei der Motornennfrequenz $f_{\text{M,N,nahezu gleich}},$ ganz gleich, ob der Motor 100% Nenndrehmoment liefert oder 75%, z.B. bei Teillastbetrieb.

Der Wirkungsgrad sinkt leicht, wenn die Taktfrequenz auf einen Wert über 4,5 kHz (Parameter 411 Taktfrequenz) eingestellt wird. Der Wirkungsgrad sinkt bei einer hohen Netzspannung (480 V) ebenfalls leicht ab.

Wirkungsgrad des Motors (η\text{MOTOR})
Der Wirkungsgrad des am Frequenzumrichter angeschlossenen Motors hängt von der Sinusform des Stroms ab. Allgemein ist der Wirkungsgrad ebenso gut wie beim Netzbetrieb. Der Wirkungsgrad des Motors hängt vom Motortyp ab.

Im Bereich von 75-100% des Nenndrehmoments ist der Wirkungsgrad des Motors praktisch konstant, unabhängig davon, ob er vom Frequenzumrichter gesteuert oder direkt am Netz betrieben wird.

Allgemein hat die Taktfrequenz keinen Einfluß auf den Wirkungsgrad bei kleinen Motoren.

Systemwirkungsgrad (η\text{SYSTEM})
Zur Ermittlung des System-Wirkungsgrads ist der Wirkungsgrad des Frequenzumrichters (η\text{INV}) mit dem Wirkungsgrad des Motors (η\text{MOTOR}) zu multiplizieren: η\text{SYSTEM} = η\text{INV} \times η\text{MOTOR}.

Das obige Diagramm zeigt den Systemwirkungsgrad bei verschiedenen Belastungen.

Störungen/Oberwellen in der Netzversorgung
Ein Frequenzumrichter nimmt vom Netz einen nicht-sinusförmigen Strom auf, der den Eingangsstrom I_{\text{RMS}} erhöht. Ein nicht-sinusförmiger Strom kann mit Hilfe einer Fourier-Analyse in Sinusströme mit verschiedener Frequenz zerlegt werden, d.h. in verschiedene Oberwellenströme I_N mit einer Grundfrequenz von 50 Hz:

<table>
<thead>
<tr>
<th>Oberwellenströme</th>
<th>I_1</th>
<th>I_5</th>
<th>I_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequenz [Hz]</td>
<td>50</td>
<td>250</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>0,9</td>
<td>0,4</td>
<td>0,3</td>
</tr>
</tbody>
</table>

Die Oberschwingungsströme haben keinen direkten Einfluss auf die Leistungsaufnahme, sie erhöhen jedoch die Wärmeüberlste in der Anlage (Transformator, Kabel). Bei Anlagen mit einem relativ hohen Prozentsatz an Gleichrichterbelastung ist es deshalb wichtig, die Oberwellen auf einem niedrigen Pegel zu halten, um eine Überlastung des Transformators und hohe Temperaturen in den Leitungen zu vermeiden. Einige der Oberwellen können eventuell Kommunikationsgeräte stören, die an denselben Transformator angeschlossen sind, oder Resonanzen in Verbindung mit Blindstromkompensationsanlagen verursachen.

Leistungsfaktor
Der Leistungsfaktor (Pf) ist das Verhältnis zwischen I_1 und I_{\text{RMS}}.
Leistungsfaktor für eine Drehstromversorgung:

\[
Pf = \frac{\sqrt{3} \times U \times I_1 \times \cos\phi}{\sqrt{3} \times U \times I_{\text{RMS}}}
\]

Der Leistungsfaktor gibt an, wie stark der Frequenzumrichter das Versorgungsnetz belastet. Je geringer der Leistungsfaktor, desto höher der Eingangsstrom I_{\text{RMS}} für die gleiche kW-Leistung. Ein hoher Leistungsfaktor zeigt zudem an, daß die verschiedenen harmonischen Ströme gering sind.

Emissionstestergebnisse nach generischen Normen und PDS-Produktstandard
Die folgenden Testergebnisse wurden mit einem Frequenzumrichter der FCD Serie 300 400 V mit abgeschirmtem Steuerkabel, Steuerbox mit Potentiometer, abgeschirmtem Motorkabel, abgeschirmtem Bremskabel sowie einer LCP-Bedieneinheit mit Kabel erzielt.

<table>
<thead>
<tr>
<th>VLT FCD 300 mit integriertem RFI-Filter der Klasse 1A</th>
<th>Produktnorm / Umfeld</th>
<th>Grundstandard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entspricht EN 50081-2/Industrie</td>
<td>EN55011, Gruppe 1, Klasse A</td>
<td></td>
</tr>
<tr>
<td>Entspricht EN 61800-3/Umgebung 1, eingeschränkte Verteilung</td>
<td>CISPR 11, Gruppe 1, Klasse A</td>
<td></td>
</tr>
<tr>
<td>Entspricht EN 61800-3/Umgebung 2, uneingeschränkte Verteilung</td>
<td>CISPR 11, Gruppe 2, Klasse A</td>
<td></td>
</tr>
</tbody>
</table>

FCD 303-315 10 m abgeschirmtes Motorkabel
FCD 322-335 5 m abgeschirmtes Motorkabel

1 Wenden Sie sich wegen des 10-m-Kabels bitte an Danfoss.
ACHTUNG!

Beim FCD 300 mit RFI-Filter der Klasse 1A handelt es sich um ein Produkt, das dem eingeschränkten Verkauf gemäß IEC61800-3 unterliegt. In einer häuslichen Umgebung kann dieses Produkt Funkstörungen verursachen. In diesem Fall muss der Benutzer entsprechende Maßnahmen treffen.

Immunitätstestergebnisse gemäß generischen Standards, PDS-Produktnormen und Grundstandards

<table>
<thead>
<tr>
<th>FCD 300</th>
<th>Produktnorm / Umfeld</th>
<th>Testergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entspricht</td>
<td>EN 61000-6-2 / Industrie</td>
<td>Siehe Testergebnisse für Grundstandards.</td>
</tr>
<tr>
<td>Entspricht</td>
<td>EN 61800-3/ Umgebung 2</td>
<td>Siehe Testergebnisse für Grundstandards.</td>
</tr>
</tbody>
</table>

Benutzte EMC-Normen

Emission

- **EN 50081-2**: Generischer Emissionsstandard Teil 2: Industrienumfeld.
- **EN 55011**: Industrie-, Forschungs- und medizinische (ISM) Hochfrequenzgeräte. Grenzwerte und Messmethoden.

Immunität

- **IEC/EN 61000-6-2**: Generischer Immunitätsstandard Teil 2: Industrienumfeld.

Grundstandards

- **IEC/EN 61000-4-2**: Immunitätstest für elektrostatische Entladung.
- **IEC/EN 61000-4-3**: Immunitätstest für abgestrahlte, hochfrequente, elektromagnetische Feldern.

IEC/EN 61000-4-6: Immunität für erzeugte Störungen, bedingt durch hochfrequente Felder.

IEC/EN 61000-4-11: Immunitätstest für Spannungssenken, kurze Unterbrechungen und Spannungsvariationen.

VDE 0160 (1990): Test mit Klasse W2 Hochenergietestpuls.

Simulation von Hochenergiespannungsstörungen verursacht durch durchgebrannte Hauptsicherungen in den Stromleitungen.
Grundstandard

<table>
<thead>
<tr>
<th></th>
<th>Burst 61000-4-4</th>
<th>Überspannung 61000-4-5</th>
<th>ESD 61000-4-2</th>
<th>Bestrahlt 61000-4-3</th>
<th>Stromversorgungsstörung VDE 0160</th>
<th>RF cm Spannung 61000-4-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptance criterion</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Port-Anschluss</td>
<td>CM</td>
<td>DM / CM</td>
<td>Field</td>
<td>DM</td>
<td>CM</td>
<td>OK</td>
</tr>
<tr>
<td>Netz-</td>
<td>OK / OK</td>
<td></td>
<td>Field</td>
<td>DM</td>
<td>CM</td>
<td>OK</td>
</tr>
<tr>
<td>Motor</td>
<td>OK</td>
<td></td>
<td></td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>Steuerleitungen</td>
<td>OK</td>
<td>- / OK¹</td>
<td></td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>Relay</td>
<td>OK</td>
<td>- / OK</td>
<td></td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>Profibus</td>
<td>OK</td>
<td>- / OK¹</td>
<td></td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>Signalschnittstelle</td>
<td>OK</td>
<td></td>
<td></td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td><3 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schutzart</td>
<td>OK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standardbus</td>
<td>OK</td>
<td>- / OK¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Basic specifications

<table>
<thead>
<tr>
<th></th>
<th>Netz- 2 kV / DCN 1 kV / 2 kV</th>
<th>Motor 10 Vrms</th>
<th>Steuerleitungen 2 kV / CCC - / 4 kV, 2 Ω¹</th>
<th>Relay 10 Vrms</th>
<th>Profibus 10 Vrms</th>
<th>Signalschnittstelle 2 kV / CCC</th>
<th>8 kV AD 6 kV DC</th>
<th>10 V/m</th>
<th>Standardbus 2 kV / CCC - / 4 kV, 2 Ω¹</th>
<th>10 Vrms</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM: Differentialmodus</td>
<td></td>
<td></td>
<td>DM: Direct coupling network (5 kHz)</td>
<td></td>
<td></td>
<td>1. Einschuss auf Kabelabschirmung.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM: Gemeinsamer Modus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. Electromagnetic clamp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCC: Capacitive clamp coupling (5 kHz)</td>
<td></td>
</tr>
</tbody>
</table>

DM: Differentialmodus
CM: Gemeinsamer Modus
CCC: Capacitive clamp coupling (5 kHz)
Aggressive Umgebungen

Da der FCD 300 bis IP66 gekapselt ist, ist er für den Einsatz in mittelmäßig aggresiver Umgebung gut gerüstet.

Reinigung

Fehlerdiagnose

Der tatsächliche Status kann auf der Außenseite der FCD-Produkte abgelesen werden. Die Bedeutung der fünf LEDs, die den Status des Geräts anzeigen, können Sie der Tabelle entnehmen.

Weitere detaillierte Statusinformationen können Sie mit einer Bedieneinheit (LCP2 - siehe Foto) erhalten. Dieses kann auf der Außenseite angeschlossen werden (ohne das Gehäuse zu öffnen), wenn der LCP2-Stecker wie auf der Abbildung dargestellt, installiert ist. Das LCP2 ist eine leicht zu bedienende benutzerfreundliche Schnittstelle, um auf alle Parameter zugreifen und sie verändern zu können. Es zeigt die Parameter in sechs verschiedenen Sprachen an.

Der FCD 300 enthält ein Protokoll mit allen relevanten Informationen und Störungen. Informationen über die letzten 10 Störungen werden gespeichert und mit drei verschiedenen Parametern gekennzeichnet, um bei der Fehlerdiagnose zu helfen.

Parameter 616 speichert die Zeit der Störung, wie von der integrierten Uhr gemessen.

Parameter 617 enthält einen Störungscode, der die Art der Störung definiert.

Parameter 618 speichert einen für diesen Fall relevanten Messwert. Üblicherweise die unmittelbar vor der Störung gemessene Zwischenkreisspannung oder den Ausgangsstrom.
LED Fehlerdiagnose am dezentralen FCD 300

<table>
<thead>
<tr>
<th>Nein</th>
<th>Name</th>
<th>Farbe</th>
<th>OK-Status</th>
<th>Alternativen</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Status</td>
<td>Gelb</td>
<td>Aus</td>
<td></td>
<td>Status des FCD ist OK</td>
</tr>
<tr>
<td>2</td>
<td>Bus</td>
<td>Grün</td>
<td>An</td>
<td>Langsames Blinken</td>
<td>OK-Status für den genutzten Feldbus (Nicht relevant für Geräte ohne Feldbus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Schnelles Blinken</td>
<td>Lokaler Betrieb oder lokaler Halt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Schnittstelle funktioniert, aber keine Verbindung zum Master (Siehe Feldbus-Handbuch für spezielle Informationen) (Nicht relevant für Geräte ohne Feldbus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aus</td>
<td>Status für Feldbus nicht OK (Nicht relevant für Geräte ohne Feldbus)</td>
</tr>
<tr>
<td>3</td>
<td>Alarm</td>
<td>Rot</td>
<td>Aus</td>
<td></td>
<td>Kein Alarm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Blinken</td>
<td>Blinken wenn ausgelöst / nicht ausgelöst</td>
</tr>
<tr>
<td>4</td>
<td>Warnung</td>
<td>Gelb</td>
<td>Aus</td>
<td></td>
<td>Keine Warnung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Blinken</td>
<td>Blinken bei Warnung</td>
</tr>
<tr>
<td>5</td>
<td>An</td>
<td>Grün</td>
<td>An</td>
<td></td>
<td>Stromnetz oder 24 V-Gleichstrom ist angeschlossen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aus</td>
<td>Stromnetz oder 24 V-Gleichstrom ist nicht angeschlossen</td>
</tr>
</tbody>
</table>
Warn- und Alarmmeldungen

1. Mit der Steuertaste [STOP/RESET].
2. Über einen digitalen Eingang.
3. Über die serielle Schnittstelle.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Beschreibung</th>
<th>Warnung</th>
<th>Alarm</th>
<th>Abschaltungsblock.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Sollwertfehler (SOLLWERTFEHLER)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>Phasenfehler (NETZPHASENFEHLER)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>Spannung oberer Grenzwert (DC SPANNUNG HOCH)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Spannung unterer Grenzwert (DC SPANNUNG NIEDRIG)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Überspannung (DC ÜBERSPANNUNG)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>8</td>
<td>Unterspannung (DC UNTERSANNUNG)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>Wechselrichter überlastet (WECHSELRICHTER ZEIT)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Motor überlastet (MOTOR, ZEIT)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Motorthermistor (MOTORTHERMISTOR)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Stromgrenze (STROMGRENZE)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Überstrom (ÜBERSTROM)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Erdungsfehler (ERDUNGSFEHLER)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Schaltmodusfehler (SCHALTMODUSFEHLER)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Kurzschluß (KURZ SCHLUSS)</td>
<td>KURZSCHLUSS</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>17</td>
<td>Standard-Bus-Timeout (STD BUSTIMEOUT)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>HPF-Bus-Timeout (HPF BUSBUSTIMEOUT)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Außerhalb Frequenzbereich (AUSSERH.D.BEREICH)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>HPF-B-Kommunikationsfehler (PROFIBUS OPT. FEHLER)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Stromsp.fehler (STROMSP.FEHLER)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Übertemperatur (UEBERTEMP)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>37-45</td>
<td>Interner Fehler (INTERNER FEHLER)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>AMT nicht möglich.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>AMT Fehler Typenschilddaten (AMT TYP,DATENFEHL)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>AMT falscher Motor (AMT FALSch. MOT.)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>AMT Timeout (AMT TIMEOUT)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>AMT Warnung während AMT (AMT WARN. BEI AMT)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Blockiert (BLOCKIERT)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LED-Anzeige

<table>
<thead>
<tr>
<th>Warnung</th>
<th>gelb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm</td>
<td>rot</td>
</tr>
<tr>
<td>Abschaltung blockiert</td>
<td>gelb und rot</td>
</tr>
</tbody>
</table>
WARNUNG/ALARM 2: Sollwertfehler
Das Spannungs- bzw. Stromsignal an Eingang 53 bzw. 60 liegt unter 50% des mit Parameter 309 bzw. 315 vorgegebenen Einstellwerts Eingang, Skal-Min.

WARNUNG/ALARM 4: Netzphasenfehler

WARNUNG 5: Spannungswarnung hoch
Ist die Zwischenkreisspannung (UDC) höher als Spannungswarnung hoch, so gibt der Frequenzumrichter eine Warnung, und der Motor läuft unverändert weiter. Bleibt UDC über dem Grenzwert für Spannungswarnung, so schaltet der Wechselrichter nach einem festen Zeitraum ab. Die Zeit ist geräteabhängig und auf 5-10 s eingestellt. Hinweis: Der Frequenzumrichter schaltet mit einem Alarm 7 (Überspannung) ab. Eine Spannungswarnung kann auch auftreten, wenn die Motorfrequenz aufgrund einer zu kurzen Rampenzeit zu schnell reduziert wird.

WARNUNG 6: Spannungswarnung niedrig

WARNUNG/ALARM 7: Überspannung

WARNUNG/ALARM 8: Unterspannung

WARNUNG/ALARM 9: Wechselrichter überlastet
Der elektronische thermische Wechselrichterschutz zeigt an, daß der Frequenzumrichter aufgrund von Überlastung (Ausgangstrom zu langsam) abschalten wird. Der Zähler des elektronischen thermischen Wechselrichterschutzes gibt bei 98% eine Warnung und schaltet bei 100% mit einem Alarm ab. Der Frequenzumrichter kann erst dann zurückgesetzt werden, wenn der Zählerwert unter 90% fällt. Der Fehler liegt in einer zu langen Überlastung des Frequenzumrichters.

WARNUNG/ALARM 10: Motor überlastet
Der Motor ist gemäß der elektronischen thermischen Wechselrichterkonze zu heiß. In Parameter 128 kann gewählt werden, ob der Frequenzumrichter eine Warnung oder einen Alarm ausgeben soll, wenn der Zähler 100% erreicht. Der Fehler besteht darin, daß der Motor zu lange Zeit mit mehr als 100% belastet worden ist. Prüfen, ob die Motorparameter 102-106 korrekt eingestellt sind.

WARNUNG/ALARM 11: Motorthermistor
Der Motorthermistor ist zu warm, oder der Thermistor/Thermistoranschuß ist gelöst. In Parameter 128 Thermischer Motorschutz kann eingestellt werden, ob der Frequenzumrichter eine Warnung oder einen Alarm ausgeben soll. Prüfen Sie, ob der PTC-Thermistor ordnungsgemäß zwischen Klemme 31a und 31b angeschlossen ist.
WARNUNG/ALARM 12: Stromgrenze
Der Ausgangsstrom ist größer als der Wert in Parameter 221 StromgrenzeLM, und der Frequenzumrichter schaltet nach der in Parameter 409 Abschaltverzögerung eingestellten Zeit ab.

WARNUNG/ALARM 13: Überstrom
Die Spitzenstromgrenze des Wechselrichters (ca. 200% des Ausgangsnennstroms) ist überschritten. Die Warnung dauert ca. 1-2 s, monach der Frequenzumrichter abschaltet und einen Alarm gibt. Frequenzumrichter ausschalten und prüfen, ob sich die Motorwelle drehen läßt und die Motorgöße zum Frequenzumrichter paßt.

ALARM 14: Erdschluß

ALARM 15: Schaltmodusfehler
Fehler im Schaltnetzteil (interne Stromversorgung). Bitte wenden Sie sich an Ihre Danfoss-Vertretung.

ALARM 16: Kurzschluß

WARNUNG/ALARM 17: Standard-Bus-Timeout

WARNUNG/ALARM 18: HPFT-Bus-Timeout

WARNUNG 33: Regelabweichung Frequenzbereich
Diese Warnung ist aktiv, wenn die Ausgangsfrequenz den Wert in Ausgangsfrequenzgrenze niedrig (Parameter 201) bzw. Ausgangsfrequenzgrenze hoch (Parameter 202) erreicht hat. Ist der Frequenzumrichter auf Prozeßregelung mit Istwertrückführung (Parameter 100) eingestellt, so bleibt die Warnung auf dem Display aktiv. Ist der Frequenzumrichter in einem anderen Modus als ProzeßRegelung mit Istwertrückführung, so wird Bit 008000 Außerhalb des Frequenzbereichs in Warnwort 2 aktiv, es ist aber keine Warnung auf dem Display aktiv.

WARNUNG/ALARM 34: HPFB Kommunikationsfehler
Der Kommunikationsfehler tritt nur in Profibus-Versionen auf.

ALARM 35: Stromsp. Fehler
Dieser Alarm tritt auf, wenn der Frequenzumrichter zu oft innerhalb von 1 min an das Netz angeschlossen wurde.

WARNUNG/ALARM 36: Kühlkörper
Steigt die Innentemperatur über 75 - 85 °C (geräteabhängig), so gibt der Frequenzumrichter eine Warnung, und der Motor läuft unverändert weiter. Steigt die Temperatur weiter, so wird die Taktfrequenz automatisch reduziert. Siehe Temperaturabhängige Taktfrequenz. Steigt die Innentemperatur des Kühlkörpers über 92 - 100 °C (geräteabhängig), so schaltet der Frequenzumrichter ab. Der Temperaturfehler kann erst dann zurückgesetzt werden, wenn die interne Kühlkörpertemperatur unter 70 °C abgesunken ist. Die Toleranz beträgt ± 5 °C. Die Erhitzung kann folgende Ursachen haben:
- Zu hohe Umgebungstemperatur.
- Zu lange Motorkabel.
- Zu hohe Netzspannung.

ALARM 37-45: Interner Fehler
Die internen Fehler 0–8 werden mittels LED-Alarm, Warnung, Bus und Zustand als blinkender Code angezeigt.

Alarm 37, interner Fehler Nr. 0: Kommunikationsfehler zwischen Steuerkarte und BMC2.

Alarm 38, interner Fehler Nr. 1: Flash-EEPROM-Fehler auf Steuerkarte.

Alarm 39, interner Fehler Nr. 2: RAM-Fehler auf Steuerkarte.

Alarm 40, interner Fehler Nr. 3: Kalibrationskonstante in EEPROM.

Alarm 41, interner Fehler Nr. 4: Datenwerte in EEPROM.
Dezentrale Lösungen - Projektierungshandbuch

Alarm 42, interner Fehler Nr. 5: Fehler in Motorparameter-Datenbank.

Alarm 43, interner Fehler Nr. 6: Allgemeiner Steuerkartenfehler.

Alarm 44, interner Fehler Nr. 7: Minimale Softwareversion der Steuerkarte oder BMC2

Alarm 45, interner Fehler Nr. 8: I/O-Fehler (digitaler Ein-/Ausgang, Relais oder analoger Ein-/Ausgang)

ACHTUNG!

ALARM 50: AMT nicht möglich.
Es kann eine von drei Möglichkeiten vorliegen:
- Der ermittelte Rs-Wert liegt nicht im zulässigen Grenzwertbereich.
- Der Motorstrom in mindestens einer der Motorphasen ist zu gering.
- Der benutzte Motor ist wahrscheinlich für die Durchführung der AMT-Berechnungen zu klein.

ALARM 51: AMT-Fehler Typenschilddaten
Es besteht eine Inkonsistenz zwischen den festgestellten Motordaten. Motordaten für den relevanten Parametersatz prüfen.

ALARM 54: AMT falscher Motor
AMT kann mit dem benutzten Motor nicht durchgeführt werden.

ALARM 55: AMT Timeout
Die Berechnungen dauern zu lange, möglicherweise aufgrund von Störungen in den Motorkabeln.

ALARM 56: AMT Warnung während AMT
Eine Frequenzumrichter-Warnung erfolgt während der AMT.

WARNUNG 99: Gesperrt
Siehe Parameter 18.

Warnwörter, erweiterte Zustandswörter und Alarmwörter

<table>
<thead>
<tr>
<th>Bit (Hex)</th>
<th>Warnwörter</th>
</tr>
</thead>
<tbody>
<tr>
<td>000008</td>
<td>HPFT-Bus-Timeout</td>
</tr>
<tr>
<td>000010</td>
<td>Standard-Bus-Timeout</td>
</tr>
<tr>
<td>000040</td>
<td>Stromgrenze</td>
</tr>
<tr>
<td>000080</td>
<td>Motorthermistor</td>
</tr>
<tr>
<td>000100</td>
<td>Motor überlastet</td>
</tr>
<tr>
<td>000200</td>
<td>Wechselrichter überlastet</td>
</tr>
<tr>
<td>000400</td>
<td>Unterspannung</td>
</tr>
<tr>
<td>000800</td>
<td>Überspannung</td>
</tr>
<tr>
<td>001000</td>
<td>Spannungswarnung niedrig</td>
</tr>
<tr>
<td>002000</td>
<td>Spannungswarnung hoch</td>
</tr>
<tr>
<td>004000</td>
<td>Phasenfehler</td>
</tr>
<tr>
<td>010000</td>
<td>Sollwertefer</td>
</tr>
<tr>
<td>400000</td>
<td>Regelabweichung Frequenzbereich</td>
</tr>
<tr>
<td>800000</td>
<td>Profibus-Kommunikationsfehler</td>
</tr>
<tr>
<td>40000000</td>
<td>Schaltmodusfehler</td>
</tr>
<tr>
<td>80000000</td>
<td>Kühlkörper Übertemperatur</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit (Hex)</th>
<th>Erweiterte Statuswörter</th>
</tr>
</thead>
<tbody>
<tr>
<td>000001</td>
<td>Rampenbetrieb</td>
</tr>
<tr>
<td>000002</td>
<td>Optimierung läuft</td>
</tr>
<tr>
<td>000004</td>
<td>Start vorw./rückwärts</td>
</tr>
<tr>
<td>000008</td>
<td>Frequenzkorrektur ab</td>
</tr>
<tr>
<td>000010</td>
<td>Frequenzkorrektur auf</td>
</tr>
<tr>
<td>000020</td>
<td>Istwert hoch</td>
</tr>
<tr>
<td>000040</td>
<td>Istwert niedrig</td>
</tr>
<tr>
<td>000080</td>
<td>Strom hoch</td>
</tr>
<tr>
<td>000100</td>
<td>Strom niedrig</td>
</tr>
<tr>
<td>000200</td>
<td>Frequenz hoch</td>
</tr>
<tr>
<td>000400</td>
<td>Frequenz niedrig</td>
</tr>
<tr>
<td>002000</td>
<td>Bremsung</td>
</tr>
<tr>
<td>008000</td>
<td>Regelabweichung Frequenzbereich</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit (Hex)</th>
<th>Alarmwörter</th>
</tr>
</thead>
<tbody>
<tr>
<td>000002</td>
<td>Abschaltung</td>
</tr>
<tr>
<td>000004</td>
<td>Optimierung nicht ok</td>
</tr>
<tr>
<td>000040</td>
<td>HPFP-Bus-Timeout</td>
</tr>
<tr>
<td>000080</td>
<td>Standard-Bus-Timeout</td>
</tr>
<tr>
<td>000100</td>
<td>Kurzschluß</td>
</tr>
<tr>
<td>000200</td>
<td>Schaltmodusfehler</td>
</tr>
<tr>
<td>000400</td>
<td>Erdungsfehler</td>
</tr>
<tr>
<td>000800</td>
<td>Überstrom</td>
</tr>
<tr>
<td>002000</td>
<td>Motorthermistor</td>
</tr>
<tr>
<td>004000</td>
<td>Motor überlastet</td>
</tr>
<tr>
<td>008000</td>
<td>Wechselrichter überlastet</td>
</tr>
<tr>
<td>010000</td>
<td>Unterspannung</td>
</tr>
<tr>
<td>020000</td>
<td>Überspannung</td>
</tr>
<tr>
<td>040000</td>
<td>Phasenfehler</td>
</tr>
<tr>
<td>080000</td>
<td>Sollwertefer</td>
</tr>
<tr>
<td>100000</td>
<td>Kühlkörper Übertemperatur</td>
</tr>
<tr>
<td>200000</td>
<td>Profibus-Kommunikationsfehler</td>
</tr>
<tr>
<td>800000</td>
<td>Stromsp. Fehler</td>
</tr>
<tr>
<td>10000000</td>
<td>Interner Fehler</td>
</tr>
</tbody>
</table>
Ersatzteile

FCD 303 178B1484
FCD 307 178B1485
FCD 315 178B1486
FCD 330 178B2301

Profibus, 12-MB-Steuerkarte 175N2338
DeviceNet-Steuerkarte 175N2324
AS-interface-Steuerkarte 175N2325

Für die Wartung des Einbaugehäuses ist unter der Bestellnummer 175N2121 ein Kit mit verschiedenen Bauteilen, Steckern und Klemmen-Leiterplatte erhältlich.

Wartungskit 175N2404

Normalerweise kann der FCD 300 nicht mit geöffnetem Deckel betrieben werden. Mit dem Wartungskit können Elektronikteil und Einbaugehäuse verbunden werden, ohne die Teile zusammenzustecken. Dies ist z. B. sinnvoll, wenn im Rahmen der Wartung Messungen an den Eingangs-/Ausgangsklemmen vorgenommen werden müssen.
Allgemeine technische Daten

Netzversorgung (L1, L2, L3):
Versorgungsspannung FCD 305-335 380-480 V ... 3 x 380/400/415/440/480 V ±10 %
Versorgungsfrequenz ... 50/60 Hz
Max. Ungleichgewicht der Versorgungsspannung ±2,0% der Versorgungsnennspannung
Leistungsfaktor (400 V) / cos. φ₁ ... 0,90 / 1,0 bei Nennlast
Schaltungen am Versorgungseingang L1, L2, L3 .. 2x/min.
Sicherungen für max. Kurzschlußstrom ... 100.000 A
Abschalter für max. Kurzschlußstrom ... 10.000 A
Siehe "Besondere Bedingungen" im Projektierungshandbuch.

Ausgangsdaten (U, V, W):
Ausgangsspannung ... 0 - 100% der Versorgungsspannung
Ausgangsfrequenz .. 0,2 - 132 Hz, 1 - 1000 Hz
Motornennspannung, 380-480-V-Geräte ... 380/400/415/440/460/480 V
Motornennfrequenz, Motorbemessungsfrequenz ... 50/60 Hz
Schalten am Ausgang .. Unbegrenzt
Rampenzeiten ... 0,02 -3600 s

Drehmomentkennlinien:
Anlaufmoment (Parameter 101 Drehmomentkennlinie = Konstantes Moment) 160% für 1 min. *
Anlaufmoment (Parameter 101 Drehmomentkennlinie = Quadratisches Moment) 160% für 1 min. *
Anlaufmoment (Parameter 119 Höhes Startmoment) .. 180% für 0,5 s. *
Übermoment (Parameter 101 Drehmomentkennlinie = Konstantes Moment) 160% *
Übermoment (Parameter 101 Drehmomentkennlinie = Quadratisches Moment) 160% *
*Prozentwert auf Nennstrom des Frequenzumrichters bezogen.

Steuerkarte, digitale Eingänge:
Anzahl programmierbarer digitaler Eingänge .. 5
Klemmenummer .. 18, 19, 27, 29, 33
Spannungsniveau .. 0 - 24 V DC (PNP positive Logik)
Spannungsniveau, logisch '0' ... < 5 V DC
Spannungsniveau, logisch '1' ... > 10 V DC
Max. Spannung am Eingang .. 28 V DC
Eingangswiderstand, R₁ (Klemmen 18, 19, 27) ... ca. 4 kΩ
Eingangswiderstand, R₁ (Klemme 29, 33) ... ca. 2 kΩ

Alle digitalen Eingänge sind galvanisch von der Versorgungsspannung (PELV) und anderen Hochspannungsklemmen isoliert und können durch den Öffnungsschalter S100 funktionell von anderen Steuerklemmen getrennt werden. Siehe Abschnitt Galvanische Trennung.
Steuerkarte, analoge Eingänge:

Anzahl analoger Spannungseingänge .. 1 pcs.
Klemmennummer ... 53
Spannungsniveau ... ± 0 - 10 V DC (skalierbar)
Eingangswiderstand, R_i .. ca. 10 kΩ
Max. Spannung .. 20 V
Analoger Stromeingang ... 1 pcs.
Klemmennummer ... 60
Strombereich .. 0/4 - 20 mA (skalierbar)
Eingangswiderstand, R_i .. ca. 300 Ω
Max. Strom .. 30 mA
Auflösung für analoge Eingänge ... 10 Bit
Genauigkeit der analogen Eingänge ... max. Fehler 1% der Gesamtskala
Abfragezeit ... 13,3 ms

Die analogen Eingänge sind galvanisch von der Versorgungsspannung (PELV) und anderen
Hochspannungsklemmen getrennt. Siehe Abschnitt Galvanische Trennung.

Steuerkarte, Pulseeingang:

Anzahl programmierbarer Pulseingänge .. 2
Klemmennummer ... 29, 33
Max. Frequenz an Klemme 29/33 ... 110 kHz (Gegentakt)
Max. Frequenz an Klemme 29/33 ... 5 kHz (offener Kollektor)
Min. Frequenz an Klemme 33 ... 4 Hz
Min. Frequenz an Klemme 29 ... 30 Hz
Spannungsniveau ... 0 - 24 V DC (PNP positive Logik)
Spannungsniveau, logisch '0' ... < 5 V DC
Spannungsniveau, logisch '1' ... > 10 V DC
Max. Spannung am Eingang .. 28 V DC
Eingangswiderstand, R_i .. ca. 2 kΩ
Abfragezeit ... 13,3 ms
Auflösung .. 10 Bit
Genauigkeit (100 Hz - 1 kHz) Klemme 33 ... max. Fehler: 0,5% der Gesamtskala
Genauigkeit (1 kHz - 67,5 kHz) Klemme 33 ... max. Fehler: 0,1% der Gesamtskala

Der Pulsausgang ist galvanisch von der Versorgungsspannung (PELV) und anderen
Hochspannungsklemmen getrennt. Siehe Abschnitt Galvanische Trennung.

Steuerkarte, Digital/Frequenzausgang:

Anzahl programmbarer Digital/Frequenzausgänge ... 1
Klemmennummer .. 46
Spannungsniveau am Digital/Frequenzausgang .. 0 - 24 V DC (PNP, offener Kollektor)
Max. Ausgangsstrom am Digital/Frequenzausgang .. 25 mA
Max. Last am Digital/Frequenzausgang .. 1 kΩ
Max. Kapazität am Frequenzausgang .. 10 nF
Min. Ausgangsfrequenz am Frequenzausgang .. 16 Hz
Max. Ausgangsfrequenz am Frequenzausgang ... 10 kHz
Genauigkeit am Frequenzausgang .. max. Fehler: 0,2% der Gesamtskala
Auflösung am Frequenzausgang .. 10 Bit

Der digitale Ausgang ist galvanisch von der Versorgungsspannung (PELV) und anderen Hochspannungsklemmen getrennt. Siehe Abschnitt Galvanische Trennung.

Steuerkarte, Analogausgang:

Anzahl programmbarer Analogausgänge .. 1
Klemmenummer .. 42

MG.90.F3.03 - VLT ist ein eingetragenes Warenzeichen vom Danfoss
Dezentrale Lösungen - Projektierungshandbuch

Strombereich am Analogausgang: 0/4 - 20 mA
Max. Last gegen Masse am Analogausgang: 500 Ω
Genauigkeit am Analogausgang: max. Fehler: 1,5 % der Gesamtskala
Auflösung am Analogausgang: 10 Bit
Der Analogausgang ist galvanisch von der Versorgungsspannung (PELV) und anderen Hochspannungsklemmen getrennt. Siehe Abschnitt Galvanische Trennung.

Steuerkarte, 24 V DC-Ausgang:
- Klemmennummer: 12
- Max. vom Netz gelieferte Last / 24 V extern: 240/65 mA

Steuerkarte, 10 V DC-Ausgang:
- Klemmennummer: 50
- Ausgangsspannung: 10,5 V ±0,5 V
- Max. Last: 15 mA
Die 10 V DC-Versorgung ist galvanisch von der Versorgungsspannung (PELV) und anderen Hochspannungsklemmen getrennt. Siehe Abschnitt Galvanische Trennung.

Steuerkarte, RS 485 seriele Schnittstelle:
- Klemmennummern: 68 (TX+, RX+), 69 (TX-, RX-)
- Klemme 67: +5 V
- Klemme 70: Masse für Klemmen 67, 68 und 69
Vollständige galvanische Isolierung. Siehe Abschnitt Galvanische Trennung.

Relaisausgänge:
- Anzahl programmierbarer Relaisausgänge: 1
- Klemmennummer, Steuerkarte (ohmsche und induktive Last): 1-3 (öffnen), 1-2 (schließen)
- Max. Klemmenleistung (AC-1) an 1-3, 1-2, Steuerkarte: 250 V AC, 2 A, 500 VA
- Max. Klemmenleistung (DC-1 (IEC 947)) an 1-3, 1-2, Steuerkarte: 25 V DC, 2 A / 50 V DC, 1 A, 50 W
- Min. Klemmenleistung (AC/DC) an 1-3, 1-2, Steuerkarte: 24 V DC 10 mA, 24 V AC 100 mA
Der Relaiskontakt ist galvanisch durch verstärkte Isolierung vom Rest der Schaltungen getrennt. Siehe Abschnitt Galvanische Trennung.

Hinweis: Nennwerte für ohmsche Last - cosphi >0,8 für bis zu 300.000 Schaltvorgänge.
Induktive Lasten mit cosphi 0,25 ca. 50 % Last oder 50 % Lebensdauer.

Externe 24 V-Gleichstromversorgung:
- Klemmen-Nr.: 35, 36
- Spannungsbereich: 21-28 V (max. 37 V DC für 10 s)
- Max. Brummspannung: 2 V DC
- Stromverbrauch mit/ohne Netzanschluss: <1 W/5-12 W
Zuverlässige galvanische Isolierung: Vollständige galvanische Isolierung, wenn die externe 24 V DC-Versorgung vom Typ PELV ist.

Sensorversorgung (T63, T73):
- Klemmen-Nr.: 201, 202, 203, 204
Kabellängen und -querschnitte:

Max. Motorkabellänge, abgeschirmtes Kabel ... 10 m
Max. Motorkabel Länge, nicht abgeschirmtes Kabel ... 10 m
Max. Querschnitt zum Motor, siehe nächster Abschnitt.
Max. Querschnitt zu Steuerdrähten, starres Kabel ... 4,0 mm²/10 AWG
Max. Querschnitt zu Steuerkabeln, flexibles Kabel ... 2,5 mm²/12 AWG
Max. Querschnitt zu Steuerkabeln, Kabel mit Pressklemmen .. 2,5 mm²/12 AWG
Max. Querschnitt der Zusatzklemmen für starre 24 V-Verlängerungskabel der Ausführung T73 ... 6,0 mm²/9 AWG
Max. Querschnitt der Zusatzklemmen für flexible 24 V-Verlängerungskabel der Ausführung T73 ... 4 mm²/10 AWG
Max. Querschnitt der Zusatzklemmen für 24 V-Verlängerungskabel der Ausführung T73 mit
Pressklemmen .. 4 mm²/10 AWG
Max. Querschnitt PE ... 10 mm²/7 AWG
Max. Querschnitt externes PE für Ausführung T73 ... 16 mm²/5 AWG

Wenn UL/cUL eingehalten werden sollen, müssen Kabel der Temperaturklasse 60/75 °C verwendet werden. Nur Kupferkabel verwenden.

Für die Übereinstimmung mit EN 55011 1A muss das Motorkabel abgeschirmt sein. Siehe EMV-Emission.

Steuerungseigenschaften:

Frequenzbereich .. 0,2 - 132 Hz, 1 - 1000 Hz
Auflösung der Ausgangsfrequenz .. ≤ ±0,5 ms
Wiedh.-genaugik. f. Präziser Start/Stopp (Klemmen 18, 19) ... ≤ ±0,5 ms
System-Reaktionszeit (Klemmen 18, 19, 27, 29, 33) .. ≤ 26,6 ms
Drehzahlregelbereich (ohne Rückführung) ... 1: 15 der Synchrongeschwindigkeit
Drehzahlregelbereich (ohne Rückführung) <1,1 kW ... ca. 1: 10 der Synchrongeschwindigkeit (motorabhängig)
Drehzahlsteuerbereich (mit Rückführung) ... 1: 120 der Synchrongeschwindigkeit
Drehzahlgenauigkeit (ohne Rückführung) <1,1 kW .. 150 - 3600 UPM: Max. Fehler von ±23 UPM
Drehzahlgenauigkeit (ohne Rückführung) >0,75 kW .. 90 - 3600 UPM: Max. Fehler von ±23 UPM
Drehzahlgenauigkeit (mit Rückführung) ... 30 - 3600 UPM: max. Fehler von ±7,5 UPM

Alle Angaben basieren auf einem vierpoligen Asynchronmotor.

Umbgebung:

Schutzart .. IP 66, TYP 4x (Innengerät)
Schutzart T73 Version .. IP 65, TYP 12
Schwingungstest .. 1,0 g
Max. relative Feuchte .. 95% siehe Luftfeuchtigkeit im Projektierungshandbuch
Umgebungstemperatur (FCD 335 max. 35 °C) ... Max. 40 °C (24-Std.-Durchschnitt max. 35 °C)
Leistungsreduzierung für Umgebungstemperatur, siehe Besondere Bedingungen im Projektierungshandbuch
Min. Umgebungstemperatur bei Vollast ... 0 °C
Min. Umgebungstemperatur bei reduzierter Leistung .. -10 °C
Temperatur bei Lagerung/Transport ... -25 - +65/70 °C
Max. Höhe u. d. Meeresspiegel ... 1.000 m
Leistungsreduzierung bei hohem Luftdruck, siehe Besondere Bedingungen in Projektierungshandbuch
Angewandte EMV-Normen, Emission .. EN 50081-1-2, EN 61800-3, EN 55011
Angewandte EMV-Normen, Immunität ... EN 61000-6-2, EN 61000-4-2, EN 61000-4-3, EN 61000-4-4, EN 61000-4-5, EN 61000-4-6
Siehe Besondere Bedingungen im Projektierungshandbuch.

Sicherungsvorrichtungen:

- Elektronischer thermischer Motorschutz gegen Überlastung.
- Die Temperaturüberwachung des Kühlkörpers gewährleistet ein Abschalten des Frequenzumrichters bei einer Temperatur von 100 °C. Eine Überlasttemperatur kann erst zurückgesetzt werden, wenn die Kühlkörper-temperatur unter 70 °C sinkt.
- Der Frequenzumrichter ist gegen Kurzschlüsse an den Motorklemmen U, V, W geschützt.
• Bei einer fehlenden Netzphase schaltet der Frequenzumrichter ab.
• Die Überwachung der Zwischenkreisspannung gewährleistet, daß der Frequenzumrichter abschaltet, wenn die Zwischenkreisspannung zu niedrig oder zu hoch ist.
• Der Frequenzumrichter ist gegen Erdschluß an den Motorklemmen U, V, W geschützt.
Technische Daten, Netzversorgung 3 x 380-480 V

<table>
<thead>
<tr>
<th>Features</th>
<th>Typ 303</th>
<th>305</th>
<th>307</th>
<th>311</th>
<th>315</th>
<th>322</th>
<th>330</th>
<th>335**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausgangsstrom (3 x 380-480 V)</td>
<td>I_{INV} [A]</td>
<td>1.4</td>
<td>1.8</td>
<td>2.2</td>
<td>3.0</td>
<td>3.7</td>
<td>5.2</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>I_{MAX (60 s)} [A]</td>
<td>2.2</td>
<td>2.9</td>
<td>3.5</td>
<td>4.8</td>
<td>5.9</td>
<td>8.3</td>
<td>11.2</td>
</tr>
<tr>
<td>Ausgangsleistung (400 V)</td>
<td>S_{INV} [kVA]</td>
<td>1.0</td>
<td>1.2</td>
<td>1.5</td>
<td>2.0</td>
<td>2.6</td>
<td>3.6</td>
<td>4.8</td>
</tr>
<tr>
<td>Typische Wellenleistung</td>
<td>P_{MN} [kW]</td>
<td>0.37</td>
<td>0.55</td>
<td>0.75</td>
<td>1.1</td>
<td>1.5</td>
<td>2.2</td>
<td>3.0</td>
</tr>
<tr>
<td>Typische Wellenleistung</td>
<td>P_{MN} [PS]</td>
<td>0.50</td>
<td>0.75</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
<td>3.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Features</th>
<th>Typ 303</th>
<th>305</th>
<th>307</th>
<th>311</th>
<th>315</th>
<th>322</th>
<th>330</th>
<th>335**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eingangsstrom (3 x 380-480 V)</td>
<td>I_{IN} [A]</td>
<td>1.2</td>
<td>1.6</td>
<td>1.9</td>
<td>2.6</td>
<td>3.2</td>
<td>4.7</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td>I_{L,MAX (60 s)} [A]</td>
<td>1.9</td>
<td>2.6</td>
<td>3.0</td>
<td>4.2</td>
<td>5.1</td>
<td>7.5</td>
<td>9.8</td>
</tr>
<tr>
<td>Wirkungsgrad3) [%]</td>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leistungsverlust bei max. Last</td>
<td>[W]</td>
<td>22</td>
<td>29</td>
<td>40</td>
<td>59</td>
<td>80</td>
<td>117</td>
<td>160</td>
</tr>
<tr>
<td>Gewicht [kg]</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>9.5</td>
<td>9.5</td>
<td>9.5</td>
</tr>
</tbody>
</table>

* Bei Netzspannung von min. 3 x 460-480 V
** t_{amb} max. 35° C.
2. Es müssen Vorsicherungen des Typs gG / gL oder entsprechende Trennschalter verwendet werden. Wenn Sie UL/cUL aufrecht erhalten möchten, müssen Abzweigleitungssicherungen gemäß NEC verwendet werden. Alternativ dazu kann ein Trennschalter des Typs Danfoss CTI 25 MB oder ein gleichwertiges Produkt verwendet werden. Die Sicherungen/Trennschalter müssen für den Schutz in einer Schaltung ausgelegt sein, die max. 100.000 A bzw. 10.000 A liefern kann.
3. Gemessen mit einem 10 m langen abgeschirmten Motorkabel bei Nennlast und -frequenz.
Im Lieferumfang enthalten

Nachfolgend eine Liste der für den FCD 300 verfügbaren Dokumentation. Beachten Sie, daß es länderspezifische Abweichungen geben kann.

Im Lieferumfang des Geräts sind enthalten:

<table>
<thead>
<tr>
<th>Betriebsanleitung</th>
<th>MG.04.BX.YY</th>
</tr>
</thead>
</table>

Diverse Literatur für den FCD 300:

<table>
<thead>
<tr>
<th>Datenblatt</th>
<th>MD.04.AX.YY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projektierungshandbuch - Dezentrale Lösungen</td>
<td>MG.90.FX.YY</td>
</tr>
</tbody>
</table>

Kommunikation mit FCD 300:

<table>
<thead>
<tr>
<th>Profibus DP V1 Betriebsanleitung</th>
<th>MG.90.AX.YY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DeviceNet Betriebsanleitung</td>
<td>MG.90.BX.YY</td>
</tr>
<tr>
<td>AS-i Betriebsanleitung</td>
<td>MG.04.EX.YY</td>
</tr>
</tbody>
</table>

X = Nummer der Ausgabe
YY = Sprache
Werkseinstellungen

<table>
<thead>
<tr>
<th>PNU-Nr</th>
<th>Parameter Beschreibung</th>
<th>Werkseinstellung</th>
<th>Änderungen während des Betriebs</th>
<th>4-Parameterätze</th>
<th>Konv. Index</th>
<th>Daten Typ</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Sprache</td>
<td>Englisch</td>
<td>Ja Nein</td>
<td>0 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>Betriebsart (Ort/Fern)</td>
<td>Fernsteuerung</td>
<td>Ja Ja</td>
<td>0 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>Ortsollwert</td>
<td>000.000.000</td>
<td>Ja Ja</td>
<td>-3 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>Aktiver Parametersatz</td>
<td>Parametersatz 1</td>
<td>Ja Nein</td>
<td>0 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>005</td>
<td>Parametersatz Programm</td>
<td>Aktiver Parametersatz</td>
<td>Ja Nein</td>
<td>0 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>006</td>
<td>Parametersatz Kopieren</td>
<td>Keine Kopie</td>
<td>Nein Nein</td>
<td>0 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>007</td>
<td>LCP-Kopie</td>
<td>Keine Kopie</td>
<td>Nein Nein</td>
<td>0 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>008</td>
<td>Displayskalierung</td>
<td>1.00</td>
<td>Ja Ja</td>
<td>-2 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>009</td>
<td>Große Displayanzeige</td>
<td>Frequenz [Hz]</td>
<td>Ja Ja</td>
<td>0 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>Kleine Displayzeile 1.1</td>
<td>Sollwert [%]</td>
<td>Ja Ja</td>
<td>0 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>011</td>
<td>Kleine Displayzeile 1.2</td>
<td>Motorstrom [A]</td>
<td>Ja Ja</td>
<td>0 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>012</td>
<td>Kleine Displayzeile 1.3</td>
<td>Leistung [kW]</td>
<td>Ja Ja</td>
<td>0 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>013</td>
<td>Vor-Ort-Steuerung</td>
<td>Fernsteuerung wie Par. 100</td>
<td>Ja Ja</td>
<td>0 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>014</td>
<td>Stopp/Reset-Taste (Ort)</td>
<td>Aktiv</td>
<td>Ja Ja</td>
<td>0 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>015</td>
<td>Jog Taste (Ort)</td>
<td>Nicht aktiv</td>
<td>Ja Ja</td>
<td>0 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>016</td>
<td>Taste Reversierung (Ort)</td>
<td>Nicht aktiv</td>
<td>Ja Ja</td>
<td>0 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>017</td>
<td>Taste Reset (Ort)</td>
<td>Aktiv</td>
<td>Ja Ja</td>
<td>0 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>018</td>
<td>Eingabesperre</td>
<td>Nicht gesperrt</td>
<td>Ja Ja</td>
<td>0 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>019</td>
<td>Modus beim Einschalten</td>
<td>Stopp erzwungen, gespeicherten Sollwert verw.</td>
<td>Ja Ja</td>
<td>0 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>020</td>
<td>Eingabesperre für Handbetrieb</td>
<td>Aktiv</td>
<td>Ja Nein</td>
<td>0 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>024</td>
<td>Benutzerdefiniertes Schnellmenü</td>
<td>Nicht aktiv</td>
<td>Ja Nein</td>
<td>0 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>025</td>
<td>Schnellmenü-Einstellung</td>
<td>000</td>
<td>Ja Nein</td>
<td>0 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>026</td>
<td>LED-Status</td>
<td>Überlast</td>
<td>Ja Ja</td>
<td>0 5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4-Parametersätze:

"Ja" bedeutet, dass der Parameter in jedem der vier Parametersätze individuell programmiert werden kann, d. h. ein einzelner Parameter kann vier verschiedene Datenwerte annehmen. "Nein" bedeutet, dass der Datenwert in allen Parametersätzen gleich ist.

Konvertierungstabelle

<table>
<thead>
<tr>
<th>Konvertierung Index</th>
<th>Konvertierung Faktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-1</td>
<td>0.1</td>
</tr>
<tr>
<td>-2</td>
<td>0.01</td>
</tr>
<tr>
<td>-3</td>
<td>0.001</td>
</tr>
<tr>
<td>-4</td>
<td>0.0001</td>
</tr>
<tr>
<td>-5</td>
<td>0.00001</td>
</tr>
</tbody>
</table>

Siehe auch Serielle Schnittstelle.
Datentyp:
Der Datentyp zeigt den Typ und die Länge des Telegramms.

<table>
<thead>
<tr>
<th>Datentyp</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Ganzzahl 16</td>
</tr>
<tr>
<td>4</td>
<td>Ganzzahl 32</td>
</tr>
<tr>
<td>5</td>
<td>Ohne Vorzeichen 8</td>
</tr>
<tr>
<td>6</td>
<td>Ohne Vorzeichen 16</td>
</tr>
<tr>
<td>7</td>
<td>Ohne Vorzeichen 32</td>
</tr>
<tr>
<td>9</td>
<td>Textblock</td>
</tr>
<tr>
<td>PNU-Nr</td>
<td>Parameter-Beschreibung</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>100</td>
<td>Konfiguration</td>
</tr>
<tr>
<td>101</td>
<td>Drehmomentkennlinie</td>
</tr>
<tr>
<td>102</td>
<td>Motorleistung $P_{M,N}$</td>
</tr>
<tr>
<td>103</td>
<td>Motorspannung $U_{M,N}$</td>
</tr>
<tr>
<td>104</td>
<td>Motorfrequenz $f_{M,N}$</td>
</tr>
<tr>
<td>105</td>
<td>Motorstrom $I_{M,N}$</td>
</tr>
<tr>
<td>106</td>
<td>Motornenndrehzahl</td>
</tr>
<tr>
<td>107</td>
<td>Automatische Motoreinstellung</td>
</tr>
<tr>
<td>108</td>
<td>Stator-Widerstand R_S</td>
</tr>
<tr>
<td>109</td>
<td>Stator-Reaktanz X_S</td>
</tr>
<tr>
<td>117</td>
<td>Resonanzdämpfung</td>
</tr>
<tr>
<td>119</td>
<td>Hohes Startmoment</td>
</tr>
<tr>
<td>120</td>
<td>Startverzögerung</td>
</tr>
<tr>
<td>121</td>
<td>Startfunktion</td>
</tr>
<tr>
<td>122</td>
<td>Stoppfunktion</td>
</tr>
<tr>
<td>123</td>
<td>Min. Freq. zur Aktivier. von Par. 122</td>
</tr>
<tr>
<td>126</td>
<td>DC-Bremszeit</td>
</tr>
<tr>
<td>127</td>
<td>Einschaltfrequenz d. DC-Bremse</td>
</tr>
<tr>
<td>128</td>
<td>Thermischer Motorschutz</td>
</tr>
<tr>
<td>130</td>
<td>Startfrequenz</td>
</tr>
<tr>
<td>131</td>
<td>Startspannung</td>
</tr>
<tr>
<td>132</td>
<td>DC-Bremsspannung</td>
</tr>
<tr>
<td>133</td>
<td>Startspannung</td>
</tr>
<tr>
<td>134</td>
<td>Lastausgleich</td>
</tr>
<tr>
<td>135</td>
<td>U/f-Verhältnis</td>
</tr>
<tr>
<td>136</td>
<td>Schlupfausgleich</td>
</tr>
<tr>
<td>137</td>
<td>DC-Haltespannung</td>
</tr>
<tr>
<td>138</td>
<td>Bremsabschaltrfrequenz</td>
</tr>
<tr>
<td>139</td>
<td>Bremsauschaltrfrequenz</td>
</tr>
<tr>
<td>140</td>
<td>Mindestwert Strom</td>
</tr>
<tr>
<td>142</td>
<td>Streureaktanz</td>
</tr>
<tr>
<td>144</td>
<td>AC-Bremsfaktor</td>
</tr>
<tr>
<td>146</td>
<td>Spannungsvektor quittieren</td>
</tr>
<tr>
<td>147</td>
<td>Motortyp</td>
</tr>
<tr>
<td>PNU-Nr.</td>
<td>Parameter Beschreibung</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------</td>
</tr>
<tr>
<td>200</td>
<td>Ausgangsfrequenz Bereich</td>
</tr>
<tr>
<td>201</td>
<td>Ausgangsfrequenzgrenze f, niedrig</td>
</tr>
<tr>
<td>202</td>
<td>Ausgangsfrequenzgrenze f, hoch</td>
</tr>
<tr>
<td>203</td>
<td>Sollwertbereich</td>
</tr>
<tr>
<td>204</td>
<td>Minimaler Sollwert Refmin</td>
</tr>
<tr>
<td>205</td>
<td>Maximaler Sollwert Refmax</td>
</tr>
<tr>
<td>206</td>
<td>Rampentyp</td>
</tr>
<tr>
<td>207</td>
<td>RAMPE AUF 1</td>
</tr>
<tr>
<td>208</td>
<td>Rampenzeit Ab 1</td>
</tr>
<tr>
<td>209</td>
<td>Rampenzeit auf 2</td>
</tr>
<tr>
<td>210</td>
<td>Rampenzeit ab 2</td>
</tr>
<tr>
<td>211</td>
<td>Rampenzeit Festdrehzahl - Jog</td>
</tr>
<tr>
<td>212</td>
<td>Rampenzeit Ab, Schnellstopp</td>
</tr>
<tr>
<td>213</td>
<td>Jog Frequenz</td>
</tr>
<tr>
<td>214</td>
<td>Sollwert-Funktion zum Sollwert addierend</td>
</tr>
<tr>
<td>215</td>
<td>Fester Sollwert 1</td>
</tr>
<tr>
<td>216</td>
<td>Fester Sollwert 2</td>
</tr>
<tr>
<td>217</td>
<td>Fester Sollwert 3</td>
</tr>
<tr>
<td>218</td>
<td>Fester Sollwert 4</td>
</tr>
<tr>
<td>219</td>
<td>Frequenzkorrektur Auf/Ab Sollwert</td>
</tr>
<tr>
<td>221</td>
<td>Stromgrenze</td>
</tr>
<tr>
<td>223</td>
<td>Warnung Strom unterer Grenzwert</td>
</tr>
<tr>
<td>224</td>
<td>Warnung Strom oberer Grenzwert</td>
</tr>
<tr>
<td>225</td>
<td>Warnung Unterfrequenz</td>
</tr>
<tr>
<td>226</td>
<td>Warnung Frequenz oberer Grenzwert</td>
</tr>
<tr>
<td>227</td>
<td>Warnung Istwert niedrig</td>
</tr>
<tr>
<td>228</td>
<td>Warnung Istwert oberer Grenzwert</td>
</tr>
<tr>
<td>229</td>
<td>Frequenzausblendung, Bandbreite</td>
</tr>
<tr>
<td>230</td>
<td>Frequenzausblendung 1</td>
</tr>
<tr>
<td>231</td>
<td>Frequenzausblendung 2</td>
</tr>
</tbody>
</table>
Werkseinstellungen - FCD 300

<table>
<thead>
<tr>
<th>PNU-Nr</th>
<th>Beschreibung</th>
<th>Werkseinstellung</th>
<th>Änderungen während des Betriebs</th>
<th>4-Parameter-sätze</th>
<th>Konv. Index</th>
<th>Daten Typ</th>
</tr>
</thead>
<tbody>
<tr>
<td>302</td>
<td>Digitaler Eingang, Klemme 18</td>
<td>Start</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>303</td>
<td>Digitaler Eingang, Klemme 19</td>
<td>Reversierung</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>304</td>
<td>Digitaler Eingang, Klemme 27</td>
<td>Quittieren und Freilauf invers</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>305</td>
<td>Digitaler Eingang, Klemme 29</td>
<td>Festdrehzahl Jog</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>307</td>
<td>Digitaler Eingang, Klemme 33</td>
<td>Ohne Funktion</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>308</td>
<td>Klemme 53, analoge Eingangsspannung</td>
<td>Sollwert</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>309</td>
<td>Klemme 53, min. Skalierung</td>
<td>0,0 V</td>
<td>Ja</td>
<td>Ja</td>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>310</td>
<td>Klemme 53, max. Skalierung</td>
<td>10,0 V</td>
<td>Ja</td>
<td>Ja</td>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>314</td>
<td>Klemme 60, analoger Eingangsstrom</td>
<td>Ohne Funktion</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>315</td>
<td>Klemme 60, min. Skalierung</td>
<td>0,0 mA</td>
<td>Ja</td>
<td>Ja</td>
<td>-4</td>
<td>6</td>
</tr>
<tr>
<td>316</td>
<td>Klemme 60, max. Skalierung</td>
<td>20,0 mA</td>
<td>Ja</td>
<td>Ja</td>
<td>-4</td>
<td>6</td>
</tr>
<tr>
<td>317</td>
<td>Zeitüberschreitung</td>
<td>10 s</td>
<td>Ja</td>
<td>Ja</td>
<td>-1</td>
<td>5</td>
</tr>
<tr>
<td>318</td>
<td>Funktion nach Zeitüberschreitung</td>
<td>Ohne Funktion</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>319</td>
<td>Klemme 42, analoger Ausgang</td>
<td>0-(I_{\text{MAX}} = 0) - 20 mA</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>323</td>
<td>Relaisausgang</td>
<td>Ohne Funktion</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>327</td>
<td>Puls Max. 33</td>
<td>5000 Hz</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>328</td>
<td>Puls Max. 29</td>
<td>5000 Hz</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>341</td>
<td>Klemme 46, digitaler Ausgang</td>
<td>Ohne Funktion</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>342</td>
<td>Klemme 46, max. Pulswert</td>
<td>5000 Hz</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>343</td>
<td>Präzise Stoppfunktion</td>
<td>Normaler Rampenstop</td>
<td>Nein</td>
<td>Ja</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>344</td>
<td>Zählerwert</td>
<td>100.000 Pulse</td>
<td>Nein</td>
<td>Ja</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>349</td>
<td>Verzög. Drehzahlkompens.</td>
<td>10 ms</td>
<td>Ja</td>
<td>Ja</td>
<td>-3</td>
<td>6</td>
</tr>
</tbody>
</table>
Werkseinstellungen - FCD 300

<table>
<thead>
<tr>
<th>PNU Nr.</th>
<th>Parameterbeschreibung</th>
<th>Werkseinstellung</th>
<th>Änderungen während des Betriebs</th>
<th>4 Par.sätze</th>
<th>Konv.-index</th>
<th>Daten-typ</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>Bremsfunktion</td>
<td>Abhängig vom Gerätetyp</td>
<td>Ja</td>
<td>Nein</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>405</td>
<td>Quittierfunktion</td>
<td>Manuell quittieren</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>406</td>
<td>Autom. Wiedereinschaltzeit</td>
<td>5 s</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>409</td>
<td>Zeitverzögerung Stromgrenze</td>
<td>Aus (61 s)</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>411</td>
<td>Taktfrequenz</td>
<td>4,5 kHz</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>413</td>
<td>Ubermodulationsfaktor</td>
<td>Ein</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>414</td>
<td>Min. Ist-Wert</td>
<td>0,000</td>
<td>Ja</td>
<td>Ja</td>
<td>-3</td>
<td>4</td>
</tr>
<tr>
<td>415</td>
<td>Max. Ist-Wert</td>
<td>1500.000</td>
<td>Ja</td>
<td>Ja</td>
<td>-3</td>
<td>4</td>
</tr>
<tr>
<td>416</td>
<td>Prozesseinheiten</td>
<td>Keine Einheit</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>417</td>
<td>Drehzahl PID Proport.verstärk.</td>
<td>0,010</td>
<td>Ja</td>
<td>Ja</td>
<td>-3</td>
<td>6</td>
</tr>
<tr>
<td>418</td>
<td>Drehzahl PID Integrationszeit</td>
<td>100 ms</td>
<td>Ja</td>
<td>Ja</td>
<td>-5</td>
<td>7</td>
</tr>
<tr>
<td>419</td>
<td>Drehzahl PID Differentiationszeit</td>
<td>20,00 ms</td>
<td>Ja</td>
<td>Ja</td>
<td>-5</td>
<td>7</td>
</tr>
<tr>
<td>420</td>
<td>Drehzahl PID Different.verstärk.-grenze</td>
<td>5,0</td>
<td>Ja</td>
<td>Ja</td>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>421</td>
<td>Drehzahl PID Tiefpassfilter</td>
<td>20 ms</td>
<td>Ja</td>
<td>Ja</td>
<td>-3</td>
<td>6</td>
</tr>
<tr>
<td>423</td>
<td>U1 Spannung</td>
<td>Par. 103</td>
<td>Ja</td>
<td>Ja</td>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>424</td>
<td>F1 Frequenz</td>
<td>Par. 104</td>
<td>Ja</td>
<td>Ja</td>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>425</td>
<td>U2 Spannung</td>
<td>Par. 103</td>
<td>Ja</td>
<td>Ja</td>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>426</td>
<td>F2 Frequenz</td>
<td>Par.</td>
<td>Ja</td>
<td>Ja</td>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>427</td>
<td>U3 Spannung</td>
<td>Par. 103</td>
<td>Ja</td>
<td>Ja</td>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>428</td>
<td>F3 Frequenz</td>
<td>Par.</td>
<td>Ja</td>
<td>Ja</td>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>437</td>
<td>Proz. PID norm./inv.</td>
<td>Normal</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>438</td>
<td>Proz. PID Anti-Windup</td>
<td>Aktiv</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>439</td>
<td>Proz. PID Startfrequenz</td>
<td>Par. 201</td>
<td>Ja</td>
<td>Ja</td>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>440</td>
<td>Proz. PID Start</td>
<td>0,01</td>
<td>Ja</td>
<td>Ja</td>
<td>-2</td>
<td>6</td>
</tr>
<tr>
<td>441</td>
<td>Proz. PID Integrationszeit</td>
<td>AUS (9999,99 s)</td>
<td>Ja</td>
<td>Ja</td>
<td>-2</td>
<td>7</td>
</tr>
<tr>
<td>442</td>
<td>Proz. PID Integrationszeit</td>
<td>Aus (0,00 s).</td>
<td>Ja</td>
<td>Ja</td>
<td>-2</td>
<td>6</td>
</tr>
<tr>
<td>443</td>
<td>Proz. PID Diff.-Verstärk.-grenze</td>
<td>5,0</td>
<td>Ja</td>
<td>Ja</td>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>444</td>
<td>Proz. PID Tiefpassfilterzeit</td>
<td>0,02 s</td>
<td>Ja</td>
<td>Ja</td>
<td>-2</td>
<td>6</td>
</tr>
<tr>
<td>445</td>
<td>Fangschaltung</td>
<td>Blockiert</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>451</td>
<td>Drehzahl PID Steuersollwert</td>
<td>100%</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>452</td>
<td>Reglerbandbreite</td>
<td>10 %</td>
<td>Ja</td>
<td>Ja</td>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>455</td>
<td>Frequenzbereichüberwachung</td>
<td>Wirksam</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>456</td>
<td>Bremsspannung reduzieren</td>
<td>0</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>
Werkseinstellungen - FCD 300

<table>
<thead>
<tr>
<th>PNU Nr.</th>
<th>Parameter- beschreibung</th>
<th>Werkseinstellung</th>
<th>Änderungen während des Betriebs</th>
<th>4 Par.sätze</th>
<th>Konv.-index</th>
<th>Daten- typ</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>Adresse</td>
<td>1</td>
<td>Ja</td>
<td>Nein</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>501</td>
<td>Baudrate</td>
<td>9600 baud</td>
<td>Ja</td>
<td>Nein</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>502</td>
<td>Motorfreilaufstopp</td>
<td>Bus oder Klemme</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>503</td>
<td>Schnellstopp</td>
<td>Bus oder Klemme</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>504</td>
<td>Gleichspannungsbremse</td>
<td>Bus oder Klemme</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>505</td>
<td>Start</td>
<td>Bus oder Klemme</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>506</td>
<td>Reversierung</td>
<td>Bus oder Klemme</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>507</td>
<td>Parametersatzwahl</td>
<td>Bus oder Klemme</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>508</td>
<td>Festdrehzahlanwahl</td>
<td>Bus oder Klemme</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>509</td>
<td>Festdrehzahl 1</td>
<td>10,0 Hz</td>
<td>Ja</td>
<td>Ja</td>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>510</td>
<td>Festdrehzahl 2</td>
<td>10,0 Hz</td>
<td>Ja</td>
<td>Ja</td>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>512</td>
<td>Telegrammprofil</td>
<td>FC Protokoll</td>
<td>Nein</td>
<td>Ja</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>513</td>
<td>Bus-Timeout-Zeit</td>
<td>1 s</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>514</td>
<td>Bus-Timeout-Funktion</td>
<td>Aus</td>
<td>Ja</td>
<td>Ja</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>515</td>
<td>Datenanzeige: Sollwert %</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>-1</td>
<td>3</td>
</tr>
<tr>
<td>516</td>
<td>Datenanzeige: Sollwert [Einheit]</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>-3</td>
<td>4</td>
</tr>
<tr>
<td>517</td>
<td>Datenanzeige: Istwert [Einheit]</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>-3</td>
<td>4</td>
</tr>
<tr>
<td>518</td>
<td>Datenanzeige: Frequenz</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>-1</td>
<td>3</td>
</tr>
<tr>
<td>519</td>
<td>Datenanzeige: Frequenz x Skalierung</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>-1</td>
<td>3</td>
</tr>
<tr>
<td>520</td>
<td>Datenanzeige: Motorstrom</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>-2</td>
<td>7</td>
</tr>
<tr>
<td>521</td>
<td>Datenanzeige: Drehmoment</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>-1</td>
<td>3</td>
</tr>
<tr>
<td>522</td>
<td>Datenanzeige: Leistung [kW]</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>523</td>
<td>Datenanzeige: Leistung [HP]</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>-2</td>
<td>7</td>
</tr>
<tr>
<td>524</td>
<td>Datenanzeige: Motorspannung [V]</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>525</td>
<td>Datenanzeige: DC-Spannung</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>526</td>
<td>Datenanzeige: Thermischer Motorschutz</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>527</td>
<td>Datenanzeige: Thermischer VLT-Schutz</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>528</td>
<td>Datenanzeige: Digitaler Eingang</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>529</td>
<td>Datenanzeige: Analogeingang, Anschluss 53</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>-1</td>
<td>5</td>
</tr>
<tr>
<td>531</td>
<td>Datenanzeige: Analogeingang, Anschluss 60</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>-4</td>
<td>5</td>
</tr>
<tr>
<td>532</td>
<td>Datenanzeige: Pulseingang, Anschluss 33</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>-1</td>
<td>7</td>
</tr>
<tr>
<td>533</td>
<td>Datenanzeige: Externer Sollwert</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>534</td>
<td>Datenanzeige: Zustandswort</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>537</td>
<td>Datenanzeige: Invertortemperatur</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>538</td>
<td>Datenanzeige: Alarmwort</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>539</td>
<td>Datenanzeige: Steuerwort</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>540</td>
<td>Datenanzeige: Warnwort</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>541</td>
<td>Datenanzeige: Erweitertes Zustandswort</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>544</td>
<td>Datenanzeige: Pulszähler</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>545</td>
<td>Datenanzeige: Pulseingang, Anschluss 29</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>-1</td>
<td>7</td>
</tr>
<tr>
<td>PNU Nr.</td>
<td>Parameterbeschreibung</td>
<td>Werkseinstellung</td>
<td>Änderungen während des Betriebs</td>
<td>4 Par.sätze</td>
<td>Konv.-index</td>
<td>Datentyp</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------</td>
<td>-----------------</td>
<td>---------------------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>Betriebsstunden</td>
<td>Nein</td>
<td>Nein</td>
<td>73</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>601</td>
<td>Betriebsstunden</td>
<td>Nein</td>
<td>Nein</td>
<td>73</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>602</td>
<td>KWh-Zähler</td>
<td>Nein</td>
<td>Nein</td>
<td>2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>603</td>
<td>Anzahl d. Einschaltungen</td>
<td>Nein</td>
<td>Nein</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>604</td>
<td>Anzahl d. Temperaturüberschreitung</td>
<td>Nein</td>
<td>Nein</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>605</td>
<td>Anzahl Überspannungen</td>
<td>Nein</td>
<td>Nein</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>615</td>
<td>Fehlerprotokoll: Fehlercode</td>
<td>Nein</td>
<td>Nein</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>616</td>
<td>Fehlerprotokoll: Zeit</td>
<td>Nein</td>
<td>Nein</td>
<td>0</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>617</td>
<td>Fehlerprotokoll: Wert</td>
<td>Nein</td>
<td>Nein</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>618</td>
<td>Rückstellen des kWh-Zählers</td>
<td>Keine Rückstellung</td>
<td>Ja</td>
<td>Nein</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>619</td>
<td>Rückstellen des Betriebsstundenzählers</td>
<td>Keine Rückstellung</td>
<td>Ja</td>
<td>Nein</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>620</td>
<td>Betriebsart</td>
<td>Neinmalbetrieb</td>
<td>Ja</td>
<td>Nein</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>621</td>
<td>Typenschild: Gerätetyp</td>
<td>Nein</td>
<td>Nein</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>624</td>
<td>Typenschild: Softwareversion</td>
<td>Nein</td>
<td>Nein</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>625</td>
<td>Typenschild: LCP-Identifikationsnr.</td>
<td>Nein</td>
<td>Nein</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>626</td>
<td>Typenschild: Datenbank-Identifikationsnr.</td>
<td>Nein</td>
<td>Nein</td>
<td>-2</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>627</td>
<td>Typenschild: Version Stromführ. Teile</td>
<td>Nein</td>
<td>Nein</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>628</td>
<td>Typenschild: Anwendungsoption, Typ</td>
<td>Nein</td>
<td>Nein</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>630</td>
<td>Typenschild: Kommunikationsoption, Typ</td>
<td>Nein</td>
<td>Nein</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>632</td>
<td>Typenschild: BMC-Software-Identifikation</td>
<td>Nein</td>
<td>Nein</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>634</td>
<td>Typenschild: Geräteidentifikation für Kommunikation</td>
<td>Nein</td>
<td>Nein</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>635</td>
<td>Typenschild: Software-Bestell Nr.</td>
<td>Nein</td>
<td>Nein</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>640</td>
<td>Softwareversion</td>
<td>Nein</td>
<td>Nein</td>
<td>-2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>641</td>
<td>BMC-Software-Identifikation</td>
<td>Nein</td>
<td>Nein</td>
<td>-2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>642</td>
<td>Leistungskarten-Identifikation</td>
<td>Nein</td>
<td>Nein</td>
<td>-2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>678</td>
<td>Steuerkarte konfigurieren</td>
<td>Abhängig vom Gerätetyp</td>
<td>Nein</td>
<td>Nein</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>
Index

A

Ab ... 116
Abgeschirmte Kabel .. 68
Ableitströme ... 171
Abmessungen der Flachbau-Bremswiderstände ... 167
Abmessungen, FCD, Motormontage 64
Abmessungszeichnung - DMS Motormontage 41
Abmessungszeichnung - DMS Wandmontage-Ausführung 40
Absicherung .. 61
Addierend zum Sollwert 115
Adresse .. 151
Aggressive Umgebungen 177
Aktiver Parametersatz 93
Allgemeine technische Daten 51
Allgemeine Warnung 59
Allgemeiner Aufbau .. 40
Am Motor montiert .. 40
Analogausgang .. 124
Analogeingangs ... 122
Anschluss der mechanischen Bremse 86
Anschluss eines zweidrängen Transmitters 84
Anzeigemodus ... 88
Anzeigewert ... 130
Arbeiten mit der AS-i-Schnittstelle 48
ATEX ... 62
Ausgangs frequenz ... 110
Auswahl der Abschaltungs k lasse....................... 46
Auswahltabelle für die Abschaltungs k lasse 46
Automatische Motoranpassung 102

B

Baudrate .. 151
Beleuchtung .. 41
Benutzerdefiniertes Schnellmenü 98
Beschreibung von mit dem DMS benutzten AS-i-Profilen 48
Beschreibung ... 40
Besondere Varianten 54
Bestellformular - DMS 300 23
Bestellformular - FCD 300 26
Bestelltypcode .. 52
Betrieb ... 48
Betriebsdaten ... 159
Betriebszustand bei Netzeinschaltung, Ortbedienung 98
Bremsabschal tfrequenz 108
Bremschal tfrequenz 108
Bremsfunktion ... 129
Bremsleistung .. 165
Bremsspannung reduzieren 139
Bremswiderstand ... 78
Bremswiderstand ... 164

C

CE-Zeichen ... 62

D

Datenanzeige .. 156
Datenbytes ... 142
DC-Bremszeit .. 105
DC-Haltespannung .. 108
Deutung der "Alarm" LED50
Die Istwertverarbeitung 133
Die Warnfunktionen 116
Differenziator .. 132
Digitalausgang .. 126
Digitaleingänge .. 120
Displaymodus .. 87
Dokumentationen ... 190
Drehmomentkennlinie 100
Drehrichtung des Motors 76
Drehzahl PID ... 134
Drehzahlkorrektur auf/ab 84
Drehzah lreglung ... 131
Drehzah lreglung mit Istwertrückführung 100
Drehzah lreglung ohne Istwertrückführung 100
DU/dt am Motor ... 172
Dynamische Bremse 164

E

Eingabesperre ... 98
Einschalten des DMS 48
Einstellung Schnellmenü 99
Elektrische Installation, Steuerring 79
EMV-gemäßer Kabel 71
Erdung ... 43
Erdung abgeschirmter Steuerring 72
Erforderliches Werkzeug 40
Erhöhung des Sollwertes-Relativ 115
ETR - Elektronischer Motorschutzschalter 105
Externe 24 V-Versorgung 20
Extreme Betriebsbedingungen 171

F

Fehlerprotokoll ... 159
Fehlerstromschutzschalter 171
Feldbus ... 147
Festsollwert .. 115
Festsollwerte ... 85

Bremswiderstände .. 28, 29
Bus-Festdrehzahl .. 154
Bus-Time-Out Zeit .. 155
Übermodulationsfaktor ... 130

4
4-20 mA Sollwert .. 84
4-Parametersätze: ... 191