

# Design Guide

# TR200



November 2009 BAS-SVX23B-EN



# Table of Contents

| How to Read this Design Guide                          | 1-1  |
|--------------------------------------------------------|------|
| Safety                                                 | 1-1  |
| High voltage warning                                   | 1-1  |
| Before commencing repair work                          | 1-4  |
| Special conditions                                     | 1-4  |
| IT line power                                          | 1-5  |
| Copyright, limitation of liability and revision rights | 1-6  |
| Approvals                                              | 1-7  |
| Symbols                                                | 1-7  |
| Abbreviations                                          | 1-8  |
| Definitions                                            | 1-8  |
| Introduction to TR200                                  | 2-1  |
| CE labeling                                            | 2-1  |
| Aggressive Environments                                | 2-2  |
| Vibration and shock                                    | 2-3  |
| Control Structures                                     | 2-17 |
| General aspects of EMC                                 | 2-25 |
| Galvanic isolation (PELV)                              | 2-31 |
| PELV - Protective Extra Low Voltage                    | 2-31 |
| Ground Leakage Current                                 | 2-32 |
| Extreme Running Conditions                             | 2-33 |
| TR200 Selection                                        | 3-1  |
| Options and Accessories                                | 3-1  |
| How to Order                                           | 4-1  |
| Ordering Numbers                                       |      |



| How to Install                             | 5-1  |
|--------------------------------------------|------|
| Mechanical dimensions                      |      |
| Lifting                                    | 5-9  |
| Electrical Installation                    | 5-11 |
| Electrical installation and control cables | 5-13 |
| Final Set-Up and Test                      | 5-32 |
| Additional Connections                     | 5-34 |
| Motor Insulation                           | 5-38 |
| Motor Bearing Currents                     | 5-38 |
| Installation of misc. connections          | 5-39 |
| Safety                                     | 5-42 |
| EMC-correct Installation                   | 5-42 |
| Residual Current Device                    | 5-46 |
| Application Examples                       | 6-1  |
| Start/Stop                                 |      |
| Pulse Start/Stop                           | 6-1  |
| Potentiometer Reference                    | 6-2  |
| Automatic Motor Adaptation (AMA)           | 6-2  |
| Smart Logic Control                        | 6-3  |
| Smart Logic Control Programming            | 6-3  |
| SLC Application Example                    | 6-4  |
| BASIC Cascade Controller                   | 6-5  |
| Pump Staging with Lead Pump Alternation    | 6-6  |
| System Status and Operation                | 6-7  |
| Fixed Variable Speed Pump Wiring Diagram   | 6-7  |
| Lead Pump Alternation Wiring Diagram       | 6-8  |
| Cascade Controller Wiring Diagram          | 6-9  |

-2 TR200 Design Guide



| Start/Stop conditions                      | 6-10 |
|--------------------------------------------|------|
| RS-485 Installation and Set-up             | 7-1  |
| RS-485 Installation and Set-up             |      |
| Adjustable Frequency Protocol Overview     | 7-4  |
| Network Configuration                      | 7-4  |
| FC Protocol Message Framing Structure      | 7-4  |
| Examples                                   | 7-11 |
| Modbus RTU Overview                        | 7-12 |
| Modbus RTU Message Framing Structure       | 7-13 |
| How to Access Parameters                   | 7-18 |
| Examples                                   | 7-19 |
| Trane FC Control Profile                   | 7-25 |
| General Specifications and Troubleshooting | 8-1  |
| Line Power Supply Tables                   | 8-1  |
| General Specifications                     | 8-17 |
| Efficiency                                 | 8-22 |
| Acoustic noise                             | 8-24 |
| Peak voltage on motor                      | 8-24 |
| Special Conditions                         | 8-30 |
| Troubleshooting                            | 8-32 |
| Alarms and Warnings                        | 8-32 |
| Alarm Words                                | 8-37 |
| Warning Words                              | 8-38 |
| Extended Status Words                      | 8-39 |
| Fault messages                             | 8-40 |
| Index                                      | 9-1  |



-4 TR200 Design Guide



# **How to Read this Design Guide**

# Safety

# Warnings, Cautions and Notices

Note that warnings, cautions and notices appear at appropriate intervals throughout this manual. Warnings are provided to alert installing contractors to potential hazards that could result in personal injury or death. Cautions are designed to alert personnel to hazardous situations that could result in personal injury, while notices indicate a situation that could result in equipment or property-damage-only accidents.

Your personal safety and the proper operation of this machine depend upon the strict observance of these precautions.

Warnings, Cautions and Notices appear at appropriate sections throughout this literature. Read these carefully.

# **⚠**WARNING

Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

# **∆**CAUTION

Indicates a potentially hazardous situation which, if not avoided, could result in minor or moderate injury. It could also be used to alert against unsafe practices.

## NOTE

Indicates a situation that could result in equipment or property-damage only accidents.

# Note

Indicates something important to be noted by the reader.

Indicates default setting

# High voltage warning

# **∆**WARNING

The voltage of the adjustable frequency drive is dangerous whenever it is connected to line power. Incorrect installation of the motor or adjustable frequency drive could result indeath, serious injury or damage to the equipment. Consequently, it is essential to comply with the instructions in this manual as well as local and national rules and safety regulations.

# Safety Note

# **≜**WARNING

The voltage of the adjustable frequency drive is dangerous whenever connected to line power. Incorrect installation of the motor, adjustable frequency drive or serial communication bus could result in death, serious personal injury or damage to the equipment. Consequently, the instructions in this manual, as well as national and local rules and safety regulations, must be complied with.

How to Read this Design Guide



Failure to follow instructions below could result in death or serious injury.

# **Safety Regulations**

- The adjustable frequency drive must be disconnected from line power if repair work is to be carried out.
   Make sure that the line power supply has been disconnected and that the necessary time has passed before removing motor and line power plugs.
- 2. The [STOP/RESET] key on the keypad of the adjustable frequency drive does not disconnect the equipment from line power and is thus not to be used as a safety switch.
- 3. Correct protective grounding of the equipment must be established, the user must be protected against supply voltage, and the motor must be protected against overload in accordance with applicable national and local regulations.
- 4. The ground leakage currents are higher than 3.5 mA.
- 5. Protection against motor overload is set by par.1-90 Motor Thermal Protection. If this function is desired, set par.1-90 Motor Thermal Protection to data value [ETR trip] (default value) or data value [ETR warning]. Note: The function is initialized at 1.16 x rated motor current and rated motor frequency. For the North American market: The ETR functions provide class 20 motor overload protection in accordance with NEC.
- 6. Do not remove the plugs for the motor and line power supply while the adjustable frequency drive is connected to line power. Make sure that the line power supply has been disconnected and that the necessary time has passed before removing motor and line power plugs.
- 7. Please note that the adjustable frequency drive has more voltage inputs than L1, L2 and L3, when load sharing (linking of DC intermediate circuit) and external 24 Vdc have been installed. Make sure that all voltage inputs have been disconnected and that the necessary time has passed before commencing repair work.

1-2 TR200 Design Guide



# Installation at high altitudes

# **≜**WARNING

Installation at high altitude:

380–500 V, enclosure A, B and C: At altitudes above 6,561 ft [2 km], please contact Trane regarding PELV/Class II. 380–500 V, enclosure D, E and F: At altitudes above 9,842 ft [3 km], please contact Trane regarding PELV/Class II. If the drive is to be installed over 6,561 ft, [2 km] altitude, then the PELV specifications are not fulfilled anymore, i.e., the distances between components and critical parts become too small. To maintain the clearance for functional insulation anyway, the risk for overvoltage must be reduced by means of external protective devices or some kind of galvanic isolation. De-rating should also be taken into consideration, since cooling the drive is more difficult at high altitude. Please contact Trane in such cases.

# $\triangle$ WARNING

Warning against Unintended Start

- The motor can be brought to a stop by means of digital commands, bus commands, references or a local stop, while the adjustable frequency drive is connected to line power. If personal safety considerations make it necessary to ensure that no unintended start occurs, these stop functions are not sufficient.
- 2. While parameters are being changed, the motor may start. Consequently, the stop key [STOP/RESET] must always be activated, following which data can be modified.
- 3. A motor that has been stopped may start if faults occur in the electronics of the adjustable frequency drive, or if a temporary overload or a fault in the supply line power or the motor connection ceases.

# **≜**WARNING

Touching the electrical parts could result in death or serious injury - even after the equipment has been disconnected from line power.

Also make sure that other voltage inputs have been disconnected, such as external 24 VDC, load sharing (linkage of DC intermediate circuit), as well as the motor connection for kinetic backup. Refer to the Instruction Manual for further safety guidelines.

Failure to follow recommendations could result in death or serious injury.

# **AWARNING**

The adjustable frequency drive DC link capacitors remain charged after power has been disconnected. To avoid an electrical shock hazard, disconnect the adjustable frequency drive from line power before carrying out maintenance. Wait at least as follows before doing service on the adjustable frequency drive:

Failure to follow recommendations could result in death or serious injury.

| Voltage (V)                                                                               | Min. Waiting Time (Minutes) |              |              |               |               |
|-------------------------------------------------------------------------------------------|-----------------------------|--------------|--------------|---------------|---------------|
|                                                                                           | 4                           | 15           | 20           | 30            | 40            |
| 200 - 240                                                                                 | 1.5–5 hp                    | 7.5–60 hp    |              |               |               |
|                                                                                           | [1.1–3.7 kW]                | [5.5 –45 kW] |              |               |               |
| 380 - 480                                                                                 | 1.5–10 hp                   | 15–125 hp    | 150-350 hp   |               | 450-1350 hp   |
|                                                                                           | [1.1–7.5 kW]                | [11-90 kW]   | [110-250 kW] |               | [315–1000 kW] |
| 525-600                                                                                   | 1.5–10 hp                   | 15–125 hp    |              |               |               |
|                                                                                           | [1.1–7.5 kW]                | [11-90 kW]   |              |               |               |
| 525-690                                                                                   |                             | 15–125 hp    | 60-550 hp    | 600-1875 hp   |               |
|                                                                                           |                             | [11–90 kW]   | [45-400 kW]  | [450-1400 kW] |               |
| Be aware that there may be high voltage on the DC link even when the LEDs are turned off. |                             |              |              |               |               |



# How to Read this Design Guide

# Before commencing repair work

# **AWARNING**

Hazardous Voltage!

- 1. Disconnect the adjustable frequency drive from line power.
- 2. Disconnect DC bus terminals 88 and 89
- 3. Wait at least the time mentioned above in the section General Warning.
- 4. Remove motor cable

Failure to follow recommendations could result in death or serious injury.

# Special conditions

#### **Electrical ratings:**

The rating indicated on the nameplate of the adjustable frequency drive is based on a typical 3-phase line power supply within the specified voltage, current and temperature ranges, which are expected to be used in most applications.

The adjustable frequency drives also support other special applications, which affect the electrical ratings of the adjustable frequency drive.

Special conditions that affect the electrical ratings might be:

- Single phase applications.
- High temperature applications that require derating of the electrical ratings.
- Marine applications with more severe environmental conditions.

Other applications might also affect the electrical ratings.

Consult the relevant sections in this manual and in the for information about the electrical ratings.

# **Installation requirements:**

The overall electrical safety of the adjustable frequency drive requires special installation considerations regarding:

- · Fuses and circuit breakers for overcurrent and short-circuit protection
- Selection of power cables (line power, motor, brake, load sharing and relay)
- Grid configuration (grounded delta transformer leg, IT,TN, etc.)
- Safety of low-voltage ports (PELV conditions).

Consult the relevant clauses in these instructions and in the for information about the installation requirements.

1-4 TR200 Design Guide



# IT line power

# **MARNING**

Do not connect adjustable frequency drives with RFI filters to line power supplies with a voltage between phase and ground of more than 440 V for 400 V drives and 760 V for 690 V drives.

For 400 VT IT line power and delta ground (grounded leg), AC line voltage may exceed 440 V between phase and ground. For 690 VT IT line power and delta ground (grounded leg), AC line voltage may exceed 760 V between phase and ground. Failure to follow recommendations could result in death or serious injury.

Par.14-50 RFI 1 can be used to disconnect the internal RFI capacitors from the RFI filter to ground.

# Disposal instructions



Equipment containing electrical components may not be disposed of together with domestic waste.

It must be separately collected with electrical and electronic waste according to local and currently valid legislation.

# TR200 Software version: 1.1.x







This guide can be used with all TR200 adjustable frequency drives with software version 1.1.x.

The current software version number can be read from par.15-43 Software Version.



# How to Read this Design Guide

# Copyright, limitation of liability and revision rights

This publication contains information proprietary to Trane. By accepting and using this manual, the user agrees that the information contained herein will be used solely for operating equipment from Trane or equipment from other vendors provided that such equipment is intended for communication with Trane equipment over a serial communication link. This publication is protected under the copyright laws of most countries.

Trane does not warrant that a software program produced according to the guidelines provided in this manual will function properly in every physical, hardware or software environment.

Although Trane has tested and reviewed the documentation within this manual, Trane makes no warranty or representation, neither expressed nor implied, with respect to this documentation, including its quality, performance, or fitness for a particular purpose.

In no event shall Trane be liable for direct, indirect, special, incidental, or consequential damages arising out of the use, or the inability to use information contained in this manual, even if advised of the possibility of such damages. In particular, Trane is not responsible for any costs, including but not limited to those incurred as a result of lost profits or revenue, loss or damage of equipment, loss of computer programs, loss of data, the costs to substitute these, or any claims by third parties.

Trane reserves the right to revise this publication at any time and to make changes to its contents without prior notice or any obligation to notify former or present users of such revisions or changes.

1-6 TR200 Design Guide



# Available literature for TR200

- The Instruction Manual provides the necessary information for getting the drive up and running.
- Instruction Manual TR200 High Power
- The Design Guide contains all the technical information about the drive and customer design and applications.
- The Programming Guide provides information on how to program and includes complete parameter descriptions.

x = Revision number

yy = Language code

Trane technical literature is available in print from your local Trane Sales Office or online at: www.trane.com/vfd

# Approvals







# Symbols

Symbols used in this guide.

Indicates default setting



# **Abbreviations**

| Alternating current                                                 | AC               |
|---------------------------------------------------------------------|------------------|
| American wire gauge                                                 | AWG              |
| Ampere/AMP                                                          | A                |
| Automatic Motor Adaptation                                          | AMA              |
| Current limit                                                       | ILIM             |
| Degrees Celsius                                                     | °C               |
| Direct current                                                      | DC               |
| Drive Dependent                                                     | D-TYPE           |
| Electro Magnetic Compatibility                                      | EMC              |
| Electronic Thermal Relay                                            | ETR              |
| Adjustable Frequency Drive                                          | FC               |
| Gram                                                                | g                |
| Hertz                                                               | Hz               |
| Kilohertz                                                           | kHz              |
| Local Control Panel                                                 | keypad           |
| Meter                                                               | m                |
| Millihenry Inductance                                               | mH               |
| Milliampere                                                         | mA               |
| Millisecond                                                         | ms               |
| Minute                                                              | min              |
| Trane Drive Utility                                                 | TDU              |
| Nanofarad                                                           | nF               |
| Newton Meters                                                       | Nm               |
| Nominal motor current                                               | <sup>I</sup> M,N |
| Nominal motor frequency                                             | fM,N             |
| Nominal motor power                                                 | PM,N             |
| Nominal motor voltage                                               | U <sub>M,N</sub> |
| Parameter                                                           | par.             |
| Protective Extra Low Voltage                                        | PELV             |
| Printed Circuit Board                                               | PCB              |
| Rated Inverter Output Current                                       | INV              |
| Revolutions Per Minute                                              | RPM              |
| Regenerative terminals                                              | Regen            |
| Second                                                              | \$               |
| Synchronous Motor Speed                                             | n <sub>S</sub>   |
| Torque limit                                                        | TLIM             |
| Volt                                                                | V                |
| The maximum output current                                          | IDRIVE,MAX       |
| The rated output current supplied by the adjustable frequency drive | IDRIVE,N         |

# **Definitions**

# **Drive:**

# <u>IDRIVE,MAX</u>

The maximum output current.

The rated output current supplied by the adjustable frequency drive.

# UDRIVE, MAX

The maximum output voltage.

1-8 TR200 Design Guide



# Input:

Control command
You can start and stop the connected motor by means of keypad and the digital inputs.

Functions are divided into two groups.

Functions in group 1 have higher priority than functions in group

Reset, Coasting stop, Reset and Coasting stop, Quick-stop, Group 1 DC braking, Stop and the "Off" key.

Start, Pulse start, Reversing, Start reversing, Jog and Freeze output

Group 2

## **Motor:**

# fJOG

The motor frequency when the jog function is activated (via digital terminals).

# fΜ

The motor frequency.

# fMAX

The maximum motor frequency.

The minimum motor frequency.

The rated motor frequency (nameplate data).

# lΜ

The motor current.

# IM,N

The rated motor current (nameplate data).

The rated motor speed (nameplate data).

The rated motor power (nameplate data).

# T<sub>M</sub>,N

The rated torque (motor).

# UM


The instantaneous motor voltage.

# $U_{M,N}$

The rated motor voltage (nameplate data).

# How to Read this Design Guide

## Break-away torque



## \_DRIVE

The efficiency of the adjustable frequency drive is defined as the ratio between the power output and the power input.

# Start-disable command

A stop command belonging to the group 1 control commands - see this group.

#### Stop command

See Control commands.

# **References:**

## **Analog Reference**

A signal transmitted to the analog inputs 53 or 54, can be voltage or current.

#### Bus Reference

A signal transmitted to the serial communication port (FC port).

# **Preset Reference**

A defined preset reference to be set from -100% to +100% of the reference range. Selection of eight preset references via the digital terminals.

## Pulse Reference

A pulse frequency signal transmitted to the digital inputs (terminal 29 or 33).

## RefMAX

Determines the relationship between the reference input at 100% full scale value (typically 10 V, 20mA) and the resulting reference. The maximum reference value set in par.3-03 Maximum Reference.

# RefMIN

Determines the relationship between the reference input at 0% value (typically 0 V, 0 mA, 4 mA) and the resulting reference. The minimum reference value set in par.3-02 <u>Minimum Reference</u>

1-10 TR200 Design Guide



#### Miscellaneous:

## **Analog Inputs**

The analog inputs are used for controlling various functions of the adjustable frequency drive.

There are two types of analog inputs:

Current input, 0-20 mA and 4-20 mA

Voltage input, 0-10 V DC.

# **Analog Outputs**

The analog outputs can supply a signal of 0–20 mA, 4–20 mA, or a digital signal.

#### Automatic Motor Adaptation, AMA

AMA algorithm determines the electrical parameters for the connected motor at standstill.

#### Brake Resistor

The brake resistor is a module capable of absorbing the braking energy generated in regenerative braking. This regenerative braking energy increases the intermediate circuit voltage and a brake chopper ensures that the power is transmitted to the brake resistor.

#### **CT Characteristics**

Constant torque characteristics used for screw and scroll refrigeration compressors.

#### **Digital Inputs**

The digital inputs can be used for controlling various adjustable frequency drive functions.

#### **Digital Outputs**

The adjustable frequency drive features two solid state outputs that can supply a 24 V DC (max. 40 mA) signal.

#### DSP

Digital Signal Processor.

# **Relay Outputs:**

The adjustable frequency drive features two programmable relay outputs.

# **ETR**

Electronic Thermal Relay is a thermal load calculation based on present load and time. Its purpose is to estimate the motor temperature.

# GLCP:

**Graphical Local Control Panel (LCP102)** 

## Initializing

If initialization is carried out (par.14-22 Operation Mode), the programmable parameters of the adjustable frequency drive return to their default settings.

# **Intermittent Duty Cycle**

An intermittent duty rating refers to a sequence of duty cycles. Each cycle consists of an on-load and an off-load period. The operation can be either periodic duty or non-periodic duty.



# How to Read this Design Guide

#### keypad

The Local Control Panel (LCP)keypad makes up a complete interface for control and programming of the adjustable frequency drive. The control panelkeypad is detachable and can be installed up to 10 ft [3 m] from the adjustable frequency drive, i.e., in a front panel by means of the installation kit option.

The Local Control Panel is available in two versions:

- Numerical LCP101 (NLCP)
- Graphical LCP102 (GLCP)

#### Isb

Least significant bit.

#### MCM

Short for Mille Circular Mil, an American measuring unit for cable cross-section. 1 MCM 0.00079 in<sup>2</sup> (0.5067 mm<sup>2</sup>).

# <u>msb</u>

Most significant bit.

#### **NLCP**

**Numerical Local Control Panel LCP101** 

# On-line/Off-line Parameters

Changes to on-line parameters are activated immediately after the data value is changed. Changes to off-line parameters are not activated until you enter [OK] on the keypad.

## PID Controller

The PID controller maintains the desired speed, pressure, temperature, etc. by adjusting the output frequency to match the varying load.

# RCD

Residual Current Device.

#### Set-up

You can save parameter settings in four set-ups. Change between the four parameter set-ups, and edit one set-up, while another set-up is active.

# <u>SFAVM</u>

Switching pattern called Stator Flux-oriented Asynchronous Vector Modulation (par.14-00 Switching Pattern).

#### Slip Compensation

The adjustable frequency drive compensates for the motor slip by giving the frequency a supplement that follows the measured motor load keeping the motor speed almost constant.

# Smart Logic Control (SLC)

The SLC is a sequence of user defined actions executed when the associated user defined events are evaluated as true by the SLC.

# Thermistor:

A temperature-dependent resistor placed where the temperature is to be monitored (adjustable frequency drive or motor).

1-12 TR200 Design Guide



#### Trip

A state entered in fault situations, e.g., if the adjustable frequency drive is subject to an overtemperature or when the adjustable frequency drive is protecting the motor, process or mechanism. Restart is prevented until the cause of the fault has disappeared and the trip state is cancelled by activating reset or, in some cases, by being programmed to reset automatically. Trip may not be used for personal safety.

#### Trip Locked

A state entered in fault situations when the adjustable frequency drive is protecting itself and requiring physical intervention, e.g., if the adjustable frequency drive is subject to a short circuit on the output. A locked trip can only be cancelled by cutting off line power, removing the cause of the fault, and reconnecting the adjustable frequency drive. Restart is prevented until the trip state is cancelled by activating reset or, in some cases, by being programmed to reset automatically. The trip-lock function may not be used as a personal safety measure.

# **VT Characteristics**

Variable torque characteristics used for pumps and fans.

# **VVC**plus

If compared with standard voltage/frequency ratio control, Voltage Vector Control (VVC<sup>plus</sup>) improves the dynamics and the stability, both when the speed reference is changed and in relation to the load torque.

#### 60° AVM

Switching pattern called 60° Asynchronous Vector Modulation (See par.14-00 Switching Pattern).

# **Power Factor**

The power factor is the relation between  $I_1$  and  $I_{RMS}$ .

Power factor = 
$$\frac{\sqrt{3} \times U \times I_{1} \times COS\phi}{\sqrt{3} \times U \times I_{RMS}}$$

The power factor for 3-phase control:

$$= \frac{I_1 \times cos\varphi1}{I_{RMS}} = \frac{I_1}{I_{RMS}}$$
 since  $cos\varphi1 = 1$ 

The power factor indicates to which extent the adjustable frequency drive imposes a load on the line power supply.

The lower the power factor, the higher the IRMS for the same kW performance.

$$I_{RMS} = \sqrt{I_1^2 + I_5^2 + I_7^2 + ... + I_n^2}$$

In addition, a high power factor indicates that the different harmonic currents are low.

The built-in DC coils in the adjustable frequency drive produce a high power factor, which minimizes the imposed load on the line power supply.



1-14 TR200 Design Guide



# **Introduction to TR200**

# CE labeling

# CE Conformity and Labeling

# What is CE Conformity and Labeling?

The purpose of CE labeling is to avoid technical trade obstacles within the EFTA and the EU. The EU has introduced the CE label as a simple way of showing whether a product complies with the relevant EU directives. The CE label says nothing about the specifications or quality of the product. Adjustable frequency drives are regulated by three EU directives:

## The machinery directive (98/37/EEC)

All machines with critical moving parts are covered by the machinery directive of January 1, 1995. Since an adjustable frequency drive is largely electrical, it does not fall under the Machinery Directive. However, if an adjustable frequency drive is supplied for use in a machine, we provide information on its safety aspects in We do this by means of a manufacturer's declaration.

# The low-voltage directive (73/23/EEC)

Adjustable frequency drives must be CE-labeled in accordance with the Low-voltage Directive of January 1, 1997. The directive applies to all electrical equipment and appliances used in the 50–1000 V AC and the 75–1500 V DC voltage ranges. Trane CE-labels in accordance with the directive and issues a declaration of conformity upon request.

#### The EMC directive (89/336/EEC)

EMC is short for electromagnetic compatibility. The presence of electromagnetic compatibility means that the mutual interference between different components/appliances does not affect the way the appliances work. The EMC directive came into effect on January 1, 1996. Trane CE labels in accordance with the directive and issues a declaration of conformity upon request. To carry out EMC-correct installation, see the instructions in this Design Guide. In addition, we specify which standards our products comply with. We offer the filters presented in the specifications and provide other types of assistance to ensure the optimum EMC result.

The adjustable frequency drive is most often used by professionals of the trade as a complex component forming part of a larger appliance, system or installation. It must be noted that the responsibility for the final EMC properties of the appliance, system or installation rests with the installer.

# What Is Covered

The EU "Guidelines on the Application of Council Directive 89/336/EEC" outline three typical situations of using an adjustable frequency drive. See below for EMC coverage and CE labeling.

- The adjustable frequency drive is sold directly to the end-consumer. For example, it may be sold to a DIY
  market. The end-consumer is a layman. He installs the adjustable frequency drive himself for use with a
  hobby machine, a kitchen appliance, etc. For such applications, the adjustable frequency drive must be CElabeled in accordance with the EMC directive.
- 2. The adjustable frequency drive is sold for installation in a plant. The plant is built up by professionals of the trade. It could be a production plant or a heating/ventilation plant designed and installed by professionals of the trade. Neither the adjustable frequency drive nor the finished plant must be CE-labeled under the EMC directive. However, the unit must comply with the basic EMC requirements of the directive. This is ensured by using components, appliances and systems that are CE-labeled under the EMC directive.
- 3. The adjustable frequency drive is sold as part of a complete system. The system is being marketed as complete and could, for example, be an air-conditioning system. The complete system must be CE-labeled in accordance with the EMC directive. The manufacturer can ensure CE-labeling under the EMC directive either by using CE-labeled components or by testing the EMC of the system. If he chooses to use only CE-labeled components, he does not have to test the entire system.

# Trane Adjustable Frequency Drive and CE Labeling

CE labeling is a positive feature when used for its original purpose, i.e., to facilitate trade within the EU and EFTA.

However, CE labeling may cover many different specifications. Thus, you have to check what a given CE label specifically covers.

The covered specifications can be very different and a CE label may therefore give the installer a false feeling of security when using an adjustable frequency drive as a component in a system or an appliance.

Trane CE labels the adjustable frequency drives in accordance with the low-voltage directive. This means that if the adjustable frequency drive is installed correctly, we guarantee compliance with the low-voltage directive. Trane issuesWe issue a declaration of conformity that confirms our CE labeling in accordance with the low-voltage directive.

The CE label also applies to the EMC directive provided that the instructions for EMC-correct installation and filtering are followed. On this basis, a declaration of conformity in accordance with the EMC directive is issued.

The Design Guide offers detailed instructions for installation to ensure EMC-correct installation. Furthermore, Trane specifies which our different products comply with.

Trane provides other types of assistance that can help you obtain the best EMC result.

# Compliance with EMC Directive 89/336/EEC

As mentioned, the adjustable frequency drive is mostly used by professionals of the trade as a complex component forming part of a larger appliance, system or installation. It must be noted that the responsibility for the final EMC properties of the appliance, system or installation rests with the installer. As an aid to the installer, Trane has prepared EMC installation guidelines for the Power Drive system. The standards and test levels stated for power drive systems are complied with, provided that the EMC-correct instructions for installation are followed; see the section *EMC Immunity*.

The adjustable frequency drive has been designed to meet the IEC/EN 60068-2-3 standard, EN 50178 pkt. 9.4.2.2 at 122°F [50°C].

# Aggressive Environments

An adjustable frequency drive contains a large number of mechanical and electronic components. All are to some extent vulnerable to environmental effects.

# **∆**CAUTION

The adjustable frequency drive should not be installed in environments with airborne liquids, particles or gases capable of affecting and damaging the electronic components. Failure to take the necessary protective measures increases the risk of stoppages, thus reducing the life of the adjustable frequency drive.

<u>Liquids</u> can be carried through the air and condense in the adjustable frequency drive and may cause corrosion of components and metal parts. Steam, oil, and salt water may cause corrosion of components and metal parts. In such environments, use equipment with enclosure rating IP 54/55. As an extra protection, coated printed circuit boards can be ordered as an option.

Airborne <u>particles</u> such as dust may cause mechanical, electrical or thermal failure in the adjustable frequency drive. A typical indicator of excessive levels of airborne particles is the presence of dust particles around the

2-2 TR200 Design Guide

adjustable frequency drive fan. In very dusty environments, use equipment with enclosure rating IP 54/55 or a cabinet for IP 00/IP 20/TYPE 1 equipment.

In environments with high temperatures and humidity, <u>corrosive gases</u> such as sulfur, nitrogen and chlorine compounds will cause chemical reactions on the adjustable frequency drive components.

Such chemical reactions will rapidly affect and damage the electronic components. In such environments, mount the equipment in a cabinet with fresh air ventilation, keeping aggressive gases away from the adjustable frequency drive.

An extra protection in such areas is a coating of the printed circuit boards, which can be ordered as an option.

## NOTE

Mounting adjustable frequency drives in aggressive environments increases the risk of stoppages and considerably reduces the life of the drive.

Before installing the adjustable frequency drive, check the ambient air for liquids, particles and gases. This is done by observing existing installations in this environment. Typical indicators of harmful airborne liquids are water or oil on metal parts, or corrosion of metal parts.

Excessive dust particle levels are often found on installation cabinets and existing electrical installations. One indicator of aggressive airborne gases is the blackening of copper rails and cable ends on existing installations.

D and E enclosures have a stainless steel back-channel option to provide additional protection in aggressive environments. Proper ventilation is still required for the internal components of the drive. Contact Trane for additional information.

# Vibration and shock

The adjustable frequency drive has been tested according to the procedure based on the shown standards:

The adjustable frequency drive complies with requirements that exist for units mounted on the walls and floors of production premises, as well as in panels bolted to walls or floors.

| 150/51/ 2000       |                               |  |
|--------------------|-------------------------------|--|
| IEC/EN 60068-2-6:  | Vibration (sinusoidal) - 1970 |  |
| IEC/EN 60068-2-64: | Vibration, broad-band random  |  |

# Advantages

# Why use an adjustable frequency drive for controlling fans and pumps?

An adjustable frequency drive takes advantage of the fact that centrifugal fans and pumps follow the laws of proportionality for such fans and pumps. For further information, see the text *The Laws of Proportionality, page 19.* 

# The Clear Advantage - Energy Savings

The very clear advantage of using an adjustable frequency drive for controlling the speed of fans or pumps lies in the electricity savings.

Compared to alternative control systems and technologies, an adjustable frequency drive is the optimum energy control system for controlling fan and pump systems.

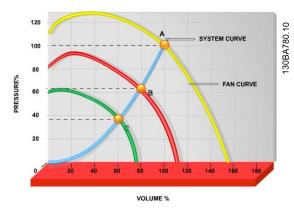



Figure 2. 4: The graph is showing fan curves (A, B and C) for reduced fan volumes.

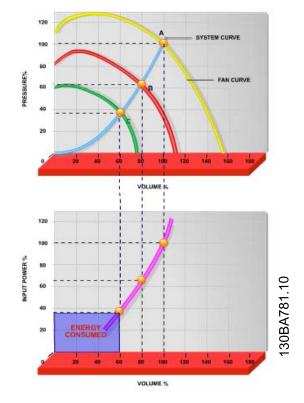
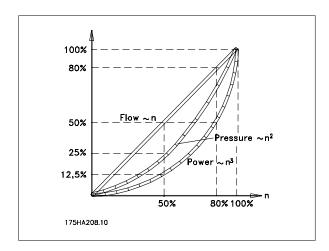



Figure 2. 5: When using a adjustable frequency drive to reduce fan capacity to 60%, more than 50% energy savings may be obtained in typical applications.

2-4 TR200 Design Guide



# **Example of Energy Savings**


As can be seen from the figure (the laws of proportionality), the flow is controlled by changing the RPM. By reducing the rated speed by only 20%, the flow is also reduced by 20%. This is because the flow is directly proportional to the RPM. The consumption of electricity, however, is reduced by 50%.

If the system in question only needs to be able to supply a flow corresponding to 100% a few days each year, while the average is below 80% of the rated flow for the remainder of the year, the amount of energy saved is even greater than 50%.

# Thelaws of proportionality

The figure below describes the dependence of flow, pressure and power consumption on RPM.

| <u> </u>                          | , p                            |
|-----------------------------------|--------------------------------|
|                                   |                                |
| Q = Flow                          | P = Power                      |
| Q <sub>1</sub> = Rated flow       | P <sub>1</sub> = Rated power   |
| Q <sub>2</sub> = Reduced flow     | P <sub>2</sub> = Reduced power |
|                                   |                                |
| H = Pressure                      | n = Speed regulation           |
| H <sub>1</sub> = Rated pressure   | n <sub>1</sub> = Rated speed   |
| H <sub>2</sub> = Reduced pressure | n <sub>2</sub> = Reduced speed |
|                                   |                                |



Flow: 
$$\frac{Q_1}{Q_2} = \frac{n_1}{n_2}$$

Pressure:  $\frac{H_1}{H_2} = \left(\frac{n_1}{n_2}\right)^2$ 

Power: 
$$\frac{P_1}{P_2} = \left(\frac{n_1}{n_2}\right)^3$$



# Comparison of Energy Savings

The Trane adjustable frequency drive solution offers major savings compared with traditional energy saving solutions. This is because the adjustable frequency drive is able to control fan speed according to thermal load on the system and the fact that the adjustable frequency drive has a built-in facility that enables the adjustable frequency drive to function as a Building Management System, BMS.

The graph (Figure 2.7) illustrates typical energy savings obtainable with 3 well-known solutions when fan volume is reduced to, e.g., 60%.

As the graph shows, more than 50% energy savings can be achieved in typical applications.



Figure 2. 6: The three common energy saving systems.

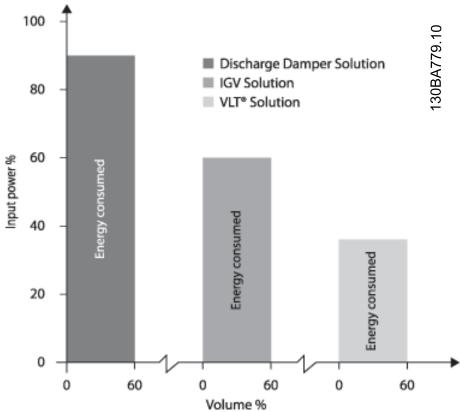
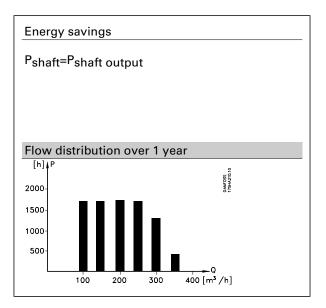
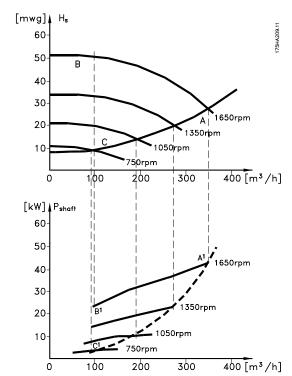



Figure 2. 7: Discharge dampers reduce power consumption somewhat. Inlet guide vans offer a 40% reduction but are expensive to install. The Traneadjustable frequency drive solution reduces energy consumption with more than 50% and is easy to install.


2-6 TR200 Design Guide




# Example with Varying Flow over 1 Year

The example below is calculated on the basis of pump characteristics obtained from a pump datasheet.

The result obtained shows energy savings in excess of 50% at the given flow distribution over a year. The pay back period depends on the price per kWh and price of the adjustable frequency drive. In this example, it is less than a year when compared with valves and constant speed.





# Introduction to TR200

| m <sup>3</sup> /h | Distrib | oution | Valve regulation                |             | Adjustable frequ                | Adjustable frequency drive control |  |
|-------------------|---------|--------|---------------------------------|-------------|---------------------------------|------------------------------------|--|
|                   | %       | Hours  | Power                           | Consumption | Power                           | Consumption                        |  |
|                   |         |        | A <sub>1</sub> - B <sub>1</sub> | kWh         | A <sub>1</sub> - C <sub>1</sub> | kWh                                |  |
| 350               | 5       | 438    | 42.5                            | 18.615      | 42.5                            | 18.615                             |  |
| 300               | 15      | 1314   | 38.5                            | 50.589      | 29.0                            | 38.106                             |  |
| 250               | 20      | 1752   | 35.0                            | 61.320      | 18.5                            | 32.412                             |  |
| 200               | 20      | 1752   | 31.5                            | 55.188      | 11.5                            | 20.148                             |  |
| 150               | 20      | 1752   | 28.0                            | 49.056      | 6.5                             | 11.388                             |  |
| 100               | 20      | 1752   | 23.0                            | 40.296      | 3.5                             | 6.132                              |  |
| Σ                 | 100     | 8760   |                                 | 275.064     |                                 | 26.801                             |  |

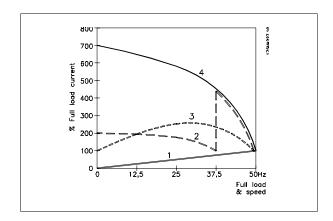
# **Better Control**

If an adjustable frequency drive is used for controlling the flow or pressure of a system, improved control is obtained.

An adjustable frequency drive can vary the speed of the fan or pump, thereby obtaining variable control of flow and pressure.

Furthermore, an adjustable frequency drive can quickly adapt the speed of the fan or pump to new flow or pressure conditions in the system.

Simple control of process (flow, level or pressure) utilizing the built-in PID control.


# Cos φ Compensation

Generally speaking, the AKD102 have a  $\cos \phi$  of 1 and provides power factor correction for the  $\cos \phi$  of the motor, which means that there is no need to make allowance for the  $\cos \phi$  of the motor when sizing the power factor correction unit.

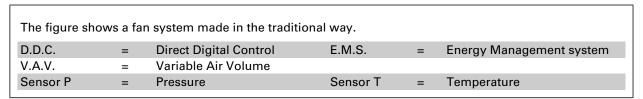
# Star/Delta Starter or Soft-starter not Required

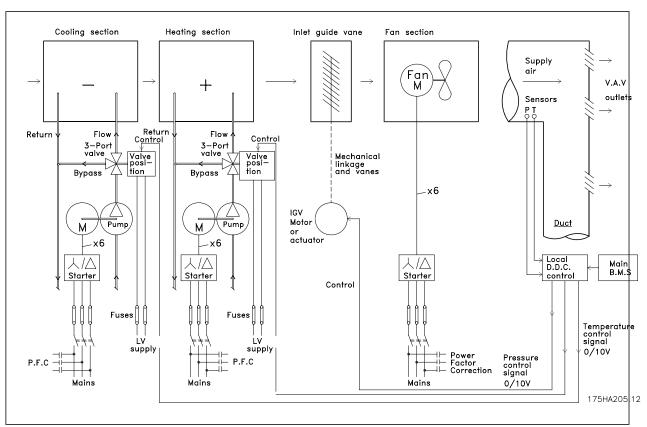
When larger motors are started, it is necessary in many countries to use equipment that limits the start-up current. In more traditional systems, a star/delta starter or soft-starter is widely used. Such motor starters are not required if an adjustable frequency drive is used.

As illustrated in the figure below, an adjustable frequency drive does not consume more than rated current.



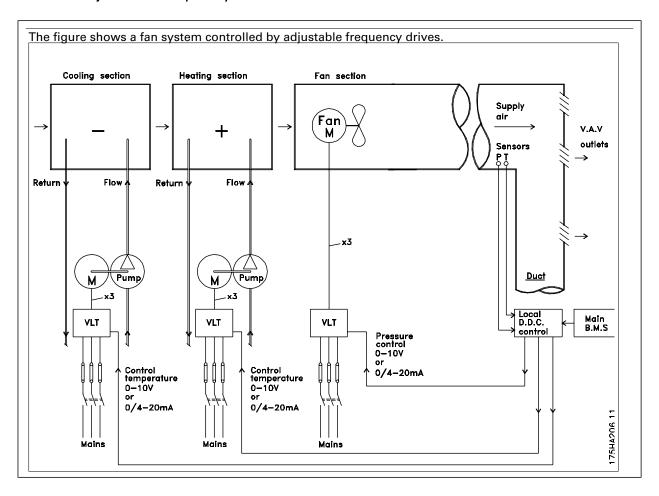
1 = TR200
2 = Star/delta starter
3 = Soft-starter
4 = Start directly on line power


2-8 TR200 Design Guide




# Using an Adjustable Frequency Drive Saves Money

The example on the following page shows that a lot of extra equipment is not required when an adjustable frequency drive is used. It is possible to calculate the cost of installing the two different systems. In the example, the two systems can be established at roughly the same price.


# Without an Adjustable Frequency Drive







# With an Adjustable Frequency Drive

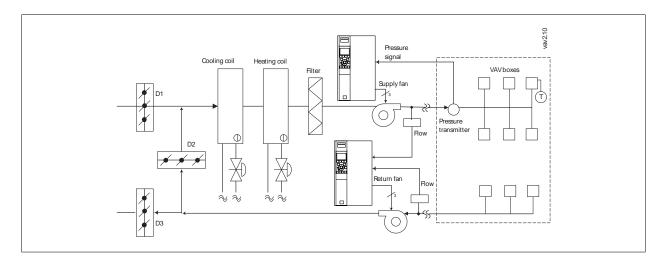


2-10 TR200 Design Guide



# Variable Air Volume

VAV or Variable Air Volume systems, are used to control both the ventilation and temperature to satisfy the requirements of a building. Central VAV systems are considered to be the most energy efficient method to air condition buildings. By designing central systems instead of distributed systems, a greater efficiency can be obtained.


The efficiency comes from utilizing larger fans and larger chillers which have much higher efficiencies than small motors and distributed air-cooled chillers. Savings are also a result of decreased maintenance requirements.

# The Drive Solution

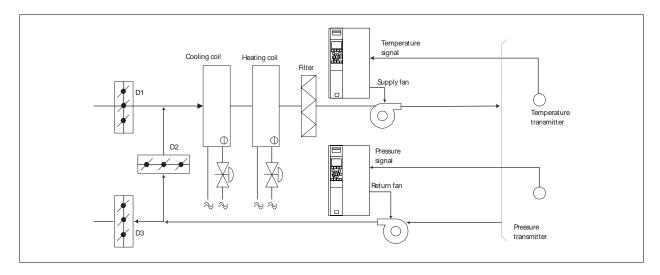
While dampers and IGVs work to maintain a constant pressure in the ductwork, an adjustable frequency drive solution saves much more energy and reduces the complexity of the installation. Instead of creating an artificial pressure drop or causing a decrease in fan efficiency, the adjustable frequency drive decreases the speed of the fan to provide the flow and pressure required by the system.

Centrifugal devices such as fans behave according to the centrifugal laws. This means the fans decrease the pressure and flow they produce as their speed is reduced. Their power consumption is thereby significantly reduced.

The return fan is frequently controlled to maintain a fixed difference in airflow between the supply and return. The advanced PID controller of the HVAC adjustable frequency drive can be used to eliminate the need for additional controllers.



# Constant Air Volume


CAV, or Constant Air Volume systems, are central ventilation systems usually used to supply large common zones with the minimum amounts of fresh tempered air. They preceded VAV systems and therefore are found in older, multi-zoned commercial buildings as well. These systems preheat amounts of fresh air utilizing Air Handling Units (AHUs) with a heating coil, and many are also used to air condition buildings and have a cooling coil. Fan coil units are frequently used to assist in the heating and cooling requirements in the individual zones.

#### The Drive Solution

With an adjustable frequency drive, significant energy savings can be obtained while maintaining decent control of the building. Temperature sensors or CO<sub>2</sub> sensors can be used as feedback signals to adjustable frequency drives. Whether controlling temperature, air quality, or both, a CAV system can be controlled to operate based on actual building conditions. As the number of people in the controlled area decreases, the need for fresh air decreases. The CO<sub>2</sub> sensor detects lower levels and decreases the supply fans speed. The return fan modulates to maintain a static pressure setpoint or fixed difference between the supply and return air flows.

With temperature control (especially used in air conditioning systems), as the outside temperature varies and the number of people in the controlled zone changes, different cooling requirements arise. As the temperature decreases below the setpoint, the supply fan can decrease its speed. The return fan modulates to maintain a static pressure setpoint. By decreasing the air flow, energy used to heat or cool the fresh air is also reduced, adding further savings.

Several features of the Trane dedicated adjustable frequency drive can be utilized to improve the performance of your CAV system. One concern of controlling a ventilation system is poor air quality. The programmable minimum frequency can be set to maintain a minimum amount of supply air, regardless of the feedback or reference signal. The adjustable frequency drive also includes a 3-zone, 3-setpoint PID controller which allows monitoring of both temperature and air quality. Even if the temperature requirement is satisfied, the adjustable frequency drive will maintain enough supply air to satisfy the air quality sensor. The controller is capable of monitoring and comparing two feedback signals to control the return fan by maintaining a fixed differential air flow between the supply and return ducts as well.



2-12 TR200 Design Guide

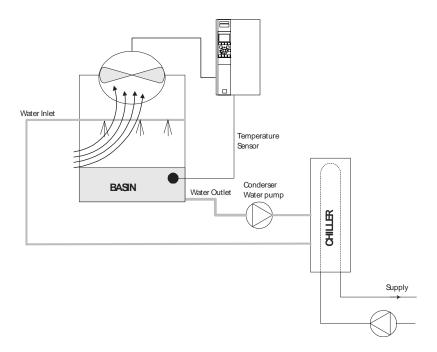


# **Cooling Tower Fan**

Cooling tower fans are used to cool condenser water in water-cooled chiller systems. Water-cooled chillers provide the most efficient means of creating chilled water. They are as much as 20% more efficient than air-cooled chillers. Depending on climate, cooling towers are often the most energy efficient method of cooling the condenser water from chillers.

They cool the condenser water by evaporation.

The condenser water is sprayed into the cooling tower, onto the cooling tower's "fill" to increase its surface area. The tower fan blows air through the fill and sprayed water to aid in the evaporation. Evaporation removes energy from the water, thus dropping its temperature. The cooled water collects in the cooling towers basin, where it is pumped back into the chiller's condenser, and the cycle is then repeated.


# The DriveDrive Solution

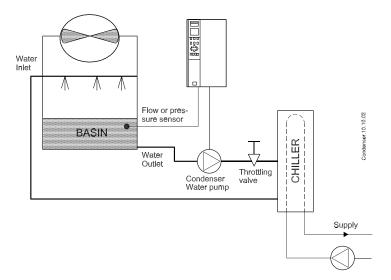
With an adjustable frequency drive, the cooling towers fans can be set to the speed required to maintain the condenser water temperature. The adjustable frequency drives can also be used to turn the fan on and off as needed.

Several features of the Trane dedicated adjustable frequency drive, the HVAC adjustable frequency drive can be utilized to improve the performance of your cooling tower fans application. As the cooling tower fans drop below a certain speed, the effect the fan has on cooling the water becomes insignificant. Also, when utilizing a gear-box to frequency control the tower fan, a minimum speed of 40-50% may be required.

The customer programmable minimum frequency setting is available to maintain this minimum frequency even as the feedback or speed reference calls for lower speeds.

Another standard feature is the "sleep" mode, which allows the user to program the adjustable frequency drive to stop the fan until a higher speed is required. Additionally, some cooling tower fans have undesireable frequencies that may cause vibrations. These frequencies can easily be avoided by programming the bypass frequency ranges in the adjustable frequency drive.




# **Condenser Pumps**

Condenser water pumps are primarily used to circulate water through the condenser section of water cooled chillers and their associated cooling tower. The condenser water absorbs the heat from the chiller's condenser section and releases it into the atmosphere in the cooling tower. These systems are used to provide the most efficient means of creating chilled water, and they are as much as 20% more efficient than air cooled chillers.

# The Drive Solution

Adjustable frequency drives can be added to condenser water pumps instead of balancing the pumps with a throttling valve or trimming the pump impeller.

Using an adjustable frequency drive instead of a throttling valve simply saves the energy that would have been absorbed by the valve. This can amount to savings of 15-20% or more. Trimming the pump impeller is irreversible, thus if the conditions change and higher flow is required the impeller must be replaced.



2-14 TR200 Design Guide

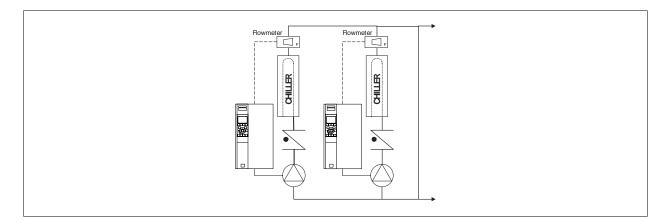


# **Primary Pumps**

Primary pumps in a primary/secondary pumping system can be used to maintain a constant flow through devices that encounter operation or control difficulties when exposed to variable flow. The primary/ secondary pumping technique decouples the "primary" production loop from the "secondary" distribution loop. This allows devices such as chillers to obtain constant design flow and operate properly while allowing the rest of the system to vary in flow.

As the evaporator flow rate decreases in a chiller, the chilled water begins to become over-chilled. As this happens, the chiller attempts to decrease its cooling capacity. If the flow rate drops far enough, or too quickly, the chiller cannot shed its load sufficiently and the chiller's low evaporator temperature safety trips the chiller, requiring a manual reset. This situation is common in large installations, especially when two or more chillers are installed in parallel and primary/secondary pumping is not utilized.

# The Drive Solution


Depending on the size of the system and the size of the primary loop, the energy consumption of the primary loop can become substantial.

An adjustable frequency drive can be added to the primary system to replace the throttling valve and/or trimming of the impellers, leading to reduced operating expenses. Two control methods are common:

The first method uses a flow meter. Because the desired flow rate is known and constant, a flow meter installed at the discharge of each chiller can be used to control the pump directly. Using the built-in PID controller, the adjustable frequency drive will always maintain the appropriate flow rate, even compensating for the changing resistance in the primary piping loop as chillers and their pumps are staged on and off.

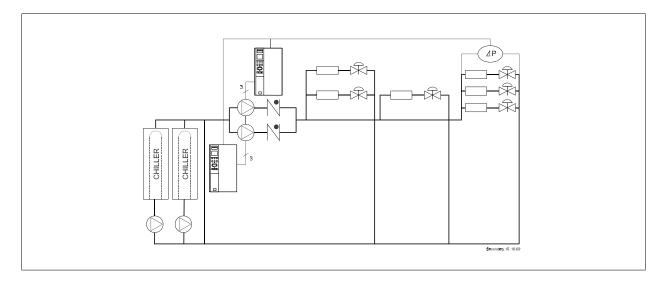
The other method is local speed determination. The operator simply decreases the output frequency until the design flow rate is achieved.

Using a adjustable frequency drive to decrease the pump speed is very similar to trimming the pump impeller, except it doesn't require any labor and the pump efficiency remains higher. The balancing contractor simply decreases the speed of the pump until the proper flow rate is achieved and leaves the speed fixed. The pump will operate at this speed any time the chiller is staged on. Because the primary loop doesn't have control valves or other devices that can cause the system curve to change, and because the variance due to staging pumps and chillers on and off is usually small, this fixed speed will remain appropriate. In the event the flow rate needs to be increased later in the systems life, the adjustable frequency drive can simply increase the pump speed instead of requiring a new pump impeller.



# Secondary Pumps

Secondary pumps in a primary/secondary chilled water pumping system are used to distribute the chilled water to the loads from the primary production loop. The primary/secondary pumping system is used to hydronically de-couple one piping loop from another. In this case, the primary pump is used to maintain a constant flow through the chillers while allowing the secondary pumps to vary in flow, increase control and save energy. If the primary/secondary design concept is not used and a variable volume system is designed, the chiller cannot shed its load properly when the flow rate drops far enough or too quickly. The chiller's low evaporator temperature safety then trips the chiller, requiring a manual reset. This situation is common in large installations, especially when two or more chillers are installed in parallel.


# The Drive Solution

While the primary-secondary system with two-way valves improves energy savings and eases system control problems, the true energy savings and control potential is realized by adding adjustable frequency drives. With the proper sensor location, the addition of adjustable frequency drives allows the pumps to vary their speed to follow the system curve instead of the pump curve.

This results in the elimination of wasted energy and eliminates most of the over-pressurization to which two-way valves can be subjected.

As the monitored loads are reached, the two-way valves close down. This increases the differential pressure measured across the load and two-way valve. As this differential pressure starts to rise, the pump is slowed to maintain the control head also called setpoint value. This setpoint value is calculated by summing the pressure drop of the load and two-way valve together under design conditions.

Please note that when running multiple pumps in parallel, they must run at the same speed to maximize energy savings, either with individual dedicated drives or one adjustable frequency drive running multiple pumps in parallel.



2-16 TR200 Design Guide



# **Control Structures**

# **Control Principle**

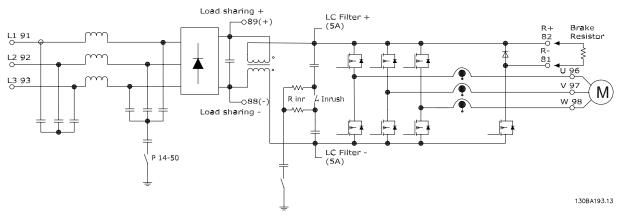



Figure 2. 8: Control structures.

The adjustable frequency drive is a high performance unit for demanding applications. It can handle various kinds of motor control principles such as U/f special motor mode and VVC plus and can handle normal squirrel cage asynchronous motors.

Short circuit behavior on this adjustable frequency drive depends on the three current transducers in the motor phases.

In par.1-00 <u>Configuration Mode</u>, it can be selected if open-loop or closed-loop is to be used

# Control Structure Open-loop

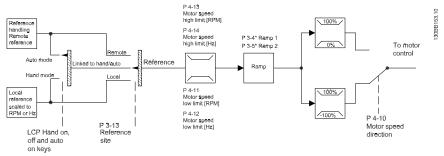



Figure 2. 9: Open-loop structure.

In the configuration shown in the figure above, par.1-00 <u>Configuration Mode</u> is set to Open-loop [0]. The resulting reference from the reference handling system or the local reference is received and fed through the ramp limitation and speed limitation before being sent to the motor control.

The output from the motor control is then limited by the maximum frequency limit.

### Introduction to TR200

## Local (Hand On) and Remote (Auto On) Control

The adjustable frequency drive can be operated manually via the local control panel (keypad) or remotely via analog/digital inputs or serial bus.

If allowed in par.0-40 [Hand on] Key on LCP, par.0-41 [Off] Key on LCP, par.0-42 [Auto on] Key on LCP, and par. 0-43 [Reset] Key on LCP, it is possible to start and stop the adjustable frequency drive bykeypad using the [Hand ON] and [Off] keys. Alarms can be reset via the [RESET] key. After pressing the [Hand ON] key, the adjustable frequency drive goes into hand mode and follows (as default) the Local reference set by using the keypad arrow keys up [▲] and down [▼].

After pressing the [Auto On] key, the adjustable frequency drive goes into auto mode and follows (as default) the remote reference. In this mode, it is possible to control the adjustable frequency drive via the digital inputs and various serial interfaces (RS-485, USB, or an optional serial communication bus). See more about starting, stopping, changing ramps and parameter set-ups, etc. in par. group 5-1\* (digital inputs) or par. group 8-5\* (serial communication).

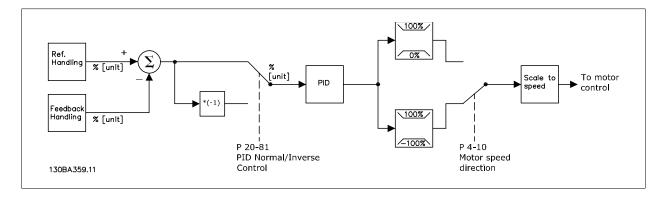


| Hand Off<br>Auto<br>keypad Keys | Reference Site par.3-13 Reference Site | Active Reference |
|---------------------------------|----------------------------------------|------------------|
| Hand                            | Linked to Hand / Auto                  | Local            |
| Hand -> Off                     | Linked to Hand / Auto                  | Local            |
| Auto                            | Linked to Hand / Auto                  | Remote           |
| Auto -> Off                     | Linked to Hand / Auto                  | Remote           |
| All keys                        | Local                                  | Local            |
| All keys                        | Remote                                 | Remote           |

The table shows under which conditions either the Local Reference or the Remote Reference is active. One of them is always active, but both can not be active at the same time.

Local reference will force the configuration mode to open-loop, independent on the setting of par.1-00 <u>Configuration Mode</u>.

Local Reference will be restored at power-down.

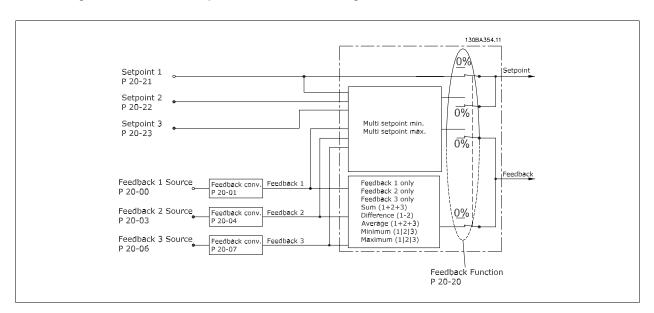

## Control Structure Closed-loop

The internal controller allows the drive to become an integral part of the controlled system. The drive receives a feedback signal from a sensor in the system. It then compares this feedback to a setpoint reference value and determines the error, if any, between these two signals. It then adjusts the speed of the motor to correct this error.

For example, consider a pump application where the speed of a pump is to be controlled so that the static pressure in a pipe is constant. The desired static pressure value is supplied to the drive as the setpoint reference. A static pressure sensor measures the actual static pressure in the pipe and supplies this to the drive as a feedback signal. If the feedback signal is greater than the setpoint reference, the drive will slow down to reduce the pressure. In a similar way, if the pipe pressure is lower than the setpoint reference, the drive will automatically speed up to increase the pressure provided by the pump.

2-18 TR200 Design Guide






While the default values for the drive's closed-loop controller will often provide satisfactory performance, the control of the system can often be optimized by adjusting some of the closed-loop controller's parameters. It is also possible to autotune the PI constants.

The figure is a block diagram of the drive's closed-loop controller. The details of the reference handling block and feedback handling block are described in their respective sections below.

## Feedback Handling

A block diagram of how the drive processes the feedback signal is shown below.



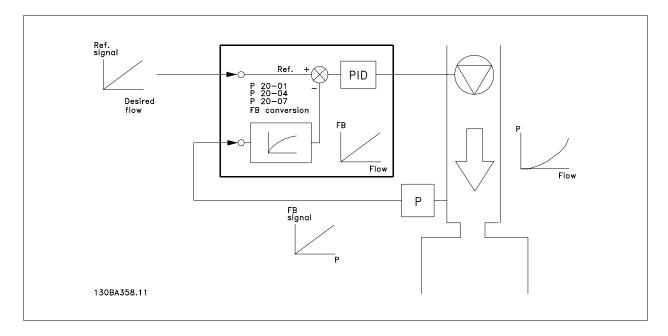
Feedback handling can be configured to work with applications requiring advanced control, such as multiple setpoints and multiple feedbacks. Three types of control are common.

### Single Zone, Single Setpoint

Single Zone, Single Setpoint is a basic configuration. Setpoint 1 is added to any other reference (if any, see Reference Handling) and the feedback signal is selected using par.20-20 Feedback Function.

### Multi-zone, Single Setpoint

Multi-zone, Single Setpoint uses two or three feedback sensors, but only one setpoint. The feedbacks can be added, subtracted (only feedback 1 and 2) or averaged. In addition, the maximum or minimum value may be used. Setpoint 1 is used exclusively in this configuration.


If *Multi Setpoint Min* [13] is selected, the setpoint/feedback pair with the largest difference controls the speed of the drive. *Multi Setpoint Maximum* [14] attempts to keep all zones at or below their respective setpoints, while *Multi Setpoint Min* [13] attempts to keep all zones at or above their respective setpoints.

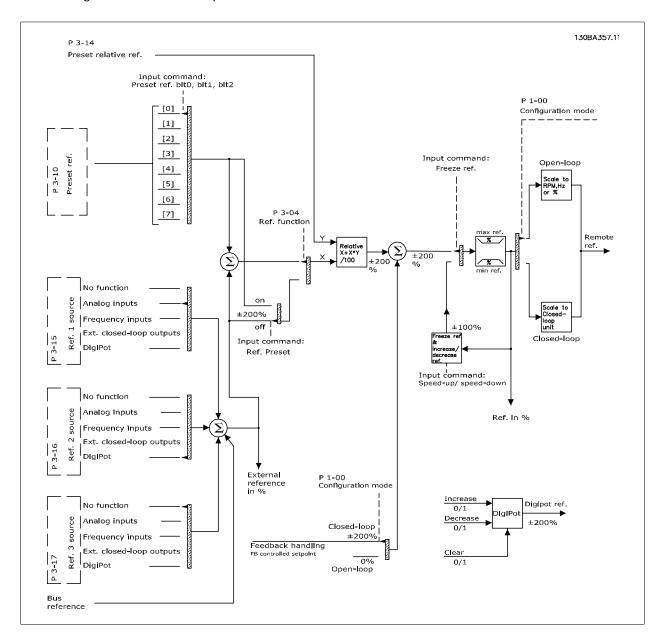
#### Example:

A two-zone two setpoint application Zone 1 setpoint is 15 bar and the feedback is 5.5 bar. Zone 2 setpoint is 4.4 bar and the feedback is 4.6 bar. If *Multi Setpoint Max* [14] is selected, Zone 1's setpoint and feedback are sent to the PID controller, since this has the smaller difference (feedback is higher than setpoint, resulting in a negative difference). If *Multi Setpoint Min* [13] is selected, Zone 2's setpoint and feedback is sent to the PID controller, since this has the larger difference (feedback is lower than setpoint, resulting in a positive difference).

#### **Feedback Conversion**

In some applications, it may be useful to convert the feedback signal. One example of this is using a pressure signal to provide flow feedback. Since the square root of pressure is proportional to flow, the square root of the pressure signal yields a value proportional to the flow. This is shown below.




2-20 TR200 Design Guide



## Reference Handling

# Details for Open-loop and Closed-loop Operation

A block diagram of how the drive produces the Remote Reference is shown below:.



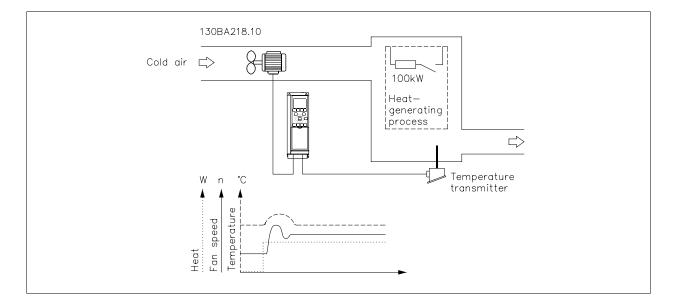


The Remote Reference is comprised of:

- Preset references.
- External references (analog inputs, pulse frequency inputs, digital potentiometer inputs and serial communication bus references).
- The preset relative reference.
- Feedback controlled setpoint.

Up to 8 preset references can be programmed in the drive. The active preset reference can be selected using digital inputs or the serial communications bus. The reference can also be supplied externally, most commonly from an analog input. This external source is selected by one of the 3 Reference Source parameters (par. 3-15 Reference 1 Source, par.3-16 Reference 2 Source and par.3-17 Reference 3 Source). Digipot is a digital potentiometer. This is also commonly called a speed up/speed down control, or a floating point control. To set it up, one digital input is programmed to increase the reference while another digital input is programmed to decrease the reference. A third digital input can be used to reset the digipot reference. All reference resources and the bus reference are added to produce the total external reference. The external reference, the preset reference or the sum of the two can be selected to be the active reference. Finally, this reference can by be scaled using par.3-14 Preset Relative Reference.

The scaled reference is calculated as follows:

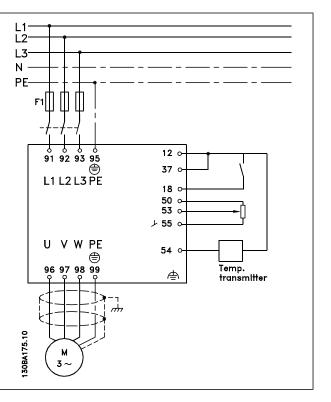

Reference = 
$$X + X \times \left(\frac{Y}{100}\right)$$

Where X is the external reference, the preset reference or the sum of these and Y is par.3-14 <u>Preset Relative</u> <u>Reference</u> in [%].

If Y, par.3-14 Preset Relative Reference is set to 0%, the reference will not be affected by the scaling.

## Example of Closed-loop PID Control

The following is an example of a closed-loop control for a ventilation system:




2-22 TR200 Design Guide



In a ventilation system, the temperature is to be maintained at a constant value. The desired temperature is set between 23° and 95°F [-5° and +35°C] using a 0–10 volt potentiometer. Because this is a cooling application, if the temperature is above the setpoint value, the speed of the fan must be increased to provide more cooling air flow. The temperature sensor has a range of 14°–104°F [-10°–+40°C] and uses a two-wire transmitter to provide a 4–20 mA signal. The output frequency range of the adjustable frequency drive is 10 to 50 Hz.

- 1 Start/Stop via switch connected between terminals 12 (+24 V) and 18.
- 2 Temperature reference via a potentiometer (23°–95° F [-5°–+35° C], 0–10 V) connected to terminals 50 (+10 V), 53 (input) and 55 (common).
- 3 Temperature feedback via transmitter (14°–104°F [-10°–+40°C], 4–20 mA) connected to terminal 54. Switch S202 behind the keypad set to ON (current input).





## **Programming Order**

| Function                                      | Par. no.       | Setting                                       |
|-----------------------------------------------|----------------|-----------------------------------------------|
| 1) Make sure the motor runs properly. Do th   | e following:   |                                               |
| Set the motor parameters using nameplate      | 1-2*           | As specified by motor nameplate               |
| data.                                         |                |                                               |
| Run Automatic Motor Adaptation.               | 1-29           | Enable complete AMA [1] and then run the      |
|                                               |                | AMA function.                                 |
| 2) Check that the motor is running in the rig | ht direction.  |                                               |
| Run Motor Rotation Check.                     | 1-28           | If the motor runs in the wrong direction, re- |
|                                               |                | move power temporarily and reverse two        |
|                                               |                | of the motor phases.                          |
| 3) Make sure the adjustable frequency drive   | limits are set | to safe values.                               |
| Make sure that the ramp settings are within   | 3-41           | 60 sec.                                       |
| the capabilities of the drive and the allowed | 3-42           | 60 sec.                                       |
| application operating specifications.         |                | Depends on motor/load size!                   |
|                                               |                | Also active in hand mode.                     |
| Prohibit the motor from reversing (if neces-  | 4-10           | Clockwise [0]                                 |
| sary)                                         |                |                                               |
| Set acceptable limits for the motor speed.    | 4-12           | 10 Hz, Motor min speed                        |
|                                               | 4-14           | 50 Hz, Motor max speed                        |
|                                               | 4-19           | 50 Hz, Drive max output frequency             |
| Switch from open-loop to closed-loop.         | 1-00           | Closed-loop [3]                               |
| 4) Configure the feedback to the PID control  | ler.           |                                               |
| Select the appropriate reference/feedback     | 20-12          | <i>Bar</i> [71]                               |
| unit.                                         |                |                                               |
| 5) Configure the setpoint reference for the P | ID controller. |                                               |
| Set acceptable limits for the setpoint refer- | 20-13          | 0 Bar                                         |
| ence.                                         | 20-14          | 10 Bar                                        |
| Choose current or voltage by switches S201    | / S202         |                                               |
| 6) Scale the analog inputs used for setpoint  | reference and  | I feedback.                                   |
| Scale Analog Input 53 for the pressure range  | 6-10           | 0 V                                           |
| of the potentiometer (0–10 Bar, 0–10 V).      | 6-11           | 10 V (default)                                |
|                                               | 6-14           | 0 Bar                                         |
|                                               | 6-15           | 10 Bar                                        |
| Scale Analog Input 54 for pressure sensor     | 6-22           | 4 mA                                          |
| (0–10 Bar, 4–20 mA)                           | 6-23           | 20 mA (default)                               |
|                                               | 6-24           | 0 Bar                                         |
|                                               | 6-25           | 10 Bar                                        |
| 7) Tune the PID controller parameters.        |                |                                               |
| Adjust the drive's closed-loop controller, if | 20-93          | See Optimization of the PID Controller be-    |
| needed.                                       | 20-94          | low.                                          |
| 8) Finished!                                  |                |                                               |
| Save the parameter setting to the keypad for  | 0-50           | All to keypad [1]                             |
| safe keeping                                  |                |                                               |

## Tuning the Drive Closed-loop Controller

Once the drive's closed-loop controller has been set up, the performance of the controller should be tested. In many cases, its performance may be acceptable using the default values of par.20-93 <u>PID Proportional Gain</u> and par.20-94 <u>PID Integral Time</u>. However, in some cases it may be helpful to optimize these parameter values to provide faster system response while still controlling speed overshoot.

2-24 TR200 Design Guide

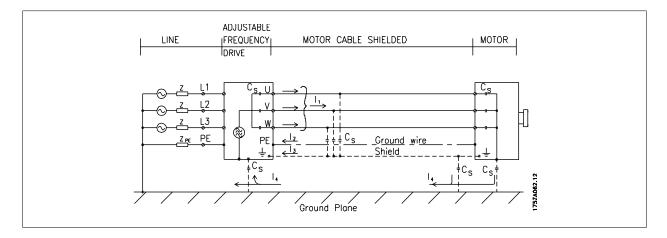
## Manual PID Adjustment

- 1. Start the motor
- Set par.20-93 <u>PID Proportional Gain</u> to 0.3 and increase it until the feedback signal begins to oscillate. If
  necessary, start and stop the drive or make step changes in the setpoint reference to attempt to cause
  oscillation. Next reduce the PID Proportional Gain until the feedback signal stabilizes. Then reduce the proportional gain by 40-60%.
- 3. Set par.20-94 PID Integral Time to 20 sec. and reduce it until the feedback signal begins to oscillate. If necessary, start and stop the drive or make step changes in the setpoint reference to attempt to cause oscillation. Next, increase the PID Integral Time until the feedback signal stabilizes. Then increase the Integral Time by 15–50%.
- 4. par.20-95 <u>PID Differentiation Time</u> should only be used for very fast-acting systems. The typical value is 25% of par.20-94 <u>PID Integral Time</u>. The differential function should only be used when the setting of the proportional gain and the integral time has been fully optimized. Make sure that oscillations of the feedback signal are sufficiently dampened by the low-pass filter for the feedback signal (par. 6-16, 6-26, 5-54 or 5-59 as required).

## General aspects of EMC

## General Aspects of EMC Emissions

Electrical interference is usually conducted at frequencies in the range of 150 kHz to 30 MHz. Airborne interference from the drive system in the range 30 MHz to 1 GHz is generated from the inverter, motor cable, and the motor.


As shown in the figure below, capacitive currents in the motor cable coupled with a high dV/dt from the motor voltage generate leakage currents.

The use of a shielded motor cable increases the leakage current (see figure below), because shielded cables have higher capacitance to ground than non-shielded cables. If the leakage current is not filtered, it will cause greater interference on the line power in the radio frequency range below approximately 5 MHz. Since the leakage current (I<sub>1</sub>) is carried back to the unit through the shield (I<sub>3</sub>), there will in principle only be a small electro-magnetic field (I<sub>4</sub>) from the shielded motor cable according to the below figure.

The shield reduces the radiated interference, but increases the low-frequency interference in the line power supply. The motor cable shield must be connected to the adjustable frequency drive enclosure as well as on the motor enclosure. This is best done by using integrated shield clamps so as to avoid twisted shield ends (pigtails). These increase the shield impedance at higher frequencies, which reduces the shield effect and increases the leakage current (I<sub>4</sub>).

If a shielded cable is used for the serial communication busserial communication bus, relay, control cable, signal interface and brake, the shield must be mounted on the enclosure at both ends. In some situations, however, it will be necessary to break the shield to avoid current loops.





If the shield is to be placed on a mounting plate for the adjustable frequency drive, the mounting plate must be made of metal, because the shield currents have to be conveyed back to the unit. Moreover, ensure good electrical contact from the mounting plate through the mounting screws to the adjustable frequency driver chassis.

When non-shielded cables are used, some emission requirements are not complied with, although the immunity requirements are observed.

In order to reduce the interference level from the entire system (unit + installation), make motor and brake cables as short as possible. Avoid placing cables with a sensitive signal level alongside motor and brake cables. Radio interference higher than 50 MHz (airborne) is especially generated by the control electronics.

## **Emission Requirements**

According to the EMC product standard for adjustable speed adjustable frequency drives EN/IEC61800-3:2004, the EMC requirements depend on the intended use of the adjustable frequency drive. Four categories are defined in the EMC product standard. The definitions of the four categories together with the requirements for line power supply voltage-conducted emissions are given in the table below:

| Category | Definition                                                                                                                                                                                                                             | Conducted emission re-<br>quirement according to the<br>limits given in EN55011 |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| C1       | adjustable frequency drives installed in the first environment (home and office) with a supply voltage less than 1,000 V.                                                                                                              | Class B                                                                         |
| C2       | adjustable frequency drives installed in the first environment (home and office) with a supply voltage of less than 1000 V, which are neither plug-in nor movable and are intended to be installed and commissioned by a professional. | Class A Group 1                                                                 |
| C3       | adjustable frequency drives installed in the second environment (industrial) with a supply voltage lower than 1,000 V.                                                                                                                 | Class A Group 2                                                                 |
| C4       | Adjustable frequency drives installed in the second environment with a supply voltage equal to or above 1000 V or rated current equal to or above 400 A or intended for use in complex systems.                                        | An EMC plan should be made.                                                     |

2-26 TR200 Design Guide

When the generic emission standards are used the adjustable frequency drives are required to comply with the following limits:

| Environment                                 | Generic standard                                                                                 | Conducted emission require-<br>ment according to the limits<br>given in EN55011 |
|---------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| First environment (home and office)         | EN/IEC61000-6-3 Emission standard for residential, commercial and light industrial environments. | Class B                                                                         |
| Second environment (industrial environment) | EN/IEC61000-6-4 Emission standard for industrial environments.                                   | Class A Group 1                                                                 |



## **EMC Test Results (Emission)**

The following test results were obtained using a system with an adjustable frequency drive (with options, if relevant), a shielded control cable, a control box with potentiometer, as well as a motor and motor-shielded cable.

| RFI filter type       |     | Conducted emission. |             |              | Radiated emission |                  |
|-----------------------|-----|---------------------|-------------|--------------|-------------------|------------------|
|                       |     |                     | shielded ca | ble length.  |                   |                  |
|                       |     | Industrial e        | nvironment  | Housing,     | Industrial en-    | Housing, trades  |
|                       |     |                     |             | trades and   | vironment         | and light indus- |
|                       |     |                     |             | light indus- |                   | tries            |
|                       |     |                     |             | tries        |                   |                  |
| Standard              |     | EN 55011            | EN 55011    | EN 55011     | EN 55011          | EN 55011 Class B |
|                       |     | Class A2            | Class A1    | Class B      | Class A1          |                  |
| H1                    |     |                     |             |              |                   |                  |
| 1.5–60 hp [1.1–45     | То  | 492 ft              | 492 ft      | 164 ft       | Voc               | No               |
| kW] 200–240 V         | T2  | [150 m]             | [150 m]     | [50 m]       | Yes               | No               |
| 1.5–125 hp [1.1–90    | Τ4  | 492 ft              | 492 ft      | 164 ft       |                   |                  |
| kW] 380-480 V         | T4  | [150 m]             | [150 m]     | [50 m]       | Yes               | No               |
| H2                    |     |                     |             |              |                   |                  |
| 1.5–5 hp [1.1–3.7 kW] | T2  | 16.4 ft             | No          | No           | No                | No               |
| 200–240 V             |     | [5 m]               |             |              |                   |                  |
| 7.5–60 hp [5.5–45     | T2  | 82 ft               |             |              |                   |                  |
| kW] 200–240 V         | 1 2 | [25 m]              | No          | No           | No                | No               |
| 1.5–10 hp [1.1–7.5    | T4  | 16.4 ft             | No          | No           | No                | No               |
| kW] 380–480 V         |     | [5 m]               |             |              |                   |                  |
| 15–125 hp [11–90      | T4  | 82 ft               |             |              |                   |                  |
| kW] 380–480 V         | 14  | [25 m]              | No          | No           | No                | No               |
| 150–1350 hp [110–     | T4  | 492 ft              | No          | No           | No                | No               |
| 1000 kW] 380–480 V    | 14  | [150 m]             | INO         | INO          | INU               | INO              |
|                       | T7  |                     |             |              |                   |                  |
| Н3                    |     |                     |             |              |                   |                  |
| 1.5–60 hp [1.1–45     | T2  | 246 ft              | 164 ft      | 32.8 ft      |                   |                  |
| kW] 200–240 V         | ۱۷  | [75 m]              | [50 m]      | [10 m]       | Yes               | No               |
| 1.5–125 hp [1.1–90    | T4  | 246 ft              | 164 ft      | 32.8 ft      | Yes               | No               |
| kW] 380-480 V         | 14  | [75 m]              | [50 m]      | [10 m]       | 1 65              | INO              |
| H4                    |     |                     |             |              |                   |                  |
| 150–1350 hp [110–     | T4  | 492 ft              | 492 ft      | No           | Yes               | No               |
| 1000 kW] 380–480 V    | 14  | [150 m]             | [150 m]     | INO          | 168               | INO              |
|                       | T7  |                     |             |              |                   |                  |
| Нх                    |     |                     |             |              |                   |                  |
|                       | T6  |                     |             |              |                   |                  |

Table 2. 1: EMC Test Results (Emission)

HX, H1, H2 or H3 is defined in the type code pos. 16 - 17 for EMC filters

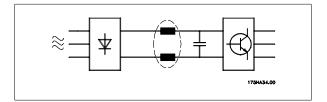
HX - No EMC filters build in the adjustable frequency drive (600 V units only)

H1 - Integrated EMC filter. Fulfill Class A1/B

H2 - No additional EMC filter. Fulfill Class A2

H3 - Integrated EMC filter. Fulfill class A1/B (Frame size A1 only)

H4 - Integrated EMC filter. Fulfill class A1


2-28 TR200 Design Guide

## General Aspects of Harmonics Emission

An adjustable frequency drive takes up a non-sinusoidal current from the line power, which increases the input current IRMS. A non-sinusoidal current is transformed by means of a Fourier analysis and split up into sine-wave currents with different frequencies, i.e., different harmonic currents I N with 50 Hz as the basic frequency:

| Harmonic currents | I <sub>1</sub> | 15     | 17     |
|-------------------|----------------|--------|--------|
| Hz                | 50 Hz          | 250 Hz | 350 Hz |

The harmonics do not affect the power consumption directly but increase the heat losses in the installation (transformer, cables). Consequently, in plants with a high percentage of rectifier load, maintain harmonic currents at a low level to prevent an overload of the transformer and high temperature in the cables.



#### NOTE

Some of the harmonic currents might disturb communication equipment connected to the same transformer or cause resonance in connection with power-factor correction batteries.

To ensure low harmonic currents, the adjustable frequency drive is standard-equipped with intermediate circuit coils. This normally reduces the input current I RMS by 40%.

The voltage distortion on the line power supply voltage depends on the size of the harmonic currents multiplied by the line power impedance for the frequency in question. The total voltage distortion THD is calculated on the basis of the individual voltage harmonics using this formula:

THD % = 
$$\sqrt{U_{\frac{2}{5}} + U_{\frac{2}{7}}^2 + \dots + U_{\frac{2}{N}}^2}$$

(UN% of U)

## Harmonics Emission Requirements

Equipment connected to the public supply network:

| Op-<br>tions: | Definition:                                                                                                                |
|---------------|----------------------------------------------------------------------------------------------------------------------------|
| 1             | IEC/EN 61000-3-2 Class A for 3-phase balanced equipment (for professional equipment only up to 1.5 hp [1 kW] total power). |
| 2             | IEC/EN 61000-3-12 Equipment 16A-75A and professional equipment as from 1 kW up to 16A phase current.                       |

### Harmonics Test Results (Emission)

Power sizes up to PK75 in T2 and T4 complies with IEC/EN 61000-3-2 Class A. Power sizes from P1K1 and up to P18K in T2 and up to P90K in T4 complies with IEC/EN 61000-3-12, Table 4. Power sizes P110 - P450 in T4 also complies with IEC/EN 61000-3-12 even though not required because currents are above 75 A.

### Introduction to TR200

Provided that the short-circuit power of the supply  $S_{\text{SC}}$  is greater than or equal to:

$$S_{SC} = \sqrt{3} \times R_{SCE} \times U_{line\ power} \times I_{equ} = \sqrt{3} \times 120 \times 400 \times I_{equ}$$
 at the interface point between the user's supply and the public system (R<sub>SCE</sub>).

It is the responsibility of the installer or user of the equipment to ensure, by consultation with the distribution network operator if necessary, that the equipment is connected only to a supply with a short-circuit power  $S_{SC}$  greater than or equal to specified above.

Other power sizes can be connected to the public supply network by consultation with the distribution network operator.

Compliance with various system level guidelines:

The harmonic current data in the table are given in accordance with IEC/EN61000-3-12 with reference to the Power Drive Systems product standard. They may be used as the basis for calculation of the harmonic currents' influence on the power supply system and for the documentation of compliance with relevant regional guidelines: IEEE 519 -1992; G5/4.

## Immunity Requirements

The immunity requirements for adjustable frequency drives depend on the environment where they are installed. The requirements for the industrial environment are higher than the requirements for the home and office environment. All Trane adjustable frequency drives comply with the requirements for the industrial environment and consequently comply also with the lower requirements for home and office environment with a large safety margin.

In order to document immunity against electrical interference from electrical phenomena, the following immunity tests have been made on a system consisting of an adjustable frequency drive (with options if relevant), a shielded control cable and a control box with potentiometer, motor cable and motor.

The tests were performed in accordance with the following basic standards:

- **EN 61000-4-2 (IEC 61000-4-2):** Electrostatic discharges (ESD): Simulation of electrostatic discharges from human beings.
- **EN 61000-4-3 (IEC 61000-4-3):** Incoming electromagnetic field radiation, amplitude modulated simulation of the effects of radar and radio communication equipment as well as mobile communications equipment.
- EN 61000-4-4 (IEC 61000-4-4): Electrical interference: Simulation of interference brought about by switching a contactor, relay or similar devices.
- **EN 61000-4-5 (IEC 61000-4-5):** Surge transients: Simulation of transients brought about, e.g., by lightning that strikes near installations.
- **EN 61000-4-6 (IEC 61000-4-6):** RF Common mode: Simulation of the effect from radio-transmission equipment joined by connection cables.

See following EMC immunity form.

2-30 TR200 Design Guide



## **EMC** immunity form

| Basic standard         | Burst         | Curao                  | ESD       | Padiated alastromas  | RF common           |
|------------------------|---------------|------------------------|-----------|----------------------|---------------------|
| basic standard         |               | Surge                  |           | Radiated electromag- |                     |
|                        | IEC 61000-4-4 | IEC 61000-4-5          | IEC       | netic field          | mode voltage        |
|                        |               |                        | 61000-4-2 | IEC 61000-4-3        | IEC 61000-4-6       |
|                        |               |                        |           |                      |                     |
|                        |               |                        |           |                      |                     |
|                        |               |                        |           |                      |                     |
| Acceptance criterion   | В             | В                      | В         | Α                    | Α                   |
| Line                   | 4 kV CM       | 2 kV/2 Ω DM            |           |                      | 10 V <sub>RMS</sub> |
|                        | 4 KV CIVI     | 4 kV/12 Ω CM           | _         | _                    | 10 THIVIS           |
| Motor                  | 4 kV CM       | 4 kV/2 Ω <sup>1)</sup> | _         | _                    | 10 V <sub>RMS</sub> |
| Brake                  | 4 kV CM       | 4 kV/2 Ω <sup>1)</sup> | _         | _                    | 10 V <sub>RMS</sub> |
| Load sharing           | 4 kV CM       | 4 kV/2 Ω <sup>1)</sup> | _         | _                    | 10 V <sub>RMS</sub> |
| Control wires          | 2 kV CM       | 2 kV/2 Ω <sup>1)</sup> | _         | _                    | 10 V <sub>RMS</sub> |
| Standard bus           | 2 kV CM       | 2 kV/2 Ω <sup>1)</sup> | _         | _                    | 10 V <sub>RMS</sub> |
| Relay wires            | 2 kV CM       | 2 kV/2 Ω <sup>1)</sup> | _         | _                    | 10 V <sub>RMS</sub> |
| Application and serial | 2 kV CM       |                        |           |                      |                     |
| communication bus      |               | 2 kV/2 Ω <sup>1)</sup> | _         | _                    | 10 V <sub>RMS</sub> |
| options                |               |                        |           |                      |                     |
| keypad cable           | 2 kV CM       | 2 kV/2 Ω <sup>1)</sup> | _         | _                    | 10 V <sub>RMS</sub> |
| External 24 V DC       | 0.11/.004     | 0.5 kV/2 Ω DM          |           |                      | 10 \/p. 40          |
|                        | 2 kV CM       | 1 kV/12 Ω CM           | _         | _                    | 10 V <sub>RMS</sub> |
| Enclosure              |               |                        | 8 kV AD   | 10 \//m              |                     |
|                        | _             | _                      | 6 kV CD   | 10 V/m               | _                   |

AD: Air Discharge CD: Contact Discharge CM: Common mode DM: Differential mode 1 Injection on cable shield.

Table 2. 2: Immunity

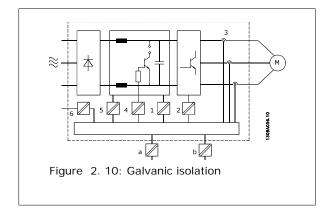
# Galvanic isolation (PELV)

### PELV - Protective Extra Low Voltage

PELV offers protection by way of extra low voltage. Protection against electric shock is ensured when the electrical supply is of the PELV type and the installation is made as described in local/national regulations on PELV supplies.

All control terminals and relay terminals 01-03/04-06 comply with PELV (Protective Extra Low Voltage) .

Galvanic (ensured) isolation is obtained by fulfilling requirements for higher isolation and by providing the relevant creapage/clearance distances. These requirements are described in the EN 61800-5-1 standard.


The components that make up the electrical isolation, as described below, also comply with the requirements for higher isolation and the relevant test as described in EN 61800-5-1.

#### Introduction to TR200

The PELV galvanic isolation can be shown in six locations (see illustration):

In order to maintain PELV, all connections made to the control terminals must be PELV. For example, the thermistor must be reinforced/double insulated.

- 1. Power supply (SMPS) incl. signal isolation of Upc, indicating the intermediate current voltage.
- 2. Gate drive that runs the IGBTs (trigger transformers/opto-couplers).
- 3. Current transducers.
- 4. Opto-coupler, brake module.
- 5. Internal soft-charge, RFI and temperature measurement circuits.
- 6. Custom relays.



The functional galvanic isolation (a and b in drawing) is for the 24 V backup option and for the RS-485 standard bus interface.

# **≜**WARNING

Installation at high altitude:

380–500 V, enclosure A, B and C: At altitudes above 6,500 ft [2 km], please contact Trane regarding PELV. 380–500V, enclosure D, E and F: At altitudes above 6,500 ft [2 km], please contact Trane regarding PELV.

## **Ground Leakage Current**

# **^**WARNING

Touching the electrical parts may be fatal - even after the equipment has been disconnected from line power. Also make sure that other voltage inputs have been disconnected, such as load sharing (linkage of DC intermediate circuit), as well as the motor connection for kinetic backup.

Before touching any electrical parts, wait at least the amount of time indicated in the *Safety Precautions* section. Shorter time is allowed only if indicated on the nameplate for the specific unit.

## **≜**WARNING

#### **Leakage Current**

The ground leakage current from the adjustable frequency drive exceeds 3.5 mA. To ensure that the ground cable has a good mechanical connection to the ground connection (terminal 95), the cable cross-section must be at least 0.016 in<sup>2</sup> [10 mm<sup>2</sup>] or 2 rated ground wires terminated separately.

#### **Residual Current Device**

This product can cause DC current in the protective conductor. Where a residual current device (RCD) is used for protection in case of direct or indirect contact, only an RCD of Type B is allowed on the supply side of this product. Otherwise, another protective measure shall be applied, such as separation from the environment by double or reinforced insulation, or isolation from the supply system by a transformer. See also RCD Application Note MN.90.GX.02. Protective grounding of the adjustable frequency drive and the use of RCDs must always follow national and local regulations.

2-32 TR200 Design Guide

## **Extreme Running Conditions**

#### **Short Circuit (Motor Phase – Phase)**

The adjustable frequency drive is protected against short circuits by means of current measurement in each of the three motor phases or in the DC link. A short circuit between two output phases will cause an overcurrent in the inverter. The inverter will be turned off individually when the short circuit current exceeds the permitted value (Alarm 16 Trip Lock).

To protect the adjustable frequency drive against a short circuit at the load sharing and brake outputs, please see the design guidelines.

#### **Switching on the Output**

Switching on the output between the motor and the adjustable frequency drive is fully permitted. You cannot damage the adjustable frequency drive in any way by switching on the output. However, fault messages may appear.

#### **Motor-generated Overvoltage**

The voltage in the intermediate circuit is increased when the motor acts as a generator. This occurs in the following cases:

- 1. The load drives the motor (at constant output frequency from the adjustable frequency drive), i.e., the load generates energy.
- 2. During deceleration ("ramp-down"), if the moment of inertia is high, the friction is low and the ramp-down time is too short for the energy to be dissipated as a loss in the adjustable frequency drive, the motor and the installation.
- 3. Incorrect slip compensation setting may cause higher DC link voltage.

The control unit may attempt to correct the ramp if possible (par.2-17 Over-voltage Control.

The inverter turns off to protect the transistors and the intermediate circuit capacitors when a certain voltage level is reached.

See par.2-10 <u>Brake Function</u> and par.2-17 <u>Over-voltage Control</u> to select the method used for controlling the intermediate circuit voltage level.

#### **Line Drop-out**

During a line drop-out, the adjustable frequency drive keeps running until the intermediate circuit voltage drops below the minimum stop level, which is typically 15% below the adjustable frequency drive's lowest rated supply voltage. The AC line voltage before the drop-out and the motor load determine how long it takes for the inverter to coast.

#### Static Overload in VVCplus Mode

When the adjustable frequency drive is overloaded (the torque limit in par.4-16 <u>Torque Limit Motor Mode</u>/par. 4-17 <u>Torque Limit Generator Mode</u> is reached), the controls reduces the output frequency to reduce the load. If the overload is excessive, a current may occur that makes the adjustable frequency drive cut out after approximately 5-10 s.

Operation within the torque limit is limited in time (0-60 s) in par.14-25 Trip Delay at Torque Limit.

### Motor Thermal Protection

This is the way Trane is protecting the motor from being overheated. It is an electronic feature that simulates a bimetal relay based on internal measurements. The characteristic is shown in the following figure:

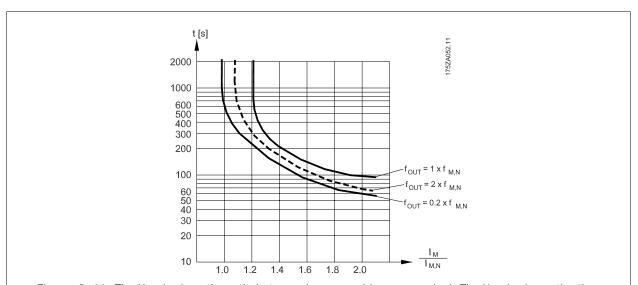
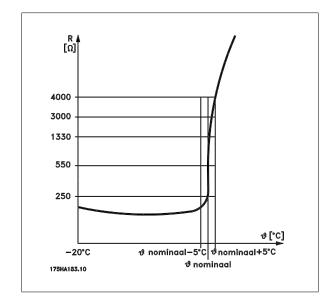



Figure 2. 11: The X-axis show the ratio between  $I_{motor}$  and  $I_{motor}$  nominal. The Y-axis shows the time in seconds before the ETR cuts off and trips the drive. The curves show the characteristic nominal speed at twice the nominal speed and at 0.2x the nominal speed.

It is clear that at lower speed, the ETR cuts of at lower heat due to less cooling of the motor. In that way, the motors are protected from being overheated even at low speeds. The ETR feature calculates the motor temperature based on actual current and speed. The calculated temperature is visible as a readout parameter in par. 16-18 <a href="Motor Thermal">Motor Thermal</a> in the adjustable frequency drive.


2-34 TR200 Design Guide



The thermistor cut-out value is > 3 k $\Omega$ .

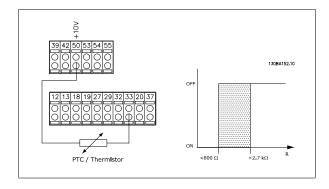
Integrate a thermistor (PTC sensor) in the motor for winding protection.

Motor protection can be implemented using a range of techniques: PTC sensor in motor windings; mechanical thermal switch (Klixon type); or Electronic Thermal Relay (ETR).



Using a digital input and 24 V as power supply: Example: The adjustable frequency drive trips when the motor temperature is too high. Parameter set-up:

Set par.1-90 Motor Thermal Protection to *Thermistor* 

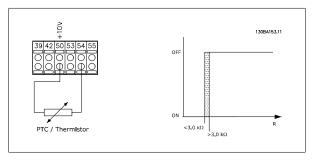

Set par.1-93 Thermistor Source to Digital Input 33 [6]

Using a digital input and 10 V as power supply: Example: The adjustable frequency drive trips when the motor temperature is too high.

Parameter set-up:

Set par.1-90 <u>Motor Thermal Protection</u> to *Thermistor Trip* [2]

Set par.1-93 Thermistor Source to Digital Input 33 [6]




Using an analog input and 10 V as power supply: Example: The adjustable frequency drive trips when the motor temperature is too high.

Parameter set-up:

Set par.1-90 <u>Motor Thermal Protection</u> to *Thermistor Trip* [2]

Set par.1-93 Thermistor Source to Analog Input 54 [2] Do not select a reference source.



## Introduction to TR200

| Input          | Supply Voltage | Threshold            |  |
|----------------|----------------|----------------------|--|
| Digital/analog | Volt           | Cut-out Values       |  |
| Digital        | 24 V           | < 6.6 kΩ - > 10.8 kΩ |  |
| Digital        | 10 V           | < 800Ω - > 2.7 kΩ    |  |
| Analog         | 10 V           | < 3.0 kΩ - > 3.0 kΩ  |  |

#### NOTE

Ensure that the chosen supply voltage follows the specification of the thermistor element utilized.

### Summary

With the Torque limit feature, the motor is protected for being overloaded independent of the speed. With the ETR, the motor is protected for being overheated and there is no need for any further motor protection. That means when the motor is heated up, the ETR timer controls how long the motor can be running at the high temperature before it is stopped to prevent overheating. If the motor is overloaded without reaching the temperature where the ETR shuts of the motor, the torque limit protects the motor and application from becoming overloaded.

ETR is activated in par. and is controlled in par.4-16 <u>Torque Limit Motor Mode</u>. The time before the torque limit warning trips the adjustable frequency drive is set in par.14-25 <u>Trip Delay at Torque Limit</u>.

2-36 TR200 Design Guide

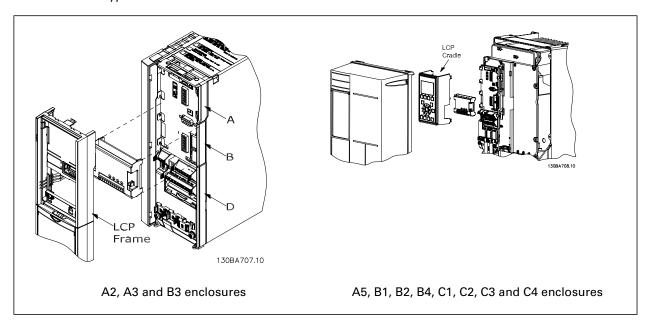


## **TR200 Selection**

## **Options and Accessories**

Trane offers a wide range of options and accessories for adjustable frequency drives.

## Mounting Option Modules in Slot B


The power to the adjustable frequency drive must be disconnected.

#### For A2 and A3 enclosures:

- Remove the keypad (Local Control Panel), the terminal cover, and the keypad frame from the adjustable frequency drive.
- Fit the MCB1xx option card into slot B.
- Connect the control cables and fasten the cables with the enclosed cable strips.
   Remove the knock-out in the extended keypad frame delivered in the option set so that the option will fit under the extended keypad frame.
- Fit the extended keypad frame and terminal cover.
- Fit the keypad or blind cover in the extended keypad frame.
- Connect power to the adjustable frequency drive.
- Set up the input/output functions in the corresponding parameters, as mentioned in the section General
  Technical Data.

#### For B1, B2, C1 and C2 enclosures:

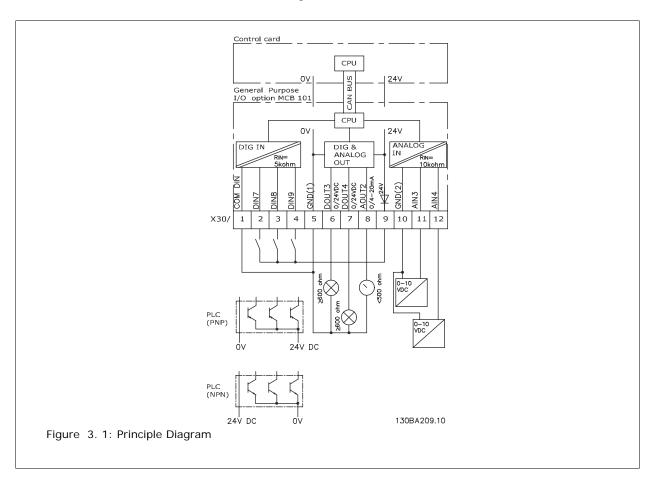
- Remove the keypad and the keypad cradle
- Fit the MCB 1xx option card into slot B
- Connect the control cables and relieve the cable by the enclosed cable strips.
- Fit the cradle.
- · Fit the keypad



## General Purpose Input Output Module MCB 101

MCB 101 is used for extension of the number of digital and analog inputs and outputs of the adjustable frequency drive.

Contents: MCB 101 must be fitted into slot B in the adjustable frequency drive.


- MCB 101 option module
- Extended keypad frame
- Terminal cover

#### FC Series MCB 101 General Purpose I/O B slot SW. ver. XX.XX Code No. 130BXXXX GND(1) DOUT3 DOUT4 AOUT2 GND(2) DIN8 AIN3 COM DIN DIN7 AIN4 2 3 4 5 6 7 8 9 10 11 12 1

#### Galvanic Isolation in the MCB 101

Digital/analog inputs are galvanically isolated from other inputs/outputs on the MCB 101 and in the control card of the adjustable frequency drive. Digital/analog outputs in the MCB 101 are galvanically isolated from other inputs/outputs on the MCB 101, but not from these on the control card of the adjustable frequency drive.

If digital inputs 7, 8 or 9 are to be switched using the internal 24 V power supply (terminal 9), the connection between terminal 1 and 5 illustrated in the drawing has to be established.



3-2 TR200 Design Guide

# Digital inputs - Terminal X30/1-4

| Number of digital in- | Voltage<br>level | Voltage levels             | Tolerance         | Max. Input impedance |
|-----------------------|------------------|----------------------------|-------------------|----------------------|
| 3                     | 0-24 V DC        | PNP type:                  | ± 28 V continuous | Approx. 5 k ohm      |
|                       |                  | Common = 0 V               | ± 37 V in minimum |                      |
|                       |                  | Logic "0": Input < 5 V DC  | 10 sec.           |                      |
|                       |                  | Logic "0": Input > 10 V DC |                   |                      |
|                       |                  | NPN type:                  |                   |                      |
|                       |                  | Common = 24 V              |                   |                      |
|                       |                  | Logic "0": Input > 19 V DC |                   |                      |
|                       |                  | Logic "0": Input < 14 V DC |                   |                      |

# Analog voltage inputs - Terminal X30/10-12

| Parameters for set-up: 6-3*, 6-4* and 16-76 |                    |                     |         |                       |  |
|---------------------------------------------|--------------------|---------------------|---------|-----------------------|--|
| Number of analog voltage in-                | Standardized input | Tolerance           | Resolu- | Max. Input impe-      |  |
| puts                                        | signal             |                     | tion    | dance                 |  |
| 2                                           | 0–10 V DC          | ± 20 V continuously | 10 bits | Approximately 5 K ohm |  |

## Digital outputs - Terminal X30/5-7

| Parameters for set-up: 5-32 and 5-33 |              |           |               |  |  |  |
|--------------------------------------|--------------|-----------|---------------|--|--|--|
| Number of digital outputs            | Output level | Tolerance | Max.impedance |  |  |  |
| 2                                    | 0 or 24 V DC | ± 4 V     | ≥ 600 ohm     |  |  |  |

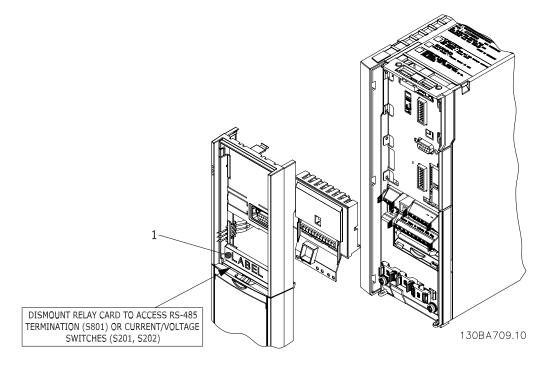
## Analog outputs - Terminal X30/5+8

| Parameters for set-up: 6-6* and 16-77 |                     |                               |  |  |
|---------------------------------------|---------------------|-------------------------------|--|--|
| Output signal level                   | Tolerance           | Max.impedance                 |  |  |
| 0/4–20 mA                             | ± 0.1 mA            | < 500 ohm                     |  |  |
|                                       | Output signal level | Output signal level Tolerance |  |  |

## **TR200 Selection**

## Relay Option MCB 105

The MCB 105 option includes 3 pieces of SPDT contacts and must be fitted into option slot B.


#### **Electrical Data:**

| Max terminal load (AC-1) 1) (Resistive load)                       | 240 V AC 2A                               |
|--------------------------------------------------------------------|-------------------------------------------|
| -                                                                  | 240 V AC 2A                               |
| Max terminal load (AC-15) <sup>1)</sup> (Inductive load @ cos 0.4) | 240 V AC 0.2 A                            |
| Max terminal load (DC-1) <sup>1)</sup> (Resistive load)            | 24 V DC 1 A                               |
| Max terminal load (DC-13) <sup>1)</sup> (Inductive load)           | 24 V DC 0.1 A                             |
| Min terminal load (DC)                                             | 5 V 10 mA                                 |
| Max switching rate at rated load/min load                          | 6 min <sup>-1</sup> /20 sec <sup>-1</sup> |
| 1) IFC 047                                                         |                                           |

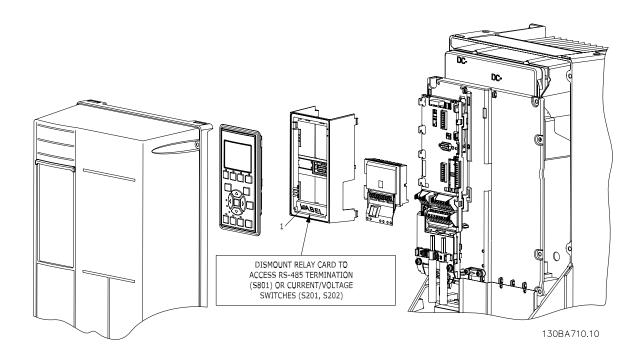
1) IEC 947 part 4 and 5

When the relay option kit is ordered separately, the kit includes:

- Relay Module MCB 105
- Extended keypad frame and enlarged terminal cover
- Label for covering access to switches S201, S202 and S801
- Cable strips for fastening cables to relay module



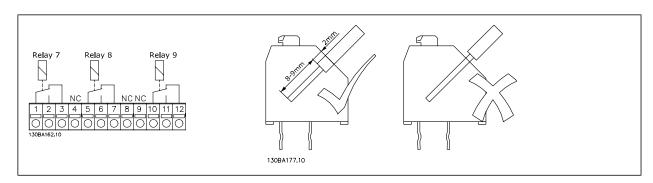
A2-A3-B3

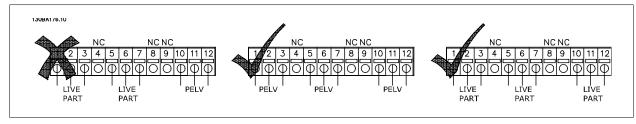

A5-B1-B2-B4-C1-C2-C3-C4



1) **IMPORTANT**! The label MUST be placed on the keypad frame as shown (UL approved).

3-4 TR200 Design Guide




### How to add the MCB 105 option:

- See the mounting instructions at the beginning of the section Options and Accessories.
- The power to the live part connections on relay terminals must be disconnected.
- Do not mix live parts (high voltage) with control signals (PELV).
- Select the relay functions in par.5-40 <u>Function Relay</u> [6-8], par.5-41 <u>On Delay, Relay</u> [6-8] and par. 5-42 <u>Off Delay, Relay</u> [6-8].

NB! (Index [6] is relay 7, index [7] is relay 8, and index [8] is relay 9)







Do not combine low voltage parts and PELV systems.

## 24 V Backup Option MCB 107 (Option D)

External 24 V DC Supply

An external 24 V DC supply can be installed for low-voltage supply to the control card and any option card installed. This enables full operation of the keypad (including the parameter setting) and serial communication busses without line power supplied to the power section.

#### External 24 V DC supply specification:

| Input voltage range                                      | 24 V DC ±15 % (max. 37 V in 10 s) |
|----------------------------------------------------------|-----------------------------------|
| Max. input current                                       | 2.2 A                             |
| Average input current for the adjustable frequency drive | 0.9 A                             |
| Max cable length                                         | 75 m                              |
| Input capacitance load                                   | < 10 uF                           |
| Power-up delay                                           | < 0.6 s                           |

The inputs are protected.

#### Terminal numbers:

Terminal 35: - external 24 V DC supply.

Terminal 36: + external 24 V DC supply.

#### Follow these steps:

- 1. Remove the keypad or blind cover
- 2. Remove the Terminal Cover
- 3. Remove the cable de-coupling plate and the plastic cover underneath
- 4. Insert the 24 V DC backup external supply option in the option slot
- 5. Mount the cable de-coupling plate
- Attach the terminal cover and the keypad or blind cover.

When MCB 107, 24 V backup option is supplying the control circuit, the internal 24 V supply is automatically disconnected.

3-6 TR200 Design Guide

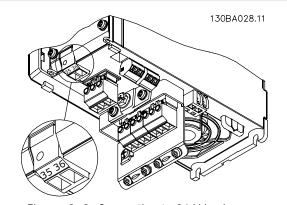
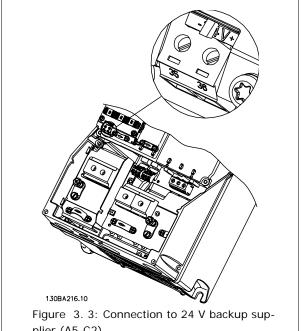
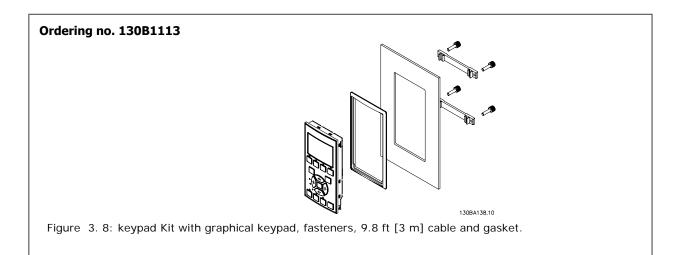
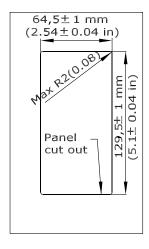
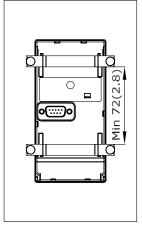




Figure 3. 2: Connection to 24 V backup supplier (A2-A3).




plier (A5-C2).


## Remote Mounting Kit for keypad


The keypad can be moved to the front of a cabinet by using the remote built-in kit. The enclosure is the IP65. The fastening screws must be tightened with a torque of max. 1 Nm.

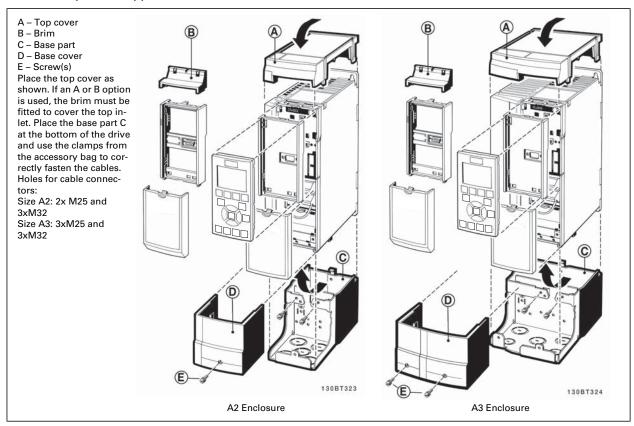
| Technical data                |             |
|-------------------------------|-------------|
| Enclosure:                    | IP 65 front |
| Max. cable length between and |             |
| unit:                         | 3 m         |
| Communication std:            | RS 485      |





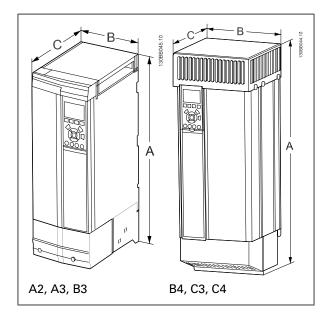





130BA139.11

## IP 21/IP 4X/ TYPE 1 Enclosure Kit

IP 21/IP 4X top/ TYPE 1 is an optional enclosure element available for IP 20 Compact units, enclosure size A2-A3, B3+B4 and C3+C4.


If the enclosure kit is used, an IP 20 unit is upgraded to comply with enclosure IP 21/4X top/TYPE 1.

The IP 4X top can be applied to all standard IP 20 TR200 variants.



3-8 TR200 Design Guide

| Enclo-     | Height (in/      | Width (in/     | Depth (in/   |
|------------|------------------|----------------|--------------|
| sure       | mm)              | mm)            | mm)          |
| type       | Α                | В              | C*           |
| A2         | 14.6/            | 3.5/           | 8.1/         |
| AZ         | <i>372</i>       | 90             | 205          |
| A3         | 14.6/            | 5.1/           | 8.1/         |
| AS         | <i>372</i>       | 130            | 205          |
| D2         | 18.7/            | 6.5/           | 9.8/         |
| B3         | 475              | 165            | 249          |
| B4         | 26.4/            | 10/            | 9.7/         |
|            | 670              | <i>255</i>     | 246          |
| C3         | 29.7/            | 12.9/          | 13.3/        |
| CS         | <i>755</i>       | 329            | 337          |
| C4         | 37.4/ <i>950</i> | 15.4/          | 13.3/        |
| C4         | 37.4/900         | 391            | 337          |
| * If optio | n A/B is used, t | the depth will | increase (se |



Side-by-side installation is not possible when using the IP 21/ IP 4X/ TYPE 1 Enclosure Kit

## **Output Filters**

The high speed switching of the adjustable frequency drive produces some secondary effects, which influence the motor and the enclosed environment. These side effects are addressed by two different filter types, the du/dt and the sine-wave filter.

#### du/dt filters

Motor insulation stresses are often caused by the combination of rapid voltage and current increase. The rapid energy changes can also be reflected back to the DC line in the inverter and cause shut down. The du/dt filter is designed to reduce the voltage rise time/the rapid energy change in the motor, and by that intervention, it prevents premature aging and flashover in the motor insulation. The du/dt filters have a positive influence on the radiation of magnetic noise in the cable that connects the drive to the motor. The voltage wave form is still pulse-shaped but the du/dt ratio is reduced in comparison with the installation without filter.

#### Sine-wave filters

Sine-wave filters are designed to allow only low frequencies to pass. High frequencies are consequently shunted away, which results in a sinusoidal phase-to-phase voltage waveform and sinusoidal current waveforms. With the sinusoidal waveforms, the use of special adjustable frequency drive motors with reinforced insulation is no longer needed. The acoustic noise from the motor is also damped as a consequence of the wave condition. Besides the features of the du/dt filter, the sine-wave filter also reduces insulation stress and bearing currents in the motor, thus leading to prolonged motor lifetime and longer periods between service. Sine-wave filters enable use of longer motor cables in applications where the motor is installed far from the drive. The length is unfortunately limited because the filter does not reduce leakage currents in the cables.

3-10 TR200 Design Guide



## **How to Order**

## **Drive Configurator**

It is possible to design a adjustable frequency drive according to the application requirements by using the ordering number system.

For the adjustable frequency drive, you can order standard drives and drives with integral options by sending a type code string describing the product a to the local Trane sales office, i.e.,

#### -102P18KT4E21H1XGCXXXSXXXXAGBKCXXXXDX

The meaning of the characters in the string can be located in the pages containing the ordering numbers in the chapter *How to Select Your Drive*. In the example above, a Profibus LON works option and a general purpose I/O option is included in the adjustable frequency drive.

Ordering numbers for adjustable frequency drive standard variants can also be located in the chapter *How to Select Your Drive.* 

From the Internet-based drive configurator, you can configure the right adjustable frequency drive for the right application and generate the type code string. The drive configurator will automatically generate an eight-digit sales number to be delivered to your local sales office.

Furthermore, you can establish a project list with several products and send it to a Trane sales representative.

## Example of Drive Configurator interface setup:

The numbers shown in the boxes refer to the letter/ figure number of the type code string; read from left to right. See next page!

| Product groups                    | 1-3   | □        |
|-----------------------------------|-------|----------|
| Adjustable frequency drive series | 4-6   |          |
| Power rating                      | 8-10  | <b>a</b> |
| Phases                            | 11    | <b>a</b> |
| AC Line Voltage                   | 12    | <b>a</b> |
| Enclosure                         | 13-15 | <b>B</b> |
| Enclosure type                    |       | ₽        |
| Enclosure class                   |       | P        |
| Control supply voltage            |       | H        |
| Hardware configura-<br>tion       |       | B        |
| RFI filter                        | 16-17 | □ □      |
| Brake                             | 18    |          |
| Display (keypad)                  | 19    | 0        |
| Coating PCB                       | 20    | <b>a</b> |
| Line power option                 | 21    | <b>B</b> |
| Adaptation A                      | 22    | <b>a</b> |
| Adaptation B                      | 23    | <b>I</b> |
| Software release                  | 24-27 | Ð        |
| Software language                 | 28    | <u> </u> |
| A options                         | 29-30 |          |
| B options                         | 31-32 | <u> </u> |
| C0 options, MCO                   | 33-34 |          |
| C1 options                        | 35    | B        |
| C option software                 | 36-37 | B        |
| D options                         | 38-39 | H        |

## How to Order

# Type Code String low and medium power

| 1 2 3 4 5 6 7 8 | 9 10 11 12 13 1 | 4 15 16 17 18 19 20 21 | 1 22 23 24 25 26 27 28 29 30 31 32 33 | 34 35 36 37 38 39 |
|-----------------|-----------------|------------------------|---------------------------------------|-------------------|
| TR-200P         |                 | H                      | XSXXXXA B C                           |                   |
|                 |                 |                        |                                       | 130BA052.15       |

| 1-6   | TR-200                                                                                                                                                                                                |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8-10  | 1.5–1600 hp [1.1–1200 kW] (P1K1 - P1M2)                                                                                                                                                               |
| 11    | Three phases (T)                                                                                                                                                                                      |
| 11-12 | T 2: 200–240 V AC<br>T 4: 380–480 V AC                                                                                                                                                                |
| 13-15 | E20: IP20 E21: IP 21/NEMA Type 1 E55: IP 55/NEMA Type 12 E66: IP66 P21: IP21/NEMA Type 1 w/ backplate P55: IP55/NEMA Type 12 w/ backplate                                                             |
| 16-17 | H1: RFI filter class A1/B H2: RFI filter class A2 H3: RFI filter class A1/B (reduced cable length) Hx: No RFI filter                                                                                  |
| 18    | X: No brake chopper included B: Brake chopper included                                                                                                                                                |
| 19    | G: Graphical Local Control Panel (keypad) X: No Local Control Panel                                                                                                                                   |
| 20    | X. No coated PCB C: Coated PCB                                                                                                                                                                        |
| 21    | X: No Line power disconnect switch and Load<br>Sharing 1: With Line power disconnect switch (IP55 only) 8: Line power disconnect and Load Sharing D: Load Sharing See Chapter 8 for max. cable sizes. |
| 22    | X: Standard 0: European metric thread in cable entries.                                                                                                                                               |
| 23    | Reserved                                                                                                                                                                                              |
| 24-27 | Current software                                                                                                                                                                                      |
|       | 8-10<br>11<br>11-12<br>13-15<br>16-17<br>18<br>19<br>20<br>21<br>22<br>23                                                                                                                             |

Table 4. 1: Type code description.

4-2 TR200 Design Guide

| Description       | Pos   | Possible choice                                           |
|-------------------|-------|-----------------------------------------------------------|
| A options         | 29-30 | AX: No options A4: MCA 104 DeviceNet AG: MCA 115 Lonworks |
|                   |       | AJ: MCA 116 BACnet gateway                                |
|                   |       | BX: No option                                             |
| B options         | 31-32 | BK: MCB 101 General purpose I/O option                    |
|                   |       | BP: MCB 105 Relay option                                  |
| C0 options MCO    | 33-34 | CX: No options                                            |
| C1 options        | 35    | X: No options                                             |
| C option software | 36-37 | XX: Standard software                                     |
| D options         | 38-39 | DX: No option                                             |
| υ ορτίστιο        | 30-33 | D0: DC backup                                             |

Table 4. 2: Type code description.



# Type Code String High Power

| Description            | Pos   | Possible choice                                                 |
|------------------------|-------|-----------------------------------------------------------------|
| Product group+series   | 1-6   |                                                                 |
| Power rating           | 8-10  | 60–750 hp [45–560 kW]                                           |
| Phases                 | 11    | Three phases (T)                                                |
| AC line voltage        | 11-   | T 4: 380–500 V AC                                               |
| 7 too 10.tago          | 12    | T 7: 525–690 V AC                                               |
| Enclosure              | 13-   | E00: IP00/Chassis                                               |
|                        | 15    | C00: IP00/Chassis w/ stainless steel back channel               |
|                        |       | E0D: IP00/Chassis, D3 P37K-P75K, T7                             |
|                        |       | C0D: IP00/Chassis w/ stainless steel back channel, D3 P37K-P75K |
|                        |       | T7                                                              |
|                        |       | E21: IP 21/ NEMA Type 1                                         |
|                        |       | E54: IP 54/ NEMA Type 12                                        |
|                        |       | E2D: IP 21/ NEMA Type 1, D1 P37K-P75K, T7                       |
|                        |       | E5D: IP 54/ NEMA Type 12, D1 P37K-P75K, T7                      |
|                        |       | E2M: IP 21/ NEMA Type 1 with line power shield                  |
|                        |       | E5M: IP 54/ NEMA Type 12 with line power shield                 |
| RFI filter             | 16-   | H2: RFI filter, class A2 (standard)                             |
|                        | 17    | H4: RFI filter class A1 <sup>1)</sup>                           |
|                        |       | H6: RFI filter, maritime use2)                                  |
| Brake                  | 18    | B: Brake IGBT mounted                                           |
| 2.0                    |       | X: No brake IGBT                                                |
|                        |       | R: Regeneration terminals (E frames only)                       |
| Display                | 19    | G: Graphical Local Control Panel keypad                         |
| -1 /                   |       | N: Numerical Local Control Panel (LCP)                          |
|                        |       | X: No Local Control Panel (D frames IP00 and IP 21 only)        |
| Coating PCB            | 20    | C: Coated PCB                                                   |
|                        |       | X. No coated PCB (D frames 380–480/500 V only)                  |
| Line power option      | 21    | X: No AC line power option                                      |
|                        |       | 3: Line power disconnect and fuse                               |
|                        |       | 5: Line power disconnect, fuse and load sharing                 |
|                        |       | 7: Fuse                                                         |
|                        |       | A: Fuse and load sharing                                        |
|                        |       | D: Load sharing                                                 |
| Adaptation             | 22    | Reserved                                                        |
| Adaptation             | 23    | Reserved                                                        |
| Software release       | 24-   | Current software                                                |
|                        | 27    |                                                                 |
| Software language      | 28    |                                                                 |
| A options              | 29-30 | AX: No options                                                  |
| B options              | 31-32 | BX: No option                                                   |
|                        |       | BK: MCB 101 General purpose I/O option                          |
|                        |       | BP: MCB 105 Relay option                                        |
| C <sub>0</sub> options | 33-34 | CX: No options                                                  |
| C1 options             | 35    | X: No options                                                   |
| C option software      | 36-37 | XX: Standard software                                           |
| D options              | 38-39 | DX: No option                                                   |
|                        |       | D0: DC backup                                                   |

4-4 TR200 Design Guide

<sup>1):</sup> Available for all D frames. E frames 380–480/500 V AC only

<sup>2)</sup> Consult factory for applications requiring maritime certification

# **Ordering Numbers**

Ordering Numbers: Options and Accessories

| Туре                       | Description                                                 | Ordering<br>no. | Comments |
|----------------------------|-------------------------------------------------------------|-----------------|----------|
| Miscellaneous hardwa       | re I                                                        |                 |          |
| DC link connector          | Terminal block for DC link connnection on A2/A3             | 130B1064        |          |
| IP 21/4X top/TYPE 1 kit    | IP21/NEMA1 Top + bottomA2                                   | 130B1122        |          |
| IP 21/4X top/TYPE 1 kit    | IP21/NEMA1 Top + bottomA3                                   | 130B1123        |          |
| IP 21/4X top/TYPE 1 kit    | IP21/NEMA1 Top + bottom B3                                  | 130B1187        |          |
| IP 21/4X top/TYPE 1 kit    | IP21/NEMA1 Top + bottom B4                                  | 130B1189        |          |
| IP 21/4X top/TYPE 1 kit    | IP21/NEMA1 Top + bottom C3                                  | 130B1191        |          |
| -                          | IP21/NEMA1 Top + bottom C4                                  | 130B1193        |          |
| IP21/4X top                | IP21 Top Cover A2                                           | 130B1132        |          |
| IP21/4X top                | IP21 Top Cover A3                                           | 130B1133        |          |
| IP 21/4X top               | IP21 Top Cover B3                                           | 130B1188        |          |
| IP 21/4X top               | IP21 Top Cover B4                                           | 130B1190        |          |
| IP 21/4X top               | IP21 Top Cover C3                                           | 130B1192        |          |
| IP 21/4X top               | IP21 Top Cover C4                                           | 130B1194        |          |
| •                          | Enclosure, frame size A5                                    | 130B1028        |          |
| Panel Through Mount<br>Kit | Enclosure, frame size B1                                    | 130B1046        |          |
| Panel Through Mount<br>Kit | Enclosure, frame size B2                                    | 130B1047        |          |
| Panel Through Mount<br>Kit | Enclosure, frame size C1                                    | 130B1048        |          |
| Panel Through Mount<br>Kit | Enclosure, frame size C2                                    | 130B1049        |          |
| Profibus D-Sub 9           | Connector kit for IP 20                                     | 130B1112        |          |
| Profibus top entry kit     | Top entry kit for Profibus connection - D + E enclosures    | 176F1742        |          |
| Terminal blocks            | Screw terminal blocks for replacing spring loaded terminals |                 |          |
|                            | 1 x 10-pin, 1 x 6-pin and 1 x 3-pin connectors              | 130B1116        |          |
| Backplate                  | A5 IP55 / NEMA 12                                           | 130B1098        |          |
| Backplate                  | B1 IP21 / IP55 / NEMA 12                                    | 130B3383        |          |
| Backplate                  | B2 IP21 / IP55 / NEMA 12                                    | 130B3397        |          |
| Backplate                  | C1 IP21 / IP55 / NEMA 12                                    | 130B3910        |          |
| Backplate                  | C2 IP21 / IP55 / NEMA 12                                    | 130B3911        |          |
| Backplate                  | A5 IP66                                                     | 130B3242        |          |
| Backplate                  | B1 IP66                                                     | 130B3434        |          |
| Backplate                  | B2 IP66                                                     | 130B3465        |          |
| Backplate                  | C1 IP66                                                     | 130B3468        |          |
| Backplate                  | C2 IP66                                                     | 130B3491        |          |

Table 4. 3: Options can be ordered as factory built-in options, see ordering information.

For information on serial communication bus and application option compatibility with older software versions, please contact your Trane supplier.



| Туре                       | Description                                                 | Ordering<br>no. | Comments |
|----------------------------|-------------------------------------------------------------|-----------------|----------|
| Miscellaneous hardwa       | are I                                                       |                 |          |
| DC link connector          | Terminal block for DC link connnection on A2/A3             | 130B1064        |          |
| IP 21/4X top/TYPE 1 kit    | IP21/NEMA1 Top + bottomA2                                   | 130B1122        |          |
| IP 21/4X top/TYPE 1 kit    | IP21/NEMA1 Top + bottomA3                                   | 130B1123        |          |
| IP 21/4X top/TYPE 1 kit    | IP21/NEMA1 Top + bottom B3                                  | 130B1187        |          |
| IP 21/4X top/TYPE 1 kit    | IP21/NEMA1 Top + bottom B4                                  | 130B1189        |          |
| IP 21/4X top/TYPE 1 kit    | IP21/NEMA1 Top + bottom C3                                  | 130B1191        |          |
| IP 21/4X top/TYPE 1 kit    | IP21/NEMA1 Top + bottom C4                                  | 130B1193        |          |
| IP21/4X top                | IP21 Top Cover A2                                           | 130B1132        |          |
| IP21/4X top                | IP21 Top Cover A3                                           | 130B1133        |          |
| IP 21/4X top               | IP21 Top Cover B3                                           | 130B1188        |          |
| IP 21/4X top               | IP21 Top Cover B4                                           | 130B1190        |          |
| IP 21/4X top               | IP21 Top Cover C3                                           | 130B1192        |          |
| IP 21/4X top               | IP21 Top Cover C4                                           | 130B1194        |          |
| Panel Through Mount<br>Kit | Enclosure, frame size A5                                    | 130B1028        |          |
| Panel Through Mount<br>Kit | Enclosure, frame size B1                                    | 130B1046        |          |
| Panel Through Mount<br>Kit | Enclosure, frame size B2                                    | 130B1047        |          |
| Panel Through Mount<br>Kit | Enclosure, frame size C1                                    | 130B1048        |          |
| Panel Through Mount<br>Kit | Enclosure, frame size C2                                    | 130B1049        |          |
| Profibus D-Sub 9           | Connector kit for IP 20                                     | 130B1112        |          |
| Profibus top entry kit     | Top entry kit for Profibus connection - D + E enclosures    | 176F1742        |          |
| Terminal blocks            | Screw terminal blocks for replacing spring loaded terminals |                 |          |
|                            | 1 x 10-pin, 1 x 6-pin and 1 x 3-pin connectors              | 130B1116        |          |
| Backplate                  | A5 IP55 / NEMA 12                                           | 130B1098        |          |
| Backplate                  | B1 IP21 / IP55 / NEMA 12                                    | 130B3383        |          |
| Backplate                  | B2 IP21 / IP55 / NEMA 12                                    | 130B3397        |          |
| Backplate                  | C1 IP21 / IP55 / NEMA 12                                    | 130B3910        |          |
| Backplate                  | C2 IP21 / IP55 / NEMA 12                                    | 130B3911        |          |
| Backplate                  | A5 IP66                                                     | 130B3242        |          |
| Backplate                  | B1 IP66                                                     | 130B3434        |          |
| Backplate                  | B2 IP66                                                     | 130B3465        |          |
| Backplate                  | C1 IP66                                                     | 130B3468        |          |
| Backplate                  | C2 IP66                                                     | 130B3491        |          |

Table 4. 4: Options can be ordered as factory built-in options, see ordering information.

For information on serial communication bus and application option compatibility with older software versions, please contact your Trane supplier.

4-6 TR200 Design Guide

| Туре                   | Description                                                                             | Ordering<br>no.               | Comments               |
|------------------------|-----------------------------------------------------------------------------------------|-------------------------------|------------------------|
| keypads and kits       |                                                                                         |                               |                        |
| LCP 101                | Numerical Local Control Panel (NLCP)                                                    | 130B1124                      |                        |
| keypad 102             | Graphical Local Control Panel (GLCP)                                                    | 130B1107                      |                        |
| keypad cable           | Separate keypad cable, 9.8 ft [3 m]                                                     | 175Z0929                      |                        |
| keypadkit              | Panel mounting kit including graphical keypad, fasteners, 9.8 ft [3 m] cable and gasket | 130B1113                      |                        |
| LCP kit                | Panel mounting kit including numerical LCP, fasteners and gasket                        | 130B1114                      |                        |
| keypadkit              | Panel mounting kit for all keypads including fasteners, 9.8 ft [3 m] cable and gasket   | 130B1117                      |                        |
| keypadkit              | Front mounting kit, IP55 enclosures                                                     | 130B1129                      |                        |
| keypadkit              | Panel mounting kit for all keypads including fasteners and gasket - without cable       | 130B1170                      |                        |
| Options for Slot A - U | ncoated / Coated                                                                        | Ordering<br>no. Uncoa-<br>ted | Ordering<br>no. Coated |
| MCA 115                | Lonworks                                                                                | 130B1106                      | 130B1206               |
| MCA 116                | BACnet gateway for built-in. Not to be used with the relay option MCB 105 card          | 130B1144                      | 130B1244               |
| Options for Slot B     |                                                                                         |                               |                        |
| MCB 101                | General purpose Input Output option                                                     | 130B1125                      |                        |
| MCB 105                | Relay option                                                                            | 130B1110                      |                        |
| Option for Slot D      |                                                                                         |                               |                        |
| MCB 107                | 24 V DC back-up                                                                         | 130B1108                      | 130B1208               |

Table 4. 5: Options can be ordered as factory built-in options, see ordering information.

For information on serial communication bus and application option compatibility with older software versions, please contact your Trane supplier.

## How to Order

| Туре                   | Description                         |          |          |
|------------------------|-------------------------------------|----------|----------|
| Spare Parts            |                                     | Ordering | Comments |
|                        |                                     | no.      |          |
| Control board adjusta- | With Safe Stop Function             | 130B1150 |          |
| ble frequency drive    |                                     |          |          |
| Control board adjusta- | Without Safe Stop Function          | 130B1151 |          |
| ble frequency drive    |                                     |          |          |
| Fan A2                 | Fan, frame size A2                  | 130B1009 |          |
| Fan A3                 | Fan, frame size A3                  | 130B1010 |          |
| Fan A5                 | Fan, frame size A5                  | 130B1017 |          |
| Fan B1                 | Fan external, frame size B1         | 130B3407 |          |
| Fan B2                 | Fan external, frame size B2         | 130B3406 |          |
| Fan B3                 | Fan external, frame size B3         | 130B3563 |          |
| Fan B4                 | Fan external, 25–30 hp [18.5/22 kW] | 130B3699 |          |
| Fan B4                 | Fan external 30–40 hp [22/30 kW]    | 130B3701 |          |
| Fan C1                 | Fan external, frame size C1         | 130B3865 |          |
| Fan C2                 | Fan external, frame size C2         | 130B3867 |          |
| Fan C3                 | Fan external, frame size C3         | 130B4292 |          |
| Fan C4                 | Fan external, frame size C4         | 130B4294 |          |
| Miscellaneous hardwa   | are II                              |          |          |
| Accessory bag A2       | Accessory bag, frame size A2        | 130B1022 |          |
| Accessory bag A3       | Accessory bag, frame size A3        | 130B1022 |          |
| Accessory bag A5       | Accessory bag, frame size A5        | 130B1023 |          |
| Accessory bag B1       | Accessory bag, frame size B1        | 130B2060 |          |
| Accessory bag B2       | Accessory bag, frame size B2        | 130B2061 |          |
| Accessory bag B3       | Accessory bag, frame size B3        | 130B0980 |          |
| Accessory bag B4       | Accessory bag, frame size B4        | 130B1300 | Small    |
| Accessory bag B4       | Accessory bag, frame size B4        | 130B1301 | Big      |
| Accessory bag C1       | Accessory bag, frame size C1        | 130B0046 |          |
| Accessory bag C2       | Accessory bag, frame size C2        | 130B0047 |          |
| Accessory bag C3       | Accessory bag, frame size C3        | 130B0981 |          |
| Accessory bag C4       | Accessory bag, frame size C4        | 130B0982 | Small    |
| Accessory bag C4       | Accessory bag, frame size C4        | 130B0983 | Big      |

4-8 TR200 Design Guide



## Ordering Numbers: High Power Option Kits

| Kit                              | Description          | Ordering Number | Instruction Number |
|----------------------------------|----------------------|-----------------|--------------------|
| NEMA-3R (Rittal Enclosures)      | D3 Frame             | 176F4600        | 175R5922           |
|                                  | D4 Frame             | 176F4601        |                    |
|                                  | E2 Frame             | 176F1852        |                    |
| NEMA-3R (Welded Enclosures)      | D3 Frame             | 176F0296        | 175R1068           |
|                                  | D4 Frame             | 176F0295        |                    |
|                                  | E2 Frame             | 176F0298        |                    |
| Pedestal                         | D Frames             | 176F1827        | 175R5642           |
| Backchannel Duct Kit             | D3 5.9 ft [1800 mm]  | 176F1824        | 175R5640           |
| (Top & Bottom)                   | D4 5.9 ft [1800 mm]  | 176F1823        |                    |
|                                  | D3 78.7 in [2000 mm] | 176F1826        |                    |
|                                  | D4 78.7 in [2000 mm] | 176F1825        |                    |
|                                  | E2 78.7 in [2000 mm] | 176F1850        |                    |
|                                  | E2 7.2 ft [2200 mm]  | 176F0299        |                    |
| Backchannel Duct Kit             | D3/D4 Frames         | 176F1775        | 175R1107           |
| (Top Only)                       | E2 Frame             | 176F1776        |                    |
| IP00 Top & Bottom Covers         | D3/D4 Frames         | 176F1862        | 175R1106           |
| (Welded Enclosures)              | E2 Frame             | 176F1861        |                    |
| IP00 Top & Bottom Covers         | D3 Frames            | 176F1781        | 175R0076           |
| (Rittal Enclosures)              | D4 Frames            | 176F1782        |                    |
|                                  | E2 Frame             | 176F1783        |                    |
| IP00 Motor Cable Clamp           | D3 Frame             | 176F1774        | 175R1109           |
|                                  | D4 Frame             | 176F1746        |                    |
|                                  | E2 Frame             | 176F1745        |                    |
| IP00 Terminal Cover              | D3/D4 Frame          | 176F1779        | 175R1108           |
| line Power Shield                | D1/D2 Frames         | 176F0799        | 175R5923           |
|                                  | E1 Frame             | 176F1851        |                    |
| Input Plates                     | See Instr            |                 | 175R5795           |
| Loadshare                        | D1/D3 Frame          | 176F8456        | 175R5637           |
|                                  | D2/D4 Frame          | 176F8455        |                    |
| Top Entry Sub D or Shield Termi- |                      |                 |                    |
| nation                           | D3/D4/E2 Frames      | 176F1742        | 175R5964           |

## Ordering Numbers: Sine Wave Filter Modules, 200-500 V AC

| Adjustable 1 | requency dr | ive size | Minimum        | Maximum     | Danie NI -     | David NI -     | Data d filters    |
|--------------|-------------|----------|----------------|-------------|----------------|----------------|-------------------|
| 200-240      | 380-440     | 440-480  | switching fre- | output fre- | Part No.       | Part No.       | Rated filter cur- |
| [VAC]        | [VAC]       | [VAC]    | quency [kHz]   | quency [Hz] | IP20           | IP00           | rent at 50 Hz [A] |
|              | P1K1        | P1K1     | 5              | 120         | 130B2441       | 130B2406       | 4.5               |
|              | P1K5        | P1K5     | 5              | 120         | 130B2441       | 130B2406       | 4.5               |
|              | P2K2        | P2K2     | 5              | 120         | 130B2443       | 130B2408       | 8                 |
| P1K5         | P3K0        | P3K0     | 5              | 120         | 130B2443       | 130B2408       | 8                 |
|              | P4K0        | P4K0     | 5              | 120         | 130B2444       | 130B2409       | 10                |
| P2K2         | P5K5        | P5K5     | 5              | 120         | 130B2446       | 130B2411       | 17                |
| P3K0         | P7K5        | P7K5     | 5              | 120         | 130B2446       | 130B2411       | 17                |
| P4K0         |             |          | 5              | 120         | 130B2446       | 130B2411       | 17                |
| P5K5         | P11K        | P11K     | 4              | 100         | 130B2447       | 130B2412       | 24                |
| P7K5         | P15K        | P15K     | 4              | 100         | 130B2448       | 130B2413       | 38                |
|              | P18K        | P18K     | 4              | 100         | 130B2448       | 130B2413       | 38                |
| P11K         | P22K        | P22K     | 4              | 100         | 130B2307       | 130B2281       | 48                |
| P15K         | P30K        | P30K     | 3              | 100         | 130B2308       | 130B2282       | 62                |
| P18K         | P37K        | P37K     | 3              | 100         | 130B2309       | 130B2283       | 75                |
| P22K         | P45K        | P55K     | 3              | 100         | 130B2310       | 130B2284       | 115               |
| P30K         | P55K        | P75K     | 3              | 100         | 130B2310       | 130B2284       | 115               |
| P37K         | P75K        | P90K     | 3              | 100         | 130B2311       | 130B2285       | 180               |
| P45K         | P90K        | P110     | 3              | 100         | 130B2311       | 130B2285       | 180               |
|              | P110        | P132     | 3              | 100         | 130B2312       | 130B2286       | 260               |
|              | P132        | P160     | 3              | 100         | 130B2313       | 130B2287       | 260               |
|              | P160        | P200     | 3              | 100         | 130B2313       | 130B2287       | 410               |
|              | P200        | P250     | 3              | 100         | 130B2314       | 130B2288       | 410               |
|              | P250        | P315     | 3              | 100         | 130B2314       | 130B2288       | 480               |
|              | P315        | P315     | 2              | 100         | 130B2315       | 130B2289       | 660               |
|              | P355        | P355     | 2              | 100         | 130B2315       | 130B2289       | 660               |
|              | P400        | P400     | 2              | 100         | 130B2316       | 130B2290       | 750               |
|              |             | P450     | 2              | 100         | 130B2316       | 130B2290       | 750               |
|              | P450        | P500     | 2              | 100         | 130B2317       | 130B2291       | 880               |
|              | P500        | P560     | 2              | 100         | 130B2317       | 130B2291       | 880               |
|              | P560        | P630     | 2              | 100         | 130B2318       | 130B2292       | 1200              |
|              | P630        | P710     | 2              | 100         | 130B2318       | 130B2292       | 1200              |
|              | P710        | P800     | 2              | 100         | 2x130B23<br>17 | 2x130B229<br>1 | 1500              |
|              | P800        | P1M0     | 2              | 100         | 2x130B23<br>17 | 2x130B229<br>1 | 1500              |
|              | P1M0        |          | 2              | 100         | 2x130B23<br>18 | 2x130B229<br>2 | 1700              |

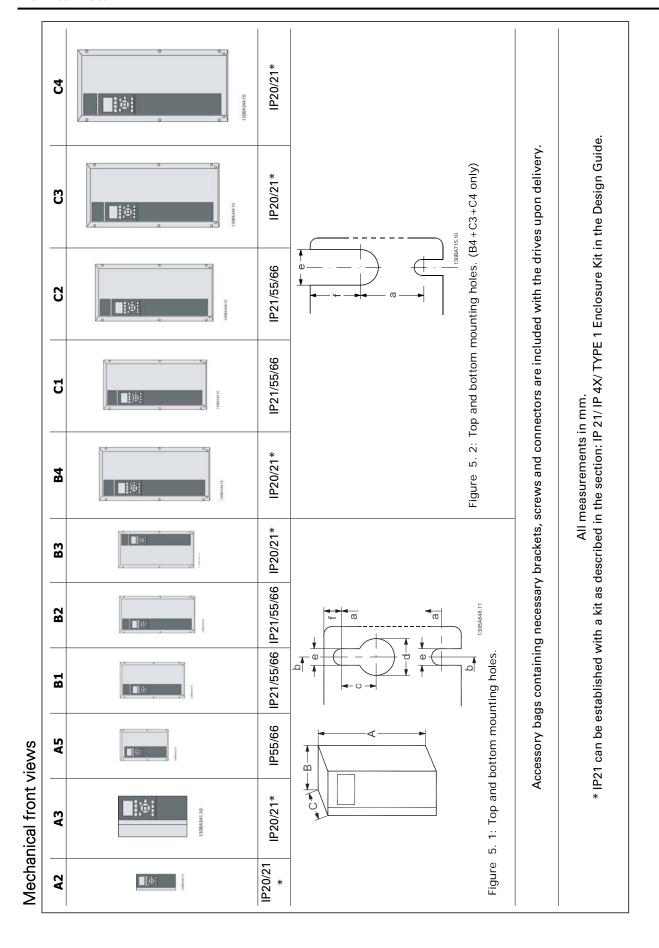
When using sine-wave filters, the switching frequency should comply with filter specifications in par. 14-01 <a href="Switching Frequency">Switching Frequency</a>.

When using sine-wave filters, the switching frequency should comply with filter specifications in par. 14-01 <a href="Switching Frequency">Switching Frequency</a>.

4-10 TR200 Design Guide

## Ordering Numbers: du/dt Filters, 380-480 VAC

Line power supply 3x380 to 3x480 V AC


| Adjustable free | uency drive size | Minimum switching fre- | Maximum output fre- | Part No. IP20    | Part No. IP00 | Rated filter current at 50 |
|-----------------|------------------|------------------------|---------------------|------------------|---------------|----------------------------|
| [VAC]           | [VAC]            | quency [kHz]           | quency [Hz]         | 1 411 140. 11 20 | 110.110.1100  | Hz [A]                     |
| P11K            | P11K             | 4                      | 100                 | 130B2396         | 130B2385      | 24                         |
| P15K            | P15K             | 4                      | 100                 | 130B2397         | 130B2386      | 45                         |
| P18K            | P18K             | 4                      | 100                 | 130B2397         | 130B2386      | 45                         |
| P22K            | P22K             | 4                      | 100                 | 130B2397         | 130B2386      | 45                         |
| P30K            | P30K             | 3                      | 100                 | 130B2398         | 130B2387      | 75                         |
| P37K            | P37K             | 3                      | 100                 | 130B2398         | 130B2387      | 75                         |
| P45K            | P45K             | 3                      | 100                 | 130B2399         | 130B2388      | 110                        |
| P55K            | P55K             | 3                      | 100                 | 130B2399         | 130B2388      | 110                        |
| P75K            | P75K             | 3                      | 100                 | 130B2400         | 130B2389      | 182                        |
| P90K            | P90K             | 3                      | 100                 | 130B2400         | 130B2389      | 182                        |
| P110            | P110             | 3                      | 100                 | 130B2401         | 130B2390      | 280                        |
| P132            | P132             | 3                      | 100                 | 130B2401         | 130B2390      | 280                        |
| P160            | P160             | 3                      | 100                 | 130B2402         | 130B2391      | 400                        |
| P200            | P200             | 3                      | 100                 | 130B2402         | 130B2391      | 400                        |
| P250            | P250             | 3                      | 100                 | 130B2277         | 130B2275      | 500                        |
| P315            | P315             | 2                      | 100                 | 130B2278         | 130B2276      | 750                        |
| P355            | P355             | 2                      | 100                 | 130B2278         | 130B2276      | 750                        |
| P400            | P400             | 2                      | 100                 | 130B2278         | 130B2276      | 750                        |
|                 | P450             | 2                      | 100                 | 130B2278         | 130B2276      | 750                        |
| P450            | P500             | 2                      | 100                 | 130B2405         | 130B2393      | 910                        |
| P500            | P560             | 2                      | 100                 | 130B2405         | 130B2393      | 910                        |
| P560            | P630             | 2                      | 100                 | 130B2407         | 130B2394      | 1500                       |
| P630            | P710             | 2                      | 100                 | 130B2407         | 130B2394      | 1500                       |
| P710            | P800             | 2                      | 100                 | 130B2407         | 130B2394      | 1500                       |
| P800            | P1M0             | 2                      | 100                 | 130B2407         | 130B2394      | 1500                       |
| P1M0            |                  | 2                      | 100                 | 130B2410         | 130B2395      | 2300                       |

4-12 TR200 Design Guide



## **How to Install**

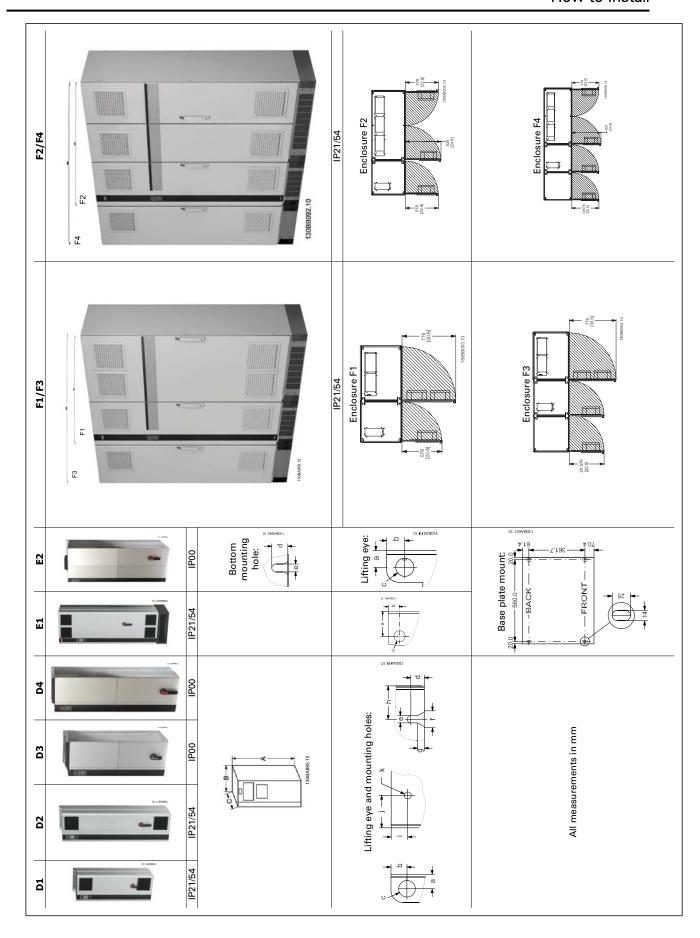
| Page intentionally left blank! |  |
|--------------------------------|--|
|                                |  |



5-2 TR200 Design Guide

## Mechanical dimensions

|                               | Mechanical dimensions |                                  |                  |                                  |                  |                                                         |                                          |                               |                                                      |
|-------------------------------|-----------------------|----------------------------------|------------------|----------------------------------|------------------|---------------------------------------------------------|------------------------------------------|-------------------------------|------------------------------------------------------|
| Frame size (hp)[kW]:          |                       | A                                | 2                | A:                               | 3                | A5                                                      | B1                                       | B2                            | В3                                                   |
| 200–240 V<br>380–480 V        |                       | 1.5 -<br>[1.1-<br>1.5 -<br>[1.1- | -2.2]<br>- 5.0   | 4.0 -<br>[3.0-<br>7.5 -<br>[5.5- | -3.7]<br>- 10    | 1.5 - 5.0<br>[1.1–<br>3.7]<br>1.5 - 10<br>[1.1–<br>7.5] | [5.5–<br>11]<br>15 - 25<br>[11–<br>18.5] | 20 [15]<br>30 - 40<br>[22-30] | 7.5 - 15<br>[5.5–<br>11]<br>15 - 25<br>[11–<br>18.5] |
| IP<br>NEMA                    |                       | 20<br>Chassis                    | 21<br>Type 1     | 20<br>Chassis                    | 21<br>Type 1     | 55/66<br>Type 12                                        | 21/55/66<br>Type<br>1/12                 | 21/ 55/66<br>Type<br>1/12     | 20<br>Chassis                                        |
| Height (in/ <i>mm</i> )       |                       |                                  |                  |                                  |                  |                                                         |                                          |                               |                                                      |
| Enclosure                     | A*<br>*               | 9.7/ <i>246</i>                  | 14.7/ <i>372</i> | 9.7/ <i>246</i>                  | 14.7/372         | 16.5/ <i>420</i>                                        | 18.9/ <i>480</i>                         | 25.4/ <i>650</i>              | 13.8/ <i>350</i>                                     |
| w/de-coupling plate           | A2                    | 14.7/ <i>374</i>                 | -                | 14.7/ <i>374</i>                 | -                | -                                                       | -                                        | -                             | 16.5/ <i>419</i>                                     |
| Backplate                     | A1                    | 10.6/ <i>268</i>                 | 14.8/ <i>375</i> | 10.6/ <i>268</i>                 | 14.8/ <i>375</i> | 16.5/ <i>420</i>                                        | 18.9/ <i>480</i>                         | 25.4/650                      | 15.7/ <i>399</i>                                     |
| Distance between mount. holes | а                     | 10.6/ <i>257</i>                 | 13.8/ <i>350</i> | 10.1/ <i>257</i>                 | 13.8/ <i>350</i> | 15.8/ <i>402</i>                                        | 17.8/454                                 | 24.6/ <i>624</i>              | 15/ <i>380</i>                                       |
| Width (in/mm)                 |                       |                                  |                  |                                  |                  |                                                         |                                          |                               |                                                      |
| Enclosure                     | В                     | 3.5/ <i>90</i>                   | 3.5/ <i>90</i>   | 5.1/ <i>130</i>                  | 5.1/ <i>130</i>  | 9.5/ <i>242</i>                                         | 9.5/ <i>242</i>                          | 9.5/ <i>242</i>               | 6.5/ <i>165</i>                                      |
| With one C option             | В                     | 5.1/ <i>130</i>                  | 5.1/ <i>130</i>  | 6.7/ <i>170</i>                  | 6.7/ <i>170</i>  | 9.5/ <i>242</i>                                         | 9.5/ <i>242</i>                          | 9.5/ <i>242</i>               | 8.1/ <i>205</i>                                      |
| Backplate                     | В                     | 3.5/ <i>90</i>                   | 3.5/ <i>90</i>   | 5.1/ <i>130</i>                  | 5.1/ <i>130</i>  | 9.5/ <i>242</i>                                         | 9.5/ <i>242</i>                          | 9.5/ <i>242</i>               | 6.5/ <i>165</i>                                      |
| Distance between mount. holes | b                     | 2.8/70                           | 2.8/70           | 4.3/110                          | 4.3/110          | 8.5/ <i>215</i>                                         | 8.3/210                                  | 8.3/210                       | 5.5/140                                              |
| Depth (in/mm)                 |                       |                                  |                  |                                  |                  |                                                         |                                          |                               |                                                      |
| Without option A/B            | С                     | 8.1/ <i>205</i>                  | 8.1/ <i>205</i>  | 8.1/ <i>205</i>                  | 8.1/ <i>205</i>  | 7.9/ <i>200</i>                                         | 10.2/ <i>260</i>                         | 10.2/ <i>260</i>              | 9.8/ <i>248</i>                                      |
| With option A/B               | C*                    | 8.7/ <i>220</i>                  | 8.7/ <i>220</i>  | 8.7/ <i>220</i>                  | 8.7/ <i>220</i>  | 7.9/ <i>200</i>                                         | 10.2/ <i>260</i>                         | 10.2/ <i>260</i>              | 10.3/ <i>262</i>                                     |
| Screw holes (in/mm)           |                       |                                  |                  |                                  |                  |                                                         |                                          |                               |                                                      |
|                               | С                     | 0.3/8.0                          | 0.3/ <i>8.0</i>  | 0.3/8.0                          | 0.3/8.0          | 0.3/8.2                                                 | 0.5/ <i>12</i>                           | 0.5/ <i>12</i>                | 0.3/ <i>8.0</i>                                      |
| Diameter ø                    | d                     | 0.45/11                          | 0.45/ <i>11</i>  | 0.45/11                          | 0.45/11          | 0.5/ <i>12</i>                                          | 0.7/ <i>19</i>                           | 0.7/ <i>19</i>                | 0.5/ <i>12</i>                                       |
| Diameter ø                    | е                     | 0.2/5.5                          | 0.2/5.5          | 0.2/5.5                          | 0.2/5.5          | 0.25/ <i>6.5</i>                                        | 0.35/9.0                                 | 0.35/9.0                      | 0.25/6.8                                             |
|                               | f                     | 0.35/9.0                         | 0.35/9.0         | 0.35/9.0                         | 0.35/9.0         |                                                         | 0.35/9.0                                 | 0.35/9.0                      | 0.3/7.9                                              |
| Max weight (lbs/ <i>kg</i> )  |                       | 10.8/4.9                         | 11.7/5.3         | 14.5/ <i>6.6</i>                 | 15.4/ <i>7.0</i> | 30.8/ <i>14</i>                                         | 50.6/23                                  | 59.4/ <i>27</i>               | 26.4/ <i>12</i>                                      |

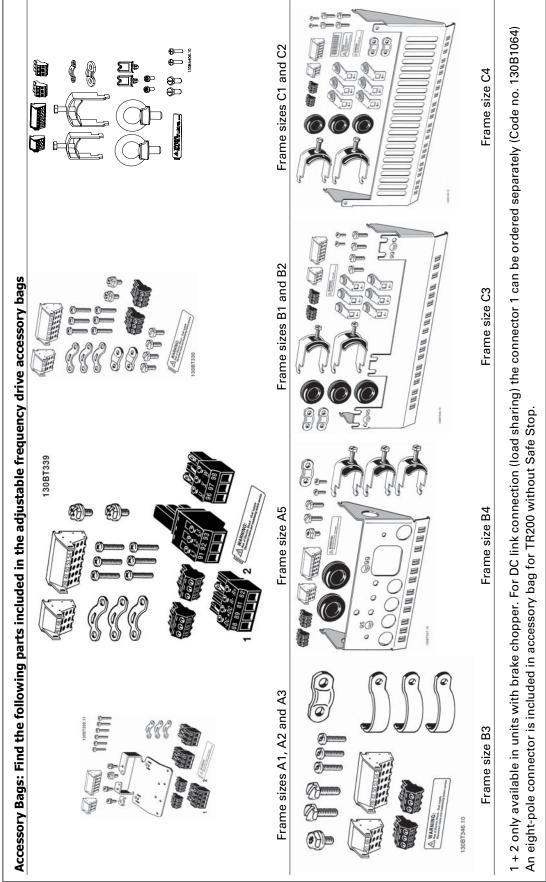

| Frame size (hp)[kW]: |     | В4                | C1               | C2               | С3                       | C4               |
|----------------------|-----|-------------------|------------------|------------------|--------------------------|------------------|
|                      |     | 20 - 25           | 25 - 40          | 50 - 60          | 30 - 40                  | 50 - 60          |
| 200-240 V            |     | [15–18.5]         | [18.5–30]        | [37-45]          | [22-30]                  | [37-45]          |
| 380-480 V            |     | 30 - 50           | 50 - 75          | 100 - 125        | 60 - 75                  | 100 - 125        |
|                      |     | [22–37]           | [37–55]          | [75-90]          | [45-55]                  | [75-90]          |
| IP                   |     | 20                | 21/ 55/66        | 21/ 55/66        | 20                       | 20               |
| NEMA                 |     | Chassis           | Type 1/12        | Type 1/12        | Chassis                  | Chassis          |
| Height (in/mm)       |     |                   |                  |                  |                          |                  |
| Enclosure            | A** | 18/ <i>460</i>    | 26.8/ <i>680</i> | 30.3/ <i>770</i> | 19.3/ <i>490</i>         | 23.6/ <i>600</i> |
| w/de-coupling plate  | A2  | 23.4/595          | -                | -                | <b>24.</b> 8/ <i>630</i> | 31.5/ <i>800</i> |
| Backplate            | A1  | 20.5/ <i>520</i>  | 26.8/ <i>680</i> | 30.3/ <i>770</i> | 21.7/ <i>550</i>         | 26/ <i>660</i>   |
| Distance between     |     | 19.5/ <i>495</i>  | 25.5/ <i>648</i> | 29.1/ <i>739</i> | 20.5/ <i>521</i>         | 24.8/631         |
| mount. holes         | a   | 19.5/490          | 25.5/040         | 29.1//39         | 20.5/327                 | 24.0/037         |
| Width (in/mm)        |     |                   |                  |                  |                          |                  |
| Enclosure            | В   | 9.1/ <i>231</i>   | 12.1/ <i>308</i> | 14.6/ <i>370</i> | 12.1/ <i>308</i>         | 14.6/ <i>370</i> |
| With one C option    | В   | 9.1/ <i>231</i>   | 12.1/ <i>308</i> | 14.6/ <i>370</i> | 12.1/ <i>308</i>         | 14.6/ <i>370</i> |
| Backplate            | В   | 9.1/ <i>231</i>   | 12.1/ <i>308</i> | 14.6/ <i>370</i> | 12.1/ <i>308</i>         | 14.6/ <i>370</i> |
| Distance between     | b   | 7.9/ <i>200</i>   | 10.7/ <i>272</i> | 13.1/ <i>334</i> | 10.6/ <i>270</i>         | 5.8/ <i>330</i>  |
| mount. holes         | В   | 7.3/200           | 10.7/2/2         | 13.1/334         | 10.0/2/0                 | 3.0/330          |
| Depth (in/mm)        |     |                   |                  |                  |                          |                  |
| Without option A/B   | С   | 9.5/ <i>242</i>   | 12.2/ <i>310</i> | 13.2/ <i>335</i> | 13.1/ <i>333</i>         | 13.1/ <i>333</i> |
| With option A/B      | C*  | 9.5/ <i>242</i>   | 12.2/ <i>310</i> | 13.2/ <i>335</i> | 13.1/ <i>333</i>         | 13.1/ <i>333</i> |
| Screw holes (in/mm)  |     |                   |                  |                  |                          |                  |
|                      | С   | -                 | 0.5/ <i>12</i>   | 0.5/ <i>12</i>   | -                        | -                |
| Diameter ø           | d   | -                 | 0.7/ <i>19</i>   | 0.7/ <i>19</i>   | -                        | -                |
| Diameter ø           | е   | 0.35/8.5          | 0.35/ <i>9.0</i> | 0.35/9.0         | 0.35/ <i>8.5</i>         | 0.35/8.5         |
|                      | f   | 0.6/15            | 0.4/9.8          | 0.4/9.8          | 0.7/ <i>17</i>           | 0.7/ <i>17</i>   |
| Max weight (lbs/kg)  |     | 51.7/ <i>23.5</i> | 99/45            | 143/65           | <b>77</b> / <i>35</i>    | 110/ <i>50</i>   |

<sup>\*</sup> Depth of enclosure will vary with different options installed.

5-4 TR200 Design Guide

<sup>\*\*</sup> The free space requirements are above and below the bare enclosure height measurement A. See section *Mechanical Mounting* for further information.





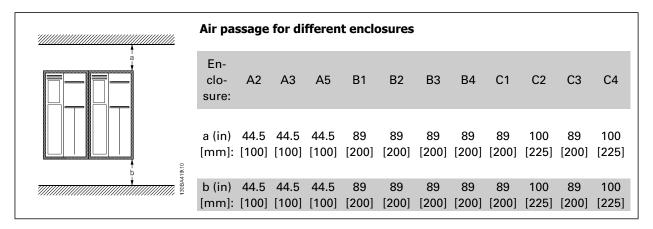



|                                                                                                     |                                            |                                                                       |                                                            | Mechanical                                                   | Mechanical dimensions                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |                                                          |                                                                   |                                                                            |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------|
| Enclosure size (hp/)kW                                                                              | D1                                         | D2                                                                    | D3                                                         | D4                                                           | E1                                                           | E2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F1                                                                | F2                                                       | F3                                                                | 7.                                                                         |
| 380–480 V AC<br>525–690 V AC                                                                        | 150 -<br>175/110-132<br>60 -<br>250/45-160 | 150 - 250 - 175/110-132 350/160-250 60 - 300 - 250/45-160 550/200-400 | 150 -<br>175/ <i>110-133</i><br>60 -<br>250/ <i>45-160</i> | 250 -<br>350/ <i>160-250</i><br>300 -<br>550/ <i>200-400</i> | 450 -<br>00/ <i>315-45</i> 0<br>600 -<br>50/ <i>450-63</i> 0 | 450 - 650 - 100   450 - 650 - 100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100 | 650 -<br>950/ <i>500-710</i><br>950 -<br>1200/ <i>710-90</i><br>0 | 1075 -<br>350/ <i>800-1</i><br>00<br>1350 -<br>875/1000- | 650 -<br>950/ <i>500-710</i><br>950 -<br>1200/ <i>710-90</i><br>0 | 0 950/500-710<br>950/500-710<br>950-<br>1 1200/710-90 1875/1000-1<br>0 400 |
| IP<br>NEMA                                                                                          | 21/54<br>Tvpe 1/12                         | 21/54<br>Tvpe 1/12                                                    | 00<br>Chassis                                              | 00<br>Chassis                                                | 21/54<br>Tvpe 1/12                                           | 00<br>Chassis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21/54<br>Tvpe 1/12                                                | 21/54<br>Tvpe 1/12                                       | 21/54<br>Tvpe 1/12                                                | 21/54<br>Tvpe 1/12                                                         |
| Shipping dimensions (in/mm)                                                                         | ١                                          |                                                                       |                                                            |                                                              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                 |                                                          |                                                                   |                                                                            |
| Width                                                                                               | 68.1/1730                                  | 68.1/1730                                                             | 48/1220                                                    | 58.7/1490                                                    | 86.5/2197                                                    | 67.1/1705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 91.5/2324                                                         | 91.5/2324                                                | 91.5/2324                                                         | 91.5/2324                                                                  |
| Height                                                                                              | 25.6/650                                   | 25.6/650                                                              | 25.6/650                                                   | 25.6/650                                                     | 33.1/840                                                     | 32.7/831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 61.8/1569                                                         | 77.2/1962                                                | 85/2159                                                           | 100.7/2559                                                                 |
| Depth                                                                                               | 22.4/570                                   | 22.4/570                                                              | 22.4/570                                                   | 22.4/570                                                     | 29/736                                                       | 29/736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36.5/ <i>927</i>                                                  | 36.5/927                                                 | 36.5/927                                                          | 36.5/927                                                                   |
| Adjustable frequency driveDrive dimensions: (mm) Height                                             | Drive dimensions:                          | (mm)                                                                  |                                                            |                                                              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |                                                          |                                                                   |                                                                            |
| ate                                                                                                 | A 47.6/1209                                | 62.6/1589                                                             | 41.2/1046                                                  | 52.2/1327                                                    | 78.7/2000                                                    | 60.9/1547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 89.8/2281                                                         | 89.8/2281                                                | 89.8/2281                                                         | 89.8/2281                                                                  |
| Width                                                                                               | _                                          |                                                                       |                                                            |                                                              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | =                                                                 |                                                          | =                                                                 |                                                                            |
| ate                                                                                                 | B 16.5/420                                 | 16.5/420                                                              | 16.1/408                                                   | 16.1/408                                                     | 23.6/600                                                     | 23/585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 55.1/1400                                                         | 70.9/1800                                                | 78.7/2000                                                         | 94.5/2400                                                                  |
| Depth                                                                                               |                                            |                                                                       |                                                            |                                                              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |                                                          |                                                                   |                                                                            |
|                                                                                                     | C 15/380                                   | 15/380                                                                | 14.8/375                                                   | 14.8/375                                                     | 19.4/494                                                     | 19.4/494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23.9/607                                                          | 23.9/607                                                 | 23.9/607                                                          | 23.9/607                                                                   |
| Dimensions brackets (in/mm)                                                                         |                                            |                                                                       |                                                            |                                                              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |                                                          |                                                                   |                                                                            |
| Center hole to edge                                                                                 | a 0.9/ <i>22</i>                           | 0.9/22                                                                | 0.9/22                                                     | 0.9/22                                                       | 2.2/56                                                       | 0.9/23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |                                                          |                                                                   |                                                                            |
| Center hole to edge                                                                                 | b 1.0/25                                   | 1.0/25                                                                | 1.0/25                                                     | 1.0/25                                                       | 1.0/25                                                       | 1.0/25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |                                                          |                                                                   |                                                                            |
| Hole diameter                                                                                       | c 1.0/25                                   | 1.0/25                                                                | 1.0/25                                                     | 1.0/25                                                       | 1.0/25                                                       | 1.0/25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |                                                          |                                                                   |                                                                            |
|                                                                                                     | d 0.8/20                                   | 0.8/20                                                                | 0.8/20                                                     | 0.8/20                                                       |                                                              | 1.1/27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |                                                          |                                                                   |                                                                            |
|                                                                                                     | e 0.4/11                                   | 0.4/11                                                                | 0.4/11                                                     | 0.4/11                                                       |                                                              | 0.5/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |                                                          |                                                                   |                                                                            |
|                                                                                                     | f 0.9/22                                   | 0.9/22                                                                | 0.9/22                                                     | 0.9/22                                                       |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |                                                          |                                                                   |                                                                            |
|                                                                                                     | g 0.4/ <i>10</i>                           | 0.4/10                                                                | 0.4/10                                                     | 0.4/10                                                       |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |                                                          |                                                                   |                                                                            |
|                                                                                                     | h 2.0/ <i>51</i>                           | 2.0/51                                                                | 2.0/51                                                     | 2.0/51                                                       |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |                                                          |                                                                   |                                                                            |
|                                                                                                     | i 1.0/ <i>25</i>                           | 1.0/25                                                                | 1.0/25                                                     | 1.0/25                                                       |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |                                                          |                                                                   |                                                                            |
|                                                                                                     | j 1.9/ <i>49</i>                           | 1.9/49                                                                | 1.9/49                                                     | 1.9/49                                                       |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |                                                          |                                                                   |                                                                            |
| Hole diameter                                                                                       | k 0.4/77                                   | 0.4/11                                                                | 0.4/11                                                     | 0.4/11                                                       |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |                                                          |                                                                   |                                                                            |
| Max weight<br>(lbs/kg)                                                                              | 229/104                                    | 332/151                                                               | 200/91                                                     | 304/138                                                      | 689/313                                                      | 609/277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2209/ 1004                                                        | 2741/1246                                                | 2858/1299                                                         | 3390/1541                                                                  |
| Please contact Trane for more detailed information and CAD drawings for your own planning purposes. | e detailed informat                        | ion and CAD drav                                                      | wings for your ow                                          | vn planning purp                                             | oses.                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |                                                          |                                                                   |                                                                            |

5-6 TR200 Design Guide






#### How to Install

#### Mechanical mounting

All A, B and C enclosures allow side-by-side installation.

Exception: If a IP21 kit is used, there has to be a clearance between the enclosures. For enclosures A2, A3, B3,B4 and C3, the minimum clearance is 2 in [50 mm], for C4, it is 3 in [75 mm].

For optimal cooling conditions, allow a free air passage above and below the adjustable frequency drive. See table below.



- 1. Drill holes in accordance with the measurements given.
- 2. You must provide screws suitable for the surface on which you want to mount the adjustable frequency drive. Retighten all four screws.

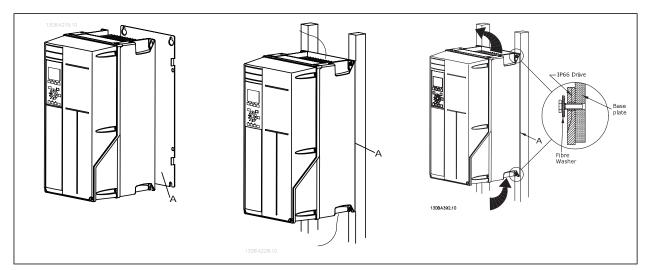
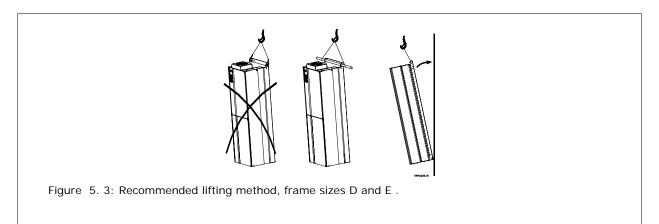




Table 5. 1: When mounting enclosure sizes A5, B1, B2, B3, B4, C1, C2, C3 and C4 on a non-solid back wall, the drive must be provided with a backplate A due to insufficient cooling air over the heatsink.

5-8 TR200 Design Guide

#### Lifting

Always lift the adjustable frequency drive using the dedicated lifting holes. For all D and E2 (IP00) enclosures, use a bar to avoid bending the lifting holes of the adjustable frequency drive.



## **⚠**CAUTION

The lifting bar must be able to handle the weight of the adjustable frequency drive. See *Mechanical Dimensions* for the weight of the different frame sizes. Maximum diameter for bar is 1 in [2.5 cm]. The angle from the top of the drive to the lifting cable should be 60° C or greater.

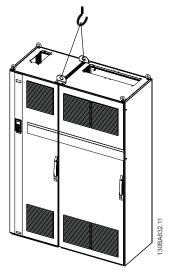



Figure 5. 4: Recommended lifting method, frame size F1.

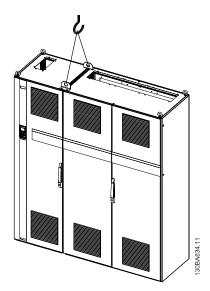



Figure 5. 5: Recommended lifting method, frame size F2.

#### How to Install

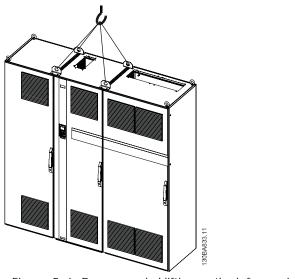



Figure 5. 6: Recommended lifting method, frame size

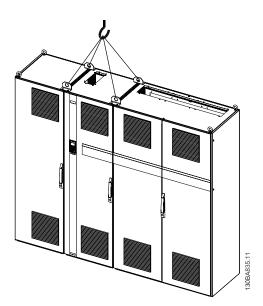



Figure 5. 7: Recommended lifting method, frame size F4.

#### Safety Requirements of Mechanical Installation

## **∆**CAUTION

Pay attention to the requirements that apply to integration and the field mounting kit. Observe the information in the list to avoid serious injury or equipment damage, especially when installing large units.

The adjustable frequency drive is cooled by air circulation.

To protect the unit from overheating, it must be ensured that the ambient temperature *does not exceed the maximum temperature stated for the adjustable frequency drive*, and that the 24-hour average temperature *is not exceeded*. Locate the maximum temperature and 24-hour average in the paragraph *Derating for Ambient Temperature*.

If the ambient temperature is in the range of 113°–131°F [45°–55°C], derating of the adjustable frequency drive will become relevant, see *Derating for Ambient Temperature*.

The service life of the adjustable frequency drive is reduced if derating for ambient temperature is not taken into account.

5-10 TR200 Design Guide

#### Field Mounting

For field mounting the IP 21/IP 4X top/TYPE 1 kits or IP 54/55 units are recommended.

## **Electrical Installation**

## Cables general

NOTE: For the TR200 High Power series line power and motor connections, please see TR200 High Power Instruction Manual MG.12.KX.YY.

#### **NOTE**

#### **Cables General**

All cabling must comply with national and local regulations on cable cross-sections and ambient temperature. Copper (140°–167°F [60°–75°C]) conductors are recommended.

## Details of terminal tightening torques.

|                     | P                      | ower (hp)[k\              | W]                         |                          |                          | Torqu              | e (Nm)     |        |            |
|---------------------|------------------------|---------------------------|----------------------------|--------------------------|--------------------------|--------------------|------------|--------|------------|
| En-<br>clo-<br>sure | 200–240<br>V           | 380–480<br>V              |                            | Line<br>power            | Motor                    | DC connection      | Brake      | Ground | Relay      |
| A2                  | 1.5 - 4.0<br>[1.1–3.0] | 1.5 - 5.0<br>[1.1–4.0]    | 1.5 - 5.0<br>[1.1–4.0]     | 1.8                      | 1.8                      | 1.8                | 1.8        | 3      | 0.6        |
| А3                  | 4.0 [3.7]              | 7.5 - 10<br>[5.5 - 7.5]   | 7.5 - 10<br>[5.5–7.5]      | 1.8                      | 1.8                      | 1.8                | 1.8        | 3      | 0.6        |
| A5                  | 1.5 - 5.0<br>[1.1–3.7] | 1.5 - 5.0<br>[1.1–7.5]    | 1.5 - 5.0<br>[1.1–7.5]     | 1.8                      | 1.8                      | 1.8                | 1.8        | 3      | 0.6        |
| B1                  | 7.5 - 15<br>[5.5–11]   | 15 - 25<br>[11–18.5]      | -                          | 1.8                      | 1.8                      | 1.5                | 1.5        | 3      | 0.6        |
| B2                  | -<br>20 [15]           | 30 [22]<br>40 [30]        | -                          | 4.5<br>4.5 <sup>2)</sup> | 4.5<br>4.5 <sup>2)</sup> | 3.7<br>3.7         | 3.7<br>3.7 | 3      | 0.6<br>0.6 |
| В3                  | 7.5 - 15<br>[5.5–11]   | 15 - 25<br>[11–18.5]      | 15- 25<br>[11–18.5]        | 1.8                      | 1.8                      | 1.8                | 1.8        | 3      | 0.6        |
| B4                  | 20 - 25<br>[15 –18.5]  | 30 - 50<br>[22 - 37]      | 25 - 50<br>[18.5–37]       | 4.5                      | 4.5                      | 4.5                | 4.5        | 3      | 0.6        |
| C1                  | 25 - 40<br>[18.5 - 30] | 55 - 75<br>[37 - 55]      | -                          | 10                       | 10                       | 10                 | 10         | 3      | 0.6        |
| C2                  | 55 - 60<br>[37 - 45]   | 100 - 125<br>[75 - 90]    | -                          | 14/24 <sup>1)</sup>      | 14/24 <sup>1)</sup>      | 14                 | 14         | 3      | 0.6        |
| С3                  | 30 - 40<br>[22 - 30]   | 60 - 75<br>[45 - 55]      | 50 - 75<br>[37 - 55]       | 10                       | 10                       | 10                 | 10         | 3      | 0.6        |
| C4                  | 50 - 60<br>[37 - 45]   | 100 - 125<br>[75 - 90]    | 75 - 125<br>[55 - 90]      | 14/24 1)                 | 14/24 1)                 | 14                 | 14         | 3      | 0.6        |
|                     |                        |                           |                            | High P                   | ower                     |                    |            |        |            |
| En-<br>clo-<br>sure |                        | 380–480<br>V              |                            | Line<br>power            | Motor                    | DC con-<br>nection | Brake      | Ground | Relay      |
| D1/D3               |                        | 150 - 175<br>[110-132]    | 60 - 250<br>[45-160]       | 19                       | 19                       | 9.6                | 9.6        | 19     | 0.6        |
| D2/D4               |                        | 250 - 350<br>[160-250]    | 300 - 550<br>[200-400]     | 19                       | 19                       | 9.6                | 9.6        | 19     | 0.6        |
| E1/E2               |                        | 450 - 600<br>[315-450]    | 600 - 850<br>[450-630]     | 19                       | 19                       | 19                 | 9.6        | 19     | 0.6        |
| F1–<br>F33)         |                        | 650 - 950<br>[500-710]    | 950 - 1200<br>[710-900]    | 19                       | 19                       | 19                 | 9.6        | 19     | 0.6        |
| F2-<br>F43)         |                        | 1075 - 1350<br>[800-1000] | 1350 - 1875<br>[1000-1400] | 19                       | 19                       | 19                 | 9.6        | 19     | 0.6        |

Table 5. 2: Tightening of terminals

5-12 TR200 Design Guide

<sup>1)</sup> For different cable dimensions x/y, where x  $\leq$ 0.147 in<sup>2</sup> [95 mm<sup>2</sup>] and y $\geq$ 0.147 in<sup>2</sup> [95 mm<sup>2</sup>]

<sup>2)</sup> Cable dimensions above 25 hp [18.5 kW]  $\geq$  0.0542 in<sup>2</sup> [35 mm<sup>2</sup>] and below 30 hp [22 kW]  $\leq$  0.0155 in<sup>2</sup> [10

<sup>3)</sup> For data on the F-series, please consult TR200 High Power Instruction Manual

#### Electrical installation and control cables

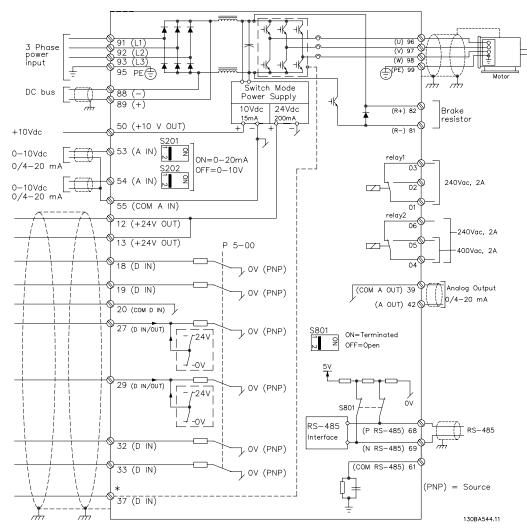



Figure 5. 8: Diagram showing all electrical terminals. (Terminal 37 present for units with safe stop function only.)

#### How to Install

| Terminal number | Terminal description                | Parameter number | Factory default |
|-----------------|-------------------------------------|------------------|-----------------|
| 1+2+3           | Terminal 1+2+3-Relay1               | 5-40             | No operation    |
| 4+5+6           | Terminal 4+5+6-Relay2               | 5-40             | No operation    |
| 12              | Terminal 12 Supply                  | -                | +24 V DC        |
| 13              | Terminal 13 Supply                  | -                | +24 V DC        |
| 18              | Terminal 18 Digital Input           | 5-10             | Start           |
| 19              | Terminal 19 Digital Input           | 5-11             | No operation    |
| 20              | Terminal 20                         | -                | Common          |
| 27              | Terminal 27 Digital Input/Output    | 5-12/5-30        | Coast inverse   |
| 29              | 29 Terminal 29 Digital Input/Output |                  | Jog             |
| 32              | Terminal 32 Digital Input           | 5-14             | No operation    |
| 33              | Terminal 33 Digital Input           | 5-15             | No operation    |
| 37              | Terminal 37 Digital Input           | -                | Safe Stop       |
| 42              | Terminal 42 Analog Output           | 6-50             | Speed 0-HighLim |
| 53              | Terminal 53 Analog Input            | 3-15/6-1*/20-0*  | Reference       |
| 54              | Terminal 54 Analog Input            | 3-15/6-2*/20-0*  | Feedback        |

Table 5. 3: Terminal connections

Very long control cables and analog signals may, in rare cases and depending on the installation, result in 50/60 Hz ground loops due to noise from line power supply cables.

If this occurs, break the shield or insert a 100 nF capacitor between shield and chassis.

#### NOTE

The common of digital / analog inputs and outputs should be connected to separate common terminals 20, 39, and 55. This will prevent ground current interference among groups. For example, it prevents switching on digital inputs from disturbing analog inputs.

#### NOTE

Control cables must be shielded/armored.

#### Motor Cables

See section General Specifications for maximum dimensioning of motor cable cross-section and length.

- Use a shielded/armored motor cable to comply with EMC emission specifications.
- Keep the motor cable as short as possible to reduce the noise level and leakage currents.
- Connect the motor cable shield to both the de-coupling plate of the adjustable frequency drive and to the metal cabinet of the motor.
- Make the shield connections with the largest possible surface area (cable clamp). This is done by using the supplied installation devices in the adjustable frequency drive.
- Avoid mounting with twisted shield ends (pigtails), which will spoil high frequency shielding effects.
- If it is necessary to split the shield to install a motor isolator or motor relay, the shield must be continued with the lowest possible HF impedance.

5-14 TR200 Design Guide

#### **F frame Requirements**

**F1/F3 requirements:** Motor phase cable quantities must be multiples of 2, resulting in 2, 4, 6, or 8 (1 cable is not allowed) to obtain equal amount of wires attached to both inverter module terminals. The cables are required to be equal length within 10% between the inverter module terminals and the first common point of a phase. The recommended common point is the motor terminals.

**F2/F4 requirements:** Motor phase cable quantities must be multiples of 3, resulting in 3, 6, 9, or 12 (1 or 2 cables are not allowed) to obtain equal amount of wires attached to each inverter module terminal. The wires are required to be equal length within 10% between the inverter module terminals and the first common point of a phase. The recommended common point is the motor terminals.

**Output junction box requirements:** The length, minimum 8 ft [2.5 m], and quantity of cables must be equal from each inverter module to the common terminal in the junction box.

#### **Electrical Installation of Motor Cables**

#### Shielding of cables

Avoid installation with twisted shield ends (pigtails). They spoil the shielding effect at higher frequencies. If it is necessary to break the shield to install a motor isolator or motor contactor, the shield must be continued at the lowest possible HF impedance.

#### Cable length and cross-section

The adjustable frequency drive has been tested with a given length of cable and a given cross-section of that cable. If the cross-section is increased, the cable capacitance - and thus the leakage current - may increase, thereby requiring that the cable length is reduced accordingly.

#### Switching frequency

When adjustable frequency drives are used together with sine-wave filters to reduce the acoustic noise from a motor, the switching frequency must be set according to the sine-wave filter instructions in par.14-01 <a href="Switching">Switching</a> <a href="Frequency">Frequency</a>.

#### Aluminum conductors

Aluminum conductors are not recommended. Terminals can accept aluminum conductors but the conductor surface has to be clean and the oxidation must be removed and sealed by neutral acid free petroleum jelly Vaseline grease before the conductor is connected.

Furthermore, the terminal screw must be retightened after two days due to the softness of the aluminum. It is crucial to keep the connection a gas-tight joint, otherwise the aluminum surface will oxidize again.



#### **Enclosure knock-outs**

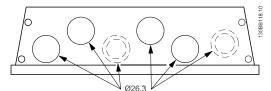



Figure 5. 9: Cable entry holes for enclosure A5. The suggested use of the holes are purely recommendations and other solutions are possible.

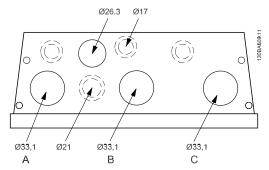



Figure 5. 10: Cable entry holes for enclosure B1. The suggested use of the holes are purely recommendations and other solutions are possible.

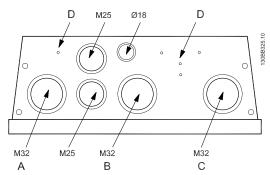



Figure 5. 11: Cable entry holes for enclosure B1. The suggested use of the holes are purely recommendations and other solutions are possible.

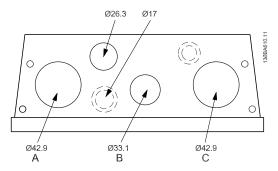



Figure 5. 12: Cable entry holes for enclosure B2. The suggested use of the holes are purely recommendations and other solutions are possible.

5-16 TR200 Design Guide

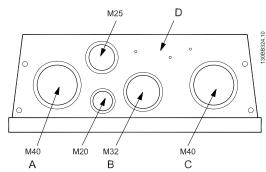



Figure 5. 13: Cable entry holes for enclosure B2. The suggested use of the holes are purely recommendations and other solutions are possible.

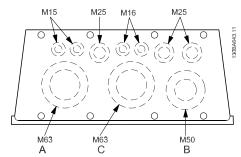



Figure 5. 14: Cable entry holes for enclosure C1. The suggested use of the holes are purely recommendations and other solutions are possible.

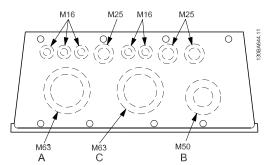



Figure 5. 15: Cable entry holes for enclosure C2. The suggested use of the holes are purely recommendations and other solutions are possible.

#### Legend:

A: Line in

B: Brake/load sharing

C: Motor out

D: Free space

#### How to Install

#### Removal of Knockouts for Extra Cables

- 1. Remove the cable entry from the adjustable frequency drive (this prevents foreign parts from falling into the adjustable frequency drive when removing knockouts)
- 2. The cable entry must be supported around the knockout you intend to remove.
- 3. The knockout can now be removed with a strong mandrel and a hammer.
- 4. Remove burrs from the hole.
- 5. Mount cable entry on adjustable frequency drive.

#### Connector/Conduit Entry - IP21 (NEMA 1) and IP54 (NEMA12)

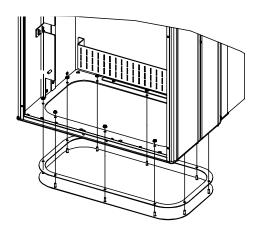
Cables are connected through the connector plate from the bottom. Remove the plate and plan where to place the entry for the connectors or conduits. Prepare holes in the marked area on the drawing.

#### NOTE

The connector plate must be fitted to the adjustable frequency drive to ensure the specified protection degree, as well as ensuring proper cooling of the unit. If the connector plate is not mounted, the adjustable frequency drive may trip on Alarm 69, Pwr. Card Temp



Figure 5. 16: Example of proper installation of the connector plate.


5-18 TR200 Design Guide

# 

#### Frame size F1 668.3 [26.311] 37.7 [1.485] . 460.0 [18.110] 216.5 [8.524] 281.8 [11.096] 533.0 [20.984] . 35.5 [1.398] 36.2 [1.425] 1328.8 [52.315] 130BA837.12 Frame size F2 994.3 — [39.146] 655.9 [25.825] 460.0 — [18.110] 37.7 -[1.485] 281.8 [11.096] 258.2 [10.167] 533.0 — [20.984] 35.5 [1.398] 36.2 -[1.425] 594.8 — [23.417] Frame size F3 593.0 [23.346] 1265.3 [49.815] 634.7 [24.989] 37.7 -[1.485] 2X 216.5 [8.524] -] 2X 281.3 [11.075] 533.0 -[20.984] - 597.0 [23.504] 35.5 [1.398] 36.2 [1.425] -1130.0 [44.488] 1192.8 [46.961] 1925.8 [75.819] Frame size F4 1252.8 [49.321] 994.3 [39.146] 634.7 [24.989] X 460.0 — [18.110] 2X 216.5 [8.524] 533.0 [20.984] 1191.8 [46.921] 2324.8 [91.528] 130BA839.12

F1-F4: Cable entries viewed from the bottom of the adjustable frequency drive - 1) Place conduits in marked areas

5-20 TR200 Design Guide



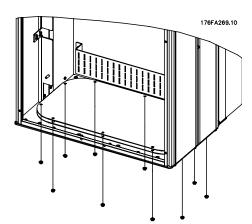



Figure 5. 17: Mounting of bottom plate, frame size E1.

The bottom plate of the E1 can be mounted from either inside or outside of the enclosure, allowing flexibility in the installation process, i.e., if mounted from the bottom the connectors and cables can be mounted before the adjustable frequency drive is placed on the pedestal.

#### **Fuses**

#### **Branch Circuit Protection**

#### NOTE

In order to protect the installation against electrical and fire hazard, all branch circuits in an installation, switch gear, machines etc., must be short-circuit and over-current protected according to NEC and your local/state code.

## **MARNING**

#### **Short-circuit protection:**

The adjustable frequency drive must be protected against short-circuit to avoid electrical or fire hazard. Trane recommends using the fuses mentioned below to protect service personnel and equipment in case of an internal failure in the drive. The adjustable frequency drive provides full short-circuit protection in case of a short-circuit on the motor output.

#### **NOTE:** Fusing not in UL compliance

If UL/cUL is not to be complied with, Trane recommends using the fuses mentioned in the table below, which will ensure compliance with EN50178.

In case of malfunction, not following the recommendation may result in unnecessary damage to the adjustable frequency drive.

## UL compliance/non-compliance

#### **Non-UL compliance fuses**

| Adjustable frequency      | Max. fuse size                        | Voltage                       | Туре    |
|---------------------------|---------------------------------------|-------------------------------|---------|
| 200–240 V - T2            |                                       |                               |         |
| 1K1-1K5                   | 16A <sup>1</sup>                      | 200–240 V                     | type gG |
| 2K2                       | 25A <sup>1</sup>                      | 200–240 V                     | type gG |
| 3K0                       | 25A <sup>1</sup>                      | 200–240 V                     | type gG |
| 3K7                       | 35A <sup>1</sup>                      | 200–240 V                     | type gG |
| 5K5                       | 50A <sup>1</sup>                      | 200–240 V                     | type gG |
| 7K5                       | 63A <sup>1</sup>                      | 200–240 V                     | type gG |
| 11K                       | 63A <sup>1</sup>                      | 200–240 V                     | type gG |
| 15K                       | 80A <sup>1</sup>                      | 200–240 V                     | type gG |
| 18K5                      | 125A <sup>1</sup>                     | 200–240 V                     | type gG |
| 22K                       | 125A <sup>1</sup>                     | 200–240 V                     | type gG |
| 30K                       | 160A <sup>1</sup>                     | 200–240 V                     | type gG |
| 37K                       | 200A <sup>1</sup>                     | 200–240 V                     | type aR |
| 45K                       | 250A <sup>1</sup>                     | 200–240 V                     | type aR |
| 380–480 V - T4            |                                       |                               |         |
| 1K1-1K5                   | 10A <sup>1</sup>                      | 380–500 V                     | type gG |
| 2K2-3K0                   | 16A <sup>1</sup>                      | 380–500 V                     | type gG |
| 4K0-5K5                   | 25A <sup>1</sup>                      | 380–500 V                     | type gG |
| 7K5                       | 35A <sup>1</sup>                      | 380–500 V                     | type gG |
| 11K–15K                   | 63A <sup>1</sup>                      | 380–500 V                     | type gG |
| 18K                       | 63A <sup>1</sup>                      | 380–500 V                     | type gG |
| 22K                       | 63A <sup>1</sup>                      | 380–500 V                     | type gG |
| 30K                       | 80A <sup>1</sup>                      | 380–500 V                     | type gG |
| 37K                       | 100A <sup>1</sup>                     | 380–500 V                     | type gG |
| 45K                       | 125A <sup>1</sup>                     | 380–500 V                     | type gG |
| 55K                       | 160A <sup>1</sup>                     | 380–500 V                     | type gG |
| 75K                       | 250A <sup>1</sup>                     | 380–500 V                     | type aR |
| 90K                       | 250A <sup>1</sup>                     | 380–500 V                     | type aR |
| 1) Max. fuses - see natio | onal/international regulations to sel | ect an appropriate fuse size. |         |

Table 5. 4: Non-UL fuses 200 V to 480 V

If UL/cUL is not to be complied with, we recommend using the following fuses, which will ensure compliance with EN50178:

| Adjustable Frequency Drive | Voltage   | Туре    |
|----------------------------|-----------|---------|
| P110 - P250                | 380–480 V | type gG |
| P315 - P450                | 380–480 V | type gR |

5-22 TR200 Design Guide

#### **UL compliance fuses**

| Adjusta-<br>ble fre-<br>quency<br>drive | Bussmann | Bussmann | Bussmann | SIBA        | Littel fuse | Ferraz-<br>Shawmut | Ferraz-<br>Shawmut |
|-----------------------------------------|----------|----------|----------|-------------|-------------|--------------------|--------------------|
| 200-240                                 | V        |          |          |             |             |                    |                    |
| kW                                      | Type RK1 | Type J   | Type T   | Type RK1    | Type RK1    | Type CC            | Type RK1           |
| K25-K37                                 | KTN-R05  | JKS-05   | JJN-05   | 5017906-005 | KLN-R005    | ATM-R05            | A2K-05R            |
| K55-1K1                                 | KTN-R10  | JKS-10   | JJN-10   | 5017906-010 | KLN-R10     | ATM-R10            | A2K-10R            |
| 1K5                                     | KTN-R15  | JKS-15   | JJN-15   | 5017906-015 | KLN-R15     | ATM-R15            | A2K-15R            |
| 2K2                                     | KTN-R20  | JKS-20   | JJN-20   | 5012406-020 | KLN-R20     | ATM-R20            | A2K-20R            |
| 3K0                                     | KTN-R25  | JKS-25   | JJN-25   | 5012406-025 | KLN-R25     | ATM-R25            | A2K-25R            |
| 3K7                                     | KTN-R30  | JKS-30   | JJN-30   | 5012406-030 | KLN-R30     | ATM-R30            | A2K-30R            |
| 5K5                                     | KTN-R50  | JKS-50   | JJN-50   | 5012406-050 | KLN-R50     | -                  | A2K-50R            |
| 7K5                                     | KTN-R50  | JKS-60   | JJN-60   | 5012406-050 | KLN-R60     | -                  | A2K-50R            |
| 11K                                     | KTN-R60  | JKS-60   | JJN-60   | 5014006-063 | KLN-R60     | A2K-60R            | A2K-60R            |
| 15K                                     | KTN-R80  | JKS-80   | JJN-80   | 5014006-080 | KLN-R80     | A2K-80R            | A2K-80R            |
| 18K5                                    | KTN-R125 | JKS-150  | JJN-125  | 2028220-125 | KLN-R125    | A2K-125R           | A2K-125R           |
| 22K                                     | KTN-R125 | JKS-150  | JJN-125  | 2028220-125 | KLN-R125    | A2K-125R           | A2K-125R           |
| 30K                                     | FWX-150  | -        | -        | 2028220-150 | L25S-150    | A25X-150           | A25X-150           |
| 37K                                     | FWX-200  | -        | -        | 2028220-200 | L25S-200    | A25X-200           | A25X-200           |
| 45K                                     | FWX-250  | -        | -        | 2028220-250 | L25S-250    | A25X-250           | A25X-250           |

Table 5. 5: **UL fuses, 200–240 V** 

| Adjusta-<br>ble fre-<br>quency<br>drive | Bussmann   | Bussmann | Bussmann | SIBA        | Littel fuse | Ferraz-<br>Shawmut | Ferraz-<br>Shawmut |
|-----------------------------------------|------------|----------|----------|-------------|-------------|--------------------|--------------------|
| 380-480                                 | V, 525-600 | V        |          |             |             |                    |                    |
| kW                                      | Type RK1   | Type J   | Type T   | Type RK1    | Type RK1    | Type CC            | Type RK1           |
| K37-1K1                                 | KTS-R6     | JKS-6    | JJS-6    | 5017906-006 | KLS-R6      | ATM-R6             | A6K-6R             |
| 1K5-2K2                                 | KTS-R10    | JKS-10   | JJS-10   | 5017906-010 | KLS-R10     | ATM-R10            | A6K-10R            |
| 3K0                                     | KTS-R15    | JKS-15   | JJS-15   | 5017906-016 | KLS-R16     | ATM-R16            | A6K-16R            |
| 4K0                                     | KTS-R20    | JKS-20   | JJS-20   | 5017906-020 | KLS-R20     | ATM-R20            | A6K-20R            |
| 5K5                                     | KTS-R25    | JKS-25   | JJS-25   | 5017906-025 | KLS-R25     | ATM-R25            | A6K-25R            |
| 7K5                                     | KTS-R30    | JKS-30   | JJS-30   | 5012406-032 | KLS-R30     | ATM-R30            | A6K-30R            |
| 11K                                     | KTS-R40    | JKS-40   | JJS-40   | 5014006-040 | KLS-R40     | -                  | A6K-40R            |
| 15K                                     | KTS-R40    | JKS-40   | JJS-40   | 5014006-040 | KLS-R40     | -                  | A6K-40R            |
| 18K                                     | KTS-R50    | JKS-50   | JJS-50   | 5014006-050 | KLS-R50     | -                  | A6K-50R            |
| 22K                                     | KTS-R60    | JKS-60   | JJS-60   | 5014006-063 | KLS-R60     | -                  | A6K-60R            |
| 30K                                     | KTS-R80    | JKS-80   | JJS-80   | 2028220-100 | KLS-R80     | -                  | A6K-80R            |
| 37K                                     | KTS-R100   | JKS-100  | JJS-100  | 2028220-125 | KLS-R100    |                    | A6K-100R           |
| 45K                                     | KTS-R125   | JKS-150  | JJS-150  | 2028220-125 | KLS-R125    |                    | A6K-125R           |
| 55K                                     | KTS-R150   | JKS-150  | JJS-150  | 2028220-160 | KLS-R150    |                    | A6K-150R           |
| 75K                                     | FWH-220    | -        | -        | 2028220-200 | L50S-225    |                    | A50-P225           |
| 90K                                     | FWH-250    | -        | -        | 2028220-250 | L50S-250    |                    | A50-P250           |

Table 5. 6: **UL fuses, 380–600 V** 



#### 380-480 V, frame sizes D, E and F

The fuses below are suitable for use on a circuit capable of delivering 100,000 Arms (symmetrical), 240 V, or 480 V, or 500 V, or 600 V depending on the drive voltage rating. With the proper fusing, the drive Short Circuit Current Rating (SCCR) is 100,000 Arms.

| Size/<br>Type | Buss-<br>mann<br>E1958<br>JFHR2** | Buss-<br>mann<br>E4273<br>T/<br>JDDZ** | SIBA<br>E180276<br>JFHR2 | LittelFuse<br>E71611<br>JFHR2** | Ferraz-<br>Shawmut<br>E60314<br>JFHR2** | Buss-<br>mann<br>E4274<br>H/<br>JDDZ** | Bussmann<br>E125085<br>JFHR2* | Internal<br>Option<br>Bussmann |
|---------------|-----------------------------------|----------------------------------------|--------------------------|---------------------------------|-----------------------------------------|----------------------------------------|-------------------------------|--------------------------------|
| P110          | FWH-                              | JJS-                                   | 2061032.315              | L50S-300                        | A50-P300                                | NOS-                                   | 170M3017                      | 170M3018                       |
|               | 300                               | 300                                    |                          |                                 |                                         | 300                                    |                               |                                |
| P132          | FWH-                              | JJS-                                   | 2061032.35               | L50S-350                        | A50-P350                                | NOS-                                   | 170M3018                      | 170M3018                       |
|               | 350                               | 350                                    |                          |                                 |                                         | 350                                    |                               |                                |
| P160          | FWH-                              | JJS-                                   | 2061032.40               | L50S-400                        | A50-P400                                | NOS-                                   | 170M4012                      | 170M4016                       |
|               | 400                               | 400                                    |                          |                                 |                                         | 400                                    |                               |                                |
| P200          | FWH-                              | JJS-                                   | 2061032.50               | L50S-500                        | A50-P500                                | NOS-                                   | 170M4014                      | 170M4016                       |
|               | 500                               | 500                                    |                          |                                 |                                         | 500                                    |                               |                                |
| P250          | FWH-                              | JJS-                                   | 2062032.63               | L50S-600                        | A50-P600                                | NOS-                                   | 170M4016                      | 170M4016                       |
|               | 600                               | 600                                    |                          |                                 |                                         | 600                                    |                               |                                |
|               |                                   |                                        |                          |                                 |                                         |                                        |                               |                                |

Table 5. 7: Frame size D, Line fuses, 380-480 V

| Size/Type | Bussmann<br>PN* | Rating       | Ferraz           | Siba          |
|-----------|-----------------|--------------|------------------|---------------|
| P315      | 170M4017        | 700 A, 700 V | 6.9URD31D08A0700 | 20 610 32.700 |
| P355      | 170M6013        | 900 A, 700 V | 6.9URD33D08A0900 | 20 630 32.900 |
| P400      | 170M6013        | 900 A, 700 V | 6.9URD33D08A0900 | 20 630 32.900 |
| P450      | 170M6013        | 900 A, 700 V | 6.9URD33D08A0900 | 20 630 32.900 |

Table 5. 8: Frame size E, Line fuses, 380-480 V

| Size/Type | Bussmann PN* | Rating        | Siba           | Internal Bussmann<br>Option |
|-----------|--------------|---------------|----------------|-----------------------------|
| P500      | 170M7081     | 1600 A, 700 V | 20 695 32.1600 | 170M7082                    |
| P560      | 170M7081     | 1600 A, 700 V | 20 695 32.1600 | 170M7082                    |
| P630      | 170M7082     | 2000 A, 700 V | 20 695 32.2000 | 170M7082                    |
| P710      | 170M7082     | 2000 A, 700 V | 20 695 32.2000 | 170M7082                    |
| P800      | 170M7083     | 2500 A, 700 V | 20 695 32.2500 | 170M7083                    |
| P1M0      | 170M7083     | 2500 A, 700 V | 20 695 32.2500 | 170M7083                    |

Table 5. 9: Frame size F, Line fuses, 380-480 V

| Size/Type | Bussmann PN* | Rating         | Siba           |
|-----------|--------------|----------------|----------------|
| P500      | 170M8611     | 1100 A, 1000 V | 20 781 32.1000 |
| P560      | 170M8611     | 1100 A, 1000 V | 20 781 32.1000 |
| P630      | 170M6467     | 1400 A, 700 V  | 20 681 32.1400 |
| P710      | 170M6467     | 1400 A, 700 V  | 20 681 32.1400 |
| P800      | 170M8611     | 1100 A, 1000 V | 20 781 32.1000 |
| P1M0      | 170M6467     | 1400 A, 700 V  | 20 681 32.1400 |

Table 5. 10: Frame size F, Inverter module DC Link Fuses, 380–480 V

5-24 TR200 Design Guide

\*170M fuses from Bussmann shown use the -/80 visual indicator; -TN/80 Type T, -/110 or TN/110 Type T indicator fuses of the same size and amperage may be substituted for external use

\*\*Any minimum 500 V UL listed fuse with associated current rating may be used to meet UL requirements.

#### 525-690 V, frame sizes D, E and F

| Size/<br>Type | Bussmann<br>E125085<br>JFHR2 | Amps | SIBA<br>E180276<br>JFHR2 | Ferraz-Shawmut<br>E76491<br>JFHR2 | Internal<br>Option<br>Bussmann |
|---------------|------------------------------|------|--------------------------|-----------------------------------|--------------------------------|
| P45K          | 170M3013                     | 125  | 2061032.125              | 6.6URD30D08A0125                  | 170M3015                       |
| P55K          | 170M3014                     | 160  | 2061032.16               | 6.6URD30D08A0160                  | 170M3015                       |
| P75K          | 170M3015                     | 200  | 2061032.2                | 6.6URD30D08A0200                  | 170M3015                       |
| P90K          | 170M3015                     | 200  | 2061032.2                | 6.6URD30D08A0200                  | 170M3015                       |
| P110          | 170M3016                     | 250  | 2061032.25               | 6.6URD30D08A0250                  | 170M3018                       |
| P132          | 170M3017                     | 315  | 2061032.315              | 6.6URD30D08A0315                  | 170M3018                       |
| P160          | 170M3018                     | 350  | 2061032.35               | 6.6URD30D08A0350                  | 170M3018                       |
| P200          | 170M4011                     | 350  | 2061032.35               | 6.6URD30D08A0350                  | 170M5011                       |
| P250          | 170M4012                     | 400  | 2061032.4                | 6.6URD30D08A0400                  | 170M5011                       |
| P315          | 170M4014                     | 500  | 2061032.5                | 6.6URD30D08A0500                  | 170M5011                       |
| P400          | 170M5011                     | 550  | 2062032.55               | 6.6URD32D08A550                   | 170M5011                       |

Table 5. 11: Frame size D, 525-690 V

| Size/Type | Bussmann PN* | Rating       | Ferraz               | Siba          |
|-----------|--------------|--------------|----------------------|---------------|
| P450      | 170M4017     | 700 A, 700 V | 6.9URD31D08A07<br>00 | 20 610 32.700 |
| P500      | 170M4017     | 700 A, 700 V | 6.9URD31D08A07<br>00 | 20 610 32.700 |
| P560      | 170M6013     | 900 A, 700 V | 6.9URD33D08A09<br>00 | 20 630 32.900 |
| P630      | 170M6013     | 900 A, 700 V | 6.9URD33D08A09<br>00 | 20 630 32.900 |

Table 5. 12: Frame size E, 525-690 V

| Size/Type | Bussmann PN* | Rating        | Siba           | Internal Bussmann<br>Option |
|-----------|--------------|---------------|----------------|-----------------------------|
| P710      | 170M7081     | 1600 A, 700 V | 20 695 32.1600 | 170M7082                    |
| P800      | 170M7081     | 1600 A, 700 V | 20 695 32.1600 | 170M7082                    |
| P900      | 170M7081     | 1600 A, 700 V | 20 695 32.1600 | 170M7082                    |
| P1M0      | 170M7081     | 1600 A, 700 V | 20 695 32.1600 | 170M7082                    |
| P1M2      | 170M7082     | 2000 A, 700 V | 20 695 32.2000 | 170M7082                    |
| P1M4      | 170M7083     | 2500 A, 700 V | 20 695 32.2500 | 170M7083                    |

Table 5. 13: Frame size F, Line fuses, 525-690 V

#### How to Install

| Size/Type | Bussmann PN* | Rating         | Siba            |
|-----------|--------------|----------------|-----------------|
| P710      | 170M8611     | 1100 A, 1000 V | 20 781 32. 1000 |
| P800      | 170M8611     | 1100 A, 1000 V | 20 781 32. 1000 |
| P900      | 170M8611     | 1100 A, 1000 V | 20 781 32. 1000 |
| P1M0      | 170M8611     | 1100 A, 1000 V | 20 781 32. 1000 |
| P1M2      | 170M8611     | 1100 A, 1000 V | 20 781 32. 1000 |
| P1M4      | 170M8611     | 1100 A, 1000 V | 20 781 32.1000  |

Table 5. 14: Frame size F, Inverter module DC Link Fuses, 525-690 V

Volts maximum when protected by the above fuses.

\*170M fuses from Bussmann shown use the -/80 visual indicator; -TN/80 Type T, -/110 or TN/110 Type T be substituted for external use. Suitable for use on a circuit capable of delivering not more than 100,000 rms symmetrical amperes, 500/600/690

#### **Supplementary fuses**

| Frame size | Bussmann PN* | Rating     |
|------------|--------------|------------|
| D, E and F | KTK-4        | 4 A, 600 V |

Table 5. 15: SMPS Fuse

| Size/Type            | Bussmann PN* | LittelFuse | Rating     |
|----------------------|--------------|------------|------------|
| P110-P315, 380-480 V | KTK-4        |            | 4 A, 600 V |
| P45K-P500, 525-690 V | KTK-4        |            | 4 A, 600 V |
| P355-P1M0, 380-480 V |              | KLK-15     | 15A, 600 V |
| P560-P1M4, 525-690 V |              | KLK-15     | 15A, 600 V |

Table 5. 16: Fan Fuses

5-26 TR200 Design Guide

| Size/Type                            |                    | Bussmann PN*     | Rating      | Alternative Fuses                                           |
|--------------------------------------|--------------------|------------------|-------------|-------------------------------------------------------------|
| P500-P1M0, 380–<br>480 V             | 2.5–4.0 A          | LPJ-6 SP or SPI  | 6 A, 600 V  | Any listed Class J Du-<br>al Element, Time De-<br>lay, 6 A  |
| P710-P1M4, 525—<br>690 V             |                    | LPJ-10 SP or SPI | 10 A, 600 V | Any listed Class J Du-<br>al Element, Time De-<br>lay, 10 A |
| P500-P1M0, 380–<br>480 V             | 4.0 <b>–</b> 6.3 A | LPJ-10 SP or SPI | 10 A, 600 V | Any listed Class J Du-<br>al Element, Time De-<br>lay, 10 A |
| P710-P1M4, 525—<br>690 V             |                    | LPJ-15 SP or SPI | 15 A, 600 V | Any listed Class J Du-<br>al Element, Time De-<br>lay, 15 A |
| P500-P1M0, 380–<br>480 V             | 6.3 <b>–</b> 10 A  | LPJ-15 SP or SPI | 15 A, 600 V | Any listed Class J Du-<br>al Element, Time De-<br>lay, 15 A |
| P710-P1M4, 525—<br>690 V             |                    | LPJ-20 SP or SPI | 20 A, 600 V | Any listed Class J Du-<br>al Element, Time De-<br>lay, 20 A |
| P500-P1M0, 380–<br>480 V             | 10-16 A            | LPJ-25 SP or SPI | 25 A, 600 V | Any listed Class J Du-<br>al Element, Time De-<br>lay, 25 A |
| P710-P1M4, 525 <del>-</del><br>690 V |                    | LPJ-20 SP or SPI | 20 A, 600 V | Any listed Class J Du-<br>al Element, Time De-<br>lay, 20 A |

Table 5. 17: Manual Motor Controller Fuses

| Frame size | Bussmann PN*     | Rating      | Alternative Fuses           |
|------------|------------------|-------------|-----------------------------|
| F          | LPJ-30 SP or SPI | 30 A, 600 V | Any listed Class J Dual El- |
|            |                  |             | ement, Time Delay, 30 A     |

Table 5. 18: 30 A Fuse Protected Terminal Fuse

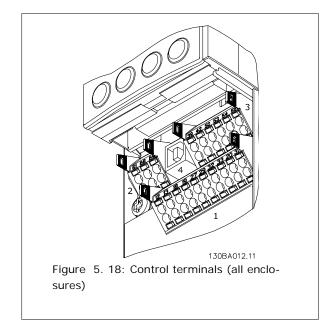
| Frame size | Bussmann PN*    | Rating     | Alternative Fuses           |
|------------|-----------------|------------|-----------------------------|
| F          | LPJ-6 SP or SPI | 6 A, 600 V | Any listed Class J Dual El- |
|            |                 |            | ement, Time Delay, 6 A      |

Table 5. 19: Control Transformer Fuse

| Frame size | Bussmann PN* | Rating        |
|------------|--------------|---------------|
| F          | GMC-800MA    | 800 mA, 250 V |

Table 5. 20: NAMUR Fuse

| Frame size | Bussmann PN* | Rating     | Alternative Fuses        |
|------------|--------------|------------|--------------------------|
| F          | LP-CC-6      | 6 A, 600 V | Any listed Class CC, 6 A |


Table 5. 21: Safety Relay Coil Fuse with PILS Relay

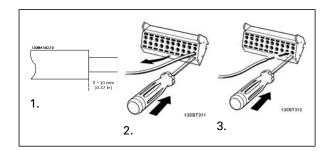
#### How to Install

#### **Control Terminals**

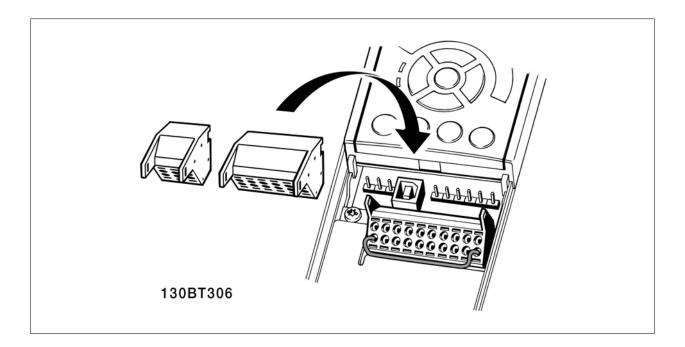
Drawing reference numbers:

- 1. 10-pole plug, digital I/O.
- 2. 3-pole plug, RS-485 bus.
- 3. 6-pole, analog I/O.
- 4. USB Connection.




#### **Control Cable Terminals**

To mount the cable to the terminal:


- 1. Strip isolation of 0.34–0.39 in [9–10 mm]
- 2. Insert a screw driver<sup>1)</sup> in the rectangular hole.
- 3. Insert the cable in the adjacent circular hole.
- 4. Remove the screwdriver. The cable is now mounted to the terminal.

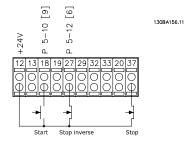
To remove the cable from the terminal:

- 1. Insert a screw driver 1) in the square hole.
- 2. Pull out the cable.
- 1) Max. 0.015 x 0.1 in. [0.4 x 2.5 mm]



5-28 TR200 Design Guide




## Basic Wiring Example

- 1. Mount terminals from the accessory bag to the front of the adjustable frequency drive.
- 2. Connect terminals 18 and 27 to +24 V (terminal 12/13)

Default settings:

18 = latched start

27 = stop inverse



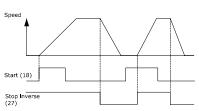



Figure 5. 19: Terminal 37 available with Safe Stop Function only!

# TRANE\*

#### Electrical Installation, Control Cables

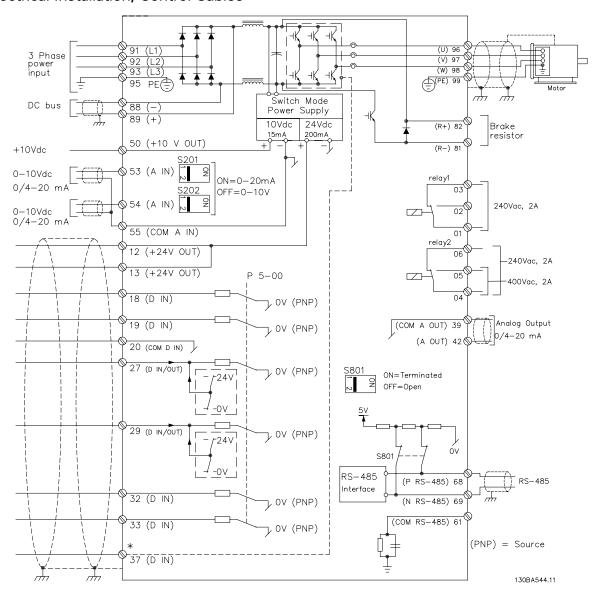
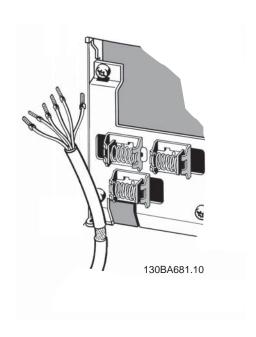



Figure 5. 20: Diagram showing all electrical terminals. (Terminal 37 present for units with safe stop function only.)

In rare cases, and depending on the installation, very long control cables and analog signals may result in 50/60 Hz ground loops due to noise from line power supply cables.

If this occurs, you may have to break the shield or insert a 100 nF capacitor between shield and chassis.

The digital and analog inputs and outputs must be connected separately to the adjustable frequency drive common inputs (terminal 20, 55, 39) to prevent ground currents from both groups from affecting other groups. For example, switching on the digital input may disturb the analog input signal.


#### NOTE

Control cables must be shielded/armored.

5-30 TR200 Design Guide

 Use a clamp from the accessory bag to connect the shield to the adjustable frequency drive decoupling plate for control cables.

See section entitled *Grounding of Shielded/Armored Control Cables* for the correct termination of control cables.

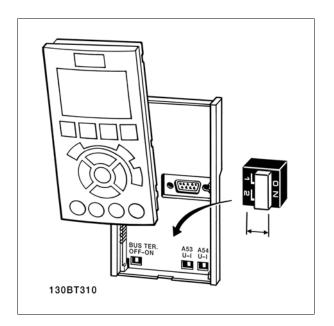


#### Switches S201, S202, and S801

Switches S201 (A53) and S202 (A54) are used to select a current (0–20 mA) or a voltage (0–10 V) configuration of the analog input terminals 53 and 54 respectively.

Switch S801 (BUS TER.) can be used to enable termination on the RS-485 port (terminals 68 and 69).

See drawing *Diagram showing all electrical terminals* in section *Electrical Installation*.


#### Default setting:

S201 (A53) = OFF (voltage input) S202 (A54) = OFF (voltage input)

S801 (Bus termination) = OFF

#### **NOTE**

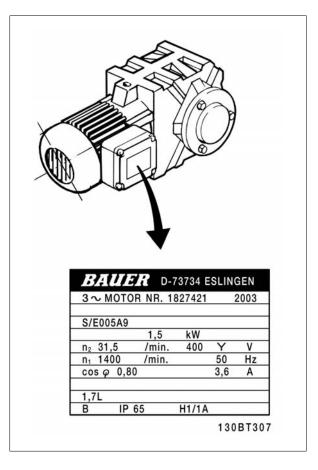
It is recommended to only change switch position at power off.



### How to Install

## Final Set-Up and Test

To test the set-up and ensure that the adjustable frequency drive is running, follow these steps.


#### Step 1. Locate the motor nameplate

The motor is either star- (Y) or delta-connected (Δ). This information is located on the motor nameplate data.

### Step 2. Enter the motor nameplate data in this parameter list.

To access this list, first press the [QUICK MENU] key, then select "Q2 Quick Set-up".

| 1. | Motor Power [kW]<br>or Motor Power [HP] | par.1-20 <u>Motor</u><br><u>Power [kW]</u><br>par.1-21 <u>Motor</u><br><u>Power [HP]</u> |
|----|-----------------------------------------|------------------------------------------------------------------------------------------|
| 2. | Motor Voltage                           | par.1-22 Motor Voltage                                                                   |
| 3. | Motor Frequency                         | par.1-23 <u>Motor</u><br><u>Frequency</u>                                                |
| 4. | Motor Current                           | par.1-24 Motor<br>Current                                                                |
| 5. | Motor Nominal Speed                     | par.1-25 <u>Motor</u><br>Nominal Speed                                                   |



### Step 3. Activate the Automatic Motor Adaptation (AMA)

Performing an AMA will ensure optimum performance. The AMA measures the values from the motor model equivalent diagram.

- 1. Connect terminal 27 to terminal 12 or set par.5-12 Terminal 27 Digital Input to 'No function' (par.5-12 Terminal 27 Digital Input [0])
- 2. Activate the AMA par.1-29 Automatic Motor Adaptation (AMA).
- 3. Choose between complete or reduced AMA. If an LC filter is mounted, run only the reduced AMA, or remove the LC filter during the AMA procedure.
- 4. Press the [OK] key. The display shows "Press [Hand on] to start".
- 5. Press the [Hand on] key. A progress bar indicates if the AMA is in progress.

5-32 TR200 Design Guide

#### Stop the AMA during operation

1. Press the [OFF] key - the adjustable frequency drive enters into alarm mode and the display shows that the AMA was terminated by the user.

#### Successful AMA

- 1. The display shows "Press [OK] to finish AMA".
- 2. Press the [OK] key to exit the AMA state.

#### **Unsuccessful AMA**

- 1. The adjustable frequency drive enters into alarm mode. A description of the alarm can be found in the *Troubleshooting* section.
- 2. "Report Value" in the [Alarm Log] shows the last measuring sequence carried out by the AMA before the adjustable frequency drive entered alarm mode. This number along with the description of the alarm will assist you in troubleshooting. If you contact Trane Service, make sure to mention number and alarm description.

Unsuccessful AMA is often caused by incorrectly registered motor name plate data or too big difference between the motor power size and the adjustable frequency drive power size.

#### Step 4. Set speed limit and ramp time

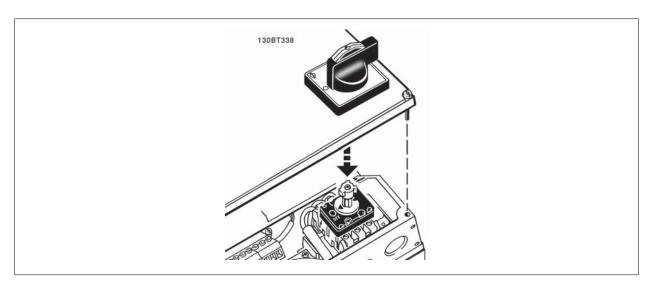
Set up the desired limits for speed and ramp time.

| par.3-02 Minimum Ref- |
|-----------------------|
| erence                |
| par.3-03 Maximum Ref- |
| erence                |
|                       |

| Motor Speed Low Limit  | par.4-11 Motor Speed<br>Low Limit [RPM] or par.                |
|------------------------|----------------------------------------------------------------|
|                        | Low Limit [RPM] or par.                                        |
|                        | 4-12 Motor Speed Low                                           |
|                        | Limit [Hz]                                                     |
| Motor Speed High Limit | par.4-13 <u>Motor Speed</u><br><u>High Limit [RPM]</u> or par. |
|                        | High Limit [RPM] or par.                                       |
|                        | 4-14 Motor Speed High                                          |
|                        | Limit [Hz]                                                     |

| Ramp-up Time 1 [s]   | par.3-41 Ramp 1 Ramp- |
|----------------------|-----------------------|
|                      | up Time               |
| Ramp-down Time 1 [s] | par.3-42 Ramp 1 Ramp- |
|                      | down Time             |

TR200 Design Guide 5-33




## **Additional Connections**

## Line Power Disconnectors

Assembling of IP55 / NEMA Type 12 (A5 housing) with line power disconnector

The line power switch is placed on left side on frame sizes B1, B2, C1 and C2 . The line power switch on A5 frames is placed on right side



| Frame size:            | Туре:                   | Terminal connections: |
|------------------------|-------------------------|-----------------------|
| A5                     | Kraus&Naimer KG20A T303 | L1 L2 L3 31 43 €      |
| B1                     | Kraus&Naimer KG64 T303  | L1 L2 L3 31 43 - 1    |
| B2                     | Kraus&Naimer KG64 T303  | T1 T2 T3 32 44        |
| C1 50 hp [37 kW]       | Kraus&Naimer KG100 T303 | L1 L2 L3 13 음         |
| C1 60-75 hp [45-55 kW] | Kraus&Naimer KG105 T303 | 1 1 1 1 3             |
| C2 100 hp [75 kW]      | Kraus&Naimer KG160 T303 | ) ) )                 |
| C2 125 hp [90 kW]      | Kraus&Naimer KG250 T303 | 11 12 13 14           |

## Line Power Disconnectors - Frame Size D, E and F

| Frame size | Power & Voltage                         | Туре                           |
|------------|-----------------------------------------|--------------------------------|
|            | P110-P132 380-480 V & P110-P160 525-690 |                                |
| D1/D3      | V                                       | ABB OETL-NF200A or OT200U12-91 |
|            | P160-P250 380-480 V & P200-P400 525-690 |                                |
| D2/D4      | V                                       | ABB OETL-NF400A or OT400U12-91 |
| E1/E2      | P315 380-480 V & P450-P630 525-690 V    | ABB OETL-NF600A                |
| E1/E2      | P355-P450 380-480 V                     | ABB OETL-NF800A                |
| F3         | P500 380-480 V & P710-P800 525-690 V    | Merlin Gerin NPJF36000S12AAYP  |
| F3         | P560-P710 380-480 V & P900 525-690 V    | Merlin Gerin NRK36000S20AAYP   |
|            | P800-P1M0 380-480 V & P1M0-P1M4 525-    |                                |
| F4         | 690 V                                   | Merlin Gerin NRK36000S20AAYP   |

5-34 TR200 Design Guide

### F Frame circuit breakers

| Frame size | Power & Voltage                      | Туре                             |
|------------|--------------------------------------|----------------------------------|
| F3         | P500 380-480 V & P710-P800 525-690 V | Merlin Gerin NPJF36120U31AABSCYP |
| F3         | P630-P710 380-480 V & P900 525-690 V | Merlin Gerin NRJF36200U31AABSCYP |
| F4         | P800 380-480 V & P1M0-P1M2 525-690 V | Merlin Gerin NRJF36200U31AABSCYP |
| F4         | P1M0 380-480 V                       | Merlin Gerin NRJF36250U31AABSCYP |

#### F Frame Line Power Contactors

| Frame size | Power & Voltage                      | Туре              |
|------------|--------------------------------------|-------------------|
|            | P500-P560 380-480 V & P710-P900 525- |                   |
| F3         | 690 V                                | Eaton XTCE650N22A |
| F3         | P630 380-480 V                       | Eaton XTCE820N22A |
| F3         | P710 380-480 V                       | Eaton XTCEC14P22B |
| F4         | P1M0 525-690 V                       | Eaton XTCE820N22A |
|            | P800-P1M0 380-480 V & P1M4 525-690   |                   |
| F4         | V                                    | Eaton XTCEC14P22B |

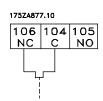
## Brake Resistor Temperature Switch

## Frame size D-E-F

Torque: 0.5-0.6 Nm (5 in-lbs)

Screw size: M3

This input can be used to monitor the temperature of an externally connected brake resistor. If the input between 104 and 106 is established, the adjustable frequency drive will trip on warning / alarm 27, "Brake IGBT". If the connection is closed between 104 and 105, the adjustable frequency drive will trip on warning/alarm 27, "Brake IGBT".


Normally closed: 104-106 (factory-installed jumper)

Normally open: 104-105

| Terminal No.  | Function                           |
|---------------|------------------------------------|
| 106, 104, 105 | Brake resistor temperature switch. |



If the temperature of the brake resistor gets too high and the thermal switch drops out, the adjustable frequency drive will stop braking. The motor will start coasting. A KLIXON switch must be installed that is 'normally closed'. If this function is not used, 106 and 104 must be short-circuited together.



TR200 Design Guide 5-35

#### How to Install

## **External Fan Supply**

#### Frame size D-E-F

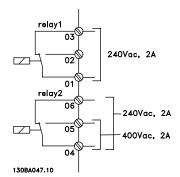
If the adjustable frequency drive is supplied by DC or if the fan must run independently of the power supply, an external power supply can be applied. The connection is made on the power card.

| Terminal No. | Function              |  |
|--------------|-----------------------|--|
| 100, 101     | Auxiliary supply S, T |  |
| 102, 103     | Internal supply S, T  |  |

The connector located on the power card provides the AC line voltage connection for the cooling fans. The fans are factory-equipped to be supplied from a common AC line (jumpers between 100-102 and 101-103). If an external supply is needed, the jumpers are removed and the supply is connected to terminals 100 and 101. A 5 Amp fuse should be used for protection. In UL applications, this should be a LittleFuse KLK-5 or equivalent.

## Relay output

#### Relay 1


- Terminal 01: common
- Terminal 02: normal open 240 V AC
- Terminal 03: normal closed 240 V AC

Relay 1 and relay 2 are programmed in par.5-40 <u>Function Relay</u>, par.5-41 <u>On Delay, Relay</u>, and par.5-42 <u>Off Delay, Relay</u>.

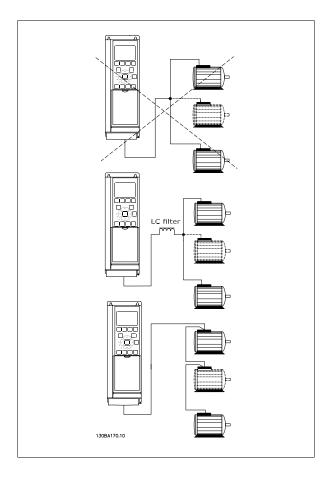
Additional relay outputs by using option module MCB 105.

### Relay 2

- Terminal 04: common
- Terminal 05: normal open 400 V AC
- Terminal 06: normal closed 240 V AC



5-36 TR200 Design Guide


## Parallel Connection of Motors

The adjustable frequency drive can control several parallel-connected motors. The total current consumption of the motors must not exceed the rated output current I<sub>INV</sub> for the adjustable frequency drive.

When motors are connected in parallel, par.1-29 <u>Automatic Motor Adaptation (AMA)</u> cannot be used.

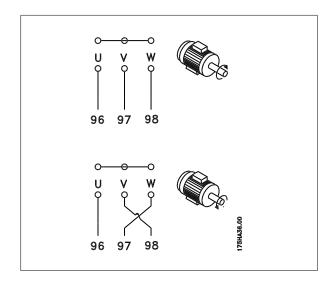
Problems may arise at start and at low RPM values if motor sizes are widely different because small motors' relatively high ohmic resistance in the stator calls for a higher voltage at start and at low RPM values.

The electronic thermal relay (ETR) of the adjustable frequency drive cannot be used as motor protection for the individual motor of systems with parallel-connected motors. Provide further motor protection with, for example, thermistors in each motor or individual thermal relays (circuit breakers are not a suitable means of protection).



TR200 Design Guide 5-37

#### How to Install


### **Direction of Motor Rotation**

The default setting is clockwise rotation with the adjustable frequency drive output connected as follows.

Terminal 96 connected to U-phase Terminal 97 connected to V-phase Terminal 98 connected to W-phase

The direction of motor rotation is changed by switching two motor phases.

Motor rotation check can be performed using par. 1-28 Motor Rotation Check and following the steps shown in the display.



#### Motor Thermal Protection

The electronic thermal relay in the adjustable frequency drive has received the UL-approval for single motor protection, when par.1-90 <u>Motor Thermal Protection</u> is set for *ETR Trip* and par.1-24 <u>Motor Current</u> is set to the rated motor current (see motor nameplate).

#### Motor Insulation

For motor cable lengths ≤ than the maximum cable length listed in the General Specifications tables, the following motor insulation ratings are recommended because the peak voltage can be up to twice the DC link voltage, 2.8 times the AC line voltage due to transmission line effects in the motor cable. If a motor has lower insulation rating, it is recommended to use a du/dt or sine-wave filter.

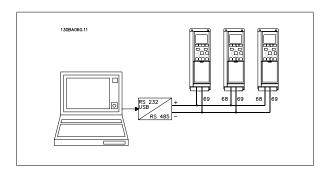
| Nominal AC Line Voltage                   | Motor Insulation                    |
|-------------------------------------------|-------------------------------------|
| U <sub>N</sub> ≤ 420 V                    | Standard U <sub>LL</sub> = 1300 V   |
| 420 V < U <sub>N</sub> ≤ 500 V            | Reinforced U <sub>LL</sub> = 1600 V |
| $500 \text{ V} < U_{N} \le 600 \text{ V}$ | Reinforced U <sub>LL</sub> = 1800 V |
| $600 \text{ V} < U_{N} \le 690 \text{ V}$ | Reinforced U <sub>LL</sub> = 2000 V |

## **Motor Bearing Currents**

All motors installed with 150 hp [110 kW] or higher power drives should have NDE (Non-Drive End) insulated bearings installed to eliminate circulating bearing currents. To minimize DE (Drive End) bearing and shaft currents proper grounding of the drive, motor, driven machine, and motor to the driven machine is required.

5-38 TR200 Design Guide

#### Standard Mitigation Strategies:


- 1. Use an insulated bearing
- 2. Apply rigorous installation procedures
  - Strictly follow the EMC Installation guideline
  - Provide a good high frequency connection between the motor and the adjustable frequency drive for instance by shielded cable which has a 360° connection in the motor and the adjustable frequency drive.
  - Provide a low impedance path from adjustable frequency drive to building ground and from the motor to building ground. This can be difficult for pumps
  - Make a direct ground connection between the motor and load machine
  - Reinforce the PE so the high frequency impedance is lower in the PE
  - Ensure the motor and load motor are aligned
- 3. Lower the IGBT switching frequency
- 4. Modify the inverter waveform, 60° AVM vs. SFAVM
- 5. Install a shaft grounding system or use an isolating coupling between motor and load
- 6. Apply conductive lubrication
- 7. If the application allows, avoid running at low motor speeds by using the minimum speed settings of the drive.
- 8. Try to ensure the line voltage is balanced to ground. This can be difficult for IT, TT, TN-CS or Grounded leg systems
- 9. Use a dU/dt or sinus filter

## Installation of misc. connections

#### RS 485 Bus Connection

One or more adjustable frequency drives can be connected to a control (or master) using the RS-485 standardized interface. Terminal 68 is connected to the P signal (TX+, RX+), while terminal 69 is connected to the N signal (TX-, RX-).

If more than one adjustable frequency drive is connected to a master, use parallel connections.

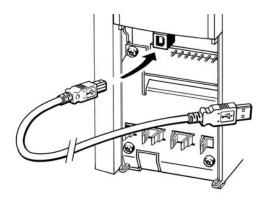


In order to avoid potential equalizing currents in the shield, ground the cable screen via terminal 61, which is connected to the frame via an RC link.

#### **Bus termination**

The RS-485 bus must be terminated by a resistor network at both ends. For this purpose, set switch S801 on the control card to "ON".

For more information, see the paragraph Switches S201, S202, and S801.


Communication protocol must be set to par.8-30 Protocol.

TR200 Design Guide 5-39

## How to connect a PC to the adjustable frequency drive

To control or program the adjustable frequency drive from a PC, install the PC-based Configuration Tool TDU. The PC is connected via a standard (host/device) USB cable, or via the RS-485 interface as shown in the TR200 Design Guide, chapter How to Install > Installation of misc. connections.

NOTE: The USB connection is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals. The USB connection is connected to protection ground on the adjustable frequency drive. Use only isolated laptop for PC connection to the USB connector on the adjustable frequency drive.



130BT308

Figure 5. 21: For control cable connections, see section on Control Terminals.

#### PC-based Configuration Tool Trane Drive Utility (TDU)

All drives are equipped with a serial communication port. We provide a PC tool for communication between PC and adjustable frequency drive, PC-based Configuration Tool TDU.

#### **TDU Set-up Software**

TDU has been designed as an easy to use interactive tool for setting parameters in our adjustable frequency drives.

The PC-based Configuration Tool TDU will be useful for:

- Planning a communication network off-line. TDU contains a complete adjustable frequency drive database
- Commissioning adjustable frequency drives on-line.
- Saving settings for all adjustable frequency drives.
- Replacing an adjustable frequency drive in a network.
- Expanding an existing network.
- Drives developed in the future will be fully supported.

The PC-based Configuration Tool supports Profibus DP-V1 via a master class 2 connection. This makes it possible to access online read/write parameters in an adjustable frequency drive via the Profibus network. This will eliminate the need for an extra communication network. See Instruction Manual, MG.33.Cx.yy and MN.90.Ex.yy for more information about the features supported by the Profibus DP V1 functions.

5-40 TR200 Design Guide

#### Save Drive Settings:

- 1. Connect a PC to the unit via the USB comport.
- 2. Open PC-based Configuration Tool TDU
- 3. Choose "Read from drive"
- 4. Choose "Save as"

All parameters are now stored on the PC.

#### **Load Drive Settings:**

- 1. Connect a PC to the unit via the USB comport.
- 2. Open PC-based Configuration Tool TDU
- 3. Choose "Open" stored files will be shown.
- 4. Open the appropriate file
- 5. Choose "Write to drive"

All parameter settings are now transferred to the adjustable frequency drive.

A separate manual for PC-based Configuration Tool TDU is available.

#### The PC-based Configuration Tool TDU modules

The following modules are included in the software package:



#### **TDU Set-up Software**

Setting parameters

Copy to and from adjustable frequency drives

Documentation and print-out of parameter settings incl. diagrams

#### **Ext. User Interface**

Preventive Maintenance Schedule Clock settings Timed Action Programming Smart Logic Controller Set-up

#### **Ordering number:**

Please order your CD containing the PC-based Configuration Tool TDU using code number 130B1000.

### THA

The THA harmonic calculation PC tool enables easy estimation of the harmonic distortion in a given application. Both the harmonic distortion of Trane adjustable frequency drives as well as non-Trane adjustable frequency drives with different additional harmonic reduction devices, such as Trane AHF filters and 12-18 pulse rectifiers, can be calculated.

### Ordering number:

Please order your CD containing the THA PC tool using code number 130B1031.

THA can also be downloaded from the Trane Internet: www.trane.com/vfd.

TR200 Design Guide 5-41

## Safety

## High Voltage Test

Carry out a high voltage test by short-circuiting terminals U, V, W, L<sub>1</sub>, L<sub>2</sub> and L<sub>3</sub>. Energize maximum 2.15 kV DC for 380–500V adjustable frequency drives and 2.525 kV DC for 525–690 V adjustable frequency drives for one second between this short-circuit and the chassis.

## **∱**WARNING

When running high voltage tests of the entire installation, interrupt line power and the motor connection if the leakage currents are too high.

## Safety Ground Connection

The adjustable frequency drive has a high leakage current and must be grounded appropriately for safety reasons according to EN 50178.

## **<b>≜**WARNING

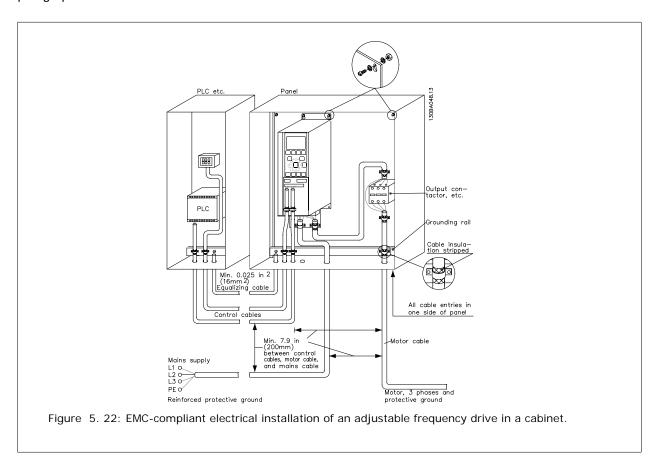
The ground leakage current from the adjustable frequency drive exceeds 3.5 mA. To ensure a good mechanical connection from the ground cable to the ground connection (terminal 95), the cable cross-section must be at least 0.016 in.<sup>2</sup> [10 mm<sup>2</sup>] or 2 rated ground wires terminated separately.

## **EMC-correct Installation**

### Electrical Installation - EMC Precautions

The following is a guideline for good engineering practice when installing adjustable frequency drives. Follow these guidelines to comply with EN 61800-3 *First environment*. If the installation is in EN 61800-3 *Second environment*, i.e., industrial networks, or in an installation with its own transformer, deviation from these guidelines is allowed but not recommended. See also paragraphs *CE Labeling, General Aspects of EMC Emission* and *EMC Test Results*.

Good engineering practice to ensure EMC-correct electrical installation:


- Use only braided shielded/armored motor cables and braided shielded/armored control cables. The
  shield should provide a minimum coverage of 80%. The shield material must be metal, not limited
  to, but typically, copper, aluminum, steel or lead. There are no special requirements for the line cable.
- Installations using rigid metal conduits are not required to contain shielded cable, but the motor cable
  must be installed in conduit separate from the control and line cables. Full connection of the conduit
  from the drive to the motor is required. The EMC performance of flexible conduits varies greatly, and
  information from the manufacturer must therefore be obtained.
- Connect the shield/armor/conduit to ground at both ends for motor cables as well as for control cables.
   In some cases, it is not possible to connect the shield at both ends. If so, connect the shield at the adjustable frequency drive. See also *Grounding of Braided Shielded/Armored Control Cables*.
- Avoid terminating the shield/armor with twisted ends (pigtails). It increases the high frequency impedance of the shield, which reduces its effectiveness at high frequencies. Use low impedance cable clamps or EMC cable connectors instead.
- Avoid using unshielded/unarmored motor or control cables inside cabinets housing the drive(s), whenever this can be avoided.

5-42 TR200 Design Guide

Leave the shield as close to the connectors as possible.

The illustration shows an example of an EMC-correct electrical installation of an IP 20 adjustable frequency drive. The adjustable frequency drive is fitted in an installation cabinet with an output contactor and connected to a PLC, which is installed in a separate cabinet. Other ways of performing the installation may result in an equally effective EMC performance, provided the above guidelines for engineering practice are followed.

If the installation is not carried out according to the guidelines, and if non-shielded cables and control wires are used, some emission requirements will not be fulfilled, although the immunity requirements will be. See the paragraph *EMC test results*.



TR200 Design Guide 5-43

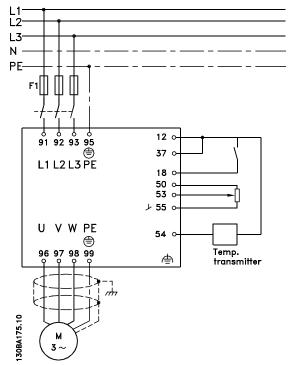
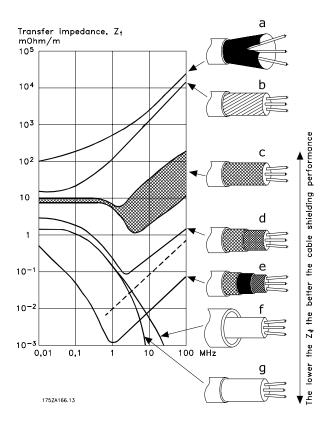



Figure 5. 23: Electrical connection diagram.

5-44 TR200 Design Guide

## Use of EMC-correct Cables


Trane recommends braided shielded/armored cables to optimize EMC immunity of the control cables and the EMC emission from the motor cables.

The ability of a cable to reduce the in and outgoing radiation of electric noise depends on the transfer impedance  $(Z_T)$ . The shield of a cable is normally designed to reduce the transfer of electric noise; however, a shield with a lower transfer impedance  $(Z_T)$  value is more effective than a shield with a higher transfer impedance  $(Z_T)$ .

Transfer impedance (Z<sub>T</sub>) is rarely stated by cable manufacturers, but it is often possible to estimate transfer impedance (Z<sub>T</sub>) by assessing the physical design of the cable.

Transfer impedance (ZT) can be assessed on the basis of the following factors:

- The conductibility of the shield material.
- The contact resistance between the individual shield conductors.
- The shield coverage, i.e., the physical area of the cable covered by the shield often stated as a percentage value.
- Shield type, i.e., braided or twisted pattern.
- a. Aluminum-clad with copper wire.
- b. Twisted copper wire or armored steel wire cable.
- Single-layer braided copper wire with varying percentage shield coverage.
   This is the typical Trane reference cable.
- d. Double-layer braided copper wire.
- e. Twin layer of braided copper wire with a magnetic, shielded/armored intermediate layer.
- f. Cable that runs in copper tube or steel tube.
- g. Lead cable with 0.43 in [1.1 mm] wall thickness.



TR200 Design Guide 5-45

#### How to Install

## Grounding of Shielded/Armored Control Cables

Generally speaking, control cables must be braided and shielded/armored, and the shield must be connected by means of a cable clamp at both ends to the metal cabinet of the unit.

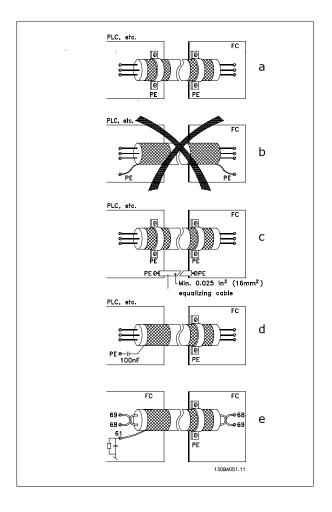
The drawing below indicates how correct grounding is carried out and what to do if in doubt.

#### a. Correct grounding

Control cables and cables for serial communication must be fitted with cable clamps at both ends to ensure the best possible electrical contact.

#### b. Wrong grounding

Do not use twisted cable ends (pigtails). They increase the shield impedance at high frequencies.


c. Protection with respect to ground potential between PLC and adjustable frequency drive If the ground potential between the adjustable frequency drive and the PLC (etc.) is different, electric noise may occur that will disturb the entire system. Solve this problem by fitting an equalizing cable next to the control cable. Minimum cable cross-section: 0.025 in<sup>2</sup> [16 mm<sup>2</sup>].

#### d. For 50/60 Hz ground loops

If very long control cables are used, 50/60 Hz ground loops may occur. Solve this problem by connecting one end of the shield to ground via a 100nF capacitor (keeping leads short).

#### e. Cables for serial communication

Eliminate low-frequency noise currents between two adjustable frequency drives by connecting one end of the shield to terminal 61. This terminal is grounded via an internal RC link. Use twistedpair cables to reduce the differential mode interference between the conductors.



## Residual Current Device

You can use RCD relays, multiple protective grounding or grounding as extra protection, provided that local safety regulations are complied with.

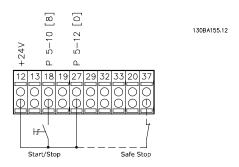
If a ground fault appears, a DC content may develop in the faulty current.

If RCD relays are used, you must observe local regulations. Relays must be suitable for protection of 3-phase equipment with a bridge rectifier and for a brief discharge on power-up see section *Ground Leakage Current* for further information.

5-46 TR200 Design Guide



## **Application Examples**


## Start/Stop

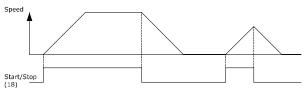
Terminal 18 = start/stop par.5-10 <u>Terminal 18 Digital</u> <u>Input</u> [8] *Start* 

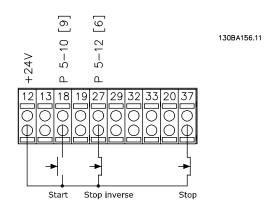
Terminal 27 = No operation par.5-12 <u>Terminal 27 Digital Input</u> [0] *No operation* (Default *coast inverse* 

Par.5-10 Terminal 18 Digital Input = Start (default)

Par.5-12 <u>Terminal 27 Digital Input</u> = *coast inverse* (default)







Figure 6. 1: Terminal 37: Available only with Safe Stop Function!

## Pulse Start/Stop

Terminal 18 = start/stop par.5-10 <u>Terminal 18 Digital Input</u> [9] *Latched start*Terminal 27 = Stop par.5-12 <u>Terminal 27 Digital Input</u> [6] *Stop inverse* 

Par.5-10 Terminal 18 Digital Input = Latched start

Par.5-12 <u>Terminal 27 Digital Input</u> = *Stop inverse* 



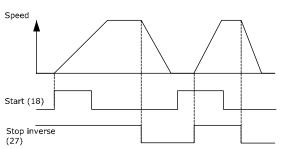



Figure 6. 2: Terminal 37: Available only with Safe Stop Function!

TR200 Design Guide 6-1

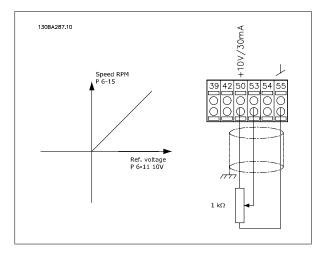
## Application Examples

### Potentiometer Reference

Voltage reference via a potentiometer.

par.3-15 <u>Reference 1 Source</u> [1] = Analog Input 53

par.6-10 <u>Terminal 53 Low Voltage</u> = 0 Volt


par.6-11 <u>Terminal 53 High Voltage</u> = 10 Volt

par.6-14 <u>Terminal 53 Low Ref./Feedb. Value</u> = 0

RPM

par.6-15 <u>Terminal 53 High Ref./Feedb. Value</u> = 1500 RPM

Switch S201 = OFF (U)



## Automatic Motor Adaptation (AMA)

AMA is an algorithm to measure the electrical motor parameters on a motor at standstill. This means that AMA itself does not supply any torque.

AMA is useful when commissioning systems and optimizing the adjustment of the adjustable frequency drive to the applied motor. This feature is particularly used where the default setting does not apply to the connected motor.

Par.1-29 <u>Automatic Motor Adaptation (AMA)</u> allows a choice of complete AMA with determination of all electrical motor parameters or reduced AMA with determination of the stator resistance Rs only.

The duration of a total AMA varies from a few minutes on small motors to more than 15 minutes on large motors.

#### Limitations and preconditions:

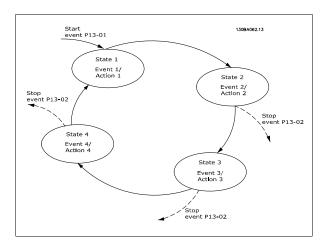
- For the AMA to determine the motor parameters optimally, enter the correct motor nameplate data in par.1-20 Motor Power [kW] to par.1-28 Motor Rotation Check.
- For the best adjustment of the adjustable frequency drive, carry out AMA on a cold motor. Repeated
  AMA runs may lead to a heating of the motor, which results in an increase of the stator resistance,
  Rs. Normally, this is not critical.
- AMA can only be carried out if the rated motor current is minimum 35% of the rated output current of the adjustable frequency drive. AMA can be carried out on up to one oversize motor.
- It is possible to carry out a reduced AMA test with a sine-wave filter installed. Avoid carrying out a complete AMA with a sine-wave filter. If an overall setting is required, remove the sine-wave filter while running a total AMA. After completion of the AMA, reinsert the sine-wave filter.
- If motors are coupled in parallel, use only reduced AMA if any.
- Avoid running a complete AMA when using synchronous motors. If synchronous motors are applied, run a reduced AMA and manually set the extended motor data. The AMA function does not apply to permanent magnet motors.
- The adjustable frequency drive does not produce motor torque during an AMA. During an AMA, it is
  imperative that the application does not force the motor shaft to run, which is known to happen with,
  e.g., wind milling in ventilation systems. This disturbs the AMA function.

6-2 TR200 Design Guide

## **Smart Logic Control**

New useful facility in the TR200 adjustable frequency drive is the <u>S</u>mart <u>Logic Control</u> (SLC). In applications where a PLC is generating a simple sequence the SLC may take over elementary tasks from the main control.

SLC is designed to act from event send to or generated in the adjustable frequency drive. The adjustable frequency drive will then perform the pre-programmed action.


## **Smart Logic Control Programming**

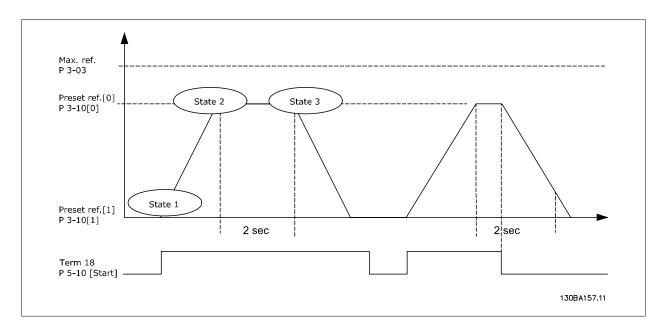
The Smart Logic Control (SLC) is essentially a sequence of user defined actions (see par.13-52 <u>SL Controller Action</u>) executed by the SLC when the associated user defined *event* (see par.13-51 <u>SL Controller Event</u>) is evaluated as TRUE by the SLC.

Events and actions are each numbered and are linked in pairs called states. This means that when event [1] is fulfilled (attains the value TRUE), action [1] is executed. After this, the conditions of event [2] will be evaluated and if evaluated TRUE, action [2] will be executed and so on. Events and actions are placed in array parameters.

Only one *event* will be evaluated at any time. If an *event* is evaluated as FALSE, nothing happens (in the SLC) during the present scan interval and no other *events* will be evaluated. This means that when the SLC starts, it evaluates *event* [1] (and only *event* [1]) each scan interval. Only when *event* [1] is evaluated TRUE, the SLC executes *action* [1] and starts evaluating *event* [2].

It is possible to program from 0 to 20 *events* and *actions*. When the last *event / action* has been executed, the sequence starts over again from *event [1] / action [1]*. The figure shows an example with three *events / actions* 




TR200 Design Guide 6-3

## **Application Examples**

## **SLC Application Example**

#### One sequence 1:

Start - ramp up - run at reference speed 2 sec - ramp down and hold shaft until stop.



Set the ramping times in par.3-41 <u>Ramp 1 Ramp-up Time</u> and par.3-42 <u>Ramp 1 Ramp-down Time</u> to the wanted times

$$t_{ramp} = \frac{t_{acc} \times n_{norm} (par. 1 - 25)}{ref[RPM]}$$

Set term 27 to No Operation (par.5-12 Terminal 27 Digital Input)

Set Preset reference 0 to first preset speed (par.3-10 <u>Preset Reference</u> [0]) in percentage of Max reference speed (par.3-03 <u>Maximum Reference</u>). Ex.: 60%

Set preset reference 1 to second preset speed (par.3-10 Preset Reference [1] Ex.: 0% (zero).

Set the timer 0 for constant running speed in par.13-20 <u>SL Controller Timer</u> [0]. Ex.: 2 sec.

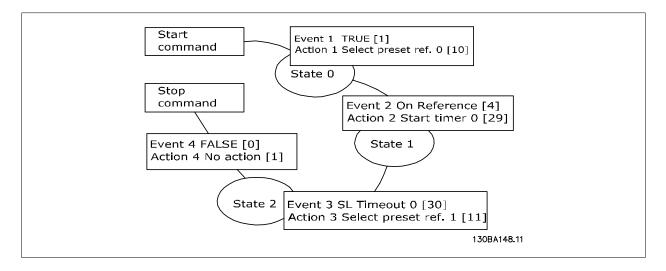
Set Event 1 in par.13-51  $\underline{\text{SL Controller Event}}$  [1] to True [1]

Set Event 2 in par.13-51 SL Controller Event [2] to On Reference [4]

Set Event 3 in par.13-51 SL Controller Event [3] to Time Out 0 [30]

Set Event 4 in par.13-51 <u>SL Controller Event</u> [1] to *False* [0]

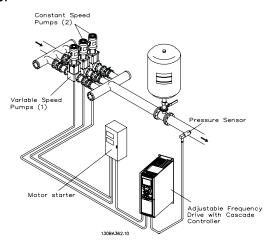
Set Action 1 in par.13-52 <u>SL Controller Action</u> [1] to *Select preset 0* [10]


Set Action 2 in par.13-52 <u>SL Controller Action</u> [2] to *Start Timer 0* [29]

Set Action 3 in par.13-52 SL Controller Action [3] to Select preset 1 [11]

Set Action 4 in par.13-52 SL Controller Action [4] to No Action [1]

6-4 TR200 Design Guide






Set the Smart Logic Control in par.13-00 SL Controller Mode to ON.

Start / stop command is applied on terminal 18. If stop signal is applied the adjustable frequency drive will ramp down and go into free mode.

## **BASIC Cascade Controller**



The BASIC Cascade Controller is used for pump applications where a certain pressure ("head") or level needs to be maintained over a wide dynamic range. Running a large pump at variable speed over a wide range is not an ideal solution because of low pump efficiency, and because there is a practical limit of about 25% rated full load speed for running a pump.

With the BASIC Cascade Controller, the adjustable frequency drive controls a variable speed motor as the variable speed pump (lead), and can stage up to two additional constant speed pumps to on and off. By varying the speed of the initial pump, variable speed control of the entire system is provided. This maintains constant pressure while eliminating pressure surges, resulting in reduced system stress and quieter operation in pumping systems.

#### Fixed Lead Pump

The motors must be of equal size. The BASIC cascade controller allows the adjustable frequency drive to control up to 3 equal size pumps using the drive's two built-in relays. When the variable pump (lead) is connected directly

TR200 Design Guide 6-5



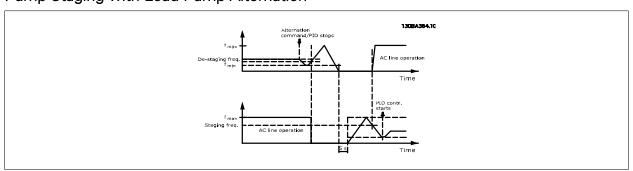
### Application Examples

to the adjustable frequency drive, the other 2 pumps are controlled by the two built-in relays. When lead pump alternations is enabled, pumps are connected to the built-in relays and the adjustable frequency drive is capable of operating 2 pumps.

#### Lead Pump Alternation

The motors must be of equal size. This function makes it possible to cycle the adjustable frequency drive between the pumps in the system (maximum of 2 pumps). In this operation, the run time between pumps is equalized, thus reducing the required pump maintenance and increasing reliability and system lifetime. The alternation of the lead pump can take place at a command signal or at staging (adding another pump).

The command can be a manual alternation or an alternation event signal. If the alternation event is selected, the lead pump alternation takes place every time the event occurs. Selections include whenever an alternation timer expires, at a predefined time of day or when the lead pump goes into sleep mode. Staging is determined by the actual system load.


A separate parameter limits alternation only to take place if total capacity required is > 50%. Total pump capacity is determined as lead pump plus fixed-speed pumps capacities.

#### **Bandwidth Management**

In cascade control systems, to avoid frequent switching of fixed-speed pumps, the desired system pressure is kept within a bandwidth rather than at a constant level. Staging bandwidth provides the required bandwidth for operation. When a large and quick change in system pressure occurs, the override bandwidth overrides the staging bandwidth to prevent immediate response to a short duration pressure change. An override bandwidth timer can be programmed to prevent staging until the system pressure has stabilized and normal control has been established.

When the cascade controller is enabled and running normally and the adjustable frequency drive issues a trip alarm, the system head is maintained by staging and de-staging fixed-speed pumps. To prevent frequent staging and de-staging and minimize pressure fluctuations, a wider fixed-speed bandwidth is used instead of the staging bandwidth.

## Pump Staging with Lead Pump Alternation



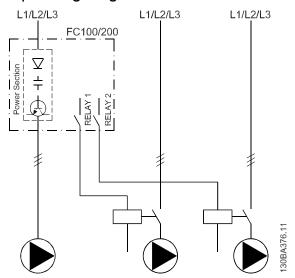
With lead pump alternation enabled, a maximum of two pumps are controlled. At an alternation command, the lead pump will ramp to minimum frequency (fmin), and after a delay, it will ramp to maximum frequency (fmax). When the speed of the lead pump reaches the de-staging frequency, the fixed-speed pump will be cut out (destaged). The lead pump continues to ramp up and then ramps down to a stop and the two relays are cut out.

After a time delay, the relay for the fixed speed pump cuts in (staged) and this pump becomes the new lead pump. The new lead pump ramps up to maximum speed and then down to minimum speed when ramping

6-6 TR200 Design Guide

down and reaching the staging frequency, the old lead pump is now cut in (staged) on line power as the new fixed-speed pump.

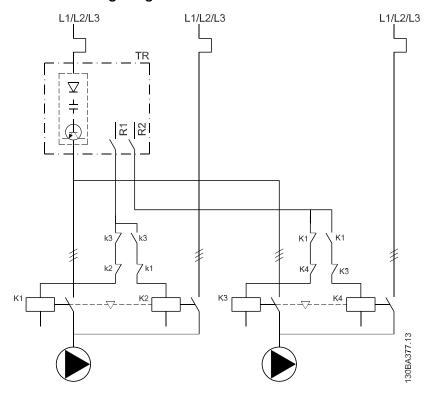
If the lead pump has been running at minimum frequency (fmin) for a programmed amount of time, with a fixed speed pump running, the lead pump contributes little to the system. When the programmed value of the timer expires, the lead pump is removed, avoiding a heat water-circulation problem.


## System Status and Operation

If the lead pump goes into sleep mode, the function is displayed on the keypad. It is possible to alternate the lead pump on a sleep mode condition.

When the cascade controller is enabled, the operation status for each pump and the cascade controller is displayed on the keypad. Information displayed includes:

- Pumps Status, is a readout of the status for the relays assigned to each pump. The display shows pumps
  that are disabled, off, running on the adjustable frequency drive, or running on the line power/motor
  starter.
- Cascade Status, a readout of the status for the cascade controller. The display shows the cascade controller is disabled, all pumps are off, and emergency has stopped all pumps, all pumps are running, fixed-speed pumps are being staged/de-staged and lead pump alternation is occurring.
- De-stage at No-Flow ensures that all fixed-speed pumps are stopped individually until the no-flow status disappears.


## Fixed Variable Speed Pump Wiring Diagram



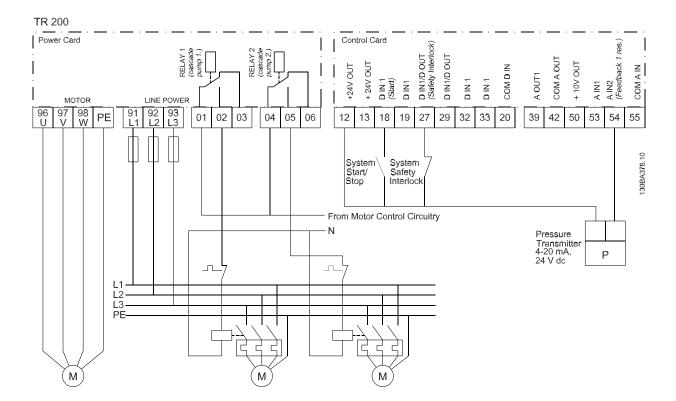
TR200 Design Guide 6-7



## Lead Pump Alternation Wiring Diagram



Every pump must be connected to two contactors (K1/K2 and K3/K4) with a mechanical interlock. Thermal relays or other motor protection devices must be applied according to local regulation and/or individual demands.


- RELAY 1 (R1) and RELAY 2 (R2) are the built-in relays in the adjustable frequency drive.
- When all relays are de-energized, the first built-in relay to be energized will cut in the contactor corresponding to the pump controlled by the relay. For example, RELAY 1 cuts in contactor K1, which becomes the lead pump.
- K1 blocks K2 via the mechanical interlock, preventing line power to be connected to the output of the adjustable frequency drive (via K1).
- Auxiliary break contact on K1 prevents K3 from cutting in.
- RELAY 2 controls contactor K4 for on/off control of the fixed-speed pump.
- At alternation, both relays de-energize, and RELAY 2 will be energized as the first relay.

6-8 TR200 Design Guide



## Cascade Controller Wiring Diagram

The wiring diagram shows an example with the built-in BASIC cascade controller with one variable speed pump (lead) and two fixed speed pumps, a 4–20 mA transmitter and system safety interlock.



**TRANE** 

TR200 Design Guide 6-9

## **Application Examples**

## Start/Stop conditions

Commands assigned to digital inputs. See *Digital Inputs*, parameter group 5-1\*.

|                            | Variable speed pump (lead)                  | Fixed-speed pumps                          |
|----------------------------|---------------------------------------------|--------------------------------------------|
| Start (SYSTEM START /STOP) | Ramps up (if stopped and there is a demand) | Staging (if stopped and there is a demand) |
| Lead Pump Start            | Ramps up if SYSTEM START is active          | Not affected                               |
| Coast (EMERGENCY STOP)     | Coast to stop                               | Cut out (built in relays are de-energized) |
| Safety Interlock           | Coast to stop                               | Cut out (built in relays are de-energized) |

## Function of buttons on keypad:

|         | Variable speed pump (lead)                                                              | Fixed-speed pumps       |
|---------|-----------------------------------------------------------------------------------------|-------------------------|
| Hand On | Ramps up (if stopped by a normal stop command) or stays in operation if already running | De-staging (if running) |
| Off     | Ramps down                                                                              | Ramps down              |
| Auto On | Starts and stops according to commands sent via terminals or serial bus.                | Staging/De-staging      |

6-10 TR200 Design Guide



# **RS-485 Installation and Set-up**

## RS-485 Installation and Set-up

#### Overview

RS-485 is a two-wire bus interface compatible with multi-drop network topology, i.e., nodes can be connected as a bus, or via drop cables from a common trunk line. A total of 32 nodes can be connected to one network segment.

Network segments are divided up by repeaters. Please note that each repeater functions as a node within the segment in which it is installed. Each node connected within a given network must have a unique node address across all segments.

Terminate each segment at both ends using either the termination switch (S801) of the adjustable frequency drives or a biased termination resistor network. Always use shielded twisted pair (STP) cable for bus cabling, and always follow good common installation practice.

Low-impedance ground connection of the shield at every node is very important, also at high frequencies. This can be achieved by connecting a large surface of the shield to ground, by means of a cable clamp or a conductive cable gland, for example. It may be necessary to apply potential-equalizing cables to maintain the same ground potential throughout the network, particularly in installations where there are long lengths of cable.

To prevent impedance mismatch, always use the same type of cable throughout the entire network. When connecting a motor to the adjustable frequency drive, always use shielded motor cable.

Cable: Shielded twisted pair (STP)

Impedance: 120 Ohm

Cable length: Max. 3,396 ft [1,200 m] (including drop lines)

Max. 1,640 ft [500 m] station-to-station

TR200 Design Guide 7-1

## RS-485 Installation and Set-up

## **Network Connection**

Connect the adjustable frequency drive to the RS-485 network as follows (see also diagram):

- 1. Connect signal wires to terminal 68 (P+) and terminal 69 (N-) on the main control board of the adjustable frequency drive.
- 2. Connect the cable screen to the cable clamps.

### **NOTE**

Shielded, twisted-pair cables are recommended in order to reduce noise between conductors.

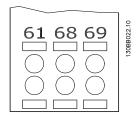



Figure 7. 1: Network Terminal Connection

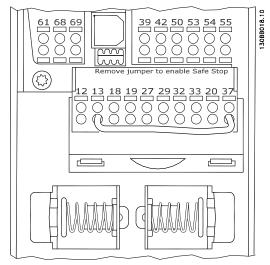
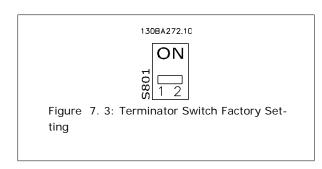




Figure 7. 2: Control card terminals

## Adjustable frequency drive hardware set-up

Use the terminator dip switch on the main control board of the adjustable frequency drive to terminate the RS-485 bus.



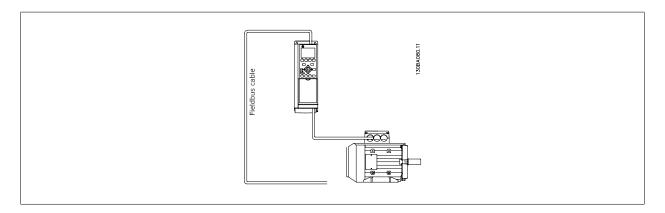
The factory setting for the dip switch is OFF.

7-2 TR200 Design Guide



## Adjustable Frequency Drive Parameter Settings for Modbus Communication

The following parameters apply to the RS-485 interface (FC port):


| Parameter<br>Number | Parameter name           | Function                                                                                                                                       |
|---------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 8-30                | Protocol                 | Select the application protocol to run on the RS-485 interface                                                                                 |
| 8-31                | Address                  | Set the node address. Note: The address range depends on the protocol selected in par.8-30 Protocol                                            |
| 8-32                | Baud Rate                | Set the baud rate. Note: The default baud rate depends on the protocol selected in par.8-30 Protocol                                           |
| 8-33                | PC port parity/Stop bits | Set the parity and number of stop bits. Note: The default selection depends on the protocol selected in par. 8-30 Protocol                     |
| 8-35                | Min. response delay      | Specify a minimum delay time between receiving a request and transmitting a response. This can be used for overcoming modem turnaround delays. |
| 8-36                | Max. response delay      | Specify a maximum delay time between transmitting a request and receiving a response.                                                          |
| 8-37                | Max. inter-char delay    | Specify a maximum delay time between two received bytes to ensure timeout if transmission is interrupted.                                      |

## **EMC Precautions**

The following EMC precautions are recommended in order to achieve interference-free operation of the RS-485 network.

#### **NOTE**

Relevant national and local regulations, for example, regarding protective ground connection, must be observed. The RS-485 communication cable must be kept away from motor and brake resistor cables to avoid coupling of high frequency noise from one cable to another. Normally a distance of 8 in [200 mm] is sufficient, but keeping the greatest possible distance between the cables is generally recommended, especially where cables run in parallel over long distances. When crossing is unavoidable, the RS-485 cable must cross motor and brake resistor cables at an angle of 90 degrees.



TR200 Design Guide 7-3



## Adjustable Frequency Protocol Overview

The adjustable frequency drive protocol, also referred to as adjustable frequency drive bus or standard bus, is the Trane standard serial communication bus. It defines an access technique according to the master-slave principle for communications via a serial bus.

One master and a maximum of 126 slaves can be connected to the bus. The individual slaves are selected by the master via an address character in the message. A slave itself can never transmit without first being requested to do so, and direct message transfer between the individual slaves is not possible. Communications occur in the half-duplex mode.

The master function cannot be transferred to another node (single-master system).

The physical layer is RS-485, thus utilizing the RS-485 port built into the adjustable frequency drive. The adjustable frequency protocol supports different message formats; a short format of 8 bytes for process data, and a long format of 16 bytes that also includes a parameter channel. A third message format is used for texts.

#### FC with Modbus RTU

The FC protocol provides access to the control word and bus reference of the adjustable frequency drive.

The control word allows the modbus master to control several important functions of the adjustable frequency drive:

- Start
- Stop of the adjustable frequency drive in various ways:

Coast stop

Quick stop

DC Brake stop

Normal (ramp) stop

- Reset after a fault trip
- Run at a variety of preset speeds
- Run in reverse
- Change of the active set-up
- Control of the two relays built into the adjustable frequency drive

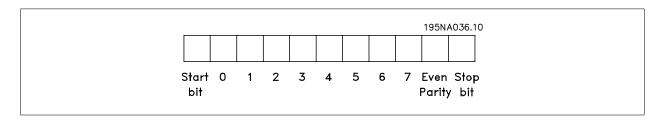
The bus reference is commonly used for speed control. It is also possible to access the parameters, read their values, and where possible, write values to them. This permits a range of control options, including controlling the setpoint of the adjustable frequency drive when its internal PID controller is used.

## **Network Configuration**

### Adjustable Frequency Drive Set-up

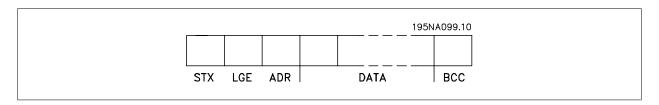
Set the following parameters to enable the Adjustable Frequency protocol for the adjustable frequency drive.

| <b>Parameter Number</b> | <b>Parameter Name</b> | Setting                           |
|-------------------------|-----------------------|-----------------------------------|
| 8-30                    | Protocol              | FC                                |
| 8-31                    | Address               | 1 - 126                           |
| 8-32                    | Baud Rate             | 2400 - 115200                     |
| 8-33                    | Parity/Stop bits      | Even parity, 1 stop bit (default) |


7-4 TR200 Design Guide



## FC Protocol Message Framing Structure


## Content of a Character (byte)

Each character transferred begins with a start bit. Then 8 data bits are transferred, corresponding to a byte. Each character is secured via a parity bit, which is set at "1" when it reaches parity (i.e., when there is an equal number of 1's in the 8 data bits and the parity bit in total). A character is completed by a stop bit, thus consisting of 11 bits in all.



## Message Structure

Each message begins with a start character (STX)=02 Hex, followed by a byte denoting the message length (LGE) and a byte denoting the adjustable frequency drive address (ADR). A number of data bytes (variable, depending on the type of message) follows. The message is completed by a data control byte (BCC).



## Message Length (LGE)

The message length is the number of data bytes plus the address byte ADR and the data control byte BCC.

| The length of messages with 4 data bytes is  | LGE = 4 + 1 + 1 = 6 bytes   |
|----------------------------------------------|-----------------------------|
| The length of messages with 12 data bytes is | LGE = 12 + 1 + 1 = 14 bytes |
| The length of messages containing texts is   | 10 <sup>1)</sup> +n bytes   |

<sup>1)</sup> The 10 represents the fixed characters, while the "n" is variable (depending on the length of the text).

TR200 Design Guide 7-5

## RS-485 Installation and Set-up

## Adjustable Frequency Drive Address (ADR)

Two different address formats are used.

The address range of the adjustable frequency drive is either 1-31 or 1-126.

#### 1. Address format 1-31:

Bit 7 = 0 (address format 1-31 active)

Bit 6 is not used

Bit 5 = 1: Broadcast, address bits (0-4) are not used

Bit 5 = 0: No Broadcast

Bit 0-4 = Adjustable frequency drive address 1-31

#### 2. Address format 1-126:

Bit 7 = 1 (address format 1-126 active)

Bit 0-6 = Adjustable frequency drive address 1-126

Bit 0-6 = 0 Broadcast

The slave returns the address byte unchanged to the master in the response telegram.

## Data Control Byte (BCC)

The checksum is calculated as an XOR-function. Before the first byte in the telegram is received, the calculated checksum is 0.

#### The Data Field

The structure of data blocks depends on the type of message. There are three message types, and the type applies for both control messages (master=>slave) and response messages (slave=>master).

The three types of message are:

#### Process block (PCD):

The PCD is made up of a data block of four bytes (2 words) and contains:

- Control word and reference value (from master to slave)
- Status word and present output frequency (from slave to master).

|             |      |      | 130BA269.10 |
|-------------|------|------|-------------|
| STX LGE ADR | PCD1 | PCD2 | BCC         |

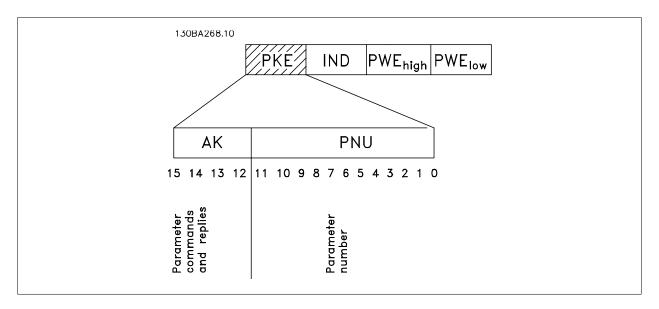
#### Parameter block:

The parameter block is used to transfer parameters between master and slave. The data block is made up of 12 bytes (6 words) and also contains the process block.

|         |     |     |     |                     |                    |      | 1.   | 30BA2/1.10 |
|---------|-----|-----|-----|---------------------|--------------------|------|------|------------|
| STX LGE | ADR | PKE | IND | PWE <sub>high</sub> | PWE <sub>low</sub> | PCD1 | PCD2 | ВСС        |

7-6 TR200 Design Guide




#### Text block:

The text block is used to read or write texts via the data block.

| STX LGE ADR PKE IND Ch1 Ch2 Chn PCD1 PCD2 BCC |             |     |     |     |     |         |      | 1.   | 30BA270.10 |
|-----------------------------------------------|-------------|-----|-----|-----|-----|---------|------|------|------------|
|                                               | STX LGE ADR | PKE | IND | Ch1 | Ch2 | <br>Chn | PCD1 | PCD2 | BCC        |

## The PKE Field

The PKE field contains two sub-fields: Parameter command and response AK, and Parameter number PNU:



Bits no. 12-15 transfer parameter commands from master to slave and return processed slave responses to the master.

| Bit no. |    |    |    | Parameter command                                     |
|---------|----|----|----|-------------------------------------------------------|
| 15      | 14 | 13 | 12 |                                                       |
| 0       | 0  | 0  | 0  | No command                                            |
| 0       | 0  | 0  | 1  | Read parameter value                                  |
| 0       | 0  | 1  | 0  | Write parameter value in RAM (word)                   |
| 0       | 0  | 1  | 1  | Write parameter value in RAM (double word)            |
| 1       | 1  | 0  | 1  | Write parameter value in RAM and EEPROM (double word) |
| 1       | 1  | 1  | 0  | Write parameter value in RAM and EEPROM (word)        |
| 1       | 1  | 1  | 1  | Read/write text                                       |

TR200 Design Guide 7-7

## RS-485 Installation and Set-up

| itespe  | nse slave | 7111415461 |    |                                           |
|---------|-----------|------------|----|-------------------------------------------|
| Bit no. |           |            |    | Response                                  |
| 15      | 14        | 13         | 12 |                                           |
| 0       | 0         | 0          | 0  | No response                               |
| 0       | 0         | 0          | 1  | Parameter value transferred (word)        |
| 0       | 0         | 1          | 0  | Parameter value transferred (double word) |
| 0       | 1         | 1          | 1  | Command cannot be performed               |
| 1       | 1         | 1          | 1  | text transferred                          |

If the command cannot be performed, the slave sends this response:

0111 Command cannot be performed

- and issues the following fault report in the parameter value (PWE):

| PWE low (Hex) | Fault Report                                                                                                                                                                |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0             | The parameter number used does not exit.                                                                                                                                    |
| 1             | There is no write access to the defined parameter.                                                                                                                          |
| 2             | Data value exceeds the parameter's limits.                                                                                                                                  |
| 3             | The sub index used does not exit.                                                                                                                                           |
| 4             | The parameter is not the array type.                                                                                                                                        |
| 5             | The data type does not match the defined parameter.                                                                                                                         |
| 11            | Data change in the defined parameter is not possible in the adjustable frequency drive's present mode. Certain parameters can only be changed when the motor is turned off. |
| 82            | There is no bus access to the defined parameter.                                                                                                                            |
| 83            | Data change is not possible because the factory set-up is selected.                                                                                                         |

### Parameter Number (PNU)

Bits no. 0-11 transfer parameter numbers. The function of the relevant parameter is defined in the parameter description in the chapter *How to Program*.

### Index (IND)

The index is used together with the parameter number to read/write-access parameters with an index, e.g., par. 15-30 <u>Alarm Log: Error Code</u>. The index consists of 2 bytes, a low byte and a high byte.

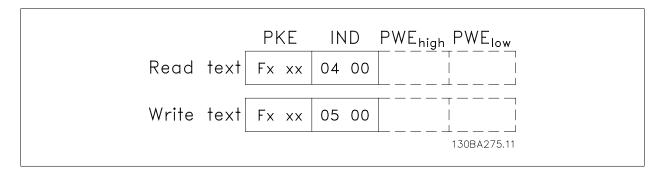
Only the low byte is used as an index.

#### Parameter Value (PWE)

The parameter value block consists of 2 words (4 bytes), and the value depends on the defined command (AK). The master prompts for a parameter value when the PWE block contains no value. To change a parameter value (write), write the new value in the PWE block and send from the master to the slave.

When a slave responds to a parameter request (read command), the present parameter value in the PWE block is transferred and returned to the master. If a parameter contains not a numerical value but several data options, e.g., par.0-01 <u>Language</u> where [0] corresponds to English, and [4] corresponds to Danish, select the data value by entering the value in the PWE block. See Example - Selecting a data value. Serial communication is only capable of reading parameters containing data type 9 (text string).

7-8 TR200 Design Guide




Par.15-40 FC Type to par.15-53 Power Card Serial Number contain data type 9.

For example, read the unit size and AC line voltage range in par.15-40 FC Type. When a text string is transferred (read), the length of the message is variable, and the texts are of different lengths. The message length is defined in the second byte of the message, LGE. When using text transfer the index character indicates whether it is a read or a write command.

To read a text via the PWE block, set the parameter command (AK) to 'F' Hex. The index character high-byte must be "4".

Some parameters contain text that can be written to via the serial bus. To write a text via the PWE block, set the parameter command (AK) to 'F' Hex. The index characters high-byte must be "5".



## Data Types Supported by the Adjustable Frequency Drive

| Data types | Description     |
|------------|-----------------|
| 3          | Integer 16      |
| 4          | Integer 32      |
| 5          | Unsigned 8      |
| 6          | Unsigned 16     |
| 7          | Unsigned 32     |
| 9          | Text string     |
| 10         | Byte string     |
| 13         | Time difference |
| 33         | Reserved        |
| 35         | Bit sequence    |

Unsigned means that there is no operational sign in the message.

TR200 Design Guide 7-9

## RS-485 Installation and Set-up

## Conversion

The various attributes of each parameter are displayed in the section Factory Settings. Parameter values are transferred as whole numbers only. Conversion factors are therefore used to transfer decimals.

Par.4-12 <u>Motor Speed Low Limit [Hz]</u> has a conversion factor of 0.1.

To preset the minimum frequency to 10 Hz, transfer the value 100. A conversion factor of 0.1 means that the value transferred is multiplied by 0.1. The value 100 is thus perceived as 10.0.

| Conversion table |                   |
|------------------|-------------------|
| Conversion index | Conversion factor |
| 74               | 0.1               |
| 2                | 100               |
| 1                | 10                |
| 0                | 1                 |
| -1               | 0.1               |
| -2               | 0.01              |
| -3               | 0.001             |
| -4               | 0.0001            |
| -5               | 0.00001           |

## Process Words (PCD)

The block of process words is divided into two blocks of 16 bits, which always occur in the defined sequence.

| PCD 1                                       | PCD 2                    |
|---------------------------------------------|--------------------------|
| Control message (master⇒slave control word) | Reference value          |
| Control message (slave ⇒master) Status word | Present output frequency |

7-10 TR200 Design Guide



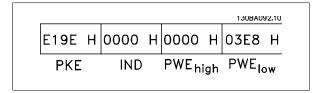
## Examples

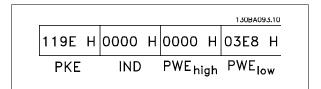
### Writing a Parameter Value

Change par.4-14 Motor Speed High Limit [Hz] to 100 Hz. Write the data in EEPROM.

PKE = E19E Hex - Write single word in par.4-14 Motor Speed High Limit [Hz]

IND = 0000 Hex


PWEHIGH = 0000 Hex

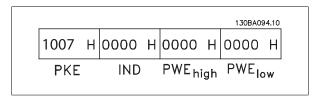

PWELOW = 03E8 Hex - Data value 1000, corresponding to 100 Hz, see Conversion.

Note: par.4-14 Motor Speed High Limit [Hz] is a single word, and the parameter command for write in EE-PROM is "E". Parameter number 4-14 is 19E in hexadecimal.

The response from the slave to the master will be:

The message will look like this:






### Reading a Parameter Value

Read the value in par.3-41 Ramp 1 Ramp-up Time

PKE = 1155 Hex - Read parameter value in par. 3-41 Ramp 1 Ramp-up Time IND = 0000 Hex PWEHIGH = 0000 Hex PWELOW = 0000 Hex

If the value in par.3-41 <u>Ramp 1 Ramp-up Time</u> is 10 s, the response from the slave to the master will be:



|      |   |      |   |                  |     | 130BA267.10 |   |  |
|------|---|------|---|------------------|-----|-------------|---|--|
| 1155 | Н | 0000 | Н | 0000             | Н   | 03E8        | Н |  |
| PKE  |   | IND  |   | PWE <sub>h</sub> | iah | PWE         |   |  |

3E8 Hex corresponds to 1000 decimal. The conversion index for par.3-41 Ramp 1 Ramp-up Time is -2, i.e., 0.01. par.3-41 Ramp 1 Ramp up Time is of the type *Unsigned 32*.

TR200 Design Guide 7-11



# Modbus RTU Overview

# **Assumptions**

This instruction manual assumes that the installed controller supports the interfaces in this document and that all the requirements stipulated in the controller, as well as the adjustable frequency drive, are strictly observed, along with all limitations therein.

## What the User Should Already Know

The Modbus RTU (Remote Terminal Unit) is designed to communicate with any controller that supports the interfaces defined in this document. It is assumed that the user has full knowledge of the capabilities and limitations of the controller.

#### Modbus RTU Overview

Regardless of the type of physical communication networks, the Modbus RTU Overview describes the process a controller uses to request access to another device. This includes how it will respond to requests from another device, and how errors will be detected and reported. It also establishes a common format for the layout and contents of message fields.

While communicating over a Modbus RTU network, the protocol determines how each controller will learn its device address, recognize a message addressed to it, determine the kind of action to be taken and extract any data or other information contained in the message. If a reply is required, the controller will construct the reply message and send it.

Controllers communicate using a master-slave technique in which only one device (the master) can initiate transactions (called queries). The other devices (slaves) respond by supplying the requested data to the master or taking the action requested in the query.

The master can address individual slaves or initiate a broadcast message to all slaves. Slaves return a message (called a response) to queries that are addressed to them individually. No responses are returned to broadcast queries from the master. The Modbus RTU protocol establishes the format for the master's query by placing into it the device (or broadcast) address, a function code defining the requested action, any data to be sent and an error-checking field. The slave's response message is also constructed using Modbus protocol. It contains fields confirming the action taken, any data to be returned and an error-checking field. If an error occurs in receipt of the message, or if the slave is unable to perform the requested action, the slave will construct an error message and send it in response, or a timeout will occur.

## Adjustable Frequency Drive with Modbus RTU

The adjustable frequency drive communicates in Modbus RTU format over the built-in RS-485 interface. Modbus RTU provides access to the control word and bus reference of the adjustable frequency drive.

The control word allows the modbus master to control several important functions of the adjustable frequency drive:

- Start
- Stop of the adjustable frequency drive in various ways:

Coast stop

Quick stop

DC Brake stop

Normal (ramp) stop

- Reset after a fault trip
- · Run at a variety of preset speeds

7-12 TR200 Design Guide



- Run in reverse
- · Change the active set-up
- Control the adjustable frequency drive's built-in relay

The bus reference is commonly used for speed control. It is also possible to access the parameters, read their values, and where possible, write values to them. This permits a range of control options, including controlling the setpoint of the adjustable frequency drive when its internal PI controller is used.

# **Network Configuration**

To enable Modbus RTU on the adjustable frequency drive, set the following parameters:

| Parameter Number | Parameter name   | Setting                           |
|------------------|------------------|-----------------------------------|
| 8-30             | Protocol         | Modbus RTU                        |
| 8-31             | Address          | 1 - 247                           |
| 8-32             | Baud Rate        | 2400 - 115200                     |
| 8-33             | Parity/Stop bits | Even parity, 1 stop bit (default) |

# Modbus RTU Message Framing Structure

## Adjustable Frequency Drive with Modbus RTU

The controllers are set up to communicate on the Modbus network using RTU (Remote Terminal Unit) mode, with each byte in a message containing two 4-bit hexadecimal characters. The format for each byte is shown below.

| Start bit |  | Data | a byte |  | Stop/<br>parity | Stop |
|-----------|--|------|--------|--|-----------------|------|
|           |  |      |        |  |                 |      |

| Coding System     | 8-bit binary, hexadecimal 0-9, A-F. Two hexadecimal characters contained in each 8-bit field of the message                                                 |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bits Per Byte     | 1 start bit 8 data bits, least significant bit sent first 1 bit for even/odd parity; no bit for no parity 1 stop bit if parity is used; 2 bits if no parity |
| Error Check Field | Cyclical Redundancy Check (CRC)                                                                                                                             |

## Modbus RTU Message Structure

The transmitting device places a Modbus RTU message into a frame with a known beginning and ending point. This allows receiving devices to begin at the start of the message, read the address portion, determine which device is addressed (or all devices, if the message is broadcast), and to recognize when the message is completed. Partial messages are detected, and errors are set as a result. Characters for transmission must be in hexadecimal 00 to FF format in each field. The adjustable frequency drive continuously monitors the network bus, also during 'silent' intervals. When the first field (the address field) is received, each adjustable frequency drive or device decodes it to determine which device is being addressed. Modbus RTU messages addressed to zero are broadcast messages. No response is permitted for broadcast messages. A typical message frame is shown below.



#### **Typical Modbus RTU Message Structure**

| Start       | Address | Function | Data       | CRC check | End         |
|-------------|---------|----------|------------|-----------|-------------|
| T1-T2-T3-T4 | 8 bits  | 8 bits   | N x 8 bits | 16 bits   | T1-T2-T3-T4 |

# Start / Stop Field

Messages start with a silent period of at least 3.5 character intervals. This is implemented as a multiple of character intervals at the selected network baud rate (shown as Start T1-T2-T3-T4). The first field to be transmitted is the device address. Following the last transmitted character, a similar period of at least 3.5 character intervals marks the end of the message. A new message can begin after this period. The entire message frame must be transmitted as a continuous stream. If a silent period of more than 1.5 character intervals occurs before completion of the frame, the receiving device flushes the incomplete message and assumes that the next byte will be the address field of a new message. Similarly, if a new message begins prior to 3.5 character intervals after a previous message, the receiving device will consider it a continuation of the previous message. This will cause a time-out (no response from the slave), since the value in the final CRC field will not be valid for the combined messages.

#### Address Field

The address field of a message frame contains 8 bits. Valid slave device addresses are in the range of 0–247 decimal. The individual slave devices are assigned addresses in the range of 1–247. (0 is reserved for broadcast mode, which all slaves recognize.) A master addresses a slave by placing the slave address in the address field of the message. When the slave sends its response, it places its own address in this address field to let the master know which slave is responding.

#### **Function Field**

The function field of a message frame contains 8 bits. Valid codes are in the range of 1-FF. Function fields are used to send messages between master and slave. When a message is sent from a master to a slave device, the function code field tells the slave what kind of action to perform. When the slave responds to the master, it uses the function code field to indicate either a normal (error-free) response, or that some kind of error occurred (called an exception response). For a normal response, the slave simply echoes the original function code. For an exception response, the slave returns a code that is equivalent to the original function code with its most significant bit set to logic 1. In addition, the slave places a unique code into the data field of the response message. This tells the master what kind of error occurred, or the reason for the exception. Please also refer to the sections *Function Codes Supported by Modbus RTU* and *Exception Codes*.

### Data Field

The data field is constructed using sets of two hexadecimal digits, in the range of 00 to FF hexadecimal. These are made up of one RTU character. The data field of messages sent from a master to slave device contains additional information that the slave must use to take the action defined by the function code. This can include items such as coil or register addresses, the quantity of items to be handled and the count of actual data bytes in the field.

#### **CRC Check Field**

Messages include an error-checking field, operating on the basis of a Cyclical Redundancy Check (CRC) method. The CRC field checks the contents of the entire message. It is applied regardless of any parity check method used for the individual characters of the message. The CRC value is calculated by the transmitting device, which appends the CRC as the last field in the message. The receiving device recalculates a CRC during receipt of the

7-14 TR200 Design Guide



message and compares the calculated value to the actual value received in the CRC field. If the two values are unequal, a bus timeout results. The error-checking field contains a 16-bit binary value implemented as two 8-bit bytes. When this is done, the low-order byte of the field is appended first, followed by the high-order byte. The CRC high-order byte is the last byte sent in the message.

# Coil Register Addressing

In Modbus, all data are organized in coils and holding registers. Coils hold a single bit, whereas holding registers hold a 2-byte word (i.e., 16 bits). All data addresses in Modbus messages are referenced to zero. The first occurrence of a data item is addressed as item number zero. For example: The coil known as 'coil 1' in a programmable controller is addressed as coil 0000 in the data address field of a Modbus message. Coil 127 decimal is addressed as coil 007EHEX (126 decimal).

Holding register 40001 is addressed as register 0000 in the data address field of the message. The function code field already specifies a 'holding register' operation. Therefore, the '4XXXX' reference is implicit. Holding register 40108 is addressed as register 006BHEX (107 decimal).

| <b>Coil Number</b> | Description                                                                                                                                                                                                             | Signal Direction |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1-16               | Adjustable frequency drive control word (see table below)                                                                                                                                                               | Master to slave  |
| 17-32              | Adjustable frequency driver speed or setpoint reference Range Master to slave 0x0–0xFFFF (-200% ~200%)                                                                                                                  |                  |
| 33-48              | Adjustable frequency drive status word (see table below)                                                                                                                                                                | Slave to master  |
| 49-64              | Open-loop mode: adjustable frequency drive output frequency Closed-loop mode: Adjustable frequency drive feedback signal                                                                                                | Slave to master  |
| 65                 | Parameter write control (master to slave)  0 = Parameter changes are written to the RAM of the adjustable frequency drive.  1 = Parameter changes are written to the RAM and EE-PROM of the adjustable frequency drive. | Master to slave  |
| 66-65536           | Reserved                                                                                                                                                                                                                |                  |

| Coil  | 0                | 1                      |
|-------|------------------|------------------------|
| 01    | Preset reference | LSB                    |
| 02    | Preset reference | MSB                    |
| 03    | DC brake         | No DC brake            |
| 04    | Coast stop       | No coast stop          |
| 05    | Quick stop       | No quick stop          |
| 06    | Freeze freq.     | No freeze freq.        |
| 07    | Ramp stop        | Start                  |
| 80    | No reset         | Reset                  |
| 09    | No jog           | Jog                    |
| 10    | Ramp 1           | Ramp 2                 |
| 11    | Data not valid   | Data valid             |
| 12    | Relay 1 off      | Relay 1 on             |
| 13    | Relay 2 off      | Relay 2 on             |
| 14    | Set up LSB       |                        |
| 15    | Set up MSB       |                        |
| 16    | No reversing     | Reversing              |
| Adjus | stable frequency | drive control word (FC |
| profi | e)               |                        |

| Coil            | 0                                         | 1                                     |
|-----------------|-------------------------------------------|---------------------------------------|
| 33              | Control not ready                         | Control ready                         |
| 34              | Adjustable frequen-<br>cy drive not ready | Adjustable frequen-<br>cy drive ready |
| 35              | Coasting stop                             | Safety closed                         |
| 36              | No alarm                                  | Alarm                                 |
| 37              | Not used                                  | Not used                              |
| 38              | Not used                                  | Not used                              |
| 39              | Not used                                  | Not used                              |
| 40              | No warning                                | Warning                               |
| 41              | Not at reference                          | At reference                          |
| 42              | Hand mode                                 | Auto mode                             |
| 43              | Out of freq. range                        | In frequency range                    |
| 44              | Stopped                                   | Running                               |
| 45              | Not used                                  | Not used                              |
| 46              | No voltage warning                        | Voltage warning                       |
| 47              | Not in current limit                      | Current limit                         |
| 48              | No thermal warning                        | Thermal warning                       |
| Adjus<br>profil | stable frequency driv<br>e)               | e status word (FC                     |



| Holding registers |                                                                           |
|-------------------|---------------------------------------------------------------------------|
| Register Number   | Description                                                               |
| 00001-00006       | Reserved                                                                  |
| 00007             | Last error code from an adjustable frequency drive data object interface  |
| 00008             | Reserved                                                                  |
| 00009             | Parameter index*                                                          |
| 00010-00990       | 000 parameter group (parameters 001 through 099)                          |
| 01000-01990       | 100 parameter group (parameters 100 through 199)                          |
| 02000-02990       | 200 parameter group (parameters 200 through 299)                          |
| 03000-03990       | 300 parameter group (parameters 300 through 399)                          |
| 04000-04990       | 400 parameter group (parameters 400 through 499)                          |
|                   |                                                                           |
| 49000-49990       | 4900 parameter group (parameters 4900 through 4999)                       |
| 50000             | Input data: Adjustable frequency drive control word register (CTW).       |
| 50010             | Input data: Bus reference register (REF).                                 |
| ***               |                                                                           |
| 50200             | Output data: Adjustable frequency drive status word register (STW).       |
| 50210             | Output data: Adjustable frequency drive main actual value register (MAV). |

<sup>\*</sup> Used to specify the index number to be used when accessing an indexed parameter.

# How to Control the Adjustable Frequency Drive

This section describes codes that can be used in the function and data fields of a Modbus RTU message. For a complete description of all the message fields, please refer to the section *Modbus RTU Message Framing Structure*.

# Function Codes Supported by Modbus RTU

Modbus RTU supports use of the following function codes in the function field of a message:

| Function                 | Function Code |
|--------------------------|---------------|
| Read coils               | 1 hex         |
| Read holding registers   | 3 hex         |
| Write single coil        | 5 hex         |
| Write single register    | 6 hex         |
| Write multiple coils     | F hex         |
| Write multiple registers | 10 hex        |
| Get comm. event counter  | B hex         |
| Report slave ID          | 11 hex        |

| Function    | <b>Function Code</b>                                                  | Sub-funct                              | tion code Sub-function               |
|-------------|-----------------------------------------------------------------------|----------------------------------------|--------------------------------------|
| Diagnostics | 8                                                                     | 1                                      | Restart communication                |
|             |                                                                       | 2                                      | Return diagnostic register           |
|             | 10 Clear counters and diagnostic register 11 Return bus message count | Clear counters and diagnostic register |                                      |
|             |                                                                       |                                        |                                      |
|             |                                                                       | 12                                     | Return bus communication error count |
|             |                                                                       | 13                                     | Return bus exception error count     |
|             |                                                                       | 14                                     | Return slave message count           |
|             |                                                                       |                                        | 5                                    |

7-16 TR200 Design Guide



# Modbus Exception Codes

For a full explanation of the structure of an exception code response, please refer to the section *Modbus RTU Message Framing Structure, Function Field.* 

|      |                      | Modbus Exception Codes                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Code | Name                 | Meaning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1    | Illegal function     | The function code received in the query is not an allowable action for the server (or slave). This may be because the function code is only applicable to newer devices and was not implemented in the unit selected. It could also indicate that the server (or slave) is in the wrong state to process a request of this type, for example because it is not configured and is being asked to return register values.                                                                 |
| 2    | Illegal data address | The data address received in the query is not an allowable address for the server (or slave). More specifically, the combination of reference number and transfer length is invalid. For a controller with 100 registers, a request with offset 96 and length 4 would succeed, a request with offset 96 and length 5 will generate exception 02.                                                                                                                                        |
| 3    | Illegal data value   | A value contained in the query data field is not an allowable value for server (or slave). This indicates a fault in the structure of the remainder of a complex request, such as that the implied length is incorrect. It specifically does NOT mean that a data item submitted for storage in a register has a value outside the expectation of the application program, since the Modbus protocol is unaware of the significance of any particular value of any particular register. |
| 4    | Slave device failure | An unrecoverable error occurred while the server (or slave) was attempting to perform the requested action.                                                                                                                                                                                                                                                                                                                                                                             |



# How to Access Parameters

# Parameter Handling

The PNU (Parameter Number) is translated from the register address contained in the Modbus read or write message. The parameter number is translated to Modbus as (10 x parameter number) DECIMAL.

# Storage of Data

The Coil 65 decimal determines whether data written to the adjustable frequency drive is stored in EEPROM and RAM (coil 65 = 1), or only in RAM (coil 65 = 0).

#### IND

The array index is set in Holding Register 9 and used when accessing array parameters.

#### **Text Blocks**

Parameters stored as text strings are accessed in the same way as the other parameters. The maximum text block size is 20 characters. If a read request for a parameter is for more characters than the parameter stores, the response is truncated. If the read request for a parameter is fewer characters than the parameter stores, the response is space-filled.

#### Conversion Factor

The different attributes for each parameter can be seen in the section on factory settings. Since a parameter value can only be transferred as a whole number, a conversion factor must be used to transfer decimals. Please refer to the *Parameters section*.

### Parameter Values

#### **Standard Data Types**

Standard data types are int16, int32, uint8, uint16 and uint32. They are stored as 4x registers (40001–4FFFF). The parameters are read using function 03HEX "Read Holding Registers." Parameters are written using the function 6HEX "Preset Single Register" for 1 register (16 bits), and the function 10HEX "Preset Multiple Registers" for 2 registers (32 bits). Readable sizes range from 1 register (16 bits) up to 10 registers (20 characters).

#### **Non standard Data Types**

Non standard data types are text strings stored as 4x registers (40001–4FFFF). The parameters are read using function 03HEX "Read Holding Registers" and written using function 10HEX "Preset Multiple Registers." Readable sizes range from 1 register (2 characters) up to 10 registers (20 characters).

7-18 TR200 Design Guide



# Examples

The following examples illustrate various Modbus RTU commands. If an error occurs, please refer to the Exception Codes section.

# Read Coil Status (01 HEX)

#### **Description**

This function reads the ON/OFF status of discrete outputs (coils) in the adjustable frequency drive. Broadcast is never supported for reads.

#### Query

The query message specifies the starting coil and quantity of coils to be read. Coil addresses start at zero, i.e., coil 33 is addressed as 32.

Example of a request to read coils 33-48 (Status Word) from slave device 01:

| Field Name          | Example (HEX)                           |
|---------------------|-----------------------------------------|
| Slave Address       | 01 (adjustable frequency drive address) |
| Function            | 01 (read coils)                         |
| Starting Address HI | 00                                      |
| Starting Address LO | 20 (32 decimals) Coil 33                |
| No. of Points HI    | 00                                      |
| No. of Points LO    | 10 (16 decimals)                        |
| Error Check (CRC)   | -                                       |

#### Response

The coil status in the response message is packed as one coil per bit of the data field. Status is indicated as: 1 = ON; 0 = OFF. The LSB of the first data byte contains the coil addressed in the query. The other coils follow toward the high order end of this byte, and from 'low order to high order' in subsequent bytes.

If the returned coil quantity is not a multiple of eight, the remaining bits in the final data byte will be padded with zeros (toward the high order end of the byte). The Byte Count field specifies the number of complete bytes of data.

| Field Name         | Example (HEX)                           |
|--------------------|-----------------------------------------|
| Slave Address      | 01 (adjustable frequency drive address) |
| Function           | 01 (read coils)                         |
| Byte Count         | 02 (2 bytes of data)                    |
| Data (Coils 40-33) | 07                                      |
| Data (Coils 48-41) | 06 (STW=0607hex)                        |
| Error Check (CRC)  | -                                       |

# RS-485 Installation and Set-up

# Force/Write Single Coil (05 HEX)

#### Description

This function forces a writes a coil to either ON or OFF. When broadcast the function forces the same coil references in all attached slaves.

#### Query

The query message specifies the coil 65 (parameter write control) to be forced. Coil addresses start at zero, i.e., coil 65 is addressed as 64. Force Data = 00 00HEX (OFF) or FF 00HEX (ON).

| Example (HEX)                           |
|-----------------------------------------|
| 01 (adjustable frequency drive address) |
| 05 (write single coil)                  |
| 00                                      |
| 40 (64 decimal) Coil 65                 |
| FF                                      |
| 00 (FF 00 = ON)                         |
| •                                       |
|                                         |

#### Response

The normal response is an echo of the query, which is returned after the coil state has been forced.

| Field Name           | Example (HEX) |
|----------------------|---------------|
| Slave Address        | 01            |
| Function             | 05            |
| Force Data HI        | FF            |
| Force Data LO        | 00            |
| Quantity of Coils HI | 00            |
| Quantity of Coils LO | 01            |
| Error Check (CRC)    | •             |

7-20 TR200 Design Guide



# Force/Write Multiple Coils (0F HEX)

This function forces each coil in a sequence of coils to either ON or OFF. When broadcast, the function forces the same coil references in all attached slaves.

The query message specifies the coils 17 to 32 (speed setpoint) to be forced.

| Field Name           | Example (HEX)                           |
|----------------------|-----------------------------------------|
| Slave Address        | 01 (adjustable frequency drive address) |
| Function             | 0F (write multiple coils)               |
| Coil Address HI      | 00                                      |
| Coil Address LO      | 10 (coil address 17)                    |
| Quantity of Coils HI | 00                                      |
| Quantity of Coils LO | 10 (16 coils)                           |
| Byte Count           | 02                                      |
| Force Data HI        | 20                                      |
| (Coils 8-1)          |                                         |
| Force Data LO        | 00 (ref. = 2000hex)                     |
| (Coils 10-9)         |                                         |
| Error Check (CRC)    | -                                       |

#### Response

The normal response returns the slave address, function code, starting address and quantity of coils forced.

| Field Name           | Example (HEX)                           |
|----------------------|-----------------------------------------|
| Slave Address        | 01 (adjustable frequency drive address) |
| Function             | 0F (write multiple coils)               |
| Coil Address HI      | 00                                      |
| Coil Address LO      | 10 (coil address 17)                    |
| Quantity of Coils HI | 00                                      |
| Quantity of Coils LO | 10 (16 coils)                           |
| Error Check (CRC)    |                                         |

# RS-485 Installation and Set-up

# Read Holding Registers (03 HEX)

#### Description

This function reads the contents of holding registers in the slave.

## Query

The query message specifies the starting register and quantity of registers to be read. Register addresses start at zero, i.e., registers 1-4 are addressed as 0-3.

Example: Read par. 3-03, Maximum Reference, register 03030.

| Field Name          | Example (HEX)                                       |
|---------------------|-----------------------------------------------------|
| Slave Address       | 01                                                  |
| Function            | 03 (read holding registers)                         |
| Starting Address HI | 0B (Register address 3029)                          |
| Starting Address LO | 05 (Register address 3029)                          |
| No. of Points HI    | 00                                                  |
| No. of Points LO    | 02 - (Par. 3-03 is 32 bits long, i.e., 2 registers) |
| Error Check (CRC)   | -                                                   |

#### Response

The register data in the response message are packed as two bytes per register, with the binary contents right-justified within each byte. For each register, the first byte contains the high order bits and the second contains the low order bits.

| Field Name      | Example (HEX) |  |
|-----------------|---------------|--|
| Slave Address   | 01            |  |
| Function        | 03            |  |
| Byte Count      | 04            |  |
| Data HI         | 00            |  |
| (Register 3030) |               |  |
| Data LO         | 16            |  |
| (Register 3030) |               |  |
| Data HI         | E3            |  |
| (Register 3031) |               |  |
| Data LO         | 60            |  |
| (Register 3031) |               |  |
| Error Check     | -             |  |
| (CRC)           |               |  |

7-22 TR200 Design Guide



# Preset Single Register (06 HEX)

## Description

This function presets a value into a single holding register.

## Query

The query message specifies the register reference to be preset. Register addresses start at zero, i.e., register 1 is addressed as 0.

Example: Write to par. 1-00, register 1000.

| Field Name          | Example (HEX)             |
|---------------------|---------------------------|
| Slave Address       | 01                        |
| Function            | 06                        |
| Register Address HI | 03 (Register address 999) |
| Register Address LO | E7 (Register address 999) |
| Preset Data HI      | 00                        |
| Preset Data LO      | 01                        |
| Error Check (CRC)   | -                         |

#### Response

Response: the normal response is an echo of the query, which is returned after the register contents have been passed.

| Field Name          | Example (HEX) |  |
|---------------------|---------------|--|
| Slave Address       | 01            |  |
| Function            | 06            |  |
| Register Address HI | 03            |  |
| Register Address LO | E7            |  |
| Preset Data HI      | 00            |  |
| Preset Data LO      | 01            |  |
| Error Check (CRC)   | -             |  |

# Preset Multiple Registers (10 HEX)

#### Description

This function presets values into a sequence of holding registers.

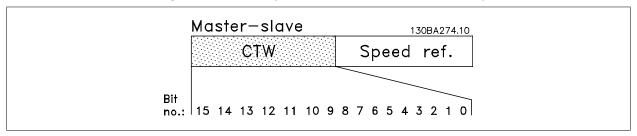
## Query

The query message specifies the register references to be preset. Register addresses start at zero, i.e., register 1 is addressed as 0. Example of a request to preset two registers (set parameter 1-05 = 738 (7.38 A)):

| Field Name          | Example (HEX) |
|---------------------|---------------|
| Slave Address       | 01            |
| Function            | 10            |
| Starting Address HI | 04            |
| Starting Address LO | 19            |
| No. of Registers HI | 00            |
| No. of registers LO | 02            |
| Byte Count          | 04            |
| Write Data HI       | 00            |
| (Register 4: 1049)  |               |
| Write Data LO       | 00            |
| (Register 4: 1049)  |               |
| Write Data HI       | 02            |
| (Register 4: 1050)  |               |
| Write Data LO       | E2            |
| (Register 4: 1050)  |               |
| Error Check (CRC)   | -             |

#### Response

The normal response returns the slave address, function code, starting address and quantity of preset registers.


| Field Name          | Example (HEX) |
|---------------------|---------------|
| Slave Address       | 01            |
| Function            | 10            |
| Starting Address HI | 04            |
| Starting Address LO | 19            |
| No. of Registers HI | 00            |
| No. of registers LO | 02            |
| Error Check (CRC)   |               |

7-24 TR200 Design Guide



# Trane FC Control Profile

Control Word According to FC Profile(par.8-10 Control Profile = FC profile)



| Bit | Bit value = 0         | Bit value = 1          |  |
|-----|-----------------------|------------------------|--|
| 00  | Reference value       | external selection lsb |  |
| 01  | Reference value       | external selection msb |  |
| 02  | DC brake              | Ramp                   |  |
| 03  | Coasting              | No coasting            |  |
| 04  | Quick stop            | Ramp                   |  |
| 05  | Hold output frequency | use ramp               |  |
| 06  | Ramp stop             | Start                  |  |
| 07  | No function           | Reset                  |  |
| 08  | No function           | Jog                    |  |
| 09  | Ramp 1                | Ramp 2                 |  |
| 10  | Data invalid          | Data valid             |  |
| 11  | No function           | Relay 01 active        |  |
| 12  | No function           | Relay 02 active        |  |
| 13  | Parameter set-up      | selection lsb          |  |
| 14  | Parameter set-up      | selection msb          |  |
| 15  | No function           | Reverse                |  |

#### **Explanation of the Control Bits**

## Bits 00/01

Bits 00 and 01 are used to choose between the four reference values, which are pre-programmed in par. 3-10 <a href="Preset Reference">Preset Reference</a> according to the following table:

| Programmed ref. value | Par.                          | Bit 01 | Bit 00 |  |
|-----------------------|-------------------------------|--------|--------|--|
| 1                     | Par.3-10 Preset Reference [0] | 0      | 0      |  |
| 2                     | Par.3-10 Preset Reference [1] | 0      | 1      |  |
| 3                     | Par.3-10 Preset Reference [2] | 1      | 0      |  |
| 4                     | Par.3-10 Preset Reference [3] | 1      | 1      |  |

#### **NOTE**

Make a selection in par.8-56 <u>Preset Reference Select</u> to define how Bit 00/01 gates with the corresponding function on the digital inputs.

# Bit 02, DC brake:

Bit 02 = '0' leads to DC braking and stop. Set braking current and duration in par.2-01 <u>DC Brake Current</u> and par. 2-02 <u>DC Braking Time</u>. Bit 02 = '1' leads to ramping.



#### RS-485 Installation and Set-up

#### Bit 03, Coasting:

Bit 03 = '0': The adjustable frequency drive immediately "lets go" of the motor, (the output transistors are "shut off") and it coasts to a standstill. Bit 03 = '1': The adjustable frequency drive starts the motor if the other starting conditions are met.

Make a selection in par.8-50 <u>Coasting Select</u> to define how Bit 03 gates with the corresponding function on a digital input.

#### Bit 04, Quick stop:

Bit 04 = '0': Makes the motor speed ramp down to stop (set in par.3-81 Quick Stop Ramp Time.

#### Bit 05, Hold output frequency

Bit 05 = '0': The present output frequency (in Hz) freezes. Change the frozen output frequency only by means of the digital inputs (par.5-10 <u>Terminal 18 Digital Input</u> to par.5-15 <u>Terminal 33 Digital Input</u>) programmed to *Speed up* and *Slow-down*.

#### NOTE

If freeze output is active, the adjustable frequency drive can only be stopped by the following:

- Bit 03 Coasting stop
- Bit 02 DC braking
- Digital input (par.5-10 <u>Terminal 18 Digital Input</u> to par.5-15 <u>Terminal 33 Digital Input</u>) programmed to
   *DC braking, Coasting stop,* or *Reset* and *coasting stop*.

#### Bit 06, Ramp stop/start:

Bit 06 = '0': Causes a stop and makes the motor speed ramp down to stop via the selected ramp down parameter. Bit 06 = '1': Permits the adjustable frequency drive to start the motor, if the other starting conditions are met.

Make a selection in par.8-53 <u>Start Select</u> to define how Bit 06 Ramp stop/start gates with the corresponding function on a digital input.

<u>Bit 07, Reset:</u> Bit 07 = '0': No reset. Bit 07 = '1': Resets a trip. Reset is activated on the leading edge of the signal, i.e., when changing from logic '0' to logic '1'.

#### Bit 08, Jog:

Bit 08 = '1': The output frequency is determined by par.3-19 <u>Jog Speed [RPM]</u>.

#### Bit 09, Selection of ramp 1/2:

Bit 09 = "0": Ramp 1 is active (par.3-41 Ramp 1 Ramp-up Time to par.3-42 Ramp 1 Ramp-down Time). Bit 09 = "1": Ramp 2 (par.3-51 Ramp 2 Ramp-up Time to par.3-52 Ramp 2 Ramp-down Time) is active.

#### Bit 10, Data not valid/Data valid:

Tell the adjustable frequency drive whether to use or ignore the control word. Bit 10 = '0': The control word is ignored. Bit 10 = '1': The control word is used. This function is relevant because the message always contains the control word, regardless of the message type. Thus, you can turn off the control word if you do not want to use it when updating or reading parameters.

#### Bit 11, Relay 01:

Bit 11 = "0": Relay not activated. Bit 11 = "1": Relay 01 activated provided that *Control word bit 11* is chosen in par.5-40 Function Relay.

7-26 TR200 Design Guide



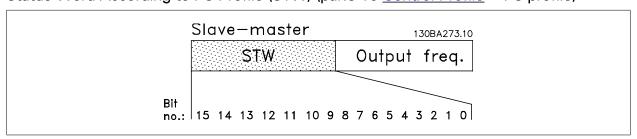
#### Bit 12, Relay 04:

Bit 12 = "0": Relay 04 is not activated. Bit 12 = "1": Relay 04 is activated provided that *Control word bit 12* is chosen in par.5-40 <u>Function Relay</u>.

#### Bit 13/14, Selection of set-up:

Use bits 13 and 14 to choose from the four menu setups according to the shown table:

| Set-up | Bit 14 | Bit 13 |
|--------|--------|--------|
| 1      | 0      | 0      |
| 2      | 0      | 1      |
| 3      | 1      | 0      |
| 4      | 1      | 1      |


The function is only possible when *Multi Set-ups* is selected in par.0-10 <u>Active Set-up</u>.

Make a selection in par.8-55 <u>Set-up Select</u> to define how Bit 13/14 gates with the corresponding function on the digital inputs.

#### Bit 15 Reverse:

Bit 15 = '0': No reversing. Bit 15 = '1': Reversing. In the default setting, reversing is set to digital in par. 8-54 Reverse Select. Bit 15 causes reversing only when Ser. communication, Logic or or Logic and is selected.

# Status Word According to FC Profile (STW) (par.8-10 Control Profile = FC profile)



| Bit | Bit = 0                | Bit = 1             |
|-----|------------------------|---------------------|
| 00  | Control not ready      | Control ready       |
| 01  | Drive not ready        | Drive ready         |
| 02  | Coasting               | Enable              |
| 03  | No error               | Trip                |
| 04  | No error               | Error (no trip)     |
| 05  | Reserved               |                     |
| 06  | No error               | Triplock            |
| 07  | No warning             | Warning             |
| 08  | Speed ≠ reference      | Speed = reference   |
| 09  | Local operation        | Bus control         |
| 10  | Out of frequency limit | Frequency limit OK  |
| 11  | No operation           | In operation        |
| 12  | Drive OK               | Stopped, auto start |
| 13  | Voltage OK             | Voltage exceeded    |
| 14  | Torque OK              | Torque exceeded     |
| 15  | Timer OK               | Timer exceeded      |

#### **Explanation of the Status Bits**

#### Bit 00, Control not ready/ready:

Bit 00 = '0': The adjustable frequency drive trips. Bit 00 = '1': The adjustable frequency drive controls are ready but the power component does not necessarily receive any power supply (in case of external 24 V supply to controls).



## RS-485 Installation and Set-up

#### Bit 01, Drive ready:

Bit 01 = '1': The adjustable frequency drive is ready for operation but the coasting command is active via the digital inputs or via serial communication.

#### Bit 02, Coasting stop:

Bit 02 = '0': The adjustable frequency drive releases the motor. Bit 02 = '1': The adjustable frequency drive starts the motor with a start command.

#### Bit 03, No error/trip:

Bit 03 = '0': The adjustable frequency drive is not in fault mode. Bit 03 = '1': The adjustable frequency drive trips. To re-establish operation, enter [Reset].

#### Bit 04, No error/error (no trip):

Bit 04 = '0': The adjustable frequency drive is not in fault mode. Bit 04 = "1": The adjustable frequency drive shows an error but does not trip.

#### Bit 05, Not used:

Bit 05 is not used in the status word.

#### Bit 06, No error / triplock:

Bit 06 = '0': The adjustable frequency drive is not in fault mode. Bit 06 = "1": The adjustable frequency drive is tripped and locked.

#### Bit 07, No warning/warning:

Bit 07 = '0': There are no warnings. Bit 07 = '1': A warning has occurred.

#### Bit 08, Speed≠ reference/speed = reference:

Bit 08 = '0': The motor is running but the present speed is different from the preset speed reference. For example, it might be the case when the speed ramps up/down during start/stop. Bit 08 = '1': The motor speed matches the preset speed reference.

#### Bit 09, Local operation/bus control:

Bit 09 = '0': [STOP/RESET] is activate on the control unit or *Local control* in par.3-13 Reference Site is selected. You cannot control the adjustable frequency drive via serial communication. Bit 09 = '1' It is possible to control the adjustable frequency drive via the serial communication bus / serial communication.

#### Bit 10, Out of frequency limit:

Bit 10 = '0': The output frequency has reached the value in par.4-11 <u>Motor Speed Low Limit [RPM]</u> or par. 4-13 <u>Motor Speed High Limit [RPM]</u>. Bit 10 = "1": The output frequency is within the defined limits.

### Bit 11, No operation/in operation:

Bit 11 = '0': The motor is not running. Bit 11 = '1': The adjustable frequency drive has a start signal or the output frequency is greater than 0 Hz.

## Bit 12, Drive OK/stopped, autostart:

Bit 12 = '0': There is no temporary overtemperature on the inverter. Bit 12 = '1': The inverter stops because of overtemperature but the unit does not trip and will resume operation once the over temperature stops.

7-28 TR200 Design Guide



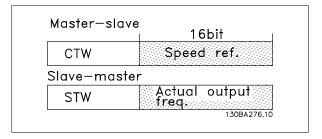
#### Bit 13, Voltage OK/limit exceeded:

Bit 13 = '0': There are no voltage warnings. Bit 13 = '1': The DC voltage in the adjustable frequency drive's intermediate circuit is too low or too high.

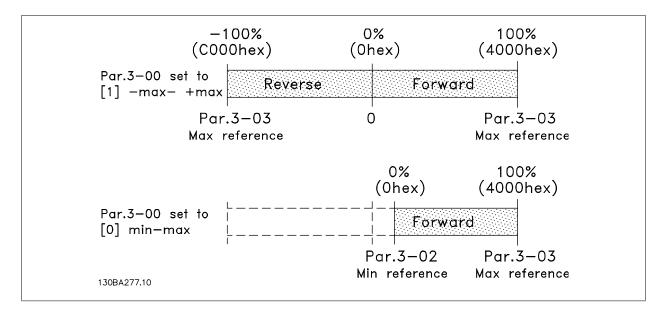
#### Bit 14, Torque OK/limit exceeded:

Bit 14 = '0': The motor current is lower than the torque limit selected in par.4-18 <u>Current Limit</u>. Bit 14 = '1': The torque limit in par.4-18 <u>Current Limit</u> is exceeded.

#### Bit 15, Timer OK/limit exceeded:


Bit 15 = '0': The timers for motor thermal protection and thermal protection are not exceeded 100%. Bit 15 = '1': One of the timers exceeds 100%.

All bits in the STW are set to '0' if the connection between the Interbus option and the adjustable frequency drive is lost, or if an internal communication problem has occurred.




# Bus Speed Reference Value

Speed reference value is transmitted to the adjustable frequency drive in a relative value expressed as %. The value is transmitted in the form of a 16-bit word; in integers (0-32767) the value 16384 (4000 Hex) corresponds to 100%. Negative figures are formatted by means of 2's complement. The Actual Output frequency (MAV) is scaled in the same way as the bus reference.



The reference and MAV are scaled as follows:



7-30 TR200 Design Guide



# **General Specifications and Troubleshooting**

# Line Power Supply Tables

| Line power supply 2         | 00–240 VAC - Normal overlo                                      | ad 110% | for 1 minu | te   |      |      |
|-----------------------------|-----------------------------------------------------------------|---------|------------|------|------|------|
| Adjustable frequency        |                                                                 | 1.1     | 1.5        | 2.2  | 3.0  | 3.7  |
| <b>Typical Shaft Output</b> | [kW]                                                            | 1.1     | 1.5        | 2.2  | 3.0  | 3.7  |
| IP 20 / Chassis             |                                                                 |         |            |      |      |      |
| (A2+A3 may be conve         | erted to IP21/NEMA 1 using a                                    |         |            |      |      |      |
| •                           | e see also items <i>Mechanical</i>                              | A2      | A2         | A2   | A3   | A3   |
| · ·                         | ction Manual and <i>IP 21/Type</i>                              |         |            |      |      |      |
| 1 Enclosure kit in the I    | Design Guide.))                                                 |         |            |      |      |      |
| IP 55 / NEMA 12             |                                                                 | A5      | A5         | A5   | A5   | A5   |
| IP 66 / NEMA 12             |                                                                 | A5      | A5         | A5   | A5   | A5   |
| Typical Shaft Output        | [HP] at 208 V                                                   | 1.5     | 2.0        | 2.9  | 4.0  | 4.9  |
| Output current              |                                                                 |         |            |      |      |      |
| (4 - 4)                     | Continuous<br>(3 x 200–240 V) [A]                               | 6.6     | 7.5        | 10.6 | 12.5 | 16.7 |
|                             | Intermittent<br>(3 x 200–240 V) [A]                             | 7.3     | 8.3        | 11.7 | 13.8 | 18.4 |
|                             | Continuous<br>kVA (208 V AC) [kVA]                              | 2.38    | 2.70       | 3.82 | 4.50 | 6.00 |
|                             | Max. cable size:                                                |         |            |      |      |      |
|                             | (line power, motor, brake) [mm <sup>2</sup> /AWG] <sup>2)</sup> |         |            | 4/10 |      |      |
| Max. input current          | [ // ******************************                             |         |            |      |      |      |
|                             | Continuous<br>(3 x 200–240 V) [A]                               | 5.9     | 6.8        | 9.5  | 11.3 | 15.0 |
|                             | Intermittent<br>(3 x 200–240 V) [A]                             | 6.5     | 7.5        | 10.5 | 12.4 | 16.5 |
|                             | Max. pre-fuses <sup>1)</sup> [A]                                | 20      | 20         | 20   | 32   | 32   |
|                             | Environment                                                     |         |            |      |      |      |
|                             | Estimated power loss at rated max. load [W] 4)                  | 63      | 82         | 116  | 155  | 185  |
|                             | Weight IP20/Chassis [kg]                                        | 4.9     | 4.9        | 4.9  | 6.6  | 6.6  |
|                             | Weight IP21/NEMA 1 [kg]                                         | 5.5     | 5.5        | 5.5  | 7.5  | 7.5  |
|                             | Weight IP55/NEMA 12 [kg]                                        | 13.5    | 13.5       | 13.5 | 13.5 | 13.5 |
|                             | Weight IP 66/NEMA 4[kg]                                         | 13.5    | 13.5       | 13.5 | 13.5 | 13.5 |
|                             | Efficiency 3)                                                   | 0.96    | 0.96       | 0.96 | 0.96 | 0.96 |

Table 8. 1: Line Power Supply 200-240 V AC



| Line power supply 3                                                                          | Line power supply 3 x 200–240 VAC - Normal overload 110% for 1 minute                                                                                                                                                           | ġ.   |          |      |        |      |                     |       |        |                 |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|------|--------|------|---------------------|-------|--------|-----------------|
| IP 20 / Chassis<br>(B3+4 and C3+4 may I<br>(Please see also items)<br>21/Type 1 Enclosure ku | IP 20 / Chassis (B3+4 and C3+4 may be converted to IP21/NEMA 1 using a conversion kit. (Please see also items <i>Mechanical mounting</i> in the Instruction Manual and <i>IP</i> 21/Type 1 Enclosure kit in the Design Guide.)) | B3   | B3       | B3   | B4     | B4   | <b>S</b>            | ខ     | 75     | <b>5</b>        |
| IP 21 / NEMA 1                                                                               |                                                                                                                                                                                                                                 | B1   | <b>B</b> | 18   | B2     | ວ    | 5                   | ၁     | C5     | C3              |
| IP 55 / NEMA 12                                                                              |                                                                                                                                                                                                                                 | B1   | B1       | B1   | B2     | 5    | 1                   | ၁     | C5     | C2              |
| IP 66 / NEMA 12                                                                              |                                                                                                                                                                                                                                 | B1   | B1       | B1   | B2     | ပ    | C1                  | 5     | C5     | C2              |
| Adjustable frequency drive<br>Typical Shaft Output [kW]                                      | drive<br>kW]                                                                                                                                                                                                                    | 5.5  | 7.5      | 11   | 15     | 18.5 | 22                  | 30    | 37     | 45              |
| •                                                                                            | Typical Shaft Output [HP] at 208 V                                                                                                                                                                                              | 7.5  | 10       | 15   | 20     | 25   | 30                  | 40    | 20     | 09              |
| Output current                                                                               |                                                                                                                                                                                                                                 |      |          |      |        |      |                     |       |        |                 |
|                                                                                              | Continuous (3 x 200–240 V) [A]                                                                                                                                                                                                  | 24.2 | 30.8     | 46.2 | 59.4   | 74.8 | 88.0                | 115   | 143    | 170             |
|                                                                                              | Intermittent (3 x 200–240 V) [A]                                                                                                                                                                                                | 56.6 | 33.9     | 50.8 | 65.3   | 82.3 | 8.96                | 127   | 157    | 187             |
|                                                                                              | Continuous kVA (208 V AC) [kVA]                                                                                                                                                                                                 | 8.7  | 11.1     | 16.6 | 21.4   | 26.9 | 31.7                | 41.4  | 51.5   | 61.2            |
|                                                                                              | Max. cable size:                                                                                                                                                                                                                |      |          |      |        |      |                     |       |        |                 |
|                                                                                              | (line power, motor, brake) $[mm^2/AWG]^2$ )                                                                                                                                                                                     |      | 10/7     |      | 35/2   |      | 50/1/0<br>(B4=35/2) |       | 95/4/0 | 120/250<br>MCM  |
| With line power dis-                                                                         |                                                                                                                                                                                                                                 |      | 16/6     |      | 35/2   |      | 35/2                |       | 20/3/0 | 185/<br>kcmil35 |
| ded:                                                                                         |                                                                                                                                                                                                                                 |      | )<br>5   |      | I<br>S |      | I<br>)              |       |        | 0               |
| Max. input current                                                                           |                                                                                                                                                                                                                                 |      |          |      |        |      |                     |       |        |                 |
|                                                                                              | Continuous (3 x 200–240 V) [A]                                                                                                                                                                                                  | 22.0 | 28.0     | 42.0 | 54.0   | 0.89 | 80.0                | 104.0 | 130.0  | 154.0           |
|                                                                                              | Intermittent (3 x 200-240 V) [A]                                                                                                                                                                                                | 24.2 | 30.8     | 46.2 | 59.4   | 74.8 | 88.0                | 114.0 | 143.0  | 169.0           |
| ব -                                                                                          | Max. pre-fuses <sup>1)</sup> [A]                                                                                                                                                                                                | 63   | 63       | 63   | 80     | 125  | 125                 | 160   | 200    | 250             |
|                                                                                              | Environment:                                                                                                                                                                                                                    |      |          |      |        |      |                     |       |        |                 |
|                                                                                              | Estimated power loss at rated max. load [W] 4)                                                                                                                                                                                  | 269  | 310      | 447  | 602    | 737  | 845                 | 1140  | 1353   | 1636            |
| <b>↑</b>                                                                                     | Weight IP20(Chassis [kg]                                                                                                                                                                                                        | 12   | 12       | 12   | 23.5   | 23.5 | 35                  | 35    | 20     | 20              |
|                                                                                              | Weight IP21/NEMA 1 [kg]                                                                                                                                                                                                         | 23   | 23       | 23   | 27     | 45   | 45                  | 45    | 65     | 65              |
|                                                                                              | Weight IP55/NEMA 12 [kg]                                                                                                                                                                                                        | 23   | 23       | 23   | 27     | 45   | 45                  | 45    | 92     | 65              |
|                                                                                              | Weight IP 66/NEMA 4 [kg]                                                                                                                                                                                                        | 23   | 23       | 23   | 27     | 45   | 45                  | 45    | 65     | 65              |
|                                                                                              | Efficiency 3)                                                                                                                                                                                                                   | 96.0 | 96.0     | 96.0 | 96.0   | 96.0 | 0.97                | 0.97  | 0.97   | 0.97            |
| Table 8 2: Line Down                                                                         | Table 8 2: Line Dower Supply 3 v 200_240 V AC                                                                                                                                                                                   |      |          |      |        |      |                     |       |        |                 |

Table 8. 2: Line Power Supply  $3 \times 200-240 \text{ V AC}$ 

8-2 TR200 Design Guide



| Line Power Supply 3 x                       | Line Power Supply 3 x 380-480 V AC - Normal overload 110% for 1 minute  | minute |      |      |      |      |      |      |
|---------------------------------------------|-------------------------------------------------------------------------|--------|------|------|------|------|------|------|
| Adjustable frequency drive                  | rive                                                                    | P1K1   | P1K5 | P2K2 | P3K0 | P4K0 | P5K5 | P7K5 |
| Typical Shaft Output [kW]                   | M]                                                                      | 1.7    | 1.5  | 2.2  | ო    | 4    | 5.5  | 7.5  |
| Typical Shaft Output [HP] at 460 V          | P] at 460 V                                                             | 1.5    | 2.0  | 2.9  | 4.0  | 5.0  | 7.5  | 10   |
| IP 20 / Chassis                             |                                                                         |        |      |      |      |      |      |      |
| (A2+A3 may be converted                     | (A2+A3 may be converted to IP21/NEMA 1 using a conversion kit. (Please  | 42     | Δ2   | Δ2   | Δ2   | Δ2   | Δ3   | ۸3   |
| see also items Mechanic                     | see also items Mechanical mounting in the instruction manual and IP 21/ | ξ      | Ž    | ζ    | 7    | Ž    | ?    | ξ    |
| Type 1 Enclosure kit in the Design Guide.)) | ne Design Guide.))                                                      |        |      |      |      |      |      |      |
| IP 55 / NEMA 12                             |                                                                         | A5     | A5   | A5   | A5   | A5   | A5   | A5   |
| IP 66 / NEMA 12                             |                                                                         | A5     | A5   | A5   | A5   | A5   | A5   | A5   |
| Output current                              |                                                                         |        |      |      |      |      |      |      |
|                                             | Continuous (3 x 380–440 V) [A]                                          | ဘ      | 4.1  | 5.6  | 7.2  | 10   | 13   | 16   |
|                                             | Intermittent (3 x 380–440 V) [A]                                        | 3.3    | 4.5  | 6.2  | 7.9  | 11   | 14.3 | 17.6 |
|                                             | Continuous (3 x 441–480 V) [A]                                          | 2.7    | 3.4  | 4.8  | 6.3  | 8.2  | 7    | 14.5 |
|                                             | Intermittent (3 x 441–480 V) [A]                                        | 3.0    | 3.7  | 5.3  | 6.9  | 9.0  | 12.1 | 15.4 |
| 1                                           | Continuous kVA (400 V AC) [kVA]                                         | 2.1    | 2.8  | 3.9  | 2.0  | 6.9  | 9.0  | 11.0 |
|                                             | Continuous kVA (460 V AC) [kVA]                                         | 2.4    | 2.7  | 3.8  | 5.0  | 6.5  | 8.8  | 11.6 |
|                                             | Max. cable size:                                                        |        |      |      |      |      |      |      |
|                                             | (line power, motor, brake) [ $[mm^2/AWG]^2$ )                           |        |      |      | 4/10 |      |      |      |
| Max. input current                          |                                                                         |        |      |      |      |      |      |      |
|                                             | Continuous (3 x 380–440 V) [A]                                          | 2.7    | 3.7  | 2.0  | 6.5  | 9.0  | 11.7 | 14.4 |
|                                             |                                                                         | 3.0    | 4.1  | 5.5  | 7.2  | 6.6  | 12.9 | 15.8 |
|                                             |                                                                         | 2.7    | 3.1  | 4.3  | 5.7  | 7.4  | 6.6  | 13.0 |
| 4                                           | Intermittent (3 x 441–480 V) [A]                                        | 3.0    | 3.4  | 4.7  | 6.3  | 8.1  | 10.9 | 14.3 |
|                                             | Max. pre-fuses <sup>1)</sup> [A]                                        | 10     | 10   | 20   | 20   | 20   | 32   | 32   |
|                                             | Environment                                                             |        |      |      |      |      |      |      |
| 1                                           | Estimated power loss at rated max. load [W] 4)                          | 28     | 62   | 88   | 116  | 124  | 187  | 255  |
| <u> </u>                                    |                                                                         | 4.8    | 4.9  | 4.9  | 4.9  | 4.9  | 9.9  | 9.9  |
|                                             | Weight IP 21/NEMA 1[kg]                                                 |        |      |      |      |      |      |      |
|                                             | ]                                                                       | 13.5   | 13.5 | 13.5 | 13.5 | 13.5 | 14.2 | 14.2 |
|                                             | 3/NEMA 4 [kg]                                                           | 13.5   | 13.5 | 13.5 | 13.5 | 13.5 | 14.2 | 14.2 |
|                                             | Efficiency <sup>3)</sup> (                                              | 96.0   | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 76.0 |
|                                             |                                                                         |        |      |      |      |      |      |      |

Table 8. 3: Line Power Supply 3 x 380-480 V AC



| Line Power Suppl                    | Line Power Supply 3 x 380-480 V AC - Normal overload 110% for 1 minute                            | load 110 | % for 1 m | inute |      |      |        |           |      |        |                  |
|-------------------------------------|---------------------------------------------------------------------------------------------------|----------|-----------|-------|------|------|--------|-----------|------|--------|------------------|
| adjustable frequency drive          | ncy drive                                                                                         | P11K     | P15K      | P18K  | P22K | P30K | P37K   | P45K      | P55K | P75K   | P90K             |
| Typical Shaft Output [kW]           | ut [kW]                                                                                           | 7        | 15        | 18.5  | 22   | 30   | 37     | 45        | 55   | 75     | 06               |
| Typical Shaft Output [HP] at 460 V  | ut [HP] at 460 V                                                                                  | 15       | 20        | 25    | 30   | 40   | 20     | 09        | 75   | 100    | 125              |
| IP 20 / Chassis                     |                                                                                                   |          |           |       |      |      |        |           |      |        |                  |
| (B3+4 and C3+4 maing a conversion k | (B3+4 and C3+4 may be converted to IP21/NEMA 1 us-<br>ing a conversion kit (Please contact Trane) | B3       | B3        | B3    | B4   | B4   | B4     | ర్        | ឌ    | 2      | <b>2</b>         |
| IP 21 / NEMA 1                      |                                                                                                   | B1       | B1        | B1    | B2   | B2   | ر<br>ا | 5         | 10   | C2     | C2               |
| IP 55 / NEMA 12                     |                                                                                                   | B1       | B1        | B1    | B2   | B2   | 5      | ပ         | 5    | C2     | C2               |
| IP 66 / NEMA 12                     |                                                                                                   | B1       | B1        | B1    | B2   | B2   | ည      | 5         | 5    | C2     | C2               |
| Output current                      |                                                                                                   |          |           |       |      |      |        |           |      |        |                  |
|                                     | Continuous (3 x 380–439 V) [A]                                                                    | 24       | 32        | 37.5  | 44   | 61   | 73     | 06        | 106  | 147    | 177              |
|                                     | Intermittent (3 x 380–439 V) [A]                                                                  | 26.4     | 35.2      | 41.3  | 48.4 | 67.1 | 80.3   | 66        | 117  | 162    | 195              |
| [6                                  | Continuous (3 x 440–480 V) [A]                                                                    | 21       | 27        | 34    | 40   | 52   | 92     | 80        | 105  | 130    | 160              |
|                                     | Intermittent (3 x 440–480 V) [A]                                                                  | 23.1     | 29.7      | 37.4  | 44   | 61.6 | 71.5   | 88        | 116  | 143    | 176              |
|                                     | Continuous kVA (400 V AC) [kVA]                                                                   | 16.6     | 22.2      | 26    | 30.5 | 42.3 | 9.03   | 62.4      | 73.4 | 102    | 123              |
| <b>3</b> ,                          | Continuous kVA 460 V AC) [kVA]                                                                    | 16.7     | 21.5      | 27.1  | 31.9 | 41.4 | 51.8   | 63.7      | 83.7 | 104    | 128              |
| 1                                   | Max. cable size:                                                                                  |          |           |       |      |      |        |           |      |        |                  |
|                                     | (line power, motor, brake)                                                                        |          | 1,0       |       | C    | ç    |        | 20/1/0    |      | /96    | 120/             |
| ]                                   | [mm <sup>2</sup> / AWG] <sup>2)</sup>                                                             |          | //01      |       | 29/2 | 7    |        | (B4=35/2) |      | 4/0    | MCM250           |
|                                     | With line power disconnect switch included:                                                       |          |           | 16/6  |      |      | 35/2   | 35/2      | 7    | 70/3/0 | 185/<br>kcmil350 |
| Max. input current                  | ŧ                                                                                                 |          |           |       |      |      |        |           |      |        |                  |
|                                     | Continuous (3 x 380–439 V) [A]                                                                    | 22       | 29        | 34    | 40   | 55   | 99     | 82        | 96   | 133    | 161              |
|                                     | Intermittent (3 x 380–439 V) [A]                                                                  | 24.2     | 31.9      | 37.4  | 44   | 60.5 | 72.6   | 90.2      | 106  | 146    | 177              |
|                                     | Continuous (3 x 440–480 V) [A]                                                                    | 19       | 25        | 31    | 36   | 47   | 29     | 73        | 92   | 118    | 145              |
|                                     | Intermittent (3 x 440–480 V) [A]                                                                  | 20.9     | 27.5      | 34.1  | 39.6 | 51.7 | 64.9   | 80.3      | 105  | 130    | 160              |
|                                     | Max. pre-fuses <sup>1)</sup> [A]                                                                  | 63       | 63        | 63    | 63   | 80   | 100    | 125       | 160  | 250    | 250              |
|                                     | Environment                                                                                       |          |           |       |      |      |        |           |      |        |                  |
|                                     | Estimated power loss                                                                              | 278      | 392       | 465   | 525  | 869  | 739    | 843       | 1083 | 1384   | 1474             |
|                                     | at rated max. load [w] '                                                                          |          |           |       |      |      |        |           |      |        |                  |
|                                     | Weight IP20/Chassis [kg]                                                                          | 12       | 12        | 12    | 23.5 | 23.5 | 23.5   | 35        | 35   | 20     | 20               |
|                                     | Weight IP 21/NEMA 1 [kg]                                                                          | 23       | 23        | 23    | 27   | 27   | 42     | 45        | 45   | 65     | 65               |
|                                     | Weight IP 55/NEMA 12 [kg]                                                                         | 23       | 23        | 23    | 27   | 27   | 45     | 45        | 45   | 92     | 65               |
|                                     | Weight IP 66/NEMA 4 [kg]                                                                          | 23       | 23        | 23    | 27   | 27   | 45     | 45        | 45   | 65     | 65               |
|                                     | Efficiency 3)                                                                                     | 0.98     | 0.98      | 0.98  | 0.98 | 0.98 | 0.98   | 0.98      | 0.98 | 0.98   | 0.99             |
|                                     |                                                                                                   |          |           |       |      |      |        |           |      |        |                  |

Table 8. 4: Line Power Supply 3 x 380-480 V AC

8-4 TR200 Design Guide





# Line Power Supply High Power

| ine Power S  | Supply 3 x 380–480 V AC                                                                       |                     | D400                | D100                        | Door                        | DOCO                     |
|--------------|-----------------------------------------------------------------------------------------------|---------------------|---------------------|-----------------------------|-----------------------------|--------------------------|
|              | Tuning Chaft autout at                                                                        | P110                | P132                | P160                        | P200                        | P250                     |
|              | Typical Shaft output at 400 V [kW]                                                            | 110                 | 132                 | 160                         | 200                         | 250                      |
|              | Typical Shaft output at 460 V [HP]                                                            | 150                 | 200                 | 250                         | 300                         | 350                      |
|              | Enclosure IP21                                                                                | D1                  | D1                  | D2                          | D2                          | D2                       |
|              | Enclosure IP54                                                                                | D1                  | D1                  | D2                          | D2                          | D2                       |
|              | Enclosure IP00                                                                                | D3                  | D3                  | D4                          | D4                          | D4                       |
|              | Output current                                                                                |                     |                     |                             |                             |                          |
|              | Continuous<br>(at 400 V) [A]                                                                  | 212                 | 260                 | 315                         | 395                         | 480                      |
|              | Intermittent (60 sec<br>overload)<br>(at 400 V) [A]                                           | 233                 | 286                 | 347                         | 435                         | 528                      |
|              | Continuous<br>(at 460/ 480 V) [A]                                                             | 190                 | 240                 | 302                         | 361                         | 443                      |
|              | Intermittent (60 sec<br>overload)<br>(at 460/480 V) [A]                                       | 209                 | 264                 | 332                         | 397                         | 487                      |
|              | Continuous KVA<br>(at 400 V) [KVA]                                                            | 147                 | 180                 | 218                         | 274                         | 333                      |
|              | Continuous KVA<br>(at 460 V) [KVA]                                                            | 151                 | 191                 | 241                         | 288                         | 353                      |
| 1ax. input c |                                                                                               |                     |                     |                             |                             |                          |
|              | Continuous<br>(at 400 V) [A]                                                                  | 204                 | 251                 | 304                         | 381                         | 463                      |
| <b>→</b>     | Continuous<br>(at 460/ 480 V) [A]                                                             | 183                 | 231                 | 291                         | 348                         | 427                      |
|              | Max. cable size, line power motor, brake and load share [mm <sup>2</sup> (AWG <sup>2</sup> )] | 2 x 70<br>(2 x 2/0) | 2 x 70<br>(2 x 2/0) | 2 x 150<br>(2 x 300<br>mcm) | 2 x 150<br>(2 x 300<br>mcm) | 2 x 15<br>(2 x 30<br>mcm |
|              | Max. external pre-<br>fuses [A] <sup>1</sup>                                                  | 300                 | 350                 | 400                         | 500                         | 630                      |
|              | Estimated power loss at rated max. load [W] 4), 400 V                                         | 3234                | 3782                | 4213                        | 5119                        | 5893                     |
|              | Estimated power loss<br>at rated max. load [W]<br>4), 460 V                                   | 2947                | 3665                | 4063                        | 4652                        | 5634                     |
|              | Weight,<br>enclosure IP21, IP 54<br>[kg]                                                      | 96                  | 104                 | 125                         | 136                         | 151                      |
|              | Weight,<br>enclosure IP00 [kg]                                                                | 82                  | 91                  | 112                         | 123                         | 138                      |
|              | Efficiency <sup>4)</sup>                                                                      |                     |                     | 0.98                        |                             |                          |
|              | Output frequency                                                                              |                     |                     | 0–800 Hz                    |                             |                          |
|              | Heatsink overtemp.<br>trip                                                                    | 185°F [85°C]        | 194°F [90°C]        | 221°F<br>[105°C]            | 221°F<br>[105°C]            | 239°F<br>[115°C          |
|              | Power card ambient trip                                                                       |                     |                     | 140°F [60°C]                |                             |                          |
|              |                                                                                               |                     |                     |                             |                             | Docian (                 |

8-6 TR200 Design Guide



| ine Dower Sun    | ply 3 x 380–480 V AC                                                                     |                          |                          |                          |                         |
|------------------|------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|-------------------------|
| Lille Powel Sup  | piy 3 x 360—460 v AC                                                                     | P315                     | P355                     | P400                     | P450                    |
|                  | Typical Shaft output at 400 V [kW]                                                       | 315                      | 355                      | 400                      | 450                     |
|                  | Typical Shaft output<br>at 460 V [HP]                                                    | 450                      | 500                      | 600                      | 600                     |
|                  | Enclosure IP21                                                                           | E1                       | E1                       | E1                       | E1                      |
|                  | EnclosurelP54                                                                            | E1                       | E1                       | E1                       | E1                      |
|                  | Enclosure IP00                                                                           | E2                       | E2                       | E2                       | E2                      |
|                  | Output current                                                                           |                          | I                        |                          |                         |
|                  | Continuous (at 400 V) [A] Intermittent (60 sec                                           | 600                      | 658                      | 745                      | 800                     |
|                  | overload) (at 400 V)<br>[A]                                                              | 660                      | 724                      | 820                      | 880                     |
|                  | Continuous (at 460/<br>480 V) [A]                                                        | 540                      | 590                      | 678                      | 730                     |
|                  | Intermittent (60 sec<br>overload) (at 460/480<br>V) [A]                                  | 594                      | 649                      | 746                      | 803                     |
|                  | Continuous KVA (at<br>400 V) [KVA]                                                       | 416                      | 456                      | 516                      | 554                     |
|                  | Continuous KVA (at<br>460 V) [KVA]                                                       | 430                      | 470                      | 540                      | 582                     |
| Max. input curre | 1                                                                                        |                          |                          |                          |                         |
|                  | Continuous (at 400 V) [A]                                                                | 590                      | 647                      | 733                      | 787                     |
| <b>→</b>         | Continuous (at 460/<br>480 V) [A]                                                        | 531                      | 580                      | 667                      | 718                     |
|                  | Max. cable size, line power, motor and load share [mm <sup>2</sup> (AWG <sup>2)</sup> )] | 4x240<br>(4x500 mcm)     | 4x240<br>(4x500 mcm)     | 4x240<br>(4x500 mcm)     | 4x240<br>(4x500 mcm     |
|                  | Max. cable size, brake [mm <sup>2</sup> (AWG <sup>2)</sup> )                             | 2 x 185<br>(2 x 350 mcm) | 2 x 185<br>(2 x 350 mcm) | 2 x 185<br>(2 x 350 mcm) | 2 x 185<br>(2 x 350 mcm |
|                  | Max. external pre-<br>fuses [A] <sup>1</sup>                                             | 700                      | 900                      | 900                      | 900                     |
|                  | Estimated power loss<br>at rated max. load<br>[W] <sup>4)</sup> , 400 V                  | 6790                     | 7701                     | 8879                     | 9670                    |
|                  | Estimated power loss<br>at rated max. load<br>[W] <sup>4)</sup> , 460 V                  | 6082                     | 6953                     | 8089                     | 8803                    |
|                  | Weight, enclo-<br>sure IP21, IP 54 [kg]                                                  | 263                      | 270                      | 272                      | 313                     |
|                  | Weight, enclo-<br>sure IP00 [kg]                                                         | 221                      | 234                      | 236                      | 277                     |
|                  | Efficiency <sup>4)</sup>                                                                 |                          | 0.98                     | 3                        |                         |
|                  | Output frequency Heatsink overtemp.                                                      |                          | 0–600<br>203°F [9        |                          |                         |
|                  | trip Power card ambient trip                                                             |                          | 154.4°F                  |                          |                         |



| Line Power Supply  | 3 x 380–480 V AC                                                                       |                      |                      |            |  |  |
|--------------------|----------------------------------------------------------------------------------------|----------------------|----------------------|------------|--|--|
|                    |                                                                                        | P500                 | P560                 | P630       |  |  |
|                    | Typical Shaft output at 400 V [kW]                                                     | 500                  | 560                  | 630        |  |  |
|                    | Typical Shaft output at 460 V [HP]                                                     | 650                  | 750                  | 900        |  |  |
|                    | Enclosure IP21, 54 without/<br>with options cabinet                                    | F1/F3                | F1/F3                | F1/F3      |  |  |
|                    | Output current                                                                         |                      |                      |            |  |  |
|                    | Continuous (at 400 V) [A]                                                              | 880                  | 990                  | 1120       |  |  |
|                    | Intermittent (60 sec overload) (at 400 V) [A]                                          | 968                  | 1089                 | 1232       |  |  |
|                    | Continuous (at 460/ 480 V) [A]                                                         | 780                  | 890                  | 1050       |  |  |
|                    | Intermittent (60 sec overload)<br>(at 460/480 V) [A]                                   | 858                  | 979                  | 1155       |  |  |
| <b>₩</b>           | Continuous KVA (at 400 V)<br>[KVA]                                                     | 610                  | 686                  | 776        |  |  |
|                    | Continuous KVA (at 460 V)<br>[KVA]                                                     | 621                  | 709                  | 837        |  |  |
| Max. input current |                                                                                        |                      |                      |            |  |  |
|                    | Continuous (at 400 V) [A]                                                              | 857                  | 964                  | 1090       |  |  |
|                    | Continuous (at 460/480 V) [A]                                                          | 759                  | 867                  | 1022       |  |  |
|                    | Max. cable size,motor [mm <sup>2</sup> (AWG <sup>2)</sup> )]                           |                      | 8x150<br>(8x300 mcm) |            |  |  |
|                    | Max. cable size, line power [mm <sup>2</sup> (AWG <sup>2</sup> )]                      | 8x240<br>(8x500 mcm) |                      |            |  |  |
|                    | Max. cable size, loadsharing [mm <sup>2</sup> (AWG <sup>2</sup> ))]                    |                      | 4x120<br>(4x250 mcm) |            |  |  |
|                    | Max. cable size, brake [mm <sup>2</sup> (AWG <sup>2</sup> ))                           |                      | 4x185<br>(4x350 mcm) |            |  |  |
|                    | Max. external pre-fuses [A] 1                                                          | 16                   | 00                   | 2000       |  |  |
|                    | Est. power loss at rated max. load [W] <sup>4)</sup> , 400 V, F1 & F2                  | 10647                | 12338                | 13201      |  |  |
|                    | Est. power loss at rated max. load [W] <sup>4)</sup> , 460 V, F1 & F2                  | 9414                 | 11006                | 12353      |  |  |
|                    | Max. added losses of A1 RFI,<br>Circuit Breaker or Disconnect,<br>& Contactor, F3 & F4 | 963                  | 1054                 | 1093       |  |  |
|                    | Max Panel Options Losses                                                               |                      | 400                  |            |  |  |
|                    | Weight, enclosure IP21, IP 54 [kg]                                                     | 1004/ 1299           | 1004/ 1299           | 1004/ 1299 |  |  |
|                    | Weight Rectifier Module [kg]                                                           | 102                  | 102                  | 102        |  |  |
|                    | Weight Inverter Module [kg]                                                            | 102                  | 102                  | 102        |  |  |
|                    | Efficiency <sup>4)</sup>                                                               |                      | 0.98                 |            |  |  |
|                    | Output frequency                                                                       |                      | 0–600 Hz             |            |  |  |
|                    | Heatsink overtemp. trip                                                                |                      | 203°F [95°C]         |            |  |  |
|                    | Power card ambient trip                                                                |                      | 154.4°F [68°C]       |            |  |  |

8-8 TR200 Design Guide



| стопопопри,        | 3 x 380–480 V AC                                                                       | P710                 | P800                 | P1M0       |  |
|--------------------|----------------------------------------------------------------------------------------|----------------------|----------------------|------------|--|
|                    | Typical Shaft output at 400 V                                                          | F/10                 | FOUU                 | FIIVIU     |  |
|                    | [kW]                                                                                   | 710                  | 800                  | 1000       |  |
|                    | Typical Shaft output at 460 V<br>[HP]                                                  | 1000                 | 1200                 | 1350       |  |
|                    | Enclosure IP21, 54 without/<br>with options cabinet                                    | F1/F3                | F2/F4                | F2/F4      |  |
|                    | Output current                                                                         |                      |                      |            |  |
|                    | Continuous (at 400 V) [A]                                                              | 1260                 | 1460                 | 1720       |  |
|                    | Intermittent (60 sec overload) (at 400 V) [A]                                          | 1386                 | 1606                 | 1892       |  |
| <b>-</b>           | Continuous (at 460/ 480 V) [A]                                                         | 1160                 | 1380                 | 1530       |  |
|                    | Intermittent (60 sec overload)<br>(at 460/480 V) [A]                                   | 1276                 | 1518                 | 1683       |  |
|                    | Continuous KVA (at 400 V)<br>[KVA]                                                     | 873                  | 1012                 | 1192       |  |
|                    | Continuous KVA (at 460 V)<br>[KVA]                                                     | 924                  | 1100                 | 1219       |  |
| lax. input current |                                                                                        |                      |                      |            |  |
|                    | Continuous (at 400 V) [A]                                                              | 1227                 | 1422                 | 1675       |  |
|                    | Continuous (at 460/480 V) [A]                                                          | 1129                 | 1344                 | 1490       |  |
|                    | Max. cable size,motor [mm <sup>2</sup>                                                 | 8x150                | 12x                  | 150        |  |
|                    | (AWG <sup>2)</sup> )]                                                                  | (8x300 mcm)          | (12x300 mcm)         |            |  |
|                    | Max. cable size, line power [mm <sup>2</sup> (AWG <sup>2</sup> )]                      |                      | 8x240<br>(8x500 mcm) |            |  |
|                    | Max. cable size, loadsharing [mm <sup>2</sup> (AWG <sup>2</sup> )]                     | 4x120<br>(4x250 mcm) | (8x500 mcm)          |            |  |
|                    | Max. cable size, brake [mm <sup>2</sup><br>(AWG <sup>2)</sup> )                        | 4x185<br>(4x350 mcm) | 6x1<br>(6x350        |            |  |
|                    | Max. external pre-fuses [A] 1                                                          | 2000                 | 25                   | 00         |  |
|                    | Est. power loss at rated max.                                                          | 15436                | 18084                | 20358      |  |
|                    | Est. power loss at rated max. load [W] <sup>4)</sup> , 460 V, F1 & F2                  | 14041                | 17137                | 17752      |  |
|                    | Max. added losses of A1 RFI,<br>Circuit Breaker or Disconnect,<br>& Contactor, F3 & F4 | 1230                 | 2280                 | 2541       |  |
|                    | Max Panel Options Losses                                                               |                      | 400                  |            |  |
|                    | Weight, enclosure IP21, IP 54 [kg]                                                     | 1004/ 1299           | 1246/ 1541           | 1246/ 1541 |  |
|                    | Weight Rectifier Module [kg]                                                           | 102                  | 136                  | 136        |  |
|                    | Weight Inverter Module [kg]                                                            | 136                  | 102                  | 102        |  |
|                    | Efficiency <sup>4)</sup>                                                               |                      | 0.98                 |            |  |
|                    | Output frequency                                                                       |                      | 0–600 Hz             |            |  |
|                    | Heatsink overtemp. trip                                                                |                      | 203°F [95°C]         |            |  |
|                    | Power card ambient trip                                                                |                      | 154.4°F [68°C]       |            |  |



| Line Power S | Supply 3 x 525–690 V AC                                                          |      |      |             |      |      |
|--------------|----------------------------------------------------------------------------------|------|------|-------------|------|------|
|              |                                                                                  | P45K | P55K | P75K        | P90K | P110 |
|              | Typical Shaft output at<br>550 V [kW]                                            | 37   | 45   | 55          | 75   | 90   |
|              | Typical Shaft output at 575 V [HP]                                               | 50   | 60   | 75          | 100  | 125  |
|              | Typical Shaft output at 690 V [kW]                                               | 45   | 55   | 75          | 90   | 110  |
|              | Enclosure IP21                                                                   | D1   | D1   | D1          | D1   | D1   |
|              | Enclosure IP54                                                                   | D1   | D1   | D1          | D1   | D1   |
|              | Enclosure IP00                                                                   | D2   | D2   | D2          | D2   | D2   |
| Output curre | i                                                                                |      | 1    |             |      |      |
|              | Continuous (at 3 x 525–<br>550 V) [A]                                            | 56   | 76   | 90          | 113  | 137  |
|              | Intermittent (60 sec over-<br>load) (at 550 V) [A]                               | 62   | 84   | 99          | 124  | 151  |
|              | Continuous (at 3 x 551–<br>690 V) [A]                                            | 54   | 73   | 86          | 108  | 131  |
|              | Intermittent (60 sec over-<br>load) (at 575/690 V) [A]                           | 59   | 80   | 95          | 119  | 144  |
|              | Continuous KVA (at 550 V)<br>[KVA]                                               | 53   | 72   | 86          | 108  | 131  |
|              | Continuous KVA (at 575 V)<br>[KVA]                                               | 54   | 73   | 86          | 108  | 130  |
|              | Continuous KVA (at 690 V)<br>[KVA]                                               | 65   | 87   | 103         | 129  | 157  |
| Max. input c | urrent                                                                           |      |      |             |      | ,    |
|              | Continuous (at 550 V) [A]                                                        | 60   | 77   | 89          | 110  | 130  |
|              | Continuous (at 575 V) [A]                                                        | 58   | 74   | 85          | 106  | 124  |
|              | Continuous (at 690 V) [A]                                                        | 58   | 77   | 87          | 109  | 128  |
|              | Max. cable size, line power, motor, load share and brake [mm <sup>2</sup> (AWG)] |      | 2    | ×70 (2×2/0) |      |      |
|              | Max. external pre-fuses [A] <sup>1</sup>                                         | 125  | 160  | 200         | 200  | 250  |
|              | Estimated power loss at rated max. load [W] <sup>4)</sup> , 600 V                | 1398 | 1645 | 1827        | 2157 | 2533 |
|              | Estimated power loss at rated max. load [W] <sup>4)</sup> , 690 V                | 1458 | 1717 | 1913        | 2262 | 2662 |
|              | Weight,enclosure IP21, IP<br>54 [kg]                                             |      |      | 96          |      |      |
|              | Weight,enclosure IP00<br>[kg]                                                    |      |      | 82          |      |      |
|              | Efficiency <sup>4)</sup>                                                         | 0.97 | 0.97 | 0.98        | 0.98 | 0.98 |
|              | Output frequency                                                                 |      |      | 0–600 Hz    |      |      |
|              | Heatsink overtemp. trip                                                          |      | 1    | 85°F [85°C] |      |      |
|              | Power card ambient trip                                                          |      |      | 40°F [60°C] |      |      |

8-10 TR200 Design Guide



| Line Power Supply 3 x 525–690 V AC |                                                                                 |                  |                  |                          |                          |
|------------------------------------|---------------------------------------------------------------------------------|------------------|------------------|--------------------------|--------------------------|
| Lille Power Suppl                  | IY 5 X 525-090 V AC                                                             | P132             | P160             | P200                     | P250                     |
|                                    |                                                                                 |                  |                  |                          |                          |
|                                    | Typical Shaft output at 550 V [kW]                                              | 110              | 132              | 160                      | 200                      |
|                                    | Typical Shaft output at 575 V [HP]                                              | 150              | 200              | 250                      | 300                      |
|                                    | Typical Shaft output at 690 V [kW]                                              | 132              | 160              | 200                      | 250                      |
|                                    | Enclosure IP21                                                                  | D1               | D1               | D2                       | D2                       |
|                                    | Enclosure IP54                                                                  | D1               | D1               | D2                       | D2                       |
|                                    | Enclosure IP00                                                                  | D3               | D3               | D4                       | D4                       |
|                                    | Output current                                                                  |                  |                  |                          |                          |
|                                    | Continuous (at 550 V) [A]                                                       | 162              | 201              | 253                      | 303                      |
|                                    | Intermittent (60 sec overload) (at 550 V) [A]                                   | 178              | 221              | 278                      | 333                      |
|                                    | Continuous (at 575/690 V)<br>[A]                                                | 155              | 192              | 242                      | 290                      |
|                                    | Intermittent (60 sec over-<br>load) (at 575/690 V) [A]                          | 171              | 211              | 266                      | 319                      |
|                                    | Continuous KVA (at 550 V)<br>[KVA]                                              | 154              | 191              | 241                      | 289                      |
|                                    | Continuous KVA (at 575 V)<br>[KVA]                                              | 154              | 191              | 241                      | 289                      |
|                                    | Continuous KVA (at 690 V)<br>[KVA]                                              | 185              | 229              | 289                      | 347                      |
| Max. input currer                  |                                                                                 |                  |                  |                          |                          |
| -                                  | Continuous (at 550 V) [A]  Continuous (at 575 V) [A]                            | 158<br>151       | 198              | 245<br>234               | 299                      |
|                                    | Continuous (at 690 V) [A]                                                       | 155              | 197              | 240                      | 296                      |
|                                    | Max. cable size, line power motor, load share and brake [mm <sup>2</sup> (AWG)] | 2 x 70 (2 x 2/0) | 2 x 70 (2 x 2/0) | 2 x 150 (2 x<br>300 mcm) | 2 x 150 (2 x<br>300 mcm) |
|                                    | Max. external pre-fuses [A]                                                     | 315              | 350              | 350                      | 400                      |
|                                    | Estimated power loss at rated max. load [W] <sup>4)</sup> , 600 V               | 2963             | 3430             | 4051                     | 4867                     |
|                                    | Estimated power loss at rated max. load [W] <sup>4)</sup> , 690 V               | 3430             | 3612             | 4292                     | 5156                     |
|                                    | Weight, Enclosure IP21, IP 54 [kg]                                              | 96               | 104              | 125                      | 136                      |
|                                    | Weight, Enclosure IP00 [kg]                                                     | 82               | 91               | 112                      | 123                      |
|                                    | Efficiency <sup>4)</sup>                                                        |                  | 0.98             |                          |                          |
|                                    | Output frequency                                                                |                  | 0–600            |                          |                          |
|                                    | Heatsink overtemp. trip                                                         | 185°F [85°C]     |                  | 230°F [110°C]            | 230°F<br>[110°C]         |
|                                    | Power card ambient trip                                                         |                  | 140°F [6         | 60°C]                    | -                        |



| Line Deurer Cumply 2 | × E3E 600 V AC                                                     |                          |                          |                          |
|----------------------|--------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|
| Line Power Supply 3  | X 525-690 V AC                                                     | P315                     | P400                     | P450                     |
|                      | Typical Shaft output at 550 V                                      | 250                      | 315                      | 355                      |
|                      | [kW] Typical Shaft output at 575 V                                 | 350                      | 400                      | 450                      |
|                      | [HP] Typical Shaft output at 690 V                                 | 315                      | 400                      | 450                      |
|                      | [kW]                                                               | D0                       | D0                       | F4                       |
|                      | Enclosure IP21                                                     | D2                       | D2                       | E1                       |
|                      | Enclosure IP54                                                     | D2                       | D2                       | E1                       |
|                      | Enclosure IP00                                                     | D4                       | D4                       | E2                       |
|                      | Output current                                                     | 360                      | 418                      | 470                      |
|                      | Continuous (at 550 V) [A]                                          | 300                      | 418                      | 470                      |
|                      | Intermittent (60 sec overload)<br>(at 550 V) [A]                   | 396                      | 460                      | 517                      |
|                      | Continuous (at 575/690 V) [A]                                      | 344                      | 400                      | 450                      |
|                      | Intermittent (60 sec overload)<br>(at 575/690 V) [A]               | 378                      | 440                      | 495                      |
|                      | Continuous KVA (at 550 V)<br>[KVA]                                 | 343                      | 398                      | 448                      |
|                      | Continuous KVA (at 575 V)<br>[KVA]                                 | 343                      | 398                      | 448                      |
|                      | Continuous KVA (at 690 V)<br>[KVA]                                 | 411                      | 478                      | 538                      |
| Max. input current   |                                                                    |                          |                          |                          |
| <b>-</b>             | Continuous (at 550 V) [A]  Continuous (at 575 V) [A]               | 355<br>339               | 408<br>390               | 453<br>434               |
|                      | Continuous (at 690 V) [A]                                          | 352                      | 400                      | 434                      |
|                      | Max. cable size, line power, motor and load share [mm <sup>2</sup> | 2 x 150<br>(2 x 300 mcm) | 2 x 150<br>(2 x 300 mcm) | 4 x 240<br>(4 x 500 mcm) |
|                      | (AWG)]                                                             | (2 X 300 IIICIII)        | (2 X 300 IIICIII)        | (4 × 500 mcm)            |
|                      | Max. cable size, brake [mm <sup>2</sup> (AWG)]                     | 2 x 150<br>(2 x 300 mcm) | 2 x 150<br>(2 x 300 mcm) | 2 x 185<br>(2 x 350 mcm) |
|                      | Max. external pre-fuses [A] <sup>1</sup>                           | 500                      | 550                      | 700                      |
|                      | Estimated power loss at rated                                      | 5493                     | 5852                     | 6132                     |
|                      | max. load [W] <sup>4)</sup> , 600 V                                | 5.00                     | 3302                     |                          |
|                      | Estimated power loss at rated max. load [W] <sup>4)</sup> , 690 V  | 5821                     | 6149                     | 6440                     |
|                      | Weight, enclosure IP21, IP 54 [kg]                                 | 151                      | 165                      | 263                      |
|                      | Weight, enclosure IP00 [kg]                                        | 138                      | 151                      | 221                      |
|                      | Efficiency <sup>4)</sup>                                           |                          | 0.98                     |                          |
|                      | Output frequency                                                   | 0–600 Hz                 | 0–500 Hz                 | 0–500 Hz                 |
|                      | Heatsink overtemp. trip                                            | 230°F [110°C]            | 230°F [110°C]            | 185°F [85°C]             |
|                      | Power card ambient trip                                            | 140°F [60°C]             | 140°F [60°C]             | 154.4°F [68°C]           |

8-12 TR200 Design Guide



| Line Power Supply 3 | x 525–690 V AC                                                            |                          |                          |                          |
|---------------------|---------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|
|                     |                                                                           | P500                     | P560                     | P630                     |
|                     | Typical Shaft output at 550 V [kW]                                        | 400                      | 450                      | 500                      |
|                     | Typical Shaft output at 575 V [HP]                                        | 500                      | 600                      | 650                      |
|                     | Typical Shaft output at 690 V [kW]                                        | 500                      | 560                      | 630                      |
|                     | Enclosure IP21                                                            | E1                       | E1                       | E1                       |
|                     | Enclosure IP54                                                            | E1                       | E1                       | E1                       |
|                     | Enclosure IP00                                                            | E2                       | E2                       | E2                       |
|                     | Output current                                                            |                          |                          |                          |
|                     | Continuous (at 550 V) [A]                                                 | 523                      | 596                      | 630                      |
|                     | Intermittent (60 sec over-<br>load) (at 550 V) [A]                        | 575                      | 656                      | 693                      |
|                     | Continuous (at 575/690 V)<br>[A]                                          | 500                      | 570                      | 630                      |
|                     | Intermittent (60 sec overload) (at 575/690 V) [A]                         | 550                      | 627                      | 693                      |
|                     | Continuous KVA (at 550<br>V) [KVA]                                        | 498                      | 568                      | 600                      |
|                     | Continuous KVA (at 575<br>V) [KVA]                                        | 498                      | 568                      | 627                      |
|                     | Continuous KVA (at 690<br>V) [KVA]                                        | 598                      | 681                      | 753                      |
| Max. input current  |                                                                           |                          |                          |                          |
| <b>→</b>            | Continuous (at 550 V) [A]  Continuous (at 575 V) [A]                      | 504<br>482               | 574<br>549               | 607                      |
|                     | Continuous (at 690 V) [A]                                                 | 482                      | 549                      | 607                      |
|                     | Max. cable size, line power, motor and load share [mm <sup>2</sup> (AWG)] | 4x240 (4x500<br>mcm)     | 4x240 (4x500<br>mcm)     | 4x240 (4x500<br>mcm)     |
|                     | Max. cable size, brake [mm <sup>2</sup> (AWG)]                            | 2 x 185<br>(2 x 350 mcm) | 2 x 185<br>(2 x 350 mcm) | 2 x 185<br>(2 x 350 mcm) |
|                     | Max. external pre-fuses [A] 1                                             | 700                      | 900                      | 900                      |
|                     | Estimated power loss at rated max. load [W] <sup>4)</sup> ,               | 6903                     | 8343                     | 9244                     |
|                     | 600 V<br>Estimated power loss at                                          |                          |                          |                          |
|                     | rated max. load [W] <sup>4)</sup> ,<br>690 V                              | 7249                     | 8727                     | 9673                     |
|                     | Weight, enclosure IP21,<br>IP 54 [kg]                                     | 263                      | 272                      | 313                      |
|                     | Weight, enclosure IP00<br>[kg]                                            | 221                      | 236                      | 277                      |
|                     | Efficiency <sup>4)</sup>                                                  |                          | 0.98                     |                          |
|                     | Output frequency                                                          |                          | 0–500 Hz                 |                          |
|                     | Heatsink overtemp. trip                                                   |                          | 185°F [85°C]             |                          |
|                     | Power card ambient trip                                                   |                          | 154.4°F [68°C]           |                          |



| Line Power Supply 3 x 525-690 V AC |                                                                                 |            |                      |            |
|------------------------------------|---------------------------------------------------------------------------------|------------|----------------------|------------|
|                                    |                                                                                 | P710       | P800                 | P900       |
|                                    | Typical Shaft output at 550 V [kW]                                              | 560        | 670                  | 750        |
|                                    | Typical Shaft output at 575 V [HP]                                              | 750        | 950                  | 1050       |
|                                    | Typical Shaft output at 690 V [kW]                                              | 710        | 800                  | 900        |
|                                    | Enclosure IP21, 54 without/<br>with options cabinet                             | F1/ F3     | F1/ F3               | F1/ F3     |
|                                    | Output current                                                                  |            |                      |            |
|                                    | Continuous (at 550 V) [A]                                                       | 763        | 889                  | 988        |
|                                    | Intermittent (60 s overload, at 550 V) [A]                                      | 839        | 978                  | 1087       |
|                                    | Continuous (at 575/690 V) [A]                                                   | 730        | 850                  | 945        |
|                                    | Intermittent (60 s overload, at 575/690 V) [A]                                  | 803        | 935                  | 1040       |
|                                    | Continuous KVA (at 550 V)<br>[KVA]                                              | 727        | 847                  | 941        |
|                                    | Continuous KVA (at 575 V)<br>[KVA]                                              | 727        | 847                  | 941        |
|                                    | Continuous KVA (at 690 V)<br>[KVA]                                              | 872        | 1016                 | 1129       |
| Max. input current                 | 0 .: (                                                                          | 740        | 000                  | 0.00       |
|                                    | Continuous (at 550 V) [A]<br>Continuous (at 575 V) [A]                          | 743<br>711 | 866<br>828           | 962<br>920 |
|                                    | Continuous (at 690 V) [A]                                                       | 711        | 828                  | 920        |
| <b>→</b>                           | Max. cable size,motor [mm <sup>2</sup> (AWG <sup>2)</sup> )]                    |            | 8x150<br>(8x300 mcm) |            |
|                                    | Max. cable size, line power [mm² (AWG²))]                                       |            | 8x240<br>(8x500 mcm) |            |
|                                    | Max. cable size, loadsharing [mm <sup>2</sup> (AWG <sup>2)</sup> )]             |            | 4x120<br>(4x250 mcm) |            |
|                                    | Max. cable size, brake [mm <sup>2</sup> (AWG <sup>2)</sup> )                    |            | 4x185<br>(4x350 mcm) |            |
|                                    | Max. external pre-fuses [A] 1)                                                  |            | 1600                 |            |
|                                    | Est. power loss at rated max. load [W] <sup>4)</sup> , 600 V, F1 & F2           | 10771      | 12272                | 13835      |
|                                    | Est. power loss at rated max. load [W] <sup>4)</sup> , 690 V, F1 & F2           | 11315      | 12903                | 14533      |
|                                    | Max. added losses of Circuit<br>Breaker or Disconnect & Con-<br>tactor, F3 & F4 | 427        | 532                  | 615        |
|                                    | Max Panel Options Losses                                                        |            | 400                  |            |
|                                    | Weight, enclosure IP21, IP 54 [kg]                                              | 1004/ 1299 | 1004/ 1299           | 1004/ 1299 |
|                                    | Weight, Rectifier Module [kg]                                                   | 102        | 102                  | 102        |
|                                    | Weight, Inverter Module [kg]                                                    | 102        | 102                  | 136        |
|                                    | Efficiency <sup>4)</sup>                                                        |            | 0.98                 |            |
|                                    | Output frequency                                                                | 0–500 Hz   |                      |            |
|                                    | Heatsink overtemp. trip                                                         |            | 185°F [85°C]         |            |
|                                    | Power card amb. trip                                                            |            | 154.4°F [68°C]       |            |

8-14 TR200 Design Guide



| Line Decree Consults D | F2F 600 V 46                                                            |            |                        |           |
|------------------------|-------------------------------------------------------------------------|------------|------------------------|-----------|
| Line Power Supply 3    | x 525–690 V AC                                                          | P1M0       | P1M2                   | P1M4      |
|                        | Typical Shaft output at 550 V [kW]                                      | 850        | 1000                   | 1100      |
|                        | Typical Shaft output at 535 V [KVV]                                     | 1150       | 1350                   | 1550      |
|                        | Typical Shaft output at 575 V [H]                                       | 1000       | 1200                   | 1400      |
|                        | Enclosure IP21, 54 without/ with                                        |            |                        |           |
|                        | options cabinet                                                         | F2/ F4     | F2/ F4                 | F2/F4     |
|                        | Output current                                                          |            |                        |           |
|                        | Continuous (at 550 V) [A]                                               | 1108       | 1317                   | 1479      |
|                        | Intermittent (60 s overload, at 550 V) [A]                              | 1219       | 1449                   | 1627      |
|                        | Continuous (at 575/690 V) [A]                                           | 1060       | 1260                   | 1415      |
|                        | Intermittent (60 s overload, at 575/690 V) [A]                          | 1166       | 1386                   | 1557      |
|                        | Continuous KVA (at 550 V) [KVA]                                         | 1056       | 1255                   | 1409      |
|                        | Continuous KVA (at 575 V) [KVA]                                         | 1056       | 1255                   | 1409      |
|                        | Continuous KVA (at 690 V) [KVA]                                         | 1267       | 1506                   | 1691      |
| Max. input current     |                                                                         |            |                        |           |
|                        | Continuous (at 550 V) [A]                                               | 1079       | 1282                   | 1440      |
|                        | Continuous (at 575 V) [A]                                               | 1032       | 1227                   | 1378      |
|                        | Continuous (at 690 V) [A]                                               | 1032       | 1227                   | 1378      |
| <b>→</b>               | Max. cable size,motor [mm <sup>2</sup> (AWG <sup>2)</sup> )]            |            | 12x150<br>(12x300 mcm) |           |
|                        | Max. cable size, line power [mm <sup>2</sup> (AWG <sup>2</sup> ))]      |            | 8x456<br>8x900 mcm     |           |
|                        | Max. cable size, loadsharing [mm <sup>2</sup> (AWG <sup>2)</sup> )]     |            | 4x120<br>(4x250 mcm)   |           |
|                        | Max. cable size, brake [mm <sup>2</sup> (AWG <sup>2</sup> ))            |            | 6x185<br>(6x350 mcm)   |           |
|                        | Max. external pre-fuses [A] 1)                                          | 1600       | 2000                   | 2500      |
|                        | Est. power loss at rated max. load [W] <sup>4)</sup> , 600 V, F1 & F2   | 15592      | 18281                  | 20825     |
|                        | Est. power loss at rated max. load [W] <sup>4)</sup> , 690 V, F1 & F2   | 16375      | 19207                  | 21857     |
|                        | Max. added losses of Circuit Breaker or Disconnect & Contactor, F3 & F4 | 665        | 863                    | 1044      |
|                        | Max Panel Options Losses                                                |            | 400                    |           |
|                        | Weight, enclosure IP21, IP 54 [kg]                                      | 1246/ 1541 | 1246/ 1541             | 1280/1575 |
|                        | Weight, Rectifier Module [kg]                                           | 136        | 136                    | 136       |
|                        | Weight, Inverter Module [kg]                                            | 102        | 102                    | 136       |
|                        | Efficiency <sup>4)</sup>                                                |            | 0.98                   |           |
|                        | Output frequency                                                        |            | 0–500 Hz               |           |
|                        | Heatsink overtemp, trip                                                 |            | 185°F [85°C]           |           |
|                        | Power card amb. trip                                                    |            | 154.4°F [68°C]         |           |
|                        |                                                                         |            | .0 11 1 [00 0]         |           |

- 1) For type of fuse, see the section Fuses.
- 2) American Wire Gauge.
- 3) Measured using 16.4 ft [5 m] shielded motor cables at rated load and rated frequency.
- 4) The typical power loss is at nominal load conditions and expected to be within +/-15% (tolerance relates to variety in voltage and cable conditions). Values are based on a typical motor efficiency (eff2/eff3 border line). Motors with lower efficiency will also add to the power loss in the adjustable frequency drive and opposite. If the switching frequency is increased comed to the default setting, the power losses may rise



# General Specifications and Troubleshooting

significantly.keypad and typical control card power consumptions are included. Further options and customer load may add up to 30 W to the losses. (Though typical, only 4 W extra for a fully loaded control card, or options for slot A or slot B, each.)

Although measurements are made with state of the art equipment, some measurement inaccuracy must be allowed for (+/-5%).

8-16 TR200 Design Guide



# **General Specifications**

Line power supply (L1, L2, L3):

AC line voltage low / line drop-out:

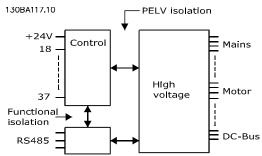
During low AC line voltage or a line drop-out, the adjustable frequency drive continues until the intermediate circuit voltage drops below the minimum stop level, which corresponds typically to 15% below the adjustable frequency drive's lowest rated supply voltage. Power-up and full torque cannot be expected at AC line voltage lower than 10% below the adjustable frequency drive's lowest rated supply voltage.

| lower than 10% below the adjustable frequency di                                                        | ive s lowest rated supp                        | ny voitage.                                                  |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------|
| Supply frequency                                                                                        |                                                | 50/60 Hz ±5%                                                 |
| Max. imbalance temporary between line phases                                                            |                                                | 3.0% of rated supply voltage                                 |
| True Power Factor ()                                                                                    |                                                | ≥ 0.9 nominal at rated load                                  |
| Displacement Power Factor (cos) near unity                                                              |                                                | (> 0.98)                                                     |
| Switching on input supply L1, L2, L3 (power-ups)                                                        | ≤ enclosure type A                             | maximum twice/min.                                           |
| Switching on input supply L1, L2, L3 (power-ups)                                                        | ≥ enclosure type B, C                          | maximum once/min.                                            |
| Switching on input supply L1, L2, L3 (power-ups)                                                        | ≥ enclosure type D, E, F                       | maximum once/2 min.                                          |
| Environment according to EN60664-1                                                                      | overvo                                         | ltage category III / pollution degree 2                      |
| The unit is suitable for use on a circuit capable of c<br>480/600 V maximum.<br>Motor output (U, V, W): | lelivering not more than                       | n 100,000 RMS symmetrical Amperes,                           |
| Output voltage                                                                                          |                                                | 0–100% of supply voltage                                     |
| Output frequency                                                                                        |                                                | 0–1000 Hz <sup>*</sup>                                       |
| Switching on output                                                                                     |                                                | Unlimited                                                    |
| Ramp times                                                                                              |                                                | 1–3600 sec.                                                  |
| * Dependent on power size.                                                                              |                                                |                                                              |
| Torque characteristics:                                                                                 |                                                |                                                              |
| Starting torque (Constant torque)                                                                       |                                                | maximum 110% for 1 min.*                                     |
| Starting torque                                                                                         |                                                | maximum 135% up to 0.5 sec.*                                 |
| Overload torque (Constant torque)                                                                       |                                                | maximum 110% for 1 min.*                                     |
| *Percentage relates to the adjustable frequency d<br>Cable lengths and cross-sections:                  | rive's nominal torque.                         |                                                              |
| Max. motor cable length, shielded/armored                                                               |                                                | TR200: 150 m                                                 |
| Max. motor cable length, unshielded/unarmored                                                           |                                                | TR200: 300 m                                                 |
| Max. cross-section to motor, line power, load sha                                                       | ring and brake *                               |                                                              |
| Maximum cross-section to control terminals, rigid                                                       |                                                |                                                              |
| wire                                                                                                    | 0.0023 in <sup>2</sup> [1.5 mm <sup>2</sup> ]/ | 16 AWG (2 x 0.00112 <sup>2</sup> in [0.75 mm <sup>2</sup> ]) |
| Maximum cross-section to control terminals, flexi                                                       | ble cable                                      | 0.0016 in <sup>2</sup> [1 mm <sup>2</sup> ]/18 AWG           |
| Maximum cross-section to control terminals, cabl                                                        | e with enclosed core                           | 0.0008 in <sup>2</sup> [0.5 mm <sup>2</sup> ]/20 AWG         |
| Minimum cross-section to control terminals                                                              |                                                | 0.039 in <sup>2</sup> [0.25 mm <sup>2</sup> ]                |
|                                                                                                         |                                                |                                                              |

<sup>\*</sup> See Line Power Supply tables for more information!



# General Specifications and Troubleshooting

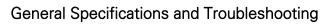

| Digital inputs:              |                                                       |
|------------------------------|-------------------------------------------------------|
| Programmable digital inputs  | 4 (6)                                                 |
| Terminal number              | 18, 19, 27 <sup>1)</sup> , 29 <sup>1)</sup> , 32, 33, |
| Logic                        | PNP or NPN                                            |
| Voltage level                | 0–24 Vdc                                              |
| Voltage level, logic'0' PNP  | < 5 Vdc                                               |
| Voltage level, logic'1' PNP  | > 10 Vdc                                              |
| Voltage level, logic '0' NPN | > 19 Vdc                                              |
| Voltage level, logic '1' NPN | < 14 Vdc                                              |
| Maximum voltage on input     | 28 Vdc                                                |
| Input resistance, Ri         | approx. 4 kΩ                                          |

All digital inputs are galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

## Analog inputs:

| Number of analog inputs          | 2                                 |
|----------------------------------|-----------------------------------|
| Terminal number                  | 53, 54                            |
| Modes                            | Voltage or current                |
| Mode select                      | Switch S201 and switch S202       |
| Voltage mode                     | Switch S201/switch S202 = OFF (U) |
| Voltage level                    | : 0-+10 V (scaleable)             |
| Input resistance, R <sub>i</sub> | approx. 10 kΩ                     |
| Max. voltage                     | ± 20 V                            |
| Current mode                     | Switch S201/switch S202 = ON (I)  |
| Current level                    | 0/4 to 20 mA (scaleable)          |
| Input resistance, R <sub>i</sub> | approx. 200 $\Omega$              |
| Max. current                     | 30 mA                             |
| Resolution for analog inputs     | 10 bit (+ sign)                   |
| Accuracy of analog inputs        | Max. error 0.5% of full scale     |
| Bandwidth                        | : 200 Hz                          |
|                                  |                                   |

The analog inputs are galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.




## Pulse inputs:

| Programmable pulse inputs          | 2                              |
|------------------------------------|--------------------------------|
| Terminal number pulse              | 29, 33                         |
| Max. frequency at terminal, 29, 33 | 110 kHz (push-pull driven)     |
| Max. frequency at terminal, 29, 33 | 5 kHz (open collector)         |
| Min. frequency at terminal 29, 33  | 4 Hz                           |
| Voltage level                      | see section on Digital input   |
| Maximum voltage on input           | 28 Vdc                         |
| Input resistance, R <sub>i</sub>   | approx. 4 kΩ                   |
| Pulse input accuracy (0.1–1 kHz)   | Max. error: 0.1% of full scale |

8-18 TR200 Design Guide

<sup>1)</sup> Terminals 27 and 29 can also be programmed as output.



| Analog output:                                                                                                        |                                                    |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Number of programmable analog outputs                                                                                 | 1                                                  |
| Terminal number                                                                                                       | 42                                                 |
| Current range at analog output                                                                                        | 0/4–20 mA                                          |
| Max. resistor load to common at analog output                                                                         | 500 Ω                                              |
| Accuracy on analog output                                                                                             | Max. error: 0.8% of full scale                     |
| Resolution on analog output                                                                                           | 8 bit                                              |
| The analog output is galvanically isolated from the supply voltage (Control card, RS-485 serial communication:        | PELV) and other high-voltage terminals.            |
| Terminal number                                                                                                       | 68 (P,TX+, RX+), 69 (N,TX-, RX-)                   |
| Terminal number 61                                                                                                    | Common for terminals 68 and 69                     |
| The RS-485 serial communication circuit is functionally seated lated from the supply voltage (PELV).  Digital output: | from other central circuits and galvanically iso-  |
| Programmable digital/pulse outputs                                                                                    | 2                                                  |
| Terminal number                                                                                                       | 27, 29 <sup>1)</sup>                               |
| Voltage level at digital/frequency output                                                                             | 0–24 V                                             |
| Max. output current (sink or source)                                                                                  | 40 mA                                              |
| Max. load at frequency output                                                                                         | 1 kΩ                                               |
| Max. capacitive load at frequency output                                                                              | 10 nF                                              |
| Minimum output frequency at frequency output                                                                          | 0 Hz                                               |
| Maximum output frequency at frequency output                                                                          | 32 kHz                                             |
| Accuracy of frequency output                                                                                          | Max. error: 0.1% of full scale                     |
| Resolution of frequency outputs                                                                                       | 12 bit                                             |
| 1) Terminal 27 and 29 can also be programmed as input.                                                                |                                                    |
| The digital output is galvanically isolated from the supply voltage (                                                 | PELV) and other high-voltage terminals.            |
| Control card, 24 Vdc output:                                                                                          |                                                    |
| Terminal number                                                                                                       | 12, 13                                             |
| Max. load                                                                                                             | : 200 mA                                           |
| The 24 Vdc supply is galyanically isolated from the supply voltage (I                                                 | DELV) but has the same notential as the analog and |

The 24 Vdc supply is galvanically isolated from the supply voltage (PELV), but has the same potential as the analog and digital inputs and outputs.



# General Specifications and Troubleshooting

| Programmable relay outputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Relay 01 Terminal number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1-3 (break), 1-2 (make)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Max. terminal load (AC-1) <sup>1)</sup> on 1-3 (NC), 1-2 (NO) (Resistive load)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 240 V AC, 2 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Max. terminal load (AC-15) <sup>1)</sup> (Inductive load @ cosφ 0.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 240 Vac, 0.2 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Max. terminal load (DC-1) <sup>1)</sup> on 1-2 (NO), 1-3 (NC) (Resistive load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Max. terminal load (DC-13) <sup>1)</sup> (Inductive load)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24 Vdc, 0.1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Relay 02 Terminal number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4-6 (break), 4-5 (make)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Max. terminal load (AC-1) <sup>1)</sup> on 4-5 (NO) (Resistive load) <sup>2)3)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 400 Vac, 2 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Max. terminal load (AC-15) <sup>1)</sup> on 4-5 (NO) (Inductive load @ cosφ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Max. terminal load (DC-1) <sup>1)</sup> on 4-5 (NO) (Resistive load)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80 Vdc, 2 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Max. terminal load (DC-13) <sup>1)</sup> on 4-5 (NO) (Inductive load)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24 Vdc, 0.1 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Max. terminal load (AC-1) <sup>1)</sup> on 4-6 (NC) (Resistive load)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 240 Vac, 2 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Max. terminal load (AC-15) <sup>1)</sup> on 4-6 (NC) (Inductive load @ cosφ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4) 240 Vac, 0.2 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Max. terminal load (DC-1) <sup>1)</sup> on 4-6 (NC) (Resistive load)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50 Vdc, 2 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Max. terminal load (DC-13) <sup>1)</sup> on 4-6 (NC) (Inductive load)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24 Vdc, 0.1 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Min. terminal load on 1-3 (NC), 1-2 (NO), 4-6 (NC), 4-5 (NO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24 Vdc 10 mA, 24 Vac 20 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Environment according to EN 60664-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | overvoltage category III/pollution degree 2                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1) IEC 60947 t 4 and 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| The relay contacts are galvanically isolated from the rest of the circulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | it by reinforced isolation (PELV).                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2) Overvoltage Category II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3) UL applications 300 Vac 2 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3) UL applications 300 Vac 2 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3) UL applications 300 Vac 2 A Control card, 10 V DC output:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3) UL applications 300 Vac 2 A  Control card, 10 V DC output:  Terminal number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.5 V ±0.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3) UL applications 300 Vac 2 A  Control card, 10 V DC output:  Terminal number  Output voltage  Max. load  The 10 Vdc supply is galvanically isolated from the supply voltage (Page 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.5 V ±0.5 V<br>25 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3) UL applications 300 Vac 2 A  Control card, 10 V DC output:  Terminal number  Output voltage  Max. load  The 10 Vdc supply is galvanically isolated from the supply voltage (Pacontrol characteristics:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.5 V ±0.5 V<br>25 mA<br>ELV) and other high-voltage terminals.                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3) UL applications 300 Vac 2 A  Control card, 10 V DC output: Terminal number  Output voltage  Max. load  The 10 Vdc supply is galvanically isolated from the supply voltage (Paccontrol characteristics:  Resolution of output frequency at 0 - 1000 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.5 V ±0.5 V<br>25 mA<br>ELV) and other high-voltage terminals.<br>: +/- 0.003 Hz                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3) UL applications 300 Vac 2 A  Control card, 10 V DC output:  Terminal number  Output voltage  Max. load  The 10 Vdc supply is galvanically isolated from the supply voltage (Pacontrol characteristics:  Resolution of output frequency at 0 - 1000 Hz  System response time (terminals 18, 19, 27, 29, 32, 33)                                                                                                                                                                                                                                                                                                                                                                                                   | 10.5 V ±0.5 V<br>25 mA<br>ELV) and other high-voltage terminals.<br>: +/- 0.003 Hz<br>: ≤ 2 ms                                                                                                                                                                                                                                                                                                                                                                                           |
| 3) UL applications 300 Vac 2 A  Control card, 10 V DC output:  Terminal number  Output voltage  Max. load  The 10 Vdc supply is galvanically isolated from the supply voltage (Pacontrol characteristics:  Resolution of output frequency at 0 - 1000 Hz  System response time (terminals 18, 19, 27, 29, 32, 33)  Speed control range (open-loop)                                                                                                                                                                                                                                                                                                                                                                  | 10.5 V ±0.5 V<br>25 mA<br>ELV) and other high-voltage terminals.<br>: +/- 0.003 Hz<br>: ≤ 2 ms<br>1:100 of synchronous speed                                                                                                                                                                                                                                                                                                                                                             |
| 3) UL applications 300 Vac 2 A  Control card, 10 V DC output:  Terminal number  Output voltage  Max. load  The 10 Vdc supply is galvanically isolated from the supply voltage (Paccontrol characteristics:  Resolution of output frequency at 0 - 1000 Hz  System response time (terminals 18, 19, 27, 29, 32, 33)  Speed control range (open-loop)  Speed accuracy (open-loop)                                                                                                                                                                                                                                                                                                                                     | 10.5 V ±0.5 V<br>25 mA<br>ELV) and other high-voltage terminals.<br>: +/- 0.003 Hz<br>: ≤ 2 ms<br>1:100 of synchronous speed                                                                                                                                                                                                                                                                                                                                                             |
| Control card, 10 V DC output: Terminal number Output voltage Max. load The 10 Vdc supply is galvanically isolated from the supply voltage (Pacontrol characteristics: Resolution of output frequency at 0 - 1000 Hz System response time (terminals 18, 19, 27, 29, 32, 33) Speed control range (open-loop) Speed accuracy (open-loop) All control characteristics are based on a 4-pole asynchronous motor                                                                                                                                                                                                                                                                                                         | 10.5 V ±0.5 V<br>25 mA<br>ELV) and other high-voltage terminals.<br>: +/- 0.003 Hz<br>: ≤ 2 ms<br>1:100 of synchronous speed                                                                                                                                                                                                                                                                                                                                                             |
| Control card, 10 V DC output: Terminal number Output voltage Max. load The 10 Vdc supply is galvanically isolated from the supply voltage (Pacontrol characteristics: Resolution of output frequency at 0 - 1000 Hz System response time (terminals 18, 19, 27, 29, 32, 33) Speed control range (open-loop) Speed accuracy (open-loop) All control characteristics are based on a 4-pole asynchronous motor Surroundings:                                                                                                                                                                                                                                                                                           | 10.5 V ±0.5 V 25 mA  ELV) and other high-voltage terminals.  : +/- 0.003 Hz : ≤ 2 ms  1:100 of synchronous speed  30–4000 rpm: Maximum error of ±8 rpm                                                                                                                                                                                                                                                                                                                                   |
| Control card, 10 V DC output:  Terminal number Output voltage Max. load The 10 Vdc supply is galvanically isolated from the supply voltage (Pacontrol characteristics: Resolution of output frequency at 0 - 1000 Hz System response time (terminals 18, 19, 27, 29, 32, 33) Speed control range (open-loop) Speed accuracy (open-loop) All control characteristics are based on a 4-pole asynchronous motor Surroundings: Enclosure type A  IP 20/Chas                                                                                                                                                                                                                                                             | 10.5 V $\pm$ 0.5 V 25 mA 25 mA ELV) and other high-voltage terminals. $: +/- 0.003 \text{ Hz}$ $: \leq 2 \text{ ms}$ 1:100 of synchronous speed 30–4000 rpm: Maximum error of $\pm$ 8 rpm                                                                                                                                                                                                                                                                                                |
| Control card, 10 V DC output:  Terminal number Output voltage Max. load The 10 Vdc supply is galvanically isolated from the supply voltage (Pacontrol characteristics: Resolution of output frequency at 0 - 1000 Hz System response time (terminals 18, 19, 27, 29, 32, 33) Speed control range (open-loop) Speed accuracy (open-loop) All control characteristics are based on a 4-pole asynchronous motor Surroundings: Enclosure type A IP 20/Chase                                                                                                                                                                                                                                                             | 10.5 V ±0.5 V 25 mA  ELV) and other high-voltage terminals.  : +/- 0.003 Hz : ≤ 2 ms  1:100 of synchronous speed 30–4000 rpm: Maximum error of ±8 rpm  sis, IP 21kit/Type 1, IP55/Type12, IP 66/Type12 IP 21/Type 1, IP55/Type12, IP 66/12                                                                                                                                                                                                                                               |
| Control card, 10 V DC output:  Terminal number Output voltage Max. load The 10 Vdc supply is galvanically isolated from the supply voltage (Paction of Control characteristics: Resolution of output frequency at 0 - 1000 Hz System response time (terminals 18, 19, 27, 29, 32, 33) Speed control range (open-loop) Speed accuracy (open-loop) All control characteristics are based on a 4-pole asynchronous motor Surroundings: Enclosure type A Enclosure type B1/B2 Enclosure type B3/B4                                                                                                                                                                                                                      | 10.5 V ±0.5 V 25 mA  ELV) and other high-voltage terminals.  : +/- 0.003 Hz : ≤ 2 ms  1:100 of synchronous speed 30–4000 rpm: Maximum error of ±8 rpm  sis, IP 21kit/Type 1, IP55/Type12, IP 66/Type12 IP 21/Type 1, IP55/Type12, IP 66/12 IP20/Chassis                                                                                                                                                                                                                                  |
| Control card, 10 V DC output:  Terminal number Output voltage Max. load The 10 Vdc supply is galvanically isolated from the supply voltage (Paction of Control characteristics: Resolution of output frequency at 0 - 1000 Hz System response time (terminals 18, 19, 27, 29, 32, 33) Speed control range (open-loop) Speed accuracy (open-loop) All control characteristics are based on a 4-pole asynchronous motor Surroundings: Enclosure type A Enclosure type B1/B2 Enclosure type B3/B4 Enclosure type C1/C2                                                                                                                                                                                                 | 10.5 V ±0.5 V 25 mA  FLV) and other high-voltage terminals.  : +/- 0.003 Hz : ≤ 2 ms  1:100 of synchronous speed  30–4000 rpm: Maximum error of ±8 rpm  sis, IP 21kit/Type 1, IP55/Type12, IP 66/Type12 IP 21/Type 1, IP55/Type12, IP 66/12 IP20/Chassis IP 21/Type 1, IP55/Type 12, IP66/12                                                                                                                                                                                             |
| Control card, 10 V DC output: Terminal number Output voltage Max. load The 10 Vdc supply is galvanically isolated from the supply voltage (Paccontrol characteristics: Resolution of output frequency at 0 - 1000 Hz System response time (terminals 18, 19, 27, 29, 32, 33) Speed control range (open-loop) Speed accuracy (open-loop) All control characteristics are based on a 4-pole asynchronous motor Surroundings: Enclosure type A Enclosure type B1/B2 Enclosure type B3/B4 Enclosure type C1/C2 Enclosure type C3/C4                                                                                                                                                                                     | 10.5 V ±0.5 V 25 mA  FLV) and other high-voltage terminals.  : +/- 0.003 Hz : ≤ 2 ms 1:100 of synchronous speed 30–4000 rpm: Maximum error of ±8 rpm  sis, IP 21kit/Type 1, IP55/Type12, IP 66/Type12 IP 21/Type 1, IP55/Type12, IP 66/12 IP20/Chassis IP 21/Type 1, IP55/Type 12, IP66/12 IP20/Chassis                                                                                                                                                                                  |
| Control card, 10 V DC output:  Terminal number Output voltage Max. load The 10 Vdc supply is galvanically isolated from the supply voltage (Paccontrol characteristics: Resolution of output frequency at 0 - 1000 Hz System response time (terminals 18, 19, 27, 29, 32, 33) Speed control range (open-loop) Speed accuracy (open-loop) All control characteristics are based on a 4-pole asynchronous motor Surroundings: Enclosure type A Enclosure type B1/B2 Enclosure type B3/B4 Enclosure type C1/C2 Enclosure type C3/C4 Enclosure type D1/D2/E1                                                                                                                                                            | 10.5 V ±0.5 V 25 mA  ELV) and other high-voltage terminals.  : +/- 0.003 Hz : ≤ 2 ms 1:100 of synchronous speed 30–4000 rpm: Maximum error of ±8 rpm  sis, IP 21kit/Type 1, IP55/Type12, IP 66/Type12 IP 21/Type 1, IP55/Type12, IP 66/12 IP20/Chassis IP 21/Type 1, IP55/Type 12, IP66/12 IP20/Chassis IP21/Type 1, IP54/Type12                                                                                                                                                         |
| Control card, 10 V DC output: Terminal number Output voltage Max. load The 10 Vdc supply is galvanically isolated from the supply voltage (Pacontrol characteristics: Resolution of output frequency at 0 - 1000 Hz System response time (terminals 18, 19, 27, 29, 32, 33) Speed control range (open-loop) Speed accuracy (open-loop) All control characteristics are based on a 4-pole asynchronous motor Surroundings: Enclosure type A Enclosure type B1/B2 Enclosure type B3/B4 Enclosure type C3/C4 Enclosure type D1/D2/E1 Enclosure type D3/D4/E2                                                                                                                                                           | 10.5 V ±0.5 V 25 mA  ELV) and other high-voltage terminals.  : +/- 0.003 Hz : ≤ 2 ms 1:100 of synchronous speed 30–4000 rpm: Maximum error of ±8 rpm  sis, IP 21kit/Type 1, IP55/Type12, IP 66/Type12 IP 21/Type 1, IP55/Type12, IP 66/12 IP20/Chassis IP 21/Type 1, IP55/Type 12, IP66/12 IP20/Chassis IP21/Type 1, IP54/Type12 IP00/Chassis                                                                                                                                            |
| Control card, 10 V DC output:  Terminal number Output voltage Max. load The 10 Vdc supply is galvanically isolated from the supply voltage (Paccontrol characteristics: Resolution of output frequency at 0 - 1000 Hz System response time (terminals 18, 19, 27, 29, 32, 33) Speed control range (open-loop) Speed accuracy (open-loop) All control characteristics are based on a 4-pole asynchronous motor Surroundings: Enclosure type A Enclosure type B1/B2 Enclosure type B3/B4 Enclosure type C1/C2 Enclosure type C3/C4 Enclosure type D1/D2/E1                                                                                                                                                            | 10.5 V ±0.5 V 25 mA  ELV) and other high-voltage terminals.  : +/- 0.003 Hz : ≤ 2 ms 1:100 of synchronous speed 30–4000 rpm: Maximum error of ±8 rpm  sis, IP 21kit/Type 1, IP55/Type12, IP 66/Type12 IP 21/Type 1, IP55/Type12, IP 66/12 IP20/Chassis IP 21/Type 1, IP55/Type 12, IP66/12 IP20/Chassis IP21/Type 1, IP54/Type12 IP00/Chassis IP21, 54/Type1, 12                                                                                                                         |
| Control card, 10 V DC output:  Terminal number Output voltage Max. load The 10 Vdc supply is galvanically isolated from the supply voltage (Paction of Control characteristics: Resolution of output frequency at 0 - 1000 Hz System response time (terminals 18, 19, 27, 29, 32, 33) Speed control range (open-loop) Speed accuracy (open-loop) All control characteristics are based on a 4-pole asynchronous motor Surroundings: Enclosure type A Enclosure type B1/B2 Enclosure type B3/B4 Enclosure type C1/C2 Enclosure type D1/D2/E1 Enclosure type D3/D4/E2 Enclosure type F1/F3 Enclosure type F2/F4                                                                                                       | 10.5 V ±0.5 V 25 mA  ELV) and other high-voltage terminals.  : +/- 0.003 Hz : ≤ 2 ms  1:100 of synchronous speed 30–4000 rpm: Maximum error of ±8 rpm  sis, IP 21kit/Type 1, IP55/Type12, IP 66/Type12 IP 21/Type 1, IP55/Type12, IP 66/12 IP20/Chassis IP 21/Type 1, IP55/Type 12, IP66/12 IP20/Chassis IP21/Type 1, IP54/Type12 IP00/Chassis IP21, 54/Type1, 12 IP21, 54/Type1, 12                                                                                                     |
| Control card, 10 V DC output:  Terminal number  Output voltage  Max. load  The 10 Vdc supply is galvanically isolated from the supply voltage (P. Control characteristics:  Resolution of output frequency at 0 - 1000 Hz  System response time (terminals 18, 19, 27, 29, 32, 33)  Speed control range (open-loop)  Speed accuracy (open-loop)  All control characteristics are based on a 4-pole asynchronous motor Surroundings:  Enclosure type A IP 20/Chas  Enclosure type B1/B2  Enclosure type B3/B4  Enclosure type C1/C2  Enclosure type D1/D2/E1  Enclosure type D3/D4/E2  Enclosure type F1/F3  Enclosure type F2/F4  Enclosure kit available ≤ enclosure type D                                        | 10.5 V ±0.5 V 25 mA  FLV) and other high-voltage terminals.  : +/- 0.003 Hz : ≤ 2 ms 1:100 of synchronous speed 30–4000 rpm: Maximum error of ±8 rpm  sis, IP 21kit/Type 1, IP55/Type12, IP 66/Type12 IP 21/Type 1, IP55/Type12, IP 66/12 IP20/Chassis IP 21/Type 1, IP55/Type 12, IP66/12 IP20/Chassis IP21/Type 1, IP54/Type12 IP00/Chassis IP21/Type 1, IP54/Type12 IP00/Chassis IP21, 54/Type1, 12 IP21, 54/Type1, 12 IP21/NEMA 1/IP 4χ on top of enclosure                          |
| Control card, 10 V DC output:  Terminal number Output voltage Max. load The 10 Vdc supply is galvanically isolated from the supply voltage (Paction of Control characteristics: Resolution of output frequency at 0 - 1000 Hz System response time (terminals 18, 19, 27, 29, 32, 33) Speed control range (open-loop) Speed accuracy (open-loop) All control characteristics are based on a 4-pole asynchronous motor Surroundings: Enclosure type A Enclosure type B1/B2 Enclosure type B3/B4 Enclosure type C1/C2 Enclosure type D1/D2/E1 Enclosure type D3/D4/E2 Enclosure type F1/F3 Enclosure type F2/F4                                                                                                       | 10.5 V ±0.5 V 25 mA  FLV) and other high-voltage terminals.  : +/- 0.003 Hz : ≤ 2 ms  1:100 of synchronous speed 30–4000 rpm: Maximum error of ±8 rpm  sis, IP 21kit/Type 1, IP55/Type12, IP 66/Type12 IP 21/Type 1, IP55/Type12, IP 66/12 IP20/Chassis IP 21/Type 1, IP55/Type 12, IP66/12 IP20/Chassis IP21/Type 1, IP54/Type12 IP00/Chassis IP21/Type 1, IP54/Type12 IP00/Chassis IP21, 54/Type1, 12 IP21, 54/Type1, 12 IP21/NEMA 1/IP 4χ on top of enclosure 1.0 g                   |
| Control card, 10 V DC output:  Terminal number  Output voltage  Max. load  The 10 Vdc supply is galvanically isolated from the supply voltage (Pactorial Control characteristics:  Resolution of output frequency at 0 - 1000 Hz  System response time (terminals 18, 19, 27, 29, 32, 33)  Speed control range (open-loop)  Speed accuracy (open-loop)  All control characteristics are based on a 4-pole asynchronous motor Surroundings:  Enclosure type A IP 20/Chase  Enclosure type B1/B2  Enclosure type B3/B4  Enclosure type C1/C2  Enclosure type C3/C4  Enclosure type D3/D4/E2  Enclosure type F1/F3  Enclosure type F2/F4  Enclosure kit available ≤ enclosure type D  Vibration test enclosure D, E, F | : +/- 0.003 Hz : ≤ 2 ms  1:100 of synchronous speed  30–4000 rpm: Maximum error of ±8 rpm  sis, IP 21kit/Type 1, IP55/Type12, IP 66/Type12                                                                                                                                                                                                                                                                                                                                               |
| Control card, 10 V DC output:  Terminal number  Output voltage  Max. load  The 10 Vdc supply is galvanically isolated from the supply voltage (Pactorial Control characteristics:  Resolution of output frequency at 0 - 1000 Hz  System response time (terminals 18, 19, 27, 29, 32, 33)  Speed control range (open-loop)  Speed accuracy (open-loop)  All control characteristics are based on a 4-pole asynchronous motor Surroundings:  Enclosure type A IP 20/Chase  Enclosure type B1/B2  Enclosure type B3/B4  Enclosure type C1/C2  Enclosure type C3/C4  Enclosure type D3/D4/E2  Enclosure type F1/F3  Enclosure type F2/F4  Enclosure kit available ≤ enclosure type D  Vibration test enclosure D, E, F | 10.5 V ±0.5 V 25 mA  FLV) and other high-voltage terminals.  : +/- 0.003 Hz : ≤ 2 ms 1:100 of synchronous speed 30–4000 rpm: Maximum error of ±8 rpm  sis, IP 21kit/Type 1, IP55/Type12, IP 66/Type12 IP 21/Type 1, IP55/Type12, IP 66/12 IP20/Chassis IP 21/Type 1, IP55/Type 12, IP66/12 IP20/Chassis IP21/Type 1, IP54/Type12 IP00/Chassis IP21/Type 1, IP54/Type12 IP00/Chassis IP21/Type 1, IP54/Type11 IP00/Chassis IP21, 54/Type1, 12 IP21/NEMA 1/IP 4χ on top of enclosure 1.0 g |

8-20 TR200 Design Guide



| - with derating                         |                                              | max. 55° C <sup>1)</sup>            |
|-----------------------------------------|----------------------------------------------|-------------------------------------|
| - with full output power of typical     | EFF2 motors (up to 90% output current)       | max. 122°F [50 ° C] <sup>1)</sup>   |
| - at full continuous Adjustable Fre     | quency Drive output current                  | max. 113°F [45 ° C] <sup>1)</sup>   |
| 1) For more information on derating     | , see the Design Guide, section on Special ( | Conditions.                         |
| Minimum ambient temperature du          | •                                            | 32°F [0°C]                          |
| Minimum ambient temperature at          | reduced performance                          | 14°F [-10°C]                        |
| Temperature during storage/trans        | port                                         | -13°-+149°/158°F [-25°-+65/70°C]    |
| Maximum altitude above sea leve         | l without derating                           | 3280 ft [1000 m]                    |
| Maximum altitude above sea leve         | l with derating                              | 9842 ft [3000 m]                    |
| Derating for high altitude, see section | on on special conditions.                    |                                     |
| EMC standards, Emission                 | EN 61800-3, EN                               | 61000-6-3/4, EN 55011, IEC 61800-3  |
|                                         |                                              | EN 61800-3, EN 61000-6-1/2,         |
| EMC standards, Immunity                 | EN 61000-4-2, EN 61000-4-3, EN 610           | 000-4-4, EN 61000-4-5, EN 61000-4-6 |
| See section on special conditions!      |                                              |                                     |
| Control card performance:               |                                              |                                     |
| Scan interval                           |                                              | : 5 ms                              |
| Control card, USB serial communi        | ication:                                     |                                     |
| USB standard                            |                                              | 1.1 (Full speed)                    |
| USB plug                                |                                              | USB type B "device" plug            |

Connection to PC is carried out via a standard host/device USB cable.

The USB connection is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals. The USB connection is <u>not</u> galvanically isolated from protection ground. Use only an isolated laptop/PC as the connection to the USB connector on the adjustable frequency drive or an isolated USB cable/drive.

#### Protection and Features:

- Electronic thermal motor protection against overload.
- Temperature monitoring of the heatsink ensures that the adjustable frequency drive trips if the temperature reaches 203°F ± 41°F [95°C ± 5°C]. An overload temperature cannot be reset until the temperature of the heatsink is below 158°F ± 41°F [70°C ± 5°C] (Guideline these temperatures may vary for different power sizes, enclosures, etc.). The adjustable frequency drive has an auto derating function to avoid its heatsink reaching 203°F [95°C].
- The adjustable frequency drive is protected against short-circuits on motor terminals U, V, W.
- If a line phase is missing, the adjustable frequency drive trips or issues a warning (depending on the load).
- Monitoring of the intermediate circuit voltage ensures that the adjustable frequency drive trips if the intermediate circuit voltage is too low or too high.
- The adjustable frequency drive is protected against ground faults on motor terminals U, V, W.



# Efficiency

#### Efficiency of the adjustable frequency drive (ndrive)

The load on the adjustable frequency drive has little effect on its efficiency. In general, the efficiency is the same at the rated motor frequency f<sub>M,N</sub>, even if the motor supplies 100% of the rated shaft torque or only 75%, i.e., in case of part loads.

This also means that the efficiency of the adjustable frequency drive does not change even if other U/f characteristics are chosen.

However, the U/f characteristics influence the efficiency of the motor.

The efficiency declines a little when the switching frequency is set to a value greater than 5 kHz. The efficiency will also be slightly reduced if the AC line voltage is 480 V, or if the motor cable is longer than 98.43 ft [30 m].

#### Adjustable frequency drive efficiency calculation

Calculate the efficiency of the adjustable frequency drive at different loads based on the graph below. The factor in this graph must be multiplied with the specific efficiency factor listed in the specification tables:

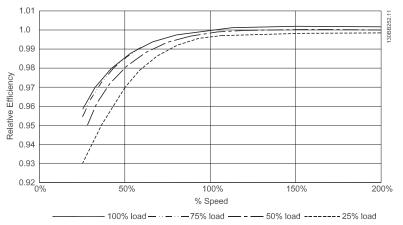



Figure 8. 1: Typical efficiency curves

Example: Assume a 75 hp [55 kW], 380–480 V AC adjustable frequency drive at 25% load at 50% speed. The graph is showing 0.97 - rated efficiency for a 75 hp [55 kW] adjustable frequency drive is 0.98. The actual efficiency is then: 0.97x0.98=0.95.

## Efficiency of the motor (ηΜΟΤΟR)

The efficiency of a motor connected to the adjustable frequency drive depends on magnetizing level. In general, the efficiency is just as good as with line operation. The efficiency of the motor depends on the type of motor.

In the range of 75–100% of the rated torque, the efficiency of the motor is practically constant, both when it is controlled by the adjustable frequency drive, and when it runs directly on line power.

In small motors, the influence from the U/f characteristic on efficiency is marginal. However, in motors from 15 hp [11 kW] and up, the advantages are significant.

8-22 TR200 Design Guide



In general, the switching frequency does not affect the efficiency of small motors. The efficiency of motors from 15 hp [11 kW] and up improves by 1–2%. This is because the sine shape of the motor current is almost perfect at high switching frequency.

## **Efficiency of the system (ηςΥςΤΕΜ)**

To calculate the system efficiency, the efficiency of the adjustable frequency drive ( DRIVE) is multiplied by the efficiency of the motor ( MOTOR):

SYSTEM) = DRIVE x MOTOR



## Acoustic noise

The acoustic noise from the adjustable frequency drive comes from three sources:

- 1. DC intermediate circuit coils.
- 2. Integrated fan.
- 3. RFI filter choke.

Typical values are measured at a distance of 3.28 ft. [1 m] from the unit:

| Enclosure                        | At reduced fan speed (50%) [dBA] ***              | Full fan speed [dBA] |
|----------------------------------|---------------------------------------------------|----------------------|
| A2                               | 51                                                | 60                   |
| A3                               | 51                                                | 60                   |
| A5                               | 54                                                | 63                   |
| B1                               | 61                                                | 67                   |
| B2                               | 58                                                | 70                   |
| B3                               | 59.4                                              | 70.5                 |
| B4                               | 53                                                | 62.8                 |
| C1                               | 52                                                | 62                   |
| C2                               | 55                                                | 65                   |
| C3                               | 56.4                                              | 67.3                 |
| C4                               |                                                   | -                    |
| D1/D3                            | 74                                                | 76                   |
| D2/D4                            | 73                                                | 74                   |
| E1/E2*                           | 73                                                | 74                   |
| **                               | 82                                                | 83                   |
| F1/F2/F3/F4                      | 78                                                | 80                   |
| * 450 hp [315 kW], 380-480 V A   | C and 600–675 hp [450–500 kW], 525–690 V AC only! |                      |
| ** Remaining E1/E2 power size    |                                                   |                      |
| *** For D, E and F sizes, reduce | d fan speed is at 87%, measured at 200 V.         |                      |

# Peak voltage on motor

When a transistor in the inverter bridge switches, the voltage across the motor increases by a du/dt ratio depending on:

- the motor cable (type, cross-section, length, shielded or unshielded)
- inductance

The natural induction causes an overshoot UPEAK in the motor voltage before it stabilizes itself at a level depending on the voltage in the intermediate circuit. The rise time and the peak voltage UPEAK affect the service life of the motor. If the peak voltage is too high, motors without phase coil insulation are especially affected. If the motor cable is short (by a few yards), the rise time and peak voltage are lower. If the motor cable is long (328 ft [100 m]), the rise time and peak voltage increase.

In motors without phase insulation paper or other insulation reinforcement suitable for operation with the voltage supply (such as an adjustable frequency drive), fit a sine-wave filter on the output of the adjustable frequency drive.

To obtain approximate values for cable lengths and voltages not mentioned below, use the following rules of thumb:

8-24 TR200 Design Guide



- 1. Rise time increases/decreases proportionally with cable length.
- UPEAK = DC-link voltage x 1.9
   (DC-link voltage = AC line voltage x 1.35).

3. 
$$dU \mid dt = \frac{0.8 \times U_{PEAK}}{Risetime}$$

Data are measured according to IEC 60034-17. Cable lengths are in meters.

| Adjustable Frequency Drive, P5K5, T2 |             |           |       |           |  |
|--------------------------------------|-------------|-----------|-------|-----------|--|
| Cable                                | AC line     | Rise time | Vpeak | dU/dt     |  |
| length [m]                           | voltage [V] | [µsec]    | [kV]  | [kV/µsec] |  |
| 36                                   | 240         | 0.226     | 0.616 | 2.142     |  |
| 50                                   | 240         | 0.262     | 0.626 | 1.908     |  |
| 100                                  | 240         | 0.650     | 0.614 | 0.757     |  |
| 150                                  | 240         | 0.745     | 0.612 | 0.655     |  |

| Adjustable Frequency Drive, P7K5, T2 |             |           |       |           |  |
|--------------------------------------|-------------|-----------|-------|-----------|--|
| Cable                                | AC line     | Rise time | Vpeak | dU/dt     |  |
| length [m]                           | voltage [V] | [µsec]    | [kV]  | [kV/µsec] |  |
| 5                                    | 230         | 0.13      | 0.510 | 3.090     |  |
| 50                                   | 230         | 0.23      | 0.590 | 2.034     |  |
| 100                                  | 230         | 0.54      | 0.580 | 0.865     |  |
| 150                                  | 230         | 0.66      | 0.560 | 0.674     |  |

| Adjustable Frequ | uency Drive, P11K, | T2        |       |           |  |
|------------------|--------------------|-----------|-------|-----------|--|
| Cable            | AC line            | Rise time | Vpeak | dU/dt     |  |
| length [m]       | voltage [V]        | [µsec]    | [kV]  | [kV/µsec] |  |
| 36               | 240                | 0.264     | 0.624 | 1.894     |  |
| 136              | 240                | 0.536     | 0.596 | 0.896     |  |
| 150              | 240                | 0.568     | 0.568 | 0.806     |  |

| Adjustable Frequency Drive, P15K, T2 |             |           |       |           |  |
|--------------------------------------|-------------|-----------|-------|-----------|--|
| Cable                                | AC line     | Rise time | Vpeak | dU/dt     |  |
| length [m]                           | voltage [V] | [µsec]    | [kV]  | [kV/µsec] |  |
| 30                                   | 240         | 0.556     | 0.650 | 0.935     |  |
| 100                                  | 240         | 0.592     | 0.594 | 0.807     |  |
| 150                                  | 240         | 0.708     | 0.575 | 0.669     |  |

| Adjustable Frequency Drive, P18K, T2 |             |           |       |           |  |
|--------------------------------------|-------------|-----------|-------|-----------|--|
| Cable                                | AC line     | Rise time | Vpeak | dU/dt     |  |
| length [m]                           | voltage [V] | [µsec]    | [kV]  | [kV/µsec] |  |
| 36                                   | 240         | 0.244     | 0.608 | 1.993     |  |
| 136                                  | 240         | 0.568     | 0.580 | 0.832     |  |
| 150                                  | 240         | 0.720     | 0.574 | 0.661     |  |



| Adjustable Frequency Drive, P22K, T2 |             |           |       |           |  |  |  |  |
|--------------------------------------|-------------|-----------|-------|-----------|--|--|--|--|
| Cable                                | AC line     | Rise time | Vpeak | dU/dt     |  |  |  |  |
| length [m]                           | voltage [V] | [µsec]    | [kV]  | [kV/µsec] |  |  |  |  |
| 36                                   | 240         | 0.244     | 0.608 | 1.993     |  |  |  |  |
| 136                                  | 240         | 0.560     | 0.580 | 0.832     |  |  |  |  |
| 150                                  | 240         | 0.720     | 0.574 | 0.661     |  |  |  |  |

| Adjustable Frequency Drive, P30K, T2 |                                      |                                                          |                                                                                 |                                                                                                                                                                                                             |  |  |  |  |
|--------------------------------------|--------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| AC line                              | Rise time                            | Vpeak                                                    | dU/dt                                                                           |                                                                                                                                                                                                             |  |  |  |  |
| voltage [V]                          | [µsec]                               | [kV]                                                     | [kV/µsec]                                                                       |                                                                                                                                                                                                             |  |  |  |  |
| 240                                  | 0.194                                | 0.626                                                    | 2.581                                                                           |                                                                                                                                                                                                             |  |  |  |  |
| 240                                  | 0.252                                | 0.574                                                    | 1.929                                                                           |                                                                                                                                                                                                             |  |  |  |  |
| 240                                  | 0.444                                | 0.538                                                    | 0.977                                                                           |                                                                                                                                                                                                             |  |  |  |  |
|                                      | AC line<br>voltage [V]<br>240<br>240 | AC line Rise time voltage [V] [µsec] 240 0.194 240 0.252 | AC line Rise time Vpeak voltage [V] [μsec] [kV] 240 0.194 0.626 240 0.252 0.574 | AC line       Rise time       Vpeak       dU/dt         voltage [V]       [μsec]       [kV]       [kV/μsec]         240       0.194       0.626       2.581         240       0.252       0.574       1.929 |  |  |  |  |

| Adjustable Frequency Drive, P37K, T2 |             |           |       |           |  |  |  |
|--------------------------------------|-------------|-----------|-------|-----------|--|--|--|
| Cable                                | AC line     | Rise time | Vpeak | dU/dt     |  |  |  |
| length [m]                           | voltage [V] | [µsec]    | [kV]  | [kV/µsec] |  |  |  |
| 30                                   | 240         | 0.300     | 0.598 | 1.593     |  |  |  |
| 100                                  | 240         | 0.536     | 0.566 | 0.843     |  |  |  |
| 150                                  | 240         | 0.776     | 0.546 | 0.559     |  |  |  |

| Adjustable Frequency Drive, P45K, T2 |             |           |       |           |  |  |  |  |
|--------------------------------------|-------------|-----------|-------|-----------|--|--|--|--|
| Cable                                | AC line     | Rise time | Vpeak | dU/dt     |  |  |  |  |
| length [m]                           | voltage [V] | [µsec]    | [kV]  | [kV/µsec] |  |  |  |  |
| 30                                   | 240         | 0.300     | 0.598 | 1.593     |  |  |  |  |
| 100                                  | 240         | 0.536     | 0.566 | 0.843     |  |  |  |  |
| 150                                  | 240         | 0.776     | 0.546 | 0.559     |  |  |  |  |

| Adjustable Frequency Drive, P1K5, T4 |             |           |       |           |  |  |  |  |
|--------------------------------------|-------------|-----------|-------|-----------|--|--|--|--|
| Cable                                | AC line     | Rise time | Vpeak | dU/dt     |  |  |  |  |
| length [m]                           | voltage [V] | [µsec]    | [kV]  | [kV/µsec] |  |  |  |  |
| 5                                    | 400         | 0.640     | 0.690 | 0.862     |  |  |  |  |
| 50                                   | 400         | 0.470     | 0.985 | 0.985     |  |  |  |  |
| 150                                  | 400         | 0.760     | 1.045 | 0.947     |  |  |  |  |

| Adjustable Frequency Drive, P4K0, T4 |             |           |       |           |  |  |  |  |
|--------------------------------------|-------------|-----------|-------|-----------|--|--|--|--|
| Cable                                | AC line     | Rise time | Vpeak | dU/dt     |  |  |  |  |
| length [m]                           | voltage [V] | [µsec]    | [kV]  | [kV/µsec] |  |  |  |  |
| 5                                    | 400         | 0.172     | 0.890 | 4.156     |  |  |  |  |
| 50                                   | 400         | 0.310     |       | 2.564     |  |  |  |  |
| 150                                  | 400         | 0.370     | 1.190 | 1.770     |  |  |  |  |

| Adjustable Frequency Drive, P7K5, T4 |             |           |       |           |  |  |  |  |
|--------------------------------------|-------------|-----------|-------|-----------|--|--|--|--|
| Cable                                | AC line     | Rise time | Vpeak | dU/dt     |  |  |  |  |
| length [m]                           | voltage [V] | [µsec]    | [kV]  | [kV/µsec] |  |  |  |  |
| 5                                    | 400         | 0.04755   | 0.739 | 8.035     |  |  |  |  |
| 50                                   | 400         | 0.207     | 1.040 | 4.548     |  |  |  |  |
| 150                                  | 400         | 0.6742    | 1.030 | 2.828     |  |  |  |  |

8-26 TR200 Design Guide



| Adjustable Frequency Drive, P11K, T4 |             |           |       |           |  |  |  |  |
|--------------------------------------|-------------|-----------|-------|-----------|--|--|--|--|
| Cable                                | AC line     | Rise time | Vpeak | dU/dt     |  |  |  |  |
| length [m]                           | voltage [V] | [µsec]    | [kV]  | [kV/µsec] |  |  |  |  |
| 15                                   | 400         | 0.408     | 0.718 | 1.402     |  |  |  |  |
| 100                                  | 400         | 0.364     | 1.050 | 2.376     |  |  |  |  |
| 150                                  | 400         | 0.400     | 0.980 | 2.000     |  |  |  |  |

| Adjustable Frequency Drive, P15K, T4 |             |           |       |           |  |  |  |  |
|--------------------------------------|-------------|-----------|-------|-----------|--|--|--|--|
| Cable                                | AC line     | Rise time | Vpeak | dU/dt     |  |  |  |  |
| length [m]                           | voltage [V] | [µsec]    | [kV]  | [kV/µsec] |  |  |  |  |
| 36                                   | 400         | 0.422     | 1.060 | 2.014     |  |  |  |  |
| 100                                  | 400         | 0.464     | 0.900 | 1.616     |  |  |  |  |
| 150                                  | 400         | 0.896     | 1.000 | 0.915     |  |  |  |  |
|                                      |             |           |       |           |  |  |  |  |

| Adjustable Frequency Drive, P18K, T4 |             |           |       |           |  |  |  |
|--------------------------------------|-------------|-----------|-------|-----------|--|--|--|
| Cable                                | AC line     | Rise time | Vpeak | dU/dt     |  |  |  |
| length [m]                           | voltage [V] | [µsec]    | [kV]  | [kV/µsec] |  |  |  |
| 36                                   | 400         | 0.344     | 1.040 | 2.442     |  |  |  |
| 100                                  | 400         | 1.000     | 1.190 | 0.950     |  |  |  |
| 150                                  | 400         | 1.400     | 1.040 | 0.596     |  |  |  |

| Adjustable Frequency Drive, P22K, T4 |             |           |       |           |  |  |  |  |
|--------------------------------------|-------------|-----------|-------|-----------|--|--|--|--|
| Cable                                | AC line     | Rise time | Vpeak | dU/dt     |  |  |  |  |
| length [m]                           | voltage [V] | [µsec]    | [kV]  | [kV/µsec] |  |  |  |  |
| 36                                   | 400         | 0.232     | 0.950 | 3.534     |  |  |  |  |
| 100                                  | 400         | 0.410     | 0.980 | 1.927     |  |  |  |  |
| 150                                  | 400         | 0.430     | 0.970 | 1.860     |  |  |  |  |

| Adjustable Frequency Drive, P30K, T4 |             |           |       |           |  |  |  |
|--------------------------------------|-------------|-----------|-------|-----------|--|--|--|
| Cable                                | AC line     | Rise time | Vpeak | dU/dt     |  |  |  |
| length [m]                           | voltage [V] | [µsec]    | [kV]  | [kV/µsec] |  |  |  |
| 15                                   | 400         | 0.271     | 1.000 | 3.100     |  |  |  |
| 100                                  | 400         | 0.440     | 1.000 | 1.818     |  |  |  |
| 150                                  | 400         | 0.520     | 0.990 | 1.510     |  |  |  |

| Adjustable Frequency Drive, P37K, T4 |                                         |                                                                |                                                                                             |                                                                                                                                                                                                                               |  |
|--------------------------------------|-----------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| AC line                              | Rise time                               | Vpeak                                                          | dU/dt                                                                                       |                                                                                                                                                                                                                               |  |
| voltage                              | [µsec]                                  | [kV]                                                           | [kV/µsec]                                                                                   |                                                                                                                                                                                                                               |  |
| 480                                  | 0.270                                   | 1.276                                                          | 3.781                                                                                       |                                                                                                                                                                                                                               |  |
| 480                                  | 0.435                                   | 1.184                                                          | 2.177                                                                                       |                                                                                                                                                                                                                               |  |
| 480                                  | 0.840                                   | 1.188                                                          | 1.131                                                                                       |                                                                                                                                                                                                                               |  |
| 480                                  | 0.940                                   | 1.212                                                          | 1.031                                                                                       |                                                                                                                                                                                                                               |  |
|                                      | AC line<br>voltage<br>480<br>480<br>480 | AC line Rise time voltage [µsec] 480 0.270 480 0.435 480 0.840 | AC line Rise time Vpeak voltage [µsec] [kV] 480 0.270 1.276 480 0.435 1.184 480 0.840 1.188 | AC line voltage       Rise time [μsec]       Vpeak [kV]       dU/dt [kV/μsec]         480       0.270       1.276       3.781         480       0.435       1.184       2.177         480       0.840       1.188       1.131 |  |



| Adjustable Frequency Drive, P45K, T4 |             |           |       |           |  |
|--------------------------------------|-------------|-----------|-------|-----------|--|
| Cable                                | AC line     | Rise time | Vpeak | dU/dt     |  |
| length [m]                           | voltage [V] | [µsec]    | [kV]  | [kV/µsec] |  |
| 36                                   | 400         | 0.254     | 1.056 | 3.326     |  |
| 50                                   | 400         | 0.465     | 1.048 | 1.803     |  |
| 100                                  | 400         | 0.815     | 1.032 | 1.013     |  |
| 150                                  | 400         | 0.890     | 1.016 | 0.913     |  |
|                                      |             |           |       |           |  |

| Adjustable Frequency Drive, P55K, T4 |             |           |       |           |  |
|--------------------------------------|-------------|-----------|-------|-----------|--|
| Cable                                | AC line     | Rise time | Vpeak | dU/dt     |  |
| length [m]                           | voltage [V] | [µsec]    | [kV]  | [kV/µsec] |  |
| 10                                   | 400         | 0.350     | 0.932 | 2.130     |  |

| Adjustable Frequency Drive, P75K, T4 |             |           |       |           |  |
|--------------------------------------|-------------|-----------|-------|-----------|--|
| Cable                                | AC line     | Rise time | Vpeak | dU/dt     |  |
| length [m]                           | voltage [V] | [µsec]    | [kV]  | [kV/µsec] |  |
| 5                                    | 480         | 0.371     | 1.170 | 2.466     |  |
|                                      |             |           |       |           |  |

| Adjustable Frequency Drive, P90K, T4 |             |           |       |           |  |
|--------------------------------------|-------------|-----------|-------|-----------|--|
| Cable                                | AC line     | Rise time | Vpeak | dU/dt     |  |
| length [m]                           | voltage [V] | [µsec]    | [kV]  | [kV/µsec] |  |
| 5                                    | 400         | 0.364     | 1.030 | 2.264     |  |
| 5                                    | 400         | 0.364     | 1.030 | 2.264     |  |

# High Power Range:

| Adjustable Frequency Drive, P110 - P250, T4 |             |           |       |           |  |
|---------------------------------------------|-------------|-----------|-------|-----------|--|
| Cable                                       | AC line     | Rise time | Vpeak | dU/dt     |  |
| length [m]                                  | voltage [V] | [µsec]    | [kV]  | [kV/µsec] |  |
| 30                                          | 400         | 0.34      | 1.040 | 2.447     |  |

| Adjustable Frequency Drive, P315 - P1M0, T4 |                  |           |       |           |   |  |
|---------------------------------------------|------------------|-----------|-------|-----------|---|--|
| Cable                                       | AC line          | Rise time | Vpeak | dU/dt     |   |  |
| length [m]                                  | voltage [V]      | [µsec]    | [kV]  | [kV/µsec] |   |  |
| 30                                          | 500              | 0.71      | 1.165 | 1.389     | - |  |
| 30                                          | 400              | 0.61      | 0.942 | 1.233     |   |  |
| 30                                          | 500 <sup>1</sup> | 0.80      | 0.906 | 0.904     |   |  |
| 30                                          | 400 1            | 0.82      | 0.760 | 0.743     |   |  |

Table 8. 5: 1: With Danfoss dU/dt filter.

| Cable      | AC line           | Rise time | Vpeak | dU/dt     |  |
|------------|-------------------|-----------|-------|-----------|--|
| length [m] | voltage [V]       | [µsec]    | [kV]  | [kV/µsec] |  |
| 30         | 690               | 0.38      | 1.513 | 3.304     |  |
| 30         | 575               | 0.23      | 1.313 | 2.750     |  |
| 30         | 690 <sup>1)</sup> | 1.72      | 1.329 | 0.640     |  |

8-28 TR200 Design Guide



| Cable                       | uency Drive, P450 AC line | Rise time | Vpeak | dU/dt     |  |
|-----------------------------|---------------------------|-----------|-------|-----------|--|
| length [m]                  | voltage [V]               | [µsec]    | [kV]  | [kV/µsec] |  |
| 30                          | 690                       | 0.57      | 1.611 | 2.261     |  |
| 30                          | 575                       | 0.25      |       | 2.510     |  |
| 30                          | 690 <sup>1)</sup>         | 1.13      | 1.629 | 1.150     |  |
| 1) With Trane dU/dt filter. |                           |           |       |           |  |



# **Special Conditions**

## Purpose of Derating

Derating must be taken into account when using the adjustable frequency drive at low air pressure (high altitudes), at low speeds, with long motor cables, cables with a large cross-section or at high ambient temperature. The required action is described in this section.

## Derating for ambient temperature

90% adjustable frequency drive output current can be maintained up to max. 122°F [50°C] ambient temperature.

With a typical full load current of EFF 2 motors, full output shaft power can be maintained up to 122°F [50°C]. For more specific data and/or derating information for other motors or conditions, please contact Trane.

## Automatic adaptations to ensure performance

The adjustable frequency drive constantly checks for critical levels of internal temperature, load current, high voltage on the intermediate circuit and low motor speeds. As a response to a critical level, the adjustable frequency drive can adjust the switching frequency and / or change the switching pattern in order to ensure the performance of the adjustable frequency drive. The capability to automatically reduce the output current extends the acceptable operating conditions even further.

## Derating for low air pressure

The cooling capability of air is decreased at a lower air pressure.

At an altitude lower than 3,280 ft [1,000 m], no derating is necessary, but above 3,280 ft [1,000 m], the ambient temperature (T<sub>AMB</sub>) or max. output current (I<sub>out</sub>) should be derated in accordance with the diagram shown.

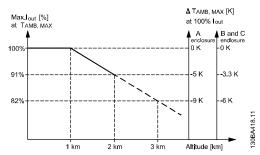
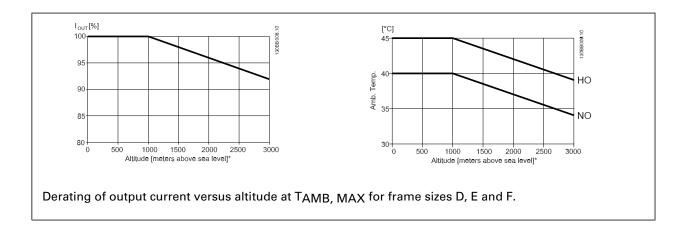




Figure 8. 2: Derating of output current versus altitude at T<sub>AMB, MAX</sub> for frame sizes A, B and C. At altitudes above 6,600 feet [2 km], please contact Trane regarding PELV.

An alternative is to lower the ambient temperature at high altitudes and thereby ensure 100% output current at high altitudes. As an example of how to read the graph, the situation at 6,600 ft [2 km] is elaborated. At a temperature of 113°F [45°C] (TAMB, MAX - 3.3 K), 91% of the rated output current is available. At a temperature of 107°F [41.7°C], 100% of the rated output current is available.

8-30 TR200 Design Guide





## Derating for running at low speed

When a motor is connected to an adjustable frequency drive, it is necessary to make sure that the cooling of the motor is adequate.

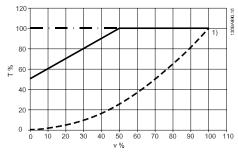
The level of heating depends on the load on the motor as well as the operating speed and time.

#### **Constant torque applications (CT mode)**

A problem may occur at low RPM values in constant torque applications. In a constant torque application, a motor may overheat at low speeds due to less cooling air from the motor integral fan.

Therefore, if the motor is to be run continuously at an RPM value lower than half of the rated value, the motor must be supplied with additional air-cooling (or a motor designed for this type of operation may be used).

An alternative is to reduce the load level of the motor by choosing a larger motor. However, the design of the adjustable frequency drive limits the motor size.


#### Variable (quadratic) torque applications (VT)

In VT applications such as centrifugal pumps and fans, where the torque is proportional to the square of the speed and the power is proportional to the cube of the speed, there is no need for additional cooling or de-rating of the motor.

In the graphs shown below, the typical VT curve is below the maximum torque with de-rating and maximum torque with forced cooling at all speeds.



#### Maximum load for a standard motor at 40°C driven by TR200 drive



**Legend:** ———Typical torque at VT load ————Max torque with forced cooling ———Max torque Note 1) Oversyncronous speed operation will result in the available motor torque decreasing inversely proportional to the increase in speed. This must be considered during the design phase to avoid overloading the motor.

# **Troubleshooting**

## Alarms and Warnings

A warning or an alarm is signaled by the relevant LED on the front of the adjustable frequency drive and indicated by a code on the display.

A warning remains active until its cause is no longer present. Under certain circumstances operation of the motor may still be continued. Warning messages may be critical, but are not necessarily so.

In the event of an alarm, the adjustable frequency drive will have tripped. Alarms must be reset to restart operation once their cause has been rectified.

This may be done in four ways:

- 1. By using the [RESET] control button on the keypad.
- 2. Via a digital input with the "Reset" function.
- 3. Via serial communication/optional serial communication bus.
- 4. By resetting automatically using the [Auto Reset] function, which is a default setting for TR200 Drive, see par.14-20 Reset Mode in the **TR200 Programming Guide**

NOTE: After a manual reset using the [RESET] button on the keypad, the [AUTO ON] or [HAND ON] button must be pressed to restart the motor.

If an alarm cannot be reset, the reason may be that its cause has not been rectified, or the alarm is trip-locked (see also table on following page).

8-32 TR200 Design Guide



# **≜**WARNING

Alarms that are trip-locked offer additional protection, means that the line power supply must be switched off before the alarm can be reset. After being switched back on, the adjustable frequency drive is no longer blocked and may be reset as described above, once the cause has been rectified.

Alarms that are not trip-locked can also be reset using the automatic reset function in par.14-20 Reset Mode (Warning: automatic wake-up is possible!)

If a warning and alarm is marked against a code in the table on the following page, this means that either a warning occurs before an alarm, or it can be specified whether it is a warning or an alarm that is to be displayed for a given fault. This is possible, for instance, in par.1-90 Motor Thermal Protection. After an alarm or trip, the motor carries on coasting, and the alarm and warning flash on the adjustable frequency drive. Once the problem has been rectified, only the alarm continues flashing.



| No.      | Description                                  | Warn-<br>ing | Alarm/Trip | Alarm/Trip Lock | Parameter Refer-<br>ence |
|----------|----------------------------------------------|--------------|------------|-----------------|--------------------------|
| 1        | 10 Volts low                                 | X            |            |                 |                          |
| 2        | Live zero error                              | (X)          | (X)        |                 | 6-01                     |
| 3        | No motor                                     | (X)          |            |                 | 1-80                     |
| 4        | Line phase loss                              | (X)          | (X)        | (X)             | 14-12                    |
| 5        | DC link voltage high                         | X            |            | · ,             |                          |
| 6        | DC link voltage low                          | Х            |            |                 |                          |
| 7        | DC overvoltage                               | Χ            | X          |                 |                          |
| 8        | DC undervoltage                              | X            | X          |                 |                          |
| 9        | Inverter overloaded                          | X            | X          |                 |                          |
| 10       | Motor ETR overtemperature                    | (X)          | (X)        |                 | 1-90                     |
| 11       | Motor thermistor overtemperature             | (X)          | (X)        |                 | 1-90                     |
| 12       | Torque limit                                 | X            | X          |                 | . 00                     |
| 13       | Overcurrent                                  | X            | X          | X               |                          |
| 14       | Ground fault                                 | X            | X          | X               |                          |
| 15       | Hardware mismatch                            |              | X          | X               |                          |
| 16       | Short Circuit                                |              | X          | X               |                          |
| 17       | Control word timeout                         | (X)          | (X)        | Λ               | 8-04                     |
| 23       | Internal Fan Fault                           | X            | (//)       |                 | 0-04                     |
| 23<br>24 | External Fan Fault                           | X            |            |                 | 14-53                    |
| 25       | Brake resistor short-circuited               | X            |            |                 | 14-55                    |
| 26       | Brake resistor power limit                   | (X)          | (X)        |                 | 2-13                     |
| 20<br>27 | Brake chopper short-circuited                | (X)<br>X     | X          |                 | 2-13                     |
| 28       | Brake check                                  | (X)          | (X)        |                 | 2-15                     |
| 20<br>29 |                                              | (X)<br>X     | (A)<br>X   | X               | 2-10                     |
| 30       | Drive overtemperature                        | (X)          |            | (X)             | 4-58                     |
|          | Motor phase U missing                        |              | (X)        |                 | 4-58<br>4-58             |
| 31       | Motor phase V missing                        | (X)          | (X)        | (X)             | 4-58<br>4-58             |
| 32       | Motor phase W missing                        | (X)          | (X)<br>X   | (X)             | 4-06                     |
| 33<br>34 | Soft-charge fault                            | Х            | X          | X               |                          |
| 34       | Serial Communication Bus communication fault | <b>X</b>     | Χ          |                 |                          |
| 35       | Out of frequency ranges                      | Χ            | X          |                 |                          |
| 36       | Line failure                                 | Χ            | Χ          |                 |                          |
| 37       | Phase Imbalance                              | Х            | X          |                 |                          |
| 38       | Internal fault                               |              | X          | Χ               |                          |
| 39       | Heatsink sensor                              |              | Х          | X               |                          |
| 40       | Overload of Digital Output Terminal 27       | (X)          |            |                 | 5-01                     |
| 41       | Overload of Digital Output Terminal 29       | (X)          |            |                 | 5-02                     |
| 42       | Overload of Digital Output On X30/6          | (X)          |            |                 | 5-32                     |
| 42       | Overload of Digital Output On X30/7          | (X)          |            |                 | 5-33                     |
| 46       | Pwr. card supply                             | . ,          | X          | Χ               |                          |
| 47       | 24 V supply low                              | Х            | Х          | Х               |                          |
| 48       | 1.8 V supply low                             |              | X          | X               |                          |
| 49       | Speed limit                                  | Х            | (X)        |                 | 1-86                     |
| 50       | AMA calibration failed                       |              | X          |                 |                          |
| 51       | AMA check Unom and Inom                      |              | X          |                 |                          |
| 52       | AMA low I <sub>nom</sub>                     |              | X          |                 |                          |
|          |                                              |              |            |                 |                          |
| 53<br>E4 | AMA motor too big                            |              | X          |                 |                          |
| 54       | AMA Parameter and of many                    |              | X          |                 |                          |
| 55       | AMA Parameter out of range                   |              | X          |                 |                          |
| 56       | AMA interrupted by user                      |              | X          |                 |                          |
| 57       | AMA timeout                                  |              | X          |                 |                          |
| 58       | AMA internal fault                           | Χ            | X          |                 |                          |

Table 8. 6: Alarm/Warning code list

8-34 TR200 Design Guide



| No. | Description                                      | Warn-<br>ing | Alarm/Trip      | Alarm/Trip Lock | Parameter Refer-<br>ence |
|-----|--------------------------------------------------|--------------|-----------------|-----------------|--------------------------|
| 59  | Current limit                                    | Х            |                 |                 |                          |
| 60  | External Interlock                               | Χ            |                 |                 |                          |
| 62  | Output Frequency at Maximum Limit                | Χ            |                 |                 |                          |
| 64  | Voltage Limit                                    | Χ            |                 |                 |                          |
| 65  | Control Board Overtemperature                    | Χ            | X               | X               |                          |
| 66  | Heatsink Temperature Low                         | Χ            |                 |                 |                          |
| 67  | Option Configuration has Changed                 |              | X               |                 |                          |
| 68  | Safe Stop Activated                              |              | X <sup>1)</sup> |                 |                          |
| 69  | Pwr. Card Temp                                   |              | X               | X               |                          |
| 70  | Illegal adjustable frequency drive configuration |              |                 | Х               |                          |
| 71  | PTC 1 Safe Stop                                  | Х            | X <sup>1)</sup> |                 |                          |
| 72  | Dangerous Failure                                |              | , ,             | X <sup>1)</sup> |                          |
| 73  | Safe Stop Auto Restart                           |              |                 |                 |                          |
| 76  | Power Unit Set-up                                | Χ            |                 |                 |                          |
| 79  | Illegal PS config                                |              | X               | Χ               |                          |
| 80  | Drive Initialized to Default Value               |              | Χ               |                 |                          |
| 91  | Analog input 54 wrong settings                   |              |                 | Χ               |                          |
| 92  | NoFlow                                           | Χ            | Χ               |                 | 22-2*                    |
| 93  | Dry Pump                                         | Χ            | X               |                 | 22-2*                    |
| 94  | End of Curve                                     | Χ            | Χ               |                 | 22-5*                    |
| 95  | Broken Belt                                      | Χ            | X               |                 | 22-6*                    |
| 96  | Start Delayed                                    | Χ            |                 |                 | 22-7*                    |
| 97  | Stop Delayed                                     | Χ            |                 |                 | 22-7*                    |
| 98  | Clock Fault                                      | Χ            |                 |                 | 0-7*                     |
| 201 | Fire M was Active                                |              |                 |                 |                          |
| 202 | Fire M Limits Exceeded                           |              |                 |                 |                          |
| 203 | Missing Motor                                    |              |                 |                 |                          |
| 204 | Locked Rotor                                     |              |                 |                 |                          |
| 243 | Brake IGBT                                       | Χ            | X               |                 |                          |
| 244 | Heatsink temp                                    | X            | X               | Х               |                          |
| 245 | Heatsink sensor                                  |              | X               | X               |                          |
| 246 | Pwr.card supply                                  |              | X               | X               |                          |
| 247 | Pwr.card temp                                    |              | X               | X               |                          |
| 248 | Illegal PS config                                |              | X               | Х               |                          |
| 250 | New spare parts                                  |              |                 | X               |                          |
| 251 | Type Code                                        |              | Χ               | X               |                          |

Table 8. 7: Alarm/Warning code list

## (X) Dependent on parameter

1) Cannot be auto reset via par.14-20 Reset Mode

A trip is the action when an alarm has appeared. The trip will coast the motor and can be reset by pressing the reset button or make a reset by a digital input (parameter group 5-1\* [1]). The original event that caused an alarm cannot damage the adjustable frequency drive or cause dangerous conditions. A trip lock is an action that

# General Specifications and Troubleshooting

occurs in conjunction with an alarm, which may cause damage to the adjustable frequency drive or connected parts. A trip lock situation can only be reset by power cycling.

| LED indication |                |
|----------------|----------------|
| Warning        | yellow         |
| Alarm          | flashing red   |
| Trip locked    | yellow and red |

| Bit | Hex      | Dec        | Alarm Word            | Warning Word         | Extended Status<br>Word |
|-----|----------|------------|-----------------------|----------------------|-------------------------|
| 0   | 00000001 | 1          | Brake Check           | Brake Check          | Ramping                 |
| 1   | 00000002 | 2          | Pwr. Card Temp        | Pwr. Card Temp       | AMA Running             |
| 2   | 00000004 | 4          | Ground Fault          | Ground Fault         | Start CW/CCW            |
| 3   | 8000000  | 8          | Ctrl.Card Temp        | Ctrl.Card Temp       | Slow Down               |
| 4   | 00000010 | 16         | Ctrl. Word TO         | Ctrl. Word TO        | Catch Up                |
| 5   | 00000020 | 32         | Overcurrent           | Overcurrent          | Feedback High           |
| 6   | 00000040 | 64         | Torque Limit          | Torque Limit         | Feedback Low            |
| 7   | 0800000  | 128        | Motor Th Over         | Motor Th Over        | Output Current High     |
| 8   | 00000100 | 256        | Motor ETR Over        | Motor ETR Over       | Output Current Low      |
| 9   | 00000200 | 512        | Inverter Overld.      | Inverter Overld.     | Output Freq High        |
| 10  | 00000400 | 1024       | DC undervolt          | DC undervolt         | Output Freq Low         |
| 11  | 0080000  | 2048       | DC overvolt           | DC overvolt          | Brake Check OK          |
| 12  | 00001000 | 4096       | Short Circuit         | DC Voltage Low       | Braking Max             |
| 13  | 00002000 | 8192       | Soft-charge fault     | DC Voltage High      | Braking                 |
| 14  | 00004000 | 16384      | Line ph. Loss         | Line ph. Loss        | Out of Speed Range      |
| 15  | 0008000  | 32768      | AMA Not OK            | No Motor             | OVC Active              |
| 16  | 00010000 | 65536      | Live Zero Error       | Live Zero Error      |                         |
| 17  | 00020000 | 131072     | Internal Fault        | 10V low              |                         |
| 18  | 00040000 | 262144     | <b>Brake Overload</b> | Brake Overload       |                         |
| 19  | 00080000 | 524288     | U phase Loss          | Brake Resistor       |                         |
| 20  | 00100000 | 1048576    | V phase Loss          | Brake IGBT           |                         |
| 21  | 00200000 | 2097152    | W phase Loss          | Speed Limit          |                         |
| 22  | 00400000 | 4194304    | Serial Communi-       | Serial Communication |                         |
|     |          |            | cation Bus Fault      | Bus Fault            |                         |
| 23  | 00800000 | 8388608    | 24 V Supply Low       | 24V Supply Low       |                         |
| 24  | 01000000 | 16777216   | Line failure          | Line failure         |                         |
| 25  | 02000000 | 33554432   | 1.8 V Supply Low      | Current Limit        |                         |
| 26  | 04000000 | 67108864   | Brake Resistor        | Low Temp             |                         |
| 27  | 08000000 | 134217728  | Brake IGBT            | Voltage Limit        |                         |
| 28  | 10000000 | 268435456  | Option Change         | Unused               |                         |
| 29  | 20000000 | 536870912  | Drive Initialized     | Unused               |                         |
| 30  | 40000000 | 1073741824 | Safe Stop             | Unused               |                         |

Table 8. 8: Description of Alarm Word, Warning Word and Extended Status Word

The alarm words, warning words and extended status words can be read out via serial bus or optional serial communication bus for diagnosis. See also par.16-90 <u>Alarm Word</u>, par.16-92 <u>Warning Word</u> and par.16-94 <u>Ext. Status Word</u>.

8-36 TR200 Design Guide



# Alarm Words

Alarm word, par.16-90 Alarm Word

| Bit<br>(Hex) | Alarm Word<br>(par.16-90 Alarm Word) |
|--------------|--------------------------------------|
| 00000001     | Brake check                          |
| 00000002     | Power card overtemperature           |
| 00000004     | Ground fault                         |
| 8000000      | Ctrl. card overtemperature           |
| 0000010      | Control word timeout                 |
| 00000020     | Overcurrent                          |
| 00000040     | Torque limit                         |
| 0800000      | Motor thermistor overtemp.           |
| 00000100     | Motor ETR overtemperature            |
| 00000200     | Inverter overloaded                  |
| 00000400     | DC link undervoltage                 |
| 00000800     | DC link overvoltage                  |
| 00001000     | Short circuit                        |
| 00002000     | Soft-charge fault                    |
| 00004000     | Line phase loss                      |
| 00080000     | AMA not OK                           |
| 00010000     | Live zero error                      |
| 00020000     | Internal fault                       |
| 00040000     | Brake overload                       |
| 00080000     | Motor phase U is missing             |
| 00100000     | Motor phase V is missing             |
| 00200000     | Motor phase W is missing             |
| 00400000     | Serial communication bus fault       |
| 00800000     | 24 V supply fault                    |
| 01000000     | Line failure                         |
| 02000000     | 1.8 V supply fault                   |
| 04000000     | Brake resistor short circuit         |
| 08000000     | Brake chopper fault                  |
| 10000000     | Option change                        |
| 20000000     | Drive initialized                    |
| 4000000      | Safe Stop                            |
| 80000000     | Not used                             |

Alarm word 2, par.16-91 Alarm word 2

| Bit       | Alarm Word 2                     |
|-----------|----------------------------------|
| (Hex)     | (par.16-91 <u>Alarm word 2</u> ) |
| 00000001  | Service Trip, read / Write       |
| 00000002  | Reserved                         |
| 0000004   | Service Trip, Typecode /         |
| 222222    | Spare part                       |
| 80000000  | Reserved                         |
| 00000010  | Reserved                         |
| 00000020  | No Flow                          |
| 00000040  | Dry Pump                         |
| 08000080  | End of Curve                     |
| 00000100  | Broken Belt                      |
| 00000200  | Not used                         |
| 00000400  | Not used                         |
| 00000800  | Reserved                         |
| 00001000  | Reserved                         |
| 00002000  | Reserved                         |
| 00004000  | Reserved                         |
| 000080000 | Reserved                         |
| 00010000  | Reserved                         |
| 00020000  | Not used                         |
| 00040000  | Fans error                       |
| 00080000  | ECB error                        |
| 00100000  | Reserved                         |
| 00200000  | Reserved                         |
| 00400000  | Reserved                         |
| 00800000  | Reserved                         |
| 01000000  | Reserved                         |
| 02000000  | Reserved                         |
| 04000000  | Reserved                         |
| 08000000  | Reserved                         |
| 10000000  | Reserved                         |
| 2000000   | Reserved                         |
| 40000000  | Reserved                         |
| 80000000  | Reserved                         |



# Warning Words

Warning word , par.16-92 Warning Word

| Bit<br>(Hex) | Warning Word<br>(par.16-92 Warning Word) |
|--------------|------------------------------------------|
| 00000001     | Brake check                              |
| 00000002     | Power card overtemperature               |
| 00000004     | Ground fault                             |
| 80000000     | Ctrl. card overtemperature               |
| 00000010     | Control word timeout                     |
| 00000020     | Overcurrent                              |
| 00000040     | Torque limit                             |
| 0800000      | Motor thermistor overtemp.               |
| 00000100     | Motor ETR overtemperature                |
| 00000200     | Inverter overloaded                      |
| 00000400     | DC link undervoltage                     |
| 00000800     | DC link overvoltage                      |
| 00001000     | DC link voltage low                      |
| 00002000     | DC link voltage high                     |
| 00004000     | Line phase loss                          |
| 0008000      | No motor                                 |
| 00010000     | Live zero error                          |
| 00020000     | 10 V low                                 |
| 00040000     | Brake resistor power limit               |
| 00080000     | Brake resistor short circuit             |
| 00100000     | Brake chopper fault                      |
| 00200000     | Speed limit                              |
| 00400000     | Serial Communication Bus                 |
| 0040000      | comm. fault                              |
| 00800000     | 24 V supply fault                        |
| 01000000     | Line failure                             |
| 02000000     | Current limit                            |
| 04000000     | Low temperature                          |
| 08000000     | Voltage limit                            |
| 10000000     | Encoder loss                             |
| 20000000     | Output frequency limit                   |
| 4000000      | Not used                                 |
| 80000000     | Not used                                 |

Warning word 2, par.16-93 Warning word 2

| Bit<br>(Hex) | Warning Word 2<br>(par.16-93 <u>Warning word</u><br><u>2</u> ) |
|--------------|----------------------------------------------------------------|
| 00000001     | Start Delayed                                                  |
| 00000002     | Stop Delayed                                                   |
| 0000004      | Clock Failure                                                  |
| 80000000     | Reserved                                                       |
| 00000010     | Reserved                                                       |
| 00000020     | No Flow                                                        |
| 00000040     | Dry Pump                                                       |
| 00000080     | End of Curve                                                   |
| 00000100     | Broken Belt                                                    |
| 00000200     | Not used                                                       |
| 00000400     | Reserved                                                       |
| 00000800     | Reserved                                                       |
| 00001000     | Reserved                                                       |
| 00002000     | Reserved                                                       |
| 00004000     | Reserved                                                       |
| 00080000     | Reserved                                                       |
| 00010000     | Reserved                                                       |
| 00020000     | Not used                                                       |
| 00040000     | Fans warning                                                   |
| 00080000     | ECB warning                                                    |
| 00100000     | Reserved                                                       |
| 00200000     | Reserved                                                       |
| 00400000     | Reserved                                                       |
| 00800000     | Reserved                                                       |
| 01000000     | Reserved                                                       |
| 02000000     | Reserved                                                       |
| 04000000     | Reserved                                                       |
| 08000000     | Reserved                                                       |
| 10000000     | Reserved                                                       |
| 20000000     | Reserved                                                       |
| 4000000      | Reserved                                                       |
| 80000000     | Reserved                                                       |

8-38 TR200 Design Guide



# **Extended Status Words**

Extended status word, par.16-94 Ext. Status Word

| Bit      | Extended Status Word         |
|----------|------------------------------|
| (Hex)    | (par.16-94 Ext. Status Word) |
| 00000001 | Ramping                      |
| 00000002 | AMA tuning                   |
| 0000004  | Start CW/CCW                 |
| 8000000  | Not used                     |
| 00000010 | Not used                     |
| 00000020 | Feedback high                |
| 00000040 | Feedback low                 |
| 08000000 | Output current high          |
| 00000100 | Output current low           |
| 00000200 | Output frequency high        |
| 00000400 | Output frequency low         |
| 0080000  | Brake check OK               |
| 00001000 | Braking max                  |
| 00002000 | Braking                      |
| 00004000 | Out of speed range           |
| 00080000 | OVC active                   |
| 00010000 | AC brake                     |
| 00020000 | Password Timelock            |
| 00040000 | Password Protection          |
| 00080000 | Reference high               |
| 00100000 | Reference low                |
| 00200000 | Local Ref./Remote Ref.       |
| 00400000 | Reserved                     |
| 00000000 | Reserved                     |
| 01000000 | Reserved                     |
| 02000000 | Reserved                     |
| 04000000 | Reserved                     |
| 08000000 | Reserved                     |
| 10000000 | Reserved                     |
| 20000000 | Reserved                     |
| 40000000 | Reserved                     |
| 80000000 | Reserved                     |

Extended status word 2, par.16-95 Ext. Status Word 2

| Bit<br>(Hex) | Extended Status Word 2 (par. 16-95 Ext. Status Word 2) |
|--------------|--------------------------------------------------------|
| 0000001      | Off                                                    |
| 00000002     | Hand / Auto                                            |
| 0000004      | Not used                                               |
| 00000008     | Not used                                               |
| 00000010     | Not used                                               |
| 00000020     | Relay 123 active                                       |
| 00000040     | Start Prevented                                        |
| 00000080     | Control ready                                          |
| 00000100     | Drive ready                                            |
| 00000200     | Quick Stop                                             |
| 00000400     | DC Brake                                               |
| 0080000      | Stop                                                   |
| 00001000     | Standby                                                |
| 00002000     | Freeze Output Request                                  |
| 00004000     | Freeze Output                                          |
| 0008000      | Jog Request                                            |
| 00010000     | Jog                                                    |
| 00020000     | Start Request                                          |
| 00040000     | Start                                                  |
| 00080000     | Start Applied                                          |
| 00100000     | Start Delay                                            |
| 00200000     | Sleep                                                  |
| 00400000     | Sleep Boost                                            |
| 00800000     | Running                                                |
| 01000000     | Bypass                                                 |
| 02000000     | Fire Mode                                              |
| 04000000     | Reserved                                               |
| 08000000     | Reserved                                               |
| 10000000     | Reserved                                               |
| 20000000     | Reserved                                               |
| 4000000      | Reserved                                               |
| 80000000     | Reserved                                               |



## Fault messages

## **Hazardous Service Procedures!**

The maintenance and troubleshooting procedures recommended in this section of the manual could result in exposure to electrical, mechanical or other potential safety hazards. Always refer to the safety warnings provided throughout this manual concerning these procedures. Unless specified otherwise, disconnect all electrical power including remote disconnect and discharge all energy storing devices such as capacitors before servicing. Follow proper lockout/tagout procedures to ensure the power cannot be inadvertently energized. When necessary to work with live electrical components, have a qualified licensed electrician or other individual who has been trained in handling live electrical components perform these tasks. Failure to follow all of the recommended safety warnings provided, could result in death or serious injury.

#### WARNING 1, 10 volts low

The control card voltage is below 10 V from terminal 50.

Remove some of the load from terminal 50, as the 10 V supply is overloaded. Max. 15 mA or minimum 590  $\Omega$ .

This condition can be caused by a short in a connected potentiometer or improper wiring of the potentiometer.

**Troubleshooting:** Remove the wiring from terminal 50. If the warning clears, the problem is with the customer wiring. If the warning does not clear, replace the control card.

#### WARNING/ALARM 2, Live zero error

This warning or alarm will only appear if programmed by the user in par.6-01 <u>Live Zero Timeout Function</u>. The signal on one of the analog inputs is less than 50% of the minimum value programmed for that input. This condition can be caused by broken wiring or faulty device sending the signal.

#### WARNING/ALARM 3, No motor

No motor has been connected to the output of the adjustable frequency drive. This warning or alarm will only appear if programmed by the user in par. 1-80 Function at Stop.

**Troubleshooting:** Check the connection between the drive and the motor.

## WARNING/ALARM 4, Mains phase loss

A phase is missing on the supply side, or the line voltage imbalance is too high. This message also appears for a fault in the input rectifier on the adjustable frequency drive. Options are programmed at par. 14-12 Function at Mains Imbalance.

**Troubleshooting:** Check the supply voltage and supply currents to the adjustable frequency drive.

#### WARNING 5, DC link voltage high

The intermediate circuit voltage (DC) is higher than the high voltage warning limit. The limit is dependent on the drive voltage rating. The adjustable frequency drive is still active.

## WARNING 6, DC link voltage low

The intermediate circuit voltage (DC) is lower than the low voltage warning limit. The limit is dependent on the drive voltage rating. The adjustable frequency drive is still active.

### WARNING/ALARM 7, DC overvoltage

If the intermediate circuit voltage exceeds the limit, the adjustable frequency drive trips after a time.

Troubleshooting:

Extend the ramp time

Change the ramp type

Activate functions in par.2-10 Brake Function

Increase par.14-26 Trip Delay at Inverter Fault

#### WARNING/ALARM 8, DC undervoltage

If the intermediate circuit voltage (DC) drops below the undervoltage limit, the adjustable frequency drive checks if a 24 V backup supply is connected. If no 24 V backup supply is connected, the adjustable frequency drive trips after a fixed time delay. The time delay varies with unit size.

#### WARNING/ALARM 9, Inverter overloaded

The adjustable frequency drive is about to cut out because of an overload (too high current for too long). The counter for electronic, thermal inverter protection gives a warning at 98% and trips at 100%, while giving an alarm. The adjustable frequency drive *cannot* be reset until the counter is below 90%.

The fault is that the adjustable frequency drive is overloaded by more than 100% for too long. NOTE: See the derating section in the Design Guide for more details if a high switching frequency is required.

8-40 TR200 Design Guide



# WARNING/ALARM 10, Motor overload temperature

According to the electronic thermal protection (ETR), the motor is too hot. Select whether the adjustable frequency drive gives a warning or an alarm when the counter reaches 100% in par.1-90 Motor Thermal Protection. The fault is that the motor is overloaded by more than 100% for too long.

#### Troubleshooting:

Check if the motor is overheating.

If the motor is mechanically overloaded

That the motor par.1-24 Motor Current is set correctly.

Motor data in parameters 1-20 through 1-25 are set correctly.

The setting in par.1-91 Motor External Fan.

Run AMA in par.1-29 <u>Automatic Motor Adaptation (AMA)</u>.

# **⚠**WARNING

Live Electrical Components!

## WARNING/ALARM 11, Motor thermistor overtemp

The thermistor or the thermistor connection is disconnected. Select whether the adjustable frequency drive gives a warning or an alarm when the counter reaches 100% in par.1-90 Motor Thermal Protection.

#### Troubleshooting:

Check if the motor is overheating.

Check if the motor is mechanically overloaded.

Check that the thermistor is connected correctly between terminal 53 or 54 (analog voltage input) and terminal 50 (+10 V supply), or between terminal 18 or 19 (digital input PNP only) and terminal 50.

If a KTY sensor is used, check for correct connection between terminal 54 and 55.

If using a thermal switch or thermistor, check the programming of par.1-93 <u>Thermistor Source</u> matches sensor wiring.

If using a KTY sensor, check the programming of parameters 1-95, 1-96, and 1-97 match sensor wiring.

#### WARNING/ALARM 12, Torque limit

The torque is higher than the value in par.4-16 <u>Torque Limit Motor Mode</u> (in motor operation) or the torque is higher than the value in par.4-17 <u>Torque Limit Generator Mode</u> (in regenerative operation). Par. 14-25 <u>Trip Delay at Torque Limit</u> can be used to change this from a warning only condition to a warning followed by an alarm.

#### WARNING/ALARM 13, Overcurrent

The inverter peak current limit (approx. 200% of the rated current) is exceeded. The warning lasts about 1.5 sec. Then the adjustable frequency drive trips and issues an alarm. If extended mechanical brake control is selected, trip can be reset externally.

#### Troubleshooting:

This fault may be caused by shock loading or fast acceleration with high inertia loads.

Turn off the adjustable frequency drive. Check if the motor shaft can be turned.

Make sure that the motor size matches the adjustable frequency drive.

Incorrect motor data in parameters 1-20 through 1-25.

# MWARNING

Disconnect power before proceeding.

## ALARM 14, Earth (ground) fault

There is a discharge from the output phases to ground, either in the cable between the adjustable frequency drive and the motor or in the motor itself.

#### Troubleshooting:

Turn off the adjustable frequency drive and remove the ground fault.

Measure the resistance to ground of the motor leads and the motor with a megohmmeter to check for ground faults in the motor.

Perform current sensor test.

## ALARM 15, Hardware mismatch

A fitted option is not operational with the present control board hardware or software.

Record the value of the following parameters and contact your Trane supplier:

Par.15-40 FC Type

Par.15-41 Power Section

Par.15-42 Voltage



Par.15-43 Software Version

Par.15-45 Actual Typecode String

Par.15-49 SW ID Control Card

Par.15-50 SW ID Power Card

Par.15-60 Option Mounted

Par.15-61 Option SW Version

#### ALARM 16, Short circuit

There is short-circuiting in the motor or on the motor

Turn off the adjustable frequency drive and remove the short-circuit.



Disconnect power before proceeding.

#### WARNING/ALARM 17, Control word timeout

There is no communication to the adjustable frequency drive.

The warning will only be active when par.8-04 Control Word Timeout Function is NOT set to OFF.

If par.8-04 Control Word Timeout Function is set to Stop and Trip, a warning appears and the adjustable frequency drive ramps down until it trips, while giving an alarm.

#### Troubleshooting:

Check connections on the serial communication

Increase par.8-03 Control Word Timeout Time

Check the operation of the communication equipment.

Verify proper installation based on EMC requirements.

# **∕**!\WARNING

Live Electrical Components!

#### WARNING 23, Internal fan fault

The fan warning function is an extra protection function that checks if the fan is running / mounted. The fan warning can be disabled in par.14-53 Fan Monitor ([0] Disabled).

For the D, E, and F Frame drives, the regulated voltage to the fans is monitored.

#### Troubleshooting:

Check fan resistance.

Check soft charge fuses.

## **∕**•\WARNING

Disconnect power before proceeding.

#### WARNING 24, External fan fault

The fan warning function is an extra protection function that checks if the fan is running / mounted. The fan warning can be disabled in par.14-53 Fan Monitor ([0] Disabled).

For the D, E, and F Frame drives, the regulated voltage to the fans is monitored.

Troubleshooting:

Check fan resistance.

Check soft charge fuses.

#### WARNING/ALARM 28, Brake check failed

Brake resistor fault: the brake resistor is not connected or not working.

Check par.2-15 Brake Check.

#### ALARM 29, Heatsink temp

The maximum temperature of the heatsink has been exceeded. The temperature fault will not be reset until the temperature falls below a defined heatsink temperature. The trip and reset point are different based on the drive power size.

#### Troubleshooting:

Ambient temperature too high.

Too long motor cable.

Incorrect clearance above and below the drive.

Dirty heatsink.

Blocked air flow around the drive.

Damaged heatsink fan.

For the D, E, and F Frame drives, this alarm is based on the temperature measured by the heatsink sensor mounted inside the IGBT modules. For the F Frame drives, this alarm can also be caused by the thermal sensor in the rectifier module.

Troubleshooting:

Check fan resistance.

Check soft charge fuses.

IGBT thermal sensor.

# ∕!\WARNING

Disconnect power before proceeding.

8-42 TR200 Design Guide



#### ALARM 30, Motor phase U missing

Motor phase U between the adjustable frequency drive and the motor is missing.

Turn off the adjustable frequency drive and check motor phase U.

# **AWARNING**

Disconnect power before proceeding.

## ALARM 31, Motor phase V missing

Motor phase V between the adjustable frequency drive and the motor is missing.

Turn off the adjustable frequency drive and check motor phase V.

# **≜**WARNING

Disconnect power before proceeding.

## ALARM 32, Motor phase W missing

Motor phase W between the adjustable frequency drive and the motor is missing.

Turn off the adjustable frequency drive and check motor phase W.

# **≜**WARNING

Disconnect power before proceeding.

#### ALARM 33, Inrush fault

Too many power-ups have occurred within a short time period. Let unit cool to operating temperature.

# WARNING/ALARM 34, Fieldbus communication fault

The serial communication bus on the communication option card is not working.

# WARNING/ALARM 35, Out of frequency ranges:

This warning is active if the output frequency has reached the high limit (set in par. 4-53) or low limit (set in par. 4-52). In *Process Control, Closed-loop* (. 1-00) this warning is displayed.

#### WARNING/ALARM 36, Mains failure

This warning/alarm is only active if the supply voltage to the adjustable frequency drive is lost and par.

14-10 Mains Failure is NOT set to OFF. Check the fuses to the adjustable frequency drive

#### ALARM 38, Internal fault

It may be necessary to contact your Trane supplier. Some typical alarm messages:

- O Serial port cannot be initialized. Serious hardware failure
- 256-25 Power EEPROM data is defect or too old 8
- 512 Control board EEPROM data is defect or
- 513 Communication time out reading EE-PROM data
- 514 Communication time out reading EE-PROM data
- 515 Application Orientated Control cannot recognize the EEPROM data
- 516 Cannot write to the EEPROM because a write command is on progress
- 517 Write command is under timeout
- 518 Failure in the EEPROM
- 519 Missing or invalid Barcode data in EE-PROM
- 783 Parameter value outside of min/max limits
- 1024- A CAN message that has to be sent,
- 1279 couldn't be sent
- 1281 Digital Signal Processor flash timeout
- 1282 Power micro software version mismatch
- 1283 Power EEPROM data version mismatch
- 1284 Cannot read Digital Signal Processor software version
- 1299 Option SW in slot A is too old
- 1300 Option SW in slot B is too old
- 1302 Option SW in slot C1 is too old
- 1315 Option SW in slot A is not supported (not allowed)
- 1316 Option SW in slot B is not supported (not allowed)
- 1318 Option SW in slot C1 is not supported (not allowed)
- 1379 Option A did not respond when calculating Platform Version.
- 1380 Option B did not respond when calculating Platform Version.
- 1536 An exception in the Application Orientated Control is registered. Debug information written in keypad
- 1792 DSP watchdog is active. Debugging of power part data Motor Orientated Control data not transferred correctly
- 2049 Power data restarted
- 2064-2 H081x: option in slot x has restarted 072
- 2080-2 H082x: option in slot x has issued a pow-088 er-up wait
- 2096-2 H083x: option in slot x has issued a legal 104 power-up wait



## General Specifications and Troubleshooting

| 2304 | Could not read any data from power EE-  |
|------|-----------------------------------------|
|      | PROM                                    |
| 2305 | Missing SW version from power unit      |
| 2314 | Missing power unit data from power unit |
| 2315 | Missing SW version from power unit      |

#### ALARM 39, Heatsink sensor

No feedback from the heatsink temperature sensor.

The signal from the IGBT thermal sensor is not available on the power card. The problem could be on the power card, on the gate drive card, or the ribbon cable between the power card and gate drive card.

# WARNING 40, Overload of Digital Output Terminal 27

Check the load connected to terminal 27 or remove short-circuit connection. Check par.5-01 <u>Terminal 27 Mode</u>.

# WARNING 41, Overload of Digital Output Terminal 29

Check the load connected to terminal 29 or remove short-circuit connection. Check par.5-02 <u>Terminal 29</u> <u>Mode</u>.

# WARNING 42, Overload of Digital Output on X30/6 or Overload of Digital Output on X30/7

For X30/6, check the load connected to X30/6 or remove short-circuit connection. Check par.5-32 <u>Term</u> X30/6 Digi Out (MCB 101).

For X30/7, check the load connected to X30/7 or remove short-circuit connection. Check par.5-33 <u>Term X30/7 Digi Out (MCB 101)</u>.

## ALARM 46, Power card supply

The supply on the power card is out of range.

There are three power supplies generated by the switch mode power supply (SMPS) on the power card: 24 V, 5 V, +/-18 V. When powered with three-phase AC line voltage, all three supplied are monitored

#### WARNING 47, 24 V supply low

The 24 Vdc is measured on the control card.

#### WARNING 48, 1.8 V supply low

The 1.8 Vdc supply used on the control card is outside of allowable limits. The power supply is measured on the control card.

#### WARNING 49, Speed limit

When the speed is not within the specified range in par. 4-11 and par. 4-13, the drive will show a warning. When the speed is below the specified limit in par.

1-86 <u>Trip Speed Low [RPM]</u> (except when starting or stopping), the drive will trip.

#### ALARM 50, AMA calibration failed

Contact your Trane supplier.

#### ALARM 51, AMA check Unom and Inom

The setting of motor voltage, motor current, and motor power is presumably wrong. Check the settings.

#### ALARM 52, AMA low Inom

The motor current is too low. Check the settings.

### ALARM 53, AMA big motor

The motor is too big for the AMA to be carried out.

#### ALARM 54, AMA small motor

The motor is too big for the AMA to be carried out.

#### ALARM 55, AMA Parameter out of range

The parameter values found from the motor are outside acceptable range.

## ALARM 56, AMA interrupted by user

The AMA has been interrupted by the user.

#### ALARM 57, AMA timeout

Try to start the AMA again a number of times, until the AMA is carried out. Please note that repeated runs may heat the motor to a level where the resistances Rs and Rr are increased. In most cases, however, this is not critical.

#### ALARM 58, AMA internal fault

Contact your Trane supplier.

#### WARNING 59, Current limit

The current is higher than the value in par.4-18 <u>Current Limit</u>.

#### WARNING 60, External interlock

External interlock has been activated. To resume normal operation, apply 24 Vdc to the terminal programmed for external interlock and reset the adjustable frequency drive (via serial communication, digital I/O, or by pressing the reset button on the keypad).

## WARNING 61, Tracking error

An error has been detected between the calculated motor speed and the speed measurement from the feedback device. The function for warning/alarm/disable is set in 4-30, *Motor Feedback Loss Function*, error setting in 4-31, *Motor Feedback Speed Error*, and the allowed error time in 4-32, *Motor Feedback Loss Timeout*. During a commissioning procedure the function may be effective.

8-44 TR200 Design Guide



# WARNING 62, Output frequency at maximum limit

The output frequency is higher than the value set in par.4-19 Max Output Frequency

#### WARNING 64, Voltage limit

The load and speed combination demands a motor voltage higher than the actual DC link voltage.

# WARNING/ALARM/TRIP 65, Control card overtemperature

Control card overtemperature: The cutout temperature of the control card is 176°F [80°C].

#### WARNING 66, Heatsink temperature low

This warning is based on the temperature sensor in the IGBT module.

# ALARM 67, Option module configuration has changed

One or more options have either been added or removed since the last power-down.

#### ALARM 68, Safe stop activated

Safe stop has been activated. To resume normal operation, apply 24 Vdc to terminal 37, then send a reset signal (via Bus, Digital I/O, or by pressing the reset key. See par. .

## ALARM 69, Power card temperature

The temperature sensor on the power card is either too hot or too cold.

#### Troubleshooting:

Check the operation of the door fans.

Make sure that the filters for the door fans are not blocked.

Make sure that the connector plate is properly installed on IP 21 and IP 54 (NEMA 1 and NEMA 12) drives.

#### ALARM 70, Illegal FC Configuration

Actual combination of control board and power board is illegal.

#### ALARM 72, Dangerous failure

Safe stop with trip lock. Unexpected signal levels on safe stop.

#### Warning 76, Power Unit Set-up

The required number of power units does not match the detected number of active power units.

## Troubleshooting:

#### WARNING 73, Safe stop auto restart

Safe stopped. Note that with automatic restart enabled, the motor may start when the fault is cleared.

#### WARNING 77, Reduced power mode:

This warning indicates that the drive is operating in reduced power mode (i.e., less than the allowed number of inverter sections). This warning will be generated on power cycle when the drive is set to run with fewer inverters and will remain on.

#### ALARM 79, Illegal power section configuration

The scaling card is the incorrect t number or not installed. Also MK102 connector on the power card could not be installed.

#### ALARM 80, Drive initialized to default value

Parameter settings are initialized to default settings after a manual reset.

#### ALARM 91, Analog input 54 wrong settings

Switch S202 has to be set in position OFF (voltage input) when a KTY sensor is connected to analog input terminal 54.

#### ALARM 92, No flow

A no-load situation has been detected in the system. See parameter group 22-2.

#### ALARM 93, Dry pump

A no-flow situation and high speed indicates that the pump has run dry. See parameter group 22-2.

#### ALARM 94, End of curve

Feedback stays lower than the setpoint which may indicate leakage in the pipe system.

#### ALARM 95, Broken belt

Torque is below the torque level set for no load, indicating a broken belt. See parameter group 22-6.

#### ALARM 96, Start delayed

Motor start has been delayed due to short-cycle protection active. See parameter group 22-7.

#### WARNING 97, Stop delayed

Stopping the motor has been delayed due to short cycle protection is active. See parameter group 22-7.

#### WARNING 98, Clock fault

Clock Fault. Time is not set or RTC clock (if mounted) has failed. See parameter group 0-7.

## WARNING 201, Fire Mode was Active

Fire mode has been active.

# WARNING 202, Fire Mode Limits Exceeded

Fire mode has suppressed one or more warranty voiding alarms.

#### WARNING 203, Missing Motor

A multi-motor underload situation was detected, this could be due to, for example, a missing motor.

#### WARNING 204, Locked Rotor

A multi-motor overload situation was detected, which could be due to, e.g., a locked rotor.

## ALARM 244, Heatsink temperature

This alarm is only for F Frame drives. It is equivalent to Alarm 29. The report value in the alarm log indicates which power module generated the alarm:

- 1 = left most inverter module.
- 2 = middle inverter module in F2 or F4 drive.
- 2 = right inverter module in F1 or F3 drive.
- 3 = right inverter module in F2 or F4 drive.
- 5 = rectifier module.

#### ALARM 245. Heatsink sensor

This alarm is only for F Frame drives. It is equivalent to Alarm 39. The report value in the alarm log indicates which power module generated the alarm:

- 1 = left most inverter module.
- 2 = middle inverter module in F2 or F4 drive.
- 2 = right inverter module in F1 or F3 drive.
- 3 = right inverter module in F2 or F4 drive.
- 5 = rectifier module.

#### ALARM 246, Power card supply

This alarm is only for F Frame drives. It is equivalent to Alarm 46. The report value in the alarm log indicates which power module generated the alarm:

- 1 = left most inverter module.
- 2 = middle inverter module in F2 or F4 drive.
- 2 = right inverter module in F1 or F3 drive.
- 3 = right inverter module in F2 or F4 drive.
- 5 = rectifier module.

#### ALARM 247, Power card temperature

This alarm is only for F Frame drives. It is equivalent to Alarm 69. The report value in the alarm log indicates which power module generated the alarm:

- 1 = left most inverter module.
- 2 = middle inverter module in F2 or F4 drive.

- 2 = right inverter module in F1 or F3 drive.
- 3 = right inverter module in F2 or F4 drive.
- 5 = rectifier module.

#### ALARM 248, Illegal power section configuration

This alarm is only for F Frame drives. It is equivalent to Alarm 79. The report value in the alarm log indicates which power module generated the alarm:

- 1 = left most inverter module.
- 2 = middle inverter module in F2 or F4 drive.
- 2 = right inverter module in F1 or F3 drive.
- 3 = right inverter module in F2 or F4 drive.
- 5 = rectifier module.

## ALARM 250, New spare part

The power or switch mode power supply has been exchanged. The adjustable frequency drive type code must be restored in the EEPROM. Select the correct type code in par.14-23 <a href="Typecode Setting">Typecode Setting</a> according to the label on the unit. Remember to select 'Save to EEPROM' to complete.

## ALARM 251, New type code

The adjustable frequency drive has a new type code.

8-46 TR200 Design Guide

| 2                                                                |      |
|------------------------------------------------------------------|------|
| 24 V Backup Option Mcb 107 (option D)                            | 3-6  |
| 3                                                                |      |
| 3-setpoint Pid Controller                                        | 2-12 |
| A                                                                |      |
| Abbreviations                                                    | 1-8  |
| Accessory Bags                                                   |      |
| Acoustic Noise                                                   |      |
| Adjustable Frequency Drive Hardware Set-up                       | 7-2  |
| Adjustable Frequency Drive Set-up                                |      |
| Adjustable Frequency Drive With Modbus Rtu                       |      |
| Aggressive Environments                                          | 2-2  |
| Air Humidity                                                     | 2-2  |
| Alarm Word                                                       | 8-37 |
| Alarm/warning Code List                                          | 8-34 |
| Alarms And Warnings                                              | 8-32 |
| Aluminum Conductors                                              | 5-15 |
| Ama                                                              | 6-2  |
| Analog Inputs                                                    | 1-10 |
| Analog Inputs                                                    | 8-18 |
| Analog Inputs                                                    | 1-11 |
| Analog Output                                                    | 8-19 |
| Analog Outputs - Terminal X30/5+8                                | 3-3  |
| Analog Voltage Inputs - Terminal X30/10-12                       | 3-3  |
| Automatic Adaptations To Ensure Performance                      | 8-30 |
| Automatic Motor Adaptation                                       | 6-2  |
| Automatic Motor Adaptation (ama)                                 | 5-32 |
| Awg                                                              | 8-1  |
| В                                                                |      |
|                                                                  |      |
| Bacnet                                                           |      |
| Balancing Contractor                                             |      |
| Basic Wiring Example                                             |      |
| Better Control                                                   |      |
| Brake Control                                                    |      |
| Brake Resistor Temperature Switch                                |      |
| Braking Energy                                                   |      |
| Branch Circuit Protection                                        |      |
| Break-away Torque                                                |      |
| Building Management System, Bms Bypass Frequency Ranges          |      |
| С                                                                |      |
|                                                                  | F 4/ |
| Cable Clamp                                                      |      |
| Cable Longth And Cross section                                   |      |
| Cable Length And Cross-section                                   |      |
| Cay System                                                       |      |
| Cav System                                                       |      |
| Ce Conformity And Labeling Central Vav Systems                   |      |
|                                                                  |      |
| Clockwise Rotation  Closed-loop Control For A Ventilation System |      |
| Col Septer                                                       | 2-22 |



| Coasting                                                  | 7-28       |
|-----------------------------------------------------------|------------|
| Coasting                                                  | 1-9, 7-26  |
| Communication Option                                      | 8-43       |
| Comparison Of Energy Savings                              | 2-6        |
| Condenser Pumps                                           | 2-14       |
| Conducted Emission.                                       | 2-28       |
| Connector/conduit Entry - Ip21 (nema 1) And Ip54 (nema12) | 5-18       |
| Constant Air Volume                                       |            |
| Constant Torque Applications (ct Mode)                    |            |
| Control Cable Terminals                                   |            |
| Control Cables                                            |            |
| Control Cables                                            | •          |
| Control Cables                                            |            |
| Control Card Performance                                  |            |
| Control Card, 10 V Dc Output                              |            |
| ·                                                         |            |
| Control Card, 24 Vdc Output                               |            |
| Control Card, Rs-485 Serial Communication:                |            |
| Control Card, Usb Serial Communication:                   |            |
| Control Characteristics                                   |            |
| Control Potential                                         |            |
| Control Structure Closed-loop                             |            |
| Control Structure Open-loop                               |            |
| Control Terminals                                         |            |
| Control Word                                              |            |
| Cooling                                                   |            |
| Cooling Conditions                                        |            |
| Cooling Tower Fan                                         |            |
| Copyright, Limitation Of Liability And Revision Rights    |            |
| Cos Φ Compensation                                        | 2-8        |
| D                                                         |            |
| U                                                         |            |
| Dampers                                                   | 2-11       |
| Data Types Supported By The Adjustable Frequency Drive    | 7-9        |
| Dc Brake                                                  | 7-25       |
| Dc Link                                                   | 8-40       |
| Definitions                                               | 1-8        |
| Derating For Ambient Temperature                          | 8-30       |
| Derating For Low Air Pressure                             | 8-30       |
| Derating For Running At Low Speed                         | 8-31       |
| Differential Pressure                                     | 2-16       |
| Digital Inputs - Terminal X30/1-4                         | 3-3        |
| Digital Inputs:                                           | 8-18       |
| Digital Output                                            | 8-19       |
| Digital Outputs - Terminal X30/5-7                        | 3-3        |
| Direction Of Motor Rotation                               |            |
| Disposal Instructions                                     |            |
| Drive Configurator                                        |            |
| Du/dt Filters                                             |            |
|                                                           |            |
| E                                                         |            |
| Efficiency                                                | 8-22       |
| Electrical Installation                                   | 5-13       |
| Electrical Installation                                   | 5-15, 5-30 |
| Electrical Installation - Emc Precautions                 | 5-42       |
| Electrical Ratings                                        |            |
| Electronic Waste                                          |            |
| Emc Directive 89/336/eec                                  |            |
| Emc Precautions                                           |            |
| Emc Test Results                                          |            |
|                                                           |            |





| Emission Requirements                                 | 2-26 |
|-------------------------------------------------------|------|
| Enclosure Knock-outs                                  | 5-16 |
| Energy Savings                                        | 2-7  |
| Energy Savings                                        | 2-5  |
| Equalizing Cable                                      | 5-46 |
| Etr                                                   | 5-37 |
| Evaporator Flow Rate                                  | 2-15 |
| Example Of Closed-loop Pid Control                    | 2-22 |
| Extended Status Word                                  | 8-39 |
| Extended Status Word 2                                | 8-39 |
| External 24 V Dc Supply                               | 3-6  |
| External Fan Supply                                   |      |
| Extreme Running Conditions                            |      |
| -                                                     |      |
| F                                                     |      |
| Fan System Controlled By Adjustable Frequency Drives  | 2-10 |
| Fault Messages                                        | 8-40 |
| Fc Profile                                            | 7-25 |
| Fc With Modbus Rtu                                    | 7-4  |
| Field Mounting                                        | 5-11 |
| Final Set-up And Test                                 | 5-32 |
| Flow Meter                                            | 2-15 |
| Freeze Output                                         | 1-9  |
| Function Codes Supported By Modbus Rtu                | 7-16 |
| Fuse Tables                                           | 5-23 |
| Fuses                                                 | 5-21 |
| Fusing Not In UI Compliance                           | 5-21 |
| C                                                     |      |
| G                                                     |      |
| General Aspects Of Emc Emissions                      | 2-25 |
| General Aspects Of Harmonics Emission                 | 2-29 |
| General Specifications                                | 8-17 |
| Ground Leakage Current                                | 5-42 |
| Ground Leakage Current                                | 2-32 |
| Grounding                                             | 5-46 |
| Grounding Of Shielded/armored Control Cables          | 5-46 |
| Н                                                     |      |
| Harmonics Emission Requirements                       | 2-29 |
| Harmonics Test Results (emission)                     |      |
| High Power Series Line Power And Motor Connections    | 5-11 |
| High Voltage Test                                     |      |
| Hold Output Frequency                                 |      |
| How To Connect A Pc To The Adjustable Frequency Drive |      |
| How To Control The Adjustable Frequency Drive         |      |
| Tiow to control the Adjustable Frequency Stive        | ,-10 |
|                                                       |      |
| Igvs                                                  | 2-11 |
| Immunity Requirements                                 | 2-30 |
| Index (ind)                                           |      |
| Installation At High Altitudes                        |      |
| Intermediate Circuit                                  |      |
| Ip 21/ip 4x/ Type 1 Enclosure Kit                     |      |
| Ip 21/type 1 Enclosure Kit                            |      |
|                                                       |      |
| J                                                     |      |
| Jog                                                   |      |
| log                                                   | 7 26 |



| K                                                        |            |
|----------------------------------------------------------|------------|
| Kty Sensor                                               | 8-41       |
|                                                          |            |
| L                                                        |            |
| Laws Of Proportionality                                  | 2-5        |
| Lcp                                                      | 1-9, 1-12  |
| Lead Pump Alternation Wiring Diagram                     | 6-8        |
| Leakage Current                                          | 2-32       |
| Lifting                                                  | 5-9        |
| Line Drop-out                                            | 2-34       |
| Line Power Disconnectors                                 |            |
| Line Power Supply                                        |            |
| Line Power Supply                                        |            |
| Line Power Supply 3 X 525–690 V Ac                       |            |
| Literature                                               |            |
| Load Drive Settings                                      |            |
| Local (hand On) And Remote (auto On) Control             |            |
| Local Speed Determination                                |            |
| Low Evaporator Temperature                               | 2-15       |
| M                                                        |            |
| Manual Pid Adjustment                                    | 2-25       |
| Mcb 105 Option                                           |            |
| Mechanical Dimensions                                    |            |
| Mechanical Dimensions - High Power                       | 5-5        |
| Mechanical Mounting                                      | 5-8        |
| Message Length (Ige)                                     | 7-5        |
| Modbus Communication                                     | 7-3        |
| Modbus Exception Codes                                   | 7-17       |
| Moment Of Inertia                                        | 2-33       |
| Motor Cables                                             | 5-42       |
| Motor Cables                                             | 5-14       |
| Motor Nameplate                                          | 5-32       |
| Motor Output                                             | 8-17       |
| Motor Parameters                                         | 6-2        |
| Motor Phases                                             | 2-33       |
| Motor Protection                                         | 5-37, 8-21 |
| Motor Rotation                                           | 5-38       |
| Motor Thermal Protection                                 | 7-29       |
| Motor Thermal Protection                                 |            |
| Motor Voltage                                            |            |
| Motor-generated Overvoltage                              |            |
| Multiple Pumps                                           | 2-16       |
| N                                                        |            |
| Nameplate Data                                           | 5-32       |
| Network Connection                                       |            |
| Non-ul Fuses 200 V To 480 V                              |            |
|                                                          |            |
| 0                                                        |            |
| Options And Accessories                                  | 3-1        |
| Ordering Numbers                                         | 4-1        |
| Ordering Numbers: Du/dt Filters, 380–480 Vac             | 4-11       |
| Ordering Numbers: High Power Option Kits                 | 4-9        |
| Ordering Numbers: Options And Accessories                | 4-5        |
| Ordering Numbers: Sine Wave Filter Modules, 200–500 V Ac | 4-10       |
| Output Filters                                           | 3-9        |
| Output Performance (u, V, W)                             | 8-17       |

# Ρ

| Parallel Connection Of Motors                  | 5-37       |
|------------------------------------------------|------------|
| Parameter Number (pnu)                         | 7-8        |
| Parameter Values                               | 7-18       |
| Pay Back Period                                | 2-7        |
| Pc Software Tools                              | 5-40       |
| Pc-based Configuration Tool Tdu                |            |
| Peak Voltage On Motor                          |            |
| Pelv - Protective Extra Low Voltage            |            |
| Pic                                            |            |
| Potentiometer Reference                        |            |
| Power Factor                                   |            |
| Power Factor Correction                        |            |
| Primary Pumps                                  |            |
| Profibus Dp-v1                                 |            |
| Programmable Minimum Frequency Setting         |            |
| Programming Order                              |            |
| Protection                                     |            |
|                                                |            |
| Protection And Features                        |            |
| Protocol Overview                              |            |
| Public Supply Network                          |            |
| Pulse Inputs                                   |            |
| Pulse Start/stop                               |            |
| Pump Impeller                                  | 2-14       |
| B                                              |            |
|                                                |            |
| Radiated Emission                              |            |
| Rated Motor Speed                              |            |
| Rcd                                            |            |
| Read Holding Registers (03 Hex)                |            |
| Reference Handling                             |            |
| Relay Option Mcb 105                           | 3-4        |
| Relay Output                                   | 5-36       |
| Relay Outputs                                  | 8-20       |
| Removal Of Knockouts For Extra Cables          | 5-18       |
| Residual Current Device                        | 2-32, 5-46 |
| Return Fan                                     | 2-11       |
| Rise Time                                      | 8-24       |
| Rs 485 Bus Connection                          | 5-39       |
| Rs-485                                         | 7-1        |
| S                                              |            |
| Safety Ground Connection                       | 5-42       |
| Safety Note                                    |            |
| Safety Regulations                             |            |
| Safety Requirements Of Mechanical Installation |            |
| Save Drive Settings                            |            |
| Secondary Pumps                                |            |
|                                                |            |
| Serial Communication                           |            |
| Serial Communication Port                      |            |
| Set Speed Limit And Ramp Time                  |            |
| Shielded/armored                               |            |
| Shielded/armored.                              |            |
| Shielding Of Cables                            |            |
| Short Circuit (motor Phase – Phase)            |            |
| Sine-wave Filters                              |            |
| Smart Logic Control                            |            |
| Smart Logic Control Programming                | 6-3        |



| Soft-starter                                  | 2-8           |
|-----------------------------------------------|---------------|
| Software Version                              | 1-5           |
| Software Versions                             | 4-5, 4-6, 4-7 |
| Star/delta Starter                            | 2-8           |
| Start/stop                                    | 6-1           |
| Start/stop Conditions                         | 6-10          |
| Static Overload In Vvcplus Mode               | 2-34          |
| Status Word                                   |               |
| Successful Amaauto Tune                       | 5-33          |
| Surroundings:                                 |               |
| Switches S201, S202, And S801                 | 5-31          |
| Switching Frequency                           |               |
| Switching On The Output                       |               |
| System Status And Operation                   |               |
| Т                                             |               |
| Tdu Set-up Software                           | 5-40          |
| The Clear Advantage - Energy Savings          | 2-4           |
| The Emc Directive (89/336/eec)                | 2-1           |
| The Low-voltage Directive (73/23/eec)         | 2-1           |
| The Machinery Directive (98/37/eec)           | 2-1           |
| Thermistor                                    | 1-12          |
| Throttling Valve                              | 2-14          |
| Tightening Of Terminals                       | 5-12          |
| Torque Characteristics                        | 8-17          |
| Trane Harmonics Analyzer (tha)                | 5-41          |
| Troubleshooting                               | 8-32          |
| Tuning The Drive Closed-loop Controller       | 2-24          |
| Type Code String High Power                   | 4-4           |
| Type Code String Low And Medium Power         | 4-2           |
| U                                             |               |
| UI Compliance/non-compliance                  | 5-22          |
| UI Fuses, 200–240 V                           | 5-23          |
| Unsuccessful Amaauto Tune                     | 5-33          |
| Usb Connection                                | 5-28          |
| Use Of Emc-correct Cables                     | 5-45          |
| V                                             |               |
| Variable (quadratic) Torque Applications (vt) | 8-31          |
| Variable Air Volume                           | 2-11          |
| Variable Control Of Flow And Pressure         |               |
| Varying Flow Over 1 Year                      | 2-7           |
|                                               | 2-11          |
| Vibration And Shock                           | 2-3           |
| Vibrations                                    | 2-13          |
| Voltage Level                                 |               |
| Vvcplus                                       | 1-13          |
| W                                             |               |
| Warning Against Unintended Start              | 1-3           |
| Warning Word                                  | 8-38          |
| Warning Word 2                                | 8-38          |
| What Is Ce Conformity And Labeling?           | 2-1           |
|                                               |               |



### www.trane.com

For more information, contact your local Trane office or e-mail us at comfort@trane.com

| Literature Order Number | BAS-SVX23B-EN |
|-------------------------|---------------|
| Date                    | November 2009 |
| Supersedes              | BAS-SVX23A-EN |

Trane has a policy of continous product and product data improvement and reserves the right to change design and specifications without notice.

