GE Consumer & Industrial Electrical Distribution

AF-600 FP™ Apogee/FLN

Operating Instructions

a product of **ecomagination**

Contents

1 Introduction	3
Copyright, Limitation of Liability and Revision Rights	3
Safety	3
Introduction	4
About this Manual	4
Assumptions	5
HP/kW Conversion	6
2 Drive Functional Features	7
Drive Operation (F-64)	7
Motor and Drive Thermal Protection (15, 16, 18)	7
Set-up 1-4 and Day/Night operation (17, 29)	7
Current Monitoring and Limits (19)	7
Direction of Rotation (XC-22)	7
Start/Stop (23)	7
Freeze Mode (25, 26)	8
Coast (27, 28)	8
Motor Accel and Decel Rate (31, 32)	8
Hand/Auto Modes (34)	8
Run Enable (35)	8
Bus Functions (36, 37)	8
Jog Frequency and Command (38, 39)	8
Relay Out 1, 2 (40, 41, 43, 44)	8
PID Control Functions (61-65)	9
Sleep Mode (59)	9
Terminals 53, 54, (87-88)	9
Warnings and Alarms (90-94)	9
Error Status (99)	9
3 Drive Network Strategies	11
Strategy One	11
Strategy Two	11
Strategy Three	12
Strategy Four	13
4 Drive Special Functions	15
Special Functions	15
Analog Input Monitoring	15
Drive Relay Control	15
5 Network Connection	17

6 Parameters	19
Parameter Settings	19
7 Start-up and Troubleshooting	21
Start-up	21
Start-up of FLN Control	21
Troubleshooting	21
Faults, Warnings and Alarms	21
Alarms and warnings	22
Start-up	30
Start-up of FLN Control	30

1 Introduction

1.1 Safety and Caution

1.1.1 Copyright, Limitation of Liability and Revision Rights

This publication contains information proprietary to GE. By accepting and using this manual the user agrees that the information contained herein will be used solely for operating equipment from GE or equipment from other vendors provided that such equipment is intended for communication with GE equipment over a serial communication link. This publication is protected under the Copyright laws of Denmark and most other countries.

GE does not warrant that a software program produced according to the guidelines provided in this manual will function properly in every physical, hardware or software environment.

Although GE has tested and reviewed the documentation within this manual, GE makes no warranty or representation, neither expressed nor implied, with respect to this documentation, including its quality, performance, or fitness for a particular purpose.

In no event shall GE be liable for direct, indirect, special, incidental, or consequential damages arising out of the use, or the inability to use information contained in this manual, even if advised of the possibility of such damages. In particular, GE is not responsible for any costs, including but not limited to those incurred as a result of lost profits or revenue, loss or damage of equipment, loss of computer programs, loss of data, the costs to substitute these, or any claims by third parties.

GE reserves the right to revise this publication at any time and to make changes to its contents without prior notice or any obligation to notify former or present users of such revisions or changes.

It has been assumed that all devices will be sitting behind a firewall that does packet filtering and the environment has well-implemented restrictions on the software that can run inside the firewall. All nodes are assumed to be "trusted" nodes.

1.1.2 Safety

Rotating shafts and electrical equipment can be hazardous. Therefore, it is strongly recommended that all electrical work conform to National Electrical Code (NEC) and all local regulations. Installation, start-up and maintenance should be performed only by qualified personnel.

Factory recommended procedures, included in this manual, should be followed. Always disconnect electrical power before working on the unit. Although shaft couplings or belt drives are generally not furnished by the manufacturer, rotating shafts, couplings and belts must be protected with securely mounted metal guards that are of sufficient thickness to provide protection against flying particles such as keys, bolts and coupling parts. Even when the motor is stopped, it should be considered "alive" as long as its controller is energized. Automatic circuits may start the motor at any time. Keep hands away from the output shaft until the motor has completely stopped and power is disconnected from the controller.

Motor control equipment and electronic controls are connected to hazardous line voltages. When servicing drives and electronic controls, there will be exposed components at or above line potential. Extreme care should be taken to protect against shock. Stand on an insulating pad and make it a habit to use only one hand when checking components. Always work with another person in case of an emergency. Disconnect power whenever possible to check controls or to perform maintenance. Be sure equipment is properly grounded. Wear safety glasses whenever working on electric control or rotating equipment.

Safety Guidelines

- 1. The drive must be disconnected from the AC line before any service work is done.
- 2. The "Stop/Off" key on the Keypad of the drive does not disconnect the equipment from the AC line and is not to be used as a safety switch.
- 3. Correct protective grounding of the equipment must be established. The user must be protected against supply voltage and the motor must be protected against overload in accordance with applicable national and local regulations.
- 4. Ground currents are higher than 3 mA.

Warning against Unintended Start

- L. While the drive is connected to the AC line, the motor can be brought to a stop by means of external switch closures, serial bus commands or references.

 If personal safety considerations make it necessary to ensure that no unintended start occurs, these stops are not sufficient.
- 2. During programming of parameters, the motor may start. Be certain that no one is in the area of the motor or driven equipment when changing parameters.
- 3. A motor that has been stopped may start unexpectedly if faults occur in the electronics of the drive, or if an overload, a fault in the supply AC line or a fault in the motor connection or other fault clears.
- 4. If the "Local/Hand" key is activated, the motor can only be brought to a stop by means of the "Stop/Off" key or an external safety interlock

NRI

It is responsibility of user or person installing drive to provide proper grounding and branch circuit protection for incoming power and motor overload according to National Electrical Code (NEC) and local codes.

Electronic Thermal Overload in UL listed drives provides Class 20 motor overload protection in accordance with NEC in single motor applications, when par. F-10 *Electronic Overload* is set for Electronic Thermal Overload TRIP 1, Electronic Thermal Overload TRIP 2, Electronic Thermal Overload TRIP 3, or Electronic Thermal Overload TRIP 4, and par. P-03 *Motor Current* is set for rated motor (nameplate) current.

The frequency converter DC link capacitors remain charged after power has been disconnected. To avoid an electrical shock hazard, disconnect the frequency converter from the mains before carrying out maintenance. Wait at least as follows before doing service on the frequency converter:

Voltage	Min. Waiting Time (Minutes)				
(V)	4	15	20	30	40
200 -	1.1 - 3.7	5.5 - 45 kW			
240	kW				
380 -	1.1 - 7.5	11 - 90 kW	110 - 250		315 - 1000
480	kW		kW		kW
525 -	1.1 - 7.5	11 - 90 kW			
600	kW				
525 -			110 - 400	450 - 1200	
690			kW	kW	

Be aware that there may be high voltage on the DC link even when the LEDs are turned off

1.2.1 Introduction

The Siemens Floor Level Network (FLN) is a master/ slave control network for serial communication with various control devices. The FLN controller is RS-485 compatible, half duplex, with an operating rate of 4800 or 9600 baud. Recommended wiring is shielded, twisted pair. The FLN software protocol is designed to be general in nature to accommodate any unique properties of each device type. The node address system allows up to 96 devices to be used on any one system.

The GE drive is a programmable frequency converter, which controls the operation of 3-phase, standard induction electrical motors in the HVAC industry. The drive control card has FLN communication protocol software built-in. The drive uses optical isolation for fault tolerance and noise immunity.

The FLN communicates directly with the drive via the RS-485 serial interface bus. In addition to being able to control the drive, most drive configuration and control parameters can be reviewed and changed through the FLN. Also, the operational status of the drive can be read and monitored through the bus. Diagnostic and operational information stored in the drive is easily available, such as kWh of energy used, total operation hours, drive status, motor speed, and many other useful items which can be accessed and monitored through the FLN.

The FLN is designed to communicate with any controller node that supports the interfaces defined in this document.

1.2.2 About this Manual

The documentation in this manual provides comprehensive information on the connection, programming, and startup of the drive for use with the FLN. It is intended as both an instruction and reference manual. Functions and features of the drive are also briefly reviewed to serve as a guideline to optimize your communication system. Read this manual before programming since important information is provided in each section. For detailed information on using the drive, see the Operating Instructions.

1.2.3 Assumptions

This manual assumes that the controller node supports the interfaces in this document and that all the requirements and limitations stipulated in the controller node and the drive are strictly observed. It is assumed that the user understands the general capabilities and limitation of the controller node and the drive.

1.2.4 Abbreviations and Standards

Abbreviations:	Terms:	SI-units:	I-P units:
α	Acceleration	m/s²	ft/s²
AWG	American wire gauge		
Auto Tune	Automatic Motor Tuning		
°C	Celsius		
1	Current	А	Amp
I _{LIM}	Current limit		
DCT	Drive Control Tool		
Joule	Energy	J = N•m	ft-lb, Btu
°F	Fahrenheit		
f	Frequency	Hz	Hz
kHz	Kilohertz	kHz	kHz
mA	Milliampere		
ms	Millisecond		
min	Minute		
M-TYPE	Motor Type Dependent		
Nm	Newton Metres		in-lbs
I _{M,N}	Nominal motor current		
f _{M,N}	Nominal motor frequency		
$P_{M,N}$	Nominal motor power		
U _{M,N}	Nominal motor voltage		
par.	Parameter		
PELV	Protective Extra Low Voltage		
Watt	Power	W	Btu/hr, hp
Pascal	Pressure	$Pa = N/m^2$	psi, psf, ft of water
linv	Rated Drive Output Current		
RPM	Revolutions Per Minute		
SR	Size Related		
Т	Temperature	С	F
t	Time	S	s,hr
T _{LIM}	Torque limit		
U	Voltage	V	V

Table 1.1: Abbreviation and Standards table

1.2.5 HP/kW Conversion

A conversion index for determining $k\!W$ and HP ratings is shown below.

kW	HP	kW	HP
0.25	0.33	45	60
0.37	0.5	55	75
0.55	0.75	75	100
0.75	1.0	90	125
1.1	1.5	110	150
1.5	2.0	132	175
2.2	3.0	160	200
3.0	4.0	200	300
4.0	5.0	250	350
5.5	7.5	315	350
7.5	10	355	450
11	15	400	500
15	20	450	600
18.5	25		
22	30		
30	40		
37	50		

2 Drive Functional Features

The FLN protocol built into the drive frequency converter allows programming of numerous features and monitoring of the drive via the serial bus and the standard RS-485 port. The drive also has the capability to control closed or open loop systems on its own and has been designed specifically for HVAC applications. Always accessible in real-time are the system status, what the motor and drive are doing, and if there are any problems. The drive continuously monitors all aspects of motor and drive status and issues alarms or warnings for adverse conditions. The FLN interacts with the drive based upon a point map database and the selected interface strategy. Many, but not all, drive features are accessible through the point map. See the *Operating Instructions* for more drive details. Table *Point Mapping* lists the map points and Table *Point database definitions* supplies definitions. Below is a review of some frequently used drive features and the associated point map numbers.

2.1.1 Drive Operation (F-64)

These points provide the FLN with operational status information such as output frequency, motor current, output voltage, power and energy. The run time in hours that power has been supplied to the motor is also stored for display, along with cumulative energy used in kWh.

2.1.2 Motor and Drive Thermal Protection (15, 16, 18)

The motor and drive are protected against thermal overload. The percentage of thermal load is displayed. Point 18 indicates if either the motor or drive thermal limit has been exceeded.

2.1.3 Set-up 1-4 and Day/Night operation (17, 29)

In the FLN system it is not recommended to operate in multible set-up. The drive should remain in Set-up 1 at all times.

The drive is capable of maintaining four independent program set-ups. Each set-up supports independent point map configurations. Seasonal changes, various acceleration or deceleration rates, or other operation modes can be accommodated. Point 17 indicates which setup is active. The set-up change is programmed through the drive's keypad or digital I/Os. Day/night operation is implemented in the point map (29).

2.1.4 Current Monitoring and Limits (19)

The maximum current that the drive provides to the motor can be limited. This tends to limit the torque that can be produced by the motor. Data point 19 indicates if the motor is operating at that current limit.

2.1.5 Direction of Rotation (XC-22)

The drive responds to serial commands to reverse direction of the motor. The drive can safely reverse motor rotation while in operation. Many applications benefit from this ability, such as vane axial fans reversed for smoke extraction or cooling towers for deicing. par. O-54 Reversing Select, must be set to serial communication for point 22 to command the feature.

2.1.6 Start/Stop (23)

To run the drive from the FLN or in Auto mode from the drive's digital control terminals, a start command must be given at data point 23. When a stop command is given at this point, the drive will only run in Hand mode.

2.1.7 Ramp Select (24)

Datapoint 24 selects the active ramp.

2.1.8 Freeze Mode (25, 26)

If desired, the frequency of the drive can be frozen at its present value. The mode is indicated by data point 25. It is an option available when serial interface is lost

2.1.9 Coast (27, 28)

The coast command (28) shuts down the inverter and makes the motor freewheeling, which normally brings it to stand still. The drive cannot be restarted in any mode before the coast command is removed. It is, therefore, often used as a safety interlock. Data point 27 indicates when the drive is coasted.

2.1.10 Motor Accel and Decel Rate (31, 32)

The time to accelerate or decelerate the drive between 0 Hz and the motor's nominal frequency can be programmed. The drive is capable of settings between one to 3600 seconds (one hour). Only Ramp1 is accessible from the FLN network.

2.1.11 Hand/Auto Modes (34)

The SEL HND.AUTO shows which mode the drive is in. The drive can be commanded into either Hand or Auto mode by pressing the respective keys on the keypad of the drive. Hand mode disables any programmed control strategies and allows the drive keypad to be used to set the drive speed. The only serial communication command that can override Hand mode is data point 28, CMD COAST.

2.1.12 Run Enable (35)

Set data point 35 to ON to run the drive from the FLN with default drive parameter settings. In the OFF mode, the drive will run only in Hand mode or in Auto mode from the drive's digital control terminals. par. O-53 Start Select, controls the interaction of point 35 and the digital run command.

2.1.13 Bus Functions (36, 37)

The amount of time the drive will wait between communication packets is programmable. If the time is exceeded, the drive will assume serial communication has stopped and respond with programmable choices. The drive can ignore the loss, freeze its current output, stop, run at a predetermined jog frequency, run at maximum output frequency or stop and trip while issuing an alarm. Wait time is selected at point 36 and the function after a timeout at point 37. See descriptions for par. E-74 Pulse Output Max Freq #29 and par. E-75 Terminal X30/6 Pulse Output Variable in the AF-600 FP Programming Guide.

2.1.14 Jog Frequency and Command (38, 39)

The Jog Frequency can be set by data point 38. Setting data point 39 to [On] will cause the frequency converter to send the Jog Frequency to the motor.

2.1.15 Relay Out 1, 2 (40, 41, 43, 44)

Two programmable relay outputs (Form C, 240 VAC, 2 Amp) are available. These can be triggered through the serial bus by command points 40 and 41. This allows the FLN to utilize the drive's built-in relays as additional network programmable relays. The data points 43 and 44 indicate whether the relay is triggered or not (On/Off). Parameters E-24.0 and E-24.1, Function Relay 1 and Function Relay 2, must be set to [45] Bus controlled, [46] Bus controlled 1, if timeout or [47] Bus controlled 0. if timeout.

2.1.16 PID Control Functions (61-65)

The drive has a sophisticated built-in proportional, integral, derivative (PID) controller. The PID controller is activated by setting par. H-40 Configuration Mode, to Closed loop through the drive's keypad.

The PID controller in the drive supports two feedback values and two setpoints. The feedback can be received in the form of network bus signals and/or standard 0-10 V transmitters. The 2 set-point controller is capable of controlling return fans based on a fixed differential flow, secondary pumping systems, and so on. This can be used to supplement the BMS system to save on points or capacity. For details on use of the two feedback/setpoint feature, refer to the *Operating Instructions*. Data points 43 and 44 show the status of an FLN command to the drive.

The points PI GAIN and PI TIME are gain parameters similar to the P and I gains in the FLN TECs. The GE PI loop is structured differently than the Siemens loop, so there is not a one-to-one correspondence between the gains. The following formulas allow translation between GE and Siemens gains.

Converting from GE PI gains to Siemens P and I gains:

$$P \ Gain_{SIEMENS} = PI \ Gain_{GE} \times 0.0015$$

$$I \ Gain_{SIEMENS} = \frac{PI \ Gain_{GE}}{PI \ Time_{GE}} \times 0.0015$$

Converting from Siemens P and I gains to GE PI gains:

$$PI~Gain_{GE} = P~Gain_{SIEMENS} \times 667$$

$$PI~Time_{GE} = \frac{P~Gain_{SIEMENS}}{I~Gain_{SIEMENS}}$$

2.1.17 Sleep Mode (59)

Sleep mode automatically stops the drive when demand is low over a period of time. When the system demand increases, the drive restarts the motor to reach the desired output. Sleep mode has great energy savings potential and saves wear and tear on equipment. Unlike a setback timer, the drive is always available to run when a preset "wakeup" demand is reached. See parameter group AP-4# Sleep Mode and AP-2# No-Flow Detection in the AF-600 FP Programming Guide for more detail.

2.1.18 Terminals 53, 54, (87-88)

Two analog voltage/current input terminals 53 and 54 (0-10 VDC)/(0-20 mA) are provided for reference or feedback signals. The applied electrical signal can be read by data points 87 to 88 in volts and mA. This can be very useful during commissioning to calibrate transmitters. This can also be used to convert any other analog transmitter in the installation into a digital bus signal, even if the signal is not used by the drive. In this case, the input terminal should be programmed to *No Function* so it does not influence the operation of the drive.

2.1.19 Warnings and Alarms (90-94)

The drive displays a warning or tripped by a fault condition. It also can retrieve the last warning or fault trip for display. The drive can be reset through the FLN serial bus to resume normal drive operation.

2.1.20 Error Status (99)

Data point 99 is implemented in the point map but is not used in this application.

3 Drive Network Strategies

The drive has its own internal PID closed loop controller. This can be turned on or off, depending on the requirements of the control strategy. A brief summary of possibilities follows. This is meant to illustrate possibilities rather than be all-inclusive. An actual application may combine features from a more than one of these strategies.

3.1.1 Strategy One

FLN Function - Monitor drive operation

Drive Control - From a conventional, hardwired system

Drive Mode - Open Loop.

The drive follows hard-wired run/stop signals. An external, hard-wired PID controller provides the drive with a speed reference signal. The FLN monitors the operation of the drive without control function.

Network Inputs to the drive:

Because the FLN is simply monitoring the operation of the drive, it provides no inputs.

Network Outputs from the drive:

The following points are monitored by the FLN to indicate system status. This list could be expanded or shortened, depending on the requirements of the system.

03 FREQ OUTPUT

08 POWER 10 KWH

23 STOP.RUN

92 OK.FAULT

3.1.2 Strategy Two

FLN Function - Control all aspects of frequency converter operation

Drive Control - From FLN

Drive Mode - Open Loop

The frequency converter follows run/stop and speed reference signals from the FLN. The FLN receives the feedback signal from the controlled system, compares this to a set-point value, and uses its own PID control loop to determine the required drive speed.

Network Inputs to the frequency converter:

The following drive points might be controlled by the FLN.

Speed Command:

53 B	US REF
------	--------

This is the speed reference command. This is set as a percentage of the drive's reference range, determined by par. F-52 *Minimum Reference* and par. F-53 *Maximum Reference*. Setting point 53 to 0 gives the drive a reference command equal to the value stored in par. F-53 *Maximum Reference*. Setting point 53 to 16384 gives the drive a reference command equal to the value stored in par. F-53 *Maximum Reference*. Intermediate values for point 53 change the reference linearly between these two values.

NB

In general, any other reference signal is added to the bus reference. Disable all other drive reference inputs when using a bus reference to control drive speed.

Start/Stop Command:

To give a start command from the FLN, the following points must be set. The frequency converter can also respond to discrete run/stop control signals that are hard wired to its control terminals. The point used to stop the Drive through the FLN determines the capability of these discrete command signals.

28 CMD COAST	In most cases, it is necessary to set this point to [NO] to make the drive run. If this is set to [COAST] while the drive is running, the drive will shut off immediately and the motor will coast to a stop. When set to [COAST], the lower right corner of the drive display shows UN. READY (unit ready). The drive will not start in either HAND mode or through discrete control signals until point 28 is set to [NO]. drive par. O-50 Coasting Select, can defeat this. See the AF-600 FP Operating Instructions for details. Because point 28 can keep the drive from
35 RUN ENABLE	operating in any mode, this is commonly used to provide a safety interlock function. In most cases, it is necessary to set this point [ON] to make the drive run. If this is set to [OFF] while the drive is running, the drive will decelerate to a stop. When set to [OFF], the lower right corner of the display shows STAND BY. When OFF, the drive can be started in HAND mode from the keypad. It can also be started using a hard-wired discrete run command, as when par. O-53 Start Select, is set to digital input.

Network Outputs from the drive:

The points listed in Strategy One are commonly used.

3.1.3 Strategy Three

FLN Function - Monitor frequency converter operation

Drive Control – From a hard-wired system, including system feedback

Drive Mode - Closed Loop

The frequency converter follows hard-wired run/stop signals. The Drive uses its internal PID controller to control motor speed. The feedback signal is hard wired to the analog input and the set-point is programmed into the drive. The FLN is used to monitor the status of the Drive and the value of the PID controller set-point and feedback.

Network Inputs to the frequency converter:

Because the FLN is simply monitoring the operation of the frequency converter, it provides no inputs.

Network Outputs from the frequency converter:

In addition to the points listed in Strategy One, it may be useful to monitor the following points related to the operation of the PID controller.

Feedback:

60 INPUT REF	This is the set-point for the PID controller. Please consult the AF-600 FP Design Guide for further information on how to set up the PID controller.
65 PI FEEDBACK	This is the value of the feedback signal in % for the PID controller.

3.1.4 Strategy Four

 $\textbf{FLN Function} - \text{Provide the frequency converter with set-point} \ \text{and feedback values using the PID controller to determine motor speed} \\$

Drive Control - From the FLN

Drive Mode - Closed Loop

The frequency converter follows run/stop signals from the FLN. The FLN receives the feedback signal from the controlled system. It sends this and the desired set-point to the PID controller. The frequency converter compares the feedback signal with the set-point and adjusts the speed of the Drive accordingly.

Network inputs to the frequency converter:

In addition to start/stop control, which was discussed in Strategy Two, the FLN provides the frequency converter with feedback and set-point information using the following points.

Feedback:

69 BUS FB 1	A value of -163.83 % represents the minimum feedback signal. A value of +163.83 % represents the maximum feedback
	signal. This should be the feedback used if only one feedback signal is supplied to the frequency converter.

NB!

If Drive terminal 53 is programmed by means of par. CL-00 *Feedback 1 Source*, for feedback, any signal applied to terminal 54 is added to value provided at point 73. Therefore, it is generally advisable not to program par. CL-00 *Feedback 1 Source* for feedback.

Example:

In a cooling tower application, the feed-back signal comes from a temperature sensor with a range of 40 °F to 140 °F. To unbundle bus feedback 2 (point 74) for the temperature sensor:

- Set par. CL-13 Minimum Reference/Feedb. to 40.
- 2. Set par. CL-14 Maximum Reference/Feedb. to 140.
- 3. Intercept = 40 (since the minimum feedback value is 40)
- 4. Slope can be calculated as follows:

Slope =
$$\frac{(Desired\ Range) \times (Slope\ of\ Existing\ Point)}{Range\ of\ Existing\ Point}$$
 = $\frac{(140\ -40) \times 0.1}{16383}$ = 0.00061

Set-point:

66 SET-POINT 1	This is the PID controller's set-point, expressed in the units that were chosen in par. $CL-02$ Feedback 1 Source Unit. It can be
	set to any value between par. F-52 Minimum Reference and par. F-53 Maximum Reference. If an attempt is made to set
	point 69 to a value outside of this range, the set-point will not be changed. SET-POINT 1 can also be programmed using
	par. CL-21 Setpoint 1.
67 SET-POINT 2	This PID controller's set-point is used for applications, where multible feedback signals will be compared to independent
	set-points. Refer to the AF-600 FP Programming Guide for more details. SET-POINT 2 is expressed in the units selected in
	par. F-53 Maximum Reference. If an attempt is made to assign point 70 to a value outside of this range, the set-point will
	not change. Set-point 2 can also be programmed using par. CL-22 Setpoint 2.

PID Controller Adjustments:

The following points adjust the operation of the PID control loop. They are generally set during start-up and only adjusted if changes in the system require it. These values can also be set using parameters. See the AF-600 FP Programming Guide for more details.

61 PI START FREQ (par. CL-83 <i>PID Start</i> Speed (Hz])	This sets the frequency to which the Drive will accelerate following a start command. After it reaches this frequency, the frequency converter will activate its PID controller. Point 61 can have a value between the drive's minimum frequency (as set in par. F-16 Motor Speed Low Limit [Hz]) and its maximum frequency (as set in par. F-17 Motor Speed High Limit [RPM]). If an attempt is made to set point 61 to a value outside of this range, the drive value will not change.
63 PI GAIN (par. CL-93 PID Proportional Gain)	This sets the value of proportional gain for the PID controller. It can have a value between 0 and 10.
65 PI GAIN LIMIT (par. CL-96 PID Diff. Gain Limit)	This sets the maximum derivative gain for the PID controller. It can have a value between 5 and 50.
65 FB FUNCTION (par. CL-20 Feedback	This sets how the PID controller responds to the Drive's two feedback signals. Its value is an integer between 0
Function)	and 6. Refer to the AF-600 FPProgramming Guide for the list of choices and an explanation of each.

Network Outputs from the drive:

The points listed in Strategy One are commonly used.

4 Drive Special Functions

4.1.1 Special Functions

In addition to the control strategies described above, the drive provides additional control flexibility to allow it to integrate into special control system requirements. The following are just a few examples.

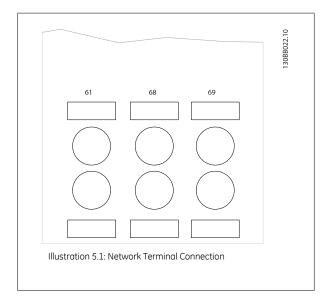
4.1.2 Analog Input Monitoring

Points 87 and 88 can be used to monitor the value of the analog control signals applied to terminals 53 and 54. These points are active even when NO FUNCTION is programmed for the analog input of the drive. As a result, it is possible to use the frequency converter analog inputs as analog input for the FLN.

4.1.3 Drive Relay Control

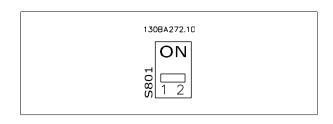
While relay 1 and 2 in the Drive usually provide drive status indications, these indications are generally not needed, when the drive is connected to a FLN network. In some applications, it can be useful to have the FLN control these relays. For example, by controlling one of the relays, the FLN could select the active pump in a pump sequencing system. For the FLN to control a drive relay, the appropriate Drive parameter (E-24.0 or E-24.1) must be set to [Bus Control]. Setting relay 1 or 2 to [On] will then activate the corresponding relay.

5 Network Connection


5.1.1 Network Connection

Connect the frequency converter to the RS-485 network as follows (see also diagram):

- 1. Connect signal wires to terminal 68 (P+) and terminal 69 (N-) on the main control board of the frequency converter.
- 2. Connect the cable screen to the cable clamps.


NB!

Screened, twisted-pair cables are recommended in order to reduce noise between conductors.

5.1.2 Frequency Converter Hardware Setup

Use the terminator dip switch on the main control board of the frequency converter to terminate the RS-485 bus.

Terminator Switch Factory Setting

NB!

The factory setting for the dip switch is OFF.

5.1.3 Electrical installation

NB!

Electrical installation: Please see AF-600 FP Operating Instructions.

6 Parameters

6.1.1 Parameter Settings

The frequency converter has a unique FLN address, which is transmitted over the RS-485 serial bus. The network will recognize the Drive, which may then be programmed for setup options. The parameters listed in the table below need to be set for each Drive on the FLN network. FLN communication related parameters can only be set by using the Keypad.

NB!

As a minimum, it is required to set par. O-30 *Protocol* to FLN; par. O-31 *Address*, to the proper address and par. O-32 *Drive Port Baud Rate* to the proper baud rate. (See AF-600 FP Programming Guide).

Par. O-50 Coasting Select through par. O-56 Preset Reference Select are options that select control of the drive through the digital and/or the FLN serial port.

Parameter	Default	Desired setting
*par. O-03 Control Word Timeout Time	0	
*par. O-04 Control Word Timeout Function	Off	
*par. O-30 Protocol	Drive	FLN
*par. O-31 Address	1 through 98	
*par. O-32 Drive Port Baud Rate	4800	4800 or 9600
**par. O-50 Coasting Select	Logic or	
**par. O-52 DC Brake Select	Logic or	
**par. O-53 Start Select	Logic or	
**par. O-54 Reversing Select	Digital input	
**par. O-55 Set-up Select	Logic or	
**par. O-56 Preset Reference Select	Logic or	

Table 6.1: Frequency converter parameter settings

- * Minimum parameters, which must be set to operate the frequency converter via the FLN serial interface.
- ** When [Digital input] or [Logic or] is selected, digital inputs may interfere with serial bus commands. The setting [Serial communication] allows serial bus commands to be carried out only. See the AF-600 FP Programming Guide for detailed descriptions.

NB!

The frequency converter can store preset references programmed in parameters C-10.0 through C-10.7, Multi-Step Frequency (1-8). To avoid these values modifying serial bus references, set par. F-54 Reference Function to [External/Preset]. See AF-600 FP Programming Guide for detailed descriptions.

7 Start-up and Troubleshooting

7.1 Start-up

7.1.1 Start-up of FLN Control

This procedure assumes that the frequency converter has been installed properly and is operational in Hand control mode. It also assumes the Siemens FLN data bus is connected to an operational controller. Start the Drive in accordance with the following procedure.

- 1. Ensure that the assumptions in this procedure are correct.
- 2. Check that the network connections are securely fastened in accordance with Figure Network Terminal Connection

Verify compliance with all safety requirements listed in this manual.

- 3. Apply power to the frequency converter.
- 4. Ensure that the minimum settings listed in Table *Drive Parameter Settings* are selected.
- 5. Ensure that the switch positions in Figure Drive Terminator Switch Factory Settingare set correctly.
- 6. Optional settings may be changed to meet or enhance frequency converter operation, depending on the application requirements.
- For FLN control of the drive, press the AUTO key on the Keypad. Drive operation can then be controlled through the host network device in accordance with its operation instructions.

NB!

Default setting for point number 35, Run Enable, is [OFF]. Drive will not operate until Run Enable [ON] signal is given through serial communication network.

7.2 Troubleshooting

7.2.1 Faults, Warnings and Alarms

A stopped motor may start unexpectedly if faults occur in electronics of drive, or if an active fault clears, such as a fault in supply AC line, fault in motor connection or overload.

The frequency converter output faults, warnings and alarms on the FLN serial bus in a numerical code. The code numbers are described in Table Faults, Warnings and Alarms Description. The Reset key is used for manually resetting the drive after an alarm (fault trip). In this case, the top line of the display will show TRIP (RESET). If the top line of the display shows TRIPLOCK (DISC. MAINS), input power to the drive must be cycled off and on again before the trip can be reset.

Refer to the AF-600 FP Operating Instructions for detailed descriptions.

7.2.2 Alarms and warnings

A warning or an alarm is signalled by the relevant LED on the front of the frequency converter and indicated by a code on the display.

A warning remains active until its cause is no longer present. Under certain circumstances operation of the motor may still be continued. Warning messages may be critical, but are not necessarily so.

In the event of an alarm, the frequency converter will have tripped. Alarms must be reset to restart operation once their cause has been rectified. This may be done in four ways:

- 1. By using the [RESET] control button on the Keypad.
- 2. Via a digital input with the "Reset" function.
- 3. Via serial communication/optional network.
- 4. By resetting automatically using the [Auto Reset] function, which is a default setting for frequency converter. see par. H-04 Auto-Reset (Times) in AF-600 FP Programming Guide,

NB!

After a manual reset using the [RESET] button on the Keypad, the [AUTO] button must be pressed to restart the motor.

If an alarm cannot be reset, the reason may be that its cause has not been rectified, or the alarm is trip-locked (see also table on following page).

Alarms that are trip-locked offer additional protection, means that the mains supply must be switched off before the alarm can be reset. After being switched back on, the frequency converter is no longer blocked and may be reset as described above once the cause has been rectified.

Alarms that are not trip-locked can also be reset using the automatic reset function in par. H-04 Auto-Reset (Times) (Warning: automatic wake-up is possible!)

If a warning and alarm is marked against a code in the table on the following page, this means that either a warning occurs before an alarm, or it can be specified whether it is a warning or an alarm that is to be displayed for a given fault.

This is possible, for instance, in par. F-10 *Electronic Overload*. After an alarm or trip, the motor carries on coasting, and the alarm and warning flash on the frequency converter. Once the problem has been rectified, only the alarm continues flashing.

No.	Description 10 Volts low	Warning X	Alarm/Trip	Alarm/Trip Lock	Parameter Reference
2	Live zero error	(X)	(X)		Par. AN-01 Live Zero Time- out Function
3	No motor Mains phase loss	(X) (X)	(X)	(X)	Par. H-80 Function at Stop Par. SP-12 Function at Line
5	DC link voltage high	X			Imbalance
6	DC link voltage low	Х			
7	DC over voltage	X	Χ		
8	DC under voltage	X	X		
9	Inverter overloaded	X	X		
10	Motor Electronic Overload over temperature	(X)	(X)		Par. F-10 Electronic Over- load
11	Motor thermistor over temperature	(X)	(X)		Par. F-10 Electronic Over- load
12	Torque limit	X	X		
13	Over Current	X	X	X	
14	Earth fault	X	X	X	
15	Incomp. HW		X	X	
16	Short Circuit		X	X	
17	Control word timeout	(X)	(X)		Par. O-04 Control Word Timeout Function
23	Internal fans				
24	External fans				
25	Brake resistor short-circuited	Х			
26	Brake resistor power limit	(X)	(X)		Par. B-13 Braking Thermal Overload
27	Brake chopper short-circuited	X	X		
28	Brake check	(X)	(X)		Par. B-15 Brake Check
29	Power board over temp	X	X	X	
30	Motor phase U missing	(X)	(X)	(X)	Par. H-78 Missing Motor Phase Function
31	Motor phase V missing	(X)	(X)	(X)	Par. H-78 Missing Motor Phase Function
32	Motor phase W missing	(X)	(X)	(X)	Par. H-78 Missing Motor Phase Function
33	Inrush fault		X	X	Thase Function
34	Network communication fault	Χ	X	<i>n</i>	
35	Option fault	Λ	X		
36	Mains failure				
38	Internal fault		X	X	
40	Overload T27			^	
41	Overload T29				
42	Overload X30/6-7				
47	24 V supply low	X	X	X	
48	1.8 V supply low	7,	X	X	
49	Speed limit			.,	
50	Auto Tune calibration failed		X		
51	Auto Tune check U _{nom} and I _{nom}		X		
52	Auto Tune low Inom		X		
53	Auto Tune motor too big		X		
54	Auto Tune motor too small		X		
55	Auto Tune parameter out of range		X		
56	Auto Tune interrupted by user		X		
57	Auto Tune timeout		X		
58	Auto Tune internal fault	X	X		
59	Current limit	X			
60	External interlock				
62	Output Frequency at Maximum Limit	X			
64	Voltage Limit	X			
65	Control Board Over-temperature	X	X	X	
66	Heat sink Temperature Low	X			
67	Option Configuration has Changed		X		
70	Illegal Drive configuration				
80	Drive Initialised to Default Value		X		
92	No-Flow	X	X		Par. AP-2#
93	Dry Pump	X	X		Par. AP-2#
94	End of Curve	X	X		Par. AP-5#
95	Broken Belt	X	X		Par. AP-6#
96	Start Delayed	X			Par. AP-7#
97	Stop Delayed	X			Par. AP-7#
					, 0 / //

Table 7.1: Alarm/Warning code list

200 Fire Mode X FB-0# 201 Fire Mode was Active X K-7# 202 Fire Mode Limits Exceeded X K-7# 250 New spare part K-7#	No.	Description	Warning	Alarm/Trip	Alarm/Trip Lock	Parameter Reference
202 Fire Mode Limits Exceeded X K-7# 250 New spare part	200	Fire Mode	X			FB-0#
250 New spare part	201	Fire Mode was Active	X			K-7#
	202	Fire Mode Limits Exceeded	X			K-7#
		New spare part				
251 New model number	251	New model number				

Table 7.2: Alarm/Warning code list, continued..

(X) Dependent on parameter

LED indication	
Warning	yellow
Alarm	flashing red
Trip locked	yellow and red

Bit	Hex	Dec	Alarm Word	Warning Word	Extended Status Word
0	00000001	1	Brake Check	Brake Check	Ramping
1	00000002	2	Pwr. Card Temp	Pwr. Card Temp	Auto Tune Running
2	00000004	4	Earth Fault	Earth Fault	Start CW/CCW
3	8000000	8	Ctrl.Card Temp	Ctrl.Card Temp	Slow Down
4	00000010	16	Ctrl. Word TO	Ctrl. Word TO	Catch Up
5	00000020	32	Over Current	Over Current	Feedback High
6	00000040	64	Torque Limit	Torque Limit	Feedback Low
7	0800000	128	Motor Th Over	Motor Th Over	Output Current High
8	00000100	256	Motor Electronic Overload Over	Motor Electronic Overload Over	Output Current Low
9	00000200	512	Inverter Overld.	Inverter Overld.	Output Freq High
10	00000400	1024	DC under Volt	DC under Volt	Output Freq Low
11	00000800	2048	DC over Volt	DC over Volt	Brake Check OK
12	00001000	4096	Short Circuit	DC Voltage Low	Braking Max
13	00002000	8192	Inrush Fault	DC Voltage High	Braking
14	00004000	16384	Mains ph. Loss	Mains ph. Loss	Out of Speed Range
15	0008000	32768	Auto Tune Not OK	No Motor	OVC Active
16	00010000	65536	Live Zero Error	Live Zero Error	
17	00020000	131072	Internal Fault	10V Low	
18	00040000	262144	Brake Overload	Brake Overload	
19	00080000	524288	U phase Loss	Brake Resistor	
20	00100000	1048576	V phase Loss	Brake IGBT	
21	00200000	2097152	W phase Loss	Speed Limit	
22	00400000	4194304	Network Fault	Network Fault	
23	00800000	8388608	24 V Supply Low	24V Supply Low	
24	01000000	16777216	Mains Failure	Mains Failure	
25	02000000	33554432	1.8V Supply Low	Current Limit	
26	04000000	67108864	Brake Resistor	Low Temp	
27	08000000	134217728	Brake IGBT	Voltage Limit	
28	10000000	268435456	Option Change	Unused	
29	20000000	536870912	Drive Initialised	Unused	
30	40000000	1073741824	Safe Stop	Unused	

Table 7.3: Description of Alarm Word, Warning Word and Extended Status Word

The alarm words, warning words and extended status words can be read out via serial bus or optional field-bus for diagnosis. See also par. DR-90 Alarm Word, par. DR-92 Warning Word and par. DR-94 Ext. Status Word.

7.2.3 Point Mapping Table

Par. No.	0-31	1	DR-13	DR-15	DR-02	DR-14	DR-39	DR-10	DR-11	ID-02	ID-02	ID-01	DR-30	DR-12	DR-18	DR-35	K-10	DR-34	DR-03 [14]	
Read Only	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	<u>8</u>
Class Type (Note 1)	LAO	LAO	ΓA	F	LAI	LAI	R	P	LAI	Z	LAI	Z	LAI	₹	ΓΑΙ	P	ΓΑΙ	LAI	rDI	LAO
Point type	2	2	8	3	3	3	23	2	3	3	3	23	3	м	к	23	23	82	3	2
Min value (SI)	0	0	0	-163,83	-1638,3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Max vaue (SI)	255	16383	1638,3	163,83	1638,3	3276,7	255	3276,7	3276,7	1023	32767	131068	4095	4095	255	255	255	255	255	255
Range	255	16383	16383	32767	32767	32767	255	32767	32767	1023	32767	32767	4095	4095	255	255	255	255	255	255
Off text			1			•		1		1	1	1				1	1	•	O,	1
On text	,	1	1	•		•		1		1	1	ı	1	,		1	1		LIMIT	
Intercept (SI)	0	0	0	-163,83	-1638,3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Slope (SI)	⊣	1	0,1	0,01	0,1	0,1	⊣	0,1	0,1	Н	Н	4	П	Н	Н	1	Т	₽	Н	\leftarrow
Engr. Unit (SI)			ZH	PCT	PCT	∢	DEG C	Ϋ́	H	KWH	ММН	¥	>	>	PCT	PCT	1	DEG C	1	HRS
Factory default (SI)	0	2746	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ö	0
Descriptor	CTRL AD- DRESS	APPLICATION	FREQ OUT- PUT	PCT OUTPUT	REF PCT	CURRENT	CTRL.CRD.TM P	POWER KW	POWER HP	KWH	ММН	RUN TIME	DC BUS VOLT	OUTPUT	MOTOR	DRIVETHERM	ACTIVE SET- UP	HEATSINK	CUR.LIM.STA T	OVRD TIME
Point no.	П	2	{3}	(4)	{2}	{9}	{\2}	{8}	(6)	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}	{18}	{19}	50

Par. No.	Note[3]	CTW [15]	DR-03 [11]	CTW [09]	DR-95[14]	CTW [05]	DR-00 [03]	CTW [03]		F-07	F-08	DR-95[01]	CTW [06]	0-03	0-04	C-20	CTW [08]	CTW [11]
Read Only	Yes	o N	Yes	o N	Yes	No No	Yes	oN N	o N	N _O	No	Yes	o N	o N	o N	N _o	No	No
Class Type	ICN	ПРО	ā	007	9	CDO	9	007	ГРО	LAO	LAO		ГРО	LAO	LAO	LAO	CDO	CDO
Point type	3	1	2	⊣	2	⊣	23	⊣	н	⊣	Н	2	н	1	н	⊣	Н	⊣
Min value (SI)	0	0	0	0	0	0	0	0	0	1	Н	0	0	1	0	0	0	0
Max vaue (SI)	255	255	255	255	255	255	255	255	255	3600	3600	255	255	18000	10	1638,3	255	255
Range	255	255	255	255	255	255	255	255	255	4095	4095	255	255	32767	255	16383	255	255
Off text	FWD	FWD	STOP	RAMP1	OFF	OFF	COAST	COAST	DAY	1		AUTO	STOP	1		1	9	OFF
On text	REV	REV	RUN	RAMP2	NO	NO	OFF	OFF	NIGHT	1		HAND	RUN	1	ı	1	YES	NO
Intercept (SI)	0	0	0	0	0	0	0	0	0	П	Н	0	0	1	0	0	0	0
Slope (SI)	1	1	₽	⊣	⊣	┐	⊣	⊣	н	⊣	⊣	⊣	н	1	н	0,1	⊣	П
Engr. Unit (SI)	-	1	,			1		1		SEC	SEC	1		SEC		H		
Factory default (SI)	FWD	FWD	STOP	RAMP1	OFF	OFF	OFF	OFF	DAY	0* (Note 4)	0* (Note 4)	AUTO	STOP	*0	0 (Note 6)	10.0	ON	OFF
Descriptor	FWD.REV	CMD FWD.REV	RUN.STOP	RAMP SELECT	FREEZE OUT	CMD FREEZE	COASTING	CMD COAST	DAY.NIGHT (Note 2)	ACCEL TIME 1			CMD RUN.STOP	BUS TIME- OUT	BUS FUNC- TION	JOG FREQ	CMD JOG	CMD.RELAY 1
Point no.	{21}	{22}	{23}	{54}	{52}	{56}	{27}	{58}	59	{31}	{32}	{34}	{35}	{36}	{37}	{38}	{39}	{40}

Par. No.	CTW [12]	AN-53	DR-71 [04]	DR-71[03]	DR-65	DR-60[05]	DR-60[04]	DR-60[03]	DR-60[02]	DR-60[01]	DR-60[00]	DR-03[08]	REF	E-10	E-11	BP-00	BP-10	BP-01	16-94 DR-94[21]	BP-02
Read Only	N _o	S N	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No No	No	No No	Yes	No	Yes	No
Class Type	CDO	LAO	IOI		LAI	<u></u>	g		ā	ĪQ.	g		LAO	LAO	LAO	007	LAI	LAO	IQI	LAO
Point type	IJ	7	3	23	23	23	23	м	8	23	3	8	⊣	7	П	1	23	П	8	1
Min value (SI)	0	0	0	0	0	0	0	0	0	0	0	0	0	⊣	П	0	0	0	0	0
Max vaue (SI)	255	163,83	255	255	40,95	255	255	255	255	255	255	255	200	3600	3600	255	32767	30	255	300
Range	255	16383	255	255	4095	255	255	255	255	255	255	255	32767	4095	4095	255	32767	4095	255	4095
Off text	OFF	1	OFF	OFF		OFF	OFF	OFF	OFF	OFF	OFF	OFFREF	1	1		DRIVE		ı	ON	
On text	NO	1	NO	NO		NO	NO	NO	NO	NO	NO	ON.REF		1		BYPASS		1	SLEEP	
Intercept (SI)	0	0	0	0	0	0	0	0	0	0	0	0	0	⊣	⊣	0	0	0	0	0
Slope (SI)	П	0,01	П	П	0,01	Н	Т	-1	⊣	П	П	1	0,01	П	-	П	-	Н	Н	\leftarrow
Engr. Unit (SI)	1	PCT	1	1	MA	1	1			1	1	1	PCT	SEC	SEC	1		SEC	ı	SEC
Factory default (SI)	OFF	0	OFF	OFF	0	OFF	OFF	OFF	OFF	OFF	OFF	OFFREF	0	*0	*0	DRIVE	0	30	ON	0
Descriptor	CMD.RELAY 2	CMD A01	RELAY 1 STAT	RELAY 2 STAT	AO1 STAT	DI 18 STAT	DI 19 STAT	DI 27 STAT	DI 29 STAT	DI 32 STAT	DI 33 STAT	AT SPEED	CMD REF	ACCEL TIME 2	DECEL TIME 2	BYPASS CMD	BYPASS STAT	BO START DLY	SLEEP STA- TUS	BO TRIP DLY
Point no.	{41}	{45}	{43}	{444}	{45}	{46}	{44}	{48}	{46}	{20}	{51}	{25}	{23}	{24}	{22}	{26}	{22}	{28}	{65}	{09}

Par. No.	CL-83	CL-83	CL-93	CL-94	DR-05	CL-21	CL-22	CL-23	0-94	0-95	96-0	DR-03 [13]	DR-03 [12]	DR-03 [10]	DR-94[25]	DR-94[15]	
Read Only	No	Yes	N _o	8	Yes	N O	No	N _o	No	8	No	Yes	Yes	Yes	Yes	Yes	
Class Type	LAO	P	LAO	LAO	P	LAO	LAO	LAO	LAO	LAO	LAO	IQI	IOI	9	IDI	9	
Point type	П	23	⊣	1	3	П	П	1	1	⊣	Т	М	3	23	3	23	
Min value (SI)	0	0	0	0,01	-163,83	-1638,3	-1638,3	-1638,3	-163,83	-163,83	-163,83	0	0	0	0	0	
Max vaue (SI)	1638,3	1638,3	10	10000	163,83	1638,3	1638,3	1638,3	163,83	163,83	163,83	255	255	255	255	255	
Range	16383	16383	1023	32767	32767	32767	32767	32767	32767	32767	32767	255	255	255	255	255	
Off text	1			1	ı	ı	ı					Š	š	OUTRNG	NORM	NORM	
On text	ı			1	ı	ı	ı					LIMIT	STALL	IN.RNG	FIRE	OVC	
Intercept (SI)	0	0	0	0,01	-163,83	-1638,3	-1638,3	-1638,3	-163,83	-163,83	-163,83	0	0	0	0	0	
Slope (SI)	0,1	0,1	0,01	0,3051848	0,01	0,1	0,1	0,1	0,01	0,01	0,01	⊣	₽	П	⊣	⊣	
Engr. Unit (SI)	HZ	Hz	ı	SEC	PCT	LINIT	TINU	TINO	PCT	PCT	PCT					1	
Factory default (SI)	0	0	0,5	20	0	0	0	0	0	0	0	Š	š	OUTRNG	NORM	NORM	
Descriptor	PI STRT FREQ (Note 3)	PI STRT FR.S	PIGAIN	PIITIME	FEEDBACK	SETPOINT 1 (Note 3)	SETPOINT 2 (Note 3)	SETPOINT 3	BUS FBK 1	BUS FBK 2	BUS FBK 3	VOLTAGE STAT	INVERT STAT	FREQ STAT	FIREM. STAT	OVC ACTIVE	
Point no.	{61}	{62}	{63}	{64}	{65}	{99}	{67}	{89}	{69}	{20}	{71}	{9 <i>L</i> }	{27}	{48}	{62}	{80}	

Par. No.	DR-94[00]	DR-95 [15]	DR-95 [16]	DR-61	DR-63	DR-00[04]	DR-62	DR-64	DR-01	DR-03 [07]	DR-03 [06]	DR-03 [03]	ID-30[0]	CTW [07]	1D-06	ID-07	C-20	
Read Only	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	N _O	9N	_N	Yes	Yes
Class Type	IDI	IOI	ī	ī	IOI	ГО	LAI	R	P	IOI	ī	ГD	LAI	ГРО	CDO	ГРО	LAI	_
Point type	3	м	3	23	3	23	8	М	2	2	3	8	8	Н	П	-1	3	LA
Min value (SI)	0	0	0	0	0	0	0	0	-1638,3	0	0	0	0	0	0	0	0	0 3
Max vaue (SI)	255	255	255	255	255	255	32,767	32,767	1638,3	255	255	255	255	255	255	255	1638,3	255
Range	255	255	255	255	255	255	32767	32767	32767	255	255	255	255	255	255	255	16383	255
Off text	NORM	NORM	NORM	CURR	CURR	NORM	ı	,		Š	NOLOCK	X	ı	OFF	ON ON	NO NO		
On text	RAMP	REQ	JOG	VOLT	VOLT	Q.STOP	ı			WARN	LOCK	ALARM	ı	RESET	RESET	RESET		
Intercept (SI)	0	0	0	0	0	0	0	0	-1638,3	0	0	0	0	0	0	0	0	0
Slope (SI)	1	⊣	₽	П	⊣	Н	0,001	0,001	0,1	\vdash	₽	1	⊣	⊣	П	₽	0,1	₽
Engr. Unit (SI)					ı		V.MA	V.MA	LINI			1	ı	1		1	HZ	
Factory default (SI)	NORM	NORM	NORM	CURR	CURR	NORM	0	0	0	Š	NOLOCK	Š	0 (Note 8)	OFF	ON ON	ON ON	0	0
Descriptor	RAMPING	RUN RE- QUEST	JOGGING	TERM. 53 TYP	TERM. 54 TYP	Q.STOP STAT	TERM 53 STAT	TERM 54 STAT	REF UNIT	WARNING	TRIP LOCK	ALARM	LAST ALARM	RESET ALARM	RESET KWH	RESET R.HRS	JOG FREQ.S	ERROR STA- TUS (Note 2)
Point no.	{81}	{82}	{83}	{84}	{82}	{86}	{87}	{88}	{88}	{06}	{61}	{65}	{693}	{664}	{66}	{96}	{65}	66

7.3 Start-up

7.3.1 Start-up of FLN Control

This procedure assumes that the frequency converter has been installed properly and is operational in Hand control mode. It also assumes the Siemens FLN data bus is connected to an operational controller. Start the Drive in accordance with the following procedure.

- 1. Ensure that the assumptions in this procedure are correct.
- 2. Check that the network connections are securely fastened in accordance with Figure Network Terminal Connection

Verify compliance with all safety requirements listed in this manual.

- 3. Apply power to the frequency converter.
- 4. Ensure that the minimum settings listed in Table Drive Parameter Settings are selected.
- 5. Ensure that the switch positions in Figure *Drive Terminator Switch Factory Settingare* set correctly.
- 6. Optional settings may be changed to meet or enhance frequency converter operation, depending on the application requirements.
- 7. For FLN control of the drive, press the AUTO key on the Keypad. Drive operation can then be controlled through the host network device in accordance with its operation instructions.

NB!

Default setting for point number 35, Run Enable, is [OFF]. Drive will not operate until Run Enable [ON] signal is given through serial communication network.

The instructions do not purport to cover all details or variations in equipment nor to provide for every possible contingency to be met in connection with installation, operation or maintenance. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser's purposes, the matter should be referred to the GE company.

AF-600 FP is a trademark of the General Electric Company.

GE Consumer & Industrial 41 Woodford Avenue Plainville, CT 06062

www.geelectrical.com/drives

