

Guida operativa Safe Torque Off

Convertitori di frequenza VLT®

Sommario

1	Introduzione	2
	1.1 Scopo del manuale	2
	1.2 Risorse aggiuntive	2
	1.3 Panoramica funzionale	2
	1.4 Approvazioni e certificazioni	2
	1.5 Simboli, abbreviazioni e convenzioni	3
2	Sicurezza	4
	2.1 Simboli di sicurezza	4
	2.2 Personale qualificato	4
	2.3 Precauzioni di sicurezza	4
3	Installazione	6
	3.1 Istruzioni di sicurezza	6
	3.2 Installazione STO	6
	3.3 Installazione in combinazione con la VLT® PTC Thermistor Card MCB 112	7
4	Messa in funzione	9
	4.1 Istruzioni di sicurezza	9
	4.2 Attivazione di STO	9
	4.3 Impostazioni parametri per STO in combinazione con la VLT $^{\$}$ PTC Thermistor Card MCB 112	9
	4.4 Comportamento di riavvio automatico/manuale	9
	4.5 Test di messa in funzione STO	10
	4.6 Sicurezza di configurazione del sistema	10
	4.7 Assistenza e manutenzione	10
5	Dati tecnici STO	12
ln	dice	14

1 Introduzione

1.1 Scopo del manuale

Questo manuale fornisce informazioni per l'uso di convertitori di frequenza Danfoss VLT® in applicazioni di sicurezza funzionale. Il manuale include informazioni sugli standard di sicurezza funzionale, sulla funzione Safe Torque Off (STO) del convertitore di frequenza Danfoss VLT®, sulla relativa installazione e messa in funzione e sull'assistenza e sulla manutenzione per STO.

VLT® è un marchio registrato.

1.2 Risorse aggiuntive

Questo manuale è rivolto agli utenti che hanno già dimestichezza con convertitori di frequenza VLT®. È concepito come un supplemento ai manuali e alle istruzioni da scaricare all'indirizzo drives.danfoss.com/knowledge-center/technical-documentation/. Leggere le istruzioni spedite con il convertitore di frequenza e/o l'opzione convertitore di frequenza prima di installare l'unità e osservare le istruzioni per un'installazione sicura.

1.3 Panoramica funzionale

1.3.1 Introduzione

La funzione Safe Torque Off (STO) è un componente in un sistema di controllo di sicurezza che impedisce all'unità di generare la potenza necessaria a far ruotare il motore.

AVVISO!

Selezionare e applicare correttamente i componenti nel sistema di controllo di sicurezza per ottenere il livello di sicurezza operativa desiderato. Prima di integrare e utilizzare STO in un impianto, effettuare un'approfondita analisi dei rischi sull'impianto per determinare se la funzionalità STO e i livelli di sicurezza sono adeguati e sufficienti.

Il convertitore di freguenza VLT® è disponibile con:

- Safe Torque Off (STO), come definito dalla EN IEC 61800-5-2.
- Categoria di arresto 0 come definito nella EN 60204-1.

Il convertitore di frequenza integra la funzione STO tramite il morsetto di controllo 37.

Il convertitore di frequenza VLT® con funzionalità STO è progettato e ritenuto adatto per i requisiti di:

- categoria 3 in EN ISO 13849-1;
- livello di prestazioni "d" in ISO EN 13849-1;

- SIL 2 in IEC 61508 ed EN 61800-5-2;
- SILCL 2 in EN 62061.

1.3.2 Prodotti coperti e identificazione

La funzione STO è disponibile per i seguenti tipi di convertitori di frequenza:

- VLT® HVAC Drive FC 102
- VLT® Refrigeration Drive FC 103
- VLT® AQUA Drive FC 202
- Dimensione frame A1 VLT® AutomationDrive FC 301
- VLT® AutomationDrive FC 302
- VLT® Decentral Drive FCD 302
- VLT® Parallel Drive Modules

Identificazione

 Confermare che il convertitore di frequenza è configurato con la funzione STO controllando il codice dell'unità sulla targa (vedere la *Tabella 1.1*).

Prodotto	Codice	
VLT® HVAC Drive FC 102	T o U alla cifra 18 del codice	
VLT [®] Refrigeration Drive FC 103	T alla cifra 18 del codice	
VLT® AQUA Drive FC 202	T o U alla cifra 18 del codice	
Dimensione frame A1 VLT®	T alla cifra 18 del codice	
AutomationDrive FC 301		
VLT® AutomationDrive FC 302	X, B o R alla cifra 18 del	
VEI Automationibrive 1 C 302	codice	
VLT® Decentral Drive FCD 302	X, B o R alla cifra 18 del	
VEI Decential Drive FCD 302	codice	
VLT® Parallel Drive Modules	T o U alla cifra 18 del codice	

Tabella 1.1 Identificazione del codice

1.4 Approvazioni e certificazioni

Sono disponibili ulteriori conformità e certificazioni. Contattare un partner Danfoss locale.

Norme applicate e conformità

L'uso di STO sul morsetto 37 richiede che l'utente soddisfi tutte le norme di sicurezza, inclusi le leggi, i regolamenti e le direttive vigenti.

La funzione STO integrata è conforme alle seguenti norme:

• EN 60204-1: 2006 Arresto categoria 0 – arresto non controllato;

IEC/EN 61508: 2010 SIL2;

IEC/EN 61800-5-2: 2007;

IEC/EN 62061: 2005 SIL CL2;

• EN ISO 13849-1: 2008 - Categoria 3 PL d.

1.5 Simboli, abbreviazioni e convenzioni

Abbreviazione	Riferimento	Descrizione	
Cat.	EN ISO 13849-1	Categoria, livello "B, 1-4"	
СС		Copertura diagnostica	
FIT		Guasto nel tempo: 1E-9/ora	
HFT	EN IEC 61508	Tolleranza ai guasti hardware: HFT = n indica che n+1 guasti possono causare una	
		perdita della funzione di sicurezza	
MTTFd	EN ISO 13849-1	Tempo medio al guasto - pericoloso. Unità: anni	
PFH	EN IEC 61508	Probabilità di guasto pericoloso per ora. Considerare questo valore se il dispositivo di	
		sicurezza funziona in condizioni gravose o in modalità continua, dove la frequenza di	
		richieste di funzionamento su un sistema di sicurezza è superiore a una all'anno.	
PFD	EN IEC 61508	Probabilità media di guasto alla richiesta, valore usato per un funzionamento con bassa	
		richiesta.	
PL	EN ISO 13849-1	Livello discreto utilizzato per specificare la possibilità dei componenti collegati alla	
		sicurezza facenti parte del sistema di controllo di eseguire la funzione di sicurezza in	
		tutte le condizioni prevedibili. Livelli a-e.	
SIL	EN IEC 61508	Livello di integrità sicurezza	
	EN IEC 62061		
STO	EN IEC 61800-5-2	Safe Torque Off	
SS1	EN IEC 61800-5-2	Arresto di sicurezza 1	
SRECS	EN IEC 62061	Sistema di controllo elettrico di sicurezza	
SRP/CS	EN ISO 13849-1	Parti di sistemi di controllo legate alla sicurezza	
PDS/SR	EN IEC 61800-5-2	Azionamento elettrico (legato alla sicurezza)	

Tabella 1.2 Abbreviazioni correlate alla sicurezza funzionale

Convenzioni

Gli elenchi numerati indicano le procedure.

Gli elenchi puntati indicano altre informazioni e una descrizione delle illustrazioni.

Il testo in corsivo indica:

- riferimenti incrociati;
- collegamento;
- nomi di parametri;
- nota a piè di pagina;
- gruppo di parametri;
- opzioni di parametri;
- allarmi e avvisi.

Tutte le dimensioni espresse nei disegni sono fornite in entrambe le unità di misura metrica e imperiale (tra parentesi), ad esempio: mm (pollici).
Un asterisco (*) indica l'impostazione di fabbrica del parametro.

2

2 Sicurezza

2.1 Simboli di sicurezza

Nella presente guida vengono usati i seguenti simboli:

AAVVISO

Indica una situazione potenzialmente rischiosa che potrebbe causare morte o lesioni gravi.

AATTENZIONE

Indica una situazione potenzialmente rischiosa che potrebbe causare lesioni leggere o moderate. Può anche essere usato per mettere in guardia da pratiche non sicure.

AVVISO!

Indica informazioni importanti, incluse situazioni che possono causare danni alle apparecchiature o alla proprietà.

2.2 Personale qualificato

Soltanto alle persone con comprovate abilità è consentito montare, installare, programmare, mettere in funzione, manutenere e mettere fuori servizio i prodotti. Il personale con comprovate abilità:

- Comprende ingegneri elettrici qualificati o persone addestrate da ingegneri elettrici qualificati e che abbiano un'esperienza adeguata nel far funzionare dispositivi, sistemi, impianti e macchinari in conformità agli standard e alle linee guida generali relativi alle tecnologie per la sicurezza.
- Ha familiarità con le norme di base riguardanti la protezione dai rischi e la prevenzione degli infortuni.
- Ha letto e compreso le direttive generiche di sicurezza fornite in questo manuale e le istruzioni contenute nel manuale di funzionamento del convertitore di freguenza.
- Possiede una buona conoscenza delle norme generiche e specifiche valide per l'applicazione specifica.

Gli utenti di sistemi di azionamenti elettrici (legati alla sicurezza) (PDS(SR)) sono responsabili di:

- analisi dei rischi dell'applicazione;
- identificazione delle funzioni di sicurezza necessarie e assegnazione di SIL o PLr a ognuna delle funzioni;

- altri sottosistemi e validità dei segnali e dei comandi da essi provenienti.
- Progettazione di sistemi di controllo di sicurezza adeguati (hardware, software, parametrizzazione ecc.).

Misure di protezione

- Solo al personale qualificato e capace è consentito installare e mettere in funzione sistemi di sicurezza.
- Installare il convertitore di frequenza in un armadio IP54 secondo la norma IEC 60529 oppure in un ambiente equivalente. In caso di applicazioni particolari potrebbe essere necessario un contenitore con un grado di protezione IP maggiore.
- Assicurare la protezione da cortocircuito del cavo tra l'opzione di sicurezza e il dispositivo di sicurezza esterno in base a ISO 13849-2 tabella D.
 Quando forze esterne influiscono sull'asse motore (per esempio carichi sospesi), sono necessarie misure aggiuntive (per esempio un freno di mantenimento di sicurezza) per eliminare i rischi.

2.3 Precauzioni di sicurezza

Vedere il capitolo *Sicurezza* nel *Manuale di funzionamento/ nelle guide* pertinenti per le precauzioni generali di sicurezza.

AATTENZIONE

Dopo l'installazione dell'STO, eseguire un test di messa in funzione come specificato in *capitolo 4.5 Test di messa in funzione STO*. Dopo la prima installazione è necessario superare un test di messa in funzione, che va ripetuto dopo ogni modifica all'impianto di sicurezza.

AAVVISO

RISCHIO DI MORTE E GRAVI LESIONI

Se sul motore agiscono forze esterne, per esempio in caso di assi verticali (carichi sospesi), e un movimento imprevisto, ad esempio dovuto alla forza di gravità, potrebbe causare un pericolo, il motore deve essere dotato di misure supplementari che proteggano dalle cadute. Per esempio, installare freni meccanici supplementari.

AAVVISO

RISCHIO DI MORTE E GRAVI LESIONI

STO (vale a dire, la rimozione dell'alimentazione di tensione di 24 V CC al morsetto 37) non offre sicurezza elettrica. La funzione STO di per se stessa non è sufficiente a implementare la funzione Arresto di emergenza definita dalla norma EN 60204-1. L'arresto di emergenza richiede misure che garantiscano l'isolamento elettrico, ad esempio scollegando l'alimentazione di rete tramite un ulteriore contattore.

AAVVISO

RISCHIO DI SCOSSA ELETTRICA

La funzione STO NON isola la tensione di rete dal convertitore di frequenza o dai circuiti ausiliari. Eseguire interventi sui componenti elettrici del convertitore di frequenza o del motore soltanto dopo aver scollegato l'alimentazione della tensione di rete e avere aspettato che sia trascorso il tempo di scarica specificato nella sezione Sicurezza nel Manuale di funzionamento/nelle guide pertinenti. Il mancato isolamento dell'alimentazione della tensione di rete dall'unità e la mancata attesa per il tempo specificato potrebbero provocare lesioni serie e mortali.

- Non arrestare il convertitore di frequenza usando la funzione STO. Se un convertitore di frequenza in funzione viene arrestato utilizzando questa funzione, l'unità scatta e si arresta a rotazione libera. Se questa limitazione non è accettabile, per esempio perché è pericolosa, usare la modalità di arresto adeguata per fermare il convertitore di frequenza e il macchinario prima di usare la funzione STO. In alcune applicazioni può essere necessario un freno meccanico.
- STO è adatto per eseguire lavoro meccanico solo sul sistema convertitore di frequenza o sulla zona interessata di una macchina. Non offre sicurezza elettrica. La funzione STO non deve essere usata come comando per avviare e/o arrestare il convertitore di frequenza.

AATTENZIONE

RIAVVIO AUTOMATICO

Il comportamento di riavvio automatico è consentito solo in una delle due situazioni:

- La prevenzione del riavvio involontario viene assicurata da altre parti dell'impianto STO.
- Una presenza nella zona pericolosa può essere esclusa fisicamente quando l'STO non è attivato.
 In particolare deve essere rispettato il paragrafo 6.3.3.2.5 della ISO 12100: 2010.

AAVVISO

RISCHIO DI MORTE E GRAVI LESIONI

La funzione STO può essere utilizzata per motori asincroni, sincroni e a magneti permanenti. Nel semiconduttore di potenza del convertitore di frequenza possono verificarsi due guasti. Quando si utilizzano motori sincroni o a magneti permanenti, i guasti possono causare una rotazione residua. La rotazione può essere calcolata come angolo = 360/(numero di poli). L'applicazione che fa uso di motori sincroni o a magneti permanenti deve tenere conto di questa rotazione residua e assicurarsi che non costituisca un rischio per la sicurezza. Questa situazione non è pertinente ai motori asincroni.

AVVISO!

Effettuare una valutazione dei rischi per ciascuna funzione di arresto al fine di determinare la selezione di una categoria di arresto in conformità alla norma EN 60204-1:

- La categoria di arresto 0 si ottiene scollegando immediatamente l'alimentazione all'attuatore, provocando un arresto a ruota libera non controllato. L'STO secondo la EN 61800-5-2 assicura un arresto della categoria di arresto 0.
- La categoria di arresto 1 viene ottenuta con l'alimentazione disponibile affinché gli attuatori della macchina eseguano l'arresto. L'alimentazione viene rimossa dagli attuatori dopo l'arresto secondo la EN 61800-5-2 Safe Stop 1 (SS1).
- La categoria di arresto 2 è un arresto controllato con il mantenimento dell'alimentazione agli attuatori della macchina. All'arresto segue una funzione di mantenimento sotto tensione.

AVVISO!

Durante la progettazione dell'applicazione della macchina deve essere tenuto conto del tempo e della distanza per un arresto a ruota libera (categoria di arresto 0 o STO). Per maggiori informazioni sulle categorie di arresto, fare riferimento a EN 60204-1.

3 Installazione

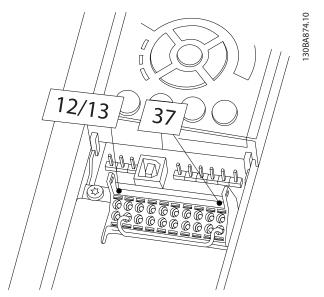
3.1 Istruzioni di sicurezza

AATTENZIONE

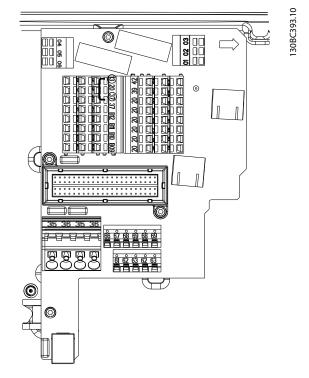
RISCHIO ELETTRICO

L'operatore o installatore elettrico è responsabile per la corretta messa a terra e la conformità a tutte le norme di sicurezza nazionali e locali pertinenti.

Vedere capitolo 2 Sicurezza e il Manuale di funzionamento/le guide del convertitore di frequenza pertinenti. Osservare sempre anche le istruzioni fornite dal produttore del motore.

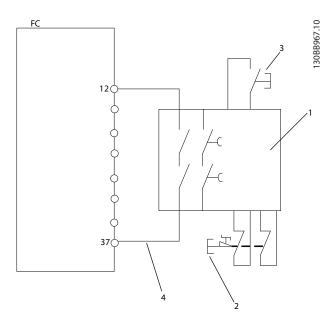

3.2 Installazione STO

Per il collegamento del motore, il collegamento di rete CA e i cavi di controllo attenersi alle istruzioni per un'installazione sicura nel *Manuale di funzionamento/nelle guide* del convertitore di frequenza.


Per l'installazione con la VLT[®] PTC Thermistor Card MCB 112 certificata Ex, vedere *capitolo 3.3 Installazione in combinazione con la VLT[®] PTC Thermistor Card MCB 112.*

Abilitare l'STO integrato come segue:

 Rimuovere il ponticello fra i morsetti di controllo 37 e 12 o 13. Non è sufficiente tagliare o rompere il ponticello per evitare il cortocircuito. (vedere il ponticello in *Disegno 3.1*).


Disegno 3.1 Ponticello tra i morsetti 12/13 (24 V) e 37 (tutti i convertitori di frequenza tranne FCD 302).

Disegno 3.2 Ponticello tra i morsetti 13 (24 V) e 37 (FCD 302)

Per esempio, collegare un relè esterno di monitoraggio di sicurezza tramite una funzione di sicurezza NO al morsetto 37 (STO) e al morsetto 12 o 13 (24 V CC). Seguire le istruzioni per l'installazione del relè di monitoraggio di sicurezza e assicurarsi che questo soddisfi la categoria 3 /PL "d" (ISO 13849-1) o SIL 2 (EN 62061 e IEC 61508).

1	Relè di sicurezza (cat. 3, PL d o SIL2)
2	Pulsante di arresto di emergenza
3	Pulsante di ripristino
4	Cavo protetto dai cortocircuiti (se esterno all'armadio di
	installazione IP54). Per ulteriori informazioni vedere la
	norma ISO 13849-2 tabella D.4

Disegno 3.3 Esempio di installazione per ottenere una categoria di arresto 0 (EN 60204-1) con cat. di sicurezza 3/PL "d" (ISO 13849-1) o SIL 2 (EN 62061 e IEC 61508).

3. Completare il cablaggio secondo le istruzioni fornite nel *Manuale di funzionamento/nelle guide* del convertitore di frequenza.

3.3 Installazione in combinazione con la VLT® PTC Thermistor Card MCB 112

AVVISO!

La combinazione di VLT® PTC Thermistor Card MCB 112 e la funzione STO è disponibile soltanto per VLT® HVAC Drive FC 102, VLT® AQUA Drive FC 202, VLT® AutomationDrive FC 302 e VLT® AutomationDrive FC 301 con frame di taglia A1.

La VLT® PTC Thermistor Card MCB 112 utilizza il morsetto 37 come suo canale di disinserzione di sicurezza.

- Assicurarsi che l'uscita X44/12 dell'MCB 112 sia impostata su AND con il sensore di sicurezza (ad esempio, pulsante di arresto di emergenza e interruttore di sicurezza) che attiva l'STO. Questo significa che l'uscita al morsetto 37 STO è ALTA (24 V) solo se entrambi i segnali dall'uscita X44/12 dell'MCB 112 e il segnale dal sensore di sicurezza sono ALTI. Se almeno uno dei due segnali è BASSO, allora anche l'uscita al morsetto 37 deve essere BASSA.
- Assicurarsi che il dispositivo di sicurezza con logica AND soddisfi il livello di sicurezza necessario.
- Proteggere dal cortocircuito il collegamento dall'uscita del dispositivo di sicurezza con logica AND sicura al morsetto 37 STO, vedere la Disegno 3.4.

MG37D506

Hazardous |

Area

Disegno 3.4 Combinazione di un'applicazione STO e un'applicazione MCB 112

Safety Device SIL 2 Safe AND Input

Manual Restart

Safe Output

Non-Hazardous Area

Disegno 3.4 mostra un ingresso di riavvio per il dispositivo di sicurezza esterno. Ciò significa che in questa installazione parametro 5-19 Arresto di sicurezza morsetto 37 può essere impostato sul valore [7] PTC 1 e relè W oppure [8] PTC 1 e relè A/W. Vedere il Manuale di funzionamento di VLT® PTC Thermistor Card MCB 112 per maggiori informazioni.

4 Messa in funzione

4.1 Istruzioni di sicurezza

AATTENZIONE

RISCHIO ELETTRICO

L'operatore o installatore elettrico è responsabile per la corretta messa a terra e la conformità a tutte le norme di sicurezza nazionali e locali pertinenti.

Vedere *capitolo 2 Sicurezza* e il *Manuale di funzionamento/le guide* del convertitore di frequenza pertinenti. Osservare sempre anche le istruzioni fornite dal produttore del motore.

4.2 Attivazione di STO

La funzione STO viene attivata rimuovendo la tensione sul morsetto 37 del convertitore di frequenza. Collegando il convertitore di frequenza ai dispositivi di sicurezza esterni che dispongono di un ritardo sicuro, può essere ottenuta un'installazione per un arresto di sicurezza 1. I dispositivi di sicurezza esterni devono soddisfare la cat./PL o SIL quando collegati al morsetto 37. La funzione STO può essere utilizzata per motori asincroni, sincroni e a magneti permanenti.

Quando viene attivata la funzione STO (morsetto 37) il convertitore di frequenza emette un allarme, fa scattare l'unità e fa girare il motore a ruota libera fino all'arresto. È necessario un riavvio manuale. Usare la funzione STO per arrestare il convertitore di frequenza in situazioni di arresto di emergenza. Nel modo di funzionamento normale, se l'STO non è necessario, usare la funzione di arresto standard. Assicurarsi che i requisiti secondo ISO 12100 paragrafo 6.3.3.2.5 siano soddisfatti prima di usare la funzione di riavvio automatico.

4.3 Impostazioni parametri per STO in combinazione con la VLT® PTC Thermistor Card MCB 112

Quando MCB 112 è collegato sono disponibili più selezioni per parametro 5-19 Arresto di sicurezza morsetto 37 (da [4] Allarme PTC 1 a [9] PTC 1 e relè W/A).

 Le selezioni [1]* All. arresto di sic. e [3] Avv. arresto di sic. sono ancora disponibili ma sono concepite per impianti senza MCB 112 o dispositivi di sicurezza esterni.

Se vengono selezionati [1]* All. arresto di sic. o [3] Avv. arresto di sic. e viene attivato MCB 112, il convertitore di frequenza reagisce con l'allarme

- 72, Guasto peric. e fa girare il motore a ruota libera in modo sicuro, senza riavvio automatico.
- Non selezionare [4] Allarme PTC 1 e [5] Avviso PTC 1 se si utilizza un dispositivo di sicurezza esterno. Queste selezioni sono destinate alle situazioni in cui soltanto l'MCB 112 utilizza l'STO. Se si selezionano [4] Allarme PTC 1 o [5] Avviso PTC 1 e il dispositivo di sicurezza esterno attiva STO, il convertitore di frequenza emette l'allarme 72, Guasto peric. e fa procedere il convertitore di frequenza a ruota libera in modo sicuro, senza riavvio automatico.
- Selezionare [6] PTC 1 e relè A fino a [9] PTC 1 e relè W/A per la combinazione del dispositivo di sicurezza esterno e MCB 112.

AATTENZIONE

RIAVVIO AUTOMATICO

Le selezioni consentono il riavvio automatico quando il dispositivo di sicurezza esterno viene disattivato.

Prima di selezionare [7] PTC 1 e relè W o [8] PTC 1 e relè A/W. assicurarsi che:

- La prevenzione del riavvio involontario sia implementata da altre parti dell'impianto STO, oppure
- Una presenza nella zona pericolosa possa essere esclusa fisicamente quando l'STO non è attivato. In particolare deve essere rispettato il paragrafo 6.3.3.2.5 della ISO 12100:2010.

Vedere il *Manuale di funzionamento di VLT® PTC*Thermistor Card MCB 112 per maggiori informazioni.

4.4 Comportamento di riavvio automatico/ manuale

Per default, la funzione STO viene impostata per un comportamento di prevenzione del riavvio involontario. Per terminare STO e riattivare il funzionamento normale:

- Riapplicare l'alimentazione a 24 V CC al morsetto 37
- Fornire un segnale di riavvio (tramite bus, I/O digitali o il tasto [Reset]).

Impostare la funzione STO al riavvio automatico impostando il valore di *parametro 5-19 Arresto di sicurezza morsetto 37* dal valore di default [1]* All. arresto di sic. al valore [3] Avv. arresto di sic..

Il riavvio automatico significa che l'STO è terminato e riprende il funzionamento normale quando viene applicata

la tensione a 24 V CC al morsetto 37. Non è necessario alcun segnale di ripristino.

4.5 Test di messa in funzione STO

Dopo l'installazione e prima del primo funzionamento eseguire un test di messa in funzione dell'impianto utilizzando la funzione STO.

Rieseguire il test dopo ogni modifica dell'impianto o dell'applicazione che coinvolge l'STO.

AVVISO!

È necessario un test di messa in funzione riuscito della funzione STO dopo l'installazione iniziale e dopo ogni modifica successiva dell'impianto.

Per eseguire un test di messa in funzione:

- Seguire le istruzioni nel capitolo 4.5.1 Prevenzione del riavvio per l'applicazione STO per applicazioni senza riavvio automatico dopo un arresto di sicurezza oppure
- Seguire le istruzioni nel capitolo 4.5.2 Riavvio automatico dell'applicazione STO per applicazioni con riavvio automatico dopo un arresto di sicurezza.

4.5.1 Prevenzione del riavvio per l'applicazione STO

Applicazione in cui *parametro 5-19 Arresto di sicurezza* morsetto 37 viene impostato sul valore di default [1]* All. arresto di sic. oppure STO combinato e VLT® PTC Thermistor MCB 112 in cui *parametro 5-19 Arresto di sicurezza morsetto* 37 viene impostato su [6] PTC 1 e relè A o [9] PTC 1 e relè W/A):

- Rimuovere la tensione di alimentazione 24 V CC al morsetto 37 usando il sezionatore mentre il motore è azionato dal convertitore di frequenza (vale a dire quando l'alimentazione di rete non è interrotta).
- 2. Controllare che:
 - 2a il motore giri a ruota libera;
 - 2b il freno meccanico si attivi (se collegato);
 - 2c se è montato, il pannello di controllo locale (LCP) visualizzi *Allarme 68, Arresto sicuro*.
- 3. Riapplicare i 24 V CC al morsetto 37.
- 4. Assicurarsi che il motore rimanga nello stato di funzionamento a ruota libera e il freno meccanico rimanga attivato (se collegato).
- Inviare un segnale di ripristino (tramite bus, I/O digitali o il tasto [Reset]).
- 6. Assicurarsi che il motore torni nuovamente operativo.

Il test di messa in funzione è completato con successo quando sono stati superati tutti i passi indicati.

4.5.2 Riavvio automatico dell'applicazione

Applicazione in cui parametro 5-19 Arresto di sicurezza morsetto 37 viene impostato su [3] Avv. arresto di sic. o Safe Torque Off combinato e VLT® PTC Thermistor MCB 112 in cui parametro 5-19 Arresto di sicurezza morsetto 37 viene impostato su [7] PTC 1 e relè W oppure [8] PTC 1 e relè A/W):

- Rimuovere la tensione di alimentazione 24 V CC al morsetto 37 mediante il sezionatore mentre il motore è azionato dal convertitore di frequenza (vale a dire quando l'alimentazione di rete non è interrotta).
- 2. Controllare che:
 - 2a il motore giri a ruota libera;
 - 2b il freno meccanico si attivi (se collegato);
 - 2c se è montato, il pannello di controllo locale (LCP) visualizzi *avviso 68, Arresto sicuro*.
- 3. Riapplicare i 24 V CC al morsetto 37.
- Assicurarsi che il motore torni nuovamente operativo.

Il test di messa in funzione è completato con successo quando sono stati superati tutti i passi indicati.

AVVISO!

Vedere l'avviso relativo al comportamento di riavvio in capitolo 2.3 Precauzioni di sicurezza.

4.6 Sicurezza di configurazione del sistema

- Le misure di sicurezza rientrano nelle responsabilità dell'utente.
- I parametri del convertitore di frequenza possono essere protetti da password.

4.7 Assistenza e manutenzione

Per PL d o SIL2 è obbligatorio, per PL o SIL inferiori è consigliato, condurre un test del funzionamento ogni 12 mesi per rilevare guasti o malfunzionamenti di qualsiasi genere della funzionalità STO.

Per effettuare il test del funzionamento, eseguire i seguenti passi (o un metodo simile adatto per l'applicazione):

- Rimuovere l'alimentazione di tensione a 24 V CC dal morsetto 37.
- 2. Controllare se l'LCP visualizza l'*allarme 68, Arresto sicuro*.
- Verificare che il convertitore di frequenza faccia scattare l'unità.

- 4. Verificare che il motore stia girando a ruota libera e si arresti completamente.
- 5. Verificare che il motore non possa essere avviato.
- 6. Ricollegare l'alimentazione di tensione a 24 V CC al morsetto 37.
- 7. Verificare che il motore non venga avviato automaticamente e che riparta soltanto inviando un segnale di ripristino (tramite bus, I/O digitali o tasto [Reset]).

5 Dati tecnici STO

AVVISO!

Per le specifiche tecniche e le condizioni di funzionamento del convertitore di frequenza fare riferimento al *Manuale di funzionamento/alle guide* del convertitore di frequenza.

AVVISO!

Il segnale STO deve essere alimentato da SELV o PELV.

		EN ISO 13849-1			
	Direttiva macchine	EN IEC 62061			
	(2006/42/CE)	EN IEC 61800-5-2			
Disatting	Di vii EMG	EN 50011			
Direttive europee	Direttiva EMC (2014/30/EU)	EN 61000-6-3			
	(2014/30/EU)	EN 61800-3			
	Direttiva bassa tensione	EN 50178			
	(2014/35/EU)	EN 61800-5-1			
Norme di sicurezza Sicurezza delle macchine		EN ISO 13849-1, IEC 62061, IEC	60204-1		
Norme di sicurezza	Sicurezza funzionale	IEC 61508 da 1 a 7, IEC 61800-5-2			
Funzione di sicurezza		IEC 61800-5-2	IEC 60204-1		
runzione di sicurezza		Safe Torque Off (STO)	Categoria di arresto 0		
	ISO 13849-1	ISO 13849-1			
	Categoria	Cat 3			
	Copertura diagnostica	CC: 90% (media)			
	Tempo medio per guasto pericoloso	MTTFd: 14.000 anni (alta)			
	Livello di prestazioni	PL d			
	IEC 61508/IEC 62061	IEC 61508/IEC 62061			
	Livello di integrità sicurezza	SIL 2, SIL CL2			
Prestazioni di sicurezza	Probabilità di guasto pericoloso all'ora	PFH: 1E-10/h; 1E-8/h per specifiche varianti ^{1), 2)} (modalità a richiesta elevata)			
	Probabilità di guasto pericoloso su richiesta	PFD: 1E-10; 1E-4 per specifiche varianti ^{1), 2)} (modalità a bassa richiesta)			
	Tolleranza ai guasti hardware	HFT: 0 (1001)			
	Intervallo del test di verifica T1	20 anni			
	Tempo di missione TM	20 anni			
Tempo di reazione	Tempo di risposta da ingresso	Al massimo 20 ms, 60 ms per specifiche varianti ^{1), 2)}			
	a uscita				

Tabella 5.1 Dati tecnici

1) VLT® HVAC Drive FC 102, VLT® Refrigeration DriveFC 103, VLT® AQUA Drive FC 202 e VLT® AutomationDrive FC 301/convertitori FC 302 ad alta potenza con frame di taglia F:

- 400 V: 450/500 kW (600/650 cv) 800/1.000 kW (1.075/1.350 cv) (sovraccarico elevato/normale).
- 690 V: 630/710 kW (850/950 cv) 1.800/2.000 kW (2.400/2.700 cv) (sovraccarico elevato/normale).

2) VLT® Parallel Drive Modules:

- 400 V: 250/315 kW (350/450 cv) 800/1.000 kW (1.200/1.350 cv) (sovraccarico elevato/normale).
- 690 V: 315/400 kW (350/400 cv) 1.000/1.200 kW (1.150/1.350 cv) (sovraccarico elevato/normale).

Dati SISTEMA

Sono disponibili dati per la sicurezza funzionale da una libreria utilizzabile con il software di calcolo SISTEMA di IFA (Istituto per la salute e la sicurezza sul lavoro del Fondo di assicurazione tedesca obbligatoria contro gli infortuni) e i dati per il calcolo manuale. SISTEMA è disponibile per il download all'indirizzo www.drives.danfoss.com/services/pc-tools/.

Indice Safe Torque Off

Indice

A
Abbreviazioni 3
Allarme9
Attivazione 9
C
Canale di disinserzione
Certificazioni2
Comando4
Comportamento di riavvio9
Conformità 2
Convenzioni3
D
Dati SISTEMA
Dati tecnici
Dispositivi di sicurezza esterni
Dispositivi di sicurezza esterii
Dispositivo di siculezza o
F
Freno meccanico10
I
Identificazione2
Impostazioni parametri
Installazione
Interruttore di sicurezza
M
Manutenzione 10
N
Norme e conformità2
Р
Personale qualificato4
Prevenzione del riavvio
Prevenzione del riavvio involontario
Prodotti coperti
R
Riavvio automatico
c

Scheda termistore...... 8

Segnale	4, 8
Selezioni	9
Sensore di sicurezza	8
SIL CL2	3
SIL2	3
Simboli	3
Sistema di controllo	4
Т	
Terminazione	0
Terminazione	9
Test di messa in funzione	10
U	
Uscita	8

Indice Guida operativa

La Danfoss non si assume alcuna responsabilità circa eventuali errori nei cataloghi, pubblicazioni o altri documenti scritti. La Danfoss si riserva il diritto di modificare i suoi prodotti senza previo avviso, anche per i prodotti già in ordine, sempre che tali modifiche si possano fare senza la necessità di cambiamenti nelle specifiche che sono già state concordate. Tutti i marchi di fabbrica citati sono di proprietà delle rispettive società. Il nome Danfoss e il logotipo Danfoss sono marchi depositati della Danfoss A/S. Tutti i diritti riservati.

Danfoss A/S Ulsnaes 1 DK-6300 Graasten vlt-drives.danfoss.com

