CUE, 0.55 - 90 kW

Installation and operating instructions

be think innovate

CUE, 0.75 - 125 Hp

English (US) nstallation and operating instructions	4
Français (CA) Notice d'installation et de fonctionnement	48
Español (MX) nstrucciones de instalación y operación	93

Original installation and operating instructions

CONTENTS

		Page
1.	Symbols used in this document	4
2.	Introduction	4
2.1	General description	4
2.2	Applications	4
2.3	References	5
3.	Safety and warnings	5
3.1	Warning	5
3.Z	Safety regulations	5
3.3	Reduced performance under certain conditions	5
л. Л	Identification	6
ч. 41	Namenlate	6
4.2	Packaging label	6
5.	Mechanical installation	6
5.1	Receipt and storage	6
5.2	Transportation and unpacking	6
5.3	Space requirements and air circulation	6
5.4	Mounting	7
6.	Electrical connection	7
6.1	Electrical protection	7
6.2	Mains and motor connection	8
6.3	Connecting the signal terminals	11
0.4 6.5	Connecting the MCR 114 sensor input module	15
6.6	EMC-correct installation	10
6.7	RFI filters	17
6.8	Output filters	18
6.9	Motor cable	18
7.	Operating modes	19
8.	Control modes	19
8.1	Uncontrolled operation (open loop)	19
8.2	Controlled operation (closed loop)	19
9.	Menu overview	20
10.	Setting by means of the control panel	22
10.1	Control panel	22
10.2	Back to factory settings	23
10.3	CUE settings	23
10.4	Start-up guide	23
10.5	OPERATION	21
10.7	Menu STATUS	29
10.8	Menu INSTALLATION	32
11.	Setting by means of PC Tool E-products	39
12.	Priority of settings	39
12.1	Control without bus signal, local operating mode	39
12.2	Control with bus signal, remote-controlled operating	
	mode	39
13.	External control signals	40
13.1	Digital inputs	40
13.2	External setpoint	40
13.3	Other hus standards	41
10.4	Maintenance and convice	41
14. 14.1		41 1
14.2	Service parts and service kits	41 ⊈1
15	Troubleshooting	<u></u>
15.1	Warning and alarm list	41
15.2	Resetting of alarms	42

15.3	Indicator lights	42
15.4	Signal relays	42
16.	Technical data	43
16.1	Enclosure	43
16.2	Cable gland	43
16.3	Main dimensions and weights	44
16.4	Surroundings	44
16.5	Terminal tightening torques	45
16.6	Cable length	45
16.7	Fuses and cable gauge size	45
16.8	Inputs and outputs	47
16.9	Sound pressure level	47
17.	Disposal	47

Warning

Prior to installation, read these installation and operating instructions. Installation and operation must comply with local regulations and accepted codes of good practice.

1. Symbols used in this document

ensure safe operation.

Warning If these safety instructions are not observed, it may

result in personal injury.

Note

If these safety instructions are not observed, it may Caution result in malfunction or damage to the equipment.

Notes or instructions that make the job easier and

2. Introduction

This manual introduces all aspects of your Grundfos CUE frequency converter in the power range of 1.8 to 177A (0.55 to 90 kW).

Always keep this manual close to the CUE.

2.1 General description

CUE is a series of external frequency converters especially designed for pumps.

Thanks to the start-up guide in the CUE, the installer can guickly set central parameters and put the CUE into operation.

Connected to a sensor or an external control signal, the CUE will quickly adapt the pump speed to the actual demand.

2.2 Applications

The CUE series and Grundfos standard pumps are a supplement to the Grundfos E-pumps range with integrated frequency converter.

A CUE solution offers the same E-pump functionality cases:

- in the supply voltage or power ranges not covered by the Epump range
- in applications where an integrated variable frequency drive is not desirable or permissible.

English (US)

2.3 References

Technical documentation for Grundfos CUE:

- The manual contains all information required for putting the CUE into operation.
- The data booklet contains all technical information about the construction and applications of the CUE.
- The service instructions contain all required instructions for dismantling and repairing the variable frequency drive.

Technical documentation is available at www.grundfos.com > Grundfos Product Center.

If you have any questions, please contact the nearest Grundfos company or service workshop.

3. Safety and warnings

3.1 Warning

Warning

Any installation, maintenance and inspection must be carried out by trained personnel.

Warning

Touching the electrical parts may be fatal, even after the CUE has been switched off.

Before performing any work on the CUE, the mains supply and other input voltages must be switched off at least for as long as stated below.

Voltage	Min. waiting time		
	4 minutes	15 minutes	20 minutes
200-240 V	1-5 Hp (0.75 - 3.7 kW)	7.5 - 60 Hp (5.5 - 45 kW)	
380-500 V	0.75 - 10 Hp (0.55 - 7.5 kW)	15-125 Hp (11-90 kW)	
525-600 V	1-10 Hp (0.75 - 7.5 kW)		
525-690 V			15-125 Hp (11-90 kW)

Wait only for shorter time if stated so on the nameplate of the CUE in question.

3.2 Safety regulations

- The on/off button of the control panel does not disconnect the CUE from the power supply and must therefore not be used as a safety switch.
- The CUE must be grounded correctly and protected against indirect contact according to local regulations.
- · The leakage current to ground exceeds 3.5 mA.
- Enclosure class NEMA 1 must not be installed freely accessible, but only in a panel.
- Enclosure class NEMA 12 must not be installed outdoors without additional protection against weather conditions and the sun.
- Always observe national and local regulations as to cable gauge size, short-circuit protection and overcurrent protection.

3.3 Installation requirements

The general safety necessitates special considerations as to these aspects:

- fuses and switches for overcurrent and short-circuit protection
- selection of cables (mains current, motor, load distribution and relay)
- net configuration (IT, TN, grounding)
- · safety on connecting inputs and outputs (PELV).

3.3.1 IT mains

Do not connect 380-500 V CUE variable frequency drive to mains supplies with a voltage between phase and ground of more than 440 V.

In connection with IT mains and grounded delta mains, the mains voltage may exceed 440 V between phase and ground.

3.3.2 Aggressive environment

Warning

The CUE should not be installed in an environment where the air contains liquids, particles or gases which may affect and damage the electronic components.

The CUE contains a large number of mechanical and electronic components. They are all vulnerable to environmental impact.

3.4 Reduced performance under certain conditions

The CUE will reduce its performance under these conditions:

- low air pressure (at high altitude)
- · long motor cables.

The required measures are described in the next two sections.

3.4.1 Reduction at low air pressure

Warning

At altitudes above 6600 ft. (2000 m), the PELV requirements cannot be met.

PELV = Protective Extra Low Voltage.

At low air pressure, the cooling capacity of air is reduced, and the CUE automatically reduces the performance to prevent overload. It may be necessary to select a CUE with a higher performance.

3.4.2 Reduction in connection with long motor cables

The maximum cable length for the CUE is 1000 ft. (300 m) for unscreened and 500 ft. (150 m) for screened cables. In case of longer cables, contact Grundfos.

The CUE is designed for a motor cable with a maximum gauge size as stated in section *16.7 Fuses and cable gauge size*.

4. Identification

4.1 Nameplate

The CUE can be identified by means of the nameplate. An example is shown below.

Fig. 1 Example of nameplate

Text	Description
T/C:	CUE (product name) 202P1M2 (internal code)
Prod. no:	Product number: 12345678
S/N:	Serial number: 123456G234 The last three digits indicate the production date: 23 is the week, and 4 is the year 2004.
2 Hp (1.5 kW)	Typical shaft power on the motor
IN:	Supply voltage, frequency and maximum input current
OUT:	Motor voltage, frequency and maximum output current. The maximum output frequency usually depends on the pump type.
CHASSIS/IP20	Enclosure class
Tamb.	Maximum ambient temperature

4.2 Packaging label

The CUE can also be identified by means of the label on the packaging.

5. Mechanical installation

The individual CUE cabinet sizes are characterized by their enclosures. The table in section *16.1 Enclosure* shows the relationship between enclosure class and enclosure type.

5.1 Receipt and storage

Check on receipt that the packaging is intact, and the unit is complete. In case of damage during transport, contact the transport company to complain.

Note that the CUE is delivered in packaging which is not suitable for outdoor storage.

5.2 Transportation and unpacking

To prevent damage during the transport to the site, the CUE must only be unpacked at the installation site.

The packaging contains accessory bag(s), documentation and the unit itself. See fig. 2.

Fig. 2 CUE packaging

5.3 Space requirements and air circulation

CUE units can be mounted side by side, but as a sufficient air circulation is required for cooling, these requirements must be met:

- Sufficient free space above and below the CUE. See table below.
- Ambient temperature up to 122 °F (50 °C).
- Hang the CUE directly on the wall, or fit it with a back plate. See fig. 3.

Fig. 3 CUE hung directly on the wall or fitted with a back plate

Required free space above and below the CUE

Enclosure	Space [in. (mm)]
A2, A3, A4, A5	3.9 (100)
B1, B2, B3, B4, C1, C3	7.9 (200)
C2, C4	8.9 (225)

For information about enclosures, see table in section *16.1 Enclosure*.

5.4 Mounting

Caution The user is responsible for mounting the CUE securely on a firm surface.

- 1. Mark and drill holes. See the dimensions in section *16.3 Main dimensions and weights*.
- 2. Fit the screws, but leave loose. Mount the CUE, and tighten the four screws.

Fig. 4 Drilling of holes

6. Electrical connection

Warning

The owner or installer is responsible for ensuring correct grounding and protection according to national and local standards.

Warning

Before making any work on the CUE, the mains supply and other voltage inputs must be switched off for at least as long as stated in section 3. Safety and warnings.

Fig. 5 Example of three-phase mains connection of the CUE with mains switch, back-up fuses and additional protection

6.1 Electrical protection

Warning

6.1.1 Protection against electric shock, indirect contact

The CUE must be grounded correctly and protected against indirect contact according to national regulations.

Caution The leakage current to ground exceeds 3.5 mA, and a reinforced ground connection is required.

Protective conductors must always have a yellow/green (PE) or yellow/green/blue (PEN) color marking.

Instructions according to EN IEC 61800-5-1:

- The CUE must be stationary, installed permanently and connected permanently to the mains supply.
- The ground connection must be carried out with duplicate protective conductors or with a single reinforced protective conductor with a gauge size of minimum 8 AWG (10 mm²).

6.1.2 Protection against short-circuit, fuses

The CUE and the supply system must be protected against shortcircuit.

Grundfos demands that the back-up fuses mentioned in section *16.7 Fuses and cable gauge size* are used for protection against short-circuit.

The CUE offers complete short-circuit protection in case of a short-circuit on the motor output.

6.1.3 Additional protection

Caution The leakage current to ground exceeds 3.5 mA.

If the CUE is connected to an electrical installation where an earth leakage circuit breaker (ELCB) is used as additional protection, the circuit breaker must be of a type marked with the following symbols:

The circuit breaker is type B.

The total leakage current of all the electrical equipment in the installation must be taken into account.

The leakage current of the CUE in normal operation can be seen in section *16.8.1 Mains supply (L1, L2, L3)*.

During start-up and in asymmetrical supply systems, the leakage current can be higher than normal and may cause the ELCB to trip.

6.1.4 Motor protection

The motor requires no external motor protection. The CUE protects the motor against thermal overloading and blocking.

6.1.5 Protection against overcurrent

The CUE has an internal overcurrent protection for overload protection on the motor output.

6.1.6 Protection against supply voltage transients

The CUE is protected against supply voltage transients according to EN 61800-3, second environment.

6.2 Mains and motor connection

The supply voltage and frequency are marked on the CUE nameplate. Make sure that the CUE is suitable for the power supply of the installation site.

The maximum output voltage of the CUE is equal to the input voltage.

Example: If the supply voltage is 208 V, choose a 208 V rated motor.

6.2.1 Mains switch

Note

A mains switch can be installed before the CUE according to local regulations. See fig. 5.

6.2.2 Wiring diagram

The wires in the terminal box must be as short as possible. Excepted from this is the protective conductor which must be so long that it is the last one to be disconnected in case the cable is inadvertently pulled out of the cable entry.

Fig. 6 Wiring diagram, three-phase mains connection

Terminal		Function	
91	(L1)		
92	(L2)	Three-phase supply	
93	(L3)	-	
95/99	(PE)	Ground connection	
96	(U)		
97	(V)	 Three-phase motor connection, 0-100 % of mains voltage 	
98	(W)		

For single-phase connection, use L1 and L2.

Cable sizing:

To determine the conductor gauge size for the singlephase mains input cable, multiply the CUE's max. current output by 2, and choose the gauge size based on that amperage.

Note

For three-phase input, use the same conductor gauge size as selected for the motor.

For CUE to motor, use standard published threephase wiring charts based on motor size.

6.2.3 Mains connection, enclosures A2 and A3

For information about enclosures, see table in section *16.1 Enclosure*.

Check that the mains voltage and frequency correspond to the values on the nameplate of the CUE and the motor. 1. Fit the mounting plate with two screws.

Fig. 7 Fitting the mounting plate

 Connect the ground conductor to terminal 95 (PE) and the mains conductors to terminals 91 (L1), 92 (L2), 93 (L3) of the mains plug. Put the mains plug into the socket marked MAINS.

TM03 9014 2807

Fig. 8 Connecting the ground conductor and mains conductors

Note For single-phase connection, use L1 and L2.

3. Fix the mains cable to the mounting plate.

Fig. 9 Fixing the mains cable

6.2.4 Motor connection, enclosures A2 and A3

For information about enclosures, see table in section *16.1 Enclosure*.

Caution

The motor cable must be screened for the CUE to meet EMC requirements.

 Connect the ground conductor to terminal 99 (PE) on the mounting plate. Connect the motor conductors to terminals 96 (U), 97 (V), 98 (W) of the motor plug.

Fig. 10 Connecting the ground conductor and motor conductors

2. Put the motor plug into the socket marked MOTOR. Fix the screened cable to the mounting plate with a cable clamp.

Fig. 11 Connecting the motor plug and fixing the screened cable

Note

Cable screens must be grounded at both ends.

Note The cable screen must be exposed and in physical contact with the mounting plate and clamp.

6.2.5 Enclosures A4 and A5

For information about enclosure, see table in section *16.1 Enclosure*.

Mains connection

Check that mains voltage and frequency correspond to the values on the nameplate of the CUE and the motor.

- 1. Connect the ground conductor to terminal 95 (PE). See fig. 12.
- Connect the mains conductors to terminals 91 (L1), 92 (L2), 93 (L3) of the mains plug.
- 3. Put the mains plug into the socket marked "MAINS".
- 4. Fix the mains cable with a cable clamp.

Fig. 12 Mains connection, A4 and A5

Note For single-phase connection, use L1 and L2.

Motor connection

TM03 9013 2807

- Caution The motor cable must be screened for the CUE to meet EMC requirements.
- 1. Connect the ground conductor to terminal 99 (PE), fig. 13.
- Connect the motor conductors to terminals 96 (U), 97 (V), 98 (W) of the motor plug.
- 3. Put the motor plug into the socket marked MOTOR.
- 4. Fix the screened cable with a cable clamp.

TM03 9018 2807

FM03 9017 2807

Fig. 13 Motor connection, A5

Note

The cable screen must be exposed and in physical contact with the mounting plate and clamp.

6.2.6 Enclosures B1 and B2

For information about enclosure, see table in section *16.1 Enclosure*.

Mains connection

Check that mains voltage and frequency correspond to the values on the nameplate of the CUE and the motor.

- 1. Connect the ground conductor to terminal 95 (PE), fig. 14.
- Connect the mains conductors to terminals 91 (L1), 92 (L2), 93 (L3).
- 3. Fix the mains cable with a cable clamp.

Fig. 14 Mains connection, B1 and B2

Note For single-phase connection, use L1 and L2.

Motor connection

Caution The motor cable must be screened for the CUE to meet EMC requirements.

- 1. Connect the ground conductor to terminal 99 (PE), fig. 15.
- Connect the motor conductors to terminals 96 (U), 97 (V), 98 (W).
- 3. Fix the screened cable with a cable clamp.

Fig. 15 Motor connection, B1 and B2

The cable screen must be exposed and in physical contact with the mounting plate and clamp.

6.2.7 Enclosures B3 and B4

For information about enclosure, see table in section *16.1 Enclosure*.

Mains connection

Check that mains voltage and frequency correspond to the values on the nameplate of the CUE and the motor.

- 1. Connect the ground conductor to terminal 95 (PE). See figures 16 and 17.
- Connect the mains conductors to terminals 91 (L1), 92 (L2), 93 (L3).
- 3. Fix the mains cable with a cable clamp.

Motor connection

TM03 9019 2807

TM03 9020 2807

Caution The motor cable must be screened for the CUE to meet EMC requirements.

- 1. Connect the ground conductor to terminal 99 (PE). See figures 16 and 17.
- Connect the motor conductors to terminals 96 (U), 97 (V), 98 (W).
- 3. Fix the screened cable with a cable clamp.

FM03 9449 4007

Fig. 16 Mains and motor connection, B3

Fig. 17 Mains and motor connection, B4

Note

The cable screen must be exposed and in physical contact with the mounting plate and clamp.

English (US)

TM03 9448 4007

FM03 9447 4007

6.2.8 Enclosures C1 and C2

For information about enclosure, see table in section *16.1 Enclosure*.

Mains connection

- 1. Connect the ground conductor to terminal 95 (PE). See fig. 18.
- Connect the mains conductors to terminals 91 (L1), 92 (L2), 93 (L3).

Motor connection

- 1. Connect the ground conductor to terminal 99 (PE). See fig. 18.
- Connect the motor conductors to terminals 96 (U), 97 (V), 98 (W).
- 3. Fix the screened cable with a cable clamp.

Fig. 18 Mains and motor connection, C1 and C2

Note

The cable screen must be exposed and in physical contact with the mounting plate and clamp.

6.2.9 Enclosures C3 and C4

For information about enclosure, see table in section *16.1 Enclosure*.

Mains connection

- 1. Connect the ground conductor to terminal 95 (PE). See figures 19 and 20.
- Connect the mains conductors to terminals 91 (L1), 92 (L2), 93 (L3).

Motor connection

Caution The motor cable must be screened for the CUE to meet EMC requirements.

- 1. Connect the ground conductor to terminal 99 (PE). See figures 19 and 20.
- Connect the motor conductors to terminals 96 (U), 97 (V), 98 (W).
- 3. Fix the screened cable with a cable clamp.

Fig. 19 Mains and motor connection, C3

Fig. 20 Mains and motor connection, C4

The cable screen must be exposed and in physical contact with the mounting plate and clamp.

6.3 Connecting the signal terminals

Note

FM03 9016 2807

As a precaution, signal cables must be separated from other groups by reinforced insulation in their entire lengths.

If no external on/off switch is connected, short-circuit terminals 18 and 20 using a short wire.

Connect the signal cables according to the guidelines for good practice to ensure EMC-correct installation. See section *6.6 EMC-correct installation*.

- Use screened signal cables with a conductor gauge size of min. 22 AWG (0.5 mm²) and max. 16 AWG (1.5 mm²).
- Use a 3-conductor screened bus cable in new systems.

6.3.1 Wiring diagram, signal terminals

TM06 3250 1214

Fig. 21 Wiring diagram, signal terminals

Terminal	Туре	Function
12	+24 V out	Supply to sensor
13	+24 V out	Additional supply
18	DI 1	Digital input, start/stop
19	DI 2	Digital input, programmable
20	GND	Ground for digital inputs
32	DI 3	Digital input, programmable
33	DI 4	Digital input, programmable
39	GND	Ground for analog output
42	AO 1	Analog output, 0-20 mA
50	+10 V out	Supply to potentiometer
53	AI 1	External setpoint, 0-10 V/0/4-20 mA
54	AI 2	Sensor input, sensor 1, 0/4-20 mA
55	GND	Ground for analog inputs
61	RS-485 GND Y	GENIbus, GND
68	RS-485 A	GENIbus, signal A (+)
69	RS-485 B	GENIbus, signal B (-)

Terminals 27, 29 and 37 are not used.

Note The RS-485 screen must be connected to ground.

6.3.2 Minimum connection, signal terminal

Operation is only possible when terminals 18 and 20 are connected, for instance by means of an external on/off switch or a short wire.

TM03 9057 3207

Terminal	Туре	Function	Terminal	Туре	Function
12	+24 V out	Supply to sensor	42	AO 1	Analog output, 0-20 mA
13	+24 V out	Additional supply	50	+10 V out	Supply to potentiometer
18	DI 1	Digital input, start/stop	53	AI 1	External setpoint, 0-10 V, 0/4-20 mA
19	DI 2	Digital input, programmable	54	AI 2	Sensor input, sensor 1, 0/4-20 mA
20	GND	Common frame for digital inputs	55	GND	Common frame for analog inputs
32	DI 3	Digital input, programmable	61	RS-485 GND Y	GENIbus, frame
33	DI 4	Digital input, programmable	68	RS-485 A	GENIbus, signal A (+)
39	GND	Frame for analog output	69	RS-485 B	GENIbus, signal B (-)

Terminals 27 and 29 are not used.

Note The RS-485 screen must be connected to frame.

13

6.3.4 Connection of a thermistor (PTC) to the CUE

The connection of a thermistor (PTC) in a motor to the CUE requires an external PTC relay.

The requirement is based on the fact that the thermistor in the motor only has one layer of insulation to the windings. The terminals in the CUE require two layers of insulation since they are part of a PELV circuit.

A PELV circuit provides protection against electric shock. Special connection requirements apply to this type of circuit. The requirements are described in EN 61800-5-1.

In order to maintain PELV, all connections made to the control terminals must be PELV. For example, the thermistor must have reinforced or double insulation.

6.3.5 Access to signal terminals

All signal terminals are behind the terminal cover of the CUE front. Remove the terminal cover as shown in figures 22 and 23.

Fig. 22 Access to signal terminals, A2 and A3

Fig. 23 Access to signal terminals, A4, A5, B1, B2, B3, B4, C1, C2, C3 and C4

Fig. 24 Signal terminals (all enclosures)

6.3.6 Fitting the conductor

TM03 9003 2807

- 1. Remove the insulation at a length of 0.34 0.39 in. (9 to10 mm).
- 2. Insert a screwdriver with a tip of maximum 0.015 x 0.1 in. (0.4 x 2.5 mm) into the square hole.
- Insert the conductor into the corresponding round hole. Remove the screwdriver. The conductor is now fixed in the terminal.

TM03 9104 3407

Fig. 25 Fitting the conductor into the signal terminal

6.3.7 Setting the analog inputs, terminals $53 \mbox{ and } 54$

Contacts A53 and A54 are positioned behind the control panel and used for setting the signal type of the two analog inputs. The factory setting of the inputs is voltage signal "U".

Switch off the power supply before setting contac A54.

Remove the control panel to set the contact. See fig. 26.

Fig. 26 Setting contact A54 to current signal "I"

English (US)

6.3.8 RS-485 GENIbus network connection

One or more CUE units can be connected to a control unit via GENIbus. See the example in fig. 27.

Fig. 27 Example of an RS-485 GENIbus network

The reference potential, GND, for RS-485 (Y) communication must be connected to terminal 61.

If more than one CUE unit is connected to a GENIbus network, the termination contact of the last CUE must be set to "ON" (termination of the RS-485 port).

The factory setting of the termination contact is "OFF" (not terminated).

Remove the control panel to set the contact. See fig. 28.

TM03 9006 2807

Fig. 28 Setting the termination contact to "ON"

6.4 Connecting the signal relays

As a precaution, signal cables must be separated from other groups by reinforced insulation in their entire lengths.

Fig. 29 Terminals for signal relays in normal state (not activated)

Terminal		Function
C 1	C 2	Common
NO 1	NO 2	Normally open contact
NC 1	NC 2	Normally closed contact

Access to signal relays

The relay outputs are positioned as shown in figures 30 to 35.

Fig. 30 Terminals for relay connection, A2 and A3

Fig. 31 Terminals for relay connection, A4, A5, B1 and B2

TM03 9009 2807

Fig. 32 Terminals for relay connection, C1 and C2

TM03 9007 2807

15

Fig. 33 Terminals for relay connection, B3

Fig. 34 Terminals for relay connection, B4

Fig. 35 Terminals for relay connection, C3 and C4, in the upper right corner of the CUE

6.5 Connecting the MCB 114 sensor input module

The MCB 114 is an option offering additional analog inputs for the CUE.

6.5.1 Configuration of the MCB 114

The MCB 114 is equipped with three analog inputs for these sensors:

- One additional sensor 0/4-20 mA. See section 10.8.14 Sensor 2 (3.16).
- Two Pt100/Pt1000 temperature sensors for measurement of motor bearing temperature or an alternative temperature, such as liquid temperature. See sections 10.8.19 Temperature sensor 1 (3.21) and 10.8.20 Temperature sensor 2 (3.22).

When the MCB 114 has been installed, the CUE will automatically detect if the sensor is Pt100 or Pt1000 when it is switched on.

6.5.2 Wiring diagram, MCB 114

TM03 9442 4007

TM03 9441 4007

TM03 9440 4007

TM04 3273 3908

Fig. 36 Wiring diagram, MCB 114

Terminal	Туре	Function
1 (VDO)	+24 V out	Supply to sensor
2 (I IN)	AI 3	Sensor 2, 0/4-20 mA
3 (GND)	GND	Ground for analog input
4 (TEMP) 5 (WIRE)	AI 4	Temperature sensor 1, Pt100/Pt1000
6 (GND)	GND	Ground for temperature sensor 1
7 (TEMP) 8 (WIRE)	AI 5	Temperature sensor 2, Pt100/Pt1000
9 (GND)	GND	Ground for temperature sensor 2

Terminals 10, 11 and 12 are not used.

6.6 EMC-correct installation

This section provides guidelines for good practice when installing the CUE. Follow these guidelines to meet EN 61800-3, first environment.

- Use only motor and signal cables with a braided metal screen in applications without output filter.
- There are no special requirements to supply cables, apart from local requirements.
- Leave the screen as close to the connecting terminals as possible. See fig. 37.
- Avoid terminating the screen by twisting the ends. See fig. 38. Use cable clamps or EMC screwed cable entries instead.
- Connect the screen to ground at both ends for both motor and signal cables. See fig. 39. If the controller has no cable clamps, connect only the screen to the CUE. See fig. 40.
- Avoid unscreened motor and signal cables in electrical cabinets with variable frequency drives.
- Make the motor cable as short as possible in applications without output filter to limit the noise level and minimize leakage currents.
- Screws for frame connections must always be tightened whether a cable is connected or not.
- Keep main cables, motor cables and signal cables separated in the installation, if possible.

Other installation methods may give similar EMC results if the above guidelines for good practice are followed.

Fig. 37 Example of stripped cable with screen

Fig. 38 Do not twist the screen ends

Fig. 39 Example of connection of a 3-conductor bus cable with screen connected at both ends

Fig. 40 Example of connection of a 3-conductor bus cable with screen connected at the CUE (controller with no cable clamps)

6.7 RFI filters

To meet the EMC requirements, the CUE comes with the following types of built-in radio frequency interference filter (RFI).

Voltage	Typical shaft power P2	RFI filter type
1 x 200-240 V*	1.5 - 10 Hp (1.1 - 7.5 kW)	C1
3 x 200-240 V	1 - 60 Hp (0.75 - 45 kW)	C1
3 x 380-500 V	0.75 - 125 Hp (0.55 - 90 kW)	C1
3 x 525-600 V	1-10 Hp (0.75 - 7.5 kW)	C3
3 x 525-690 V	15-125 Hp (11-90 kW)	C3

* Single-phase input - three-phase output.

Description of RFI filter types

C1:	For use in domestic areas.
C3:	For use in industrial areas with own low-voltage transformer.

RFI filter types are according to EN 61800-3.

6.7.1 Equipment of category C3

TM02 1325 0901

FM03 8812 2507

- This type of power drive system (PDS) is not intended to be used on a low-voltage public network which supplies domestic premises.
- Radio frequency interference is expected if used on such a network.

6.8 Output filters

Output filters are used for reducing the voltage stress on the motor windings and the stress on the motor insulation system as well as for decreasing acoustic noise from the frequency converter-driven motor.

Two types of output filter are available as accessories for the CUE:

- dU/dt filters
- sine-wave filters.

Use of output filters

The table below shows when an output filter is required and the type to use. The selection depends on the following:

- pump type
- motor cable length
- · the required reduction of the acoustic noise from the motor.

Pump type	CUE output power	dU/dt filter [ft. (m)]	Sine-wave filter [ft. (m)]
SP, BM, BMB with motor voltage from 380 V and up	All	-	0-1000 ft. (0-300 m)*
Pumps with MG71 and MG80 up to and including 1.5 kW	Greater than 1.5 kW	-	0-1000 ft. (0-300 m)*
Reduction of dU/dt and noise emission, low reduction	All	0-500 ft. (0-150 m)*	-
Reduction of dU/dt, voltage peaks and noise emission, high reduction	All	-	0-1000 ft. (0-300 m)*
With motors of 500 V and up	All	_	0-1000 ft. (0-300 m)*

* The lengths stated apply to the motor cable.

6.9 Motor cable

Figures 41 and 42 show installations with and without filter and where to use screened and unscreened cable.

Fig. 41 Example of installation without filter

Fig. 42 Example of installation with filter. The cable between the CUE and filter must be short

Fig. 43 Submersible pump without connection box. Frequency converter and filter installed close to the well

Fig. 44 Submersible pump with connection box and screened cable. Frequency converter and filter installed far away from the well and connection box installed close to the well

Symbol	Designation
1	CUE
2	Filter
3	Connection box
4	Standard motor
5	Submersible motor
One line	Unscreened cable
Double line	Screened cable

English (US)

7. Operating modes

The following operating modes are set on the control panel in the "OPERATION" menu, display 1.2. See section *10.6.2 Operating mode (1.2)*.

Operating mode	Description
Normal	The pump is running in the control mode selected
Stop	The pump has been stopped (green indicator light is flashing)
Min.	The pump is running at minimum speed
Max.	The pump is running at maximum speed

H Max. Min. and max. curves. The pump speed is kept at a given set value for minimum and maximum speed, respectively.

Example: Max. curve operation can, for instance, be used in connection with venting the pump during installation.

Example: Min. curve operation can, for instance, be used in periods with a very small flow requirement.

8. Control modes

The control mode is set on the control panel in the "INSTALLATION" menu, display 3.1. See section *10.8.1 Control mode (3.1).*

There are two basic control modes:

Uncontrolled operation (open loop).

· Controlled operation (closed loop) with a sensor connected.

See sections 8.1 Uncontrolled operation (open loop) and 8.2 Controlled operation (closed loop).

8.1 Uncontrolled operation (open loop)

Example: Operation on constant curve can, for instance, be used for pumps with no sensor connected.

Example: Typically used in connection with an overall control system such as the MPC or another external controller.

8.2 Controlled operation (closed loop)

9. Menu overview

Menu structure

The CUE has a start-up guide, which is started at the first startup. After the start-up guide, the CUE has a menu structure divided into four main menus:

- 1. "GENERAL" gives access to the start-up guide for the general setting of the CUE.
- "OPERATION" enables the setting of setpoint, selection of operating mode and resetting of alarms. It is also possible to see the latest five warnings and alarms.
- 3. "STATUS" shows the status of the CUE and the pump. It is not possible to change or set values.
- 4. "INSTALLATION" gives access to all parameters. Here a detailed setting of the CUE can be made.

English (US)

10. Setting by means of the control panel

10.1 Control panel

Warning The on/off button on the control panel does not

disconnect the CUE from the power supply and must therefore not be used as a safety switch.

The on/off button has the highest priority. In "off" condition, pump operation is not possible.

The control panel is used for local setting of the CUE. The functions available depend on the pump family connected to the CUE.

Fig. 46 Control panel of the CUE

Editing buttons

Button	Function
On/ Off	Makes the pump ready for operation/starts and stops the pump.
OK	Saves changed values, resets alarms and expands the value field.
$\textcircled{\bullet}$	Changes values in the value field.

Navigating buttons

Button Function

< >	Navigates from one menu to another. When the menu is changed, the display shown will alway the top display of the new menu.
	/ the top display of the new menu.

nged, the display shown will always be ay of the new menu.

Navigates up and down in the individual menu.

The editing buttons of the control panel can be set to these values:

- Active
- · Not active.

When set to "Not active" (locked), the editing buttons do not function. It is only possible to navigate in the menus and read values.

Activate or deactivate the buttons by pressing the arrow up and arrow down buttons simultaneously for 3 seconds.

Adjusting the display contrast

Press [OK] and [+] for darker display.

Press [OK] and [-] for brighter display.

Indicator lights

The operating condition of the pump is indicated by the indicator lights on the front of the control panel. See fig. 46.

The table shows the function of the indicator lights.

Indicator light	Function
	The pump is running or has been stopped by a stop function.
On (green)	If flashing, the pump has been stopped by the user (CUE menu), external start/stop or bus.
Off (orange)	The pump has been stopped with the on/off button.
Alarm (red)	Indicates an alarm or a warning.

Displays, general terms

FM03 8719 2507

Figures 47 and 48 show the general terms of the display.

Current display / total number

Fig. 47 Example of display in the start-up guide

Fig. 48 Example of display in the user menu

10.2 Back to factory settings

Follow this procedure to get back to the factory settings:

- 1. Switch off the power supply to the CUE.
- Press [On/Off], [OK] and [+] while switching on the power supply.

The CUE will reset all parameters to factory settings. The display will turn on when the reset is completed.

10.3 CUE settings

The start-up guide includes all parameters that can be set on the control panel of the CUE.

The document includes a special table for additional PC Tool settings and a page where special PC Tool programming details should be entered.

If you want to download the document, please contact your local Grundfos company.

10.4 Start-up guide

Note

Check that equipment connected is ready for startup, and that the CUE has been connected to the power supply.

Have nameplate data for motor, pump and CUE at hand.

Use the start-up guide for the general setting of the CUE including the setting of the correct direction of rotation.

The start-up guide is started the first time when the CUE is connected to the power supply. It can be restarted in the "GENERAL" menu. Please note that in this case all previous settings will be erased.

Bulleted lists show possible settings. Factory settings are shown in bold.

10.4.1 Welcoming display

• Press [OK]. You will now be guided through the start-up guide.

10.4.2 Language (1/16)

English

<Previous 1/16 Next>

Select the language to be used in the display:

Hungarian

Czech

Chinese

Korean.

Japanese

- English UK
 Greek
- English US
 Dutch
 - German
- FrenchItalian

•

- Spanish
 - PolishRussian

Swedish

Finnish

Danish

10.4.3 Units (2/16)

· Portuguese

Select the units to be used in the display:

- SI: m, kW, bar...
- US: ft, HP, psi...

10.4.4 Pump family (3/16)

Select pump family according to the pump nameplate:

- CR, CRI, CRN, CRT
- SP, SP-G, SP-NE
- ...

Select "Other" if the pump family is not on the list.

10.4.5 Rated motor power (4/16)

Set the rated motor power, P2, according to the motor nameplate:

• 0.75 - 125 Hp (0.55 - 90 kW).

The setting range is size-related, and the factory setting corresponds to the rated power of the CUE.

10.4.6 Supply voltage (5/16)

3x400V

<Previous 5/16 Next>

Select supply voltage according to the rated supply voltage of the installation site.

Unit 1 x 200-240 V:*	Unit 3 x 200-240 V:	Unit 3 x 380-500 V:
• 1 x 200 V	• 3 x 200 V	• 3 x 380 V
• 1 x 208 V	• 3 x 208 V	• 3 x 400 V
• 1 x 220 V	• 3 x 220 V	• 3 x 415 V
• 1 x 230 V	• 3 x 230 V	• 3 x 440 V
• 1 x 240 V.	• 3 x 240 V.	• 3 x 460 V
		• 3 x 500 V.
Unit 3 x 525-600 V:	Unit 3 x 525-690 V:	
• 3 x 575 V.	• 3 x 575 V	
	• 3 x 690 V.	

* Single-phase input - three-phase output.

The setting range depends on the CUE type, and the factory setting corresponds to the rated supply voltage of the CUE.

10.4.7 Max. motor current (6/16)

Set the maximum motor current according to the motor nameplate:

• 0-999 A.

The setting range depends on the CUE type, and the factory setting corresponds to a typical motor current at the motor power selected.

10.4.8 Speed (7/16)

Set the rated speed according to the pump nameplate:

• 0-9999 rpm.

The factory setting depends on previous selections. Based on the set rated speed, the CUE will automatically set the motor frequency to 50 or 60 Hz.

10.4.9 Frequency (7A/16)

Motor name Frequency	plate	
	50 Hz	Ф
< Previous	7A/16	Next

This display appears only if manual entry of the frequency is required.

Set the frequency according to the motor nameplate: • 40-200 Hz

The factory setting depends on previous selections.

10.4.10 Control mode (8/16)

Select the desired control mode. See section 10.8.1 Control mode (3.1).

- Open loop
- Const. pressure
- Const. diff. pressure
- · Prop. diff. pressure
- Const. flow rate
- Const. temperature
- Constant level
- · Const. other value.

The possible settings and the factory setting depend on the pump family.

The CUE will give an alarm if the control mode selected requires a sensor and no sensor has been installed. To continue the setting without a sensor, select "Open loop", and proceed. When a sensor has been connected, set the sensor and control mode in the "INSTALLATION" menu.

10.4.11 Rated flow rate (8A/16)

This display appears only if the control mode selected is proportional differential pressure.

- Set the rated flow rate according to the pump nameplate:
- 1-28840 gpm (1-6550 m³/h).

10.4.12 Rated head (8B/16)

This display only appears if the control mode selected is proportional differential pressure.

Set the rated head according to the pump nameplate:

1-3277 ft. (1-999 m).

10.4.13 Sensor connected to terminal 54 (9/16)

Set the measuring range of the connected sensor with a signal range of 4-20 mA. The measuring range depends on the control mode selected:

Proportional differential pressure:	Constant	differential	pressure:
-------------------------------------	----------	--------------	-----------

 0-20 ft. (0-0.6 bar) 0-33 ft. (0-1 bar) 0.54 ft. (0-1.6 bar) 0-84 ft. (0-2.5 bar) 0-200 ft. (0-4 bar) 0-334 ft. (0-6 bar) 	 0-20 ft. (0-0.6 bar) 0-33 ft. (0-1 bar) 0.54 ft. (0-1.6 bar) 0-84 ft. (0-2.5 bar) 0-200 ft. (0-4 bar) 0-334 ft. (0-6 bar)
Other.	Other.
Constant pressure:	Constant flow rate:
 0-58 psi (0-4 bar) 	Other.
 0-87 psi (0-6 bar) 	
 0-120 psi (0-8 bar) 	
• 0-145 psi (0-10 bar)	
 0-232 (0-16 bar) 	
 0-362 (0-25 bar) 	
 0-580 (0-40 bar) 	
 0-879 (0-60 bar) 	
Other.	
Constant temperature:	Constant level:
Other.	Other.

If the control mode selected is "Constant other value", or if the measuring range selected is "Other", the sensor must be set according to the next section, display 9A/16.

10.4.14 Another sensor connected to terminal 54 (9A/16)

4-20mA	bar	¢
0.00 -	10.0	
< Previous	9A/16 Nex	t>

This display only appears when the control mode "Constant other value" or the measuring range "Other" has been selected in display 9/16.

Sensor output signal:

0-20 mA **4-20 mA**.

- Unit of measurement of sensor: bar, mbar, m, kPa, psi, ft, m³/h, m³/min, m³/s, l/h, l/min, l/s, gal/h, gal/m, gal/s, ft³/min, ft³/s, °C, °F, %.
- · Sensor measuring range.

The measuring range depends on the sensor connected and the measuring unit selected.

10.4.15 Priming and venting (10/16)

See the installation and operating instructions of the pump. The general setting of the CUE is now completed, and the startup guide is ready for setting the direction of rotation:

Press [OK] to go on to automatic or manual setting of the direction of rotation.

10.4.16 Automatic setting of the direction of rotation (11/16)

Warning

During the test, the pump will run for a short time. Ensure that no personnel or equipment is in danger!

Before setting the direction of rotation, the CUE will make an automatic motor adaptation of certain pump types. This will take a few minutes. The adaptation is carried out during standstill.

The CUE automatically tests and sets the correct direction of rotation without changing the cable connections.

This test is not suitable for certain pump types and will in certain cases not be able to determine with certainty the correct direction of rotation. In these cases, the CUE changes over to manual setting where the direction of rotation is determined on the basis of the installer's observations.

...that the system is open for flow. The pump will be running during the test. Press OK to continue.

< Previous 11/16</pre>

Information displays.

· Press [OK] to continue.

The pump will start in 10 secs. To cancel, press any button.			
0%	100 %		
	12/16		

The pump starts after 10 seconds.

It is possible to interrupt the test and return to the previous display.

The pump runs with both directions of rotation and stops automatically

It is possible to interrupt the test, stop the pump and go to manual setting of the direction of rotation.

could not automatically be

determined if the direction

Press OK to go to manual

The automatic setting of the

direction of rotation has failed.

Press [OK] to go to manual

setting of the direction of

of rotation is correct.

<u> < Previous 13/16</u>

test.

rotation

The correct direction of rotation has now been set.

· Press [OK] to set the setpoint. See section 10.4.17 Setpoint (15/16).

10.4.17 Setpoint (15/16)

Set the setpoint according to the control mode and sensor selected

10.4.18 General settings are completed (16/16)

General settings
successfully completed.
Press UK to continue.

Press [OK] to make the pump ready for operation or start the pump in the "Normal" operating mode. Then display 1.1 of the "OPERATION" menu will appear.

10.4.19 Manual setting when the direction of rotation is visible (13/16)

It must be possible to observe the motor fan or shaft.

Manual direction of rotation test. Observe the direction of rotation while...

.. the pump is running for a few seconds. Press OK to continue.

< Previous 13/16</pre>

<Previous 13/16 Next>

Information displays

· Press [OK] to continue.

The pump starts after 10 seconds.

It is possible to interrupt the test and return to the previous display.

The pressure will be shown during the test if a pressure sensor is connected. The motor current is always shown during the test.

Is the direction of rotation correct? ¢ Yes <Previous 13/16 Next>

State if the direction of rotation is correct.

Yes

Test completed and correct direction of rotation is now set. Press OK to continue.

< Previous 14/16</pre>

The correct direction of rotation has now been set.

· Press [OK] to set the setpoint. See section 10.4.17 Setpoint (15/16).

The direction of rotation will be changed, and a new test be made. Press OK to continue.

< Previous 13/16</pre>

The direction of rotation is not correct.

· Press [OK] to repeat the test with the opposite direction of rotation.

10.4.20 Manual setting when the direction of rotation is not visible (13/16)

See...

...it is running for a few seconds, first in one and then in the other direction.

<Previous 13/16 Next>

It must be possible to observe the head or flow rate.

CPrevious 13/16 Information displays.

Press [OK] to continue.

The pump starts after 10 seconds.

It is possible to interrupt the test and return to the previous display.

The pressure will be shown during the test if a pressure sensor is connected. The motor current is always shown during the test.

The direction of rotation will be changed, and the second test will be made. Press OK to continue.

< Previous 13/16</pre>

The first test is completed.

 Write down the pressure and/or flow rate, and press OK to continue the manual test with the opposite direction of rotation.

The pump starts after 10 seconds.

It is possible to interrupt the test and return to the previous display.

Feedback				
	0.00 bar			
Motor current				
	0.00 A			
13/16				

The pressure will be shown during the test if a pressure sensor is connected. The motor current is always shown during the test.

The second test is completed.

Write down the pressure and/or flow rate, and state which test gave the highest pump performance:

- First test
- Second test
- Perform new test.

< Previous 14/16</pre>

The correct direction of rotation has now been set.

• Press [OK] to set the setpoint. See section 10.4.17 Setpoint (15/16).

10.5 GENERAL

If the start-up guide is started, all previous settings will be erased!

The start-up guide must be carried out on a cold motor!

Repeating the start-up guide may lead to heating of the motor.

The menu makes it possible to return to the start-up guide, which is usually only used during the first start-up of the CUE.

10.5.1 Return to start-up guide (0.1)

State your choice:

- Yes
- No.

If "Yes" is selected, all settings will be erased, and the entire start-up guide must be completed.

10.5.2 Type code change (0.2)

This display is for service use only.

10.5.3 Copy of settings

It is possible to copy the settings of a CUE and reuse them in another one.

Options:

- No copy.
- to CUE (copies the settings of the CUE).
- to control panel (copies the settings to another CUE).

The CUE units must have the same firmware version. See section 10.7.16 Firmware version (2.16).

10.6 OPERATION

10.6.1 Setpoint (1.1)

- Setpoint set
- Actual setpoint
- Actual value

Set the setpoint in the units of the feedback sensor.

In **"Open loop"** control mode, the setpoint is set in % of the maximum performance. The setting range will lie between the min. and max. curves. See fig. 55.

In **all other** control modes except proportional differential pressure, the setting range is equal to the sensor measuring range. See fig. 56.

In **"Proportional differential pressure"** control mode, the setting range is equal to 25 % to 90 % of max. head. See fig. 57.

If the pump is connected to an external setpoint signal, the value in this display will be the maximum value of the external setpoint signal. See section 13.2 External setpoint.

10.6.2 Operating mode (1.2)

Set one of the following operating modes:

- Normal (duty)
- Stop
- Min.
- Max

The operating modes can be set without changing the setpoint setting.

10.6.3 Fault indications

Faults may result in two types of indication: Alarm or warning.

An "alarm" will activate an alarm indication in CUE and cause the pump to change operating mode, typically to stop. However, for some faults resulting in alarm, the pump is set to continue operating even if there is an alarm.

A **"warning"** will activate a warning indication in CUE, but the pump will not change operating or control mode.

Alarm (1.3)

In case of an alarm, the cause will appear in the display. See section 15.1 Warning and alarm list.

Warning (1.4)

In case of a warning, the cause will appear in the display. See section *15.1 Warning and alarm list.*

10.6.4 Fault log

For both fault types, alarm and warning, the CUE has a log function.

Alarm log (1.5 - 1.9)

In case of an "alarm", the last five alarm indications will appear in the alarm log. "Alarm log 1" shows the latest alarm, "Alarm log 2" shows the latest alarm but one, etc.

The display shows three pieces of information:

- · the alarm indication
- · the alarm code
- the number of minutes the pump has been connected to the power supply after the alarm occurred.

Warning log (1.10 - 1.14)

In case of a "warning", the last five warning indications will appear in the warning log. "Warning log 1" shows the latest fault, "Warning log 2" shows the latest fault but one, etc.

The display shows three pieces of information:

- · the warning indication
- · the warning code
- the number of minutes the pump has been connected to the power supply after the warning occurred.

10.7 Menu STATUS

The displays appearing in this menu are status displays only. It is not possible to change or set values.

The tolerance of the displayed value is stated under each display. The tolerances are stated as a guide in % of the maximum values of the parameters.

10.7.1 Actual setpoint (2.1)

This display shows the actual setpoint and the external setpoint. The actual setpoint is shown in the units of the feedback sensor. The external setpoint is shown in a range of 0 to 100 %. If the external setpoint influence is deactivated, the value 100 % is shown. See section 13.2 External setpoint.

10.7.2 Operating mode (2.2)

This display shows the actual operating mode (Normal, Stop, Min. or Max.). Furthermore, it shows where this operating mode was selected (CUE menu, Bus, External or On/off button).

10.7.3 Actual value (2.3)

This display shows the actual value controlled.

If no sensor is connected to the CUE, "-" will appear in the display.

10.7.4 Measured value, sensor 1 (2.4)

This display shows the actual value measured by sensor 1 connected to terminal 54.

If no sensor is connected to the CUE, "-" will appear in the display.

10.7.5 Measured value, sensor 2 (2.5)

This display is only shown if an MCB 114 sensor input module has been installed.

The display shows the actual value measured by sensor 2 connected to an MCB 114.

If no sensor is connected to the CUE, "-" will appear in the display.

10.7.6 Speed (2.6)

Tolerance: ± 5 %

This display shows the actual pump speed.

10.7.7 Input power and motor current (2.7)

Tolerance: ± 10 %

This display shows the actual pump input power in W or kW and the actual motor current in ampere [A].

10.7.8 Operating hours and power consumption (2.8)

Tolerance: ± 2 %

This display shows the number of operating hours and the power consumption. The value of operating hours is an accumulated value and cannot be reset. The value of power consumption is an accumulated value calculated from the unit's birth, and it cannot be reset.

10.7.9 Lubrication status of motor bearings (2.9)

This display shows how many times the user has given the lubrication stated and when to replace the motor bearings.

When the motor bearings have been relubricated, confirm this action in the "INSTALLATION" menu. See section 10.8.18 Confirming relubrication/replacement of motor bearings (3.20). When relubrication is confirmed, the figure in the above display will be increased by one.

10.7.10 Time until relubrication of motor bearings (2.10)

This display is only shown if display 2.11 is not shown.

The display shows when to relubricate the motor bearings. The controller monitors the operating pattern of the pump and calculates the period between bearing relubrications. If the operating pattern changes, the calculated time until relubrication may change as well.

The estimated time until relubrication takes into account if the pump has been running with reduced speed.

See section 10.8.18 Confirming relubrication/replacement of motor bearings (3.20).

10.7.11 Time until replacement of motor bearings (2.11)

This display is only shown if display 2.10 is not shown. The display shows when to replace the motor bearings. The controller monitors the operating pattern of the pump and calculates the period between bearing replacements.

The estimated time until replacement of motor bearings takes into account if the pump has been running with reduced speed.

See section 10.8.18 Confirming relubrication/replacement of motor bearings (3.20).

10.7.12 Temperature sensor 1 (2.12)

This display is only shown if an MCB 114 sensor input module has been installed.

The display shows the measuring point and the actual value measured by a Pt100/Pt1000 temperature sensor 1 connected to the MCB 114. The measuring point is selected in display 3.21. If no sensor is connected to the CUE, "-" will appear in the display.

10.7.13 Temperature sensor 2 (2.13)

This display is only shown if an MCB 114 sensor input module has been installed.

The display shows the measuring point and the actual value measured by a Pt100/Pt1000 temperature sensor 2 connected to the MCB 114. The measuring point is selected in display 3.22. If no sensor is connected to the CUE, "-" will appear in the display.

10.7.14 Flow rate (2.14)

This display is only shown if a flowmeter has been configured. The display shows the actual value measured by a flowmeter connected to the digital pulse input (terminal 33) or the analog input (terminal 54).

10.7.15 Accumulated flow (2.15)

This display is only shown if a flowmeter has been configured. The display shows the value of the accumulated flow and the specific energy for the transfer of the pumped liquid. The flow measurement can be connected to the digital pulse input (terminal 33) or the analog input (terminal 54).

10.7.16 Firmware version (2.16)

This display shows the version of the software.

10.7.17 Configuration file (2.17)

This display shows the configuration file.

10.8 Menu INSTALLATION

10.8.1 Control mode (3.1)

Select one of the following control modes:

- Open loop
- Constant pressure
- Constant differential pressure
- · Proportional differential pressure
- Constant flow rate
- Constant temperature
- · Constant level

Note

· Constant other value.

If the pump is connected to a bus, the control mode cannot be selected via the CUE. See section 13.3 GENIbus signal.

10.8.2 Controller (3.2)

The CUE has a factory setting of gain (K_p) and integral time (T_i). However, if the factory setting is not the optimum setting, the gain and the integral time can be changed in the display.

- The gain (K_p) can be set within the range from 0.1 to 20.
- The integral time (Ti) can be set within the range from 0.1 to 3600 s. If 3600 s is selected, the controller will function as a P controller.
- Furthermore, it is possible to set the controller to inverse control, meaning that if the setpoint is increased, the speed will be reduced. In the case of inverse control, the gain (Kp) must be set within the range from -0.1 to -20.

The table below shows the suggested controller settings:

	κ _p		
System/application	Heating system ¹⁾	Cooling system ²⁾	Ti
	0.2		0.5
	SP, SP-G,	SP-NE: 0.5	0.5
CUE	0.2		0.5
	SP, SP-G,	SP, SP-G, SP-NE: 0.5	
CUE Q Q	0.2		0.5
	- 2.5		100
	0.5	- 0.5	10 + 5L ₂
	0.5		10 + 5L ₂
	0.5	- 0.5	30 + 5L ₂ *
CUE Δp	0.5		0.5 *
CUE Δ ^p	0.5		L ₁ < 5 m: 0.5* L ₁ > 5 m: 3* L ₁ > 10 m: 5*

T_i = 100 seconds (factory setting).

¹⁾ Heating systems are systems in which an increase in pump performance will result in a rise in temperature at the sensor.

²⁾ Cooling systems are systems in which an increase in pump performance will result in a drop in temperature at the sensor.

L₁ = Distance in [m] between pump and sensor.

L₂ = Distance in [m] between heat exchanger and sensor.

How to set the PI controller

For most applications, the factory setting of the controller constants K_p and T_i will ensure optimum pump operation. However, in some applications an adjustment of the controller may be needed.

Proceed as follows:

- 1. Increase the gain (K_n) until the motor becomes unstable. Instability can be seen by observing if the measured value starts to fluctuate. Furthermore, instability is audible as the motor starts hunting up and down. As some systems, such as temperature controls, are slowreacting, it may be difficult to observe that the motor is unstable.
- 2. Set the gain (K_p) to half the value of the value which made the motor unstable. This is the correct setting of the gain.
- 3. Reduce the integral time (T_i) until the motor becomes unstable
- 4. Set the integral time (T_i) to twice the value which made the motor unstable. This is the correct setting of the integral time.

General rules of thumb:

- If the controller is too slow-reacting, increase K_n.
- If the controller is hunting or unstable, dampen the system by reducing Kp or increasing Ti.

10.8.3 External setpoint (3.3)

The input for external setpoint signal (terminal 53) can be set to the following types:

- · Active
- Not active.

If "Active" is selected, the actual setpoint is influenced by the signal connected to the external setpoint input. See section 13.2 External setpoint.

10.8.4 Signal relays 1 and 2 (3.4 and 3.5)

The CUE has two signal relays. In the display below, select in which operating situations the signal relay should be activated.

- Relubricate.
- Relubricate.

For the distinction between alarm and warning, see Note section 10.6.3 Fault indications.

10.8.5 Buttons on the CUE (3.6)

The editing buttons (+, -, On/Off, OK) on the control panel can be set to these values:

- Active
- Not active.

When set to "Not active" (locked), the editing buttons do not function. Set the buttons to "Not active" if the pump should be controlled via an external control system.

Activate the buttons by pressing the arrow up and arrow down buttons simultaneously for 3 seconds.

10.8.6 Protocol (3.7)

This display shows the protocol selection for the RS-485 port of the CUE. The protocol can be set to these values:

- GENIbus ٠
- FC •
- FC MC. •

If "GENIbus" is selected, the communication is set according to the Grundfos GENIbus standard. FC and FC MC are for service purposes only.

10.8.7 Pump number (3.8)

This display shows the GENIbus number. A number between 1 and 199 can be allocated to the pump. In the case of bus communication, a number must be allocated to each pump. The factory setting is "-".

10.8.8 Digital inputs 2, 3 and 4 (3.9 to 3.11)

🔆 3.11 INSTALLATION 🔇

The digital inputs of the CUE (terminal 19, 32 and 33) can be set individually to different functions.

Select one of the following functions:

- Min. (min. curve)
- Max. (max. curve)
- Ext. fault (external fault)
- · Flow switch
- · Alarm reset
- Dry running (from external sensor)
- · Accumulated flow (pulse flow, only terminal 33)
- · Not active.

The selected function is active when the digital input is activated (closed contact). See also section *13.1 Digital inputs*.

Min.

When the input is activated, the pump will operate according to the min. curve.

Max.

When the input is activated, the pump will operate according to the max. curve.

Ext. fault

When the input is activated, a timer will be started. If the input is activated for more than 5 seconds, an external fault will be indicated. If the input is deactivated, the fault condition will cease and the pump can only be restarted manually by resetting the fault indication.

Flow switch

When this function is selected, the pump will be stopped when a connected flow switch detects low flow.

It is only possible to use this function if the pump is connected to a pressure sensor or a level sensor, and the stop function is activated. See sections 10.8.11 Constant pressure with stop function (3.14) and 10.8.12 Constant level with stop function (3.14).

Alarm reset

When the input has been activated, the alarm is reset if the cause of the alarm no longer exists.

Dry running

When this function is selected, lack of inlet pressure or water shortage can be detected. This requires the use of an accessory, such as:

- a Grundfos Liqtec[®] dry-running switch
- a pressure switch installed on the suction side of a pump
- a float switch installed on the suction side of a pump.

When lack of inlet pressure or water shortage (dry running) is detected, the pump will be stopped. The pump cannot restart as long as the input is activated.

Restarts may be delayed by up to 30 minutes, depending of the pump family.

Accumulated flow

When this function is set for digital input 4 and a pulse sensor is connected to terminal 33, the accumulated flow can be measured.

10.8.9 Digital flow input (3.12)

This display appears only if a flowmeter has been configured in display 3.11.

The display is used for setting the volume for every pulse for the "Accumulated flow" function with a pulse sensor connected to terminal 33.

Setting range:

- 0-265 gal/pulse (0-1000 liter/pulse.
- The volume can be set in the unit selected in the start-up guide.

10.8.10 Analog output (3.13)

The analog output can be set to show one of the following options:

- Feedback
- Power input
- Speed
- Output frequency
- · External sensor
- Limit 1 exceeded
- Limit 2 exceeded
- · Not active.

10.8.11 Constant pressure with stop function (3.14)

Settings

The stop function can be set to these values:

- Active
- Not active.
- The on/off band can be set to these values:
- ΔH is factory-set to 10 % of the actual setpoint.
- ΔH can be set within the range from 5 % to 30 % of the actual setpoint.

Operating conditions for the stop function

It is only possible to use the stop function if the system incorporates a pressure sensor, a check valve and a diaphragm tank.

Description

The stop function is used for changing between on/off operation at low flow and continuous operation at high flow.

Low flow can be detected in two different ways:

- 1. A built-in "low-flow detection function" which functions if the digital input is not set up for flow switch.
- 2. A flow switch connected to the digital input.

1. Low-flow detection function

The pump will check the flow regularly by reducing the speed for a short time. If there is no or only a small change in pressure, this means that there is low flow.

The speed will be increased until the stop pressure (actual setpoint + 0.5 x Δ H) is reached and the pump will stop after a few seconds. The pump will restart at the latest when the pressure has fallen to the start pressure (actual setpoint - 0.5 x Δ H).

If the flow in the off period is higher than the low-flow limit, the pump will restart before the pressure has fallen to the start pressure.

When restarting, the pump will react in the following way:

- 1. If the flow is higher than the low-flow limit, the pump will return to continuous operation at constant pressure.
- If the flow is lower than the low-flow limit, the pump will continue in start/stop operation. It will continue in start/stop operation until the flow is higher than the low-flow limit. When the flow is higher than the low-flow limit, the pump will return to continuous operation.

2. Low-flow detection with flow switch

When the digital input is activated because there is low flow, the speed will be increased until the stop pressure (actual setpoint + 0.5 x Δ H) is reached, and the pump will stop. When the pressure has fallen to start pressure, the pump will start again. If there is still no flow, the pump will reach the stop pressure and stop. If there is flow, the pump will continue operating according to the setpoint.

The check valve must always be installed before the pressure sensor. See figs 50 and 51.

If a flow switch is used to detect low flow, the switch must be installed on the system side after the diaphragm tank.

Fig. 50 Position of the non-return valve and pressure sensor in system with suction lift operation

Fig. 51 Position of the non-return valve and pressure sensor in system with positive inlet pressure

Diaphragm tank

The stop function requires a diaphragm tank of a certain minimum size. The tank must be installed as close as possible after the pump and the precharge pressure must be 0.7 x actual setpoint. Recommended diaphragm tank size:

Rated flow rate of pump [gpm (m ³ /h)]	Typical diaphragm tank size [gallons (liters)]
0-26 (0-6)	2 (8)
27-105 (7-24)	4.4 (18)
106-176 (25-40)	14 (50)
177-308 (41-70)	34 (120)
309-440 (71-100)	62 (180)

If a diaphragm tank of the above size is installed in the system, the factory setting of ΔH is the correct setting.

If the tank installed is too small, the pump will start and stop too often. This can be remedied by increasing ΔH .

10.8.12 Constant level with stop function (3.14)

Settings

The stop function can be set to these values:

- Active
- Not active.
- The on/off band can be set to these values:
- ΔH is factory-set to 10 % of the actual setpoint.
- Δ H can be set within the range from 5 % to 30 % of the actual setpoint.

A built-in low-flow detection function will automatically measure and store the power consumption at approx. 50 % and 85 % of the rated speed.

If "Active" is selected, proceed as follows:

- 1. Close the isolating valve to create a no-flow condition.
- 2. Press [OK] to start the auto-tuning.

Operating conditions for the stop function

It is only possible to use the constant level stop function if the system incorporates a level sensor, and all valves can be closed.

Description

The stop function is used for changing between on/off operation at low flow and continuous operation at high flow.

Fig. 52 Constant level with stop function. Difference between start and stop levels (ΔH)

Low flow can be detected in two different ways:

- 1. With the built-in low-flow detection function.
- 2. With a flow switch connected to a digital input.

1. Low-flow detection function

The built-in low-flow detection is based on the measurement of speed and power.

When low flow is detected, the pump will stop. When the level has reached the start level, the pump will start again. If there is still no flow, the pump will reach the stop level and stop. If there is flow, the pump will continue operating according to the setpoint.

2. Low-flow detection with flow switch

When the digital input is activated because of low flow, the speed will be increased until the stop level (actual setpoint - 0.5 x ΔH) is reached, and the pump will stop. When the level has reached the start level, the pump will start again. If there is still no flow, the pump will reach the stop level and stop. If there is flow, the pump will continue operating according to the setpoint.

10.8.13 Sensor 1 (3.15)

Setting of sensor 1 connected to terminal 54. This is the feedback sensor.

Select among the following values:

- Sensor output signal: 0-20 mA 4-20 mA.
- Sensor unit of measurement: bar, mbar, m, kPa, psi, ft, m³/h, m³/s, l/s, gpm, °C, °F, %.
- Sensor measuring range.

10.8.14 Sensor 2 (3.16)

Setting of sensor 2 connected to an MCB 114 sensor input module.

Select among the following values:

 Sensor output signal: 0-20 mA

4-20 mA.

- Sensor unit of measurement: bar, mbar, m, kPa, psi, ft, m³/h, m³/s, l/s, gpm, °C, °F, %.
- Sensor measuring range: 0-100 %.
10.8.15 Duty/standby (3.17)

Settings

The duty/standby function can be set to these values:

- Active
- Not active.

Activate the duty/standby function as follows:

- Connect one of the pumps to the mains supply. Set the duty/standby function to "Not active". Make the necessary settings in the "OPERATION" and "INSTALLATION" menus.
- 2. Set the operating mode to "Stop" in the "OPERATION" menu.
- Connect the other pump to the mains supply. Make the necessary settings in the "OPERATION" and "INSTALLATION" menus. Set the duty/standby function to "Active".

The running pump will search for the other pump and automatically set the duty/standby function of this pump to "Active". If it cannot find the other pump, a fault will be indicated.

Note The two pumps must be connected electrically via the GENIbus, and nothing else must be connected on the GENIbus.

The duty/standby function applies to two pumps connected in parallel and controlled via GENIbus. Each pump must be connected to its own CUE and sensor.

The primary targets of the function is the following:

- To start the standby pump if the duty pump is stopped due to an alarm.
- To alternate the pumps at least every 24 hours.

10.8.16 Operating range (3.18)

How to set the operating range:

- Set the min. speed within the range from a pump-dependent min. speed to the adjusted max. speed. The factory setting depends on the pump family.
- Set the max. speed within the range from adjusted min. speed to the pump-dependent max. speed. The factory setting will be equal to 100 %, i.e. the speed stated on the pump nameplate.

The area between the min. and max. speed is the actual operating range of the pump.

The operating range can be changed by the user within the pump-dependent speed range.

For some pump families, oversynchronous operation (max. speed above 100 %) will be possible. This requires an oversize motor to deliver the shaft power required by the pump during oversynchronous operation.

Fig. 53 Setting of the min. and max. curves in % of maximum performance

10.8.17 Motor bearing monitoring (3.19)

The motor bearing monitoring function can be set to these values:

- Active
- Not active.

When the function is set to "Active", the CUE will give a warning when the motor bearings are due to be relubricated or replaced.

Description

The motor bearing monitoring function is used to give an indication when it is time to relubricate or replace the motor bearings. See displays 2.10 and 2.11.

The warning indication and the estimated time take into account if the pump has been running with reduced speed. The bearing temperature is included in the calculation if temperature sensors are installed and connected to an MCB 114 sensor input module.

The counter will continue counting even if the function is switched to "Not active", but a warning will not be given when it is time for relubrication.

10.8.18 Confirming relubrication/replacement of motor bearings (3.20)

This function can be set to these values:

- Relubricated
- Replaced
- Nothing done.

When the motor bearings have been relubricated or replaced, confirm this action in the above display by pressing [OK].

Note

Relubricated cannot be selected for a period of time after confirming relubrication.

Relubricated

When the warning "Relubricate motor bearings" has been confirmed,

- the counter is set to 0.
- the number of relubrications is increased by 1.

When the number of relubrications has reached the permissible number, the warning "Replace motor bearings" appears in the display.

Replaced

When the warning "Replace motor bearings" has been confirmed,

- the counter is set to 0.
- the number of relubrications is set to 0.
- the number of bearing changes is increased by 1.

10.8.19 Temperature sensor 1 (3.21)

This display is only shown if an MCB 114 sensor input module has been installed.

Select the function of a Pt100/Pt1000 temperature sensor 1 connected to an MCB 114:

- · D-end bearing
- ND-end bearing
- Other liq. temp. 1
- · Other liq. temp. 2
- Motor winding
- Pumped liq. temp.
- Ambient temp.
- Not active.

10.8.20 Temperature sensor 2 (3.22)

This display is only shown if an MCB 114 sensor input module has been installed.

Select the function of a Pt100/Pt1000 temperature sensor 2 connected to an MCB 114:

- D-end bearing
- ND-end bearing
- Other liq. temp. 1
- Other liq. temp. 2
- Motor winding
- Pumped lig. temp.
- Ambient temp.
- Not active.

10.8.21 Standstill heating (3.23)

The standstill heating function can be set to these values:

- Active
- Not active.

When the function is set to "Active" and the pump is stopped by a stop command, a current will be applied to the motor windings. The standstill heating function pre-heats the motor to avoid condensation.

10.8.22 Ramps (3.24)

Set the time for each of the two ramps, ramp-up and ramp-down:

- Factory setting:
- Depending on power size.
- The range of the ramp parameter: 1-3600 s.

The ramp-up time is the acceleration time from 0 rpm to the rated motor speed. Choose a ramp-up time such that the output current does not exceed the maximum current limit for the CUE.

The ramp-down time is the deceleration time from rated motor speed to 0 rpm. Choose a ramp-down time such that no overvoltage arises and such that the generated current does not exceed the maximum current limit for the CUE.

11. Setting by means of PC Tool E-products

Special setup requirements differing from the settings available via the CUE require the use of Grundfos PC Tool E-products. This again requires the assistance of a Grundfos service technician or engineer. Contact your local Grundfos company for more information.

12. Priority of settings

The on/off button has the highest priority. In "off" condition, pump operation is not possible.

The CUE can be controlled in various ways at the same time. If two or more operating modes are active at the same time, the operating mode with the highest priority will be in force.

12.1 Control without bus signal, local operating mode

Priority	CUE menu	External signal
1	Stop	
2	Max.	
3		Stop
4		Max.
5	Min.	Min.
6	Normal	Normal

Example: If an external signal has activated the "Max." operating mode, it will only be possible to stop the pump.

12.2 Control with bus signal, remote-controlled operating mode

Priority	CUE menu	External signal	Bus signal
1	Stop		
2	Max.		
3		Stop	Stop
4			Max.
5			Min.
6			Normal

Example: If the bus signal has activated the "Max." operating mode, it will only be possible to stop the pump.

13. External control signals

13.1 Digital inputs

The overview shows functions in connection with closed contact.

Terminal	Туре	Function			
18	DI 1	Start/stop of pump			
19	DI 2	 Min. (min. curve) Max. (max. curve) Ext. fault (external fault) Flow switch Alarm reset Dry running (from external sensor) Not active. 			
32	DI 3	 Min. (min. curve) Max. (max. curve) Ext. fault (external fault) Flow switch Alarm reset Dry running (from external sensor) Not active. 			
33	DI 4	 Min. (min. curve) Max. (max. curve) Ext. fault (external fault) Flow switch Alarm reset Dry running (from external sensor) Accumulated flow (pulse flow) Not active. 			

The same function must not be selected for more than one input.

13.2 External setpoint

Terminal	Туре	Function
53	AI 1	 External setpoint (0-10 V)

The setpoint can be remote-set by connecting an analog signal transmitter to the setpoint input (terminal 53).

Open loop

In "Open loop" control mode (constant curve), the actual setpoint can be set externally within the range from the min. curve to the setpoint set via the CUE menu. See fig. 55.

Fig. 55 Relation between the actual setpoint and the external setpoint signal in "Open loop" control mode

Closed loop

In all other control modes, except proportional differential pressure, the actual setpoint can be set externally within the range from the lower value of the sensor measuring range (sensor min.) to the setpoint set via the CUE menu. See fig. 56.

Fig. 56 Relation between the actual setpoint and the external setpoint signal in "Controlled" control mode

Example: At a sensor min. value of 0 psi (0 bar), a setpoint set via the CUE menu of 43.5 psi (3 bar) and an external setpoint of 80 %, the actual setpoint will be as follows:

Actual setpoint

(setpoint set via the CUE menu - sensor min.)
 x % external setpoint signal + sensor min.

- = (3 0) x 80 % + 0
- = 34.8 psi (2.4 bar)

English (US)

Proportional differential pressure

In "Proportional differential pressure" control mode, the actual setpoint can be set externally within the range from 25 % of maximum head to the setpoint set via the CUE menu. See fig. 57.

Fig. 57 Relation between the actual setpoint and the external setpoint signal in "Proportional differential pressure" control mode

Example: At a maximum head of 40 ft. (12 meters), a setpoint of 20 ft. (6 meters) set via the CUE menu and an external setpoint of 40 %, the actual setpoint will be as follows:

Actual setpoint	 (setpoint, CUE menu - 25 % of maximum head) x % external setpoint signal + 25 % of maximum head
	= (6 - 12 x 25 %) x 40 % + 12/4

= 14 ft. (4.2 meters)

13.3 GENIbus signal

The CUE supports serial communication via an RS-485 input. The communication is carried out according to the Grundfos GENIbus protocol and enables connection to a building management system or another external control system.

Operating parameters, such as setpoint and operating mode, can be remote-set via the bus signal. At the same time, the pump can provide status information about important parameters, such as actual value of control parameter, input power and fault indications.

Contact Grundfos for further details.

Note

If a bus signal is used, the number of settings available via the CUE will be reduced.

13.4 Other bus standards

Grundfos offers various bus solutions with communication according to other standards.

Contact Grundfos for further details.

14. Maintenance and service

14.1 Cleaning the CUE

Keep the cooling fins and fan blades clean to ensure sufficient cooling of the CUE.

14.2 Service parts and service kits

For further information on service parts and service kits, visit www.grundfos.com > Grundfos Product Center.

15. Troubleshooting

15.1 Warning and alarm list

		S	tatu	S		
Code and display text			Alarm	Locked alarm	Operating mode	Resetting
1	Too high leakage current			•	Stop	Man.
2	Mains phase failure		•		Stop	Aut.
3	External fault		•		Stop	Man.
16	Other fault		•	•	Stop	Aut.
30	Poplaco motor boarings	•		•	Stop	Man ³⁾
30	Replace motor bearings	•				
32	Overvoltage	•	•		Ston	Διιτ
		•	•		-	Aut
40	Undervoltage	•	•		Ston	Aut
			•		Stop	Aut
48	Overload		-	•	Stop	Man
49	Overload		•	-	Stop	Aut.
		•			-	Aut.
55	Overload		•		Stop	Aut.
57	Dry running		•		Stop	Aut.
64	Too high CUE temperature		•		Stop	Aut.
70	Too high motor temperature		•		Stop	Aut.
77	Communication fault, duty/standby	•			-	Aut.
89	Sensor 1 outside range		٠		1)	Aut.
91	Temperature sensor 1 outside range	•			-	Aut.
93	Sensor 2 outside range	٠			-	Aut.
96	Setpoint signal outside range		•		1)	Aut.
110	Too high bearing	٠			-	Aut.
140	temperature		•		Stop	Aut.
149	Too high bearing	•			-	Aut.
455			•		Stop	Aut.
155			•		Stop	Aut.
175	outside range	•			-	Aut.
240	Relubricate motor bearings	•			-	Man. ³⁾
241	Motor phase failure	•			-	Aut.
			•		Stop	Aut.
242	AMA did not succeed ²⁾	•			-	Man.

 In case of an alarm, the CUE will change the operating mode depending on the pump type.

- ²⁾ AMA, Automatic Motor Adaptation. Not active in the present software.
- ³⁾ Warning is reset in display 3.20.

15.2 Resetting of alarms

In case of a fault or malfunction of the CUE, check the alarm list in the "OPERATION" menu. The latest five alarms and latest five warnings can be found in the log menus.

Contact a Grundfos technician if an alarm occurs repeatedly.

15.2.1 Warning

The CUE will continue the operation as long as the warning is active. The warning remains active until the cause no longer exists. Some warnings may switch to alarm condition.

15.2.2 Alarm

In case of an alarm, the CUE will stop the pump or change the operating mode depending on the alarm type and pump type. See section *15.1 Warning and alarm list*.

Pump operation will be resumed when the cause of the alarm has been remedied and the alarm has been reset.

Resetting an alarm manually

- Press [OK] in the alarm display.
- · Press [On/Off] twice.
- Activate a digital input DI 2-DI 4 set to "Alarm reset" or the digital input DI 1 (start/stop).

If it is not possible to reset an alarm, the reason may be that the fault has not been remedied, or that the alarm has been locked.

15.2.3 Locked alarm

In case of a locked alarm, the CUE will stop the pump and become locked. Pump operation cannot be resumed until the cause of the locked alarm has been remedied and the alarm has been reset.

Resetting a locked alarm

 Switch off the power supply to the CUE for about 30 seconds. Switch on the power supply, and press OK in the alarm display to reset the alarm.

15.3 Indicator lights

The table shows the function of the indicator lights.

Indicator light	Function
	The pump is running or has been stopped by a stop function.
On (green)	If flashing, the pump has been stopped by the user (CUE menu), external start/stop or bus.
Off (orange)	The pump has been stopped with the on/off button.
Alarm (red)	Indicates an alarm or a warning.

15.4 Signal relays

The table shows the function of the signal relays.

Туре	Function	
Relay 1	 Ready Alarm Operation	Pump running Warning Relubricate
Relay 2	ReadyAlarmOperation	Pump running Warning Relubricate

See also fig. 29.

16. Technical data

16.1 Enclosure

The individual CUE cabinet sizes are characterized by their enclosures. The table shows the relationship of enclosure class and enclosure type.

Example:

Read from the nameplate:

- Supply voltage = 3 x 380-500 V.
- Typical shaft power = 2 Hp (1.5 kW).
- Enclosure class = IP20.

The table shows that the CUE enclosure is A2.

Typica	l shaft	Enclosure class and type											
powe	ər P2		1 x 200-240	٧	3 x 200-240 V		3 x 200-240 V 3 x 380-500 V		3 x 525-600 V		3 x 525-690 V		
[kW]	[HP]	IP20 NEMA0	IP21 NEMA1	IP55 NEMA12	IP20 NEMA0	IP55 NEMA12	IP20 NEMA0	IP55 NEMA12	IP20 NEMA0	IP55 NEMA12	IP21 NEMA1	IP55 NEMA12	
0,55	0,75												
0,75	1												
1,1	1,5	A3		A5	4.0		4.2						
1,5	2				AZ	A4	AZ	A4	A3	A5			
2,2	3		D1	D4									
3	4		Ы	DI	4.0	45							
3,7	5				A3	Ab							
4	5						A2	A4					
5,5	7,5		B1	B1			4.2	٨٢	A3	A5			
7,5	10		B2	B2	B3	B1	AS	Ab					
11	15												
15	20				D4	B2	B3	B1					
18,5	25				D4						B2	B2	
22	30				<u></u>	<u></u>	C1		РЭ				
30	40				03		B4	DZ					
37	50				C4	00							
45	60				- 64	62	<u></u>	C1					
55	75						03				C2	C2	
75	100						64	<u></u>					
90	125						-04	62					

16.2 Cable gland

Select standard gland holes for CUE frequency converters used outside USA and Canada.

Select imperial gland holes for CUE frequency converters used inside USA and Canada.

Enclosure	Standard gland holes	Imperial gland holes		
A3 ID20/21 / NEMA tupo 1	3 x 22.5 (1/2")	3 x 22.5 (1/2")		
AS IP20/21 / NEIWA type 1	3 x 28.4 (3/4")	3 x 28.4 (3/4")		
	1 x 22.5 (1/2")	1 x 22.5 (1/2")		
A4 IP55 / NEWA type 12	3 x 28.4 (3/4")	3 x 28.4 (3/4")		
A5 IP55 / NEMA type 12	6 x 26.3	6 x 28.4 (3/4")		
D1 ID21 / NEMA tupe 1	2 x 22.5 (1/2")	2 x 22.5 (1/2")		
BT IP21 / NEWA type 1	3 x 37.2	3 x 34.7 (1")		
	2 x 21.5	2 x 22.5 (1/2")		
B1 IP55 / NEMA type 12	1 x 26.3	1 x 28.4 (3/4")		
	3 x 33.1	3 x 34.7 (1")		
	1 x 21.5	1 x 22.5 (1/2")		
B2 IP21 / NEMA type 1 and	1 x 26.3	1 x 28.4 (3/4")		
B2 IP55 / NEMA type 12	1 x 33.1	1 x 34.7 (1")		
	2 x 42.9	2 x 44.2 (1 1/4")		

16.3 Main dimensions and weights

Fig. 58 Enclosures A2 and A3

Fig. 59 Enclosures A4, A5, B1, B2, B3, B4, C1, C2, C3 and C4

TM03 9002 2807

Height Enclosure [in. ¹ (mm ¹)]		Width [in. ¹ (mm ¹)] Depth [i		ו. (mm) ¹] Screw holes [in. (mm)])]	Weight			
	Α	а	В	b	С	C ²⁾	С	Ød	Øe	f	[105. (Kg)]
A2	10.5 (268)	10.1 (257)	3.5 (90)	2.7 (70)	8.0 (205)	8.6 (219)	0.31 (8)	0.43 (11)	0.21 (5.5)	0.35 (9)	10.8 (4.9)
IP21/NEMA1	14.7 (375)	13.7 (350)	3.5 (90)	2.7 (70)	8.0 (205)	8.6 (219)	0.31 (8)	0.43 (11)	0.21 (5.5)	0.35 (9)	11.6 (5.3)
A3	10.5 (268)	10.1 (257)	5.1 (130)	4.3 (110)	8.0 (205)	8.6 (219)	0.31 (8)	0.43 (11)	0.21 (5.5)	0.35 (9)	14.5 (6.6)
IP21/NEMA1	14.7 (375)	13.7 (350)	5.1 (130)	4.3 (110)	8.0 (205)	8.6 (219)	0.31 (8)	0.43 (11)	0.21 (5.5)	0.35 (9)	15.4 (7)
A4	16.5 (420)	15.7 (401)	7.9 (200)	6.7 (171)	6.9 (175)	6.9 ()	0.32 (8.2)	0.47 (12)	0.26 (6.5)	0.35 (6)	20.2 (9.2)
A5	16.5 (420)	15.8 (402)	9.5 (242)	8.4 (215)	7.8 (200)	7.8 (200)	0.32 (8.2)	0.47 (12)	0.25 (6.5)	0.35 (9)	30.8 (14)
B1	18.8 (480)	17.8 (454)	9.5 (242)	8.2 (210)	10.2 (260)	10.2 (217560)	0.47 (12)	0.74 (19)	0.35 (9)	0.35 (9)	50.7 (23)
B2	25.5 (650)	24.5 (624)	9.5 (242)	8.2 (210)	10.2 (260)	10.2 (260)	0.47 (12)	0.74 (19)	0.35 (9)	0.35 (9)	59.5 (27)
B3	15.7 (399)	14.9 (380)	6.5 (165)	5.5 (140)	9.7 (248)	10.3 (262)	0.31 (8)	0.47 (12)	0.26 (6.8)	0.31 (7.9)	26.4 (12)
IP21/NEMA1	18.7 (475)	-	6.5 (165)	-	9.8 (249)	10.3 (262)	0.31 (8)	0.47 (12)	0.26 (6.8)	0.31 (7.9)	-
B4	20.4 (520)	19.4 (495)	9.09 (231)	7.8 (200)	9.5 (242)	9.5 (242)	-	-	0.33 (8.5)	0.59 (15)	51.8 (23.5)
IP21/NEMA1	26.3 (670)	-	10.0 (255)	-	9.6 (246)	9.6 (246)	-	-	0.33 (8.5)	0.59 (15)	-
C1	26.7 (680)	25.5 (648)	12.1 (308)	10.7 (272)	12.2 (310)	12.2 (310)	0.47 (12)	0.74 (19)	0.35 (9)	0.38 (9.8)	99.2 (45)
C2	30.3 (770)	29.0 (739)	14.5 (370)	13.1 (334)	13.2 (335)	13.2 (335)	0.47 (12)	0.74 (19)	0.35 (9)	0.38 (9.8)	143.3 (65)
C3	21.6 (550)	20.5 (521)	12.1 (308)	10.6 (270)	13.1 (333)	13.1 (333)	-	-	0.33 (8.5)	0.66 (17)	77.1 (35)
IP21/NEMA1	29.7 (755)	-	12.9 (329)	-	13.3 (337)	13.3 (337)	-	-	0.33 (8.5)	0.66 (17)	-
C4	25.9 (660)	24.8 (631)	14.5 (370)	12.9 (330)	13.1 (333)	13.1 (333)	-	-	0.33 (8.5)	0.66 (17)	110.2 (50)
IP21/NEMA1	37.4 (950)	-	15.3 (391)	-	13.3 (337)	13.3 (337)	-	-	0.33 (8.5)	0.66 (17)	-
D1	47.5 (1209)	45.4 (1154)	16.5 (420)	11.9 (304)	15.0 (380)	-	0.78 (20)	0.43 (11)	0.43 (11)	0.98 (25)	229.2 (104)
D2	62.5 (1589)	60.4 (1535)	16.5 (420)	11.9 (304)	15.0 (380)	-	0.78 (20)	0.43 (11)	0.43 (11)	0.98 (25)	332.8 (151)

TM03 9000 2807

¹⁾ The dimensions are maximum height, width and depth. Dimensions are without options.

16.4 Surroundings

Relative humidity	5-95 % RH
Ambient temperature	Max. 122 °F (50 °C)
Average ambient temperature over 24 hrs.	Max. 113 °F (45 °C)
Minimum ambient temperature at full operation	32 °F (0 °C)
Minimum ambient temperature at reduced operation	14 °F (-10 °C)
Temperature during storage and	-13 to 149 °F
transportation	(-25 to 65 °C)
Storage duration	Max. 6 months
Maximum altitude above sea level without performance reduction	3280 ft. (1000 m)
Maximum altitude above sea level with performance reduction	9840 ft. (3000 m)

Note The CUE comes in a packaging which is not suitable for outdoor storage.

Enclosure	Tightening Torque [ftlb. (Nm)]				
type	Mains	Motor	Ground	Relay	
A2	1.3 (1.8)	1.3 (1.8)	2.2 (3)	0.4 (0.6)	
A3	1.3 (1.8)	1.3 (1.8)	2.2 (3)	0.4 (0.6)	
A4	1.3 (1.8)	1.3 (1.8)	2.2 (3)	0.4 (0.6)	
A5	1.3 (1.8)	1.3 (1.8)	2.2 (3)	0.4 (0.6)	
B1	1.3 (1.8)	1.3 (1.8)	2.2 (3)	0.4 (0.6)	
B2	3.3 (4.5)	3.3 (4.5)	2.2 (3)	0.4 (0.6)	
В3	1.3 (1.8)	1.3 (1.8)	2.2 (3)	0.4 (0.6)	
B4	3.3 (4.5)	3.3 (4.5)	2.2 (3)	0.4 (0.6)	
C1	7.4 (10)	7.4 (10)	2.2 (3)	0.4 (0.6)	
C2	10.3 ¹⁾ /17.7 ²⁾ (14 ¹⁾ /24 ²⁾)	10.3 ¹⁾ /17.7 ²⁾ (14 ¹⁾ /24 ²⁾)	2.2 (3)	0.4 (0.6)	
C3	7.4 (10)	7.4 (10)	2.2 (3)	0.4 (0.6)	
C4	10.3 ¹⁾ /17.7 ²⁾ (14 ¹⁾ /24 ²⁾)	10.3 ¹⁾ /17.7 ²⁾ (14 ¹⁾ /24 ²⁾)	2.2 (3)	0.4 (0.6)	

¹⁾ Conductor gauge size \leq 4/0 AWG (95 mm²). ²⁾ Conductor gauge size \geq 4/0 AWG (95 mm²).

16.6 Cable length

Maximum length, screened motor cable	500 ft. (150 m)
Maximum length, unscreened motor cable	1000 ft. (300 m)
Maximum length, signal cable	1000 ft. (300 m)

16.7 Fuses and cable gauge size

Always comply with local regulations as to cable gauge sizes.

16.7.1 Cable gauge size to signal terminals

Maximum cable gauge size to signal terminals, rigid conductor	14 AWG (1.5 mm ²)
Maximum cable gauge size to signal terminals, flexible conductor	18 AWG (1.0 mm ²)
Minimum cable gauge size to signal terminals	20 AWG (0.5 mm ²)

16.7.2 Non-UL fuses and conductor gauge size to mains and motor

Typical shaft power P2	Max. fuse size	Fuse type	Max. conductor gauge size
[Hp (kW)]	[A]		[inch ² (mm ²)]
1 x 200-240 V			
1.1 (0.8)	20	gG	.006 (4)
1.5 (1.1)	30	gG	.015 (10)
2.2 (1.6)	40	gG	.015 (10)
3 (2.2)	40	gG	.015 (10)
3.7 (2.7)	60	gG	.015 (10)
5.5 (4.1)	80	gG	.015 (10)
7.5 (5.5)	100	gG	.054 (35)

Typical shaft power P2	Max. fuse size	Fuse type	Max. conductor gauge size
[Hp (kW)]	[A]		[inch ² (mm ²)]
3 x 200-240 V			
0.75 (0.6)	10	gG	.006 (4)
1.1 (0.8)	20	gG	.006 (4)
1.5 (1.1)	20	gG	.006 (4)
2.2 (1.6)	20	gG	.006 (4)
3 (2.2)	32	gG	.006 (4)
3.7 (2.7)	32	gG	.006 (4)
5.5 (4.1)	63	gG	.015 (10)
7.5 (5.5)	63	gG	.015 (10)
11 (8.2)	63	gG	.015 (10)
15 (11.1)	80	gG	.054 (35)
18.5 (13.7)	125	gG	.077 (50)
22 (16.4)	125	gG	.077 (50)
30 (22.3)	160	gG	.077 (50)
37 (27.6)	200	aR	.147 (95)
45 (33.0	250	aR	.186 (120)
0.55 (0.41)	10	46	006 (4)
0.75 (0.6)	10	ge ge	006 (4)
1 1 (0 8)	10	ge gG	006 (4)
1.5 (1.1)	10	ge gG	006 (4)
22(16)	20	ge gG	006 (4)
3 (2.2)	20	aG	.006 (4)
4 (3.0)	20	aG	.006 (4)
5.5 (4.1)	32	gG	.006 (4)
7.5 (5.5)	32	qG	.006 (4)
11 (8.2)	63	qG	.015 (10)
15 (11.1)	63	qG	.015 (10)
18.5 (13.7)	63	gG	.015 (10)
22 (16.4)	63	gG	.054 (35)
30 (22.3)	80	gG	.054 (35)
37 (27.6)	100	gG	.077 (50)
45 (33.6	125	gG	.077 (50)
55 (41.0)	160	gG	.077 (50)
75 (56.0)	250	aR	.147 (95)
90 (67.1)	250	aR	.186 (120)
3 x 525-600 V			
0.75 (0.6)	10	gG	.006 (4)
1.1 (0.8)	10	gG	.006 (4)
1.5 (1.1)	10	gG	.006 (4)
2.2 (1.6)	20	gG	.006 (4)
3 (2.2)	20	gG	.006 (4)
4 (3.0)	20	gG	.006 (4)
5.5 (4.1)	32	gG	.006 (4)
7.5 (5.5)	32	gG	.006 (4)
3 X 525-690 V	63	~ (054 (25)
11 (δ.2)	63	yG aC	.054 (35)
19 (11.1)	60	yG aC	.004 (35)
22 (16.7)	63	yG aC	.004 (00)
30 (22 3)	63	yu aC	054 (33)
37 (27.8)	80	90	1/7 (05)
45 (33.6	100	90	147 (95)
55 (41 0)	125	90 90	147 (95)
75 (56 0)	160	aC aC	147 (95)
90 (67 1)	180	aG	.147 (95)
		30	(00)

1) Screened motor cable, unscreened supply cable. AWG. See section 16.7.3 UL fuses and conductor gauge size to mains and motor.

Fuse type								
Typical shaft power P2 [Hp (kW)]	Bussmann RK1	Bussmann J	Bussmann T	SIBA RK1	Littel Fuse RK1	Ferraz-Shawmut CC	Ferraz-Shawmut RK1	Maximum conductor cross-section ¹⁾ [AWG (mm)] ²⁾
1 x 200-240 V		-	-	-	_	-	-	10
1.1 (0.8)	KTN-R20	-	-	-	-	-	-	7
1.5 (1.1)	KTN-R30	-	-	-	-	-	-	7
2.2 (1.6)	KTN-R40	-	-	-	-	-	-	7
3 (2.2)	KTN-R40	-	-	-	-	-	-	7
3.7 (2.7)	KTN-R60	-	-	-	-	-	-	7
5.5 (4.1)	-	-	-	-	-	-	-	7
7.5 (5.5)	-	-	-	-	-	-	-	2
3 X 200-240 V		IKS 10		E017006 010				10
1 1 (0.8)	KTN P20	JKS 20	JJN-10	5017906-010			A2K-10K	10
1.1 (0.0)	KTN-R20	IKS-20	1 IN-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
22(16)	KTN-R20	JKS-20	.I.IN-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
3 (2.2)	KTN-R30	JKS-30	JJN-30	5012406-032	KTN-R30	ATM-R30	A2K-30R	10
3.7 (2.7)	KTN-R30	JKS-30	JJN-30	5012406-032	KTN-R30	ATM-R30	A2K-30R	10
5.5 (4.1)	KTN-R50	JKS-50	JJN-50	5012406-050	KLN-R50	_	A2K-50R	7
7.5 (5.5)	KTN-R50	JKS-60	JJN-60	5012406-032	KLN-R60	-	A2K-60R	7
11 (8.2)	KTN-R60	JKS-60	JJN-60	5014006-063	KLN-R60	A2K-60R	A2K-80R	2
15 (11.1)	KTN-R80	JKS-80	JJN-80	5014006-080	KLN-R80	A2K-80R	A2K-125R	1/0
18.5 (13.7)	KTN-R125	JKS-150	JJN-125	2028220-125	KLN-R125	A2K-125R	A2K-125R	1/0
22 (16.4)	KTN-R125	JKS-150	JJN-125	2028220-125	KLN-R125	A2K-125R	A25X-150	1/0
30 (22.3)	FWX-150	-	-	2028220-150	L25S-150	A25X-150	A25X-200	4/0
37 (27.6)	FWX-200	-	-	2028220-200	L25S-200	A25X-200		
45 (33.6	FWX-250	-	-	2028220-250	L25S-250	A25X-250	A25X-250	250 MCM
3 x 380-500 V			110.40				1014 105	
0.55 (0.41)	KTS-R10	JKS-10	JJS-10	5017906-010	KIN-R10	ATM-R10	A2K-10R	10
0.75 (0.6)	KIS-RIU	JKS-10	JJS-10	5017906-010			A2K-10R	10
1.1 (0.6)	KTS-R10	JKS-10	JJS-10	5017906-010			A2K-10R	10
22(16)	KTS-R10	JKS-20	.1.15-20	5017906-020	KTN-R20	ATM-R10	A2K-20R	10
3 (2.2)	KTS-R20	JKS-20	JJS-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
4 (3.0)	KTS-R20	JKS-20	JJS-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
5.5 (4.1)	KTS-R30	JKS-30	JJS-30	5012406-032	KTN-R30	ATM-R30	A2K-30R	10
7.5 (5.5)	KTS-R30	JKS-30	JJS-30	5012406-032	KTN-R30	ATM-R30	A2K-30R	10
11 (8.2)	KTS-R40	JKS-40	JJS-40	5014006-040	KLS-R40	-	A6K-40R	7
15 (11.1)	KTS-R40	JKS-40	JJS-40	5014006-040	KLS-R40	-	A6K-40R	7
18.5 (13.7)	KTS-R50	JKS-50	JJS-50	5014006-050	KLS-R50	-	A6K-50R	7
22 (16.4)	KTS-R60	JKS-60	JJS-60	5014006-063	KLS-R60	-	A6K-60R	2
30 (22.3)	KTS-R80	JKS-80	JJS-80	2028220-100	KLS-R80	-	A6K-80R	2
37 (27.6)	KTS-R100	JKS-100	JJS-100	2028220-125	KLS-R100	-	A6K-100R	1/0
45 (33.6	KTS-R125	JKS-150	JJS-150	2028220-125	KLS-R125	-	A6K-125R	1/0
55 (41.0)	KIS-R150	JKS-150	JJ2-150	2028220-160	KLS-R150	-	A6K-150R	1/0
75 (50.0) 90 (67.1)	FWH-220			2028220-200	L505-225		A50-P225	4/0 250 MCM
3 x 525-600 V	1 WH 200			2020220 200	2000 200		7001200	200 1001
0.75 (0.6)	KTS-R10	JKS-10	JJS-10	5017906-010	KTN-R10	ATM-R10	A2K-10R	10
1.1 (0.8)	KTS-R10	JKS-10	JJS-10	5017906-010	KTN-R10	ATM-R10	A2K-10R	10
1.5 (1.1)	KTS-R10	JKS-10	JJS-10	5017906-010	KTN-R10	ATM-R10	A2K-10R	10
2.2 (1.6)	KTS-R20	JKS-20	JJS-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
3 (2.2)	KTS-R20	JKS-20	JJS-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
4 (3.0)	KTS-R20	JKS-20	JJS-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
5.5 (4.1)	KTS-R30	JKS-30	JJS-30	5012406-032	KTN-R30	ATM-R30	A2K-30R	10
7.5 (5.5)	KTS-R30	JKS-30	JJS-30	5012406-032	KTN-R30	ATM-R30	A2K-30R	10
3 x 525-690 V								
11 (8.2)	KTS-R-25	JKS-25	JJS-25	5017906-025	KLSR025	HST25	A6K-25R	1/0
15 (11.1)	KTS-R-30	JKS-30	JJS-30	5017906-030	KLSR030	HST30	A6K-30R	1/0
18.5 (13.7)	KTS-R-45	JKS-45	JJS-45	5014006-050	KLSR045	HST45	A6K-45R	1/0
22 (16.4)	KIS-R-45	JKS-45	JJS-45	5014006-050	KLSR045	HST45	A6K-45R	1/0
30 (22.3)	KIS-K-60	JKS-60	112-00	5014006-063	KLORUDU	HO100	AOK-OUK	1/0
JI (21.0)	KTS. P 00	1K6 00 1K9-00	116 00	5014006-060	KI SPOOD		AUK-OUK	1/0
55 (41 0)	KTS-R-100	.IKS-100	.1.15-100	5014006-100	KLSR100	HST100	A6K-100R	1/0
75 (56 0)	KTS-R125	JKS-125	JJS-125	2028220-125	KL S-125	HST125	A6K-125R	1/0
90 (67.1)	KTS-R150	JKS-150	JJS-150	2028220-150	KLS-150	HST150	A6K-150R	1/0

¹⁾ Screened motor cable, unscreened supply cable.

²⁾ American Wire Gauge.

16.8 Inputs and outputs

16.8.1 Mains supply (L1, L2, L3)

Supply voltage	200-240 V ± 10 %
Supply voltage	380-500 V ± 10 %
Supply voltage	525-600 V ± 10 %
Supply voltage	525-690 V ± 10 %
Supply frequency	50/60 Hz
Maximum temporary imbalance between phases	3 % of rated value
Leakage current to ground	> 3.5 mA
Number of cut-ins, enclosure A	Max. 2 times/min.
Number of cut-ins, enclosures B and C	Max. 1 time/min.

Note Do not use the power supply for switching the CUE on and off.

16.8.2 Motor output (U, V, W)

Output voltage	0-100 % ¹⁾
Output frequency	0-100 Hz ²⁾
Switching on output	Not recommended

¹⁾ Output voltage in % of supply voltage.

²⁾ Depending on the pump family selected.

16.8.3 RS-485 GENIbus connection

Terminal number 68 (A), 69 (B), 61 GND	Terminal number	68 (A), 69 (B), 61 GND (Y)
--	-----------------	----------------------------

The RS-485 circuit is functionally separated from other central circuits and galvanically separated from the supply voltage (PELV).

16.8.4 Digital inputs

Terminal number	18, 19, 32, 33
Voltage level	0-24 VDC
Voltage level, open contact	> 19 VDC
Voltage level, closed contact	< 14 VDC
Maximum voltage on input	28 VDC
Input resistance, R _i	Approx. 4 kΩ

All digital inputs are galvanically separated from the supply voltage (PELV) and other high-voltage terminals.

16.8.5 Signal relays

Relay 01, terminal number	1 (C), 2 (NO), 3 (NC)
Relay 02, terminal number	4 (C), 5 (NO), 6 (NC)
Maximum terminal load (AC-1) ¹⁾	240 VAC, 2 A
Maximum terminal load (AC-15) ¹⁾	240 VAC, 0.2 A
Maximum terminal load (DC-1) ¹⁾	50 VDC, 1 A
Minimum terminal load	24 V DC 10 mA
	24 V AC 20 mA

1) IEC 60947, parts 4 and 5.

- C Common
- NO Normally open
- NC Normally closed

The relay contacts are galvanically separated from other circuits by reinforced insulation (PELV).

16.8.6 Analog inputs

Analog input 1, terminal number	53
Voltage signal	A53 = "U" ¹⁾
Voltage range	0-10 V
Input resistance, R _i	Approx. 10 kΩ
Maximum voltage	± 20 V
Current signal	A53 = "I" ¹⁾
Current range	0-20, 4-20 mA
Input resistance, R _i	Approx. 200 Ω
Maximum current	30 mA
Maximum fault, terminals 53, 54	0.5 % of full scale
Analog input 2, terminal number	54
Current signal	A54 = "I" ¹⁾
Current range	0-20, 4-20 mA
Input resistance, R _i	Approx. 200 Ω
Maximum current	30 mA
Maximum fault, terminals 53, 54	0.5 % of full scale

¹⁾ The factory setting is voltage signal "U".

All analog inputs are galvanically separated from the supply voltage (PELV) and other high-voltage terminals.

16.8.7 Analog output

Analog output 1, terminal number	42
Current range	0-20 mA
Maximum load to frame	500 Ω
Maximum fault	0.8 % of full scale

The analog output is galvanically separated from the supply voltage (PELV) and other high-voltage terminals.

16.8.8 MCB 114 sensor input module

Analog input 3, terminal number	2
Current range	0/4-20 mA
Input resistance	< 200 Ω
Analog inputs 4 and 5, terminal number	4, 5 and 7, 8
Signal type, 2- or 3-wire	Pt100/Pt1000

Note When using Pt100 with 3-wire cable, the resistance must not exceed 30 Ω .

16.9 Sound pressure level

The sound pressure of the CUE is maximum 70 dB(A).

The sound pressure level of a motor controlled by a frequency converter may be higher than that of a corresponding motor which is not controlled by a frequency converter. See section *6.7 RFI filters*.

17. Disposal

This product or parts of it must be disposed of in an environmentally sound way:

- 1. Use the public or private waste collection service.
- 2. If this is not possible, contact the nearest Grundfos company or service workshop.

Subject to alterations.

Traduction de la version anglaise originale

SOMMAIRE

		Page
1.	Symboles utilisés dans cette notice	48
2.	Introduction	48
2.1	Description générale	48
2.2	Applications	49
2.3	Références	49
3.	Sécurité et avertissements	49
3.1	Avertissement	49
3.2	Consignes de sécurité	49
3.3	Conditions d'installation	49
3.4	Rendement réduit dans certaines conditions	49
4.	Identification	50
4.1	Plaque signalétique	50
4.2	Étiquette d'emballage	50
5.	Installation mécanique	50
5.1	Livraison et stockage	50
5.2	Transport et déballage	50
5.3	Espace requis et circulation d'air	50
5.4	Montage	51
6.	Connexion électrique	51
6.1	Protection électrique	51
6.2	Connexion secteur et moteur	52
6.3	Branchement des bornes de signal	55
6.4	Branchement des relais de signal	59
6.5	Branchement du module d'entrée capteur MCB 114	60
6.6 6.7	Installation CEM correcte	61
0.7 6.9	Filles RFI Filtres de sertie	62
6.0	Câble moteur	62
7 7	Modes de fonctionnement	63
י. פ	Modes de régulation	63
0. 8 1	Fonctionnement non régulé (boucle ouverte)	63
8.2	Fonctionnement régulé (boucle fermée)	63
٥. <u>ـ</u>	Anercu des menus	61
J. 10	Réglaça au mayon du nannacu da commanda	66
10.1	Regiage au moyen du panneau de commande	00 66
10.1	Retour aux réglages par défaut	67
10.2		67
10.0	Guide de démarrage	67
10.5	GENERAL	71
10.6	FONCTIONNEMENT	72
10.7	ETAT	73
10.8	INSTALLATION	76
11.	Réglage au moyen du PC Tool	83
12.	Priorité des réglages	83
12.1	Régulation sans signal bus, mode de fonctionnemen local	t 83
12.2	Régulation avec signal bus, mode de fonctionnemen régulé à distance	t 83
13.	Signaux de régulation externes	84
13.1	Entrées digitales	84
13.2	Point de consigne externe	84
13.3	Signal GENIbus	85
13.4	Autres standards bus	85
14.	Maintenance et entretien	85
14.1	Nettoyage du CUE	85
14.2	Kits de maintenance et pièces détachées	85

15.	Grille de dépannage	85
15.1	Liste des avertissements et des alarmes	85
15.2	Réinitialisation des alarmes	86
15.3	Voyants lumineux	86
15.4	Relais de signal	86
16.	Caractéristiques techniques	87
16.1	Boîtier	87
16.2	Presse-étoupe	87
16.3	Dimensions principales et poids	88
16.4	Environnement	88
16.5	Couples borne	89
16.6	Longueur de câble	89
16.7	Fusibles et section câble	89
16.8	Entrées et sorties	91
16.9	Niveau de pression sonore	92
17.	Mise au rebut	92

Avertissement

Avant de commencer l'installation, étudier avec attention la présente notice d'installation et de fonctionnement. L'installation et le fonctionnement doivent être conformes aux réglementations locales et faire l'objet d'une bonne utilisation.

1. Symboles utilisés dans cette notice

Si ces consignes de sécurité ne sont pas observées, il peut en résulter des dommages corporels.

Précautions

Nota

Le non-respect de ces consignes de sécurité peut] entraîner des dysfonctionnements ou endommager l'équipement.

Remarques ou instructions facilitant le travail et assurant un fonctionnement sécurisé.

2. Introduction

Ce manuel décrit le fonctionnement du convertisseur de fréquence Grundfos CUE, 0,55 à 90 kW.

Ce manuel doit toujours se trouver à proximité du CUE.

2.1 Description générale

La gamme CUE comprend une série de convertisseurs de fréquence externe spécifiquement conçus pour les pompes. Grâce au guide de mise en service du CUE, l'installateur peut rapidement régler les paramètres et mettre le dispositif en fonction.

Connecté à un capteur ou à un signal de commande externe, le CUE pemet d'adapter rapidement la vitesse de la pompe au besoin réel.

Précautions Si la vitesse de la pompe dépasse la vitesse nominale, la pompe est en surcharge.

2.2 Applications

Les séries CUE et les pompes standard Grundfos complètent la série de pompes Grundfos avec convertisseur de fréquence intégré.

Une solution CUE offre les mêmes fonctionnalités que les pompes électroniques dans les cas suivants :

- pour les tensions secteur ou les plages de puissance non couvertes par la gamme de pompes électroniques
- pour les applications où un convertisseur de fréquence intégré n'est pas souhaitable ou admissible.

2.3 Références

Documentation technique du Grundfos CUE :

- Le manuel comprend toutes les informations nécessaires à la mise en service du CUE.
- Le livret comprend toutes les informations techniques sur la conception et les applications du CUE.
- Les consignes de maintenance comprennent toutes les informations nécessaires pour démonter et réparer le convertisseur de fréquence.

Documentation technique disponible sur www.grundfos.com > Grundfos Product Center.

Pour toutes questions supplémentaires, merci de contacter le service agréé Grundfos le plus proche.

3. Sécurité et avertissements

3.1 Avertissement

Avertissement

L'installation, la maintenance et l'inspection doivent uniquement être effectuées par un personnel qualifié.

Avertissement

Tout contact avec les composants électriques peut être fatal, même après la mise hors tension du CUE.

Avant toute intervention sur le CUE, l'alimentation secteur et les autres entrées de tension doivent être coupées depuis au moins le délai indiqué ci-des-sous.

Tension	Délai d'attente min.					
	4 minutes	15 minutes	20 minutes			
200-240 V	0,75 - 3,7 kW	5,5 - 45 kW				
380-500 V	0,55 - 7,5 kW	11-90 kW				
525-600 V	0,75 - 7,5 kW					
525-690 V			11-90 kW			

Le délai d'attente peut être plus court si cela est indiqué sur la plaque signalétique du CUE concerné.

3.2 Consignes de sécurité

- L'interrupteur marche/arrêt du panneau de commande ne coupe pas l'alimentation secteur du CUE. Il ne doit donc pas être utilisé comme interrupteur de sécurité.
- Le CUE doit être correctement mis à la terre et protégé contre le contact indirect conformément aux réglementations nationales.
- Le courant de fuite à la terre est supérieur à 3,5 mA.
- Le boîtier classe IP20/21 ne doit pas être installé en accès libre, mais uniquement dans un panneau.

- Le boîtier classe IP54/55 ne doit pas être installé en extérieur sans protection supplémentaire contre l'eau et le soleil.
- Toujours observer les réglementations locales concernant les sections de câble, la protection contre les court-circuits et contre la surintensité.

3.3 Conditions d'installation

Par mesure de sécurité, prendre en compte les éléments suivants :

- fusibles et interrupteurs de protection contre la surintensité et les court-circuits
- sélection des câbles (courant secteur, moteur, répartition de charge et relais)
- configuration du réseau (IT, TN, mise à la terre)
- sécurité de branchement des entrées et sorties (TBTP).

3.3.1 Secteur IT

Ne pas brancher les convertisseurs de fréquence CUE 380-500 V sur une alimentation secteur de plus de 440 V entre la phase et la terre.

Pour le branchement au secteur IT et au secteur delta à la terre, la tension ne doit pas dépasser 440 V entre la phase et la terre.

3.3.2 Environnement agressif

Avertissement

Le CUE ne doit pas être installé dans un environnement dont l'air contient des liquides, des particules ou des gaz pouvant affecter ou endommager les composants électroniques.

Le CUE contient un grand nombre de composants mécaniques et électroniques. Ils sont tous sensibles à l'impact environnemental.

3.4 Rendement réduit dans certaines conditions

Le rendement du CUE sera réduit dans les conditions suivantes :

- faible pression atmosphérique (à haute altitude)
- · câbles moteur longs.

Les mesures requises sont décrites dans les deux paragr. suivants.

3.4.1 Réduction à faible pression atmosphérique

Avertissement

À plus de 2000 m d'altitude, les conditions TBTP ne peuvent être respectées.

TBTP = Très Basse Tension de Protection.

À faible pression atmosphérique, la capacité de refroidissement est réduite et le CUE réduit automatiquement le rendement, pour éviter toute surcharge.

Il peut s'avérer nécessaire de choisir un CUE avec un rendement plus élevé.

3.4.2 Réduction due à de longs câbles moteur

La longueur maxi des câbles du CUE est de 300 m pour les câbles non blindés et 150 m pour les câbles blindés. En cas de câbles plus longs, veuillez contacter Grundfos.

Le CUE est conçu pour un câble moteur avec une section maxi indiquée au paragr. *16.7 Fusibles et section câble*.

4. Identification

4.1 Plaque signalétique

Le CUE peut être identifié au moyen de la plaque signalétique. Exemple ci-dessous.

Fig. 1 Exemple de plaque signalétique

Texte	Description
T/C :	CUE (nom du produit) 202P1M2 (code interne)
Prod. no :	Code article : 12345678
S/N :	Numéro de série : 123456G234 Les trois derniers chiffres indiquent la date de pro- duction : 23 indique la semaine et 4 l'année 2004.
1.5 kW	Puissance à l'arbre sur le moteur
IN :	Tension d'alimentation, fréquence et courant d'entrée maxi
OUT :	Tension moteur, fréquence et courant de sortie maxi. La fréquence de sortie maxi dépend généra- lement du type de pompe.
CHASSIS/ IP20	Indice de protection
Tamb.	Température ambiante maxi

4.2 Étiquette d'emballage

Le CUE peut aussi être identifié par l'étiquette figurant sur l'emballage.

5. Installation mécanique

Chaque armoire CUE se distingue par son boîtier. Le tableau du paragr. *16.1 Boîtier* indique la relation entre la classe et le type de boîtier.

5.1 Livraison et stockage

À la livraison, vérifier si l'emballage est intact et si l'unité est complète. En cas de dommages durant le transport, adresser une réclamation au transporteur.

Le CUE est livré dans un emballage inadapté pour un stockage en extérieur.

5.2 Transport et déballage

Le CUE ne doit être déballé qu'une fois sur le site d'installation, pour éviter tout dommage pendant le transport.

En plus de l'unité elle-même, l'emballage contient un ou plusieurs sachets d'accessoires ainsi que de la documentation. Voir fig. 2.

Fig. 2 Emballage du CUE

5.3 Espace requis et circulation d'air

Les unités CUE peuvent être montées côte à côte. Il est toutefois nécessaire de prévoir une circulation d'air suffisante pour le refroidissement. De plus, les conditions suivantes doivent être respectées :

- Espace libre suffisant au-dessus et au-dessous du CUE. Voir tableau ci-dessous.
- Température ambiante jusqu'à 50 °C.
- Fixer le CUE directement au mur ou avec une plaque arrière. Voir fig. 3.

Fig. 3 CUE fixé directement au mur ou avec une plaque arrière

Espace libre requis au-dessus et au-dessous du Cor	Espace libre	requis	au-dessus	et a	au-dessous	du	CUE
--	--------------	--------	-----------	------	------------	----	-----

Boîtier	Espace [mm]	
A2, A3, A4, A5	100	_
B1, B2, B3, B4, C1, C3	200	
C2, C4	225	

Pour plus d'informations sur le boîtier, voir tableau du paragr. *16.1 Boîtier*.

Français (CA)

5.4 Montage

Précautions L'utilisateur est responsable du montage sécurisé du CUE sur une surface solide.

- 1. Marquer et percer les orifices. Voir les dimensions au paragr. 16.3 Dimensions principales et poids.
- 2. Mettre les vis, visser sans serrer. Fixer le CUE et serrer les 4 vis.

Fig. 4 Perçage des orifices

6. Connexion électrique

 \triangle

Avertissement

L'utilisateur/l'installateur est responsable de la conformité de la mise à la terre et de la protection.

Avertissement

Avant toute intervention sur le CUE, l'alimentation secteur et les autres entrées de tension doivent être coupées depuis au moins le délai indiqué au paragr. *3. Sécurité et avertissements.*

Fig. 5 Exemple de branchement triphasé du CUE avec interrupteur secteur, fusibles de sauvegarde et protection supplémentaire

6.1 Protection électrique

6.1.1 Protection contre les chocs électriques, contact indirect

Avertissement

Le CUE doit être correctement mis à la terre et protégé contre le contact indirect conformément aux réglementations nationales.

Précautions

ons Le courant de fuite à la terre est supérieur à 3,5 mA et une mise à la terre renforcée est requise.

Les conducteurs de protection doivent toujours avoir un marquage de couleur jaune/vert (PE) ou jaune/vert/bleu (PEN). Instructions conformes à la norme EN IEC 61800-5-1.

- Le CUE doit être installé de manière fixe et branché en permanence sur l'alimentation secteur.
- La mise à la terre doit être effectuée avec des conducteurs de protection doubles ou un conducteur de protection simple renforcé, avec section d'au moins 10 mm².

6.1.2 Protection contre les court-circuits, fusibles

Le CUE et le système d'alimentation doivent être protégés contre les court-circuits.

Grundfos exige que les fusibles de sauvegarde mentionnés au paragr. *16.7 Fusibles et section câble* soient utilisés comme protection contre les court-circuits.

Le CUE présente une protection complète contre les court-circuits sur la sortie moteur.

6.1.3 Protection supplémentaire

Précautions Le courant de fuite à la terre est supérieur à 3,5 mA.

Si le CUE est raccordé à une installation électrique dans laquelle un disjoncteur est utilisé comme protection supplémentaire, ce dernier doit être marqué des symboles suivants :

Le disjoncteur est de type B.

Tenir compte du courant de fuite total de tout l'équipement électrique de l'installation.

Le courant de fuite du CUE pendant le fonctionnement normal est indiqué au paragr. *16.8.1 Alimentation secteur (L1, L2, L3)*.

Au démarrage et pour les systèmes d'alimentation asymétriques, le courant de fuite peut être supérieur à la normale et provoquer le déclenchement du disjoncteur.

6.1.4 Protection moteur

Le moteur ne nécessite aucune protection externe. Le CUE protège le moteur contre la surcharge thermique et les blocages.

6.1.5 Protection contre la surintensité

Le CUE est équipé d'une protection interne de surintensité contre la surcharge à la sortie moteur.

6.1.6 Protection contre les phénomènes transitoires de la tension d'alimentation

Le CUE est protégé contre les tensions transitoires conformément à la norme EN 61800-3, second environnement.

6.2 Connexion secteur et moteur

La tension d'alimentation et la fréquence sont indiquées sur la plaque signalétique du CUE. S'assurer que le CUE est conçu pour le réseau d'alimentation électrique du site.

6.2.1 Interrupteur secteur

Un interrupteur secteur peut être installé avant le CUE, conformément aux règlementations locales. Voir fig. 5.

6.2.2 Schéma de câblage

Les fils dans la boîte à bornes doivent être aussi courts que possible sauf le conducteur de protection qui doit être assez long pour être le dernier fil débranché si le câble est arraché accidentellement.

Fig. 6 Schéma de câblage, triphasé

Borne		Fonction				
91	(L1)					
92	(L2)	Alimentation triphasée				
93	(L3)					
95/99	(PE)	Connexion à la Terre				
96	(U)					
97	(V)	Connexion moteur triphasée, 0-100 % de la tension secteur				
98	(W)					

Nota Pour une connexion monophasée, utiliser L1 et L2.

6.2.3 Branchement secteur, boîtiers A2 et A3

Pour plus d'informations sur le boîtier, voir tableau du paragr. *16.1 Boîtier*.

Vérifier que la tension secteur et la fréquence corres- **Précautions** pondent aux valeurs indiquées sur la plaque signalétique du CUE et du moteur.

1. Fixer la plaque de montage avec 2 vis.

Fig. 7 Mise en place de la plaque de montage

 Brancher le conducteur de terre à la borne 95 (PE) et les conducteurs secteur aux bornes 91 (L1), 92 (L2), 93 (L3) de la fiche secteur. Placer la fiche secteur dans la prise marquée MAINS.

Fig. 8 Branchement du conducteur de terre et des conducteurs secteur

Nota Pour une connexion monophasée, utiliser L1 et L2.

3. Fixer le câble secteur à la plaque de montage.

FM03 9014 2807

Fig. 9 Fixation du câble secteur

6.2.4 Branchement moteur, boîtiers A2 et A3

Pour plus d'informations sur le boîtier, voir tableau du paragr. 16.1 Boîtier.

- Conformément aux exigences CEM, le câble moteur Précautions doit être blindé.
- 1. Brancher le conducteur de terre à la borne 99 (PE), sur la plaque de montage. Brancher les conducteurs moteur aux bornes 96 (U), 97 (V), 98 (W) de la fiche moteur.

- Fig. 10 Branchement du conducteur de terre et des conducteurs moteur
- 2. Placer la fiche moteur dans la prise marquée MOTOR. Fixer le câble blindé à la plaque de montage avec un presseétoupe.

Fig. 11 Branchement de la fiche moteur et fixation du câble blindé

6.2.5 Boîtiers A4 et A5

Pour plus d'informations sur les boîtiers, voir tableau du paragr. 16.1 Boîtier.

Branchement secteur

Vérifier que la tension secteur et la fréquence corres-**Précautions** pondent aux valeurs indiquées sur la plaque signalétique du CUE et du moteur.

- 1. Brancher le conducteur de terre à la borne 95 (PE). Voir fig. 12.
- 2. Brancher les conducteurs secteur aux bornes 91 (L1), 92 (L2), 93 (L3) de la fiche secteur.
- 3. Placer la fiche secteur dans la prise marquée MAINS.
- 4. Fixer le câble secteur avec un presse-étoupe.

Fig. 12 Branchement secteur, A4 et A5

Nota Pour une connexion monophasée, utiliser L1 et L2.

Branchement moteur

Conformément aux exigences CEM, le câble moteur Précautions doit être blindé.

- 1. Brancher le conducteur de terre à la borne 99 (PE). Voir fig. 13.
- 2. Brancher les conducteurs moteur aux bornes 96 (U), 97 (V), 98 (W) de la fiche moteur.
- 3. Placer la fiche moteur dans la prise marquée MOTOR.
- 4. Fixer le câble blindé avec un presse-étoupe.

Fig. 13 Branchement moteur, A5

TM03 9017 2807

TM03 9018 2807

6.2.6 Boîtiers B1 et B2

Pour plus d'informations sur les boîtiers, voir tableau du paragr. *16.1 Boîtier.*

Branchement secteur

Vérifier que la tension secteur et la fréquence corres- **Précautions** pondent aux valeurs indiquées sur la plaque signalétique du CUE et du moteur.

- Brancher le conducteur de terre à la borne 95 (PE). Voir fig. 14.
- Brancher les conducteurs secteur aux bornes 91 (L1), 92 (L2), 93 (L3).
- 3. Fixer le câble secteur avec un presse-étoupe.

Fig. 14 Branchements secteur, B1 et B2

Nota Pour une connexion monophasée, utiliser L1 et L2.

Branchement moteur

Précautions Conformément aux exigences CEM, le câble moteur doit être blindé.

- 1. Brancher le conducteur de terre à la borne 99 (PE). Voir fig. 15.
- Brancher les conducteurs moteur aux bornes 96 (U), 97 (V), 98 (W).
- 3. Fixer le câble blindé avec un presse-étoupe.

Fig. 15 Branchement moteur, B1 et B2

6.2.7 Boîtiers B3 et B4

Pour plus d'informations sur les boîtiers, voir tableau du paragr. *16.1 Boîtier.*

Branchement secteur

Vérifier que la tension secteur et la fréquence corres- **Précautions** pondent aux valeurs indiquées sur la plaque signalétique du CUE et du moteur.

- 1. Brancher le conducteur de terre à la borne 95 (PE). Voir fig. 16 et 17.
- Brancher les conducteurs secteur aux bornes 91 (L1), 92 (L2), 93 (L3).
- 3. Fixer le câble secteur avec un presse-étoupe.

Branchement moteur

TM03 9019 2807

TM03 9020 2807

Précautions Conformément aux exigences CEM, le câble moteur doit être blindé.

- 1. Brancher le conducteur de terre à la borne 99 (PE). Voir fig. 16 et 17.
- Brancher les conducteurs moteur aux bornes 96 (U), 97 (V), 98 (W).
- 3. Fixer le câble blindé avec un presse-étoupe.

Fig. 16 Branchement secteur et moteur, B3

Fig. 17 Branchement secteur et moteur, B4

6.2.8 Boîtiers C1 et C2

Pour plus d'informations sur les boîtiers, voir tableau du paragr. *16.1 Boîtier*.

Branchement secteur

FM03 9448 4007

TM03 9447 4007

Fig. 19 Branchement secteur et moteur, C3

NAN NAN NAN NAN NAN NAN

Fig. 20 Branchement secteur et moteur, C4

6.3 Branchement des bornes de signal

Nota

Par mesure de précaution, les câbles de signal doivent être séparés des autres groupes par une isolation renforcée sur toute leur longueur.

Si aucun interrupteur marche/arrêt externe n'est branché, court-circuiter les bornes 18 et 20 avec un fil court.

Brancher les câbles de signal conformément aux règles de bonne pratique, pour assurer une bonne installation CEM. Voir paragraphe *6.6 Installation CEM correcte*.

- Utiliser des câbles de signal blindés à section de min. 0,5 mm² et max. 1,5 mm².
- Pour les nouveaux systèmes, utiliser un câble bus blindé à 3 conducteurs.

Vérifier que la tension secteur et la fréquence corres- **Précautions** pondent aux valeurs indiquées sur la plaque signalétique du CUE et du moteur.

- 1. Brancher le conducteur de terre à la borne 95 (PE). Voir fig. 18.
- Brancher les conducteurs secteur aux bornes 91 (L1), 92 (L2), 93 (L3).

Branchement moteur

Précautions Conformément aux exigences CEM, le câble moteur doit être blindé.

- 1. Brancher le conducteur de terre à la borne 99 (PE). Voir fig. 18.
- Brancher les conducteurs moteur aux bornes 96 (U), 97 (V), 98 (W).
- 3. Fixer le câble blindé avec un presse-étoupe.

Fig. 18 Branchement secteur et moteur, C1 et C2

6.2.9 Boîtiers C3 et C4

Pour plus d'informations sur les boîtiers, voir tableau du paragr. *16.1 Boîtier*.

Branchement secteur

Vérifier que la tension secteur et la fréquence corres- **Précautions** pondent aux valeurs indiquées sur la plaque signalétique du CUE et du moteur.

- 1. Brancher le conducteur de terre à la borne 95 (PE). Voir fig. 19 et 20.
- Brancher les conducteurs secteur aux bornes 91 (L1), 92 (L2), 93 (L3).

Branchement moteur

Précautions Conformément aux exigences CEM, le câble moteur doit être blindé.

- 1. Brancher le conducteur de terre à la borne 99 (PE). Voir fig. 19 et 20.
- Brancher les conducteurs moteur aux bornes 96 (U), 97 (V), 98 (W).
- 3. Fixer le câble blindé avec un presse-étoupe.

6.3.1 Schéma de câblage, bornes de signal

Fig. 21 Schéma de câblage, bornes de signal

Borne	Туре	Fonction
12	+24 V sortie	Alimentation capteur
13	+24 V sortie	Alimentation supplémentaire
18	DI 1	Entrée numérique, marche/arrêt
19	DI 2	Entrée numérique, programmable
20	GND	Mise à la terre pour la sortie analo- gique
32	DI 3	Entrée numérique, programmable
33	DI 4	Entrée numérique, programmable
39	GND	Mise à la terre pour l'entré analo- gique
42	AO 1	Sortie analogique, 0-20 mA
50	+10 V sortie	Alimentation au potentiomètre
53	AI 1	Point de consigne externe, 0-10 V/0/ 4-20 mA
54	AI 2	Entrée capteur, Capteur 1, 0/4-20 mA
55	GND	Ground for analog inputs
61	RS-485 GND Y	GENIbus, GND
68	RS-485 A	GENIbus, signal A (+)
69	RS-485 B	GENIbus, signal B (-)

Bornes 27, 29 et 37 non utilisées.

Le système d'affichage RS-485 doit être connecté à une mise à la terre.

6.3.2 Connexion mini, borne de signal

Le fonctionnement n'est possible que si les bornes 18 et 20 sont branchées, par exemple avec un interrupteur marche/arrêt externe ou un fil court.

Fig. 22 Connexion mini requise, borne de signal

	TM05 1508 2811		S > 42 12 13 18 19 27 29 32 33 20 12 13 18 19 27 4 12 13 18 19 27 29 32 33 20 12 13 18 19 27 29 32 33 20 12 19 19 27 29 32 33 20 13 19 19 27 29 32 33 20 14 19 19 27 29 32 33 20 15 19 19 19 19 19 19 19 19 19 19 19 19 19	TM05 1505 2811
onction	Borne	Туре	Fonction	
limentation capteur	42	AO 1	Sortie analogique, 0-20 mA	

Borne	Туре	Fonction	Borne	Туре	Fonction
12	+24 V sortie	Alimentation capteur	42	AO 1	Sortie analogique, 0-20 mA
13	+24 V sortie	Alimentation supplémentaire	50	+10 V sortie	Alimentation au potentiomètre
18	DI 1	Entrée digitale, marche/arrêt	53	AI 1	Point de consigne externe, 0-10 V, 0/4-20 mA
19	DI 2	Entrée digitale, programmable	54	AI 2	Entrée capteur, capteur 1, 0/4-20 mA
20	GND	Cadre commun pour entrées digitales	55	GND	Cadre commun pour entrées analogiques
32	DI 3	Entrée digitale, programmable	61	RS-485 GND Y	GENIbus, cadre
33	DI 4	Entrée digitale, programmable	68	RS-485 A	GENIbus, signal A (+)
39	GND	Cadre pour sortie analogique	69	RS-485 B	GENIbus, signal B (-)

Les bornes 27 et 29 ne sont pas utilisées.

E,

Brancher les câbles de signal conformément aux règles de bonne pratique, pour assurer une bonne installation CEM. Voir paragraphe 6.6 Installation CEM correcte.

• Utiliser des câbles de signal blindés à section de min. 0,5 mm² et max. 1,5 mm².

Pour les nouveaux systèmes, utiliser un câble bus blindé à 3 conducteurs.

Nota Le blindage RS-485 doit être raccordé au cadre.

6.3.4 Connexion d'une thermistance (PTC) au CUE

La connexion d'une thermistance (PTC) dans un moteur au CUE nécessite un relais PTC externe.

Cela du fait que la thermistance dans le moteur possède une seule couche d'isolation aux enroulements. Les bornes dans le CUE nécessitent deux couches d'isolation puisqu'elles font partie d'un circuit TBTP.

Un circuit TBTP fournit une protection contre les chocs électriques. Des conditions de connexion spécifiques s'appliquent à ce type de circuit. Les conditions sont décrites dans la norme EN 61800-5-1.

Afin de maintenir une TBTP, toutes les connexions aux bornes doivent être TBTP. Par exemple, la thermistance doit avoir une double isolation ou une isolation renforcée.

6.3.5 Accès aux bornes de signal

Toutes les bornes de signal se trouvent derrière le couvercle de la façade du CUE. Retirer le couvercle comme indiqué aux fig. 23 et 24.

Fig. 23 Accès aux bornes de signal, A2 et A3

Fig. 24 Accès aux bornes de signal, A4, A5, B1, B2, B3, B4, C1, C2, C3 et C4

TM03 9025 2807

Fig. 25 Bornes de signal (tous les boîtiers)

6.3.6 Mise en place du conducteur

- 1. Retirer l'isolation sur une longueur de 9 à 10 mm.
- 2. Insérer un tournevis de 0,4 x 2,5 mm max. dans l'orifice carré.
- Introduire le conducteur dans l'orifice circulaire correspondant. Retirer le tournevis. Le conducteur est alors fixé dans la borne.

Fig. 26 Mise en place du conducteur dans la borne de signal

6.3.7 Réglage des entrées analogiques, bornes 53 et 54

Les contacts A53 et A54 se trouvent derrière le panneau de commande. Ils permettent de régler le type de signal des deux entrées analogiques.

Les entrées sont réglées en usine avec signal de tension "U".

TM03 9003 2807

TM03 9004 2807

Si un capteur 0/4-20 mA est branché à la borne 54, l'entrée doit être réglé au signal de courant "l".

Couper l'alimentation avant de régler le contact A54.

Retirer le panneau de commande pour régler le contact. Voir fig. 27.

Fig. 27 Réglage du contact A54 au signal de courant "I"

Français (CA)

6.3.8 Connexion au réseau GENIbus RS-485

Une ou plusieurs unités CUE peuvent être branchées à une unité de commande via GENIbus. Voir exemple fig. 28.

Fig. 28 Exemple d'un réseau GENIbus RS-485

Le potentiel de référence, GND, pour communication RS-485 (Y) doit être connecté à la borne 61.

Si plus d'une unité CUE est raccordée à un réseau GENIbus, le contact d'extrémité du dernier CUE doit être réglé sur "ON" (extrémité du port RS-485).

Le réglage par défaut du contact est "OFF".

Retirer le panneau de commande pour régler le contact. Voir fig. 29.

Fig. 29 Réglage du contact d'extrémité sur "ON"

6.4 Branchement des relais de signal

Par mesure de précaution, les câbles de signal doivent être séparés des autres groupes par une isolation renforcée sur toute leur longueur.

Fig. 30 Bornes pour relais de signal en état normal (non activées)

Borne		Fonction
C 1	C 2	Commun
NO 1	NO 2	Contact normalement ouvert
NC 1	NC 2	Contact normalement fermé

Accès aux relais de signal

TM03 9006 2807

Les sorties de relais sont positionnées comme indiqué aux fig. 31 à 36.

Fig. 31 Bornes pour branchement relais, A2 et A3

Fig. 32 Bornes pour branchement relais, A4, A5, B1 et B2

TM03 9007 2807

Fig. 33 Bornes pour branchement relais, C1 et C2

Fig. 34 Bornes pour branchement relais, B3

Fig. 35 Bornes pour branchement relais, B4

Fig. 36 Bornes pour branchement relais, C3 et C4, en haut à droite du CUE

6.5 Branchement du module d'entrée capteur MCB 114

Le MCB 114 est une option fournissant des entrées analogiques supplémentaires pour le CUE.

6.5.1 Configuration du MCB 114

Le MCB 114 est équipé de trois entrées analogiques pour les capteurs suivants :

- 1 capteur supplémentaire 0/4-20 mA. Voir paragraphe 10.8.14 Capteur 2 (3.16).
- 2 capteurs de température Pt100/Pt1000 pour la mesure de température des roulements moteur ou d'une autre température, comme celle du liquide. Voir paragraphes
 10.8.19 Capteur de température 1 (3.21) et 10.8.20 Capteur de température 2 (3.22).

Une fois le MCB 114 installé, le CUE détecte automatiquement le capteur allumé, Pt100 ou Pt1000.

6.5.2 Schéma de câblage, MCB 114

TM03 9009 2807

TM03 9442 4007

TM03 9441 4007

TM03 9440 4007

TM04 3273 3908

Fig. 37 Schéma de câblage, MCB 114

Borne	Туре	Fonction
1 (VDO)	+24 V sortie	Alimentation capteur
2 (I IN)	AI 3	Capteur 2, 0/4-20 mA
3 (GND)	GND	Cadre commun pour entrée analogique
4 (TEMP) 5 (WIRE)	AI 4	Capteur température 1, Pt100/Pt1000
6 (GND)	GND	Cadre commun pour capteur tempéra- ture 1
7 (TEMP) 8 (WIRE)	AI 5	Capteur température 2, Pt100/Pt1000
9 (GND)	GND	Cadre commun pour capteur tempéra- ture 2

Les bornes 10, 11 et 12 ne sont pas utilisées.

6.6 Installation CEM correcte

Ce paragr. indique les règles de bonne pratique pour l'installation du CUE. Suivre ces règles pour respecter la norme EN 61800-3, premier environnement.

- Pour les applications sans filtre de sortie, utiliser uniquement un moteur et des câbles de signal à blindage métallique tressé.
- Aucune exigence spéciale requise pour les câbles d'alimentation, mises à part les exigences locales.
- Placer le blindage le plus près possible des bornes de raccordement. Voir fig. 38.
- Éviter d'aboutir le blindage avec des extrémités tordues.
 Voir fig. 39. Utiliser plutôt des presse-étoupes ou des entrées de câble CEM vissées.
- Raccorder le blindage au cadre aux deux extrémités câbles de signal et câbles du moteur. Voir fig. 40. Si le régulateur n'a pas de presse-étoupes, raccorder seulement le blindage au CUE. Voir fig. 41.
- Pour les armoires électriques équipées de convertisseurs de fréquence, éviter les câbles de signal et de moteur non blindés.
- Pour les applications sans filtre de sortie, raccourcir le plus possible le câble du moteur pour limiter le niveau sonore et minimiser les courants de fuite.
- Les vis de raccordement au cadre doivent toujours être serrées, avec ou sans câble branché.
- Les câbles secteur, moteur et signal doivent si possible être séparés dans l'installation.

Si les règles de bonne pratique ci-dessus sont respectées, d'autres méthodes d'installation peuvent donner des résultats CEM identiques.

Fig. 38 Exemple d'un câble avec blindage dénudé

Fig. 39 Ne pas tordre les extrémités du blindage

Fig. 40 Exemple de branchement d'un câble bus à 3 conducteurs, avec blindage connecté aux deux extrémités

Fig. 41 Exemple de branchement d'un câble bus à 3 conducteurs, avec blindage connecté au CUE (régulateur sans presse-étoupes)

6.7 Filtres RFI

FM02 1325 0901

TM03 8812 2507

Conformément aux exigences CEM, le CUE est livré avec les types de filtre anti-parasite intégré (RFI) suivants.

Tension	Puissance à l'arbre P2	Type de filtre anti-parasite
1 x 200-240 V*	1,1 - 7,5 kW	C1
3 x 200-240 V	0,75 - 45 kW	C1
3 x 380-500 V	0,55 - 90 kW	C1
3 x 525-600 V	0,75 - 7,5 kW	C3
3 x 525-690 V	11-90 kW	C3

Entrée monophasée - sortie triphasée.

Description des types de filtre anti-parasite

C1: Pour utilisation en zones domestiques. C3: Pour utilisation en zones industrielles avec transformateur basse tension privé.

Types de filtre anti-parasite conformes à la norme EN 61800-3.

6.7.1 Équipement de catégorie C3

- Ce système de prise de force (PDS) n'est pas prévu pour une utilisation sur un réseau public basse tension alimentant des locaux domestiques.
- Il faut s'attendre à des parasites lors de l'utilisation d'un tel réseau.

6.8 Filtres de sortie

Les filtres de sortie permettent de réduire la contrainte de tension sur le bobinage du moteur et la contrainte sur le système d'isolation du moteur ainsi que d'améliorer l'insonorisation du moteur entraîné par convertisseur de fréquence.

Deux types de filtres de sortie sont disponibles comme accessoires pour le CUE :

- filtres dU/dt
- filtres à onde sinusoïdale.

Utilisation des filtres de sortie

Le tableau ci-dessous indique lorsqu'un filtre de sortie est nécessaire et le type de filtre qu'il convient d'utiliser. La sélection dépend des facteurs suivants :

- type de circulateur
- longueur du câble moteur
- réduction nécessaire du bruit du moteur.

Type de circulateur	Puissance de sortie du CUE	Filtre dU/dt [ft. (m)]	Filtre à onde sinusoïdale [ft. (m)]
SP, BM, BMB avec tension moteur de 380 V et plus	Tous	-	0-1000 ft. (0-300 m)*
Circulateurs avec MG71 et MG80 jusqu'à 1,5 kW inclus	Supérieur à 1,5 kW	-	0-1000 ft. (0-300 m)*
Réduction de dU/dt et du bruit, faible réduction	Tous	0-500 ft. (0-150 m)*	-
Réduction de dU/dt, des pics de tension et du bruit, réduc- tion importante	Tous	-	0-1000 ft. (0-300 m)*
Avec moteurs de 500 V et plus	Tous	-	0-1000 ft. (0-300 m)*

* Les longueurs indiquées s'appliquent au câble du moteur.

6.9 Câble moteur

Nota

Pour répondre aux conditions de la norme EN 61800-3, le câble moteur doit toujours être blindé, qu'il y ait un filtre de sortie installé ou non. Le câble secteur n'a pas besoin d'être blindé.

Voir fig. 42, 43, 44 et 45.

Fig. 42 Exemple d'installation sans filtre

Fig. 43 Exemple d'installation avec filtre. Le câble qui relie le CUE au filtre doit être cour

Fig. 44 Pompe immergée sans boîte à bornes. Convertisseur de fréquence et filtre installés près du puits.

Fig. 45 Pompe immergée avec boîte à bornes et câble blindé. Convertisseur de fréquence et filtre installés loin du puits et boîte à bornes installée près du puits

Symbole	Désignation
1	CUE
2	Filtre
3	Boîte à bornes
4	Moteur standard
5	Moteur immergé
Câble simple	Câble non blindé
Câble double	Câble blindé

7. Modes de fonctionnement

Les modes de fonctionnement suivants sont réglés sur le panneau de commande, au menu FONCTIONNEMENT, écran 1.2. Voir paragraphe *10.6.2 Mode de fonctionnement (1.2)*.

Mode de fonc- tionnement	Description
Normal	La pompe fonctionne selon le mode de régu- lation sélectionné
Arrêt	La pompe a été arrêtée (le voyant vert cli- gnote)
Min.	La pompe fonctionne à vitesse mini
Max.	La pompe fonctionne à vitesse maxi

Exemple : La courbe de fonctionnement max. peut, par ex., servir lors de la purge de la pompe pendant l'installation.

Exemple : La courbe de fonctionnement min. peut, par ex., servir pendant les périodes à faible demande de débit.

8. Modes de régulation

Le mode de régulation est reglé sur le panneau de commande, au menu INSTALLATION, écran 3.1. Voir paragraphe *10.8.1 Mode de régulation (3.1)*.

Il existe deux modes de régulation de base.

- · Fonctionnement non régulé (boucle ouverte).
- Fonctionnement régulé (boucle fermée) avec capteur branché. Voir paragraphes *8.1 Fonctionnement non régulé (boucle*

ouverte) et 8.2 Fonctionnement régulé (boucle fermée).

8.1 Fonctionnement non régulé (boucle ouverte)

Exemple : Le fonctionnement en courbe constante peut, par ex., servir pour les pompes sans capteur branché.

Exemple : Généralement utilisé avec un système de régulation global tel que le MPC ou un autre régulateur externe.

8.2 Fonctionnement régulé (boucle fermée)

9. Aperçu des menus

Fig. 46 Aperçu des menus

Structure des menus

Le CUE bénéficie d'un guide de démarrage lancé à la première mise en service. Après le guide de démarrage, le CUE a une structure qui se divise en quatre menus principaux :

- 1. GENERAL donne accès au guide de démarrage pour le réglage général du CUE.
- FONCTIONNEMENT permet le réglage du point de consigne, la sélection du mode de fonctionnement et la réinitialisation des alarmes. Il est également possible de consulter les cinq derniers avertissements et alarmes.
- 3. ÉTAT indique l'état du CUE et de la pompe. Il est impossible de modifier ou de régler les valeurs.
- 4. INSTALLATION donne accès à tous les paramètres. Il est possible d'effectuer un réglage détaillé du CUE.

Français (CA)

10. Réglage au moyen du panneau de commande

10.1 Panneau de commande

Avertissement

L'interrupteur marche/arrêt du panneau de commande ne coupe pas l'alimentation secteur du CUE. Il ne doit donc pas être utilisé comme interrupteur de sécurité.

L'interrupteur marche/arrêt a la priorité absolue. En position "arrêt", le fonctionnement de la pompe est impossible.

Le panneau de commande est utilisé pour les réglages locaux du CUE. Les fonctions disponibles dépendent de la famille de pompes branchée au CUE.

Fig. 47 Panneau de commande du CUE

Touches de modification

Touche	Fonction
On/ Off	Prépare la pompe au fonctionnement/démarre et arrête la pompe.
ОК	Sauvegarde les valeurs modifiées, réinitialise les alarmes et étend le champ de valeur.
+) Modifie les valeurs dans le champ.

Touches de navigation

Touche	Fonction
< >	Navigation d'un menu à l'autre. Lorsque vous chan- gez de menu, l'écran qui s'affiche sera toujours le premier dans le nouveau menu.
ΛV	Navigation vers le haut et vers le bas dans chaque menu.

Les touches de modification du panneau de commande peuvent être réglées aux valeurs suivantes :

- Actif
- Inactif.

Lorsqu'elles sont réglées sur "Inactif" (verrouillé), les touches de modification ne fonctionnent pas. Vous pouvez seulement naviguer dans les menus et lire les valeurs.

Activer ou désactiver les touches en appuyant simultanément sur la flèche vers le haut et la flèche vers le bas pendant 3 secondes.

Modification du contraste de l'écran

Appuyer sur [OK] et [+] pour un écran plus sombre.

Appuyer sur [OK] et [-] pour un écran plus clair.

Voyants lumineux

L'état du fonctionnement de la pompe est indiqué par les voyants situés sur la façade du panneau de commande. Voir fig. 47. Le tableau indique la fonction des voyants.

Voyant lumi- neux	Fonction
	La pompe tourne ou a été arrêtée par une fonc- tion d'arrêt.
Allumé (vert)	S'il clignote, la pompe a été arrêtée par l'utilisa- teur (menu CUE), démarrage/arrêt externe ou bus.
Eteint (orange)	La pompe a été arrêtée par l'interrupteur marche/arrêt.
Alarme (rouge)	Indique une alarme ou un avertissement.

Ecrans, termes généraux

FM03 8719 2507

Les fig. 48 et 49 indiquent les termes généraux de l'écran.

Fig. 49 Exemple d'écran du menu utilisateur

10.2 Retour aux réglages par défaut

Suivre cette procédure pour revenir aux réglages par défaut :

- 1. Couper l'alimentation électrique du CUE.
- 2. Appuyer sur [On/Off], [OK] et [+] en allumant.

Le CUE réinitialise tous les paramètres aux réglages par défaut. L'écran s'allume lorsque la réinitialisation est terminée.

10.3 Réglages du CUE

Le guide de démarrage inclut tous les paramètres réglables sur le panneau de commande du CUE.

Le document inclut un tableau spécifique aux réglages additionnels du PC Tool et une page de saisie des détails de programmation.

Pour télécharger le document, contacter votre société Grundfos.

10.4 Guide de démarrage

Nota

Vérifier que l'équipement branché est prêt pour la mise en service et que le CUE est sous tension.

Conserver les données de la plaque signalétique du moteur, de la pompe et du CUE à portée de main.

Utiliser le quide de démarrage pour les réglages généraux du CUE, y compris le réglage du bon sens de rotation.

Le guide de démarrage se lance pour la première fois quand le CUE est mis sous tension. Il peut être redémarré dans le menu GÉNÉRAL. Dans ce cas, tous les réglages effectués sont effacés.

Les listes numérotées indiquent les réglages possibles. Les réglages par défaut sont écrits en gras.

10.4.1 Écran d'accueil

Appuyer sur [OK]. Le guide de démarrage s'ouvre.

10.4.2 Langue (1/16)

Langue

•

•

Italien

Espagnol

· Portugais

Hongrois

Chinois

Japonais

Coréen.

Tchèque

•

Sélectionner la langue utilisée à l'écran :

• Anglais UK Grec

Francais

 Anglais US Hollandais

1/16

- Allemand Suédois Français
 - Finlandais
 - Danois
 - · Polonais
 - Russe

10.4.3 Unités (2/16)

Sélectionner les unités utilisées à l'écran :

- SI : m, kW, bar...
- US : ft, HP, psi...

10.4.4 Famille de pompes (3/16)

Sélectionner la famille de pompes conformément à la plaque signalétique de la pompe :

- CR, CRI, CRN, CRT •
- SP. SP-G. SP-NE
- •

Sélectionner "Autre" si le type de pompe n'est pas sur la liste.

10.4.5 Puissance moteur nominale (4/16)

Régler la puissance moteur nominale, P2, conformément à la plaque signalétique du moteur :

• 0,55 - 90 kW.

La plage de réglage est liée à la dimension et le réglage par défaut correspond à la puissance nominale du CUE.

10.4.6 Tension d'alimentation (5/16)

Sélectionner la tension d'alimentation conformément à la tension d'alimentation nominale du site d'installation.

Unité 1 x 200-240 V*	Unité 3 x 200-240 V	Unité 3 x 380-500 V
• 1 x 200 V	• 3 x 200 V	• 3 x 380 V
• 1 x 208 V	• 3 x 208 V	• 3 x 400 V
• 1 x 220 V	• 3 x 220 V	• 3 x 415 V
• 1 x 230 V	• 3 x 230 V	• 3 x 440 V
• 1 x 240 V.	• 3 x 240 V.	• 3 x 460 V
		• 3 x 500 V.
Unité 3 x 525-600 V	Unité 3 x 525-690 V	
• 3 x 575 V.	• 3 x 575 V	

• 3 x 690 V.

* Entrée monophasée - sortie triphasée.

La plage de réglage dépend du type de CUE et les réglages par défaut correspondent à la tension d'alimentation nominale du CUE.

10.4.7 Intensité moteur maxi (6/16)

Régler l'intensité moteur maxi conformément à la plaque signalétique du moteur :

• 0-999 A.

La plage de réglage dépend du type de CUE et les réglages par défaut correspondent à une intensité moteur typique à la puissance moteur sélectionnée.

L'intensité maxi est limitée à la valeur indiquée sur la plaque signalétique du CUE, même si elle est réglée sur une valeur supérieure.

10.4.8 Vitesse (7/16)

Régler la vitesse nominale conformément à la plaque signalétique de la pompe :

0-9999 min⁻¹.

Le réglage par défaut dépend des précédentes sélections. Sur la base de la vitesse nominale réglée, le CUE règle automatiquement la fréquence du moteur à 50 ou 60 Hz.

10.4.9 Fréquence (7A/16)

Cet écran s'affiche uniquement si la saisie manuelle de fréquence est requise.

Régler la fréquence conformément à la plaque signalétique du moteur :

• 40-200 Hz

Le réglage par défaut dépend des précédentes sélections.

10.4.10 Mode de régulation (8/16)

Mode de régulation

Sélectionner le mode de régulation souhaité. Voir paragraphe 10.8.1 Mode de régulation (3.1).

- Boucle ouverte
- Pression constante
- · Pression différentielle constante
- Pression différentielle proportionnelle
- Débit constant
- · Température constante
- Niveau constant
- · Autre valeur constante.

Les réglages possibles et le réglage par défaut dépendent de la famille de pompes.

Le CUE déclenche une alarme si le mode de régulation sélectionné nécessite un capteur et qu'aucun capteur n'a été installé. Pour continuer le réglage sans utiliser de capteur, sélectionner "Circuit ouvert". Lorsqu'un capteur a été connecté, régler le capteur et le mode de régulation dans le menu INSTALLATION.

10.4.11 Débit nominal (8A/16)

L'écran s'affiche uniquement si le mode de régulation sélectionné est la pression différentielle proportionnelle.

Régler le débit nominal conformément à la plaque signalétique de la pompe :

• 1-6550 m³/h.

10.4.12 Hauteur nominale (8B/16)

L'écran s'affiche uniquement si le mode de régulation sélectionné est la pression différentielle proportionnelle.

Régler la hauteur nominale conformément à la plaque signalétique de la pompe :

• 1-999 m.

10.4.13 Capteur branché à la borne 54 (9/16)

Régler la plage de mesure du capteur branché avec une plage de signal de 4 à 20 mA. La plage de mesure dépend du mode de régulation sélectionné :

Pression différentielle proportion- Pression différentielle nelle : constante :

- 0-0,6 bar
 0-1 bar
 0-1,6 bar
 0-1,6 bar
 0-2,5 bar
 0-2,5 bar
 0-4 bar
 0-6 bar
 0-10 bar
- 0-10 bar
- Autre.

Pression constante :

- 0-2.5 bar
- 0-4 bar
- 0-6 bar
- 0-10 bar
- 0-16 bar
- 0-25 bar
- · Autre.

Température constante :

- -25 à 25 °C
- 0 à 25 °C
- 50 à 100 °C
- 0 à 150 °C
- · Autre.

0-1 bar
0-2.5 bar
0-6 bar

0-0,1 bar

Autre.

Débit constant :

1-5 m³/h

2-10 m3/h

• 6-30 m³/h

15-75 m³/h

Niveau constant :

· Autre.

- 0-10 bar
 - Autre.

Si le mode de régulation sélectionné est "Autre valeur constante", ou si la plage de mesure sélectionnée est "Autre", le capteur doit être réglé conformément à l'écran 9A/16, paragr. suivant.

10.4.14 Autre capteur branché à la borne 54 (9A/16)

Capteur	1

4-20 mA	bar	¢[
0.00	10.0	
<	9A/16	>

L'écran s'affiche uniquement si le mode de régulation "Autre valeur constante" ou la plage de mesure "Autre" est sélectionné à l'écran 9/16.

• Signal de sortie capteur :

0-20 mA

- 4-20 mA.
- Unité de mesure du capteur : bar, mbar, m, kPa, psi, ft, m³/h, m³/min, m³/s, l/h, l/min, l/s, gal/h, gal/m, gal/s, ft³/min, ft³/s, °C, °F, %.
- Plage de mesure du capteur.

La plage de mesure dépend du capteur branché et de l'unité de mesure sélectionnée.

10.4.15 Amorçage et purge (10/16)

10/16

Voir la notice d'installation et de fonctionnement de la pompe. Le réglage général du CUE est désormais terminé et le guide de démarrage est prêt pour le réglage du sens de rotation.

• Appuyer sur [OK] pour passer au réglage automatique ou manuel du sens de rotation.

10.4.16 Réglage automatique du sens de rotation (11/16)

Avertissement

Pendant le test, la pompe fonctionne un court instant. S'assurer de la sécurité du personnel et de l'équipement !

Avant le réglage du sens de rotation, le CUE effectue une adaptation moteur automatique de certains types de pompe. Cela prend quelques minutes. L'adaptation est effectuée pendant l'immobilisation.

Le CUE teste et règle automatiquement le bon sens de rotation, sans changer la connexion des câbles.

Ce test ne convient pas à tous les types de pompe. Dans certains cas, il est impossible de déterminer avec certitude le bon sens de rotation. Dans ce cas, le CUE passe au réglage manuel. Le sens de rotation est alors déterminé sur la base des observations de l'installateur.

Écrans d'information.

· Appuyer sur [OK] pour continuer.

La pompe Pour annu n'importe	démarre en 10 s. Iler, appuyer sur quel bouton.
0 %	100 %
	12/16

La pompe démarre après 10 secondes.

Il est possible d'interrompre le test et de retourner à l'écran précédent.

La pompe fonctionne dans les deux sens de rotation et s'arrête automatiquement.

Il est possible d'interrompre le test. Arrêter la pompe et passer au réglage manuel du sens de rotation.

Il n'a pas pu être déterminé

automatiquement si le sens de rotation est correct.

Appuyer sur OK pour passer

Le réglage automatique du

sens de rotation a échoué.

sens de rotation.

· Appuyer sur [OK] pour pas-

ser au réglage manuel du

13/16

au test manuel.

Le bon sens de rotation est alors réglé.

 Appuyer sur [OK] pour régler le point de consigne.
 Voir paragraphe 10.4.17 Point de consigne (15/16).

10.4.17 Point de consigne (15/16)

Régler le point de consigne conformément au mode de régulation et au capteur sélectionnés.

10.4.18 Les réglages généraux sont terminés (16/16)

< 16/16

Appuyer sur [OK] pour que la pompe soit prête à fonctionner ou faire démarrer la pompe en mode de fonctionnement Normal. L'écran 1.1 du menu FONCTIONNEMENT s'affiche.

10.4.19 Réglage manuel si le sens de rotation est visible (13/16)

Il doit être possible d'observer le ventilateur ou l'arbre du moteur.

Sens manuel du test de rotation. Vérifier le sens de rotation pendant... ...que la pompe fonctionne quelques secondes. Appuyer sur OK pour continuer.

13/16

< 13/16 Écrans d'information.

- Appuyer sur [OK] pour continuer.

La pompe démarre après 10 secondes.

Il est possible d'interrompre le test et de retourner à l'écran précédent.

La pression est indiquée pendant le test, à condition qu'un capteur de pression soit connecté. L'intensité moteur est toujours indiquée pendant le test.

Indiquer si le sens de rotation est correct.

• Oui Test terminé et sens de rotation correct réglé. Appuyer sur OK pour continuer.

Le bon sens de rotation est alors réglé.

14/16

• Appuyer sur [OK] pour régler le point de consigne. Voir paragraphe 10.4.17 Point de consigne (15/16). • Non

Le sens de rotation est incorrect.

13/16

 Appuyer sur [OK] pour répéter le test avec le sens de rotation inverse.

10.4.20 Réglage manuel avec sens de rotation non visible (13/16)

Il doit être possible d'observer la hauteur ou le débit.

...qu'elle fonctionne durant quelques secondes, dans une direction puis dans l'autre. Voir... X 13/16

... quel sens donne la hauteur ou le débit le plus élevé. Appuyer sur OK pour continuer.

< 13/16 Écrans d'information.

Ecrans d information.

Appuyer sur [OK] pour continuer.

La pompe démarre après 10 secondes.

Il est possible d'interrompre le test et de retourner à l'écran précédent.

La pression est indiquée pendant le test, à condition qu'un capteur de pression soit connecté. L'intensité moteur est toujours indiquée pendant le test.

Le sens de rotation sera modifié et le second test effectué. Appuyer sur OK pour continuer.

13/16

Le premier test est terminé.

 Noter la pression et/ou le débit. Appuyer sur OK pour continuer le test manuel avec le sens de rotation inverse.

La pompe démarre après 10 secondes.

Il est possible d'interrompre le test et de retourner à l'écran précédent.

Rétr	oaction
	0.00 bar
Cour	ant moteur
	0.00 A
	13/16

La pression est indiquée pendant le test, à condition qu'un capteur de pression soit connecté. L'intensité moteur est toujours indiquée pendant le test.

Le second test est terminé.

Noter la pression et/ou le débit. Indiquer quel test a donné le rendement de pompe le plus élevé :

- · Premier test
- Second test
- · Effectuer un nouveau test.

Le bon sens de rotation est alors réglé.

• Appuyer sur [OK] pour régler le point de consigne. Voir paragraphe 10.4.17 Point de consigne (15/16).

10.5 GENERAL

L'utilisation du guide de démarrage efface tous les réglages précédents !

Le guide de démarrage doit être utilisé sur moteur froid !

L'exécution répétée du guide de démarrage peut chauffer le moteur.

Le menu permet de retourner au guide de démarrage, utilisé uniquement lors de la première mise en service du CUE.

10.5.1 Retour au guide de démarrage (0.1)

- Indiquer votre choix :
- Oui
- Non

Si "Oui" est sélectionné, tous les réglages sont effacés et le guide de démarrage doit être terminé. Le CUE revient toujours au guide de démarrage et de nouveaux réglages peuvent être effectués. Tous réglages additionnels ainsi que les réglages disponibles au paragraphe *10. Réglage au moyen du panneau de commande* ne nécessitent aucune réinitialisation.

Retour aux réglages par défaut

Appuyer sur [Marche/Arrêt], [OK] et [+] pour une réinitialisation complète aux réglages par défaut.

10.5.2 Modification du code type (0.2)

Cet écran est destiné à la maintenance uniquement.

10.5.3 Copie des réglages

Il est possible de copier les réglages d'un CUE et de les réutiliser sur un autre.

Options :

- Aucune copie.
- au CUE (copie les réglages du CUE).
- au panneau de commande (copie les réglages sur un autre CUE).

Les unités CUE doivent avoir la même version de micro-logiciel. Voir paragraphe *10.7.16 Version micro-logiciel (2.16)*.

10.6 FONCTIONNEMENT

10.6.1 Point de consigne (1.1)

- Point de consigne réglé
- Point de consigne réel
- Valeur réelle

Régler le point de consigne dans les unités du capteur de retour. En mode de régulation "Boucle ouverte", le point de consigne est réglé en % du rendement maxi. La plage de réglage se situe entre les courbes maxi et mini. Voir fig. 56.

Dans tous les autres modes de régulation, sauf "Pression différentielle proportionnelle", la plage de réglage est égale à la plage de mesure du capteur. Voir fig. 57.

En mode de régulation "Pression différentielle proportionnelle", la plage de réglage correspond à 25-90 % de la hauteur maxi. Voir fig. 58.

Si la pompe est branchée à un signal externe du point consigne, la valeur affichée correspond à la valeur maxi du signal externe du point consigne. Voir paragraphe *13.2 Point de consigne externe*.

10.6.2 Mode de fonctionnement (1.2)

Sélectionner l'un des modes de fonctionnement suivants :

- Régime normal
- Arrêt
- Mini
- Maxi

Les modes de fonctionnement peuvent être sélectionnés sans modifier le réglage du point de consigne.

10.6.3 Indications de défaut

Les défauts entraînent deux types d'indication : Alarme ou avertissement.

Une alarme active une indication d'alarme dans le CUE et entraîne une modification du mode de fonctionnement de la pompe, normalement un arrêt. Cependant, pour certains défauts entraînant une alarme, la pompe continue à fonctionner.

Un avertissement active une indication d'avertissement dans le CUE, mais la pompe ne modifie pas son mode de fonctionnement ou de régulation.

Alarme (1.3)

En cas d'alarme, la cause s'affiche à l'écran. Voir paragraphe 15.1 Liste des avertissements et des alarmes.

Avertissement (1.4)

En cas d'avertissement, la cause s'affiche à l'écran. Voir paragraphe 15.1 Liste des avertissements et des alarmes.
10.6.4 Journal des défauts

Pour les deux types de défauts, alarme et avertissement, le CUE comporte une fonction journal.

Journal des alarmes (1.5 - 1.9)

En cas d'alarme, les 5 dernières indications d'alarme apparaissent dans le journal des alarmes. "Journal des alarmes 1" indique l'alarme la plus récente, "Journal des alarmes 2" indique l'avant-dernière, etc.

L'écran affiche 3 informations :

- l'indication d'alarme
- le code d'alarme
- le nombre de minutes pendant lesquelles la pompe a été sous tension après apparition du défaut.

Journal des avertissements (1.10 - 1.14)

En cas d'avertissement, les 5 dernières indications d'avertissement sont affichées dans le journal des avertissements. "Journal des avertissem. 1" affiche le dernier avertissement, "Journal des avertissem. 2" affiche l'avant-dernier, etc.

L'écran affiche 3 informations :

- l'indication d'avertissement
- le code d'avertissement
- le nombre de minutes pendant lesquelles la pompe a été sous tension après apparition du défaut.

10.7 ETAT

Les écrans affichés dans ce menu sont uniquement des écrans d'état. Il est impossible de modifier ou de régler les valeurs. La tolérance de la valeur affichée est indiquée sous chaque écran. Les tolérances sont données en % des valeurs maxi des paramètres.

10.7.1 Point de consigne réel (2.1)

L'écran affiche le point de consigne réel et le point de consigne externe.

Le point de consigne réel est affiché dans les unités du capteur de retour.

Le point de consigne externe est indiqué sur une plage de 0 à 100 %. Si l'influence du point de consigne externe est désactivée, la valeur 100 % est affichée. Voir paragraphe *13.2 Point de consigne externe*.

10.7.2 Mode de fonctionnement (2.2)

Cet écran indique le mode de fonctionnement réel (Normal, Arrêt, Min., ou Max.). Il indique aussi la source de sélection du mode de fonctionnement (Menu CUE, Bus, Externe ou interrupteur Marche/arrêt).

10.7.3 Valeur réelle (2,3)

Cet écran affiche la valeur réelle régulée.

Si aucun capteur n'est branché au CUE, "-" s'affiche à l'écran.

10.7.4 Valeur mesurée, capteur 1 (2.4)

Cet écran affiche la valeur réelle mesurée par le capteur 1 branché à la borne 54.

Si aucun capteur n'est branché au CUE, "-" s'affiche à l'écran.

10.7.5 Valeur mesurée, capteur 2 (2.5)

Écran affiché uniquement si un module d'entrée capteur MCB 114 est installé.

Cet écran affiche la valeur réelle mesurée par le capteur 2 branché à un MCB 114.

Si aucun capteur n'est branché au CUE, "-" s'affiche à l'écran.

10.7.6 Vitesse (2.6)

Tolérance : ± 5 %

Cet écran indique la vitesse réelle de la pompe.

10.7.7 Puissance et intensité moteur (2.7)

Tolérance : ± 10 %

Cet écran indique la puissance de la pompe en W ou kW et l'intensité du moteur en Ampère [A].

10.7.8 Heures de fonctionnement et consommation électrique (2.8)

Tolérance : ± 2 %

Cet écran indique le nombre d'heures de fonctionnement et la consommation électrique. La valeur des heures de fonctionnement est une valeur cumulée et ne peut pas être réinitialisée. La valeur de la consommation électrique est une valeur cumulée calculée depuis la fabrication de l'unité. Celle-ci ne peut donc pas être réinitialisée.

10.7.9 État de lubrification des roulements moteur (2.9)

Cet écran affiche le nombre d'indications fournies par l'utilisateur concernant la lubrification et la date de remplacement des roulements moteur.

Lorsque les roulements moteur ont été lubrifiés, confirmer cette action dans le menu INSTALLATION. Voir paragraphe 10.8.18 Confirmation lubrification/remplacement des roulements moteur (3.20). Une fois la lubrification confirmée, le chiffre figurant sur l'écran ci-dessus augmente d'une unité.

10.7.10 Délai jusqu'à la prochaine lubrification des roulements moteur (2.10)

Écran uniquement affiché si l'écran 2.11 n'est pas affiché.

Cet écran indique le délai jusqu'à la prochaine lubrification des roulements moteur. Le régulateur surveille le profil de fonctionnement de la pompe et calcule le délai entre les lubrifications des roulements. Si le profil de fonctionnement change, le délai entre les lubrifications peut changer en fonction.

Le délai estimé jusqu'à la prochaine lubrification prend en compte la réduction de vitesse de la pompe.

Voir paragraphe 10.8.18 Confirmation lubrification/remplacement des roulements moteur (3.20).

10.7.11 Délai jusqu'au remplacement des roulements moteur (2.11)

Écran uniquement affiché si l'écran 2.10 n'est pas affiché.

L'écran indique le délai jusqu'au remplacement des roulements moteur. Le régulateur surveille le profil de fonctionnement de la pompe et calcule le délai entre les remplacements de roulements. Le délai estimé jusqu'au remplacement des roulements moteur

tient compte de la réduction de vitesse de la pompe.

Voir paragraphe 10.8.18 Confirmation lubrification/remplacement des roulements moteur (3.20).

10.7.12 Capteur de température 1 (2.12)

Écran affiché uniquement si un module d'entrée capteur MCB 114 est installé.

Cet écran affiche le point de mesure et la valeur réelle mesurée par le capteur de température 1 Pt100/Pt1000 branché au MCB 114. Le point de mesure est sélectionné à l'écran 3.21. Si aucun capteur n'est branché au CUE, "-" s'affiche à l'écran.

10.7.13 Capteur de température 2 (2.13)

Écran affiché uniquement si un module d'entrée capteur MCB 114 est installé.

Cet écran affiche le point de mesure et la valeur réelle mesurée par le capteur de température 2 Pt100/Pt1000 branché au MCB 114. Le point de mesure est sélectionné à l'écran 3.22.

Si aucun capteur n'est branché au CUE, "-" s'affiche à l'écran.

10.7.14 Débit (2.14)

Écran uniquement affiché si un débitmètre est configuré. Cet écran affiche la valeur réelle mesurée par un débitmètre branché à une entrée d'impulsion digitale (borne 33) ou à une entrée analogique (borne 54).

10.7.15 Débit cumulé (2.15)

Écran uniquement affiché si un débitmètre est configuré. Cet écran affiche la valeur du débit cumulé et de l'énergie spécifique pour le transfert du liquide pompé.

La mesure du débit peut être branchée à une entrée d'impulsion digitale (borne 33) ou à une entrée analogique (borne 54).

10.7.16 Version micro-logiciel (2.16)

L'écran affiche la version actuelle du logiciel.

10.7.17 Fichier de configuration (2.17)

Cet écran affiche le fichier de configuration.

10.8 INSTALLATION

10.8.1 Mode de régulation (3.1)

Sélectionner l'un des modes de régulation suivants :

- · Boucle ouverte
- Pression constante
- Pression différentielle constante
- Pression différentielle proportionnelle
- Débit constant
- Température constante
- Niveau constant
- Autre valeur constante.

Si la pompe est branchée à un bus, le mode de régu-Nota lation ne peut pas être sélectionné via le CUE. Voir paragraphe 13.3 Signal GENIbus.

10.8.2 Régulateur (3.2)

Le CUE a un réglage de gain (K_p) et temps intégré (T_i) par défaut. Cependant, si le réglage par défaut n'est pas optimal, le gain et le temps intégré peuvent être modifiés à l'écran.

- Le gain (K_p) peut être réglé entre 0,1 et 20.
- Le temps intégré (Ti) peut être réglé de 0,1 à 3600 s. Si 3600 s est sélectionné, le régulateur fonctionnera comme un régulateur P.
- Il est aussi possible de régler le régulateur en régulation inverse. Si le point de consigne augmente, la vitesse est réduite. En cas de régulation inverse, le gain (K_p) doit être réglé entre -0,1 et -20.

Le tableau ci-dessous indique les réglages conseillés du régulateur :

	к		
Système/application	Installation de chauf- fage ¹⁾ Installation de climati- sation ²⁾		Τi
	0	,2	0,5
	SP, SP-G, S	0,5	
CUE	0,2		0,5
	SP, SP-G, S	0,5	

	к	p	
Système/application	Installation de chauf- fage ¹⁾	Installation de climati- sation ²⁾	Тi
	0,	0,5	
	- 2	100	
	0,5	10 + 5L ₂	
	0,	10 + 5L ₂	
	0,5	30 + 5L ₂ *	
	0,	0,5*	
CUE L1 Ap	0,	L ₁ < 5 m : 0,5* L ₁ > 5 m : 3* L ₁ > 10 m : 5*	

T_i = 100 secondes (réglage par défaut).

- Dans les installations de chauffage, une augmentation de la performance de la pompe entraîne une augmentation de la température au capteur.
- ²⁾ Dans les installations de climatisation, une augmentation de la performance de la pompe entraîne une chute de la température au capteur.

L₁ = Distance en [m] entre la pompe et le capteur.

L₂ = Distance en [m] enter l'échangeur de chaleur et le capteur.

Français (CA)

Réglage du régulateur PI

Dans la plupart des applications, le réglage par défaut des constantes K_n et T_i du régulateur assure un fonctionnement optimal de la pompe. Cependant, dans certaines applications, un changement de réglage peut être nécessaire.

Procéder comme suit :

- 1. Augmenter la valeur du gain (Kn) jusqu'à ce que le moteur devienne instable. L'instabilité est visible lorsque la valeur mesurée commence à fluctuer. L'instabilité est également audible puisque le moteur commence à vibrer de haut en bas. Certains systèmes, comme les régulateurs de température, sont lents à réagir. Il peut alors s'avérer difficile d'observer l'instabilité du moteur.
- 2. Régler le gain (K_p) à la moitié de la valeur provoquant l'instabilité du moteur. C'est le bon réglage du gain.
- 3. Réduire le temps intégré (Ti) jusqu'à ce que le moteur devienne instable.
- 4. Régler le temps intégré (Ti) au double de la valeur provoquant l'instabilité du moteur. C'est le bon réglage du temps intégré.

Règles générales :

- Si le régulateur réagit trop lentement, augmenter K_n.
- Si le régulateur est fluctuant ou instable, amortir le système en réduisant K_n ou en augmentant T_i.

10.8.3 Point de consigne externe (3.3)

L'entrée du signal du point de consigne externe (borne 53) peut se régler selon les types suivants :

- Actif
- Inactif.

Si "Actif" est sélectionné, le point de consigne réel est influencé par le signal connecté à l'entrée du point de consigne externe. Voir paragraphe 13.2 Point de consigne externe.

10.8.4 Relais de signal 1 et 2 (3.4 et 3.5)

Le CUE a 2 relais de signal. Sur l'écran ci-dessous, sélectionner les situations de fonctionnement dans lesquelles le relais de signal doit être activé.

- Alarme
- Fonctionnement
- Pompe en service
- Inactif
- Avertissement
- Lubrifier.

- Alarme
- Fonctionnement
- Pompe en service
- Inactif
- Avertissement
- Lubrifier.

Pour distinguer alarme et avertissement, voir paragr. Nota 10.6.3 Indications de défaut.

10.8.5 Touches sur le CUE (3.6)

Les touches de modification (+, -, Marche/Arrêt, OK) du panneau de commande peuvent se régler aux valeurs suivantes :

- ٠ Actif
- Inactif

Lorsqu'elles sont réglées sur "Inactif" (verrouillé), les touches de modification ne fonctionnent pas. Régler les touches sur "Inactif" si la pompe doit être régulée via un système de régulation externe

Pour activer les touches, appuyer simultanément sur les flèches haut et bas pendant 3 secondes.

10.8.6 Protocole (3.7)

Cet écran affiche la sélection du protocole pour le port RS-485 du CUE. Le protocole peut se régler sur les valeurs suivantes :

- GENIbus •
- FC •
- FC MC.

Si "GENIbus" est sélectionné, la communication est réglée conformément à la norme GENIbus Grundfos. FC et FC MC sont destinés à la maintenance uniquement.

10.8.7 Numéro de la pompe (3.8)

Cet écran affiche le numéro GENIbus. Un numéro compris entre 1 et 199 peut être attribué à la pompe. En cas de communication bus, un numéro doit être attribué à chaque pompe.

Le réglage par défaut est "-".

10.8.8 Entrées digitales 2, 3 et 4 (3.9 à 3.11)

🚯 3.11 INSTALLATION 🔇

Les entrées digitales du CUE (bornes 19, 32 et 33) peuvent se régler séparément pour différentes fonctions.

Sélectionner l'une des fonctions suivantes :

- Min. (courbe min.)
- Max. (courbe max.)
- Défaut ext. (défaut externe)
- · Capteur de débit
- · Réinitialisation alarme
- Marche à sec (depuis capteur externe)
- · Débit cumulé (débit impulsion, borne 33 uniquement)
- Inactif.

La fonction sélectionnée est active si l'entrée digitale est activée (contact fermé). Voir aussi paragraphe 13.1 Entrées digitales.

Mini

Lorsque l'entrée est activée, la pompe fonctionne selon la courbe mini.

Maxi

Lorsque l'entrée est activée, la pompe fonctionne selon la courbe maxi.

Défaut ext.

Une fois l'entrée activée, un temporisateur démarre. Si l'entrée est activée pendant plus de 5 secondes, un défaut externe est indiqué. Si l'entrée est désactivée, la condition de défaut cesse. La pompe ne peut être redémarrée que manuellement en réinitialisant l'indication de défaut.

Capteur de débit

Lorsque cette fonction est sélectionnée, la pompe est arrêtée lorsqu'un débitmètre connecté détecte un débit trop faible.

Cette fonction ne peut être utilisée que si la pompe est branchée à un capteur de pression ou à un capteur de niveau et que la fonction arrêt est activée. Voir paragraphes *10.8.11 Pression constante avec fonction d'arrêt (3.14)* et *10.8.12 Niveau constant avec fonction d'arrêt (3.14)*.

Réinitialisation alarme

Une fois l'entrée activée, l'alarme est réinitialisée si la cause de l'alarme a disparu.

Marche à sec

Lorsque cette fonction est sélectionnée, un manque de pression d'entrée ou une fuite d'eau peut être détecté. Cela nécessite l'utilisation d'un accessoire :

- un capteur de marche à sec Grundfos Liqtec[®]
- un capteur de pression installé du côté aspiration d'une pompe
- un interrupteur à flotteur installé du côté aspiration d'une pompe.

Si un manque de pression d'entrée ou une fuite d'eau est détecté (marche à sec), la pompe s'arrête. La pompe ne peut pas redémarrée tant que l'entrée est activée.

Le redémarrage peut être différé jusqu'à 30 minutes, selon la famille de pompes.

Débit cumulé

Si cette fonction est réglée pour l'entrée digitale 4 et qu'un capteur d'impulsion est branché à la borne 33, le débit cumulé peut être mesuré.

10.8.9 Entrée de débit digitale (3.12)

Cet écran ne s'affiche que si un débitmètre est configuré à l'écran 3.11.

Cet écran permet le réglage du volume de chaque impulsion pour la fonction "Débit cumulé", avec capteur d'impulsion branché à la borne 33.

Plage de réglage :

0-1000 litres/impulsion.

Le volume peut se régler dans l'unité sélectionnée dans le guide de démarrage.

10.8.10 Sortie analogique (3.13)

La sortie analogique peut être réglée pour indiquer l'une des options suivantes :

Retour

- Puissance absorbée
- Vitesse
- Fréquence de sortie
- Capteur externe
- Limite 1 dépassée
- Limite 2 dépassée
- Inactif.

Français (CA)

10.8.11 Pression constante avec fonction d'arrêt (3.14)

Réglages

La fonction d'arrêt peut être réglée sur :

- Actif
- Inactif.
- La bande marche/arrêt peut se régler sur :
- ΔH est réglé par défaut à 10 % du point de consigne réel.
- ΔH peut se régler sur une plage de 5 à 30 % du point de consigne réel.

Description

La fonction d'arrêt permet de passer du fonctionnement marche/ arrêt à faible débit au fonctionnement continu à haut débit.

Fig. 50 Pression constante avec fonction d'arrêt. Différence entre les pressions de démarrage et d'arrêt (ΔH)

Il existe deux possibilités de détection d'un faible débit :

- 1. Par une "fonction de détection faible débit" qui fonctionne si l'entrée digitale n'est pas réglée pour un capteur de débit.
- 2. Un capteur de débit connecté à l'entrée digitale.

1. Fonction de détection faible débit

La pompe contrôle régulièrement le débit en réduisant la vitesse pendant un bref instant. Si le changement de pression est faible, cela signifie que le débit est faible.

La vitesse augmente jusqu'à ce que la pression d'arrêt (point de consigne réel + 0,5 x Δ H) soit atteinte et que la pompe s'arrête après quelques secondes. La pompe redémarre au plus tard quand la pression tombe à la pression de démarrage (point de consigne réel - 0,5 x Δ H).

Si le débit pendant la période d'arrêt est plus élevé que la limite de bas débit, la pompe redémarre avant que la pression tombe à la pression de démarrage.

Au redémarrage, la pompe réagit de la manière suivante :

- 1. Si le débit est supérieur à la limite de bas débit, la pompe revient sur un fonctionnement continu en pression constante.
- 2. Si le débit est toujours inférieur à la limite de bas débit, la pompe continue en fonctionnement marche/arrêt. Elle continue à fonctionner en marche/arrêt jusqu'à ce que le débit dépasse la limite de bas débit. Quand le débit dépasse la limite de bas débit, la pompe revient à un fonctionnement continu.

2. Détection de faible débit avec capteur de débit

Si l'entrée digitale est activée à cause d'un faible débit, la vitesse augmente jusqu'à ce que la pression d'arrêt (point de consigne réel + 0,5 x Δ H) soit atteinte, puis la pompe s'arrête. Lorsque la pression chute jusqu'à la pression de démarrage, la pompe redémarre. S'il n'y a toujours pas de débit, la pompe atteint rapidement la pression d'arrêt et s'arrête. S'il y a du débit, la pompe continue à fonctionner selon le point de consigne.

Conditions de fonctionnement de la fonction d'arrêt

Il est uniquement possible d'utiliser la fonction d'arrêt si le système est équipé d'un capteur de pression, d'un clapet anti-retour et d'un réservoir à membrane.

> Le clapet anti-retour doit toujours être installé avant le capteur de pression. Voir fig. 51 et 52.

Précautions Si un faible

Si un capteur de débit est utilisé pour détecter le faible débit, il doit être installé sur le côté du système, après le réservoir à membrane.

Fig. 51 Position du clapet anti-retour et du capteur de pression dans les installations en aspiration

Fig. 52 Position du clapet anti-retour et du capteur de pression dans les installations en charge

Réservoir à membrane

La fonction d'arrêt nécessite un réservoir à membrane d'une capacité minimum. Le réservoir doit être installé le plus près possible après la pompe. La pression de pré-gonflage doit être de 0,7 x point de consigne réel.

Capacité recommandée du réservoir à membrane :

Débit nominal de la pompe [m ³ /h]	Capacité du réservoir à membrane [litres]
0-6	8
7-24	18
25-40	50
41-70	120
71-100	180

Si un réservoir à membrane de la capacité précédente est installé dans le système, le réglage par défaut de ΔH est le bon réglage. Si le réservoir installé est trop petit, la pompe démarre et s'arrête trop souvent. Cela peut être résolu en augmentant la valeur ΔH .

Réglages

La fonction d'arrêt peut être réglée sur :

Actif

· Inactif.

La bande marche/arrêt peut se régler sur :

- ΔH est réglé par défaut à 10 % du pont de consigne réel.
- ΔH peut être réglé sur une plage de 5 à 30 % du point de consigne réel.

Une fonction intégrée de détection de faible débit mesure automatiquement et enregistre la consommation électrique à env. 50 % et 85 % de la vitesse nominale.

Si "Actif" est sélectionné, procéder comme suit :

- 1. Fermer le robinet d'arrêt pour créer une condition de nondébit.
- 2. Appuyer sur [OK] pour démarrer un réglage automatique.

Description

La fonction d'arrêt permet de passer du fonctionnement marche/ arrêt à faible débit au fonctionnement continu à haut débit.

Fig. 53 Niveau constant avec fonction d'arrêt. Différence entre les niveaux de démarrage et d'arrêt (ΔH)

Il existe deux possibilités de détection d'un faible débit :

- 1. Par la fonction de détection faible débit intégrée.
- 2. Par un capteur de débit branché à une entrée digitale.

1. Fonction de détection faible débit

La détection de faible débit intégrée est basée sur la mesure de la vitesse et de la puissance.

Si un faible débit est détecté, la pompe s'arrête. Quand le niveau atteint le niveau de démarrage, la pompe redémarre. S'il n'y toujours pas de débit, la pompe atteint le niveau d'arrêt puis s'arrête. S'il y a du débit, la pompe continue à fonctionner selon le point de consigne.

2. Détection de faible débit avec capteur de débit

Si l'entrée digitale est activée à cause d'un faible débit, la vitesse augmente jusqu'à ce que le niveau d'arrêt (point de consigne réel + 0,5 x Δ H) soit atteint, puis la pompe s'arrête. Quand le niveau atteint le niveau de démarrage, la pompe redémarre. S'il n'y toujours pas de débit, la pompe atteint le niveau d'arrêt puis s'arrête. S'il y a du débit, la pompe continue à fonctionner selon le point de consigne.

Conditions de fonctionnement de la fonction d'arrêt

Il n'est possible d'utiliser la fonction d'arrêt du niveau constant si le système comprend un capteur de niveau et si toutes les vannes peuvent être fermées.

10.8.13 Capteur 1 (3.15)

Réglage du capteur 1 branché à la borne 54. Il s'agit d'un capteur de retour.

Sélectionner l'une des valeurs suivantes :

- Signal de sortie capteur : 0-20 mA 4-20 mA.
- Unité de mesure du capteur : bar, mbar, m, kPa, psi, ft, m³/h, m³/s, l/s, gpm, °C, °F, %.
- Plage de mesure du capteur.

10.8.14 Capteur 2 (3.16)

Réglage du capteur 2 branché au module d'entrée capteur MCB 114.

Sélectionner l'une des valeurs suivantes :

- Signal de sortie capteur : 0-20 mA
 4-20 mA.
 - 4-20 MA.
- Unité de mesure du capteur : bar, mbar, m, kPa, psi, ft, m³/h, m³/s, I/s, gpm, °C, °F, %.
- Plage de mesure du capteur : 0-100 %.

10.8.15 Service/secours (3.17)

Réglages

La fonction service/secours peut être réglée sur :

Actif

Inactif.

Activer la fonction service/secours comme suit :

- Connecter l'une des pompes à l'alimentation électrique. Régler la fonction service/secours sur "Inactif". Effectuer les réglages nécessaires dans les menus FONC-TIONNEMENT et INSTALLATION.
- 2. Régler le mode de fonctionnement sur "Arrêt" dans le menu FONCTIONNEMENT.
- Connecter l'autre pompe à l'alimentation électrique. Effectuer les réglages nécessaires dans les menus FONC-TIONNEMENT et INSTALLATION. Régler la fonction service/ secours sur "Actif".

La pompe en service cherche l'autre pompe et régle automatiquement la fonction service/secours de cette pompe sur "Actif". Si elle ne trouve pas l'autre pompe, un défaut est indiqué.

Nota

Les deux pompes doivent être branchées électriquement via GENIbus. Rien d'autre ne doit être branché au GENIbus.

La fonction service/secours s'applique à 2 pompes branchées en parallèle et régulées via GENIbus. Chaque pompe doit être branchée à son propre CUE et capteur.

Principaux objectifs de la fonction :

- Démarrer la pompe de secours si la pompe en service s'arrête pour cause d'alarme.
- · Alterner les pompes au moins toutes les 24 heures.

10.8.16 Plage de fonctionnement (3.18)

Min.	25 %	
Max.	100 %	

Réglage de la plage de fonctionnement :

- Régler la vitesse minimum dans la plage d'une vitesse minimum dépendante de la pompe à la vitesse maximum réglée. Le réglage par défaut dépend du type de pompe.
- Régler la vitesse maximum dans la plage de vitesse minimum réglée à la vitesse maximum dépendante de la pompe.
 Le réglage par défaut correspond à 100 %, soit la vitesse indiquée sur la plaque signalétique de la pompe.

L'écart entre la vitesse minimum et la vitesse maximum correspond à la plage de fonctionnement réelle de la pompe.

La plage de fonctionnement peut être modifiée par l'utilisateur à l'intérieur de la plage de vitesse dépendante de la pompe.

Pour certains types de pompe, le fonctionnement hypersynchrone (vitesse maxi supérieure à 100 %) est possible. Cela nécessite un moteur surdimensionné pour fournir la puissance nécessaire pendant le fonctionnement hypersynchrone.

Fig. 54 Réglage des courbes mini et maxi en % de la performance maxi

TM04 3581 4608

10.8.17 Surveillance des roulements moteur (3.19)

La fonction de surveillance des roulements moteur peut être réglée sur ces valeurs :

- Actif
- Inactif.

Si la fonction est réglée sur "Actif", le CUE émet un avertissement pour indiquer quand les roulements moteur doivent être lubrifiés ou remplacés.

Description

La fonction de surveillance intégrée des roulements moteur permet de fournir une indication sur le moment approprié pour lubrifier ou remplacer les roulements moteur. Voir écrans 2.10 et 2.11.

L'indication d'avertissement et le délai estimé tiennent compte de la réduction de vitesse de la pompe. La température des roulements est comprise dans le calcul si les capteurs de température sont installés et branchés à un module d'entrée capteur MCB 114.

Le compteur continue à compter même si la fonction est commutée sur "Inactif", mais un avertissement n'est pas donné lorsqu'il faut lubrifier.

10.8.18 Confirmation lubrification/remplacement des roulements moteur (3.20)

Cette fonction peut être réglée sur ces valeurs :

- Lubrifié
- Remplacé

Aucune action effectuée.

Lorsque les roulements moteur ont été lubrifiés ou remplacés, confirmer cette action dans l'écran ci-dessus en appuyant sur [OK].

"Lubrifié" ne peut pas être sélectionné pendant un laps de temps après confirmation de la relubrification.

Lubrifié

Nota

Si l'avertissement "Lubrifier les roulements moteur" est confirmée,

- le compteur est mis à 0.
- · le nombre de lubrifications est augmenté de 1.

Quand le nombre de lubrifications atteint le nombre admissible, l'avertissement "Remplacer les roulements moteur" s'affiche à l'écran.

Remplacé

Si l'avertissement "Remplacer les roulements moteur" est confirmée,

- le compteur est mis à 0.
- le nombre de lubrifications est mis à 0.
- le nombre de remplacements des roulements moteur est augmenté de 1.

10.8.19 Capteur de température 1 (3.21)

Écran affiché uniquement si un module d'entrée capteur MCB 114 est installé.

Sélectionner la fonction d'un capteur de température 1 Pt100/ Pt1000 branché à un MCB 114 :

- Roulement à extrémité D
- Roulement à extrémité ND
- Température autre liquide 1
- Température autre liquide 2
- Enroulement du moteur
- Température liquide pompé
- Température ambiante
- Inactif.

10.8.20 Capteur de température 2 (3.22)

Écran affiché uniquement si un module d'entrée capteur MCB 114 est installé.

Sélectionner la fonction d'un capteur de température 2 Pt100/ Pt1000 branché à un MCB 114 :

- Roulement à extrémité D
- Roulement à extrémité ND
- Température autre liquide 1
- Température autre liquide 2
- Enroulement du moteur
- Température liquide pompé
- Température ambiante
- Inactif.

10.8.21 Chauffage à l'arrêt (3.23)

La fonction de chauffage à l'arrêt peut se régler sur ces valeurs :

Inactif.

Si la fonction est réglée sur "Actif" et que la pompe est arrêtée par une commande d'arrêt, un courant est appliqué aux enroulements du moteur.

La fonction de chauffage à l'arrêt préchauffe le moteur pour éviter la condensation.

Actif

Régler le délai pour les deux rampes, accélération et décélération :

- Réglage par défaut : Selon la puissance.
- Plage du paramètre de rampe : 1-3600 s.

Le délai d'accélération est la durée entre 0 min⁻¹ et la vitesse nominale du moteur. Sélectionner un délai d'accélération de manière à ce que le courant de sortie n'excède pas la limite maxi de courant du CUE.

Le délai de décélération est la durée entre la vitesse nominale du moteur et 0 min⁻¹. Sélectionner un délai de décélération de manière à ce qu'il n'y ait pas de surtension et que le courant généré n'excède pas la limite maxi de courant du CUE.

Fig. 55 Accélération et décélération, écran 3.24

10.8.23 Fréquence de commutation (3.25)

La fréquence de commutation peut être modifiée, les options du menu dépendent de la puissance du CUE. Le changement de la fréquence de commutation augmente les pertes et la température du CUE.

Il n'est donc pas recommandé d'augmenter la fréquence de commutation en cas de température ambiante élevée.

11. Réglage au moyen du PC Tool

Les réglages spéciaux, différents des réglages disponibles via le CUE, nécessitent l'utilisation du PC Tool Grundfos. L'assistance d'un technicien ou d'un ingénieur Grundfos est requise. Contacter Grundfos pour plus d'informations.

12. Priorité des réglages

L'interrupteur marche/arrêt a la priorité absolue. En position "arrêt", le fonctionnement de la pompe est impossible.

Le CUE peut être régulé simultanément de différentes manières. Si 2 modes de fonctionnement ou plus sont actifs simultanément, le mode de fonctionnement à priorité la plus élevée est en vigueur.

12.1 Régulation sans signal bus, mode de fonctionnement local

Priorité	Menu CUE	Signal externe
1	Arrêt	
2	Maxi	
3		Arrêt
4		Maxi
5	Mini	Mini
6	Normal	Normal

Exemple : Si un signal externe active le mode de fonctionnement "Maxi", seul un arrêt de la pompe est possible.

12.2 Régulation avec signal bus, mode de fonctionnement régulé à distance

Priorité	Menu CUE	Signal externe	Signal Bus
1	Arrêt		
2	Maxi		
3		Arrêt	Arrêt
4			Maxi
5			Mini
6			Normal

Exemple : Si un signal bus active le mode de fonctionnement "Maxi", seul un arrêt de la pompe est possible.

13. Signaux de régulation externes

13.1 Entrées digitales

Aperçu des fonctions en relation avec un contact fermé.

Borne	Туре	Fonction
18	DI 1	Marche/arrêt de la pompe
19	DI 2	 Min. (courbe min.) Max. (courbe max.) Défaut ext. (défaut externe) Capteur de débit Réinitialisation alarme Marche à sec (depuis capteur externe) Inactif.
32	DI 3	 Min. (courbe min.) Max. (courbe max.) Défaut ext. (défaut externe) Capteur de débit Réinitialisation alarme Marche à sec (depuis capteur externe) Inactif.
33	DI 4	 Min. (courbe min.) Max. (courbe max.) Défaut ext. (défaut externe) Capteur de débit Réinitialisation alarme Marche à sec (depuis capteur externe) Débit cumulé (débit impulsion) Inactif.

La même fonction ne doit pas être sélectionnée pour plus d'une entrée.

13.2 Point de consigne externe

Borne	Туре	Fonction
53	AI 1	Point de consigne externe (0-10 V)

Le point de consigne peut se régler à distance en branchant un émetteur de signal analogique à l'entrée du point de consigne (borne 53).

Boucle ouverte

En mode "Boucle ouverte" (courbe constante), le point de consigne réel peut se régler de façon externe, dans la plage allant de la courbe min. au point de consigne réglé via le menu CUE. Voir fig. 56.

Fig. 56 Relation entre le point de consigne réel et le signal du point de consigne externe en mode "Boucle ouverte"

Boucle fermée

Dans tous les autres modes de régulation, sauf "Pression différentielle proportionnelle", le point de consigne réel peut se régler de façon externe, de la valeur la plus basse de la plage de mesure du capteur (valeur min.) au point de consigne réglé via le menu CUE. Voir fig. 57.

Fig. 57 Relation entre le point de consigne réel et le signal du point de consigne externe en mode de fonctionnement régulé

Exemple : Pour une valeur capteur min. de 0 bar, un point de consigne réglé via le menu CUE sur 3 bar et un point de consigne externe à 80 %, le point de consigne réel est calculé comme suit.

Point de	
consigne	réel

 (point de consigne réglé via le menu CUE valeur capteur min.) x % signal du point de consigne externe + valeur capteur min.

- = (3 0) x 80 % + 0
- = 2,4 bar

Français (CA)

Pression différentielle proportionnelle

En mode "Pression différentielle proportionnelle", le point de consigne réel peut se régler de façon externe, dans la plage allant de 25 % de la hauteur maxi au point de consigne réglé via le menu CUE. Voir fig. 58.

Fig. 58 Relation entre le point de consigne réel et le signal du point consigne externe, en mode "Pression différentielle proportionnelle".

Exemple : À une hauteur maxi de 12 m, un point de consigne de 6 m réglé via la menu CUE et à un point de consigne externe de 40 %, le point de consigne réel est calculé comme suit.

Point de consigne réel	=	(point de consigne, menu CUE - 25 % de la hauteur maxi) x % du signal du point de consigne externe + 25 % de la hauteur maxi
	=	(6 - 12 x 25 %) x 40 % + 12/4
	=	4,2 m

13.3 Signal GENIbus

Le CUE permet la communication en série via une entrée RS-485. La communication est effectuée selon le protocole GENIbus Grundfos. Elle permet le branchement à un système GTB ou à un autre système de régulation externe.

Les paramètres de fonctionnement, tels que le point de consigne et le mode de fonctionnement peuvent être réglés à distance via le signal bus. La pompe peut aussi fournir des informations d'état sur les paramètres importants tels que la valeur réelle du paramètre de régulation, la puissance absorbée et les indications de défaut.

Pour plus de détails, veuillez contacter Grundfos.

Si un signal bus est utilisé, le nombre de réglages disponibles via le CUE est réduit.

13.4 Autres standards bus

Grundfos propose différentes solutions bus avec communication conforme aux autres standards.

Pour plus de détails, veuillez contacter Grundfos.

14. Maintenance et entretien

14.1 Nettoyage du CUE

Maintenir les ailettes de refroidissement et les pâles de soufflante propres pour permettre un refroidissement suffisant du CUE.

14.2 Kits de maintenance et pièces détachées

Pour plus d'informations sur les kits de maintenance et les pièces détachées, consulter www.grundfos.com > International website > Grundfos Product Center.

15. Grille de dépannage

15.1 Liste des avertissements et des alarmes

			Etat	:		
Code et texte écran		Avertissement	Alarme	Alarme verrouillée	Mode de fonction- nement	Réinitiali- sation
1	Courant de fuite trop élevé			•	Arrêt	Man.
2	Rupture de phase		•		Arrêt	Aut.
3	Défaut externe		•		Arrêt	Man.
16	Autre défaut		•		Arrêt	Aut.
-				٠	Arrêt	Man.
30	Remplacer les roule- ments moteur	•			-	Man. ³⁾
32	Surtension	٠			-	Aut.
02			•		Arrêt	Aut.
40	Sous-tension	٠			-	Aut.
			•		Arrêt	Aut.
48	Surcharge		•		Arrêt	Aut.
	g-			٠	Arrêt	Man.
49	Surcharge		•		Arrêt	Aut.
55	Surcharge	٠			-	Aut.
			•		Arret	Aut.
57			•		Anel	Aut.
64	élevée		•		Arrêt	Aut.
70	Surchauffe du moteur		•		Arrêt	Aut.
77	Défaut de communica- tion, service/secours	٠			-	Aut.
89	Capteur 1 hors plage		•		1)	Aut.
91	Capteur de température 1 hors plage	•			-	Aut.
93	Capteur 2 hors plage	•			-	Aut.
96	Signal du point de consigne hors plage		•		1)	Aut.
1/10	Température roule-	٠			-	Aut.
140	ments trop élevée		٠		Arrêt	Aut.
140	Température roule-	٠			-	Aut.
145	ments trop élevée		•		Arrêt	Aut.
155	Défaut d'appel		•		Arrêt	Aut.
175	Capteur de température 2 hors plage	٠			-	Aut.
240	Lubrifier les roule- ments du moteur	•			-	Man. ³⁾
241	Rupture de phase	•			-	Aut.
	moteur		•		Arrêt	Aut.
242	$I'\Delta M\Delta$ n'a nas réussi ²)	•			_	Man

 En cas d'alarme, le CUE change de mode de fonctionnement selon le type de pompe.

²⁾ AMA, Adaptation Moteur Automatique. Inactif dans ce logiciel.

³⁾ Réinitialisation avertissement à l'écran 3.20.

15.2 Réinitialisation des alarmes

En cas de défaut ou de dysfonctionnement du CUE, consulter la liste des alarmes dans le menu FONCTIONNEMENT. Les 5 derniers avertissements et alarmes sont visibles dans les menus du journal.

Contacter un technicien Grundfos en cas d'alarme répétitive.

15.2.1 Avertissement

Le CUE continue à fonctionner tant que l'avertissement est actif. L'avertissement reste actif jusqu'à l'élimination de la cause. Certains avertissements entraînent une condition d'alarme.

15.2.2 Alarme

En cas d'alarme, le CUE arrête la pompe ou change de mode de fonctionnement, selon le type d'alarme et de pompe. Voir paragraphe 15.1 Liste des avertissements et des alarmes.

Le fonctionnement de la pompe reprend dès que la cause de l'alarme est éliminée et que l'alarme est réinitialisée.

Réinitialisation manuelle d'une alarme

- Appuyer sur [OK] sur l'écran alarme.
- · Appuyer 2 fois sur [Marche/Arrêt].
- Activer une entrée digitale DI 2-DI 4 réglée sur "Réinitialisation alarme" ou l'entrée digitale DI 1 (Marche/arrêt).

Si la réinitialisation d'une alarme n'est pas possible, il se peut que le défaut ne soit pas corrigé ou que l'alarme soit verrouillée.

15.2.3 Alarme verrouillée

Si une alarme est verrouillée, le CUE arrête la pompe et se verrouille. Le fonctionnement de la pompe ne peut pas reprendre avant que l'alarme verrouillée soit corrigée et réinitialisée.

Réinitialisation d'une alarme verrouillée

 Couper l'alimentation électrique du CUE pendant environ 30 secondes. Activer l'alimentation électrique et appuyer sur OK dans l'écran des alarmes pour réinitialiser l'alarme.

15.3 Voyants lumineux

Le tableau indique la fonction des voyants.

Voyant lumi- neux	Fonction
	La pompe tourne ou a été arrêtée par une fonc- tion d'arrêt.
Allumé (vert)	Si le voyant clignote, la pompe a été arrêtée par l'utilisateur (menu CUE), marche/arrêt externe ou bus.
Eteint (orange)	La pompe a été arrêtée par l'interrupteur marche/arrêt.
Alarme (rouge)	Indique une alarme ou un avertissement.

15.4 Relais de signal

Le tableau indique la fonction des relais de signal.

Туре	Fonction	
	 Prêt 	Pompe en service
Relais 1	Alarme	Avertissement
	 Fonctionnement 	Lubrifier
	Prêt	Pompe en service
Relais 2	 Alarme 	Avertissement
	 Fonctionnement 	Lubrifier

Voir aussi fig. 30.

16. Caractéristiques techniques

16.1 Boîtier

Chaque armoire CUE se distingue par son boîtier. Le tableau indique la relation entre la classe et le type de boîtier.

Exemple :

Indiqué sur la plaque signalétique :

- Tension d'alimentation = 3 x 380-500 V.
- Puissance à l'arbre = 1,5 kW.
- Indice de protection = IP20.
- Le tableau indique que le boîtier CUE est classé A2.

Puissance	e à larbre'	Boîtier											
typiqu	le P2		1 x 200-240 V		3 x 20	200-240 ∨ 3 x 380-500 ∨ 3 x 525-600 ∨ 3 x 525-690 ∨		3 x 525-600 V 3 x		5-690 V			
[kW]	[HP]	IP20 NEMA0	IP21 NEMA1	IP55 NEMA12	IP20 NEMA0	IP55 NEMA12	IP20 NEMA0	IP55 NEMA12	IP20 NEMA0	IP55 NEMA12	IP21 NEMA1	IP55 NEMA12	
0,55	0,75												
0,75	1												
1,1	1,5	A3		A5			4.0						
1,5	2				AZ	A4	AZ	A4	A3	A5			
2,2	3		D1	D1									
3	4		Ы	DI	4.2	٨٢							
3,7	5				A3	A5							
4	5						A2	A4					
5,5	7,5		B1	B1			4.2	<u>۸</u> ۲	A3	A5			
7,5	10		B2	B2	B3	B3	B1	AS	Ab				
11	15												
15	20				D4	B2	B3	B1					
18,5	25				D4						B2	B2	
22	30				<u></u>	C1		БJ					
30	40				03		B4	DZ					
37	50				C1	<u></u>							
45	60				C4	62	<u></u>	C1					
55	75						03				C2	C2	
75	100						64	00					
90	125						- 64	02					

16.2 Presse-étoupe

Sélectionner des orifices de presse-étoupes standards pour les convertisseurs de fréquence CUE utilisés en dehors des USA et du Canada.

Sélectionner des orifices de presse-étoupes impériaux pour les convertisseurs de fréquence CUE utilisés aux USA et au Canada.

Boîtier	Orifices de presse- étoupes stan- dards	Orifices de presse- étoupes impé- riaux
A2 ID20/21 / NEMA tupo 1	3 x 22,5 (1/2")	3 x 22,5 (1/2")
AS IF 20/21 / INEINIA type I	3 x 28,4 (3/4")	3 x 28,4 (3/4")
A4 ID55 / NEMA tupo 12	1 x 22,5 (1/2")	1 x 22,5 (1/2")
A4 IF 55 / NEIMA type 12	3 x 28,4 (3/4")	3 x 28,4 (3/4")
A5 IP55 / NEMA type 12	6 x 26,3	6 x 28,4 (3/4")
P1 IP21 / NEMA type 1	2 x 22,5 (1/2")	2 x 22,5 (1/2")
BT IF 217 NEWA type 1	3 x 37,2	3 x 34,7 (1")
	2 x 21,5	2 x 22,5 (1/2")
B1 IP55 / NEMA type 12	1 x 26,3	1 x 28,4 (3/4")
	3 x 33,1	3 x 34,7 (1")
	1 x 21,5	1 x 22,5 (1/2")
B2 IP21 / NEMA type 1 et	1 x 26,3	1 x 28,4 (3/4")
B2 IP55 / NEMA type 12	1 x 33,1	1 x 34,7 (1")
	2 x 42,9	2 x 44,2 (1 1/4")

Fig. 59 Boîtiers A2 et A3

TM03 9002 2807

Fig. 60 Boîtiers A4, A5, B1, B2, B3, B4, C1, C2, C3 et C4

Boîtier	Haute	Hauteur [in]		Largeur [in]		deur [in]	Orifices pour les vis [in]				
	Α	а	В	b	С	C ¹⁾	с	Ød	Øe	f	Poids [lb]
A2	268	257	90	70	205	219	8	11	5,5	9	4,9
IP21/NEMA1	375	350	90	70	205	219	8	11	5,5	9	5,3
A3	268	257	130	110	205	219	8	11	5,5	9	6,6
IP21/NEMA1	375	350	130	110	205	219	8	11	5,5	9	7
A4	420	401	200	171	175	175	8,2	12	6,5	6	9,2
A5	420	402	242	215	200	200	8,2	12	6,5	9	14
B1	480	454	242	210	260	260	12	19	9	9	23
B2	650	624	242	210	260	260	12	19	9	9	27
B3	399	380	165	140	248	262	8	12	6,8	7,9	12
IP21/NEMA1	475	-	165	-	249	262	8	12	6,8	7,9	-
B4	520	495	231	200	242	242	-	-	8,5	15	23,5
IP21/NEMA1	670	-	255	-	246	246	-	-	8,5	15	-
C1	680	648	308	272	310	310	12	19	9	9,8	45
C2	770	739	370	334	335	335	12	19	9	9,8	65
C3	550	521	308	270	333	333	-	-	8,5	17	35
IP21/NEMA1	755	-	329	-	337	337	-	-	8,5	17	-
C4	660	631	370	330	333	333	-	-	8,5	17	50
IP21/NEMA1	950	-	391	-	337	337	-	-	8,5	17	-
D1h	1209	1154	420	304	380	-	20	11	11	25	104
D2h	1589	1535	420	304	380	-	20	11	11	25	151

TM03 9000 2807

¹⁾ Dimensions = hauteur, largeur et profondeur max.

16.4 Environnement

Humidité relative	5 à 95 %
Température ambiante	Max. 50 °C
Température ambiante moyenne sur 24 heures	Max. 45 °C
Température ambiante min. à plein régime	0 °C
Température ambiante min. à régime réduit	-10 °C
Température pendant le stockage et le transport	-25 à 65 °C
Durée de stockage	Max. 6 mois
Altitude max. sans réduction du rendement	1000 m
Altitude max. avec réduction de rendement	3000 m

Le CUE est fourni dans un emballage inadapté au stockage en extérieur.

Nota

Poîtior		Couple [Nm]								
Boitier	Secteur	Moteur	Terre	Relais						
A2	1,8	1,8	3	0,6						
A3	1,8	1,8	3	0,6						
A4	1,8	1,8	3	0,6						
A5	1,8	1,8	3	0,6						
B1	1,8	1,8	3	0,6						
B2	4,5	4,5	3	0,6						
B3	1,8	1,8	3	0,6						
B4	4,5	4,5	3	0,6						
C1	10	10	3	0,6						
C2	14 ¹⁾ /24 ²⁾	14 ¹⁾ /24 ²⁾	3	0,6						
C3	10	10	3	0,6						
C4	14 ¹⁾ /24 ²⁾	14 ¹⁾ /24 ²⁾	3	0,6						

¹⁾ Section conducteur $\leq 95 \text{ mm}^2$ ²⁾ Section conducteur $\geq 95 \text{ mm}^2$.

16.6 Longueur de câble

Longueur maxi, câble moteur blindé	150 m
Longueur maxi, câble moteur non blindé	300 m
Longueur maxi, câble signal	300 m

16.7 Fusibles et section câble

Avertissement

Toujours se conformer aux réglementations locales concernant les sections de câble.

16.7.1 Section câble aux bornes de signal

Section max. câble aux bornes signal, conducteur rigide	1,5 mm ²
Section max. câble aux bornes signal, conducteur flexible	1,0 mm ²
Section min. câble aux bornes signal	0,5 mm ²

16.7.2 Fusibles non UL et section conducteur au secteur et moteur

Puissance à larbre' typique P2	Dimension fusible max.	Type de fusible	Section max. conducteur ¹⁾
[kW]	[A]		[mm ²]
1 x 200-240 V			
1,1	20	gG	4
1,5	30	gG	10
2,2	40	gG	10
3	40	gG	10
3,7	60	gG	10
5,5	80	gG	10
7,5	100	gG	35

Puissance à larbre' typique P2	Dimension fusible max.	Type de fusible	Section max. conducteur ¹⁾
[kW]	[A]		[mm ²]
3 x 200-240 V			
0,75	10	gG	4
1,1	20	gG	4
1,5	20	gG	4
2,2	20	gG	4
3	32	gG	4
3,7	32	gG	4
5,5	63	gG	10
7,5	63	gG	10
11	63	gG	10
15	80	gG	35
18,5	125	gG	50
22	125	gG	50
30	160	gG	50
37	200	aR	95
45	250	aR	120
3 x 380-500 V		-	
0,55	10	gG	4
0,75	10	gG	4
1,1	10	gG	4
1,5	10	gG	4
2,2	20	gG	4
3	20	gG	4
4	20	gG	4
5,5	32	gG	4
7,5	32	gG	4
11	63	gG	10
15	63	gG	10
10,5	63	gG	10
22	03	gg	35
30	100	gG	50
	125	gg	50
55	125	go	50
75	250	aR	95
90	250	aR	120
3 x 525-600 V	200	un	120
0.75	10	aG	4
1.1	10	aG	4
1.5	10	aG	4
2.2	20	aG	4
3	20	gG	4
4	20	aG	4
5,5	32	gG	4
7,5	32	gG	4
3 x 525-690 V		0	
11	63	gG	35
15	63	gG	35
18,5	63	gG	35
22	63	gG	35
30	63	gG	35
37	80	gG	95
45	100	gG	95
55	125	gG	95
75	160	gG	95
90	160	gG	95

¹⁾ Câble moteur blindé, câble d'alimentation non blindé. AWG. Voir paragraphe 16.7.3 Fusibles UL et section conducteur au secteur et moteur.

16.7.3 Fusibles UL et section conducteur au secteur et moteur

Duissan a à Iadaul	Type de fusible						Section may	
Puissance à larbre' typique P2				i ype de	TUSIDIE		Bussmann	Section max.
[HP]	 Bussmann J 	Bussmann T	SIBA RK1	Littel Fuse RK1	Ferraz-Shawmut CC	Ferraz-Shawmut RK1	E1958 JFHR2	[AWG] ²⁾
1 x 200-240 V								
1,1	KTN-R20	_	-	-	-	_	-	10
1,5	KTN-R30	_	-	-	-	_	-	7
2,2	KTN-R40	_	-	-	-	-	-	7
3	KTN-R40	_	-	-	-	-	-	7
3,7	KTN-R60	_	-	-	-	-	-	7
5,5	-	-	-	-	-	-	-	7
7,5	-	-	-	-	-	-	-	2
3 x 200-240 V								
0,75	KTN-R10	JKS-10	JJN-10	5017906-010	KTN-R10	ATM-R10	A2K-10R	10
1,1	KTN-R20	JKS-20	JJN-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
1,5	KTN-R20	JKS-20	JJN-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
2,2	KTN-R20	JKS-20	JJN-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
3	KTN-R30	JKS-30	JJN-30	5012406-032	KTN-R30	ATM-R30	A2K-30R	10
3,7	KTN-R30	JKS-30	JJN-30	5012406-032	KTN-R30	ATM-R30	A2K-30R	10
5,5	KTN-R50	JKS-50	JJN-50	5012406-050	KLN-R50	-	A2K-50R	7
7,5	KTN-R50	JKS-60	JJN-60	5012406-050	KLN-R60	-	A2K-50R	7
11	KTN-R60	JKS-60	JJN-60	5014006-063	KLN-R60	A2K-60R	A2K-60R	7
15	KTN-R80	JKS-80	JJN-80	5014006-080	KLN-R80	A2K-80R	A2K-80R	2
18,5	KTN-R125	JKS-150	JJN-125	2028220-125	KLN-R125	A2K-125R	A2K-125R	1/0
22	KTN-R125	JKS-150	JJN-125	2028220-125	KLN-R125	A2K-125R	A2K-125R	1/0
30	FWX-150	-	-	2028220-150	L25S-150	A25X-150	A25X-150	1/0
37	FWX-200	-	-	2028220-200	L25S-200	A25X-200	A25X-200	4/0
45	FWX-250	-	-	2028220-250	L25S-250	A25X-250	A25X-250	250 MCM
3 x 380-500 V								
0,55	KTS-R10	JKS-10	JJS-10	5017906-010	KTN-R10	ATM-R10	A2K-10R	10
0,75	KTS-R10	JKS-10	JJS-10	5017906-010	KTN-R10	ATM-R10	A2K-10R	10
1,1	KTS-R10	JKS-10	JJS-10	5017906-010	KTN-R10	ATM-R10	A2K-10R	10
1,5	KTS-R10	JKS-10	JJS-10	5017906-010	KTN-R10	ATM-R10	A2K-10R	10
2,2	KTS-R20	JKS-20	JJS-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
3	KTS-R20	JKS-20	JJS-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
4	KTS-R20	JKS-20	JJS-20	5017906-020	KIN-R20	ATM-R20	A2K-20R	10
5,5	KTS-R30	JKS-30	JJS-30	5012406-032	KIN-R30	ATM-R30	A2K-30R	10
7,5	KTS-R30	JKS-30	JJS-30	5012406-032	KIN-R30	ATM-R30	A2K-30R	10
11	KTS-R40	JKS-40	JJS-40	5014006-040	KLS-R40	-		7
19 5	KTS-R40	JKS-40	JJS-40	5014006-040	KLS-R40	-	AGK FOR	7
18,5	KTS-R50	JKS-50	112-20	5014006-050	KLS-ROU	-	AGK-SUR	7
22	KIS-ROU	JKS-00	JJ2-00	2028220 100	KLS-ROU	-	AOK-OUK	2
27	KTS P100	JK3-00	JJS-00	2028220-100		-		2
	KTS-R100	JKS-100	119 150	2028220-125	KLS-R100	-	AGK-100K	1/0
45	KTS-R120	JKS-150	JJS-150	2028220-125	KLS-R125		AGK-120R	1/0
75	EWH-220	-	-	2028220-100	1.508-225		AGR-130R	4/0
90	FWH-250	_	_	2028220-250	1.508-250	_	A50-P250	250 MCM
3 x 525-600 V	1111200			2020220 200	2000 200		71001200	200 110111
0.75	KTS-R10	.IKS-10	.LIS-10	5017906-010	KTN-R10	ATM-R10	A2K-10R	10
11	KTS-R10	JKS-10	JJS-10	5017906-010	KTN-R10	ATM-R10	A2K-10R	10
1.5	KTS-R10	JKS-10	JJS-10	5017906-010	KTN-R10	ATM-R10	A2K-10R	10
22	KTS-R20	JKS-20	JJS-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
3	KTS-R20	JKS-20	JJS-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
4	KTS-R20	JKS-20	JJS-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
5.5	KTS-R30	JKS-30	JJS-30	5012406-032	KTN-R30	ATM-R30	A2K-30R	10
7.5	KTS-R30	JKS-30	JJS-30	5012406-032	KTN-R30	ATM-R30	A2K-30R	10
3 x 525-690 V								
11	KTS-R-25	JKS-25	JJS-25	5017906-025	KLSR025	HST25	A6K-25R	1/0
15	KTS-R-30	JKS-30	JJS-30	5017906-030	KLSR030	HST30	A6K-30R	1/0
18,5	KTS-R-45	JKS-45	JJS-45	5014006-050	KLSR045	HST45	A6K-45R	1/0
22	KTS-R-45	JKS-45	JJS-45	5014006-050	KLSR045	HST45	A6K-45R	1/0
30	KTS-R-60	JKS-60	JJS-60	5014006-063	KLSR060	HST60	A6K-60R	1/0
37	KTS-R-80	JKS-80	JJS-80	5014006-080	KLSR075	HST80	A6K-80R	1/0

Puissance à larbre'	Type de fusible								
typique P2	- Bueemann	Busemann	SIRA	Littel Euse	Forraz Shawmut	Littel Euse Eerrez Showmut	Forraz-Shawmut	Bussmann	Conducteur ¹⁾
[HP]	J	T	RK1	RK1	CC	RK1	E1958 JFHR2	[AWG] ²⁾	
45	KTS-R-90	JKS-90	JJS-90	5014006-100	KLSR090	HST90	A6K-90R	1/0	
55	KTS-R-100	JKS-100	JJS-100	5014006-100	KLSR100	HST100	A6K-100R	1/0	
75	KTS-R125	JKS-125	JJS-125	2028220-125	KLS-125	HST125	A6K-125R	1/0	
90	KTS-R150	JKS-150	JJS-150	2028220-150	KLS-150	HST150	A6K-150R	1/0	

1) Câble moteur blindé, câble d'alimentation non blindé.

²⁾ American Wire Gauge.

16.8 Entrées et sorties

16.8.1 Alimentation secteur (L1, L2, L3)

Tension d'alimentation	200-240 V ± 10 %
Tension d'alimentation	380-500 V ± 10 %
Tension d'alimentation	525-600 V ± 10 %
Tension d'alimentation	525-690 V ± 10 %
Fréquence d'alimentation	50/60 Hz
Déséquilibre temporaire max. entre les phases	3 % de la valeur nominale
Courant de fuite à la terre	> 3,5 mA
Nombre de coupures, boîtier A	Max. 2 fois/min.
Nombre de coupures, boîtiers B et C	Max. 1 fois/min.

Nota Ne pas utiliser l'alimentation pour mettre le CUE sous/hors tension.

16.8.2 Sortie moteur (U, V, W)

Tension de sortie	0-100 % ¹⁾
Fréquence de sortie	0-100 Hz ²⁾
Mise sous tension sortie	Non recommandé

¹⁾ Tension de sortie en % de la tension d'alimentation.

²⁾ Selon la famille de pompe sélectionnée.

16.8.3 Branchement RS-485 GENIbus

Numéro de borne	68 (A), 69 (B), 61 GND (Y)

Le circuit RS-485 est fonctionnellement séparé des autres circuits centraux et galvaniquement séparé de la tension d'alimentation (TBTP).

16.8.4 Entrées digitales

Numéro de borne	18, 19, 32, 33
Niveau de tension	0-24 VDC
Niveau de tension, contact ouvert	> 19 VDC
Niveau de tension, contact fermé	< 14 VDC
Tension max. sur entrée	28 VDC
Résistance d'entrée, R _i	Env. 4 kΩ

Toutes les entrées digitales sont galvaniquement séparées de la tension d'alimentation (TBTP) et des autres bornes haute tension.

16.8.5 Relais de signal

Relais 01, numéro borne	1 (C), 2 (NO), 3 (NC)
Relais 02, numéro borne	4 (C), 5 (NO), 6 (NC)
Charge borne max. (AC-1) ¹⁾	240 VAC, 2 A
Charge borne max. (AC-15) ¹⁾	240 VAC, 0,2 A
Charge borne max. (DC-1) ¹⁾	50 VDC, 1 A
Charge borne min.	24 VDC 10 mA
5	24 VAC 20 mA

¹⁾ IEC 60947, pièces 4 et 5.

- C Commun
- NO Normalement ouvert
- NC Normalement fermé

Les contacts relais sont galvaniquement séparés des autres circuits par une isolation renforcée (TBTP).

16.8.6 Entrées analogiques

Entrée analogique 1, numéro borne	53
Signal de tension	A53 = "U" ¹⁾
Plage de tension	0-10 V
Résistance d'entrée, R _i	Env. 10 kΩ
Tension max.	± 20 V
Signal de courant	A53 = "I" ¹⁾
Plage de courant	0-20, 4-20 mA
Résistance d'entrée, R _i	Env. 200 Ω
Intensité maxi	30 mA
Défaut max., bornes 53, 54	0,5 % de la déviation maxi
Entrée analogique 2, numéro borne	54
Signal de courant	A54 = "I" ¹⁾
Plage de courant	0-20, 4-20 mA
Résistance d'entrée, R _i	Env. 200 Ω
Intensité maxi	30 mA
Défaut max., bornes 53, 54	0,5 % de la déviation maxi

¹⁾ Le réglage par défaut est le signal de tension "U".

Toutes les entrées analogiques sont galvaniquement séparées de la tension d'alimentation (TBTP) et des autres bornes haute tension.

16.8.7 Sortie analogique

Sortie analogique 1, numéro borne	42
Plage de courant	0-20 mA
Charge max. au cadre	500 Ω
Défaut max.	0,8 % de la déviation
	maxi

La sortie analogique est galvaniquement séparée de la tension d'alimentation (TBTP) et des autres bornes à haute tension.

16.8.8 Module d'entrée capteur MCB 114

Entrée analogique 3, numéro borne	2
Plage de courant	0/4-20 mA
Résistance d'entrée	< 200 Ω
Entrées analogiques 4 et 5, numéro borne	4, 5 et 7, 8
Type de signal, 2 ou 3 fils	Pt100/Pt1000

Nota Lorsque vous utilisez un câble Pt100 3 fils, la résistance ne doit pas dépasser 30 Ω .

16.9 Niveau de pression sonore

Le niveau sonore du CUE est de 70 dB(A) max.

Le niveau de pression sonore d'un moteur régulé par un convertisseur de fréquence peut être plus élevé qu'un moteur non régulé par un convertisseur de fréquence. Voir paragraphe *6.7 Filtres RFI*.

17. Mise au rebut

Ce produit ou des parties de celui-ci doit être mis au rebut tout en préservant l'environnement :

- 1. Utiliser le service local public ou privé de collecte des déchets.
- 2. Si ce n'est pas possible, envoyer ce produit à Grundfos ou au réparateur agréé Grundfos le plus proche.

Nous nous réservons tout droit de modifications.

Traducción de la versión original en inglés

CONTENIDO

	Pá	gina
1.	Símbolos utilizados en este documento	93
2.	Introducción	93
2.1	Descripción general	93
2.2	Aplicaciones	94
2.3	Referencias	94
3.	Seguridad y avisos	94
3.1	Advertencia	94
3.Z	Normas de segundad	94
3.4	Rendimiento reducido en ciertas condiciones	94
4	Identificación	95
4.1	Placa de características	95
4.2	Etiqueta de embalaje	95
5.	Instalación mecánica	95
5.1	Recepción y almacenamiento	95
5.2	Transporte y desembalaje	95
5.3	Requisitos de espacio y circulación de aire	95
5.4	Montaje	96
6.	Conexión eléctrica	96
6.1	Protección eléctrica	96
6.2	Conexión de motor y red	97
6.J	Conexión de los terminales de senal	100
0.4 6.5	Conexión de los reles de senal	104
6.6	Instalación correcta conforme a la EMC	105
6.7	Filtros REI	100
6.8	Filtros de salida	100
6.9	Cable de motor	107
7.	Modos de funcionamiento	108
8.	Modos de control	108
8.1	Funcionamiento no controlado (bucle abierto)	108
8.2	Funcionamiento controlado (bucle cerrado)	108
9.	Resumen de los menús	109
10.	Ajustes mediante el panel de control	111
10.1	Panel de control	111
10.2	Restablecimiento de los ajustes de fábrica	112
10.3	Ajustes CUE	112
10.4	Guía de puesta en marcha	112
10.5	GENERAL	116
10.0	FUNCIONAMIENTO	117
10.7		121
10.0	Aiustes mediante productos. E para herramientas	121
	de PC	128
12.	Prioridad de aiustes	128
12.1	Control sin señal de bus, modo de funcionamiento	400
10.0	local Control con coñel de hue, mode de funcionamiente	128
12.2	por control remoto	128
13.	Señales de control externas	129
13.1	Entradas digitales	129
13.2	Punto de ajuste externo	129
13.3	Señal GENIbus	130
13.4	Otros estándares de bus	130
14.	Mantenimiento y reparación	130
14.1	Limpieza del CUE	130
14.2	Repuestos y kits de mantenimiento	130

15.	Localización de averías	130
15.1	Lista de advertencias y alarmas	130
15.2	Reseteo de alarmas	131
15.3	Indicadores luminosos	131
15.4	Relés de señal	131
16.	Datos técnicos	132
16.1	Carcasa	132
16.2	Prensacables	132
16.3	Dimensiones principales y pesos 13	
16.4	Entorno	133
16.5	Pares de apriete de los terminales	134
16.6	Longitud de cable	134
16.7	Fusibles y sección transversal de cable	134
16.8	Entradas y salidas	
16.9	Nivel de ruido	137
17.	Eliminación	137

Aviso

Leer estas instrucciones de instalación y operación antes de realizar la instalación. La instalación y la operación deben cumplir con las normativas locales en vigor.

1. Símbolos utilizados en este documento

Aviso

Si estas instrucciones no son observadas puede tener como resultado daños personales.

Precaución

Nota

Si estas instrucciones de seguridad no son observadas pueden producirse averías o daños en el equipo.

Notas o instrucciones que facilitan el trabajo y garantizan un funcionamiento seguro.

2. Introducción

Este manual presenta todos los aspectos de su convertidor de frecuencia CUE de Grundfos en el intervalo de potencia de 0.55 a 90 kW.

Mantenga siempre este manual cerca del CUE.

2.1 Descripción general

CUE es una serie de convertidores de frecuencia externos especialmente diseñados para bombas.

Gracias a la guía de puesta en marcha del CUE, el instalador puede ajustar rápidamente los parámetros centrales y poner el CUE en funcionamiento.

Conectado a un sensor o a una señal de control externa, el CUE adaptará rápidamente la velocidad de la bomba a la demanda actual.

Precaución Si la velocidad de la bomba es superior a la velocidad nominal, la bomba se sobrecargará.

2.2 Aplicaciones

La serie CUE v las bombas estándar de Grundfos son un complemento para la gama de bombas E de Grundfos con convertidor de frecuencia integrado.

Una solución CUE ofrece la misma funcionalidad que la bomba E en estos casos:

- en la tensión de red o intervalos de potencia que no cubre la gama de bombas E
- en aplicaciones en las que no sea conveniente o admisible un convertidor de frecuencia integrado.

2.3 Referencias

Documentación técnica para CUE de Grundfos:

- El manual contiene toda la información necesaria para poner el CUE en funcionamiento.
- El cuadernillo de datos contiene toda la información técnica sobre la construcción y aplicaciones del CUE.
- Las instrucciones de mantenimiento contienen todas las instrucciones necesarias para desmontar y reparar el convertidor de frecuencia

La documentación técnica se encuentra disponible en www.grundfos.es > Grundfos Product Center.

Para cualquier pregunta, por favor póngase en contacto con la compañía Grundfos o el taller más cercano.

3. Seguridad y avisos

3.1 Advertencia

Advertencia

Las instalaciones, labores de mantenimiento e inspecciones debe realizarlas personal cualificado.

Advertencia

Tocar las piezas eléctricas puede resultar letal, incluso después de que se haya desconectado el CUF

Antes de llevar a cabo cualquier trabajo en el CUE, el suministro de red y otras entradas de tensión deben desconectarse durante al menos el tiempo indicado a continuación.

Tensión	Tiempo de espera mín.		
	4 minutos	15 minutos	20 minutos
200-240 V	0.75 - 3.7 kW	5.5 - 45 kW	
380-500 V	0.55 - 7.5 kW	11-90 kW	
525-600 V	0.75 - 7.5 kW		
525-690 V			11-90 kW

Sólo se podrá esperar menos tiempo si así lo indica la placa de características del CUE en cuestión.

3.2 Normas de seguridad

- · El botón on/off del panel de control no desconecta el CUE de la tensión de red y por lo tanto no debe utilizarse como interruptor de seguridad.
- El CUE debe estar conectado a tierra correctamente y protegido contra el contacto indirecto de conformidad con la normativa nacional.
- La corriente de fuga a tierra supera los 3.5 mA.
- La carcasa con grado de protección IP20/21 no debe instalarse de modo que sea libremente accesible, sino únicamente en un panel.

- La carcasa con grado de protección IP54/55 no debe instalarse al aire libre sin protección adicional contra las condiciones climáticas adversas y el sol.
- Cumpla siempre la normativa nacional y local en lo referente a las secciones transversales de cables, la protección contra cortocircuitos y la protección contra sobreintensidad.

3.3 Requisitos de instalación

La seguridad general necesita una consideración especial en lo referente a estos aspectos:

- fusibles e interruptores para protección contra sobreintensidad y cortocircuito
- selección de cables (intensidad de red, motor, distribución de carga y relé)
- configuración de red (IT, TN, conexión a tierra)
- seguridad para conectar entradas y salidas (PELV).

3.3.1 Red IT

Advertencia

No conecte convertidores de frecuencia CUE de 380-500 V a redes eléctricas con una tensión entre fase y tierra de más de 440 V.

Con respecto a la red IT y la red delta conectada a tierra, la tensión de red puede superar los 440 V entre fase y tierra.

3.3.2 Entorno agresivo

El CUE no debe instalarse en un entorno cuyo aire Precaución contenga líquidos, partículas o gases que puedan afectar y dañar los componentes electrónicos.

El CUE contiene un gran número de componentes mecánicos y electrónicos. Todos son vulnerables al impacto medioambiental.

3.4 Rendimiento reducido en ciertas condiciones

El CUE reducirá su rendimiento en estas condiciones:

- baja presión del aire (a gran altitud)
- · cables de motor largos.

Las medidas necesarias se describen en las dos secciones siguientes.

3.4.1 Reducción a baja presión del aire

Advertencia

A altitudes superiores a los 2.000 m, no pueden cumplirse los requisitos PELV.

PELV = tensión de seguridad.

A baja presión del aire, se reduce la capacidad de refrigeración del aire, y el CUE reduce automáticamente el rendimiento para evitar sobrecargas.

Puede ser necesario seleccionar un CUE con un rendimiento más alto

3.4.2 Reducción por cables de motor largos

La longitud máxima de cable para el CUE es de 300 m para cables no apantallados y de 150 m para cables apantallados. Si los cables son más largos, contacte con Grundfos.

El CUE está diseñado para un cable de motor con una sección transversal máxima, tal y como se indica en la sección 16.7 Fusibles y sección transversal de cable.

Español (MX)

4. Identificación

4.1 Placa de características

El CUE se puede identificar por medio de la placa de características. A continuación se muestra un ejemplo.

Fig. 1 Ejemplo de placa de características

Texto	Descripción
T/C:	CUE (nombre de producto) 202P1M2 (código interno)
Prod. no:	Código de producto: 12345678
S/N:	Número de serie: 123456G234 Los tres últimos dígitos indican la fecha de fabri- cación: 23 es la semana y 4 es el año 2004
1.5 kW	Potencia típica del eje en el motor
IN:	Tensión de alimentación, frecuencia e intensidad de entrada máxima
OUT:	Tensión del motor, frecuencia e intensidad máxima de salida. La frecuencia de salida máxima normalmente depende del tipo de bomba
CHASSIS/ IP20	Grado de protección
Tamb.	Temperatura ambiente máxima

4.2 Etiqueta de embalaje

El CUE también puede identificarse por medio de la etiqueta del embalaje.

5. Instalación mecánica

Los tamaños de cuadros individuales del CUE se caracterizan por sus carcasas. La tabla de la sección *16.1 Carcasa* muestra la relación entre el grado de protección y el tipo de carcasa.

5.1 Recepción y almacenamiento

Compruebe en el momento de la recepción que el embalaje está intacto y que la unidad está completa. Si se ha producido algún daño durante el transporte, póngase en contacto con la compañía de transporte y haga una reclamación.

Hay que tener en cuenta que el CUE se entrega en un embalaje que no es adecuado para almacenamiento al aire libre.

5.2 Transporte y desembalaje

El CUE sólo debe desembalarse en el lugar de instalación para evitar daños durante el transporte al mismo.

El embalaje contiene la(s) bolsa(s) de accesorios, la documentación y la unidad propiamente dicha. Véase la fig. 2.

Fig. 2 Embalaje del CUE

TM04 3272 3808

5.3 Requisitos de espacio y circulación de aire

Las unidades CUE pueden montarse una al lado de la otra pero, ya que se necesita una circulación de aire suficiente para refrigerar, deben cumplirse los siguientes requisitos:

- Suficiente espacio libre por encima y por debajo del CUE. Véase la siguiente tabla.
- Temperatura ambiente hasta 50 °C.
- Cuelgue el CUE directamente en la pared o fíjelo con una placa posterior. Véase la fig. 3.

Fig. 3 CUE colgado directamente en la pared o fijado con una placa posterior

Espacio libre necesario por encima y por debajo del CUE

Carcasa	Espacio [mm]
A2, A3, A4, A5	100
B1, B2, B3, B4, C1, C3	200
C2, C4	225

Para información sobre carcasas, véase la tabla de la sección 16.1 Carcasa.

5.4 Montaje

Precaución El usuario es responsable de montar con firmeza el CUE sobre una superficie sólida.

- 1. Marque y perfore orificios. Véanse las dimensiones en la sección 16.3 Dimensiones principales y pesos.
- 2. Coloque los tornillos y apriételos ligeramente. Monte el CUE y apriete los cuatro tornillos.

Fig. 4 Perforación de orificios

6. Conexión eléctrica

Advertencia

El propietario o el instalador es responsable de garantizar una conexión a tierra y una protección correctas de conformidad con la normativa nacional y local.

Advertencia

Antes de llevar a cabo cualquier trabajo en el CUE, el suministro de red y otras entradas de tensión deben desconectarse durante al menos el tiempo indicado en la sección 3. Seguridad y avisos.

Fig. 5 Ejemplo de conexión a red trifásica del CUE con interruptor de red, fusibles de reserva y protección adicional

6.1 Protección eléctrica

6.1.1 Protección contra descarga eléctrica, contacto indirecto

Advertencia

El CUE debe estar conectado a tierra correctamente y protegido contra el contacto indirecto de conformidad con la normativa nacional.

Precaución La corriente de fuga a tierra sobrepasa los 3.5 mA y es necesaria una conexión a tierra reforzada.

Los conductores de protección siempre deben tener una marca de color amarillo/verde (PE) o amarillo/verde/azul (PEN). Instrucciones de conformidad con EN IEC 61800-5-1:

- El CUE debe estar inmóvil, instalado y conectado permanentemente al suministro de red.
- La conexión a tierra debe realizarse con conductores de protección duplicados o con un solo conductor de protección reforzado con una sección transversal de, como mínimo, 10 mm².

6.1.2 Protección contra cortocircuitos, fusibles

El CUE y el sistema de alimentación deben estar protegidos contra cortocircuitos.

Grundfos exige que los fusibles de reserva mencionados en la sección *16.7 Fusibles y sección transversal de cable* se utilicen para protección contra cortocircuitos.

El CUE ofrece una protección contra cortocircuitos completa en caso de cortocircuito en la salida del motor.

6.1.3 Protección adicional

Precaución La corriente de fuga a tierra supera los 3.5 mA.

Si el CUE está conectado a una instalación eléctrica donde se utiliza un diferencial a tierra (ELCB) como protección adicional, este debe estar marcado con los siguientes símbolos:

Este diferencial es de tipo B.

Hay que tener en cuenta la corriente de fuga total de todo el equipo eléctrico de la instalación.

La corriente de fuga del CUE en funcionamiento normal puede verse en la sección 16.8.1 Suministro de red (L1, L2, L3).

Durante el arranque y en sistemas de alimentación asimétrica, la corriente de fuga puede ser superior a la normal y puede hacer que el ELCB se desconecte.

6.1.4 Protección del motor

El motor no necesita protección externa de motor. El CUE protege al motor contra sobrecargas térmicas y blogueos.

6.1.5 Protección contra sobreintensidad

El CUE tiene una protección contra sobreintensidad interna para protección contra sobrecarga en la salida del motor.

6.1.6 Protección contra transitorios de tensión de la red

El CUE está protegido contra transitorios de tensión de la red de acuerdo con EN 61800-3, segundo entorno.

6.2 Conexión de motor y red

La tensión de alimentación y la frecuencia están indicadas en la placa de características del CUE. Compruebe que el CUE es adecuado para el suministro eléctrico del lugar de la instalación.

6.2.1 Interruptor de red

Puede instalarse un interruptor de red antes del CUE de acuerdo con la normativa local. Véase la fig. 5.

6.2.2 Esquema de conexiones

Los cables de la caja de terminales deben ser tan cortos como sea posible. Excepto el cable de puesta a tierra de protección que debe tener una longitud tal, que sea el último en desconectarse en caso de que el cable se extraiga accidentalmente de la entrada del cable.

Fig. 6 Esquema de conexiones eléctricas, conexión red trifásica

Termina	al	Función	
91	(L1)	_	
92	(L2)	Alimentación trifásica	
93	(L3)		
95/99	(PE)	Conexión de puesta a tierra	
96	(U)		
97	(V)	- Conexion del motor trifasica, 0-100 % de la te - sión de red	
98	(W)		

Nota Para conexión monofásica, utilice L1 y L2.

6.2.3 Conexión a la red, carcasas A2 y A3

Para información sobre carcasas, véase la tabla de la sección *16.1 Carcasa*.

Precaución Compruebe que la tensión y la frecuencia de la red correspondan con los valores indicados en la placa de características del CUE y el motor.

1. Instale la placa de montaje con dos tornillos.

Fig. 7 Instalación de la placa de montaje

 Conecte el conductor de tierra al terminal 95 (PE) y los conductores de red a los terminales 91 (L1), 92 (L2), 93 (L3) del enchufe de alimentación. Introduzca el enchufe de alimentación en la toma con la marca MAINS.

Fig. 8 Conexión del conductor de puesta a tierra y los conductores de red

Nota	Para conexión monofásica, utilice L1 y L2.

3. Fije el cable de alimentación a la placa de montaje.

Fig. 9 Fijación del cable de alimentación

IMU3

TM03 9014 2807

6.2.4 Conexión de motor, carcasas A2 y A3

Para información sobre carcasas, véase la tabla de la sección 16.1 Carcasa.

Precaución El cable del motor debe estar apantallado para que el CUE cumpla los requisitos de EMC.

 Conecte el conductor de tierra al terminal 99 (PE) de la placa de montaje. Conecte los conductores de motor a los terminales 96 (U), 97 (V), 98 (W) del enchufe del motor.

- Fig. 10 Conexión del conductor de puesta a tierra y los conductores del motor
- Introduzca el enchufe del motor en la toma con la marca MOTOR. Fije el cable apantallado a la placa de montaje con una abrazadera para cables.

Fig. 11 Conexión del enchufe del motor y fijación del cable apantallado

6.2.5 Carcasas A4 y A5

Para información sobre carcasas, véase la tabla de la sección 16.1 Carcasa.

Conexión a la red

Precaución correspondan con los valores indicados en la placa de características del CUE y el motor.

- 1. Conecte el conductor de tierra al terminal 95 (PE). Véase la fig. 12.
- Conecte los conductores de red a los terminales 91 (L1), 92 (L2), 93 (L3) del enchufe de alimentación.
- 3. Introduzca el enchufe de alimentación en la toma con la marca MAINS.
- 4. Fije el cable de alimentación con una abrazadera para cables.

TM03 9017 2807

Fig. 12 Conexión de red, A4 y A5

Conexión del motor

TM03 9013 2807

Precaución El cable del motor debe estar apantallado para que el CUE cumpla los requisitos de EMC.

- 1. Conecte el conductor de tierra al terminal 99 (PE). Véase la fig. 13.
- Conecte los conductores de motor a los terminales 96 (U), 97 (V), 98 (W) del enchufe del motor.
- 3. Introduzca el enchufe del motor en la toma con la marca MOTOR.
- 4. Fije el cable apantallado con una abrazadera para cables.

Fig. 13 Conexión de motor, A5

6.2.6 Carcasas B1 y B2

Para información sobre carcasas, véase la tabla de la sección 16.1 Carcasa.

Conexión a la red

Compruebe que la tensión y la frecuencia de la red ción correspondan con los valores indicados en la placa de características del CUE y el motor.

- 1. Conecte el conductor de tierra al terminal 95 (PE). Véase la fig. 14.
- Conecte los conductores de red a los terminales 91 (L1), 92 (L2), 93 (L3).
- 3. Fije el cable de alimentación con una abrazadera para cables.

Fig. 14 Conexión a la red, B1 y B2

Nota Para conexión monofásica, utilice L1 y L2.

Conexión del motor

Precaución El cable del motor debe estar apantallado para que el CUE cumpla los requisitos de EMC.

- Conecte el conductor de tierra al terminal 99 (PE). Véase la fig. 15.
- Conecte los conductores del motor a los terminales 96 (U), 97 (V), 98 (W).
- 3. Fije el cable apantallado con una abrazadera para cables.

Fig. 15 Conexión de motor, B1 y B2

6.2.7 Carcasas B3 y B4

Para información sobre carcasas, véase la tabla de la sección 16.1 Carcasa.

Conexión a la red

Precaución correspondan con los valores indicados en la placa de características del CUE y el motor.

- Conecte el conductor de tierra al terminal 95 (PE). Véanse las fig. 16 y 17.
- Conecte los conductores de red a los terminales 91 (L1), 92 (L2), 93 (L3).
- 3. Fije el cable de alimentación con una abrazadera para cables.

Conexión del motor

TM03 9019 2807

FM03 9020 2807

Precaución El cable del motor debe estar apantallado para que el CUE cumpla los requisitos de EMC.

- 1. Conecte el conductor de tierra al terminal 99 (PE). Véanse las fig. 16 y 17.
- Conecte los conductores del motor a los terminales 96 (U), 97 (V), 98 (W).
- 3. Fije el cable apantallado con una abrazadera para cables.

Fig. 16 Conexión de motor y red, B3

Fig. 17 Conexión de motor y red, B4

TM03 9446 4007

TM03 9449 4007

6.2.8 Carcasas C1 y C2

Para información sobre carcasas, véase la tabla de la sección 16.1 Carcasa.

Conexión a la red

Compruebe que la tensión y la frecuencia de la red Precaución correspondan con los valores indicados en la placa de características del CUE y el motor.

- Conecte el conductor de tierra al terminal 95 (PE). 1. Véase la fig. 18.
- 2. Conecte los conductores de red a los terminales 91 (L1), 92 (L2), 93 (L3).

Conexión del motor

El cable del motor debe estar apantallado para que Precaución el CUE cumpla los requisitos de EMC.

- 1. Conecte el conductor de tierra al terminal 99 (PE). Véase la fig. 18.
- 2. Conecte los conductores del motor a los terminales 96 (U), 97 (V), 98 (W).
- 3. Fije el cable apantallado con una abrazadera para cables.

Fig. 18 Conexión de motor y red, C1 y C2

6.2.9 Carcasas C3 y C4

Para información sobre carcasas, véase la tabla de la sección 16.1 Carcasa.

Conexión a la red

- 1. Conecte el conductor de tierra al terminal 95 (PE). Véanse las fig. 19 y 20.
- 2. Conecte los conductores de red a los terminales 91 (L1), 92 (L2), 93 (L3).

Conexión del motor

Precaución

100

El cable del motor debe estar apantallado para que el CUE cumpla los requisitos de EMC.

- 1. Conecte el conductor de tierra al terminal 99 (PE). Véanse las fig. 19 y 20.
- Conecte los conductores del motor a los terminales 96 (U), 2. 97 (V), 98 (W).
- 3. Fije el cable apantallado con una abrazadera para cables.

Fig. 19 Conexión de motor y red, C3

Fig. 20 Conexión de motor y red, C4

6.3 Conexión de los terminales de señal

FM03 9016 2807

Como medida de precaución, los cables de señal deben estar separados de otros grupos mediante aislamiento reforzado en toda su longitud.

Si no se conecta ningún interruptor on/off externo, puentee los terminales 18 y 20 con un cable corto.

Conecte los cables de señal de acuerdo con las directrices de buena práctica para asegurar la correcta instalación con respecto a EMC. Véase la sección 6.6 Instalación correcta conforme a la EMC.

- Utilice cables de señal apantallados con una sección transversal del conductor de mínimo 0.5 mm² y máximo 1.5 mm².
- Utilice un cable de bus apantallado de 3 conductores en sistemas nuevos.

TM03 9448 4007

6.3.1 Diagrama de cableado, terminales de señal

Fig. 21 Diagrama de cableado, terminales de señal

Terminal	Туре	Función
12	+24 V salida	Suministro al sensor
13	+24 V salida	Suministro adicional
18	DI 1	Entrada digital, inicio/parada
19	DI 2	Entrada digital, programable
20	GND	Ground for digital inputs
32	DI 3	Entrada digital, programable
33	DI 4	Entrada digital, programable
39	GND	Tierra para salida análoga
42	AO 1	Salida analógica, 0-20 mA
50	+10 V salida	Suministro al potenciómetro
53	AI 1	Punto de ajuste externo, 0-10 V/0/4- 20 mA
54	AI 2	Entrada de sensor, sensor 1, 0/4-20 mA
55	GND	Tierra para conexión análoga
61	RS-485 GND Y	GENIbus, GND
68	RS-485 A	GENIbus, señal A (+)
69	RS-485 B	GENIbus, señal B (-)

Los terminales 27, 29 y 37 no se utilizan.

Nota

The RS-485 screen must be connected to ground.

6.3.2 Conexión mínima, terminal de señal

El funcionamiento sólo es posible cuando están conectados los terminales 18 y 20. por ejemplo mediante un interruptor on/off externo o un cable corto.

TM03 9057 3207

Fig. 22 Conexión mínima necesaria, terminales de señal

6.3.3 Esquema de conexiones eléctricas, terminales de señal

TM05 1508 2811

Terminal	Тіро	Función	Terminal	Тіро	Función
12	Salida de +24 V	Suministro al sensor	42	AO 1	Salida analógica, 0-20 mA
13	Salida de +24 V	Suministro adicional	50	Salida de +10 V	Alimentación del potenciómetro
18	DI 1	Entrada digital, arranque/parada	53	AI 1	Punto de ajuste externo, 0-10 V, 0/4-20 mA
19	DI 2	Entrada digital, programable	54	AI 2	Entrada del sensor, sensor 1, 0/4-20 mA
20	GND	Masa común para entradas digitales	55	GND	Masa común para entradas analógicas
32	DI 3	Entrada digital, programable	61	RS-485 GND Y	GENIbus, masa
33	DI 4	Entrada digital, programable	68	RS-485 A	GENIbus, señal A (+)
39	GND	Masa para salida analógica	69	RS-485 B	GENIbus, señal B (-)

Los terminales 27 y 29 no se utilizan.

Conecte los cables de señal de acuerdo con las directrices de buena práctica para asegurar la correcta instalación con respecto a EMC. Véase la sección *6.6 Instalación correcta conforme a la EMC*. Utilice cables de señal apantallados con una sección transversal del conductor de mínimo 0.5 mm² y máximo 1.5 mm².

Utilice un cable de bus apantallado de 3 conductores en sistemas nuevos.

Nota La pantalla RS-485 debe estar conectada a masa.

6.3.4 Conexión de un termistor (PTC) al CUE

La conexión de un termistor (PTC) en un motor al CUE requiere un relé PTC externo.

Este requisito se basa en el hecho de que el termistor en el motor sólo tiene una capa de aislamiento para los bobinados. Los terminales del CUE requieren dos capas de aislamiento ya que son parte del circuito PELV.

El circuito PELV suministra protección contra descargas eléctricas. Se aplican requisitos especiales de conexión a este tipo de circuito. Los requisitos se describen en la norma EN 61800-5-1.

Con el fin de mantener el PELV, todas las conexiones realizadas a los terminales de control deben ser PELV. Por ejemplo, el termistor debe tener aislamiento reforzado o doble.

6.3.5 Acceso a terminales de señal

Todos los terminales de señal están detrás de la cubierta del terminal de la parte frontal del CUE. Quite la cubierta del terminal tal y como se muestra en la fig. 23 y 24.

Fig. 23 Acceso a terminales de señal, A2 y A3

Fig. 24 Acceso a terminales de señal, A4, A5, B1, B2, B3, B4, C1, C2, C3 y C4.

TM03 9025 2807

Fig. 25 Terminales de señal (todas las carcasas)

6.3.6 Colocación del conductor

- 1. Quite el aislamiento a una altura de 9 a 10 mm.
- Introduzca un destornillador con una punta de máximo 0.4 x 2.5 mm en el orificio cuadrado.
- Introduzca el conductor dentro del correspondiente orificio redondo. Extraiga el destornillador. El conductor ahora está fijado en el terminal.

TM03 9026 2807

Fig. 26 Colocación del conductor en el terminal de señal

6.3.7 Ajuste de las entradas analógicas, terminales 53 y 54

Los contactos A53 y A54 se encuentran detrás del panel de control y se utilizan para ajustar el tipo de señal de las dos entradas analógicas.

El ajuste de fábrica de las entradas es la señal de tensión "U".

Nota De

TM03 9003 2807

TM03 9004 2807

Si se conecta un sensor de 0/4-20 mA al terminal 54, la entrada debe ajustarse a la señal actual "I".

Desconecte la alimentación eléctrica antes de conectar el contacto A54.

Quite el panel de control para ajustar el contacto. Véase la fig. 27.

Fig. 27 Ajuste del contacto A54 a la señal "I" actual

TM03 9104 3407

6.3.8 Conexión a la red GENIbus RS-485.

Fig. 28 Ejemplo de una red GENIbus RS-485

El potencial de referencia, GND, para la comunicación RS-485 (Y) debe estar conectado al terminal 61.

Si hay más de una unidad CUE conectada a una red GENIbus, el contacto de terminación de la última unidad CUE debe ajustarse a "ON" (terminación del puerto RS-485).

El ajuste de fábrica del contacto de terminación está en "OFF" (no terminado).

Quite el panel de control para ajustar el contacto. Véase la fig. 29.

Fig. 29 Ajuste del contacto de terminación a "ON"

6.4 Conexión de los relés de señal

Como medida de precaución, los cables de señal Precaución deben estar separados de otros grupos mediante aislamiento reforzado en toda su longitud.

Fig. 30 Terminales para relés de señal en estado normal (no activados)

Termi	nal	Función
C 1	C 2	Común
NO 1	NO 2	Contacto normalmente abierto
NC 1	NC 2	Contacto normalmente cerrado

Acceso a relés de señal

TM03 9006 2807

Las salidas de relé están colocadas como se muestra en las figs 31 a 36.

TM03 9007 2807

Fig. 31 Terminales para conexión de relé, A2 y A3

Fig. 32 Terminales para conexión de relé, A4, A5, B1 y B2

Fig. 33 Terminales para conexión de relé, C1 y C2

Fig. 34 Terminales para conexión de relé, B3

Fig. 35 Terminales para conexión de relé, B4

Fig. 36 Terminales para conexión de relé, C3 y C4, en la esquina superior derecha del CUE

6.5 Conexión del módulo de entrada de sensor MCB 114

El MCB 114 es una opción que ofrece entradas analógicas adicionales para el CUE.

6.5.1 Configuración del MCB 114

TM03 9009 2807

TM03 9442 4007

TM03 9441 4007

TM03 9440 4007

El MCB 114 está equipado con tres entradas analógicas para estos sensores:

- Un sensor adicional 0/4-20 mA. Véase la sección 10.8.14 Sensor 2 (3.16).
- Dos sensores de temperatura Pt100/Pt1000 para medir la temperatura de los cojinetes del motor u otra temperatura, como la temperatura del líquido. Véanse las secciones 10.8.19 Sensor de temperatura 1 (3.21) y 10.8.20 Sensor de temperatura 2 (3.22).

Cuando se haya instalado el MCB 114, el CUE detectará automáticamente si el sensor es Pt100 o Pt1000 cuando se active.

6.5.2 Esquema de conexiones eléctricas, MCB 114

TM04 3273 3908

Fig. 37 Esquema de conexiones eléctricas, MCB 114

Terminal	Тіро	Función
1 (VDO)	Salida de +24 V	Suministro al sensor
2 (I IN)	AI 3	Sensor 2, 0/4-20 mA
3 (GND)	GND	Masa común para entrada analógica
4 (TEMP) 5 (WIRE)	AI 4	Sensor de temperatura 1, Pt100/Pt1000
6 (GND)	GND	Masa común para sensor de tempera- tura 1
7 (TEMP) 8 (WIRE)	AI 5	Sensor de temperatura 2, Pt100/Pt1000
9 (GND)	GND	Masa común para sensor de tempera- tura 2

Los terminales 10, 11 y 12 no se utilizan.

6.6 Instalación correcta conforme a la EMC

Esta sección ofrece directrices para una buena práctica cuando se instale el CUE. Es necesario seguir estas directrices para cumplir la norma EN 61800-3, primer entorno.

- Utilice sólo cables de señal y motor con una pantalla metálica trenzada en aplicaciones sin filtro de salida.
- No hay requisitos especiales para los cables de alimentación, aparte de los requisitos locales.
- Deje la pantalla lo más cerca posible de los terminales de conexión. Véase la fig. 38.
- Hay que evitar terminar la pantalla retorciendo los extremos. Véase la fig. 39. Utilice abrazaderas para cables o entradas para cable roscadas según EMC en su lugar.
- Conecte la pantalla a masa en ambos extremos tanto para cables de señal como para cables de motor. Véase la fig. 40. Si el controlador no tiene abrazaderas para cables, conecte sólo la pantalla al CUE. Véase la fig. 41.
- Evite cables de señal y motor sin apantallar en cuadros eléctricos con convertidores de frecuencia.
- Deje el cable del motor lo más corto posible en aplicaciones sin filtro de salida para limitar el nivel de ruido y minimizar las corrientes de fuga.
- Los tornillos para conexiones a masa siempre deben estar apretados, haya o no un cable conectado.
- Si es posible, mantenga separados en la instalación los cables principales, los cables del motor y los cables de señal.

Otros métodos de instalación pueden dar resultados de EMC similares si se siguen las directrices anteriores para buena práctica.

Fig. 38 Ejemplo de cable pelado con pantalla

Fig. 39 No retuerza los extremos de la pantalla

Fig. 40 Ejemplo de conexión de un cable de bus de 3 conductores con pantalla conectada en ambos extremos

Fig. 41 Ejemplo de conexión de un cable de bus de 3 conductores con pantalla conectado en el CUE (controlador sin abrazaderas para cables)

6.7 Filtros RFI

TM02 1325 0901

TM03 8812 2507

Para cumplir los requisitos de CEM, el CUE viene con los siguientes tipos de filtro para interferencias de radiofrecuencia integrados (RFI).

Tensión	Potencia típica del eje P2	Tipo de filtro RFI
1 x 200-240 V*	1.1 - 7.5.5kW	C1
3 x 200-240 V	0.75 - 45 kW	C1
3 x 380-500 V	0.55 - 90 kW	C1
3 x 525-600 V	0.75 - 7.5 kW	C3
3 x 525-690 V	11-90 kW	C3

Entrada monofásica - salida trifásica.

Descripción de tipos de filtro RFI

- C1: Para uso en zonas domésticas.
- C3: Para uso en zonas industriales con transformador de baja tensión propio.

Los tipos de filtro RFI son conformes a la norma EN 61800-3.

6.7.1 Equipo de categoría C3

- Este tipo de sistema de toma de fuerza (PDS) no está concebido para ser usado en una red pública de baja tensión que abastezca a edificios de viviendas.
- Deben esperarse radiointerferencias si se utiliza en una red de dicho tipo.

Español (MX)

Filtro de onda

sinusoidal

[ft. (m)]

6.8 Filtros de salida

Los filtros de salida se usan para reducir la carga de tensión sobre los bobinados del motor y la carga del sistema de aislamiento del motor, así como para amortiguar el ruido acústico generado por el motor (controlado por un variador de frecuencia). Existen dos tipos de filtros de salida disponibles como accesorios para el CUE:

- filtros dU/dt; ٠
- filtros de onda sinusoidal.

Uso de los filtros de salida

La tabla siguiente recoge los casos en los que se requiere un filtro de salida y el tipo que se debe usar. La selección depende de lo siguiente:

• tipo de bomba;

Potencia de salida,

CUF

- longitud del cable del motor;
- reducción necesaria del ruido acústico generado por el motor.

Filtro dU/dt

[ft. (m)]

Tipo de bomba

			/-
SP, BM o BMB con tensión de motor a partir de 380 V	Todas	-	0-1000 ft. (0-300 m)*
Bombas con motores MG71 y MG80 de hasta 1,5 kW	Superior a 1,5 kW	-	0-1000 ft. (0-300 m)*
Reducción de dU/dt y ruido, baja reducción	Todas	0-500 ft. (0-150 m)*	-
Reducción de dU/dt, picos de tensión y ruido, alta reducción	Todas	-	0-1000 ft. (0-300 m)*
Con motores a partir de 500 V	Todas	-	0-1000 ft. (0-300 m)*

Las longitudes indicadas son válidas para el cable del motor.

6.9 Cable de motor

Para cumplir con la norma EN 61800-3, el cable del motor debe ser siempre apantallado, tanto si se instala o no un filtro de salida.

Nota El cable de red no tiene que ser un cable apantallado.

Véanse las fig. 42, 43, 44 y 45.

Fig. 42 Ejemplo de instalación sin filtro

Fig. 43 Ejemplo de instalación con filtro. El cable entre el CUE y el filtro debe ser corto

Fig. 44 Bomba sumergible sin caja de conexiones. El convertidor de frecuencia y el filtro están instalados cerca del pozo

Fig. 45 Bomba sumergible con caja de conexiones y cable apantallado. El convertidor de frecuencia y el filtro están instalados lejos del pozo y la caja de conexiones instalada cerca del pozo

Símbolo	Denominación
1	CUE
2	Filtro
3	Caja de conexiones
4	Motor estándar
5	Motor sumergible
Una línea	Cable sin apantallar
Línea doble	Cable apantallado

7. Modos de funcionamiento

Los siguientes modos de funcionamiento se ajustan en el panel de control en el menú "FUNCIONAMIENTO", pantalla 1.2. Véase la sección 10.6.2 Modo de funcionamiento (1.2).

Modo de funciona- miento	Descripción
Normal	La bomba está funcionando en el modo de control seleccionado
Parada	La bomba se ha parado (la luz testigo verde está parpadeando)
Mín.	La bomba está funcionando a velocidad mínima
Máx.	La bomba está funcionando a velocidad máxima

Ejemplo: El funcionamiento en curva máxima puede utilizarse, por ejemplo, en relación con la purga de la bomba durante la instalación.

Ejemplo: El funcionamiento en curva mín. puede utilizarse, por ejemplo, en periodos con una necesidad de caudal muy pequeña.

8. Modos de control

El modo de control se establece en el panel de control en el menú "INSTALACIÓN", pantalla 3.1. Véase la sección *10.8.1 Modo de control (3.1).*

Hay dos modos de control básicos:

- Funcionamiento no controlado (bucle abierto).
- Funcionamiento controlado (bucle cerrado) con un sensor conectado.

Véanse las secciones 8.1 Funcionamiento no controlado (bucle abierto) y 8.2 Funcionamiento controlado (bucle cerrado).

8.1 Funcionamiento no controlado (bucle abierto)

Ejemplo: El funcionamiento en curva constante puede utilizarse, por ejemplo, para bombas que no tengan ningún sensor conectado.

Ejemplo: Típicamente utilizado con un sistema de control global como el MPC u otro controlador externo.

8.2 Funcionamiento controlado (bucle cerrado)

Español (MX)

Fig. 46 Resumen de los menús

Estructura de los menús

El CUE tiene una guía de puesta en marcha, que se inicia en el primer arranque. Después de la guía de puesta en marcha, el CUE tiene una estructura de menús dividida en cuatro menús principales:

- 1. "GENERAL" da acceso a la guía de puesta en marcha para el ajuste general del CUE.
- "FUNCIONAMIENTO" permite regular el punto de ajuste, seleccionar el modo de funcionamiento y resetear alarmas. También es posible ver las últimas cinco advertencias y alarmas.
- 3. "ESTADO" muestra el estado del CUE y de la bomba. No se pueden cambiar o ajustar los valores.
- "INSTALACIÓN" da acceso a todos los parámetros. Aquí puede realizarse la configuración detallada del CUE.

Español (MX)

10. Ajustes mediante el panel de control

10.1 Panel de control

Advertencia

El botón on/off del panel de control no desconecta el CUE de la tensión de red y por lo tanto no debe utilizarse como interruptor de seguridad.

El botón on/off tiene la prioridad más alta. En estado "off", el funcionamiento de la bomba no es posible.

El panel de control se utiliza para el ajuste local del CUE. Las funciones disponibles dependen de la familia a la que pertenece la bomba conectada al CUE.

Fig. 47 Panel de control del CUE

Botones de edición

Botón	Función
On/ Off	Prepara la bomba para su funcionamiento/arranca y detiene la bomba.
OK	Guarda los valores modificados, reinicia las alarmas y expande el campo de valor.
•	Cambia los valores en el campo de valores.

Botones de navegación

Botón	Función
< >	Permiten navegar entre un menú y otro. Cuando se cambia de menú, la pantalla mostrada siempre será la parte superior de la pantalla del nuevo menú.
	Permite navegar hacia arriba y hacia abajo dentro

Los botones de edición del panel de control pueden ajustarse a

- estos valores:
- Activo •
- No activo.

Si se configuran como No activo (bloqueados), los botones de edición no funcionarán. Sólo es posible navegar por los menús y leer valores.

Active o desactive los botones pulsando las flechas de arriba y abajo simultáneamente durante 3 segundos.

Ajuste del contraste de la pantalla

de un menú

Pulse [OK] y [+] para una pantalla más oscura.

Pulse [OK] y [-] para una pantalla más luminosa.

Indicadores luminosos

El estado de funcionamiento de la bomba se indica mediante los indicadores luminosos en la parte frontal del panel de control de la bomba. Véase la fig. 47.

La tabla muestra la función de los indicadores luminosos.

Indicador Iuminoso	Función
	La bomba está en funcionamiento o se ha dete- nido por medio de una función de parada.
On (verde)	Si está parpadeando, la bomba ha sido parada por el usuario (menú del CUE), arranque/parada externa o bus.
Off (naranja)	La bomba ha sido detenida con el botón On/Off.
Alarma (rojo)	Indica una alarma o advertencia.

Pantallas, términos generales

TM03 8719 2507

Las figuras 48 y 49 muestran los términos generales de la pantalla

Fig. 48 Ejemplo de pantalla en la guía de puesta en marcha

Número de la pantalla, nombre de menú

Fig. 49 Ejemplo de pantalla en el menú de usuario

10.2 Restablecimiento de los ajustes de fábrica

Realice los siguientes pasos para restablecer los ajustes de fábrica:

1. Desconecte el suministro eléctrico al CUE.

2. Pulse [On/Off], [OK] y [+] al conectar el suministro eléctrico.

El CUE restablecerá los valores de fábrica a todos los parámetros. La pantalla se encenderá cuando el restablecimiento se haya completado.

10.3 Ajustes CUE

La guía de puesta en marcha incluye todos los parámetros que se pueden ajustar en el panel de control del CUE.

El documento incluye una tabla especial para el ajuste de una herramienta para PC adicional y una página donde deben introducirse los detalles de programación de una herramienta para PC especial.

Si quiere descargar el documento, por favor contacte con su compañía local Grundfos.

10.4 Guía de puesta en marcha

Nota

Compruebe que el equipo conectado está listo para el arranque y que el CUE se ha conectado a la suministro eléctrico.

Hay que tener a mano los datos de la placa de características para motor, bomba y CUE.

Utilice la guía de puesta en marcha para el ajuste general del CUE, incluido el ajuste del sentido de giro correcto.

La guía de puesta en marcha se inicia la primera vez que el CUE se conecta al suministro eléctrico. Se puede reiniciar en el menú "GENERAL". Hay que tener en cuenta que en este caso se borrarán todos los ajustes anteriores.

Las listas con viñetas muestran los posibles ajustes. En negrita se muestran los ajustes de fábrica.

10.4.1 Pantalla de bienvenida

Pulse [OK]. Ahora será conducido por la guía de puesta en marcha.

10.4.2 Idioma (1/16)

ldioma		
	Español	
<	1/16)

Seleccione el idioma que desea utilizar en la pantalla:

Húngaro

Japonés

· Coreano.

Checo

Chino

- Inglés británico Griego
- Inglés EE.UU.
 Holandés
- Alemán
 Francés
 Einés
- FrancésItaliano
 - Danés
- Español
 Polaco
- Portugués
 Ruso

10.4.3 Unidades (2/16)

Seleccione las unidades que desea utilizar en la pantalla:

- SI: m, kW, bar...
- US: ft, HP, psi...

10.4.4 Familia de la bomba (3/16)

Seleccione la familia de la bomba de acuerdo con la placa de características de la bomba:

- CR, CRI, CRN, CRT
- SP. SP-G. SP-NE
- ...

Seleccione "Otros" si la familia de bombas no se encuentra en la lista.

10.4.5 Potencia nominal del motor (4/16)

Establezca la potencia nominal del motor, P2, de acuerdo con la placa de características del motor:

0.55 - 90 kW.

El intervalo de ajuste está relacionado con el tamaño y el ajuste de fábrica corresponde a la potencia nominal del CUE.

10.4.6 Tensión de alimentación (5/16)

Seleccione la tensión de alimentación de acuerdo con la tensión de alimentación nominal del lugar de instalación.

Unidad	Unidad	Unidad
1 x 200-240 V:*	3 x 200-240 V:	3 x 380-500 V:
• 1 x 200 V	• 3 x 200 V	• 3 x 380 V
• 1 x 208 V	• 3 x 208 V	• 3 x 400 V
• 1 x 220 V	• 3 x 220 V	• 3 x 415 V
• 1 x 230 V	• 3 x 230 V	• 3 x 440 V
• 1 x 240 V.	• 3 x 240 V.	• 3 x 460 V
		• 3 x 500 V.
Unidad	Unidad	
3 x 525-600 V:	3 x 525-690 V:	
• 3 x 575 V.	• 3 x 575 V	
	• 3 x 690 V.	

* Entrada monofásica - salida trifásica.

El intervalo de ajuste depende del tipo de CUE y el ajuste de fábrica corresponde a la tensión de alimentación nominal del CUE.

10.4.7 Intensidad máx. del motor (6/16)

Ajuste la intensidad máxima del motor de acuerdo con la placa de características del motor:

• 0-999 A.

El intervalo de ajuste depende del tipo de CUE y el ajuste de fábrica corresponde a una intensidad del motor típica a la potencia de motor seleccionada.

La intensidad máx. se limita al valor en la placa de características de CUE, incluso si se establece en un valor más alto durante la configuración.

10.4.8 Velocidad (7/16)

Ajuste la velocidad nominal de acuerdo con la placa de características de la bomba:

0-9999 min⁻¹.

El ajuste de fábrica depende de las selecciones anteriores. En función de la velocidad nominal ajustada, el CUE ajustará automáticamente la frecuencia del motor a 50 o 60 Hz.

10.4.9 Frecuencia (7A/16)

Esta pantalla aparece sólo si se requiere la introducción manual de la frecuencia.

Ajuste la frecuencia de acuerdo con la placa de características del motor:

• 40-200 Hz

El ajuste de fábrica depende de las selecciones anteriores.

10.4.10 Modo de control (8/16)

Modo de control

Seleccione el modo de control deseado. Véase la sección 10.8.1 Modo de control (3.1).

- Bucle abierto
- · Presión constante
- · Presión diferencial constante
- · Presión diferencial proporcional
- · Caudal constante
- · Temperatura constante
- Nivel constante
- · Otro valor constante.

Los posibles ajustes y el ajuste de fábrica dependen de la familia de la bomba.

El CUE activará una alarma si el modo de control seleccionado requiere un sensor y no se ha instalado ninguno. Para continuar el ajuste sin un sensor, seleccione "Bucle abierto" y siga los pasos. Cuando se haya conectado un sensor, configure el sensor y el modo de control en el menú "INSTALACIÓN".

10.4.11 Caudal nominal (8A/16)

Esta pantalla aparece sólo si el modo de control seleccionado es presión diferencial proporcional.

Ajuste el caudal nominal de acuerdo con la placa de características de la bomba:

1-6550 m³/h.

10.4.12 Altura nominal (8B/16)

Esta pantalla sólo aparece si el modo de control seleccionado es presión diferencial proporcional.

Ajuste la altura nominal de acuerdo con la placa de características de la bomba:

• 1-999 m.

10.4.13 Sensor conectado al terminal 54 (9/16)

Ajuste el intervalo de medida del sensor conectado con un intervalo de señal de 4-20 mA. El intervalo de medida depende del modo de control seleccionado:

Presión diferencial proporcional: Presión diferencial constante:

- 0-0.6 bar • 0-0.6 bar • 0-1 bar 0-1.6 bar • 0-1.6 bar 0-2.5 bar • 0-4 bar 0-2.5 bar • 0-4 bar 0-6 bar 0-6 bar 0-10 bar 0-10 bar · Otro. · Otro. Presión constante: Caudal constante: • 0-2.5 bar 1-5 m³/h • 0-4 bar • 2-10 m3/h • 0-6 bar • 6-30 m³/h • 0-10 bar 15-75 m³/h • 0-16 bar · Otro. • 0-25 bar
- Otro.

0110.

- Temperatura constante:
- -25 a 25 °C
- 0 a 25 °C
- 50 a 100 °C
- 0 a 150 °C
- Otro.

0-6 bar0-10 bar

Nivel constante:

0-0.1 bar

0-2.5 bar

0-1 bar

Otro.

Si el modo de control seleccionado es "Otro valor constante" o si el intervalo de medida seleccionado es "Otro", el sensor debe ajustarse de acuerdo con la siguiente sección, pantalla 9A/16.

10.4.14 Otro sensor conectado al terminal 54 (9A/16)

Sensor 1		_
4-20 mA	bar	¢
0.00	- 10.0	
<	9A/16	>

Esta pantalla sólo aparece cuando se ha seleccionado el modo de control "Otro valor constante" o el intervalo de medida "Otro" en la pantalla 9/16.

· Señal de salida del sensor:

0-20 mA

- 4-20 mA.
- Unidad de medida del sensor:
 bar, mbar, m, kPa, psi, ft, m³/h, m³/min, m³/s, l/h, l/min, l/s, gal/h, gal/m, gal/s, ft³/min, ft³/s, °C, °F, %.
- · Intervalo de medida del sensor.

El intervalo de medida depende del sensor conectado y de la unidad de medida seleccionada.

10.4.15 Cebado y purga (10/16)

Consulte las instrucciones de instalación y funcionamiento de la bomba.

El ajuste general del CUE ahora está terminado y la guía de puesta en marcha está lista para ajustar el sentido de giro:

Pulse [OK] para continuar con el ajuste automático o manual del sentido de giro.

10.4.16 Ajuste automático del sentido de giro (11/16)

Nota

Advertencia Durante la prueba, la bomb

Durante la prueba, la bomba funcionará durante unos instantes. ¡Compruebe que no hay personal o equipos en peligro!

Antes de ajustar el sentido de giro, el CUE hará una adaptación automática del motor de ciertos tipos de bombas. Esto llevará unos minutos. La adaptación se realiza durante una parada.

El CUE automáticamente prueba y ajusta el sentido de giro correcto sin cambiar las conexiones de cable.

Esta prueba no es adecuada para ciertos tipos de bombas y en ciertos casos no podrá determinar con seguridad el sentido de giro correcto. En estos casos, el CUE cambia a ajuste manual, donde el sentido de giro se determina en función de las observaciones del instalador.

La bomba arranca después de 10 segundos.

Es posible interrumpir la prueba y volver a la pantalla anterior.

La bomba funciona con ambos sentidos de giro y se para automáticamente.

Es posible interrumpir la prueba, parar la bomba e ir al ajuste manual del sentido de giro.

No se ha podido determinar automáticamente si el

sentido de giro es correcto. Pulsar OK para ir a prueba

El ajuste automático del sen-

manual del sentido de giro.

tido de giro ha fallado. • Pulse [OK] para ir al ajuste

13/16

manual.

Ha quedado ajustado el sentido de giro correcto.

 Pulse [OK] para establecer el punto de ajuste. Véase la sección 10.4.17 Punto de ajuste (15/16).

10.4.17 Punto de ajuste (15/16)

Fije el punto de ajuste de acuerdo con el modo de control y el sensor seleccionados.

10.4.18 Los ajustes generales se han completado (16/16)

Pulse [OK] para dejar la bomba lista para funcionar o arranque la bomba en el modo de funcionamiento "Normal". Entonces aparecerá la pantalla 1.1 del menú "FUNCIONAMIENTO".

10.4.19 Ajuste manual cuando el sentido de giro es visible (13/16)

Debe ser posible observar el eje o ventilador del motor.

Prueba de sentido de giro manual. Observar el sentido de giro mientras...

13/16

13/16

Pantallas de información.

Pulse [OK] para continuar.

La bomba arrancará en 10 segundos. Para cancelar, pulsar cualquier botón.		
0%	100 %	
	3/16	

La bomba arranca después de 10 segundos.

Es posible interrumpir la prueba y volver a la pantalla anterior.

Retroalimentación		
	0.00 bar	
Corr	iente de motor	
	0.00 A	
	13/16	
	10/10	

Se mostrará la presión durante la prueba si hay un sensor de presión conectado. Durante la prueba siempre se muestra la intensidad del motor.

Indique si el sentido de giro es correcto.

• Sí

Ha quedado ajustado el sentido de giro correcto.

 Pulse [OK] para establecer el punto de ajuste. Véase la sección 10.4.17 Punto de ajuste (15/16). No

El sentido de giro no es correcto.

 Pulse [OK] para repetir la prueba con el sentido de giro contrario. 10.4.20 Ajuste manual cuando el sentido de giro no es visible (13/16)

Debe ser posible observar la altura o caudal.

...qué sentido da la altura/caudal más alto. Pulsar OK para continuar.

Pantallas de información.

Pulse [OK] para continuar.

13/16

La bomba arranca después de 10 segundos.

Es posible interrumpir la prueba y volver a la pantalla anterior.

Se mostrará la presión durante la prueba si hay un sensor de presión conectado. Durante la prueba siempre se muestra la intensidad del motor.

La primera prueba está terminada.

 Anote la presión y/o caudal y pulse OK para continuar la prueba manual con el sentido de giro contrario.

La bomba arranca después de 10 segundos.

Es posible interrumpir la prueba y volver a la pantalla anterior.

Retroalimentación		
	0.00 bar	
Corriente de motor		
	0.00 A	
	13/16	

Se mostrará la presión durante la prueba si hay un sensor de presión conectado. Durante la prueba siempre se muestra la intensidad del motor.

La segunda prueba está terminada.

Anote la presión y/o caudal e indique qué prueba dio el rendimiento de bomba más alto:

- Primera prueba
- Segunda prueba
- Realizar una nueva prueba.

La prueba se ha completado y ahora está ajustado el sentido de giro correcto. Pulsar OK para continuar. K 14/16

Ha quedado ajustado el sentido de giro correcto.

 Pulse [OK] para establecer el punto de ajuste. Véase la sección 10.4.17 Punto de ajuste (15/16).

10.5 GENERAL

Si se inicia la guía de puesta en marcha, se borrarán todos los ajustes anteriores!

iLa gu Mota La rep

¡La guía de puesta en marcha debe realizarse en un motor frío!

La repetición de la guía de puesta en marcha puede producir el calentamiento del motor.

El menú permite volver a la guía de puesta en marcha, que normalmente sólo se utiliza durante el primer arranque del CUE.

10.5.1 Volver a la guía de puesta en marcha (0.1)

Indique su elección:

- Sí
- No.

Si se selecciona "Sí", se borrarán todos los ajustes y deberá completarse toda la guía de puesta en marcha. El CUE regresará a la guía de puesta en marcha y se podrán hacer nuevos ajustes. Otros ajustes y los ajustes disponibles en la sección *10. Ajustes mediante el panel de control* no necesitarán resetearse.

Restablecimiento de los ajustes de fábrica

Pulse [On/Off], [OK] y [+] para un restablecimiento completo de los ajustes de fábrica.

Español (MX)

10.5.2 Cambio de código de tipo (0.2)

Esta pantalla es sólo para uso del servicio técnico.

10.5.3 Copia de ajustes

Es posible copiar los valores de ajuste de un CUE y volver a utilizarlos en otro.

Opciones:

- Sin copia
- al CUE (copia los ajustes del CUE).
- al panel de control (copia los ajustes a otro CUE)

Las unidades CUE deben tener la misma versión de firmware. Véase la sección 10.7.16 Versión de firmware (2.16).

10.6 FUNCIONAMIENTO

10.6.1 Punto de ajuste (1.1)

- Punto de ajuste fijado
- Punto de ajuste njado
 Punto de ajuste actual
- Valor actual

Fije el punto de ajuste en unidades del sensor de retroalimentación.

En el modo de control "Bucle abierto", el punto de ajuste se fija en % del rendimiento máximo. El intervalo de ajuste se encontrará entre las curvas mín y máx. Véase la fig. 56.

En el resto de los modos de control, salvo la presión diferencial proporcional, el intervalo de ajustes es equivalente al intervalo de medida del sensor. Véase la fig. 57.

En el modo de control de "Presión diferencial proporcional", el intervalo de ajuste es igual al 25-90 % de la altura máxima. Véase la fig. 58.

Si la bomba está conectada a una señal externa de punto de ajuste, el valor mostrado en esta pantalla será el valor máximo de la señal externa de punto de ajuste. Véase la sección *13.2 Punto de ajuste externo*.

10.6.2 Modo de funcionamiento (1.2)

Ajuste uno de los siguientes modos de funcionamiento:

- Normal (trabajo)
- Parada
- Mín.
- Máx

Pueden ajustarse los modos de funcionamiento sin cambiar el punto de ajuste.

10.6.3 Indicaciones de fallo

Los fallos pueden producir dos tipos de indicación: Alarma o advertencia.

Una alarma activará una indicación de alarma en CUE y hará que la bomba cambie el modo de funcionamiento, normalmente a parada. Sin embargo, para algunos fallos que activan una alarma, la bomba se ajusta para seguir funcionando incluso si hay una alarma.

Una advertencia activará una indicación de aviso en CUE, pero la bomba no cambiará el modo de funcionamiento ni de control.

Alarma (1.3)

En caso de alarma, la causa aparecerá en la pantalla. Véase la sección *15.1 Lista de advertencias y alarmas*.

Advertencia (1.4)

En caso de advertencia, la causa aparecerá en la pantalla. Véase la sección 15.1 Lista de advertencias y alarmas.

10.6.4 Registro de fallos

Para ambos tipos de fallos, alarma y advertencia, el CUE tiene una función de registro.

Registro de alarmas (1.5 - 1.9)

En caso de alarma, aparecerán las cinco últimas indicaciones de alarma en el registro de alarma. "Registro de alarma 1" muestra la última avería, el "Registro de alarma 2" muestra la penúltima, etc.

La pantalla muestra tres datos:

- la indicación de alarma
- · el código de alarma
- el número de minutos que la bomba ha estado conectada al suministro eléctrico después de que haya tenido lugar la alarma.

Registro de advertencias (1.10 - 1.14)

En caso de advertencia, las cinco últimas indicaciones de advertencia aparecerán en el registro de advertencias. "Registro advertencia 1" muestra la última avería, "Registro advertencia 2" muestra la penúltima, etc.

La pantalla muestra tres datos:

- · la indicación de advertencia
- · el código de advertencia
- el número de minutos que la bomba ha estado conectada al suministro eléctrico después de que haya tenido lugar la advertencia.

10.7 ESTADO

Las pantallas que aparecen en este menú son sólo pantallas de estado. No se pueden cambiar o ajustar los valores.

La tolerancia de los valores visualizados está indicada debajo de cada pantalla. Las tolerancias están indicadas como referencia en % de los valores máximos de los parámetros.

10.7.1 Punto de ajuste actual (2.1)

Esta pantalla muestra el punto de ajuste actual y el punto de ajuste externo.

El punto de ajuste actual se muestra en las unidades del sensor de retroalimentación.

El punto de ajuste externo se muestra en un intervalo de 0 a 100 %. Si la influencia del punto de ajuste externo está desactivada, se muestra el valor 100 %. Véase la sección *13.2 Punto de ajuste externo*.

10.7.2 Modo de funcionamiento (2.2)

Esta pantalla muestra el modo de funcionamiento actual (Normal, Parada, Mín. o Máx.). Además, muestra donde se seleccionó este modo de funcionamiento (menú CUE, Bus, Externo o botón On/Off).

10.7.3 Valor real (2.3)

Esta pantalla muestra el valor actual controlado.

Si ningún sensor está conectado al CUE, aparece "-" en la pantalla.

10.7.4 Valor medido, sensor 1 (2.4)

Esta pantalla muestra el valor actual medido por el sensor 1 conectado al terminal 54.

Si ningún sensor está conectado al CUE, aparece "-" en la pantalla.

10.7.5 Valor medido, sensor 2 (2.5)

Esta pantalla sólo se muestra si se ha instalado un módulo de entrada de sensor MCB 114.

La pantalla muestra el valor actual medido por el sensor 2 conectado a un MCB 114.

Si ningún sensor está conectado al CUE, aparece "-" en la pantalla.

10.7.6 Velocidad (2.6)

Tolerancia: ± 5 %

Esta pantalla muestra la velocidad actual de la bomba.

10.7.7 Potencia de entrada e intensidad del motor (2.7)

Tolerancia: ± 10 %

Esta pantalla muestra la potencia de entrada actual de la bomba en W o kW y la intensidad actual del motor en amperios [A].

10.7.8 Horas de funcionamiento y consumo de energía (2.8)

Tolerancia: ± 2 %

Esta pantalla muestra el número de horas de funcionamiento y el consumo de energía. El valor de las horas de funcionamiento es un valor acumulado y no se puede restablecer. El valor del consumo de energía es un valor acumulado calculado desde la fabricación de la unidad y no se puede resetear.

10.7.9 Estado de lubricación de los cojinetes del motor (2.9)

Esta pantalla muestra cuántas veces ha dado el usuario la lubricación indicada y cuándo sustituir los cojinetes del motor.

Cuando se hayan vuelto a lubricar los cojinetes del motor, confirme esta acción en el menú "INSTALACIÓN". Véase la sección 10.8.18 Confirmación de la lubricación/sustitución de los cojinetes del motor (3.20). Cuando se confirme la lubricación, la cifra de la pantalla de arriba aumentará en uno.

10.7.10 Tiempo hasta nueva lubricación de los cojinetes del motor (2.10)

Esta pantalla sólo se muestra si no se muestra la pantalla 2.11. La pantalla muestra cuándo volver a lubricar los cojinetes del motor. El controlador vigila el patrón de funcionamiento de la bomba y calcula el periodo entre las lubricaciones de los cojinetes. Si cambia el patrón de funcionamiento, el tiempo calculado hasta la lubricación también puede cambiar.

El tiempo estimado hasta la nueva lubricación tiene en cuenta si la bomba ha estado funcionando con velocidad reducida.

Véase la sección 10.8.18 Confirmación de la lubricación/sustitución de los cojinetes del motor (3.20).

10.7.11 Tiempo hasta la sustitución de los cojinetes del motor (2.11)

Esta pantalla sólo se muestra si no se muestra la pantalla 2.10.

La pantalla muestra cuándo sustituir los cojinetes de motor. El controlador vigila el patrón de funcionamiento de la bomba y calcula el periodo entre las sustituciones de los cojinetes.

El tiempo estimado hasta la sustitución de los cojinetes del motor tiene en cuenta si la bomba ha estado funcionando con velocidad reducida.

Véase la sección 10.8.18 Confirmación de la lubricación/sustitución de los cojinetes del motor (3.20).

10.7.12 Sensor de temperatura 1 (2.12)

Esta pantalla sólo se muestra si se ha instalado un módulo de entrada de sensor MCB 114.

La pantalla muestra el punto de medición y el valor actual medido por el sensor de temperatura Pt100/Pt1000 1 conectado al MCB 114. El punto de medición se selecciona en la pantalla 3.21. Si ningún sensor está conectado al CUE, aparece "-" en la pantalla.

10.7.13 Sensor de temperatura 2 (2.13)

Esta pantalla sólo se muestra si se ha instalado un módulo de entrada de sensor MCB 114.

La pantalla muestra el punto de medición y el valor actual medido por el sensor de temperatura Pt100/Pt1000 2 conectado al MCB 114. El punto de medición se selecciona en la pantalla 3.22. Si ningún sensor está conectado al CUE, aparece "-" en la pantalla.

10.7.14 Caudal (2.14)

Esta pantalla sólo se muestra si se ha configurado un caudalímetro.

La pantalla muestra el valor actual medido por un caudalímetro conectado a la entrada de impulsos digital (terminal 33) o a la entrada analógica (terminal 54).

10.7.15 Caudal acumulado (2.15)

Esta pantalla sólo se muestra si se ha configurado un caudalímetro.

La pantalla muestra el valor del caudal acumulado y la energía específica para transportar el líquido bombeado.

La medida del caudal puede conectarse a la entrada de impulsos digital (terminal 33) o a la entrada analógica (terminal 54).

10.7.16 Versión de firmware (2.16)

Esta pantalla muestra la versión del software.

10.7.17 Archivo de configuración (2.17)

Esta pantalla muestra el archivo de configuración.

10.8 INSTALACIÓN

Seleccione uno de los modos de control siguientes:

- Bucle abierto
- Presión constante
- · Presión diferencial constante
- · Presión diferencial proporcional
- Caudal constante
- Temperatura constante
- · Nivel constante
- · Otro valor constante.

 Si la bomba está conectada a un bus, no se puede

 Nota
 seleccionar el modo de control a través del CUE.

 Véase la sección 13.3 Señal GENIbus.

10.8.2 Controlador (3.2)

El CUE tiene un ajuste de fábrica de ganancia (K_p) y tiempo integral (T_i). Sin embargo, si el ajuste de fábrica no es el óptimo, en esta pantalla pueden cambiarse la ganancia y el tiempo integral.

- La ganancia (K_p) puede ajustarse dentro del intervalo de 0.1 a 20.
- El tiempo integral (Ti) puede ajustarse dentro del intervalo de 0.1 a 3600 s. Si se selecciona 3.600 s, el controlador funcionará como un controlador P.
- También se puede ajustar el controlador a control inverso, lo que quiere decir que si se aumenta el punto de ajuste, se reduce la velocidad. En el caso del control inverso, la ganancia (Kp) debe establecerse dentro del intervalo -0.1 a -20.

La siguiente tabla muestra los ajustes propuestos del controlador:

	κ _p		
Sistema/aplicación	Sistema de cale- facción ¹⁾	Sistema de refrige- ración ²⁾	T _i
	0	2	0.5
	SP, SP-G, SP-NE: 0.5		0.5
CUE	0	2	0.5
p	SP, SP-G,	SP-NE: 0.5	0.5

	К _р			
Sistema/aplicación	Sistema de cale- facción ¹⁾	Sistema de refrige- ración ²⁾	Тi	
	0.2		0.5	
	- 2.5		100	
	0.5	- 0.5	10 + 5L ₂	
	0.5		10 + 5L ₂	
	0.5 - 0.5		30 + 5L ₂ *	
	0.5		0.5*	
	0.5		L ₁ < 5 m: 0.5* L ₁ > 5 m: 3* L ₁ > 10 m: 5*	

T_i = 100 segundos (ajuste de fábrica).

- Los sistemas de calefacción son sistemas donde un incremento del rendimiento de la bomba causará una subida de temperatura en el sensor.
- ²⁾ Los sistemas de refrigeración son sistemas donde un incremento del rendimiento de la bomba causará una bajada de temperatura en el sensor.
- L₁ = Distancia en [m] entre bomba y sensor.
- L₂ = Distancia en [m] entre intercambiador de calor y sensor.

Cómo ajustar el controlador PI

Para la mayoría de las aplicaciones, los ajustes de fábrica de las constantes K_p y T_i del controlador garantizan un funcionamiento óptimo de la bomba. No obstante, en algunas aplicaciones puede necesitarse un ajuste del controlador.

Proceda como se indica a continuación:

 Aumente la ganancia (K_p) hasta que el motor esté inestable. La inestabilidad puede detectarse observando si el valor medido comienza a fluctuar. Además, la inestabilidad es audible, ya que el motor empieza a tener un funcionamiento irregular.

Dado que algunos sistemas, tales como los controles de temperatura, son de reacción lenta, puede ser difícil observar que el motor está inestable.

- Ajuste la ganancia (K_p) a la mitad del valor que hizo que el motor fuera inestable. Éste es el ajuste correcto de la ganancia.
- Disminuya el tiempo integral (T_i) hasta que el motor se vuelva inestable.
- Ajuste el tiempo integral (T_i) al doble del valor que hizo que el motor se volviera inestable. Éste es el ajuste correcto del tiempo integral.

Reglas generales:

- Si el controlador reacciona con demasiada lentitud, aumente $\ensuremath{\mathsf{K}_{\mathsf{p}}}\xspace.$
- Si el controlador presenta un funcionamiento irregular o inestable, suavice el sistema reduciendo K_p o aumentando T_i.

10.8.3 Punto de ajuste externo (3.3)

La entrada para la señal externa del punto de ajuste (terminal 53) puede ajustarse a los siguientes tipos:

- Activa
- No activa.

Si se selecciona "Activa", el punto de ajuste actual recibe la influencia de la señal conectada a la entrada de punto de ajuste externo. Véase la sección 13.2 Punto de ajuste externo.

10.8.4 Relés de señal 1 y 2 (3.4 y 3.5)

El CUE tiene dos relés de señal. En la siguiente pantalla, seleccione en qué situaciones de funcionamiento debería activarse el relé de señal.

- Preparada
- Alarma
- Funcionamiento
- Bomba en funcionamiento
- No activa
- Advertencia
- Lubricar.

- Preparada
- Alarma
- Funcionamiento
- Bomba en funcionamiento
- No activa
- Advertencia
- Lubricar.

Nota Para conocer la diferencia entre alarma y advertencia, consulte la sección 10.6.3 Indicaciones de fallo.

10.8.5 Botones del CUE (3.6)

Los botones de edición (+, -, On/Off, OK) del panel de control pueden ajustarse a estos valores:

- Activo
- No activo.

Si se configuran como "No activo" (bloqueados), los botones de edición no funcionarán. Ajuste los botones a "No activo" si la bomba debe ser controlada mediante un sistema de control externo.

Active los botones pulsando las flechas de arriba y abajo simultáneamente durante 3 segundos.

10.8.6 Protocolo (3.7)

Esta pantalla muestra la selección de protocolo para el puerto RS-485 del CUE. El protocolo puede ajustarse a estos valores:

- GENIbus
- FC
- FC MC.

Si se selecciona "GENIbus", la comunicación se ajusta de acuerdo con el estándar GENIbus de Grundfos. FC y FC MC son sólo para fines de mantenimiento.

10.8.7 Número de bomba (3.8)

Esta pantalla muestra el número de GENIbus. Se puede asignar un número entre 1 y 199 a la bomba. En el caso de comunicación mediante bus, hay que asignar un número a cada bomba. El ajuste de fábrica es "-".

10.8.8 Entradas digitales 2, 3 y 4 (3.9 a 3.11)

Las entradas digitales del CUE (terminal 19, 32 y 33) pueden ajustarse individualmente para diferentes funciones.

IФ

Seleccione una de las siguientes funciones:

Mín. (curva mín.)

Ġ

- Máx. (curva máx.)
- · Fallo ext. (fallo externo)

3.11 INSTALACIÓN

- Interruptor de caudal
- Reseteo alarma
- · Funcionamiento en seco (de sensor externo)
- Caudal acumulado (caudal de impulso, sólo terminal 33)
- No activos.

La función seleccionada se activa cuando la entrada digital está activada (contacto cerrado). Véase también la sección 13.1 Entradas digitales.

Mín.

Al activar la entrada, la bomba funciona según la curva mín.

Máx

Al activar la entrada, la bomba funciona según la curva máx.

Fallo ext.

Un contador se pone en marcha al activar la entrada. Si la entrada está activada durante más de 5 seg., se indicará un fallo externo. Si la entrada se desactiva, el estado de fallo desaparecerá y sólo se podrá volver a arrancar la bomba manualmente reseteando la indicación de fallo.

Interruptor de caudal

Cuando esta función está seleccionada, la bomba parará cuando un interruptor de caudal conectado detecte un caudal bajo.

Sólo es posible utilizar esta función si la bomba está conectada a un sensor de presión o a un sensor de nivel y la función de parada está activada. Véanse las seciones 10.8.11 Presión constante con función de parada (3.14) y 10.8.12 Nivel constante con función de parada (3.14).

Reseteo alarma

Cuando la entrada se ha activado, la alarma se resetea si la causa de la alarma ya no existe.

Funcionamiento en seco

Al seleccionar esta función, es posible detectar la ausencia de presión de entrada o la escasez de agua. Para ello será preciso el uso de un accesorio, como:

- un disyuntor de funcionamiento en seco Liqtec[®] de Grundfos
- un presostato instalado en el lado de aspiración de una bomba
- un interruptor de flotador instalado en el lado de aspiración de una bomba.

La bomba se detendrá si se detecta una ausencia de presión de entrada o escasez de agua (funcionamiento en seco). La bomba no podrá volver a ponerse en marcha mientras la entrada permanezca activada.

Los rearranques pueden retrasarse hasta 30 minutos, dependiendo de la familia de la bomba.

Caudal acumulado

Cuando esta función está ajustada para la entrada digital 4 y hay un sensor de impulsos conectado al terminal 33, puede medirse el caudal acumulado.

10.8.9 Entrada digital de caudal (3.12)

Esta pantalla sólo aparece si se ha configurado un caudalímetro en la pantalla 3.11.

La pantalla se utiliza para ajustar el volumen para cada impulso para la función "Caudal acumulado" con un sensor de impulsos conectado al terminal 33.

Intervalo de ajuste:

0-1000 litros/impulso.

El volumen puede ajustarse en la unidad seleccionada en la guía de puesta en marcha.

10.8.10 Salida analógica (3.13)

La salida analógica puede establecerse para mostrar una de las siguientes opciones:

- Retroalimentación
- Entrada de potencia
- Velocidad
- Frecuencia de salida
- Sensor externo
- Se ha sobrepasado el límite 1
- Se ha sobrepasado el límite 2
- · No activos.

10.8.11 Presión constante con función de parada (3.14)

Ajustes

La función de parada puede ajustarse a estos valores:

- Activa
- No activa.

La banda on/off puede ajustarse a los siguientes valores:

- ΔH está ajustado de fábrica al 10 % del punto de ajuste real.
- ΔH puede ajustarse entre el 5 % y el 30 % del punto de ajuste propiamente dicho.

Descripción

La función de parada se utiliza para cambiar entre funcionamiento on/off a bajo caudal y funcionamiento continuo a alto caudal.

Fig. 50 Presión constante con función de parada. Diferencia entre las presiones de arranque y de parada (ΔH)

El caudal bajo se puede detectar de dos maneras diferentes:

- Una "función de detección de caudal bajo" integrada que funciona si la entrada digital no está configurada para interruptor de caudal.
- 2. Un interruptor de caudal conectado a la entrada digital.

1. Función de detección de caudal bajo

La bomba comprobará el caudal periódicamente, reduciendo la velocidad durante unos instantes. Si no hay cambio de presión o éste es muy pequeño, quiere decir que hay un caudal bajo.

La velocidad aumentará hasta que se alcance la presión de parada (punto de ajuste actual + 0.5 x Δ H) y la bomba parará después de unos segundos. La bomba rearrancará como muy tarde cuando la presión haya bajado a la presión de arranque (punto de ajuste actual - 0.5 x Δ H).

Si el caudal en el periodo de desconexión es superior al límite de caudal bajo, la bomba volverá a arrancar antes de que la presión haya bajado a la presión de arranque.

Cuando vuelva a arrancar, la bomba reaccionará de la siguiente manera:

- 1. Si el caudal es superior al límite de caudal bajo, la bomba volverá a funcionamiento continuo a presión constante.
- Si el caudal es inferior al límite de caudal bajo, la bomba seguirá en funcionamiento de arranque/parada. Seguirá en funcionamiento de arranque/parada hasta que el caudal sea superior al límite de caudal bajo. Cuando el caudal sea superior al límite de caudal bajo, la bomba volverá a funcionamiento continuo.

2. Detección de caudal bajo con interruptor de caudal

Cuando la entrada digital esté activada porque hay caudal bajo, la velocidad aumentará hasta llegar a la presión de parada (punto de ajuste actual + $0.5 \times \Delta H$), y la bomba parará. La bomba arrancará de nuevo cuando la presión haya bajado a la presión de arranque. Si sigue sin haber caudal, la bomba alcanzará la presión de parada y se detendrá. Si hay caudal, la bomba seguirá funcionando de acuerdo con el punto de ajuste.

Condiciones de funcionamiento para la función de parada

Sólo es posible utilizar la función de parada si el sistema incluye un sensor de presión, una válvula de retención y un tanque de diafragma.

La válvula de retención siempre debe instalarse delante del sensor de presión. Véanse las fig. 51 y 52.

Precaución

Si se utiliza un interruptor de caudal para detectar caudal bajo, el interruptor debe instalarse en el lateral del sistema después del tanque de diafragma.

Fig. 51 Posición de la válvula de retención y el sensor de presión en un sistema regido por la altura de aspiración

Fig. 52 Posición de la válvula de retención y el sensor de presión en un sistema con presión de entrada positiva

Tanque de diafragma

La función de parada requiere un tanque de diafragma de un determinado tamaño mínimo. El tanque debe instalarse lo más cerca posible después de la bomba y la presión de precarga debe ser 0.7 x punto de ajuste actual.

Tamaño recomendado del tanque de diafragma:

Caudal nominal de la bomba [m ³ /h]	Tamaño típico del tanque de diafragma [litros]
0-6	8
7-24	18
25-40	50
41-70	120
71-100	180

Si se instala en el sistema un tanque de diafragma del tamaño arriba indicado, el ajuste de fábrica de ΔH es el correcto.

Si el tanque instalado es demasiado pequeño, la bomba arrancará y parará con demasiada frecuencia. Esto puede corregirse incrementando ΔH .

Español (MX)

10.8.12 Nivel constante con función de parada (3.14)

Ajustes

La función de parada puede ajustarse a estos valores:

- Activa
- No activa.

La banda on/off puede ajustarse a los siguientes valores:

- ΔH está ajustado de fábrica al 10 % del punto de ajuste actual.
- ΔH puede ajustarse entre el 5 % y el 30 % del punto de ajuste actual.

Una función de detección de caudal bajo integrada medirá y almacenará automáticamente el consumo de energía a aprox. el 50 % y el 85 % de la velocidad nominal.

Si se selecciona "Activa", proceda de la siguiente manera:

- 1. Cierre la válvula de aislamiento para crear un estado sin caudal.
- 2. Pulse [OK] para iniciar el ajuste automático.

Descripción

La función de parada se utiliza para cambiar entre funcionamiento on/off a bajo caudal y funcionamiento continuo a alto caudal.

Fig. 53 Nivel constante con función de parada. Diferencia entre niveles de arranque y parada (ΔH)

El caudal bajo se puede detectar de dos maneras diferentes:

- 1. Con la función de detección de bajo caudal integrada.
- 2. Con un interruptor de caudal conectado a una entrada digital.

1. Función de detección de caudal bajo

La detección de bajo caudal integrada se basa en la medición de la velocidad y la potencia.

Cuando se detecta caudal bajo, la bomba se detiene. Cuando el nivel haya alcanzado el nivel de arranque, la bomba arrancará de nuevo. Si aún no hay caudal, la bomba llegará al nivel de parada y se detendrá. Si hay caudal, la bomba seguirá funcionando de acuerdo con el punto de ajuste.

2. Detección de caudal bajo con interruptor de caudal

Cuando la entrada digital esté activada porque hay caudal bajo, la velocidad aumentará hasta llegar al nivel de parada (punto de ajuste actual + $0.5 \times \Delta H$) y la bomba se detendrá. Cuando el nivel haya alcanzado el nivel de arranque, la bomba arrancará de nuevo. Si aún no hay caudal, la bomba llegará al nivel de parada y se detendrá. Si hay caudal, la bomba seguirá funcionando de acuerdo con el punto de ajuste.

Condiciones de funcionamiento para la función de parada

Sólo es posible utilizar la función de parada de nivel constante si el sistema incluye un sensor de nivel y todas las válvulas pueden cerrarse.

10.8.13 Sensor 1 (3.15)

Ajuste del sensor 1 conectado al terminal 54. Éste es el sensor de retroalimentación.

Seleccione un valor entre los siguientes:

- Señal de salida del sensor:
 - 0-20 mA
 - 4-20 mA.
- Unidad del sensor de medida: bar, mbar, m, kPa, psi, ft, m³/h, m³/s, I/s, gpm, °C, °F, %.
- Intervalo de medida del sensor.

10.8.14 Sensor 2 (3.16)

Ajuste del sensor 2 conectado a un módulo de entrada de sensor MCB 114.

Seleccione un valor entre los siguientes:

- Señal de salida del sensor: 0-20 mA
 - 4-20 mA
- Unidad del sensor de medida:
 bar, mbar, m, kPa, psi, ft, m³/h, m³/s, l/s, gpm, °C, °F, %.
- Intervalo de medida del sensor: 0-100 %.

10.8.15 En servicio/standby (3.17)

En servicio/standby

Ajustes

La función en servicio/standby puede ajustarse a estos valores:

- Activa
- No activa.

Active la función en servicio/standby de la siguiente manera:

- Conecte una de las bombas al suministro de red. Ajuste la función de en servicio/standby a No activa. Realice los ajustes necesarios en el menú "FUNCIONA-MIENTO" e "INSTALACIÓN".
- Ajuste el modo de funcionamiento en "Parada" en el menú "FUNCIONAMIENTO".
- Conecte la otra bomba al suministro de red. Realice los ajustes necesarios en el menú "FUNCIONA-MIENTO" e "INSTALACIÓN". Ajuste la función de en servicio/ standby a "Activa".

La bomba en funcionamiento buscará a la otra bomba y ajustará automáticamente la función en servicio/standby de esta bomba a "Activa". Si no puede encontrar la otra bomba, se indicará un fallo.

Las dos bombas deben estar conectadas eléctricamente mediante el GENIbus y no debe haber nada más conectado en el GENIbus.

La función en servicio/standby se aplica a dos bombas conectadas en paralelo y controladas mediante el GENIbus. Cada bomba debe estar conectada a su propio CUE y su propio sensor.

Los objetivos principales de la función son los siguientes:

- Arrancar la bomba en standby si la bomba en servicio se para debido a una alarma.
- · Alternar las bombas al menos cada 24 horas.

10.8.16 Intervalo de funcionamiento (3.18)

Mín.	25 %	–
Máx.	100 %	

Cómo ajustar el intervalo de funcionamiento:

- Ajuste la velocidad mínima dentro del intervalo desde una velocidad mínima dependiente de la bomba a la velocidad máxima ajustada. El ajuste de fábrica depende de la familia a la que pertenezca la bomba.
- Ajuste la velocidad máxima dentro del intervalo desde la velocidad mínima ajustada a la velocidad máxima dependiente de la bomba. El ajuste efectuado en fábrica será igual al 100 %, es decir, la velocidad indicada en la placa de características de la bomba.

El área existente entre las velocidades mínima y máxima es el intervalo de funcionamiento real de la bomba.

El usuario puede modificar el intervalo de funcionamiento dentro del intervalo de velocidades dependiente de la bomba.

Para ciertas familias de bombas, será posible un funcionamiento sobresíncrono (velocidad máxima por encima del 100 %). Para ello se requiere un motor sobredimensionado para proporcionar la potencia en el eje que requiere la bomba durante su funcionamiento sobresíncrono.

FM04 3581 4608

Fig. 54 Ajuste de las curvas mín. y máx. en % de rendimiento máximo

10.8.17 Control de los cojinetes del motor (3.19)

La función de control de los cojinetes del motor puede ajustarse a estos valores:

- Activa
- No activa.

Cuando la función esté ajustada en "Activa", el CUE emitirá una advertencia cuando los cojinetes del motor tengan que ser lubricados o sustituidos.

Descripción

La función de control de los cojinetes del motor se emplea para emitir una indicación cuando llega el momento de lubricar o sustituir los cojinetes del motor. Véanse las pantallas 2.10 y 2.11.

La indicación de aviso y el tiempo estimado tienen en cuenta si la bomba ha estado funcionando con velocidad reducida. La temperatura de los cojinetes se incluye en el cálculo si se instalan sensores de temperatura y se conectan a un módulo de entrada de sensor MCB 114.

El contador seguirá contando incluso si la función se cambia a "No activa", pero no se emitirá un aviso cuando sea el momento de volver a lubricar.

10.8.18 Confirmación de la lubricación/sustitución de los cojinetes del motor (3.20)

Esta función se puede ajustar a los siguientes valores:

- · Lubricados
- Sustituidos

No se ha realizado nada.

Cuando los cojinetes del motor hayan sido lubricados o sustituidos, confirme esta acción en la pantalla de arriba presionando [OK].

> El valor Lubricados no puede seleccionarse durante un periodo de tiempo después de confirmar la lubricación.

Lubricados

Nota

Cuando se ha confirmado la advertencia "Lubricar los cojinetes del motor",

- el contador se ajusta a 0
- el número de lubricaciones aumenta en 1.

Cuando el número de lubricaciones ha llegado al número máximo permitido, en la pantalla aparece la advertencia "Sustituir los cojinetes del motor".

Sustituidos

Cuando se ha confirmado la advertencia "Sustituir los cojinetes del motor",

- el contador se ajusta a 0
- · el número de lubricaciones se ajusta a 0
- el número de cambios de los cojinetes aumenta en 1.

10.8.19 Sensor de temperatura 1 (3.21)

Esta pantalla sólo se muestra si se ha instalado un módulo de entrada de sensor MCB 114.

Seleccione la función de sensor de temperatura Pt100/Pt1000 1 conectado a un MCB 114:

- · Cojinete del lado de acoplamiento
- · Cojinete del lado opuesto al de acoplamiento
- Temp. otro líq. 1
- Temp. otro líq. 2
- Bobinado del motor
- Temp. líq. bombeado
- Temp. ambiente
- No activa.

10.8.20 Sensor de temperatura 2 (3.22)

Esta pantalla sólo se muestra si se ha instalado un módulo de entrada de sensor MCB 114.

Seleccione la función de un sensor de temperatura Pt100/Pt1000 2 conectado a un MCB 114:

- Cojinete del lado de acoplamiento
- · Cojinete del lado opuesto al de acoplamiento
- Temp. otro líq. 1
- · Temp. otro líq. 2
- Bobinado del motor
- Temp. líq. bombeado
- Temp. ambiente
- No activa.

10.8.21 Calefacción en parada (3.23)

La función de calefacción en parada puede ajustarse a estos valores:

- Activa
- No activa.

Cuando la función se ajuste a "Activa" y la bomba se detiene debido a una orden de parada, se aplicará una corriente a los bobinados del motor.

La función de calefacción en parada precalienta el motor para evitar la condensación.

Ajuste el tiempo para cada uno de los dos procesos, de aceleración gradual y de deceleración gradual:

- Ajuste de fábrica:
- Dependiendo de la magnitud de la potencia.
- El intervalo del parámetro de aceleración/deceleración gradual:

1-300 s.

El tiempo de aceleración gradual es el tiempo de aceleración desde 0 min⁻¹ hasta la velocidad nominal del motor. Elija un tiempo de aceleración gradual tal que la corriente de salida no supere el límite de corriente máxima para el CUE.

El tiempo de deceleración gradual es el tiempo de deceleración desde la velocidad nominal del motor hasta 0 min⁻¹. Elija un tiempo de deceleración gradual tal que no se produzca ninguna sobretensión y que la corriente generada no supere el límite de corriente máxima para el CUE.

Fig. 55 Aceleración gradual y deceleración gradual, pantalla 3.24

10.8.23 Frecuencia de conmutación (3.25)

La frecuencia de conmutación puede cambiarse, las opciones en el menú dependen de la magnitud de la potencia del CUE.

Al cambiar la frecuencia de conmutación a un nivel más elevado, se aumentarán las pérdidas y, de esta forma, se incrementará la termperatura del CUE.

No es recomendable aumentar la frecuencia de conmutación si la temperatura ambiente es alta.

11. Ajustes mediante productos-E para herramientas de PC

Los requisitos de configuración especial distintos a los ajustes disponibles a través del CUE requieren el uso de productos E para herramientas de PC de Grundfos. De nuevo, esto requiere la asistencia de un ingeniero o técnico de mantenimiento de Grundfos. Contacte con la empresa Grundfos más cercana para más información.

12. Prioridad de ajustes

El botón on/off tiene la prioridad más alta. En estado "off", el funcionamiento de la bomba no es posible.

El CUE puede controlarse de varias formas al mismo tiempo. Si hay dos o más modos de funcionamiento activos al mismo tiempo, prevalecerá el modo de funcionamiento con la prioridad más alta.

12.1 Control sin señal de bus, modo de funcionamiento local

Prioridad	Menú del CUE	Señal externa
1	Parada	
2	Máx.	
3		Parada
4		Máx.
5	Mín.	Mín.
6	Normal	Normal

Ejemplo: Si se ha activado una señal externa en el modo de funcionamiento "Máx.", sólo será posible parar la bomba.

12.2 Control con señal de bus, modo de funcionamiento por control remoto

Prioridad	Menú del CUE	Señal externa	Señal de bus
1	Parada		
2	Máx.		
3		Parada	Parada
4			Máx.
5			Mín.
6			Normal

Ejemplo: Si la señal de bus ha activado el modo de funcionamiento "Máx.", sólo será posible parar la bomba.

Español (MX)

13. Señales de control externas

13.1 Entradas digitales

El resumen muestra funciones relacionadas con contacto cerrado.

Terminal	Тіро	Función
18	DI 1	Arranque/parada de la bomba
19 DI 2		 Mín. (curva mín.) Máx. (curva máx.) Fallo ext. (fallo externo) Interruptor de caudal Reseteo alarma Funcionamiento en seco (de sensor externo) No activo.
32	DI 3	 Mín. (curva mín.) Máx. (curva máx.) Fallo ext. (fallo externo) Interruptor de caudal Reseteo alarma Funcionamiento en seco (de sensor externo) No activo.
33	DI 4	 Mín. (curva mín.) Máx. (curva máx.) Fallo ext. (fallo externo) Interruptor de caudal Reseteo alarma Funcionamiento en seco (de sensor externo) Caudal acumulado (caudal de impulsos) No activo.

No debe seleccionarse la misma función para más de una entrada.

13.2 Punto de ajuste externo

Terminal	Тіро	Función
53	AI 1	 Punto de ajuste externo (0-10 V)

Se puede fijar a distancia el punto de ajuste mediante la conexión de un transmisor de señal analógica a la entrada del punto de ajuste (terminal 53).

Bucle abierto

En modo de control "Bucle abierto" (curva constante), se puede fijar el punto de ajuste actual externamente dentro del intervalo entre la curva mín. y el punto de ajuste fijado mediante el menú del CUE. Véase la fig. 56.

Fig. 56 Relación entre el punto de ajuste actual y la señal del punto de ajuste externo en el modo de control de "Bucle abierto"

Bucle cerrado

En todos los demás modos de control, excepto presión diferencial proporcional, se puede fijar el punto de ajuste actual externamente dentro del intervalo entre el valor inferior del intervalo de medida del sensor (sensor mín.) y el punto de ajuste fijado mediante el menú del CUE. Véase la fig. 57.

Fig. 57 Relación entre el punto de ajuste actual y la señal del punto de ajuste externo en el modo de control Controlado

Ejemplo: Con un valor mín. del sensor de 0 bar, un punto de ajuste fijado mediante el menú del CUE de 3 bar y un punto de ajuste externo del 80 %, el punto de ajuste actual será como sigue:

Punto de ajuste actual	=	(punto de ajuste fijado mediante el menú del CUE - sensor mín.) x % señal del punto de ajuste externo + sensor mín.
	=	(3 - 0) x 80 % + 0

= 2.4 bar

Presión diferencial proporcional

En el modo de control "Presión diferencial proporcional", se puede fijar el punto de ajuste actual externamente entre el 25 % de la altura máxima y el punto de ajuste fijado mediante el menú del CUE. Véase la fig. 58.

Fig. 58 Relación entre el punto de ajuste actual y la señal del punto de ajuste externo en el modo de control "Presión diferencial proporcional"

Ejemplo: Con una altura máx. de 12 metros, un punto de ajuste de 6 metros fijado mediante el menú del CUE y un punto de ajuste externo del 40 %, el punto de ajuste actual será como sigue:

Punto de ajuste actual	=	(punto de ajuste, menú del CUE - 25 % de la altura máxima) x % señal externa del punto de ajuste + 25 % de la altura máxima
	=	(6 - 12 x 25 %) x 40 % + 12/4
	=	4.2 m

13.3 Señal GENIbus

El CUE admite comunicación en serie mediante una entrada RS-485. La comunicación se realiza de acuerdo con el protocolo GENIbus de Grundfos y permite la conexión a un sistema de gestión de edificios o a otro sistema de control externo.

Los parámetros de funcionamiento, como el punto de ajuste y el modo de funcionamiento, pueden ajustarse a distancia mediante la señal de bus. La bomba puede al mismo tiempo proporcionar información de estado de parámetros importantes, tales como el valor actual del parámetro de control, potencia absorbida e indicaciones de fallos.

Para más detalles, contacte con Grundfos.

Si se utiliza una señal de bus, se reducirá el número de ajustes posibles mediante el CUE.

13.4 Otros estándares de bus

Grundfos ofrece varias soluciones de bus con comunicación de acuerdo con otros estándares.

Para más detalles, contacte con Grundfos.

14. Mantenimiento y reparación

14.1 Limpieza del CUE

Mantenga limpias las aletas de refrigeración y las aspas del ventilador para garantizar una refrigeración suficiente del CUE.

14.2 Repuestos y kits de mantenimiento

Para más información sobre repuestos y kits de mantenimiento, visite www.grundfos.es > Sitio web internacional > Grundfos Product Center.

15. Localización de averías

15.1 Lista de advertencias y alarmas

		E	Esta	do		
Texto de la pantalla y código			Alarma	Alarma bloqueada	Modo de funciona- miento	Rese- teo
1	Corriente de fuga dema- siado alta			•	Parada	Man.
2	Fallo de fase de red		٠		Parada	Aut.
3	Avería externa		٠		Parada	Man.
16	Otra avería		٠	•	Parada Parada	Aut. Man.
30	Cambiar los cojinetes del motor	•			-	Man. ³⁾
22	Sebratanaián	٠			-	Aut.
32	Sobretension		٠		Parada	Aut.
40	Subtanaián	٠			-	Aut.
40	Sublension		٠		Parada	Aut.
40	Sebreceree		٠		Parada	Aut.
48	Sobrecarga			•	Parada	Man.
49	Sobrecarga		٠		Parada	Aut.
	Cabuaran	٠			-	Aut.
55	Sobrecarga		٠		Parada	Aut.
57	Funcionamiento en seco		٠		Parada	Aut.
64	La temperatura del CUE es demasiado alta		•		Parada	Aut.
70	Temperatura del motor demasiado elevada		•		Parada	Aut.
77	En servicio/standby, Fallo de comunicación	•			-	Aut.
89	Sensor 1 fuera de rango		•		1)	Aut.
91	La temperatura del sen- sor 1 está fuera de rango	•			-	Aut.
93	El sensor 2 está fuera de alcance	•			-	Aut.
96	Señal de punto de refe- rencia fuera de alcance		•		1)	Aut.
148	Temperatura del cojinete	٠			-	Aut.
140	demasiado alta		٠		Parada	Aut.
149	Temperatura del cojinete demasiado alta	•	•		- Parada	Aut. Aut.
155	Avería de corriente interna		•		Parada	Aut.
175	El sensor de tempera- tura 2 está fuera de alcance	•			-	Aut.
240	Lubricar cojinetes del motor	•			-	Man. ³⁾
2/1	Fallo de fase do motor	٠			-	Aut.
241			٠		Parada	Aut.
242	La AAM no se realizó con éxito. ²⁾	•			-	Man.

 En caso de alarma, el CUE cambiará el modo de funcionamiento en función del tipo de bomba.

²⁾ AAM, adaptación automática del motor. No activa en el software actual.

³⁾ La advertencia se resetea en la pantalla 3.20.

15.2 Reseteo de alarmas

En caso de avería o de un funcionamiento incorrecto del CUE, compruebe el listado de alarmas en el menú "FUNCIONA-MIENTO". En los menús de registro pueden encontrarse las cinco últimas alarmas y las cinco últimas advertencias. Contacte con un técnico de Grundfos si se produce una alarma de forma repetida.

15.2.1 Advertencia

El CUE seguirá funcionando mientras la advertencia esté activa. La advertencia permanece activa hasta que la causa ya no existe. Algunas advertencias pueden convertirse en alarma.

15.2.2 Alarma

En caso de alarma, el CUE parará la bomba o cambiará el modo de funcionamiento dependiendo del tipo de alarma y el tipo de bomba. Véase la sección *15.1 Lista de advertencias y alarmas*. El funcionamiento de la bomba se reanudará cuando se haya solucionado la causa de la alarma y se haya reseteado la alarma.

Reseteo manual de una alarma

- Pulse [OK] en la pantalla de la alarma.
- · Pulse [On/Off] dos veces.
- Active una entrada digital DI2-DI4 fijada en "Reseteo de alarma" o la entrada digital DI 1 (Arranque/parada).

Si no es posible resetear una alarma, el motivo puede ser que no se haya solucionado el fallo o que la alarma se haya bloqueado.

15.2.3 Alarma bloqueada

En caso de alarma bloqueada, el CUE parará la bomba y se bloqueará. El funcionamiento de la bomba no puede reanudarse hasta que se haya solucionado la causa de la alarma bloqueada y se haya reseteado la alarma.

Reseteo de una alarma bloqueada

 Desconecte el suministro eléctrico del CUE durante unos 30 segundos. Conecte el suministro eléctrico y pulse OK en la pantalla de alarma para resetear la alarma.

15.3 Indicadores luminosos

La tabla muestra la función de los indicadores luminosos.

Indicador Iuminoso	Función
	La bomba está en funcionamiento o se ha dete- nido por medio de una función de parada.
On (verde)	Si está parpadeando, la bomba ha sido parada por el usuario (menú del CUE), arranque/parada externa o bus.
Off (naranja)	La bomba ha sido detenida con el botón On/Off.
Alarma (rojo)	Indica una alarma o advertencia.

15.4 Relés de señal

La tabla muestra la función de los relés de señal.

Тіро	Función	
	 Preparada 	Bomba en funcionamiento
Relé 1	 Alarma 	Advertencia
	 Funcionamiento 	Lubricar
	 Preparada 	Bomba en funcionamiento
Relé 2	 Alarma 	Advertencia
	 Funcionamiento 	Lubricar

Véase también la fig. 30.

16. Datos técnicos

16.1 Carcasa

Los tamaños de cuadros individuales del CUE se caracterizan por sus carcasas. La tabla muestra la relación entre grado de protección y tipo de carcasa.

Ejemplo:

Lectura de la placa de características:

- Tensión de alimentación = 3 x 380-500 V.
- Potencia típica de eje = 1.5 kW.
- Grado de protección = IP20.
- La tabla muestra que la carcasa del CUE es A2.

Potenci	a típica	Carcasa												
del e	je P2	P2 1 x 200-240 V 3 x 200-240 V 3 x 3		3 x 380	0-500 V 3 x 525-600 V		5-600 V	3 x 525-690 V						
[kW]	[HP]	IP20	IP21	IP55	IP20	IP55	IP20	IP55	IP20	IP55	IP21	IP55		
0.55	0.75													
0.75	1				A2									
1.1	1.5	A3		A5				4.0						
1.5	2					A4	AZ	A4	A3	A5				
2.2	3		D1	D1										
3	4		В1	ы	4.2	۸ <i>Б</i>								
3.7	5				AS	Ab								
4	5						A2	A4						
5.5	7.5		B1	B1	2 B3		4.2	٨٥	A3	A5				
7.5	10		B2	B2		В3	B1	AS	Ab					
11	15													
15	20				D4	B2	B3	B1						
18.5	25				D4						B2	B2		
22	30					C1		D0						
30	40				03		B4	DZ						
37	50				<u> </u>	<u></u>								
45	60				64	62	<u></u>	C1						
55	75						03				C2	C2		
75	100						64	<u></u>						
90	125						64	62						

16.2 Prensacables

Seleccione orificios de prensacables estándar para convertidores de frecuencia de CUE utilizados fuera de Estados Unidos y Canadá.

Seleccione orificios de prensacables imperiales para convertidores de frecuencia de CUE utilizados fuera de Estados Unidos y Canadá.

Carcasa	Orificios de prensacables estándar	Orificios de prensacables imperiales
A3 1020/21 / NEMA tipo 1	3 x 22.5 (1/2")	3 x 22.5 (1/2")
	3 x 28.4 (3/4")	3 x 28.4 (3/4")
A4 ID55 / NEMA tipe 12	1 x 22.5 (1/2")	1 x 22.5 (1/2")
A4 1F557 NEWA lipo 12	3 x 28.4 (3/4")	3 x 28.4 (3/4")
A5 IP55 / NEMA tipo 12	6 x 26.3	6 x 28.4 (3/4")
P1 ID21 / NEMA tipe 1	2 x 22.5 (1/2")	2 x 22.5 (1/2")
	3 x 37.2	3 x 34.7 (1")
	2 x 21.5	2 x 22.5 (1/2")
B1 IP55 / NEMA tipo 12	1 x 26.3	1 x 28.4 (3/4")
	3 x 33.1	3 x 34.7 (1")
	1 x 21.5	1 x 22.5 (1/2")
B2 IP21 / NEMA tipo 1 y	1 x 26.3	1 x 28.4 (3/4")
B2 IP55 / NEMA tipo 12	1 x 33.1	1 x 34.7 (1")
	2 x 42.9	2 x 44.2 (1 1/4")

Fig. 59 Carcasas A2 y A3

Fig. 60 Carcasas A4, A5, B1, B2, B3, B4, C1, C2, C3 y C4

	Altura [mm]		Anchura [mm]		Profund	Profundidad [mm]		rificios ros	scados (mr	n]	
Carcasa	A	а	В	b	С	C ¹⁾	с	Ød	Øe	f	Peso [kg]
A2	268	257	90	70	205	219	8	11	5.5	9	4.9
IP21/NEMA1	375	350	90	70	205	219	8	11	5.5	9	5.3
A3	268	257	130	110	205	219	8	11	5.5	9	6.6
IP21/NEMA1	375	350	130	110	205	219	8	11	5.5	9	7
A4	420	401	200	171	175	175	8.2	12	6.5	6	9.2
A5	420	402	242	215	200	200	8.2	12	6.5	9	14
B1	480	454	242	210	260	260	12	19	9	9	23
B2	650	624	242	210	260	260	12	19	9	9	27
B3	399	380	165	140	248	262	8	12	6.8	7.9	12
IP21/NEMA1	475	-	165	-	249	262	8	12	6.8	7.9	-
B4	520	495	231	200	242	242	-	-	8.5	15	23.5
IP21/NEMA1	670	-	255	-	246	246	-	-	8.5	15	-
C1	680	648	308	272	310	310	12	19	9	9.8	45
C2	770	739	370	334	335	335	12	19	9	9.8	65
C3	550	521	308	270	333	333	-	-	8.5	17	35
IP21/NEMA1	755	-	329	-	337	337	-	-	8.5	17	-
C4	660	631	370	330	333	333	-	-	8.5	17	50
IP21/NEMA1	950	-	391	-	337	337	-	-	8.5	17	-
D1h	1209	1154	420	304	380	_	20	11	11	25	104
D2h	1589	1535	420	304	380	_	20	11	11	25	151

TM03 9000 2807

Las dimensiones son altura, anchura y profundidad máximas.

16.4 Entorno

Humedad relativa	5-95 % HR
Temperatura ambiente	Máx. 50 °C
Temperatura ambiente media durante 24 horas	Máx. 45 °C
Temperatura ambiente mínima en funciona- miento total	0 °C
Temperatura ambiente mínima en funciona- miento reducido	-10 °C
Temperatura durante el almacenamiento y transporte	-25 a 65 °C
Duración del almacenamiento	Máx. 6 meses
Altitud máxima sobre el nivel del mar sin reduc- ción de rendimiento	1000 m
Altitud máxima sobre el nivel del mar con reducción del rendimiento	3000 m

Nota

El CUE viene en un embalaje que no es adecuado para el almacenamiento al aire libre.

16.5 Pares de apriete de los terminales

0	Par de apriete [Nm]								
Carcasa	Red eléctrica	Motor	Tierra	Relé					
A2	1.8	1.8	3	0.6					
A3	1.8	1.8	3	0.6					
A4	1.8	1.8	3	0.6					
A5	1.8	1.8	3	0.6					
B1	1.8	1.8	3	0.6					
B2	4.5	4.5	3	0.6					
B3	1.8	1.8	3	0.6					
B4	4.5	4.5	3	0.6					
C1	10	10	3	0.6					
C2	14 ¹⁾ /24 ²⁾	14 ¹⁾ /24 ²⁾	3	0.6					
C3	10	10	3	0.6					
C4	14 ¹⁾ /24 ²⁾	14 ¹⁾ /24 ²⁾	3	0.6					

¹⁾ Sección transversal del conductor $\leq 95 \text{ mm}^2$

²⁾ Sección transversal del conductor \ge 95 mm²

16.6 Longitud de cable

Longitud máxima, cable del motor apantallado	150 m
Longitud máxima, cable de motor sin apantallar	300 m
Longitud máxima, cable de señal	300 m

16.7 Fusibles y sección transversal de cable

Advertencia Cumpla siempre con la normativa nacional y local en lo referente a las secciones transversales del cable.

16.7.1 Sección transversal del cable a terminales de señal

Sección transversal máxima del cable a terminales de señal, conductor rígido	1.5 mm ²
Sección transversal máxima del cable a terminales de señal, conductor flexible	1.0 mm ²
Sección transversal mínima del cable a terminales de señal	0.5 mm ²

16.7.2 Fusibles no UL y sección transversal del conductor a red y motor

Potencia típica del eje P2	Tamaño de fusible máximo	Tipo de fusible	Sección transversal máxima del conductor
[kW]	[A]		[mm ²]
1 x 200-240 V			
1.1	20	gG	4
1.5	30	gG	10
2.2	40	gG	10
3	40	gG	10
3.7	60	gG	10
5.5	80	gG	10
7.5	100	gG	35

Potencia típica del eje P2	Tamaño de fusible máximo	Tipo de fusible	Sección transversal máxima del conductor		
[kW]	[A]		[mm ²]		
3 x 200-240 V					
0.75	10	gG	4		
1.1	20	gG	4		
1.5	20	gG	4		
2.2	20	gG	4		
3	32	gG	4		
3.7	32	gG	4		
5.5	63	gG	10		
7.5	63	gG	10		
11	63	gG	10		
15	80	gG	35		
18.5	125	gG	50		
22	125	gG	50		
30	160	gG	50		
37	200	aR	95		
45	250	aR	120		
3 x 380-500 V					
0.55	10	gG	4		
0.75	10	gG	4		
1.1	10	gG	4		
1.5	10	gG	4		
2.2	20	gG	4		
3	20	gG	4		
4	20	gG	4		
5.5	32	gG	4		
7.5	32	gG	4		
11	63	gG	10		
15	63	gG	10		
18.5	63	gG	10		
22	63	gG	35		
30	80	gG	35		
37	100	gG	50		
45	125	gG	50		
55	160	gG	50		
/5	250	aR	95		
90 2 x 525 600 V	250	aR	120		
0.75	10	aG.	Λ		
1 1	10	yG dG	4		
1.1	10	go dG	4		
22	20	ge nG	4		
3	20	gC gG	4		
4	20	gG	4		
5.5	32	aG	4		
7.5	32	aG	4		
3 x 525-690 V					
11	63	gG	35		
15	63	gG	35		
18.5	63	gG	35		
22	63	gG	35		
30	63	gG	35		
37	80	gG	95		
45	100	gG	95		
55	125	gG	95		
75	160	gG	95		
90	160	gG	95		

¹⁾ Cable de motor apantallado, cable de alimentación no apantallado. AWG. Véase la sección 16.7.3 Fusibles UL y sección transversal de conductor a red y motor.

16.7.3 Fusibles UL y sección transversal de conductor a red y motor

Potencia típica	Tipo de fusible					Sección transversal		
IHP1	- Bussmann J	Bussmann T	SIBA RK1	Littel Fuse RK1	Ferraz-Shawmut CC	Ferraz-Shawmut RK1	Bussmann . E1958	IAWGI ²⁾
1 × 200 240 V	-						JFHR2	F
1 1	KTN-R20	_	_	_	_	_	_	10
1.5	KTN-R30	_	_	_	_	_	_	7
2,2	KTN-R40	_	_	_	_	_	_	7
3	KTN-R40	_	_	-	-	-	-	7
3,7	KTN-R60	-	-	-	-	-	-	7
5,5	_	-	-	_	_	_	-	7
7,5	-	-	-	-	-	-	-	2
3 x 200-240 V								
0,75	KTN-R10	JKS-10	JJN-10	5017906-010	KTN-R10	ATM-R10	A2K-10R	10
1,1	KTN-R20	JKS-20	JJN-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
1,5	KTN-R20	JKS-20	JJN-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
2,2	KTN-R20	JKS-20	JJN-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
3	KTN-R30	JKS-30	JJN-30	5012406-032	KTN-R30	ATM-R30	A2K-30R	10
3,7	KTN-R30	JKS-30	JJN-30	5012406-032	KTN-R30	ATM-R30	A2K-30R	10
5,5	KTN-R50	JKS-50	JJN-50	5012406-050	KLN-R50	-	A2K-50R	7
7,5	KTN-R50	JKS-60	JJN-60	5012406-050	KLN-R60	-	A2K-50R	7
11	KTN-R60	JKS-60	JJN-60	5014006-063	KLN-R60	A2K-60R	A2K-60R	7
15	KTN-R80	JKS-80	JJN-80	5014006-080	KLN-R80	A2K-80R	A2K-80R	2
18,5	KTN-R125	JKS-150	JJN-125	2028220-125	KLN-R125	A2K-125R	A2K-125R	1/0
22	KTN-R125	JKS-150	JJN-125	2028220-125	KLN-R125	A2K-125R	A2K-125R	1/0
30	FWX-150	-	-	2028220-150	L25S-150	A25X-150	A25X-150	1/0
37	FWX-200	-	-	2028220-200	L25S-200	A25X-200	A25X-200	4/0
45	FWX-250	-	-	2028220-250	L25S-250	A25X-250	A25X-250	250 MCM
3 x 380-500 V								
0,55	KTS-R10	JKS-10	JJS-10	5017906-010	KTN-R10	ATM-R10	A2K-10R	10
0,75	KTS-R10	JKS-10	JJS-10	5017906-010	KTN-R10	ATM-R10	A2K-10R	10
1,1	KTS-R10	JKS-10	JJS-10	5017906-010	KTN-R10	ATM-R10	A2K-10R	10
1,5	KTS-R10	JKS-10	JJS-10	5017906-010	KTN-R10	ATM-R10	A2K-10R	10
2,2	KTS-R20	JKS-20	JJS-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
3	KTS-R20	JKS-20	JJS-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
4	KTS-R20	JKS-20	JJS-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
5,5	KTS-R30	JKS-30	JJS-30	5012406-032	KTN-R30	ATM-R30	A2K-30R	10
7,5	KTS-R30	JKS-30	JJS-30	5012406-032	KTN-R30	ATM-R30	A2K-30R	10
11	KTS-R40	JKS-40	JJS-40	5014006-040	KLS-R40	-	A6K-40R	7
15	KTS-R40	JKS-40	JJS-40	5014006-040	KLS-R40	-	A6K-40R	7
18,5	KTS-R50	JKS-50	JJS-50	5014006-050	KLS-R50	-	A6K-50R	7
22	KTS-R60	JKS-60	JJS-60	5014006-063	KLS-R60	-	A6K-60R	2
30	KTS-R80	JKS-80	JJS-80	2028220-100	KLS-R80	-	A6K-80R	2
37	KTS-R100	JKS-100	JJS-100	2028220-125	KLS-R100	-	A6K-100R	1/0
45	KTS-R125	JKS-150	JJS-150	2028220-125	KLS-R125	-	A6K-125R	1/0
55	KTS-R150	JKS-150	JJS-150	2028220-160	KLS-R150	-	A6K-150R	1/0
75	FWH-220	-	-	2028220-200	L50S-225	-	A50-P225	4/0
90	FWH-250	-	-	2028220-250	L50S-250	-	A50-P250	250 MCM
3 x 525-600 V		11/0 / 0		F047000 016			101/ 100	40
0,75	KIS-R10	JKS-10	JJS-10	5017906-010	KIN-R10	AIM-R10	A2K-10R	10
1,1	KIS-R10	JKS-10	JJS-10	5017906-010	KIN-R10	ATM-R10	A2K-10R	10
1,5	KIS-R10	JKS-10	JJS-10	5017906-010	KIN-R10	ATM-R10	A2K-10K	10
2,2	KIS-R20	JKS-20	JJS-20	5017906-020	KIN-R20	ATM-R20	A2K-20R	10
3	KTS-R20	JKS-20	JJS-20	5017906-020	KIN-R20	ATM-R20	A2K-20R	10
4	K15-K20	JKS-20	JJS-20	5010400 000	KTN Doo	ATM-R20	AZK-ZUK	10
5,5	KTS-R30	JKS-30	JJS-30	5012406-032	KIN-R30	ATM-R30	A2K-30R	10
(,5	KTS-R30	JKS-30	JJS-30	5012406-032	K1N-R30	ATM-R30	A2K-30R	10
3 x 525-690 V		11/0 05	110.05	F047000 005	1/1 00005	110705	101/ 055	410
11	KTS-R-25	JKS-25	JJS-25	5017906-025	KLSR025	HS125	AbK-25K	1/0
15	KTS-R-30	JKS-30	JJS-30	501/906-030	KLSR030	HST30	A6K-30R	1/0
18,5	KIS-R-45	JKS-45	JJS-45	5014006-050	KLSR045	HST45	A6K-45R	1/0
22	KIS-R-45	JKS-45	JJS-45	5014006-050	KLSR045	HS145	AbK-45R	1/0
30	KTS-R-60	JKS-60	JJS-60	5014006-063	KLSR060	HST60	A6K-60R	1/0

Potencia típica		Tipo de fusible							
del eje P2	Bussmann	ussmann Bussmann SIBA J T RK1		Littel Europ	Former Showmut	Forrer Showmut	Bussmann	máxima del conductor	
[HP]	J			RK1 CC		RK1	E1958 JFHR2	[AWG] ²⁾	
37	KTS-R-80	JKS-80	JJS-80	5014006-080	KLSR075	HST80	A6K-80R	1/0	
45	KTS-R-90	JKS-90	JJS-90	5014006-100	KLSR090	HST90	A6K-90R	1/0	
55	KTS-R-100	JKS-100	JJS-100	5014006-100	KLSR100	HST100	A6K-100R	1/0	
75	KTS-R125	JKS-125	JJS-125	2028220-125	KLS-125	HST125	A6K-125R	1/0	
90	KTS-R150	JKS-150	JJS-150	2028220-150	KLS-150	HST150	A6K-150R	1/0	
4)									

¹⁾ Cable de motor apantallado, cable de alimentación no apantallado.

2) American Wire Gauge.

16.8 Entradas y salidas

16.8.1 Suministro de red (L1, L2, L3)

Tensión de alimentación	200-240 V ± 10 %
Tensión de alimentación	380-500 V ± 10 %
Tensión de alimentación	525-600 V ± 10 %
Tensión de alimentación	525-690 V ± 10 %
Frecuencia de alimentación	50/60 Hz
Desproporción temporal máxima entre fases	3 % del valor nomi- nal
Corriente de fuga a tierra	> 3.5 mA
Número de conexiones, carcasa A	Máx. 2 veces/min.
Número de conexiones, carcasas B y C	Máx. 1 vez/min.

No utilice el suministro eléctrico para activar y desactivar el CUE.

16.8.2 Salida de motor (U, V, W)

Tensión de salida	0-100 % ¹⁾
Frecuencia de salida	0-100 Hz ²⁾
Activación salida	No recomendado

¹⁾ Tensión de salida en % de tensión de alimentación.

²⁾ Dependiendo de la familia de bomba seleccionada.

16.8.3 Conexión GENIbus RS-485

Número de terminal	68 (A), 69 (B), 61 GND (Y)
--------------------	----------------------------

El circuito RS-485 está funcionalmente separado de otros circuitos centrales y galvánicamente separado de la tensión de alimentación (PELV).

16.8.4 Entradas digitales

Número de terminal	18, 19, 32, 33
Nivel de tensión	0-24 VCC
Nivel de tensión, contacto abierto	> 19 VCC
Nivel de tensión, contacto cerrado	< 14 VCC
Tensión máxima en la entrada	28 VCC
Resistencia de entrada, R _i	Aprox. 4 kΩ

Todas las entradas digitales están galvánicamente separadas de la tensión de alimentación (PELV) y otros terminales de alta tensión.

16.8.5 Relés de señal

Relé 01, número de terminal	1 (C), 2 (NO), 3 (NC)
Relé 02, número de terminal	4 (C), 5 (NO), 6 (NC)
Carga máxima del terminal (CA-1) ¹⁾	240 VCA, 2 A
Carga máxima del terminal (CA-15) ¹⁾	240 VCA, 0.2 A
Carga máxima del terminal (CC-1) ¹⁾	50 VCC, 1 A
Carga mínima del terminal	24 V CC 10 mA
	24 V CA 20 m

¹⁾ CEI 60947, partes 4 y 5.

C Común

- NO Normalmente abierto
- NC Normalmente cerrado

Los contactos de relés están galvánicamente separados de otros circuitos por aislamiento reforzado (PELV).

16.8.6 Entradas analógicas

Entrada analógica 1, número de terminal	53
Señal de tensión	A53 = "U" ¹⁾
Intervalo de tensión	0-10 V
Resistencia de entrada, R _i	Aprox. 10 kΩ
Tensión máxima	± 20 V
Señal de intensidad	A53 = "I" ¹⁾
Intervalo de intensidad	0-20. 4-20 mA
Resistencia de entrada, R _i	Aprox. 200 Ω
Intensidad máxima	30 mA
Fallo máximo, terminales 53, 54	0.5 % de escala completa
Entrada analógica 2, número de terminal	54
Señal de intensidad	A54 = "I" ¹⁾
Intervalo de intensidad	0-20. 4-20 mA
Resistencia de entrada, R _i	Aprox. 200 Ω
Intensidad máxima	30 mA
Fallo máximo, terminales 53, 54	0.5 % de escala completa

¹⁾ El ajuste de fábrica es la señal de tensión "U".

Todas las entradas analógicas están galvánicamente separadas de la tensión de alimentación (PELV) y otros terminales de alta tensión.

16.8.7 Salida analógica

Salida analógica 1, número de terminal	42
Intervalo de intensidad	0-20 mA
Carga máxima a masa	500 Ω
Fallo máximo	0.8 % de escala completa

La salida analógica está galvánicamente separada de la tensión de alimentación (PELV) y otros terminales de alta tensión.

16.8.8 Módulo de entrada de sensor MCB 114

Entrada analógica 3, número de terminal	2
Intervalo de intensidad	0/4-20 mA
Resistencia de entrada	< 200 Ω
Entradas analógicas 4 y 5, número de terminal	4, 5 y 7, 8
Tipo de señal, 2 o 3 cables	Pt100/Pt1000

Cuando se utiliza un Pt100 con cable de 3 hilos, la resistencia no debe exceder 30 Ω .

16.9 Nivel de ruido

Nota

El ruido del CUE es como máximo de 70 dB(A).

El nivel de ruido de un motor controlado por un convertidor de frecuencia puede ser superior al de un motor correspondiente que no esté controlado por un convertidor de frecuencia. Véase la sección *6.7 Filtros RFI*.

17. Eliminación

La eliminación de este producto o partes de él debe realizarse de forma respetuosa con el medio ambiente:

- 1. Utilice el servicio local, público o privado, de recogida de residuos.
- 2. Si esto no es posible, contacte con la compañía o servicio técnico Grundfos más cercano.

Nos reservamos el derecho a modificaciones sin previo aviso.

USA

Grundfos Kansas City 17100 West 118th Terrace Olathe, Kansas 66061 Phone: +1-913-227-3400 Fax: +1-913-227-3500

Grundfos Chicago

3905 Enterprise Court P.O. Box 6620 Aurora, IL 60598-0620 Phone: +1-630-236-5500 Telefax: +1-630-236-5511

Grundfos Houston 902 Koomey Road Brookshire, TX 77423 Phone: +1-281-994-2800 Toll free: +1-844-994-2850 Fax: +1-800-945-4777

www.grundfos.us

Grundfos Canada 2941 Brighton Road Oakville, Ontario L6H 6C9 Canada Phone: +1-905 829 9533 Fax: +1-905 829 9512

www.grundfos.ca

Grundfos México Boulevard TLC No. 15 Parque Industrial Stiva Aeropuerto C.P. 66600 Apodaca, N.L. Mexico Phone: +011-52-81-8144 4000 Fax: +011-52-81-8144 4010

www.grundfos.mx

© Copyright Grundfos Holding A/S The name Grundfos, the Grundfos logo, and be think innovate are registered trademarks owned by Grundfos Holding AS or Grundfos AS, Denmark. All rights reserved worldwide.

98806765 1116

ECM: 1187342

www.grundfos.com