

Operating Instructions VLT[®] Integrated Servo Drive ISD[®] 510 System

vlt-drives.danfoss.com

<u>Danfoss</u>

Contents

Operating Instructions

Contents

1 Ir	ntroduction	6
	1.1 Purpose of the Operating Instructions	6
	1.2 Additional Resources	6
	1.3 Copyright	6
	1.4 Approvals and Certifications	6
	1.5 System Overview	7
	1.5.1 Areas of Application	8
	1.6 Software	8
	1.7 Terminology	8
25	Safety	٥
23	2.1 Symbols Used in this Manual	
	2.1 Symbols Osce in this Manual	9
	2.3 Safety Instructions and Precautions	9
	2.4 Important Safety Warnings	10
	2.5 Qualified Personnel	13
	2.6 Due Diligence	11
	2.7 Intended Use	11
	2.8 Foreseeable Misuse	12
	2.9 Service and Support	12
3 S	system Description	13
	3.1 Overview	13
	3.2 Servo Drive	13
	3.2.1 Servo Drive Types	14
	3.2.2 Motor Components	14
	3.2.2.1 Shaft	14
	3.2.2.2 Brake (Optional)	14
	3.2.2.3 Cooling	15
	3.2.2.4 Thermal Protection	15
	3.2.2.5 Built-In Feedback Devices	15
	3.2.3 Drive Components	15
	3.2.3.1 Connectors on the Servo Drives	15
	3.3 Servo Access Box (SAB)	18
	3.3.1 Connections on the SAB	19
	3.3.1.1 STO Connectors	20
	3.3.1.2 Mains Connectors	20
	3.3.1.3 Brake Connectors	21
	3.3.1.4 Relay Connectors	21
	3.3.1.5 Encoder Connectors	21

3.3.1.6 Ethernet Connectors (not included)

	3.3.1.7 AUX Connectors	22
	3.3.1.8 24/48 V IN Connector	22
	3.3.1.9 UDC Connectors	22
	3.3.1.10 Hybrid Cable PE	22
	3.4 Local Control Panel (LCP)	23
	3.4.1 Overview	23
	3.4.2 Local Control Panel (LCP) Layout	23
	3.5 Cables	25
	3.5.1 Hybrid Cable	25
	3.5.2 I/O and/or Encoder Cable	25
	3.5.3 Additional Cables	25
	3.6 Connection Cables/Cabling	26
	3.6.1 Layout and Routing	26
	3.6.1.1 Standard Cabling Concept for 2 Lines	26
	3.6.1.2 Standard Cabling Concept for 1 Line	26
	3.7 Software	27
	3.8 Fieldbus	27
	3.8.1 EtherCAT [®]	27
	3.8.2 Ethernet POWERLINK [®]	28
1	Mechanical Installation	20
	4.1 Transport and Dolivory	29
	4.1 11 Itoms Supplied	29
	4.1.1 Transport	29
	4.1.2 Indisport	29
	4.1.5 htspection on receipt	29
	4.2 Jately Measures during installation	29
	4.5 Installation Environment	29
		30
	4.4.1 Serve Access Roy (SAP)	21
	4.4.2 Servo Access box (SAB)	27
	4.5 11 Installation and Space Requirements	32
	4.5.2 Installation Aids and Tools Required	32
	4.5.2 Fitting Instructions Serve Drive	32
	4.5.4 Tightening Torques	32
	4.5.5 Eitting Instructions Serve Access Box (SAB)	33
	T.J.S FIGHING INSTRUCTIONS SELVO ACCESS DOX (SAD)	
5	Electrical Installation	35
	5.1 Warnings	35
	5.2 Electrical Environmental Conditions	35

Danfoss

22

5.3 EMC-Compliant Installation	35
5.4 Grounding	35
5.5 Mains Supply Requirements	36
5.6 Auxiliary Supply Requirements	36
5.7 Safety Supply Requirements	36
5.8 Connecting the Components	37
5.8.1 Servo Access Box	37
5.8.2 Servo Drive	39
5.8.2.1 Connecting/Disconnecting Hybrid Cables	39
5.8.2.2 Connecting/Disconnecting Cables from Ports X3, X4, and X5	41
6 Commissioning	43
6.1 Pre-Commissioning Checklist	43
6.2 ID Assignment	43
6.2.1 EtherCAT [®]	43
6.2.2 Ethernet POWERLINK [®]	43
6.2.2.1 Single Device ID Assignment	43
6.2.2.2 Multiple Device ID Assignment	43
6.3 Switching on the ISD 510 Servo System	44
6.4 Basic Programming	44
6.4.1 Programming with Automation Studio™	44
6.4.1.1 Requirements	44
6.4.1.2 Creating an Automation Studio™ Project	44
6.4.1.3 Connecting to the PLC	48
6.4.2 Programming with TwinCAT [®]	48
6.4.2.1 ISD Deliverables	48
6.4.2.2 Creating a TwinCAT [®] Project	48
6.4.2.3 Configuration as a TwinCAT [®] NC Axis	54
6.4.2.4 Connecting to the PLC	55
6.4.3 Programming Guidelines	55
6.5 ISD Toolbox	56
6.5.1 Overview	56
6.5.2 System Requirements	56
6.5.3 Installation	56
6.5.4 ISD Toolbox Communication	56
6.5.4.1 Network Settings for Indirect Communication	57
6.5.4.2 Network Settings for Direct Communication with Ethernet POWERL	INK [®] 58
6.5.4.3 Network Settings for Direct Communication with ${\sf EtherCAT}^{ m s}$	59
6.5.5 ISD Toolbox Commissioning	60
6.6 Motion Library	62

6.6.1 Function Blocks	62
6.6.2 Simple Programming Template	62
7 Operation	63
7.1 Operating Modes	63
7.1.1 Motion Functions	63
7.2 Operating Status Indicators	63
7.2.1 Operating LEDs on the Servo Drive	64
7.2.2 Operating LEDs on the Servo Access Box	64
8 ISD Safety Concept	66
8.1 Applied Standards and Compliance	66
8.2 Abbreviations and Conventions	66
8.3 Qualified Personnel for Working with the STO Function	66
8.4 Safety Precautions	67
8.5 Functional Description	68
8.6 Installation	68
8.7 Operation of the ISD Safety Concept	68
8.7.1 Statusword	68
8.7.2 Error Codes	69
8.8 Fault Reset	69
8.9 Commissioning Test	69
8.10 Application Example	72
8.11 Safety Function Characteristic Data	73
8.12 Maintenance, Security, and User Accessibility	73
9 Diagnostics	74
9.1 Faults	74
9.2 Servo Drive	74
9.2.1 Troubleshooting	74
9.2.2 Error Codes	75
9.3 Servo Access Box (SAB)	77
9.3.1 Troubleshooting	77
9.3.2 Error Codes	78
10 Maintenance, Decommissioning, and Disposal	81
10.1 Maintenance Tasks	81
10.2 Inspection during Operation	82
10.3 Repair	82
10.3.1 Cable Replacement	82
10.3.1.1 Feed-In Cable Replacement	82
10.3.1.2 Loop Cable Replacement	83

10.4 Servo Drive Replacement	83
10.4.1 Dismounting	83
10.4.2 Fitting and Commissioning	83
10.5 SAB Replacement	83
10.5.1 Dismounting	83
10.5.2 Fitting and Commissioning	83
10.6 Decommissioning of the ISD 510 Servo System	84
10.7 Product Returns	84
10.8 Recycling and Disposal	84
10.8.1 Recycling	84
10.8.2 Disposal	84
11 Specifications	05
	85
	85
	85
11.1.2 Characteristic Data	85
11.1.3 Dimensions	86
11.1.4 Permitted Forces	88
11.1.5 General Specifications and Environmental Conditions	88
11.2 Servo Access Box	89
11.2.1 Nameplate	89
11.2.2 Characteristic Data	89
11.2.3 Dimensions	90
11.2.4 General Specifications and Environmental Conditions	92
11.3 Cables	92
11.4 Storage	92
11.4.1 Long-Term Storage	92
12 Appendix	93
12.1 Glossary	93
Index	95

1

1 Introduction

1.1 Purpose of the Operating Instructions

The purpose of these operating instructions is to describe the VLT[®] Integrated Servo Drive ISD[®] 510 System.

These operating instructions contain information about:

- Installation
- Commissioning
- Programming
- Operation
- Troubleshooting
- Service and maintenance

These operating instructions are intended for use by qualified personnel. Read it in full to use the ISD 510 servo system safely and professionally, and pay particular attention to the safety instructions and general warnings. These operating instructions are an integral part of the ISD 510 servo system and also contains important service information. Therefore, keep it available with the ISD 510 servo system at all times.

Compliance with the information in these operating instructions is a prerequisite for:

- Trouble-free operation.
- Recognition of product liability claims.

Therefore, read these operating instructions before working with the ISD 510 servo system.

1.2 Additional Resources

Available manuals for the ISD 510 servo system:

Document	Contents
VLT [®] Integrated Servo Drive	Information about the installation,
ISD [®] 510 System Operating	commissioning, and operation of
Instructions	the ISD 510 servo system.
VLT [®] Integrated Servo Drive	Information about the set-up of
ISD [®] 510 System Design	the ISD 510 servo system and
Guide	detailed technical data.
VLT [®] Integrated Servo Drive	Information about the
ISD [®] 510 System	programming of the ISD 510 servo
Programming Guide	system.

Table 1.1 Available Documents for the ISD 510 Servo System

Technical literature for Danfoss drives is also available online at *vlt-drives.danfoss.com/Support/Technical-Documentation/*.

1.3 Copyright

VLT®, ISD®, and SAB® are Danfoss registered trademarks.

1.4 Approvals and Certifications

The ISD 510 servo system fulfills the standards listed in *Table 1.2*.

IEC/EN 61800-3	Adjustable speed electrical power drive
	systems.
	Part 3: EMC requirements and specific test
	methods.
IEC/EN	Adjustable speed electrical power drive
61800-5-1	systems.
	Part 5-1: Safety requirements - Electrical,
	thermal and energy.
IEC/EN	Adjustable speed electrical power drive
61800-5-2	systems.
	Part 5-2: Safety requirements - Functional.
IEC/EN 61508	Functional safety of electrical/electronical/
	programmable electronic safety-related
	systems.
EN ISO 13849-1	Safety of machinery - Safety-related parts of
	control systems.
	Part 1: General principles for design.
EN ISO 13849-2	Safety of machinery - Safety-related parts of
	control systems.
	Part 2: Validation.
IEC/EN 60204-1	Safety of machinery - Electrical equipment of
	machines.
	Part 1: General requirements.
IEC/EN 62061	Safety of machinery - Functional safety of
	safety-related electrical, electronic, and
	programmable electronic control systems.
IEC/EN	Electrical equipment for measurement, control,
61326-3-1	and laboratory use – EMC requirements.
	Part 3-1: Immunity requirements for safety-
	related systems and for equipment intended
	to perform safety-related functions (functional
	safety) – General industrial applications.
UL508C	UL Standard for Safety for Power Conversion
	Equipment.
	(6)
2006/42/EC	Machinery Directive
CE	CE
2014/30/EU	EMC Directive
2014/35/EU	Low Voltage Directive
RoHS	Restriction of hazardous substances.
(2002/95/EC)	

EtherCAT [®]	Ethernet for Control Automation Technology.
	Ethernet-based fieldbus system (see
	chapter 12.1 Glossary for further information).
Ethernet	Ethernet-based fieldbus system:
POWERLINK®	
PLCopen [®]	Technical specification.
	Function blocks for motion control (formerly
	Part 1 and Part 2) Version 2.0 March 17, 2011.

Table 1.2 Approvals and Certifications

1.5 System Overview

Illustration 1.1 Overview of the ISD 510 Servo System

The servo drives are self-contained distributed drives, whereby the drive electronics is housed together with the motor in the same casing. There are 2 versions of the ISD 510 servo drive:

Standard	With 2 hybrid connectors (M23) that connect power
	and communication signals from a hybrid cable.
Advanced	As standard plus 3 additional interfaces for external
	encoder or I/Os, fieldbus devices, and for the local
	control panel (LCP) to be connected directly.

Table 1.3 ISD 510 Servo Drive Versions

In this decentral system, the servo drives are operated in a DC group and controlled by a PLC. The motion control software runs independently in the servo drive, reducing the load on the PLC.

The ISD 510 servo system requires hybrid cables that contain the DC supply voltage, the Real-Time Ethernet, U_{AUX} and STO signals.

The Servo Access Box (SAB $^{\!\!\rm (S)}$ is the central power supply for the ISD 510 servo system.

The ISD 510 servo system is designed to accommodate up to 64 ISD 510 servo drives and consists of:

- ISD 510 servo drives
- Servo Access Box (SAB)
- 1 PLC (not included)
- Cabling
- Blind caps
- Software:

- Firmware for the servo drive
- Firmware for the SAB
- PC software tool: ISD Toolbox
- PLC libraries
 - Danfoss Motion library for VLT[®] Integrated Servo Drive ISD 510 system for AutomationStudio[™]
 - Danfoss Motion library for VLT[®] Integrated Servo Drive ISD 510 system for TwinCAT[®] 2

NOTICE

The ISD 510 servo drives cannot be used in servo systems from other manufacturers without changing the cabling infrastructure. Contact Danfoss for further information.

Drives from other manufacturers cannot be used in the ISD 510 servo system when using Danfoss hybrid cables.

1.5.1 Areas of Application

Potential areas of application are:

- Food and beverage machines
- Packaging machines
- Pharmaceutical machines
- Applications running with a group of decentral servo drives.

1.6 Software

Updates to the firmware, ISD Toolbox software, and PLC libraries may be available. When updates are available, they can be downloaded from the *danfoss.com* website. The ISD Toolbox software or the PLC libraries can be used to install the firmware on the servo drives or on the SAB.

1.7 Terminology

ISD	Integrated servo drive
ISD 510 Servo	Decentral servo drive
Drive	
VLT [®] Servo Access	Unit that generates the DC-link voltage and
Box (SAB)	passes the U_{AUX} , Real-Time Ethernet, and STO
	signals to the ISD 510 servo drives via a
	hybrid cable.
PLC	External device for controlling the ISD 510
	servo system.
Loop cable	Hybrid cable for connecting drives in daisy-
	chain format.
Feed-in cable	Hybrid cable for connection from the SAB to
	the 1st servo drive.

Table 1.4 Terminology

An explanation of all terminology and abbreviations can be found in *chapter 12.1 Glossary*.

Danfoss

2 Safety

2.1 Symbols Used in this Manual

The following symbols are used in this manual:

Indicates a potentially hazardous situation that could result in death or serious injury.

ACAUTION

Indicates a potentially hazardous situation that could result in minor or moderate injury. It can also be used to alert against unsafe practices.

NOTICE

Indicates important information, including situations that can result in damage to equipment or property.

2.2 General

The following safety instructions and precautions relate to the ISD 510 servo system.

Read the safety instructions carefully before starting to work in any way with the ISD 510 servo system or its components.

Pay particular attention to the safety instructions in the relevant sections of this manual.

HAZARDOUS SITUATION

If the servo drive, SAB, or the bus lines are incorrectly connected, there is a risk of death, serious injury, or damage to the unit.

Always comply with the instructions in this manual and national and local safety regulations.

2.3 Safety Instructions and Precautions

Compliance with the safety instructions and precautions is necessary at all times.

- Orderly and proper transport, storage, fitting, and installation, as well as careful operation and maintenance, are essential for the trouble-free and safe operation of the ISD 510 servo system and its components.
- Only suitably trained and qualified personnel may work on the ISD 510 servo system and its components or in its vicinity. See *chapter 2.5 Qualified Personnel.*

- Only use accessories and spare parts approved by Danfoss.
- Comply with the specified ambient conditions. For further information, see *chapter 11.1.5 General* Specifications and Environmental Conditions and *chapter 11.2.4 General Specifications and Environ*mental Conditions.
- The information in this manual about the use of available components is provided solely by way of examples of applications and suggestions.
- The plant engineer or system engineer is personally responsible for checking the suitability of the supplied components and the information provided in this manual for the specific application concerned:
 - For compliance with the safety regulations and standards relevant to the specific application.
 - For implementing the necessary measures, changes, and extensions.
- Commissioning the ISD 510 servo system or its components is not allowed until it has been ascertained that the machine, system, or plant in which they are installed conforms to the statutory provisions, safety regulations, and standards that apply to the application in the country of use.
- Operation is only allowed in compliance with the national EMC regulations for the application concerned.
- Compliance with the limit values specified by national regulations is the responsibility of the producer of the plant, system, or machine.
- Compliance with the specifications, connection conditions, and installation conditions in this manual is mandatory.
- The safety regulations and safety provisions of the country in which the equipment is used must be observed.
- To protect the user against electrical shock and to protect the servo drive and the SAB against overload, protective grounding is obligatory and must be performed in accordance with local and national regulations.

GROUNDING HAZARD

The ground leakage current is >3.5 mA. Improper grounding of the ISD 510 servo system components may result in death or serious injury.

 For reasons of operator safety, ground the components of the ISD 510 servo system correctly in accordance with national or local electrical regulations and the information in this manual.

Operational safety

- Safety-related applications are only allowed if they are explicitly and unambiguously mentioned in this manual.
- All applications that can cause hazards to people or damage to property are safety-related applications.
- The stop functions implemented in the software of the PLC do not interrupt the mains supply to the SAB. Therefore, they must not be used as safety switches for the ISD 510 servo system.
- The servo drive can be brought to a stop by a software command or a zero speed setpoint, however DC voltage remains present on the servo drive and/or mains voltage in the SAB. Also when the servo drive is stopped, it may start up again on its own if the circuitry of the servo drive is defective or after the elimination of a temporary overload, a problem with the supply voltage, or a problem with the servo drive. If personal safety considerations (for example, risk of personal injury caused by contact with moving machine parts after an unintended start) make it necessary to ensure that an unintended start cannot occur, these stop functions are not sufficient. In this case, ensure that the ISD 510 servo system is detached from the mains network, or that a suitable stop function is implemented.
- The servo drive may start running unintentionally during parameter configuration or programming. If this poses a risk to personal safety (for example, risk of personal injury due to contact with moving machine parts), prevent unintended motor starting, for example by using the Safe Torque Off function, or by safe disconnection of the servo drives.
- In addition to the L1, L2, and L3 supply voltage inputs on the SAB, the ISD 510 servo system has other supply voltage inputs, including external auxiliary voltage. Before commencing repair work, check that all supply voltage inputs have been switched off and that the necessary discharge time for the DC-link capacitors has elapsed (see

the discharge safety warning in chapter 2.4 Important Safety Warnings).

Danfoss

2.4 Important Safety Warnings

HIGH VOLTAGE

The ISD 510 servo system contains components that operate at high voltage when connected to the electrical supply network.

A hazardous voltage is present on the servo drives and the SAB whenever they are connected to the mains network.

There are no indicators on the servo drive or SAB that indicate the presence of mains supply.

Incorrect installation, commissioning, or maintenance can lead to death or serious injury.

 Installation, commissioning, and maintenance may only be performed by qualified personnel (see chapter 2.5 Qualified Personnel).

UNINTENDED START

The ISD 510 servo system contains servo drives and the SAB that are connected to the electrical supply network and can start running at any time. This may be caused by a fieldbus command, a reference signal, or clearing a fault condition. Servo drives and all connected devices must be in good operating condition. A deficient operating condition may lead to death, serious injury, damage to equipment, or other material damage when the unit is connected to the electrical supply network.

 Take suitable measures to prevent unintended starts.

DISCHARGE TIME

The servo drives and the SAB contain DC-link capacitors that remain charged for some time after the mains supply is switched off at the SAB. Failure to wait the specified time after power has been removed before performing service or repair work could result in death or serious injury.

 To avoid electrical shock, fully disconnect the SAB from the mains and wait for at least the time listed in *Table 2.1* for the capacitors to fully discharge before carrying out any maintenance or repair work on the ISD 510 servo system or its components.

Number	Minimum waiting time (minutes)
0–64 servo drives	10

Table 2.1 Discharge Time

NOTICE

Never connect or disconnect the hybrid cable to or from the servo drive when the ISD 510 servo system is connected to mains or auxiliary supply, or when voltage is still present. Doing so damages the electronic circuitry. Ensure that the mains supply is disconnected and the required discharge time for the DC-link capacitors has elapsed before disconnecting or connecting the hybrid cables or disconnecting cables from the SAB.

2.5 Qualified Personnel

Installation, commissioning, and maintenance of the ISD 510 servo system may only be carried out by qualified personnel.

For the purposes of this manual and the safety instructions in this manual, qualified personnel are trained personnel who are authorized to fit, install, commission, ground, and label equipment, systems, and circuits in accordance with the standards for safety technology and who are familiar with the safety concepts of automation engineering. Additionally, the personnel must be familiar with all the instructions and safety measures described in this manual. They must have suitable safety equipment and be trained in first aid.

2.6 Due Diligence

The operator and/or fabricator must ensure that:

- The ISD 510 servo system and its components are used only as intended.
- The components are operated only in a perfect operational condition.
- The operating instructions are always available near the ISD 510 servo system in complete and readable form.
- The ISD 510 servo system and its components are fitted, installed, commissioned, and maintained only by adequately qualified and authorized personnel.
- These personnel are regularly instructed on all relevant matters of occupational safety and environmental protection, as well as the contents of the operating instructions and the instructions it contains.
- The product markings and identification markings applied to the components, as well as safety and warning instructions, are not removed and are always kept in a legible condition.

- The national and international regulations regarding the control of machinery and equipment, that are applicable at the place of use of the ISD 510 servo system, are complied with.
- The users always have all current information relevant to their interests about the ISD 510 servo system and its use and operation.

2.7 Intended Use

The components of the ISD 510 servo system are intended to be installed in machines used in industrial environments in accordance with local laws and standards.

NOTICE

In a domestic environment, this product may cause radio interferences, in which case supplementary mitigation measures may be required.

To ensure that the product is used as intended, the following conditions must be fulfilled before use:

- Everyone who uses Danfoss products in any manner must read and understand the corresponding safety regulations and the description of the intended use.
- Hardware must be left in its original state.
- Software products must not be reverseengineered and their source code must not be altered.
- Damaged or faulty products must not be installed or put into operation.
- It must be ensured that the products are installed in conformance with the regulations mentioned in the documentation.
- Any specified maintenance and service intervals must be observed.
- All protective measures must be complied with.
- Only the components described in these operating instructions may be fitted or installed. Third-party devices and equipment may be used only in consultation with Danfoss.

The ISD 510 servo system **may not** be used in the following application areas:

- Areas with potentially explosive atmospheres.
- Mobile or portable systems.
- Floating or airborne systems.
- Inhabited facilities.
- Sites where radioactive materials are present.

<u>Danfoss</u>

- Areas with extreme temperature variations or in which the maximum rated temperatures may be exceeded.
- Under water.

2.8 Foreseeable Misuse

Any use not expressly approved by Danfoss constitutes misuse. This also applies to failure to comply with the specified operating conditions and applications. Danfoss assumes no liability of any sort for damage attributable to improper use.

2.9 Service and Support

Contact the local service representative for service and support: vlt-drives.danfoss.com/Support/Service/

Danfoss

3 System Description

3.1 Overview

The VLT[®] Integrated Servo Drive ISD[®] 510 system is a high-performance decentral servo motion solution.

It comprises:

- A central power supply VLT[®] Servo Access Box (SAB[®]).
- VLT[®] Integrated Servo Drives ISD[®] 510.
- Cabling infrastructure.

The decentralization of the drive unit offers benefits in mounting, installation, and operation. Depending on the application, the SAB can power up to 64 drives in a servo drive system when using 2 hybrid lines. It generates a DC-link voltage of 565–680 V DC \pm 10% and guarantees high power density. It has a removable local control panel (LCP), and is based on the proven quality of a Danfoss frequency converter.

The motion control is integrated into the servo drive so that the motion sequences can take place independently. This reduces the required computing power of the central PLC and offers a highly flexible drive concept. Danfoss offers libraries for various IEC 61131-3 programmable PLCs. Due to the standardized and certified fieldbus interfaces of the ISD devices, any PLC with an EtherCAT[®] master functionality or Ethernet POWERLINK[®] managing node functionality according to the standards can be used. Hybrid cables are used to connect the drives, making installation fast and simple. These hybrid cables contain the DC-link supply, the Real-Time Ethernet, UAUX and STO signals.

3.2 Servo Drive

ISD is the abbreviation of integrated servo drive, which is a compact drive with an integrated permanent magnet synchronous motor (PMSM). This means the entire power drive system consisting of motor, position sensor, mechanical brake, and also power and control electronics is integrated into 1 housing. Additional circuits, such as main low voltage supply, bus drivers, and functional safety are implemented within the servo drive electronics. All servo drives have 2 hybrid connectors (M23) that connect power and communication signals from a hybrid cable. The advanced version has 3 additional interfaces for external

encoder or I/Os, fieldbus devices, and for the local control panel (LCP) to be connected directly.

LEDs on the top of the servo drive show the current status (see *chapter 7.2 Operating Status Indicators* for further information). Data transfer takes place via Real-Time Ethernet.

1	Operating LEDs (see chapter 7.2.1 Operating LEDs on the Servo
	Drive for further information).
2	Connectors

Illustration 3.1 ISD 510 Servo Drive

The ISD 510 servo drive has the following flange sizes: 76 mm, 84 mm.

Further flange sizes of 108 mm and 138 mm are in planning.

	Size 1, 1.5 Nm	Size 2, 2.1 Nm	Size 2, 2.9 Nm	Size 2, 3.8 Nm
Flange size	76 mm		84 mm	

Table 3.1 Motor and Flange Sizes

All dimensions of the servo drive are listed in *chapter 11.1.3 Dimensions*.

3.2.1 Servo Drive Types

Pos.	1	2	3	4	5	6	5	7 8	3 9	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Fixed	I	S	D	5	1	C)	٦	Г					D	6																										
Variant							ļ	4	C)	1	С	5			Е	5	4	F	R	Х	Ρ	L	S	Х	Х	Т	F	0	7	6	S	Х	Ν	4	6	Х	S	Х	S	Х
								5	C	ז	2	С	1			Е	6	7	F	S	1	Е	С	S	С	0	F	F	0	8	4	С	0	Ν	4	0	В	Κ	S	С	Х
				Γ	Γ			Τ	C	ז	2	С	9						F	М	1	Ρ	Ν					F	1	0	8			Ν	2	9		С			
									C)	3	С	8									Ε	Ν					F	1	3	8			Ν	2	4					

Table 3.2 Type Code

[01–03]	Product group	[21–22]	Bus system	[33–35]	Motor speed
ISD	VLT [®] Integrated Servo Drive	PL	Ethernet POWERLINK®	N46	Rated speed 4600 RPM
[04–06]	Product variant	EC	EtherCAT [®]	N40	Rated speed 4000 RPM
510	ISD [®] 510	PN	PROFINET ^{®1)}	N29	Rated speed 2900 RPM
[07]	Hardware configuration	EN	Ethernet/IP ^{™1)}	N24	Rated speed 2400 RPM
A	Advanced	[23–25]	Firmware	[36]	Mechanical brake
s	Standard	SXX	Standard	Х	Without brake
[08]	Drive torque	SC0	Customized version	В	With brake
т	Torque	[26]	Safety	[37]	Motor shaft
[09–12]	Torque	Т	Safe Torque Off (STO)	S	Standard smooth shaft
01C5	1.5 Nm	F	Functional safety ¹⁾	к	Standard fitted key ¹⁾
02C1	2.1 Nm	[27–30]	Flange size	с	Customized
02C9	2.9 Nm	F076	76 mm	[38]	Motor sealing
03C8	3.8 Nm	F084	84 mm	Х	Without sealing
[13–14]	DC voltage	F108	108 mm ¹⁾	S	With sealing
D6	600 V DC-link voltage	F138	138 mm ¹⁾	[39–40]	Surface coating
[15–17]	Drive enclosure	[31–32]	Flange type	SX	Standard
E54	IP54	SX	Standard	сх	Customized
E67	IP67 (shaft IP65)	C0	Customized version		
[18–20]	Drive feedback				
FRX	Resolver				
FS1	Single-turn feedback				
FM1	Multi-turn feedback				

Table 3.3 Legend to Type code

1) In preparation

3.2.2 Motor Components

3.2.2.1 Shaft

The shaft transfers the motor force (torque) to the machine coupled to the shaft.

The shaft material is C45+C or equivalent according to EN 10277-2.

The ISD 510 servo drives can be sealed by a shaft seal (optional) to achieve IP65 on the A-side of the motor (see *chapter 11.1.5 General Specifications and Environmental Conditions* for further information).

3.2.2.2 Brake (Optional)

The optional mechanical holding brake is designed as a single-disc brake. The emergency stop function can be initiated at most once every 3 minutes and up to 2000 times in total, depending on the load.

- The effective holding torque is:
 - Size 1: 2.5 Nm
 - Size 2: 5.3 Nm

The brake operates as a holding brake according to the fail-safe principle *closed when no current*. It is powered from the 24–48 V DC auxiliary supply. This enables low-backlash load holding when no current is present.

Electrical data: Power consumption:

- Size 1: 1.5 W
- Size 2: 1.8 W

NOTICE

Do not misuse the holding brake as a working brake because this causes increased wear, resulting in premature failure.

NOTICE

Using servo drives with brakes can reduce the number of drives allowed, depending on the total length of each hybrid line. See the shell diagram in the VLT[®] Integrated Servo Drive ISD[®] 510 System Design Guide for further information.

3.2.2.3 Cooling

The servo drives are self-cooling.

Cooling (heat dispersal) is primarily via the flange, with a small amount dispersed by the housing.

3.2.2.4 Thermal Protection

Thermal sensors monitor the maximum allowable temperature of the motor winding and switch the motor off if the limit of 140 °C is exceeded. Thermal sensors are also present in the drive to protect the electronics against overtemperature. An error message is sent via Real-Time Ethernet to the higher-level PLC and is also shown on the LCP.

3.2.2.5 Built-In Feedback Devices

The built-in feedback device measures the rotor position.

- There are 3 feedback variants available:
 - Resolver
 - 17-Bit single-turn encoder
 - 17-Bit multi-turn encoder

Table 3.4 summarizes the characteristic data of each variant.

Data/type	Resolver	Single-turn	Multi-turn		
		encoder	encoder		
Signal	Sin/cos	BiSS-B	BiSS-B		
Accuracy	±10 arc min	±1.6 arc min	±1.6 arc min		
Resolution	14 bit	17 bit	17 bit		
Maximum	-	-	4096 (12 bit)		
number of					
turns					

Table 3.4 Characteristic Data of Available Feedback Devices

3.2.3 Drive Components

3.2.3.1 Connectors on the Servo Drives

This chapter details all possible connections for the standard and advanced servo drive. Refer to the tables in this chapter for maximum cable lengths, ratings, and other limits.

There are 5 connectors on the servo drives.

Connector	Description
X1	M23 Feed-in or loop hybrid cable input
X2	M23 Loop hybrid cable output or fieldbus
	extension cable
X3 (advanced version	M8 Ethernet cable (minimum CAT5,
only)	shielded)
X4 (advanced version	M12 I/O and/or encoder cable (shielded)
only)	
X5 (advanced version	M8 LCP cable (shielded)
only)	

Illustration 3.2 Connectors on the ISD 510 Servo Drive

X1 and X2: Hybrid connector (M23)

The hybrid cable provides the supply (mains and auxiliary), the communication lines, and the safety supply for each line of servo drives. Input and output connectors are connected inside the servo drive.

Illustration 3.3 X1: Male Hybrid Connector (M23)

Illustration 3.4 X2: Female Connector (M23)

Pin	Description	Notes	Rating/parameter
Α	UDC-	Negative DC mains	Operating voltage:
		supply	Negative DC supply
			(maximum –15 A)
В	UDC+	Positive DC mains	Operating voltage:
		supply	Positive DC supply
			(maximum 15 A)
С	AUX+	Auxiliary supply	24–48 V DC, 15 A
			Absolute maximum
			55 V DC
D	AUX–	Auxiliary supply	15 A
		ground	
PE	PE	PE connector	15 A
2	STO+	Safety supply	24 V DC ±10%, 1 A
3	STO-	Safety supply	1 A
		ground	
5	TD+	Positive Ethernet	
		transmit	
6	RD+	Positive Ethernet	
		receive	According to standard
7	TD-	Negative Ethernet	100BASE-T
		transmit	
8	RD-	Negative Ethernet	
		receive	

Table 3.5 Pin Assignment of X1 and X2 Hybrid Connectors (M23)

X3: 3rd Ethernet connector (M8, 4 pole)

The ISD 510 advanced servo drive has an additional fieldbus port (M8) for connecting a device that communicates via the selected fieldbus.

Pin	Description	Notes	Rating/parameter
1	TD+	Positive Ethernet	
		transmit	
2	RD+	Positive Ethernet	
		receive	According to standard
3	TD-	Negative Ethernet	100BASE-T
		transmit	
4	RD-	Negative Ethernet	
		receive	

Illustration 3.5 Pin Assignment of X3 3rd Ethernet Connector (M8, 4 pole)

130BE382.10

<u>Danfvisi</u>

X4: M12 I/O and/or encoder connector (M12, 8-pole)

The M12 I/O and/or encoder connector is available on the advanced servo drive and can be used or configured as:

- Digital output
- Digital input
- Analog input
- 24 V supply
- External encoder interface (SSI or BiSS).

Pin	Description	Notes	Rating/parameter
1	Digital	Switched 24 V as	Nominal voltage
	output	digital output or	24 V ±15%
		supply (24 V/150 mA)	Maximum current
			150 mA
			Maximum switching
			frequency 100 Hz
2	Ground	Ground isolated	-
3	Input 1	Analog/Digital input	Digital input:
			Nominal voltage 0–
			24 V
			Bandwidth: ≤ 100 kHz
			Analog input:
			Nominal voltage 0–
			10 V
			Input impedance
			5.46 kΩ
			Bandwidth: ≤ 25 kHz
4	/SSI CLK	Negative SSI/BiSS	SSI:
		clock out	Bus Speed: 0.5 Mbit
5	SSI DAT	Positive SSI/BiSS data	with 25 m cable
		in	BiSS:
6	SSI CLK	Positive SSI/BiSS clock	Fulfills the RS485
		out	specification.
			Maximum cable length
			(SSI & BiSS): 25 m
7	Input 2	Analog/Digital input	Digital input:
			Nominal voltage 0–
			24 V
			Bandwidth: ≤ 100 kHz
			Analog input:
			Nominal voltage 0–
			10 V
			Input impedance
			5.46 kΩ
			Bandwidth: ≤ 25 kHz

Pin	Description	Notes	Rating/parameter
8	/SSI DAT	Negative SSI/BiSS data	SSI:
		in	Bus Speed: 0.5 Mbit
			with 25 m cable
			BiSS:
			Fulfills the RS485
			specification.
			Maximum cable length
			(SSI & BiSS): 25 m

Illustration 3.6 Pin Assignment of X4 M12 I/O and/or Encoder Connector (M12)

X5: LCP connector (M8, 6 pole)

The X5 connector is used to connect the LCP directly to the advanced servo drive via a cable.

Pin	Description	Notes	Rating/
			parameter
1	Not connected	-	-
2	/LCP RST	Reset	Active at
			<0.5 V
3	LCP RS485	Positive RS485	Speed:
		signal	38.4 kBd
4	/LCP RS485	Negative RS485	The levels
		signal	fulfill the
			RS485 specifi-
			cation.
5	GND	GND	-
6	VCC	5 V Supply for	5 V ±10% at
		LCP	120 mA
			maximum load

Illustration 3.7	Pin	Assigr	ment	of	Х5	LCP	Conn	ector
(M8, 6-pole)								

Janfoss

3.3 Servo Access Box (SAB)

The SAB is the power supply and central interface/gateway to the ISD 510 servo system. It guarantees the connection of the servo drives to the fieldbus, generates the DC-link voltage for the ISD 510 servo system, and delivers a high-density output. It can be controlled using the local control panel (LCP) or via Ethernet-based fieldbus.

The LEDs on the front of the unit show the operating status and warnings (see *chapter 7.2.2 Operating LEDs on the Servo Access Box* for further information).

NOTICE

The SAB has an IP-rating of IP20. It is only designed for use within a control cabinet. The SAB may be damaged if exposed to fluids.

All power and signal cables are wired into the SAB and 2 independent lines of servo drives can be connected.

Service functions, such as voltage measuring, are performed by the SAB.

Illustration 3.8 Explosion Drawing of the Servo Access Box

<u>Danfvis</u>

System Description

Operating Instructions

Number	Description/connector name	Name on	Number	Description/connector name	Name on
		corresponding			corresponding
		connector			connector
1	Local control panel (LCP)	-	18	Hybrid cable line 2	-
2	Front cover	-	19	Decoupling plate	-
3	STO 1 IN: STO	+STO-	20	Shielded cable grounding	-
	(Used for STO input voltage 1)			clamp and strain relief	
4	STO 1 IN: 24 V	+24V-	21	24/48 V IN	+AUX-
	(Used for bridging when the STO function			(Auxiliary input terminal)	
	is not required, see chapter 3.3.1.1 STO				
	Connectors)				
5	LEDs for status of auxiliary output and	-	22	Relay 1	Relay 1
	STO				
6	Decoupling clamp for STO cable	-	23	Relay 2	Relay 2
7	ISD Line 2: STO 2	+STO-	24	Brake	R- (81), R+ (82)
	(STO output to hybrid cable line 2)				
8	ISD Line 2: NET 2 X4	RJ45 connector	25	Mains	L1 (91), L2 (92), L3
	(Ethernet output to hybrid cable line 2)	(without label)		(Input terminal)	(93)
9	ISD Line 2: AUX 2	+AUX-	26	Decoupling fixture for Ethernet	-
	(Auxiliary output to hybrid cable line 2)			inputs	
10	ISD Line 2: UDC 2	+UDC-	27	Decoupling clamp for encoder	-
	(UDC output to hybrid cable line 2)			cable	
11	ISD Line 1: STO 1	+STO-	28	X1	RJ45 connector
	(STO output to hybrid cable line 1)			(Ethernet input line 1)	(not included)
12	ISD Line 1: NET 1 X3	RJ45 connector	29	X2	RJ45 connector
	(Ethernet output to hybrid cable line 1)	(without label)		(Ethernet input line 2)	(not included)
13	ISD Line 1: AUX 1	+AUX-	30	GND, 24 V, GX, /RS422 TXD,	Not labeled
	(Auxiliary output to hybrid cable line 1)			RS422 TXD, /RS422 RXD, RS422	
				RXD	
				(Encoder terminal)	
14	ISD Line 1: UDC 1	+UDC-	31	STO 2 IN: STO	+STO-
	(UDC output to hybrid cable line 1)			(Used for STO input voltage 2)	
15	Grounding PE clamp for hybrid cable line	-	32	STO 2 IN: 24 V	+24V-
	2			(Used for bridging when the	
				STO function is not required,	
				see chapter 3.3.1.1 STO	
				Connectors)	
16	Grounding PE clamp for hybrid cable line	-	33	Cover	-
	1				
17	Hybrid cable line 1	-	-	-	-

Table 3.6 Legend to Illustration 3.8

3.3.1 Connections on the SAB

All required connectors are included with the SAB.

All cabling must comply with national and local regulations on cable cross-sections and ambient temperature. Use shielded/armored cables to comply with EMC emission specifications.

3.3.1.1 STO Connectors

Item	Position	Description	Drawing/	Ratings
	on SAB		pins	
STO	Front	Used for STO		Nominal voltage:
1 IN:		input voltage		24 V DC ±10%
STO		1.	+ STO-	Nominal current:
STO	Front	Used for STO		Depends on the
2 IN:		input voltage	Pins (left	number of servo
STO		2.	to right):	drives in the
			STO+	application.
			STO-	Maximum current:
				1 A
				Maximum cross-
				section:
				1.5 mm ²
STO	Front	These	La com	Nominal voltage:
1 IN:		connectors can		24 V DC ±10%
24 V		only be used	+ 24V -	Nominal current:
STO	Front	to make a		1 A
2 IN:		bridge to STO	Pins (left	Maximum cross-
24 V		1 IN: STO and	to right):	section:
		STO 2 IN: STO	24+	1.5 mm ²
		if the STO	24-	
		function is not		
		required in the		
		application.		
		This connector		
		cannot be		
		used for any		
		other function.		
ISD	Underside	Used for STO	+ STO -	Nominal voltage:
Line		output voltage	HH	24 V DC ±10%
1:		1.		Nominal current:
STO			Pins (left	Depends on the
1			to right):	number of servo
ISD	Underside	Used for STO		drives in the
Line		output voltage	1510-	application.
2:		2.		Maximum current:
STO				1 A
2				Maximum cross-
				section:
				0.5 mm ²

Table 3.7 STO Connectors

3.3.1.2 Mains Connectors

Item	Description	Drawing/	Ratings
		pins	
AC	Used to connect		Nominal voltage:
mains	L1/L2/L3		400–480 V AC
supply			Nominal current:
			12.5 A
		Pins (left	Maximum cross-section:
		to right):	4 mm ²
		L1	
		L2	
		L3	
Mains	The PE screw is	-	Cross-section:
PE	used to connect		10 mm ²
	the protective		See
	earth, see		chapter 5.4 Grounding for
	Illustration 3.9.		further information.

Table 3.8 Mains Connectors

3.3.1.3 Brake Connectors

Item	Description	Drawing/pins	Ratings
Brake	Used for connecting a brake resistor	$ \begin{array}{c c} & & & \\ \hline \hline & & & \\ \hline \hline \hline \\ \hline & & & \\ \hline \hline \hline \\ \hline \hline & & & \\ \hline \hline \hline \hline$	Nominal voltage: 565–778 V DC Maximum brake current: 14.25 A Maximum cross- section: 4 mm ²

Table 3.9 Brake Connectors

NOTICE

The maximum length of the brake cable is 20 m (shielded).

3.3.1.4 Relay Connectors

Item	Description	Drawing/pins	Ratings
Relay	Used for a customer-		Pin 1: Common
1	defined reaction. For		Pin 2: 240 V AC
	example, the relay	°	Pin 3: 240 V AC
	can be triggered if	RELAY 1	Nominal current:
	the SAB issues a	000	2 A
	warning.	Pins (left to	Maximum cross-
		right):	section: 2.5 mm ²
		1: Common	
		2: Normally	
		open	
		3: Normally	
		closed	
Relay		00110	Pin 4: Common
2			Pin 5: 400 V AC
		RELAY 2	Pin 6: 240 V AC
			Nominal current:
		000	2 A
		Pins (left to	Maximum cross-
		right):	section: 2.5 mm ²
		4: Common	
		5: Normally	
		open	
		6: Normally	
		closed	

3.3.1.5 Encoder Connectors

Item	Description	Drawing/pins	Ratings
Encoder	Used to		Maximum
connector	connect SSI or		cross-
	BiSS encoders.	GND GND RS422 RS422 RS422	section:
			0.5 mm ² .
		Pins (left to right	See
		on SAB label):	Table 3.12.
		RS422 RXD	
		/RS422 RXD	
		RS422 TXD	
		/RS422 TXD	
		GX	
		24 V	
		GND	

Table 3.11 Encoder Connectors

NOTICE

The maximum length of the encoder cable is 25 m (shielded).

Number	Description	Notes		Rating/
				parameter
		SSI	BiSS	
1	RS422 RXD	Positi	ve data	Bus speed:
2	/RS422 RXD	Negat	ive data	SSI: 0.5 Mbit
3	RS422 TXD	Positiv	ve clock	with 25 m cable
4	/RS422 TXD	Negati	ve clock	BiSS: Fulfills the
				RS485 specifi-
				cation
5	GX	Isolated ground		-
		If encoders are		
		powered ex	xternally, the	
		ground of the external		
		supply must be		
		connect	ed to GX.	
6	24 V	24 V DC ±10%		Maximum
		(used for p	owering the	current:
		enc	oder)	250 mA
7	GND	Ground	for pin 6	-

Table 3.12 Pin Assignment for SSI and BiSS Encoders

3

Table 3.10 Relay Connectors

3.3.1.6 Ethernet Connectors (not included) 3.3.1.8 24/48 V IN Connector

Connector name	Description	Drawing/pins	Ratings
Ethernet X1	Connection to fieldbus	130EE395.10	Fulfill the 100BASE-T
Ethernet X2	Connection to fieldbus		specification
Ethernet X3	Connection to	Pins:	
	servo line 1	1: TD+	
Ethernet X4	Connection to	2: TD-	
	servo line 2	3: RD+	
		6: RD-	

Table 3.13 Ethernet Connectors

NOTICE

The maximum length of the X1 and X2 shielded Ethernet cables is 30 m.

3.3.1.7 AUX Connectors

Connector	Description	Drawing/	Ratings
name		pins	
ISD Line 1: AUX 1 ISD Line 2: AUX 2	Used to connect the AUX output from the SAB to the hybrid cable.	Pins (left to right): AUX+ AUX-	Nominal voltage: 24–48 V DC±10% Nominal current: Depends on the number of servo drives in the application Maximum current: 15 A Maximum cross-
			section: 2.5 mm ²

Table 3.14 AUX Connectors

Connector	Description	Drawing/	Ratings
name		pins	
24/48 V IN Connector	Used for 24– 48 V DC input to the SAB.	Pins (left to right): AUX+ AUX-	Nominal voltage: 24– 48 V DC ±10% Nominal current: Depends on the number of servo drives in the application Maximum current: 34 A Maximum cross- section: 4 mm ² Maximum cable length: 3 m

Table 3.15 24/48 V IN Connector

3.3.1.9 UDC Connectors

Connector	Description	Drawing/	Ratings
name		pins	
ISD Line 1: UDC 1 ISD Line 2: UDC 2	Used to connect the DC-link voltage from the SAB to the hybrid cable.	Pins (left to right): UDC+ UDC-	Nominal voltage: 565–778 V DC Nominal current: Depends on the number of servo drives in the application Maximum current: 15 A Maximum cross- section: 2.5 mm ²

Table 3.16 UDC Connectors

3.3.1.10 Hybrid Cable PE

Item	Description	Drawing/pins	Ratings
Hybrid	Used to connect the	See callout 15 in	Maximum
cable PE	PE wire from the	Illustration 3.8.	cross-
	hybrid cable to the		section:
	decoupling plate.		2.5 mm ²

Table 3.17 Hybrid Cable PE

3.4 Local Control Panel (LCP)

3.4.1 Overview

The LCP is the graphical user interface on the SAB for diagnostic and operating purposes. It is included as standard with the SAB but can also be connected to the advanced version servo drives using an optional cable (M8 to LCP D-SUB extension cable).

The LCP display provides the operator with a quick view of the state of the servo drive or SAB, depending on which device it is connected to. The display shows parameters and alarms/errors and can be used for commissioning and troubleshooting. It can also be used to perform simple functions, for example activating and deactivating the output lines on the SAB. The LCP can be mounted on the front of the control cabinet and then connected to the SAB via SUB-D cables (available as an accessory).

3.4.2 Local Control Panel (LCP) Layout

The local control panel is divided into 4 functional groups (see *Illustration 3.10*).

- A. Display area.
- B. Display menu keys.
- C. Navigation keys and indicator lights (LEDs).
- D. Operation keys and reset.

A. Display area

The values in the display area differ depending on whether the LCP is connected to an ISD 510 servo drive or the SAB as shown in *Illustration 3.10* and *Illustration 3.11*.

The display area is activated when the ISD 510 servo drive or SAB it is connected to receives power from the mains supply, a DC bus terminal, or U_{AUX} .

Display	Description
1	Actual torque
2	Temperature drive module
3	Position
4	Speed
5	Current

Illustration 3.10 Display Area when Connected to an ISD 510 Servo Drive

Display	Description
1	U _{AUX} line voltage
2	Temperature
3	Actual UDC (current)
4	ISD power consumption
5	Actual UDC (voltage)

Illustration 3.11 Display Area when Connected to the SAB

B. Display menu keys

Menu keys are used for menu access for parameter set-up, toggling through status display modes during normal operation, and viewing fault log data.

	Кеу	Function	
6	Status	Shows operational information.	
7	Quick Menu	Allows access to parameters.	
8	Main Menu	Allows access to parameters.	
9	Alarm Log	Shows the last 10 alarms.	

Table 3.18 Display Menu Keys

C. Navigation keys and indicator lights (LEDs)

Navigation keys are used for moving the display cursor and provide operation control in local operation. There are also 3 status LEDs in this area.

	Key	Function	
10	Back	Reverts to the previous step or list in the	
		menu structure.	
11	Cancel	Cancels the last change or command as long	
		as the display mode is not changed.	
12	Info	Press for a definition of the function being	
		shown.	
13	Navigation	Use the 4 navigation keys to move between	
	keys	items in the menu.	
14	OK	Use to access parameter groups or to enable	
		a selection.	

Table 3.19 Navigation Keys

	LED	Color	Function	
15	On	Green	The On LED activates when the	
			ISD 510 servo drive or SAB it is	
			connected to receives power from	
			the mains or auxiliary supply, or a	
			DC bus terminal.	
16	Warn	Yellow	When warning conditions are met,	
			the yellow Warn LED activates and	
			text appears in the display area	
			identifying the problem.	
17	Alarm	Red	A fault condition causes the red	
			Alarm LED to flash and an alarm	
			text is shown.	

Table 3.20 Indicator Lights (LEDs)

D. Operation keys and reset

Operation keys are located at the bottom of the LCP.

	Key	Function		
18	Hand On	Enables the connected ISD 510 servo drive		
		or SAB to be controlled via the LCP.		
		Switching between Hand On and Auto On		
		modes is only possible in certain states (see		
		the VLT [®] Integrated Servo Drive ISD [®] 510		
		System Programming Guide for further		
		information).		
19	Off	Puts the SAB into state Standby and the		
		drive to state Switch on Disabled.		
		This only works in Hand On mode.		
		Off mode enables transition from Hand On		
		mode to Auto On mode.		
20	Auto On	Puts the system in remote operational mode.		
		• In Auto On mode, the device is controlled		
		by fieldbus (PLC).		
		Note that switching between Auto On		
		and Hand On modes is only possible		
		when the drive is in state Switch on		
		disabled and/or the SAB is in state		
		Standby.		
21	Reset	Resets the ISD 510 servo drive or SAB after a		
		fault has been cleared.		
		The reset is only possible when in Hand On		
		mode		

Table 3.21 Operation Keys and Reset

NOTICE

To adjust the display contrast, press [Status] and the $[\blacktriangle]/[\lor]$ keys.

3.5 Cables

3.5.1 Hybrid Cable

Illustration 3.12 Hybrid Loop Cable

There are 2 types of hybrid cables that are available with both angled and straight M23 connectors:

- Feed-in cable for connecting the 1st servo drive of a group to the connection point on the SAB.
- Loop cable for connecting the ISD 510 servo drives in daisy-chain format in an application.

Both these cables are provided by Danfoss and are available in various lengths. See the *VLT®* Integrated Servo Drive ISD® 510 System Design Guide for further information.

Both ends of the loop cable are fitted with M23 connectors.

The feed-in cable is fitted with an M23 connector at the output end for connection to the 1st servo drive. At the input end it is pigtailed with individual connectors for connection to the corresponding terminals on the SAB.

Minimum bending radius

The maximum number of bending cycles is 5 million at 7.5 x cable diameter (15.6 mm).

- Permanently flexible: 12 x cable diameter
- Permanently installed: 5 x cable diameter

Description	Shielded/	Maximum	Port	Notes
	unshielded	cable		
		length		
Feed-in	Shielded	40 m ¹⁾	Signal/	Hybrid cable
cable			control	(overall shield
				with additional
				fieldbus and
				safety section
				shield).
Loop cable	Shielded	25 m ¹⁾	Signal/	Hybrid cable
			control	(overall shield
				with additional
				fieldbus and
				safety section
				shield).

Table 3.22 Hybrid Cables

1) Maximum 100 m total length for each line.

3.5.2 I/O and/or Encoder Cable

This cable connects the I/O and/or encoder to the servo drive (see X4 in *chapter 3.2.3.1 Connectors on the Servo Drives*). The cable is not included with the servo drives. I/O and/or encoder cables with M12 connectors can be used for the ISD 510 servo system if they comply with the form factor defined in IEC 61076-2-101.

3.5.3 Additional Cables

Fieldbus extension cable

If this cable is not used, fit the M23 blind cap to the X2 female connector on the last servo drive in the application.

LCP cables

There are 2 kinds of cable for the LCP module that can be purchased from Danfoss (see the VLT[®] Integrated Servo Drive ISD[®] 510 System Design Guide):

- To connect the LCP to the servo drive.
- To connect the LCP to the SAB.

3.6 Connection Cables/Cabling

3.6.1 Layout and Routing

The servo drives are interconnected by hybrid loop cables. A hybrid feed-in cable with quick-release connectors provides the supply voltage from the SAB to the 1st servo drive.

Routing in drag chains

The hybrid cable is compatible with drag chains and therefore suitable for use in moving systems. The number of bending cycles is dependent on individual conditions and must therefore be determined in advance for each application, see *chapter 3.5.1 Hybrid Cable* for further information.

Maximum cable lengths

M23 Feed-in cable	40 m	
M23 Loop cable	25 m	
Fieldbus extension cable	Length: 2 m	
	Maximum length to next port:	
	100 m	
Maximum cable length per line	100 m	

Table 3.23 Maximum Cable Lengths

Chapter 3.6.1.1 Standard Cabling Concept for 2 Lines and chapter 3.6.1.2 Standard Cabling Concept for 1 Line show the standard cabling concept without redundancy that can be used to connect 1 or 2 lines, each with up to 32 servo drives in an application.

NOTICE

For cabling with redundancy, see the VLT[®] Integrated Servo Drive ISD[®] 510 System Design Guide.

3.6.1.1 Standard Cabling Concept for 2 Lines

Illustration 3.13 Standard Cabling Concept for 2 Lines

3.6.1.2 Standard Cabling Concept for 1 Line

Illustration 3.14 Standard Cabling Concept for 1 Line

3.7 Software

The software for the ISD 510 servo system comprises:

- The firmware of the VLT[®] Integrated Servo Drive ISD[®] 510 that is already installed on the device and provides the functionality described in *chapter 7 Operation*.
- The firmware of the VLT[®] Servo Access Box that is already installed on the device.
- A package of PLC libraries for Automation Studio[™] for operating the ISD 510 devices (see chapter 6.4.1 Programming with Automation Studio [™] for further information).
- A PLC library for TwinCAT[®] 2 for operating the ISD 510 devices (see *chapter 6.4.2 Programming with TwinCAT*[®] for further information).
- ISD Toolbox: A Danfoss PC-based software tool for commissioning and debugging the devices (see *chapter 6.5 ISD Toolbox* for further information).

3.8 Fieldbus

The ISD 510 servo system has an open system architecture realized by fast Ethernet (100BASE-T) based communication. The system supports both EtherCAT[®] and Ethernet POWERLINK[®] fieldbuses. See the *VLT[®] Integrated Servo Drive ISD[®] 510 System Programming Guide* for further information.

In productive environments, communication to the devices always takes place via a PLC that acts as a master. The servo drives and the SABs can be controlled by these communication methods:

- Using the ISD library (available for TwinCAT[®] and Automation Studio[™]).
- Using the NC axis functionality of TwinCAT[®].
- Using the CANopen[®] CiA DS 402 standard by reading and writing to objects.

The servo drives and the SABs can be operated with the following cycle times (for both fieldbuses):

- 400 μs and multiples of it (for example, 800 μs, 1200 μs, and so on).
- 500 μs and multiples of it (for example, 500 μs, 1 ms, and so on).

When the cycle time is a multiple of 400 μs and 500 $\mu s,$ the time base of 500 μs is used.

The servo drive and the SAB are certified for both fieldbuses according to the corresponding rules and regulations. The servo drive conforms to the CANopen[®] CiA DS 402 Drive Profile.

3.8.1 EtherCAT®

The servo drive and the SAB support the following EtherCAT[®] protocols:

- CANopen over EtherCAT[®] (CoE)
- File Access over EtherCAT[®] (FoE)
- Ethernet over EtherCAT[®] (EoE)

The servo drive and the SAB support distributed clocks. To compensate for the failure of a communication cable section in the system, cable redundancy is available for both fieldbuses. See the *VLT®* Integrated Servo Drive ISD® 510 System Design Guide for further information.

The EtherCAT[®] port assignment for the servo drive and SAB are shown in *Illustration 3.15* and *Illustration 3.16*.

- X1 M23 hybrid cable connector to SAB or previous servo drive.
 X2 M23 hybrid cable connector to the next servo drive.
- X3 M8 Ethernet cable connector to other EtherCAT[®] slaves, for example EtherCAT[®] encoder.

The connector is only available on the advanced servo drive.

Illustration 3.15 EtherCAT[®] Port Assignment for the Servo Drive

X1	RJ45 cable connector to the PLC or previous slave.
X2	RJ45 cable connector to the PLC or next slave.
Х3	RJ45 to M23 hybrid adapter cable to the 1 st servo drive on
	line 1.
X4	RJ45 to M23 hybrid adapter cable to the 1 st servo drive on
	line 2.
1	Ports always connected internally in the SAB.

Illustration 3.16 EtherCAT[®] Port Assignment for the SAB in Line Topology Mode (default)

3.8.2 Ethernet POWERLINK®

The ISD drive and the SAB are certified according to DS301 V1.1.0. The following features are supported for the ISD servo drive and the SAB:

- Work as controlled node.
- Can be operated as multiplexed stations.
- Support of cross-communication.
- Ring redundancy is supported for media redundancy.

Specific ports are not assigned for Ethernet POWERLINK[®].

Danfoss

4 Mechanical Installation

4.1 Transport and Delivery

4.1.1 Items Supplied

The items supplied for the ISD 510 servo system are:

- ISD 510 servo drives
- Servo Access Box (SAB) including connectors
- This manual
- Feed-in (hybrid) cable
- Loop (hybrid) cable
- Blind caps for connectors M8, M12, and M23

The packaging unit depends on the number of servo drives delivered. Save the packaging for use in the event of product return.

4.1.2 Transport

- Always use means of transport and lifting gear with sufficient load capacity to transport the servo drives and the SAB.
- Avoid vibration during transport.
- Avoid heavy impacts and blows.

4.1.3 Inspection on Receipt

- 1. After receiving the delivery, immediately check whether the items supplied match the shipping documents. Danfoss does not honor claims for faults registered later.
- 2. Register a complaint immediately:
 - With the carrier if there is visible transport damage.
 - With the responsible Danfoss representative if there are visible defects or the delivery is incomplete.

4.2 Safety Measures during Installation

Always observe the safety instructions in *chapter 2 Safety* during installation.

Pay particular attention to ensuring that the following points are always observed:

- Installation may only be performed by qualified personnel - see *chapter 2.5 Qualified Personnel*.
- Installation must be performed with due care and attention.
- All safety regulations and protective measures must be complied with, and the environmental conditions must be observed.
- The manual is read and understood.

4.3 Installation Environment

The installation must provide the following environmental conditions to allow the ISD 510 servo system to be operated safely and efficiently.

Servo Drive

- The allowable operating ambient temperature range and vibration levels must not be exceeded (see *chapter 11.1.5 General Specifications and Environmental Conditions* for further information).
- The allowable relative humidity range is 3–93%, non-condensing.
- Unrestricted ventilation must be available.
- The mounting structure must be suitable for the application, adequately rigid, and so on.

SAB

- The allowable operating ambient temperature range and vibration levels must not be exceeded (see *chapter 11.2.4 General Specifications and Environmental Conditions* for further information).
- The allowable relative humidity range is 5–93%, non-condensing.
- Minimum 100 mm space is required above and below the SAB (see *chapter 4.5.1 Installation and Space Requirements* for further information).

Contact Danfoss if it is not possible to comply with these environmental conditions.

Danfoss

4.4 Preparation for Installation

4.4.1 Servo Drive

Make the following preparations to ensure that the ISD 510 servo system can be installed reliably and effectively.

- 1. Provide a suitable mounting arrangement for the application. This depends on the type, weight, and torque of the servo drives.
- Seat the motor flange flush against the mounting surface before fixing the servo drive.
 Misalignment shortens the life of the bearing and the coupling components and reduces heat transfer from the servo drive.
- Provide contact protection according to local regulations if hot surfaces can be expected during operation.
- 4. Ground the servo drive as described in *chapter 5.4 Grounding.*

Always fit couplings and other transfer components in accordance with local regulations.

Operating Instructions

4.4.2 Servo Access Box (SAB)

Drill the holes for the mounting screws according to the template. All dimensions are in mm.

4

130BE423.10

<u>Danfvšš</u>

Illustration 4.1 SAB Mounting Template

4.5 Installation Procedure

4.5.1 Installation and Space Requirements

Servo Access Box

- The SABs can be mounted next to each other but require a minimum space of 100 mm at the top and bottom for cooling.
- In addition to its own dimensions, the SAB needs 100 mm space between the SAB decoupling plate and cable duct for connecting cables.

Servo Drive

- In addition to its own dimensions, the servo drive needs space for the hybrid cable. *Illustration 4.2* shows the necessary space when using the angled connector. *Illustration 4.3* shows the necessary space when using the straight connector.
- The amount of space necessary for installation depends on the tool used.

Illustration 4.2 Required Horizontal Space

Illustration 4.3 Required Vertical Space

4.5.2 Installation Aids and Tools Required

For installation of the servo drives, the tools corresponding to the fixing screws (not included) are required.

4.5.3 Fitting Instructions Servo Drive

The servo drives are delivered with an M23 transport protection cap. The M23 blind cap used for IP protection must be ordered separately. The advanced servo drive is delivered additionally with M8 and M12 blind caps. These blind caps prevent contamination of the servo drive and are necessary to achieve the relevant IP protection rating. Always mount these caps if the connector is not used.

NOTICE

Ensure the machine surface that comes in contact with the servo flange is unpainted in order to guarantee good thermal behavior of the servo drive. The surface contact must also provide sufficient grounding protection.

Clamping

Observe the following fitting instructions to ensure reliable and effective fitting of the servo drive:

- 1. Check the counterface of the motor mount and ensure that it has sufficient heat dispersion capacity. An unpainted surface is mandatory.
- 2. Remove the protective end cap from the shaft.
- 3. Fix the servo drive with 4 screws using the 4 mounting holes provided for this purpose in the machine unit (see *Illustration 4.4* and *Illustration 4.5*).
 - Always use the designated mounting holes in the mounting flange to fix the servo drive.
 - Do not modify the mounting holes.
 - Always use all 4 mounting holes. The motor may run unevenly if fewer mounting holes are used.
 - See *chapter 4.5.4 Tightening Torques* for tightening torques.

32

Danfoss

Operating Instructions

Illustration 4.4 Mounting of Size 1, 1.9 Nm, Size 2, 2.9 Nm, and Size 2, 3.8 Nm Servo Drives

Illustration 4.5 Mounting of Size 2, 2.1 Nm Servo Drive

Coupling

NOTICE

Do not machine the shaft.

Do not use the servo drive if the shaft does not match the coupling arrangement.

General instructions

NOTICE

Do not use excessive force during the fitting procedure:

- Do not exceed the vibration limits as detailed in chapter 11.1.5 General Specifications and Environmental Conditions.
- Do not exceed the permitted forces as detailed in *chapter 11.1.4 Permitted Forces*.
- 1. Align the clamping set to the axis of the servo drive.
- 2. Insert the shaft in the clamping set.
- 3. Screw the clamping set together.

4.5.4 Tightening Torques

Table 4.1 lists the tightening torque values for the fixing screws. Always tighten the fixing screws uniformly and crosswise.

Servo drive size	Thread type/	Maximum	Tightening
	hole size	thread length	torque
Size 1, 1.5 Nm	Ø 5.8 mm	-	-
Size 2, 2.1 Nm	M6 pitch 1 mm	23 mm	6 Nm
Size 2, 2.9 Nm	Ø 7 mm	-	-
Size 2, 3.8 Nm	Ø 7 mm	-	-

Table 4.1 Tightening Torques

NOTICE

The fixing screws are not supplied and must be selected according to the machine fixings.

4.5.5 Fitting Instructions Servo Access Box (SAB)

Step 1: Mount the decoupling plate

Mount the decoupling plate as shown in Illustration 4.6.

- 1. Slide the decoupling plate [3] into position, ensuring that the lips [2] are correctly inserted into the corresponding slots on the base plate.
- 2. Tighten the screw [1] at the top of the decoupling plate with 2 Nm.
- 3. Tighten the screws [4] at the bottom of the decoupling plate with 2 Nm.

Illustration 4.6 Mounting the Decoupling Plate

Step 2: Mount the SAB in the control cabinet using the holes drilled as described in *chapter 4.4.2 Servo Access Box (SAB)* (preparation for installation).

- Hook the SAB onto the holding screws on the backplate of the control cabinet.
- Tighten the holding screws.
- Tighten the screws at the bottom of the SAB.

NOTICE

A remote mounting kit is available to mount the LCP in the control cabinet door. See the $VLT^{@}$ Integrated Servo Drive ISD[®] 510 System Design Guide for further information.

Danfoss

5 Electrical Installation

5.1 Warnings

During electrical installation, observe the relevant local and national regulations in addition to the information in this manual.

AWARNING

LEAKAGE/GROUNDING CURRENT HAZARD

Leakage/grounding currents are >3.5 mA. Failure to ground the SAB and the ISD servo drives properly could result in death or serious injury.

 Ensure the correct grounding of the devices by a certified electrical installer in accordance with applicable national and local electrical standards and directives and the instructions contained in this manual.

HIGH VOLTAGE

The SAB contains high voltage when connected to the supply that could result in death or serious injury.

 Ensure that installation, start-up, and maintenance are only performed by qualified personnel.

5.2 Electrical Environmental Conditions

Compliance with the following electrical environmental conditions is necessary to enable safe and effective operation of the ISD 510 servo system:

- Grounded 3-phase mains network, 400–480 V AC
- 3-phase frequency 47–63 Hz
- 3-phase lines and PE line
- External controller supply input, 24–48 V DC (PELV)
- Observe the national statutory provisions.
- The leakage current is >3.5 mA. Therefore use a type B residual current device (RCD).
- The SAB must be mounted in a control cabinet.

5.3 EMC-Compliant Installation

To obtain an EMC-compliant installation, follow the instructions provided in *chapter 5.4 Grounding* and *chapter 5.8 Connecting the Components*.

5.4 Grounding

Grounding for electrical safety

- Ground the ISD servo drive with the PE wire of the feed-in cable (see *chapter 5.8 Connecting the Components*).
- Ensure that the machine frame has a proper electrical connection to the flange of the servo drive. Use the front side flange surface. Ensure PE connection on that part of the machine. Refer to the VLT[®] Integrated Servo Drive ISD[®] 510 System Design Guide for further information.
- Use a dedicated ground wire for input power and control wiring.
- Do not ground 1 SAB to another in a daisy-chain format.
- Keep the ground wire connections as short as possible.
- Follow the wiring requirements in this manual.
- Ensure a minimum ground wire cross-section of at least 10 mm² or 2 separate ground wires both complying with the dimensioning rules. See EN/ IEC 61800-5-1 for further information.

Grounding for EMC-compliant installation

- Establish electrical contact between the cable shield and the SAB enclosure by using metal cable glands, or by using the clamps provided on the SAB (see *chapter 5.8 Connecting the Components*).
- Use high-strand wire to reduce electrical interference.
- Do not use pigtails.
- Ensure a minimum distance of 200 mm between signal and power cables.
- Only cross cables at 90°.

NOTICE

POTENTIAL EQUALIZATION

There is a risk of electrical interference when the ground potential between the ISD 510 servo system and the machine is different. Install equalizing cables between the system components. The recommended cable cross-section is 16 mm².

EMC INTERFERENCE

Use shielded cables for control wiring and separate cables for power and control wiring. Failure to isolate power and control wiring can result in unintended behavior or reduced performance. Ensure a minimum clearance of 200 mm between signal and power cables.

5.5 Mains Supply Requirements

In addition to the electrical environmental conditions stated in *chapter 5.2 Electrical Environmental Conditions*, ensure that the supply has these properties:

- Grounded 3-phase mains network, 400-480 V AC
- 3-phase frequency: 47–63 Hz
- 3-phase lines and PE line
- Mains supply: 400-480 V ±10%
- Continuous input current SAB: 12.5 A
- Intermittent input current SAB: 20 A

NOTICE

Use fuses and/or circuit breakers on the supply side of the SAB to comply with CE or UL as detailed in *Table 5.1*.

CE Con	UL Compliance (NEC 2014)			
Recommended fuse size	Recommended circuit breaker	Maximum trip level	Recommended maximum fuse	
		in [A]	size	
gG-16	Eaton/Moller PKZM0-16	16	 Littelfuse[®] KLSR015 Littelfuse[®] FLSR015 	

Table 5.1 Fuses and Circuit Breakers

5.6 Auxiliary Supply Requirements

Supply the SAB with a power supply unit with an output range of 24–48 V DC ±10%. The output ripple of the power supply unit must be <250 mV_{pp}. Only use supply units that conform to the PELV specification. Refer to the *VLT*[®] Integrated Servo Drive ISD[®] 510 System Design Guide for power ratings shell diagrams.

NOTICE

Use a supply that is CE-marked according to the standards EN 61000-6-2 and EN 61000-6-4 or similar for industrial use.

The power supply unit must be dedicated to the ISD 510 servo system, meaning that the supply is used exclusively for powering the SAB. The maximum cable length between the supply unit and the SAB is 3 m.

5.7 Safety Supply Requirements

Supply the STO line with a 24 V DC supply with the following properties:

Danfoss

- Output range: 24 V DC ±10%
- Maximum current: 1 A

NOTICE

Use a 24 V supply unit that is CE marked according to the standards EN 61000-6-2 and EN 61000-6-4 or similar for industrial use. The supply must only be used for the ISD 510 safety input. The supply must fulfill the PELV specification.

It is possible to use the auxiliary supply for the STO function if the following conditions are met:

- Output range: 24 V DC ±10%
- Maximum cable length: 3 m

5.8 Connecting the Components

5.8.1 Servo Access Box

HIGH VOLTAGE

Potentially lethal voltage is present on the connectors.

 Before working on the power connectors (disconnecting or connecting the cable), disconnect the SAB from the mains and wait for the discharge time to elapse.

Step 1: Connect the feed-in cable

1	24/48 V IN (auxiliary input terminal)
2	Cable tie
3	Cable clamp for ISD Line 1: STO 1 (STO output to hybrid cable line 1)
4	PE grounding
5	Cable clamp for feed-in cable
6	Feed-in cable for line 1
7	Feed-in cable for line 2

Illustration 5.1 Connecting the Feed-In Cable

- 1. Insert the 4 connectors on the feed-in cable into their corresponding terminal block on the SAB.
- Secure the feed-in cable [6] using the cable clamp [5], ensuring that the shield is positioned exactly under the clamp.

- 3. Secure the STO cable using the cable clamp [3], ensuring that the shield is positioned exactly under the clamp.
- 4. Ground the PE wire using the PE terminal [4].

NOTICE

If using 2 lines of servo drives, repeat the process for the 2^{nd} line [7].

Step 2: Connect the AUX cable

30BE315.10

 1
 Cable tie

 2
 Cable clamp for ISD Line 2: STO 2 (STO output to hybrid cable line 2)

Illustration 5.2 AUX Connector on the SAB

- 1. Insert the wires into the 24/48 V IN (auxiliary input) connector as described in *chapter 3.3.1.7 AUX Connectors*.
- 2. Insert the 24/48 V IN (auxiliary input) connector into the SAB and secure the cable using the cable tie [1].

Step 3: Connect the mains cable

Step 4: Connect the encoder, Real-Time Ethernet, and STO cables

1. Open the terminal cover and the front cover with a screwdriver as shown in graphics *Illustration 5.4* and *Illustration 5.5*.

Illustration 5.4 Opening the Terminal Cover

1	Mains connector
2	PE screw
3	Cable tie fixing
4	Cable clamp for brake resistor cable (optional)
5	Cable clamp for mains cable

Illustration 5.3 Mains Connector on the SAB

- 1. Insert the wires into the mains connector as described in *chapter 3.3.1.2 Mains Connectors*.
- 2. Connect the PE wire to the PE screw [2].
- 3. Insert the mains connector [1].
- 4. Secure the mains cable using the cable clamp [5].
- 5. If using a brake resistor, decouple the cable using the brake cable clamp [4].
- 6. If using a relay, decouple the cable with a cable tie to the fixing [3].

Illustration 5.5 Opening the Front Cover

1	Ethernet input X1 & X2
2	Encoder terminal
3	STO 1 IN: 24 V & STO 1 IN: STO
4	STO 2 IN: 24 V & STO 2 IN: STO
5	Cable clamps for STO cables
6	Cable ties for Ethernet cables
7	Cable clamp for encoder cable

Illustration 5.6 Encoder, Real-Time Ethernet, and STO Cables

- 1. Connect the Ethernet cables [1] and fix them in position using cable ties [6] as shown in *Illustration 5.6.*
- 2. Connect the STO wires to the STO connectors STO 1 IN: 24 V [3] and STO 2 IN: 24 V [4] as described in *chapter 3.3.1.1 STO Connectors* and refer to the installation instructions in *chapter 8.6 Installation*.
- 3. Plug the connectors into the SAB and clamp the cables in position using the cable clamps [5].
- 4. If using an encoder:
 - 4a Connect the encoder wires to the relevant connector as described in *chapter 3.3.1.5 Encoder Connectors.*
 - 4b Insert the encoder connector into the encoder terminal [2] on the SAB and clamp the cable in position using the cable clamp [7]. Ensure that the shield is positioned exactly under the clamp.

- 5.8.2 Servo Drive
- 5.8.2.1 Connecting/Disconnecting Hybrid Cables

HIGH VOLTAGE

Potentially lethal voltage is present on the connectors.

 Before working on the power connectors (disconnecting or connecting the cable), disconnect the SAB from the mains and wait for the discharge time to elapse.

AWARNING

DISCHARGE TIME

The servo drives and the SAB contain DC-link capacitors that remain charged for some time after the mains supply is switched off at the SAB. Failure to wait the specified time after power has been removed before performing service or repair work could result in death or serious injury.

 To avoid electrical shock, fully disconnect the SAB from the mains and wait for at least the time listed in *Table 5.2* before carrying out any maintenance or repair work on the ISD 510 servo system or its components.

Number	Minimum waiting time (minutes)
0–64 servo drives	10

Table 5.2 Discharge Time

General instructions for cable installation

- Avoid mechanical tension for all cables, especially regarding the range of motion of the installed servo drive.
- Secure all cables in accordance with regulations and depending on conditions on site. Ensure that cables cannot come loose, even after prolonged operation.
- If the X3, X4, and X5 connectors are not used, always mount the corresponding blind cap.

NOTICE

Never connect or disconnect the hybrid cables to or from the servo drive when the supply voltage is present. Doing so damages the electronic circuitry. Observe the discharge time for the DC-link capacitors. Do not forcefully connect or fit the connectors. Incorrect connection causes permanent damage to the connector.

Electrical Installation

Connecting cables

- Align the female connector of the M23 feed-in cable to the male input connector (X1) of the 1st servo drive.
- 2. Fully rotate the threaded ring of the cable connector counterclockwise. Use the marking *OPEN* as a reference for the cable connector.
- 3. Ensure the marking *OPEN* on the cable connector is facing the servo drive.
- 4. Press the connector towards the electronic housing on the servo drive until the sealing on the servo connector is covered entirely by the cable connectors.
- 5. Tighten the M23 feed-in cable connector by rotating the threaded ring clockwise out of the flat area around the *OPEN* marking.

Illustration 5.7 Connecting the M23 Feed-In Cable

- To add more servo drives in daisy-chain format, connect the male connector of the loop cable to the female connector (X2) of the 1st servo drive.
- 7. Connect the female connector of the loop cable to the male connector (X1) of the next servo drive, and so on.
- 8. Tighten the threaded rings by hand as described in step 5.

9. Ensure that there is no mechanical tension on the cables.

1	X1 Male connector
2	X2 Female connector
3	M23 Metal blind cap

Illustration 5.8 Adding Servo Drives in Daisy-Chain Format

- Screw the M23 metal blind cap onto the unused M23 female output connector (X2) on the last servo drive in the ISD 510 servo system.
- 11. Tighten the metal blind cap until the sealing on the servo connector is covered.

Illustration 5.9 Mounting the M23 Blind Cap

ACAUTION

RISK OF INJURY AND/OR EQUIPMENT DAMAGE Failure to use the M23 metal blind cap may result in

injury to the operator and/or damage to the servo drive.

• Always fit the M23 metal blind cap as described in steps 10 and 11.

NOTICE

An angled version of the M23 connector is also available. The procedure for connecting the angled M23 connector is the same as for the straight connector.

Disconnecting hybrid cables

- Disconnect the SAB from its power source (mains network and U_{AUX}).
- 2. Wait for the minimum discharge time to elapse.
- 3. Remove the connector of the feed-in cable from the SAB.
- 4. Rotate the threaded ring on the feed-in cable connector on the servo drive counterclockwise until the marking *OPEN* on the cable connector is facing the servo drive.
- 5. Pull the connector away from the electronic housing.
- Protective blind caps are provided for the X1 and X2 connectors. Mount the blind caps after removing the corresponding connector.

5.8.2.2 Connecting/Disconnecting Cables from Ports X3, X4, and X5

Cable routing

- Avoid mechanical tension for all cables, especially regarding the range of motion of the installed servo drive.
- Secure all cables in accordance with regulations and depending on conditions on site. Ensure that cables cannot come loose, even after prolonged operation.

Connecting I/O and/or encoder cables

- 1. Align the connector on the cable with the connector marked *X4* on the servo drive.
- 2. Press the connector towards the electronic housing of the servo drive and tighten the threaded ring of the connector by turning it clockwise.

Illustration 5.10 Connecting the I/O and/or Encoder Cable

Illustration 5.10 shows the connection of an I/O or encoder cable with straight connector to *X4* on the servo drive.

NOTICE

The I/O and encoder cable is not supplied.

Connecting the LCP cable

- 1. Align the connector on the cable with the LCP connector marked *X5* on the servo drive.
- 2. Press the connector towards the electronic housing of the servo drive and tighten the threaded ring of the connector by turning it clockwise.

Illustration 5.11 Connecting the LCP Cable

NOTICE

The LCP cable is not supplied. It can be ordered as an accessory.

Connecting the 3rd Ethernet device cable

- 1. Align the connector on the cable with the Ethernet connector marked *X3* on the servo drive.
- 2. Press the connector towards the electronic housing of the servo drive and tighten the threaded ring by turning it clockwise.

Illustration 5.12 Connecting the 3rd Ethernet Device Cable

Disconnecting cables from ports X3, X4, and X5

- 1. Loosen the threaded ring of the connector by turning it counterclockwise.
- 2. Disconnect the cable from the servo drive.
- 3. Protective blind caps are provided for the X3, X4, and X5 connectors. Mount the blind caps after removing the corresponding connector.

6 Commissioning

UNINTENDED START

The ISD 510 servo system contains servo drives that are connected to the electrical supply network and can start running at any time. This may be caused by a fieldbus command, a reference signal, or by clearing a fault condition. Servo drives and all connected devices must be in good operating condition. A deficient operating condition may lead to death, serious injury, damage to equipment, or other material damage when the servo drive is connected to the electrical supply network.

• Take suitable measures to prevent unintended starts.

6.1 Pre-Commissioning Checklist

Always check the following before initial commissioning and before commencing operation after extended downtime or storage:

- Are all threaded connectors of mechanical and electrical components firmly tightened?
- Is the free circulation of cooling air (inlet and outlet) assured?
- Are the electrical connections correct?
- Is contact protection in place for rotating parts and surfaces that can become hot?

6.2 ID Assignment

6.2.1 EtherCAT[®]

EtherCAT[®] needs no special ID assignment (IP address). Special ID assignment is only required, when using indirect communication via the ISD Toolbox software (see *chapter 6.5.4 ISD Toolbox Communication* for further information).

6.2.2 Ethernet POWERLINK[®]

Ethernet POWERLINK[®] master communication cannot be active when using the ISD Toolbox to assign IDs to the devices. ID assignment via the ISD Toolbox is only possible when acyclic Ethernet POWERLINK[®] communication is used. If cyclic communication is already started, send an *NMT reset* command to all devices manually or perform a power cycle to stop the cyclic Ethernet POWERLINK[®] communication.

6.2.2.1 Single Device ID Assignment

When assigning an ID to a single device, the *Device Information* window in the ISD Toolbox can be used (see the *VLT[®]* Integrated Servo Drive ISD[®] 510 System *Programming Guide* for more information). Setting an ID to a device can also be done via the LCP.

Setting the node ID directly on a servo drive or on the SAB

All IP-related parameters are located in parameter group 12-0* *IP Settings*. According to the Ethernet POWERLINK[®] standard, the IP address is fixed to 192.168.100.xxx. The last number is the value in parameter 12-60 Node *ID*. For parameter 12-02 Subnet Mask, the IP address is fixed to 255.255.255.0 and cannot be changed.

Attach the LCP to the servo drive or SAB for which the *Node ID* should be changed. Change the value in parameter *12-60 Node ID* to select the desired IP address.

Setting the Node ID for a single servo drive via the SAB It is also possible to change the *Node ID* of a servo drive when the LCP is connected to the SAB. This functionality is contained in parameter group 54-** ID Assignment on the

SAB in sub-group 54-1* Manual.

- 1. Attach the LCP to the SAB that is connected to the servo drive for which the *Node ID* should be changed.
- 2. Configure the parameters:
 - 2a 54-10 EPL ID assignment line
 - 2b *54-11 Drive index* (position of the servo drive in the line)
 - 2c 54-12 EPL ID assignment assign ID
- 3. Set parameter 54-13 EPL ID assignment start to [1] start.

6.2.2.2 Multiple Device ID Assignment

When assigning IDs to several devices (for example, when setting up a new machine), the ISD Toolbox sub-tool *SAB ID assignment* can be used (see the *VLT® Integrated Servo Drive ISD® 510 System Programming Guide* for more information). Setting the IDs of all the servo drives connected to an SAB at the same time can also be done via the LCP when it is connected to the SAB.

Setting the Node IDs of all servo drives on an SAB line The automatic SAB ID assignment is used for automatically setting the *Node IDs* on all servo drives for a specified SAB line. This functionality is contained in parameter group 54-** *ID Assignment* on the SAB in sub-group 54-0* Automatic.

- 1. Attach the LCP to the SAB that is connected to the servo drives for which the *Node IDs* should be changed.
- 2. Configure the parameters:
 - 2a 54-02 EPL ID assignment line
 - 2b 54-03 EPL ID assignment start ID
- 3. Set parameter 54-04 EPL ID assignment start to [1] start.

6.3 Switching on the ISD 510 Servo System

Complete the cabling of the ISD 510 servo system before applying power to the servo drives. This cabling provides the supply voltage and the communication signals for the ISD 510 servo system. This is a fundamental requirement for operation of the servo drives.

The ISD 510 servo system can be switched on in 3 ways:

- If the SAB is supplied with mains, STO, and UAUX, communication to the SAB internal controller is established and UAUX is automatically passed on to the connected servo drives.
- If the SAB is only powered by U_{AUX}, then the SAB and servo drive control units are running.
- If the SAB is only supplied with mains power, then only the SAB control unit is running and power is not passed on to the connected servo drives.

Procedure for switching on the ISD 510 servo system

- 1. Switch on U_{AUX} power to enable communication to the SAB and servo drives to be established.
- 2. Switch on the mains.
- 3. Set the SAB to state Normal operation (see chapter 6.5.5 ISD Toolbox Commissioning and chapter 6.6.2 Simple Programming Template).

Now the SAB and servo drives are ready for operation.

6.4 Basic Programming

The libraries provided for the ISD 510 servo system can be used in TwinCAT[®] V2 and in the Automation StudioTM (Version 3.0.90 and 4.x, supported platform SG4) environment to easily integrate the functionality without the need of special motion runtime on the controller. The provided function blocks conform to the PLCopen[®] standard. Knowledge of the underlying fieldbus communication and/or the CANopen[®] CiA DS 402 profile is not necessary.

The library contains:

- Function blocks for controlling and monitoring the servo drive and the SAB.
- Function blocks for all available motion commands of the servo drive.

• Function blocks and structures for creating *Basic CAM* profiles.

Danfoss

• Function blocks and structures for creating *Labeling CAM* profiles.

6.4.1 Programming with Automation Studio™

6.4.1.1 Requirements

The following files are needed to integrate the VLT[®] Integrated Servo Drive ISD[®] 510 and the VLT[®] Servo Access Box into an Automation StudioTM project:

- Package of libraries for the ISD 510 servo system: Danfoss_VLT_ISD_510.zip
- XDD file (XML Device Description) for the servo drive: 0x0300008D_ISD510.xdd
- XDD file (XML Device Description) for the SAB: 0x0300008D_SAB.xdd

6.4.1.2 Creating an Automation Studio™ Project

The following instructions are for Automation Studio[™] 3.0.90.

Information on how to install Automation StudioTM can be found in detail in the Automation StudioTM help. Open the *B&R Help Explorer* and go to [Automation software \rightarrow Software Installation \rightarrow Automation Studio].

Information on how to create a new project in Automation StudioTM can be found in detail in the Automation StudioTM help. Open the *B&R Help Explorer* and go to [Automation Software \rightarrow Getting Started \rightarrow Creating programs with Automation Studio \rightarrow First project with X20 CPU].

How to include the ISD 510 libraries into an Automation Studio[™] project:

- 1. In the *Logical View*, open the menu entry [File \rightarrow Import...].
- In the next window, select the Danfoss_VLT_ISD_510.zip file (according to the location on the hard drive).
- 3. Click on Open.
- 4. Assign the libraries to the CPU in the next window.
- 5. Click on *Finish*. Now the libraries are integrated into the Automation Studio[™] project.

A new folder containing the ISD libraries is created during integration:

ISD_51x

Danfoss

- Contains program organization units (POUs) that are defined by PLCopen[®] (name starting with MC_) and POUs that are defined by Danfoss (name starting with DD_). The Danfoss POUs provide additional functionality for the servo drive.
- It is possible to combine POUs defined by PLCopen[®] with POUs defined by Danfoss.
- The names of the POUs that target the servo drive all end with _ISD51x.
- SAB_51x
 - Contains POUs that are defined by Danfoss (name starting with DD_) and provide the functionality for the SAB.
 - The names of the POUs that target the SAB all end with _SAB.
- BasCam_51x
 - Contains POUs for the creation of basic CAMs.
- LabCam_51x
 - Contains POUs for the creation of labeling CAMs.
- Intern_51x
 - Contains POUs that are needed internally for the libraries.
 - Do not use these POUs in an application.

When integrating the ISD_51x package, some standard libraries are integrated automatically, unless they are already part of the project.

📑 🗉 🗈 🗞 🍳 🏠 🖉 🖏 🤤 🖏	
Object Name	Description
 MyFirstIsd510Project 	
🗄 🐴 Global typ	Global data types
🖶 🧭 Global.var	Global variables
🗄 🏐 Libraries	Global libraries
Derator	This library contains function interfaces for IEC1131-3 operator functions. For the most pa
🕀 📲 🔲 Runtime	This library contains runtime functions for IEC tasks.
🖶 🙀 AsTime	The AsTime Library supports DATE_AND_TIME and TIME data types.
🖶 🙀 AslecCon	This library contains function interfaces for IEC 1131-3 conversion functions.
🖶 🙀 AsEPL	The AsEPL library is used to access serv
🕀 🙀 asstring	The AsString Library contains FBKs for m
🕀 📲 🔲 FileIO	The FileIO library provides function blo
🕀 📲 brsystem	The BRSystem library provides the user w
🕀 📲 AslOTime	The AsIOTime library is used to generate
🕀 📲 standard	This library contains standard function
🕀 👝 🔲 AsSem	This library contains FBKs to use semaph
🕀 📲 🔒 AsBrStr	The AsBrStr Library contains FBKs for me
🕀 🚷 Main	Main program
🔅 - 🛃 Visu	1024x768 (XGA)
Danfoss_VLT_ISD_510	Library package for Danfoss VLT Integrated Servo Drive ISD 510
🕀 🧭 Danfoss_VLT_ISD_510.var	Library version information
⊕ ISD_51x	Library containing FBs for Danfoss VLT Integrated Servo Drive ISD 510
⊕a 🔲 SAB_51x	Library containing manufacturer-specific FBs for ISD 510 SAB
🕀 📲 BasCam_51x	Library containing FBs and data types for creation of Basic CAMs
🗄 🔒 🔲 LabCam_51x	Library containing FBs and data types for creation of Labeling CAMs
⊞a 🔲 Intem_51x	Internal functions and function blocks for Danfoss VLT Integrated Servo Drive ISD 510
٠	
🛃 Logical View 💐 Configuration View 🛛 🛷 Physi	cal View

Illustration 6.1 Standard Libraries

NOTICE

Do not remove these libraries otherwise the ISD libraries will not work.

Inside the library, the following lists of constants are defined:

- AxisErrorCodes
 - Constants for error codes of the axis.
 - Error codes can be read using the function block *MC_ReadAxisError_ISD51x* and/or *DD_ReadAxisWarning_ISD51x*.
- AxisTraceSignals
 - Constants for the trace signals of the axis.
 - Intended to be used with the function block DD_Trace_ISD51x.
- BasCam_51x
 - Constants for the creation of basic CAMs.
- CamParsingErrors
 - Constants for parsing problems of a CAM.
 - Error reason is returned by function block *MC_CamTableSelect_ISD51x*.
- Danfoss_VLT_ISD510
 - Contains the version information of the library
- FB_ErrorConstants
 - Constants for errors inside POUs.
 - The reason is given in an output *ErrorInfo.ErrorID* that is available in all POUs.
- Intern_ISD51x
 - Constants which are needed internally for the library.
 - They are not intended to be used in an application.
- LabCam_51x
 - Constants for the creation of labeling CAMs.
- SabErrorCodes
 - Constants for error codes of the SAB.
 - Error codes can be read using the function block DD_ReadSabError_SAB and/or DD_ReadSabWarning_SAB.
- SabTraceSignals

- Constants for the trace signals of the SAB.
- Intended to be used with the function block *DD_Trace_SAB*.
- SdoAbortCodes
 - Constants for errors concerning reading and writing of parameters.
 - The reason is given in an output *AbortCode* that is available in several POUs.

Instantiating AXIS_REF_ISD51x

Inside the library *ISD_51x* there is a function block called *AXIS_REF_ISD51x*. Create 1 instance of this function block for every servo drive that has to be controlled or monitored. To create a link to the physical servo drive, link each instance to 1 physical servo drive. This is done (in the *Logical View*) by initializing each instance with its node number and the slot name (for example, 'IF3') it is connected to.

Each instance of *AXIS_REF_ISD51x* is the logical representation of 1 physical servo drive.

myAxis	AXIS_REF_ISD51x AXIS_REF_ISD51x SAB_REF	Logical representation of the drive Logical representation of the seco Logical representation of the SAB
Initialize myAxis		x)
Name	Туре	Value
☐	AXIS_REF_ISD51x BOOL	
····· 🐤 NodeNumber	USINT	2
SlotName	STRING[80]	'IF3'
	UDINT[08]	
🗄 🧼 intem	_AXIS_REF_INTERN_ISD51x	
		Fill array

Illustration 6.2 Instantiation of AXIS_REF and Setting of Initial Values

Instantiating SAB_REF

Inside the library *SAB_51x* there is a function block called *SAB_REF*. Create 1 instance of this function block for every SAB that has to be controlled or monitored. To create a link to the physical SAB, link each instance to 1 physical SAB. This is done (in the *Logical View*) by initializing each instance with its node number and the slot name (for example, *IF3*) it is connected to.

Each instance of *SAB_REF* is the logical representation of 1 physical SAB.

Import fieldbus device and add to Physical View

The next step is to import the ISD 510 servo drive into Automation StudioTM:

- Select the menu entry [Tools → Import Fieldbus Device...].
- Select the XDD file 0x0300008D_ISD510.xdd from its location on the hard drive. This import only has to be done once per project. The device is then known to Automation Studio[™].
- The ISD 510 servo drive can now be added to the Ethernet POWERLINK[®] interface of the controller in the *Physical View*:
 - 3a Right-click on the controller in the *Physical View* and select [Open → POWERLINK].
 - 3b Right-click on the interface and select *Insert...*
 - 3c In the Select controller module window, select the ISD 510 in the group POWERLINK Devices.
 - 3d Click on Next.
 - 3e In the next window, enter the node number of the servo drive.

C		0 1	0		
Slave Module	Slave Backplane	Connection	Description		
∟j₀ ⊨j₀		ST1			
Select controller mo	dule				2 x
	N	Aodel no.		Description	<u> </u>
		X67BC	8321-1 8321.L12 8331 8513.L12 IK Devices	X67 Bus Controller POWERLINK X67 Bus Controller POWERLINK X67 Bus Controller POWERLINK X67 Bus Controller POWERLINK POWERLINK Devices	100 540
POWERLIN		Banfos Danfos Danfos KEB Co Lenze I POWE POWE Simulation SimDev Modbus Dev Modbus Dev Modbus Dev	s VLT(R) ISD 510 s VLT(R) SAB imbivert FS serie EMF2191IB RLINK RLINK V2 iCN rice vices s Slave CPU s TCP Slave	Darfoss VLTR) Integrated Servo Div Darfoss VLTR) Servo Access Box (S KEB Combinent FSAM/FB/FSC Lenze Frequency invester 230/V400V, Genetic POWERLINK Station POWERLINK V2 intelligent Controller Smulation Smulation Device Modbus TCP/IP Devices CPU from another configuration conne Genetic Modbus Station	e ISD 510 AB) /500V; 0.25kW ected by Modbu
Show custom	ized 🛛	Windows Te 5PC31 5PC31 5PC60 5PC60 5PC60 5PC60	rminals) L800-00 D.L800-01 D.SE00-00 D.SE00-01 D.SE00-02 D.1042.00	Windows Display Devices PPC300 based Windows Terminal PPC300 based Windows Terminal APC620e System SDL EPL X2X CAN APC620e System SDL EPL X2X CAN APC620e System SDL EPL X2X CAN III	512kB 512kB 1MB
		Ins	sert module	Replace	module
			< Bac	k Next >	Cancel

Illustration 6.3 Add an ISD 510 Servo Drive to the Project

NOTICE

The procedure described here applies to Automation Studio[™] Version 3.0.90. Refer to the Automation Studio[™] Help for the corresponding steps with V4.x.

For each physical servo drive, add 1 entry to the Physical View of Automation Studio[™].

The next step is to import the Servo Access Box into Automation Studio™:

- 1. Select the menu entry [Tools \rightarrow Import Fieldbus Device...].
- 2. Select the XDD file 0x0300008D_SAB.xdd from its location on the hard drive. This import only has to be done once per project. The device is then known to Automation Studio[™].
- The SAB can now be added to the Ethernet POWERLINK[®] interface of the controller in the *Physical View*:
 - 3a Right-click on the controller in the *Physical View* and select [Open \rightarrow POWERLINK].
 - 3b Right-click on the interface and select *Insert*....
 - 3c In the Select controller module window, select the SAB in the group POWERLINK Devices.
 - 3d Click on Next.
 - 3e In the next window, enter the node number of the SAB.

For each physical SAB, add 1 entry to the *Physical View* of Automation StudioTM.

1 PLC1.0	CPU [POWERLINK] ×			
Slave M	odule	Slave Backplane	Connection	Description
E 🏹 🛛 IF	3			
I ⊢ %	Danfoss VLT(R) SAB		ST1	Danfoss VLT(R) Servo Access Box (SAB)
- 1	Danfoss VLT(R) ISD 51(ST2	Danfoss VLT(R) Integrated Servo Drive ISD 510
L <u>W</u>	Danfoss VLT(R) ISD 510		ST3	Danfoss VLT(R) Integrated Servo Drive ISD 510

Illustration 6.4 1 SAB and 2 ISD 510 Servo Drives Added to the Ethernet POWERLINK[®] Interface

I/O configuration and I/O mapping

The *I/O Configuration* of the servo drive has to be parameterized in a way that the library has access to all necessary objects:

- 1. Right-click on the entry of the ISD 510 and select *Open I/O Configuration*.
- 2. In the *Channels* section, change the *Cyclic transmission* of the following objects:
 - 2a All subindexes of object 0x5050 (Lib pdo rx_I5050 ARRAY[]) to Write.
 - 2b All subindexes of object 0x5051 (Lib pdo tx_15051 ARRAY[]) to Read.

The *I/O Configuration* of the SAB has to be parameterized in a way that the library has access to all necessary objects:

- 1. Right-click on the entry of the SAB and select *Open I/O Configuration*.
- 2. In the *Channels* section, change the *Cyclic transmission* of the following objects:
 - 2a All subindexes of object 0x5050 (Lib pdo rx_15050 ARRAY[]) to Write.
 - 2b All subindexes of object 0x5051 (Lib pdo tx_I5051 ARRAY[]) to *Read*.

These settings configure the cyclic communication with the device. These parameters are needed to make the library work.

NOTICE

It is possible to use copy & paste to apply the same *l/O Configuration* to multiple devices of the same type.

NOTICE

Set *Module supervised* to *off* for the servo drives and the SAB. The parameter is found in the *I/O Configuration* of the device.

	Value	Description
🔄 🚰 Lib pdo rx_15050 ARRAY[]		
Q Cyclic transmission	Write	
Datatype	UDINT	UNSIGNED32
🧼 🖗 Init value		Set at bootup (clear to
🖕 📲 Lib Pdo Rx2_15050_S02		
🛛 Cyclic transmission	Write	
	UDINT	UNSIGNED32
🛶 🖗 Init value		Set at bootup (clear to
🖻 📲 Lib Pdo Rx3_15050_S03		
🗣 Cyclic transmission	Write	
🖗 Datatype	UDINT	UNSIGNED32
🦾 🖗 Init value		Set at bootup (clear to
🗄 📲 LibPdoRx4_15050_S04		
LibPdoRx5_15050_S05		
🗄 📲 LibPdoRx6_15050_S06		
🖶 📲 LibPdoRx7_15050_S07		
🖽 📲 LibPdoRx8_15050_S08		
id		
[[Lib pdo tx_15051 ARRAY]		
🖻 📲 LibPdoTx1_I5051_S01		
🛛 Cyclic transmission	Read	
😝 Datatype	UDINT	UNSIGNED32
🖗 Init value		Set at bootup (clear t
🗄 📲 LibPdo Tx2_I5051_S02		
	Read	
🖗 Datatype	UDINT	UNSIGNED32
🖗 Init value		Set at bootup (clear t
🖻 📲 LibPdo Tx3_15051_S03		
	Read	
🛶 🖗 Datatype	UDINT	UNSIGNED32
Init value		Set at bootup (clear to
🗄 📲 LibPdo Tx4_15051_S04		
🗄 📲 LibPdo Tx5_I5051_S05		
🗄 📲 LibPdo Tx6_15051_S06		
ii⊡••• 🚰 LibPdoTx7_I5051_S07		
🗄 📲 LibPdo Tx8_I5051_S08		
±		

Illustration 6.5 I/O Configuration of an ISD 510 Device

<u>Janfoss</u>

Danfoss

Commissioning

🖉 🔎					
Channel Name	Data Type	Task Class	PV or Channel Name	Inverse	Simulate
+ ModuleOk	BOOL				
UbPdoRx1_I5050_S01	UDINT				
LibPdoRx2_15050_S02	UDINT				
LibPdoRx3_I5050_S03	UDINT				
LibPdoRx4_15050_S04	UDINT				
LibPdoRx5_15050_S05	UDINT				
UbPdoRx6_I5050_S06	UDINT				
UbPdoRx7_I5050_S07	UDINT				
UbPdoRx8_I5050_S08	UDINT				
LibPdoRx9_15050_S09	UDINT				
LibPdoTx1_I5051_S01	UDINT				
LibPdoTx2_I5051_S02	UDINT				
LibPdoTx3_I5051_S03	UDINT				
LibPdoTx4_I5051_S04	UDINT				
LibPdoTx5_I5051_S05	UDINT				
LibPdoTx6_I5051_S06	UDINT				
+ LibPdoTx7_I5051_S07	UDINT				
LibPdoTx8_I5051_S08	UDINT				
	11010.00				

on)* | 🚼 PLC1.CPU [POWERLINK] | 🚼 PLC1.CPU.IF3.ST239 [J/O Configuration] 🛛 🔠 PLC1.CPU.IF3.ST239 [J/O M

Illustration 6.6 I/O Mapping after Successful Configuration

Map the inputs and outputs of the instance of the *AXIS_REF_ISD51x* function block and the physical data points of the servo drive according to *Illustration 6.7* (here *myAxis* is an instance of *AXIS_REF_ISD51x*):

🧟 Global.var (Variable Declaration)* 🏙 PLC1.CPU (POWERLINK) 🏙 PLC1.CPU.IF3.57239 (I/O Configuration) 🕍 PLC1.CPU.IF3.57239 (I/O Mapping)* 🗙					
p ^a					
+ ModuleOk	BOOL BOOL	Automatic	myAxis.ModuleOk		
UbPdoRx1_I5050_S01	UDINT	Automatic	myAxis.RPDO[0]		
LibPdoRx2_15050_S02	UDINT	Automatic	myAxis.RPDO[1]		
UbPdoRx3_15050_S03	UDINT	Automatic	myAxis.RPDO[2]		
UbPdoRx4_15050_S04	UDINT	Automatic	myAxis.RPDO[3]		
LibPdoRx5_15050_S05	UDINT	Automatic	myAxis.RPDO[4]		
UbPdoRx6_15050_S06	UDINT	Automatic	myAxis.RPDO[5]		
UbPdoRx7_15050_S07	UDINT	Automatic	myAxis.RPDO[6]		
UbPdoRx8_15050_S08	UDINT	Automatic	myAxis.RPDO[7]		
UbPdoRx9_15050_S09	UDINT	Automatic	myAxis.RPDO[8]		
LibPdoTx1_I5051_S01	UDINT	Automatic	myAxis.TPDO[0]		
LibPdoTx2_I5051_S02	UDINT	Automatic	myAxis.TPDO[1]		
+ LbPdoTx3_15051_S03	UDINT	Automatic	myAxis.TPDO[2]		
LibPdoTx4_I5051_S04	UDINT	Automatic	myAxis.TPDO[3]		
LibPdoTx5_15051_S05	UDINT	Automatic	myAxis.TPDO[4]		
+ LibPdoTx6_I5051_S06	UDINT	Automatic	myAxis.TPDO[5]		
LibPdoTx7 I5051 S07	UDINT	Automatic	myAxis.TPDO[6]		
+ LibPdoTx8_I5051_S08	UDINT	Automatic	myAxis.TPDO[7]		
+ LibPdoTx9_15051_S09	UDINT	Automatic	myAxis.TPDO[8]		

Illustration 6.7 I/O Mapping of an ISD 510 Servo Drive

Map the inputs and outputs of the instance of the SAB_REF function block and the physical data points of the SAB accordingly.

Cycle time settings

The minimum cycle time is 400 μ s. The ISD 510 devices can run Ethernet POWERLINK[®] cycle times in multiples of 400 μ s and multiples of 500 μ s. The devices are automatically parameterized by the PLC on start-up, depending on the Ethernet POWERLINK[®] configuration of the physical interface. The Ethernet POWERLINK[®] configuration can be accessed by right-clicking [CPU \rightarrow Open IF3 POWERLINK Configuration] in the *Physical View*.

NOTICE

The task cycle time of the PLC program should be the same as the Ethernet POWERLINK[®] cycle time. Otherwise, data could be lost and performance may be reduced.

BLC1.CPU [IF3 POWERLINK Configuration]* ×					
2 7					
Name			Value	Description	
🖃 👷 🚼 IF3				X20CP1586 (POWERLINK)	
	Мос	dule type	Type 4	Indicates module features	
📦	Оре	rating mode	POWERLINK V2		
📦	🖗 MTU size		300		
	🛶 🏟 Baud rate		100 MBit half duplex		
ė, 🚰	PO	WERLINK parameters			
		Activate POWERLINK communication	on		
-		Device name	<interfaceaddress></interfaceaddress>		
		Cycle time [us]	1000		
		Multiplexing prescale	8		
		Mode	managing node		

Illustration 6.8 Ethernet POWERLINK[®] Configuration Window to Parameterize Ethernet POWERLINK[®] Cycle Time

Set the PLC cycle time in Automation Studio[™]:

- 1. Right-click [CPU \rightarrow Open Software Configuration] in the *Physical View*.
- 2. Ensure that the PLC cycle time is the same as the Ethernet POWERLINK[®] cycle time.

6.4.1.3 Connecting to the PLC

Information on how to connect to the PLC can be found in detail in the Automation StudioTM Help. Open the *B&R Help Explorer* and go to [Automation Software \rightarrow Getting Started \rightarrow Creating programs with Automation Studio \rightarrow First project with X20 CPU \rightarrow Configure online connection].

6.4.2 Programming with TwinCAT[®]

6.4.2.1 ISD Deliverables

To integrate the servo drive and the SAB into a $\mathsf{TwinCAT}^{\circledast}$ project, the following files are needed:

- Library for the ISD 510 servo system: Danfoss_VLT_ISD_510.lib
- ESI file (EtherCAT[®] Slave Information) for the servo drive and the SAB: Danfoss ISD 500.xml

6.4.2.2 Creating a TwinCAT[®] Project

Information on how to install TwinCAT[®] can be found in detail in the Beckhoff Information System (infosys.beckhoff.com). Open the information system and select [TwinCAT 2 \rightarrow TwinCAT Quick Start \rightarrow Installation].

Information on how to create a new project in TwinCAT[®] can be found in detail in the Beckhoff Information System (http://infosys.beckhoff.com). Open the information system and select [TwinCAT 2 \rightarrow TwinCAT Quick Start or TwinCAT 2 \rightarrow TX1200 TwinCAT PLC \rightarrow TwinCAT PLC Control].

6

How to include the ISD 510 library into a TwinCAT[®] project:

- 1. In the *Resources* tab of TwinCAT[®] PLC Control, open the *Library Manager*.
- 2. In the upper left area of the *Library Manager* window, right-click and select *Additional Library*
- 3. Select the *Danfoss_VLT_ISD_510.lib* file (according to the location on the hard drive).
- 4. Click on *Open*. Now the libraries are integrated into the TwinCAT[®] PLC control project.

Inside the library, the POUs are organized into folders:

- BasCam_51x
 - Contains POUs for the creation of basic CAMs.
- ISD_51x
 - Contains POUs defined by PLCopen[®] (Name starting with MC_) and POUs defined by Danfoss (name starting with DD_). The POUs defined by Danfoss provide additional functionality for the axis.
 - It is possible to combine POUs defined by PLCopen[®] with POUs defined by Danfoss.
 - The names of the POUs that target the servo drive all end with _ISD51x.
- Intern_51x
 - Contains POUs that are needed internally for the libraries.
 - Do not use these POUs in an application.
- LabCam_51x
 - Contains POUs for the creation of labeling CAMs.
- SAB_51x
 - Contains POUs that are defined by Danfoss (Name starting with DD_) and provide the functionality for the SAB.
 - The names of the POUs that target the SAB all end with _SAB.

When integrating the ISD 510 library, some standard libraries are integrated automatically, unless they are already part of the project.

NOTICE

Do not remove these libraries otherwise the ISD libraries will not work.

Illustration 6.9 Library Manager after Including the ISD 51x Library

Inside the library, the following lists of constants are defined:

- AxisErrorCodes
 - Constants for error codes of the axis.
 - Error codes can be read using the function block *MC_ReadAxisError_ISD51x* and/or *DD_ReadAxisWarning_ISD51x*.
- AxisTraceSignals
 - Constants for the trace signals of the axis.
 - Intended to be used with the function block DD_Trace_ISD51x.
- BasCam_51x
 - Constants for the creation of basic CAMs.
- CamParsingErrors
 - Constants for parsing problems of a CAM.
 - Error reason is returned by function block MC_CamTableSelect_ISD51x.
- Danfoss_VLT_ISD510
 - Contains the version information of the library.
- FB_ErrorConstants
 - Constants for errors inside POUs.
 - The reason is given in an output *ErrorInfo.ErrorID* that is available in all POUs.
- Intern_51x
 - Constants that are needed internally for the library.
 - They are not intended to be used in an application.
- LabCam_51x

Danfoss

- Constants for the creation of labeling CAMs.
- SabErrorCodes
 - Constants for error codes of the SAB.
 - Error codes can be read using the function block DD_ReadSabError_SAB and/or DD_ReadSabWarning_SAB.
- SabTraceSignals
 - Constants for the trace signals of the SAB.
 - Intended to be used with the function block DD_Trace_SAB.
- SdoAbortCodes
 - Constants for errors concerning reading and writing of parameters.
 - The reason is given in an output *AbortCode* that is available in several POUs.

Instantiating AXIS_REF_ISD51x

Inside the folder *ISD_51x* in library *Danfoss_VLT_ISD_510* there is a function block called *AXIS_REF_ISD51x*. Create 1 instance of this function block for every servo drive that has to be controlled or monitored. Each instance of *AXIS_REF_ISD51x* is the logical representation of 1 physical servo drive.

Instantiating SAB_REF

Inside the folder *SAB_51x* in library *Danfoss_VLT_ISD_510* there is a function block called *SAB_REF*. Create 1 instance of this function block for every SAB that has to be controlled or monitored.

Each instance of SAB_REF is the logical representation of 1 physical SAB.

NOTICE

When compiling the library, check that the option *Replace constants* under [Project \rightarrow Options... \rightarrow Build] is activated.

Afterwards, save and compile the project to update the automatically generated variable information for the *TwinCAT® System Manager*.

Illustration 6.10 Instantiation of AXIS_REF_ISD51x

Append a PLC Project into TwinCAT[®] System Manager

To create a link between the *TwinCAT® PLC Control* project and the *TwinCAT® System Manager*, connect the saved project, especially the inputs and outputs, to the *TwinCAT® System Manager*:

- 1. To add the project information to the *TwinCAT*[®] System Manager, right-click on *PLC-Configuration* and select Append PLC project....
- In the Insert IEC1131 Project window, select the project information file according to the location on the hard drive. The file has the same name as the PLC project, but with the file extension .tpy.
- 3. Click on Open.

Import fieldbus device and add to TwinCAT®

The next step is to import the servo drive and the SAB into the *TwinCAT®* System Manager software:

- Copy the ESI file Danfoss ISD 500.xml into the folder TwinCAT Installation Folder\lo\EtherCAT on the hard drive. This only has to be done once per project. The TwinCAT[®] System Manager automatically searches for ESI files at this location on the hard drive during startup.
- To add an EtherCAT[®] master, right-click on [I/O-Configuration → I/O Devices] and select Append Device....
- 3. In the following window, select [EtherCAT \rightarrow EtherCAT] (see *Illustration 6.11*).
- 4. Click on OK.
- 5. Select *Device 1 (EtherCAT®)* and select the correct *Network Adapter* on the right side of the window in the *Adapter* tab.

Danfoss A/S © 12/2015 All rights reserved.

Commissioning

- 6. To add an SAB, right-click on *Device1 (EtherCAT®)* and select *Append Box*....
- 7. In the Insert EtherCAT Device window, select [Danfoss GmbH \rightarrow VLT[®] ISD Series \rightarrow VLT[®] Servo Access Box L1] for Line 1 of the SAB (and/or VLT[®] Servo Access Box L2 for Line 2 of the SAB).
- 8. Click on OK.
- To add a servo drive to line 1 of the SAB, rightclick on Box 1 (VLT[®] Servo Access Box L1) and select Append Box...
- 10. In the Insert EtherCAT Device window, select [Danfoss GmbH \rightarrow VLT[®] ISD Series \rightarrow VLT[®] ISD 510 Integrated Servo Drive].
- 11. Click on OK.
- 12. Answer the question if the drive is used as an NC axis with *No*. If the drive should be used as an NC axis, see *chapter 6.4.2.3 Configuration as a TwinCAT® NC Axis*.

NOTICE

Add 1 entry to the EtherCAT[®] master of the *TwinCAT*[®] *System Manager* for each physical servo drive and SAB. Add the servo drive to the correct SAB line.

Illustration 6.11 Add an EtherCAT® Master to the Project

Illustration 6.12 Add an ISD 510 Servo Drive to the Project

Danfoss

Illustration 6.13 TwinCAT[®] System Manager after Appending the PLC Project and Adding an SAB and 2 Servo Drives

I/O configuration and I/O mapping

When connecting >1 servo drive, connect port C (X2) of the previous drive to port A (X1) of the next servo drive. The SAB port assignment must also be followed, see *chapter 3.8.1 EtherCAT®*. If the hardware set-up is already present, the TwinCAT® System Manager *Scan devices* function can be used to automatically add the connected devices to the configuration in the correct order.

The servo drive has to be configured so that the PDO mapping matches the requirements of the library. This is done inside the *TwinCAT*[®] *System Manager*.

- 1. Click on the ISD servo drive entry.
- 2. Select the *Slots* tab on the right side of the window.
- 3. Remove the current PDO configuration by selecting the entry *Module 1 (CSV PDO)* in the *Slot* box.
- 4. Click on *X*.
- 5. Select Library PDO in the Module box.
- 6. Click on <.

Illustration 6.14 ISD 510 Servo Drive with Correct I/O Configuration

Attach the input and output variables of the PLC program to the physical inputs and outputs of the device. This is done inside the *TwinCAT® System Manager* so that the library has access to all necessary objects.

- Select Library TxPDO via menu [I/O-Configuration
 → I/O Devices → Device1 (EtherCAT[®]) → Box 1
 (VLT[®] Servo Access Box L1) → Drive 2 (VLT[®] ISD
 510 Integrated Servo Drive) → Module 1 (Library
 PDO) → Library TxPDO].
- 2. Select all entries *Lib pdo tx1* to *Lib pdo tx9* on the right side of the window (see *Illustration 6.15*).
- 3. Right-click and select Change Multi Link....
- In the Attach Variable 36.0 Byte(s) (Input) window, select [PLC-Configuration → MyFirstIsd510Project → Standard → .myAxis.TPDO].
 Ensure that the Matching Size option is selected in the Attach Variable window.
- 5. Click OK.
- Click on Library *RxPDO* via menu [I/O-Configuration → I/O Devices → Device1 (EtherCAT[®]) → Box1 (VLT[®] Servo Access Box L1) → Drive2 (VLT[®] ISD 510 Integrated Servo Drive) → Module1 (Library PDO) → Library RxPDO].
- 7. Select all entries *Lib pdo rx1* to *Lib pdo rx9* on the right side of the window.

- 8. Right-click and select Change Multi Link....
- In the Attach Variable 36.0 Byte(s) (Output) window select [PLC-Configuration → MyFirstIsd510Project → Standard → .myAxis.RPDO].
- 10. Click on OK.
- Right-click on WcState via [I/O-Configuration → I/O Devices → Device1 (EtherCAT[®]) → Box1 (VLT[®] Servo Access Box L1) → Drive2 (VLT[®] ISD 510 Integrated Servo Drive) → WcState] and select Change Link....
- 12. In the Attach Variable State (Input) window select [PLC-Configuration \rightarrow MyFirstIsd510Project \rightarrow Standard \rightarrow .myAxis.WcState.
- 13. Click on OK.
- Right-click on State via [I/O-Configuration → I/O Devices → Device1 (EtherCAT[®]) → Box1 (VLT[®] Servo Access Box L1) → Drive2 (VLT[®] ISD 510 Integrated Servo Drive) → InfoData] and select Change Link....
- 15. In the Attach Variable State (Input) window select [PLC-Configuration \rightarrow MyFirstIsd510Project \rightarrow Standard \rightarrow .myAxis.State.
- 16. Click on OK.
- 17. Right-click on *netld* via [I/O-Configuration \rightarrow I/O Devices \rightarrow Device1 (EtherCAT[®]) \rightarrow Box1 (VLT[®] Servo Access Box L1) \rightarrow Drive2 (VLT[®] ISD 510 Integrated Servo Drive) \rightarrow InfoData \rightarrow AdsAddr] and select *Change Link....*
- 18. In the Attach Variable netld (Input) window select [PLC-Configuration \rightarrow MyFirstIsd510Project \rightarrow Standard \rightarrow .myAxis.AmsNetId.].
- 19. Click on *OK*.
- 20. Right-click on *port* via [I/O-Configuration \rightarrow I/O Devices \rightarrow Device1 (EtherCAT[®]) \rightarrow Box1 (VLT[®] Servo Access Box L1) \rightarrow Drive2 (VLT[®] ISD 510 Integrated Servo Drive) \rightarrow InfoData \rightarrow AdsAddr] and select *Change Link*....
- 21. In the Attach Variable port (Input) window select [PLC-Configuration \rightarrow MyFirstIsd510Project \rightarrow Standard \rightarrow .myAxis.NodeNumber.].
- 22. Click on OK.

Illustration 6.15 Attaching Inputs and Outputs to the Physical Data Points

NOTICE

Repeat the steps 2–22 for Box 1 (VLT[®] Servo Access Box L1) and the instance mySAB.

To transfer the mappings back to the PLC program, select *Activate Configuration*... in menu item *Actions*. After a rebuild in *TwinCAT® PLC Control*, the TwinCAT® configuration is according to *Illustration 6.16* (here *myAxis* and *mySecondAxis* are instances of *AXIS_REF_ISD51x* and *mySAB* is an instance of *SAB_REF*). The concrete addresses can be different.

👺 TwinCAT_Configuration				
001 (* Generated automatically by TwinCAT - (read only) *)				
002VAR_CONFIG				
003 .myAxis.WcState AT %IX52.0 : BOOL;				
004 .myAxis.State AT %IB40 : UINT;				
005 .myAxis.NodeNumber AT %IB42 : T_AmsPort;				
006 .myAxis.AmsNetId AT %IB44 : T_AmsNetIdArr;				
007 .myAxis.TPDO AT %IB1 : ARRAY [08] OF UDINT;				
008 .myAxis.RPDO AT %QB0 : ARRAY [08] OF UDINT;				
009 .mySecondAxis.WcState AT %IX56.0 : BOOL;				
010 .mySecondAxis.State AT %IB57 : UINT;				
011 .mySecondAxis.NodeNumber AT %IB59 : T_AmsPort;				
012 .mySecondAxis.AmsNetId AT %IB61 : T_AmsNetIdArr;				
013 .mySecondAxis.TPDO AT %IB67 : ARRAY [08] OF UDINT;				
014 .mySecondAxis.RPDO AT %QB36 : ARRAY [08] OF UDINT;				
015 .mySab.WcState AT %IX103.0 : BOOL;				
016 .mySab.State AT %IB104 : UINT;				
017 .mySab.NodeNumber AT %IB106 : T_AmsPort;				
018 .mySab.AmsNetId AT %IB108 : T_AmsNetIdArr;				
019 .mySab.TPDO AT %IB114 : ARRAY [08] OF UDINT;				
020 .mySab.RPDO AT %QB72 : ARRAY [08] OF UDINT;				
0021 END_VAR				
*				

Illustration 6.16 TwinCAT[®] Configuration: I/O Mapping of 2 Servo Drives and an SAB

Janfoss

NOTICE

It is recommended to put the SAB to a separate SYNC unit so that the communication to the SAB is not interrupted if the U_{AUX} supply to the servo drives is switched off due to an error.

Cycle time settings

The minimum cycle time is 400 μ s. The ISD 510 devices can run EtherCAT[®] cycle times in multiples of 400 μ s or 500 μ s. The devices are automatically parameterized by the PLC on start-up, depending on the EtherCAT[®] configuration of the physical interface. The system base time can be accessed by selecting [SYSTEM-Configuration \rightarrow Real-Time Settings] in the *TwinCAT[®] System Manager*. Multiples of this base time can then be used as EtherCAT[®] cycle times.

NOTICE

Set the task cycle time of the PLC program to be the same as the EtherCAT[®] cycle time. Otherwise data can get lost and performance is reduced.

Set the PLC cycle time in *TwinCAT®* PLC Control:

- 1. Double-click *Task configuration* in the *Resources* tab.
- 2. Ensure that the PLC cycle time is the same as the EtherCAT[®] cycle time.

Illustration 6.17 Task Configuration to Parameterize PLC Cycle Time

NOTICE

After changing the task cycle time in *TwinCAT® PLC Control*, carry out a *ReScan* of the PLC configuration inside the *TwinCAT® System Manager* to update the settings. Afterwards, activate the configuration in the PLC.

6.4.2.3 Configuration as a TwinCAT[®] NC Axis

It is possible to use the servo drives with the built-in NC functionality of TwinCAT[®]. Everything that is related to the SAB needs to be done as described in *chapter 6.4.2.2 Creating a TwinCAT[®] Project*.

- In addition to the Danfoss_VLT_ISD_510.lib file, include the TcMC2.lib file (the Danfoss_VLT_ISD_510.lib file is still needed for the SAB to be operated).
- Create 1 instance of AXIS_REF (instead of AXIS_REF_ISD51x) for each servo drive that is used as an NC axis.
- 3. Append the PLC project into the TwinCAT[®] System Manager, import the devices and add them to TwinCAT[®] as described in *chapter 6.4.2.2 Creating a TwinCAT[®] Project*, however in the last step, answer the question if the servo drive is used as an NC axis with Yes. Then an NC task is created automatically.

In the TwinCAT[®] System Manager a different *I/O Configuration* needs to be selected for the drives that are used as NC axes.

- 1. Depending on the mode of operation to be used, select either the slot *CSP PDO* or *CSV PDO*. Per default, *CSV PDO* is mapped and pre-selected. If the drive should work with *CSP PDO*, the variables need to be mapped:
 - 1a In the Settings Tab of the NC Axis select [NC-Configuration \rightarrow NC-Task 1 SAF \rightarrow Axes \rightarrow Axis 1]. Click on the Link To (all Types)... button and select the desired servo drive.
- 2. In the same tab, select the preferred Unit.
- Depending on the selected Unit, adjust the Scaling Factor for the axis encoder via menu [NC-Configuration → NC-Task 1 SAF → Axes → Axis 1 → Axis 1_Enc] in the Parameter tab. Example: When the unit Degrees is selected, the scaling factor is 360°/2²⁰ = 0.00034332275390625.
- Set the *Reference Velocity* in the *Parameter* tab via menu [NC-Configuration → NC-Task 1 SAF → Axes → Axis 1 → Axis 1_Enc.
- 5. Set the Output Scaling Factor (Velocity) to 125.
- 6. Test the functionality and the configuration in the *Online* tab of the axis.

6.4.2.4 Connecting to the PLC

Information on how to connect to the PLC can be found in detail in the Beckhoff Information System (*http://infosys.beckhoff.com*). Open the information system and go to [TwinCAT 2 \rightarrow TwinCAT System Manager \rightarrow Operation \rightarrow Controls \rightarrow Choose Target System].

6.4.3 Programming Guidelines

Recommendations for implementation:

- Initialize parameters that usually do not change only once at the beginning of the program. In Automation Studio[™], use the _INIT section.
- Call up function blocks that provide status or error information with *Enable* input at the beginning of the program.
- It is recommended to have 1 instance of the function block *MC_Power_ISD51x* for every axis in order to control its power stage. Call up this function block in every PLC cycle.
- It is recommended to have 1 instance of the function block DD_Power_SAB for every SAB to control the DC-link voltage on the output lines. Call up this function block in every PLC cycle.
- Call up function blocks that execute (motion) commands at the end of the program.
- Do not use any POUs of the library (folder) *Intern_51x*.
- Do not change the reference to the axis on a function block while it is busy.

Illustration 6.18 shows sample code for TwinCAT[®].

Illustration 6.18 Sample Code for TwinCAT®

NOTICE

The full parameter list can be found in the VLT[®] Integrated Servo Drive ISD[®] 510 System Programming Guide.

6.5 ISD Toolbox

6.5.1 Overview

The ISD Toolbox is a standalone PC software designed by Danfoss. It is used for parameterization and diagnostics of the servo drives and the SAB. It is also possible to operate the devices in a non-productive environment. The ISD Toolbox contains several functionalities, called sub-tools, which in turn provide various functionalities.

The most important sub-tools are:

- *Scope* for visualization of the tracing functionality of the servo drives and SAB.
- Parameter list for reading/writing parameters.
- Firmware update
- Drive control/SAB control to operate the servo drives and/or SAB for testing purposes.
- *CAM editor* for designing CAM profiles for the servo drives.

The detailed description of the ISD Toolbox functionality and the full list of parameters can be found in the *VLT® Integrated Servo Drive ISD® 510 System Programming Guide*.

6.5.2 System Requirements

To install the ISD Toolbox software, the PC must meet the following requirements:

- Supported hardware platforms: 32-bit, 64-bit.
- Supported operating systems: Windows XP Service Pack 3, Windows 7, Windows 8.1.
- .NET framework version: 3.5 Service Pack 1.
- Minimum hardware requirements: 512 MB RAM, Intel Pentium 4 with 2.6 GHz or equivalent, 20 MB hard disk space.
- Recommended hardware requirements: Minimum 1 GB RAM, Intel Core i5/i7 or compatible.

6.5.3 Installation

Administrator rights are required for installing the software with the Windows operating system. Contact your administrator if necessary.

- 1. Check that your system meets the system requirements as described in *chapter 6.5.2 System Requirements*.
- Download the ISD Toolbox installation file (http:// vlt-drives.danfoss.com/products/engineeringsoftware/software-download/).
- 3. Right-click on the *.exe* file and select *Run as administrator*.

4. Follow the on-screen instructions to complete the installation process.

6.5.4 ISD Toolbox Communication

This chapter describes the Ethernet specific network interface settings needed by the ISD Toolbox. There are 2 basic communication methods: direct communication and indirect communication. Their particular network settings are described in the respective sections.

Read and perform the steps with care - incorrect network configurations can lead to loss of connectivity of a network interface.

Firewall

Depending on the firewall settings and the fieldbus used, the messages sent and received by the ISD Toolbox may be blocked by the firewall on the ISD Toolbox host system. This may lead to a loss of communication and the inability to communicate with the devices on the fieldbus. Therefore, ensure that the ISD Toolbox is allowed to communicate through the firewall on the ISD Toolbox host system. Read and perform the steps with care - inappropriate changes to firewall settings may lead to security issues.

NOTICE

When using a dedicated network interface, the ISD Toolbox should be allowed to communicate specifically through this network interface.

Indirect communication

Communication between ISD 510 devices and the ISD Toolbox through a PLC is called indirect communication. Between the PLC and the ISD 510 devices there is Ethernet-based fieldbus communication (marked A in *Illustration 6.19*), whereas there is non-fieldbus communication between the PLC and the ISD Toolbox host system (marked B in *Illustration 6.19*).

In the scenario in *Illustration 6.19*, the PLC has the master function and uses cyclic communication with the devices. Therefore, not all functionalities of the ISD Toolbox, for example the drive control, can be used. The restrictions when using indirect communication are detailed in the *VLT® Integrated Servo Drives ISD® 510 Programming Guide*.

Illustration 6.19 Logical View of Indirect Ethernet-based Fieldbus Communication (Communication via PLC)

NOTICE

The logical view only shows the connectivity from a high-level software perspective and does not reflect the actual physical topology of the network.

Direct communication

For Ethernet-based fieldbus communication (direct communication), the ISD Toolbox must use a dedicated network interface on the ISD Toolbox host system. This network interface should not simultaneously be used for any other communication.

Illustration 6.20 Logical View of Direct Ethernet-based Fieldbus Communication

NOTICE

The logical view only shows the connectivity from a high-level software perspective and does not reflect the actual physical topology of the network.

6.5.4.1 Network Settings for Indirect Communication

Any network interface can be used to communicate through a PLC and a dedicated network interface is not needed.

When establishing the communication through a PLC, the ISD Toolbox configures a routing table using the selected *Network Address Translation (NAT)*. Adding a route to the Windows routing table requires administrator privileges. Therefore, administrator credentials may be requested when initializing the connection.

Carry out the following steps to enable indirect communication.

Disable IPv6 on the network interfaces used for communication on the PC:

- 1. Open the Network and Sharing Center.
- 2. Select Change adapter settings.
- 3. Right-click on the network interface used for fieldbus communication and select *Properties*.
- 4. If the *TCP/IPv6* is available for the network interface, disable it.

Local Area Connection Properties	23		
Networking Sharing			
Connect using:			
Intel(R) 82579LM Gigabit Network Connection			
Configure.			
This connection uses the following items:			
Image: Construction of the stress of the			
Install Properties Description Allows your computer to access resources on a Microsoft network.			
OK Cancel			

Illustration 6.21 Local Area Connection Properties

6

NOTICE

When observing the network packets via Wireshark[®], checksum offloading often causes confusion as the network packets to be transmitted are handed over to Wireshark[®] before the checksums have been calculated. Wireshark[®] shows these empty checksums as invalid, even though the packets contain valid checksums when they leave the network hardware later.

Use 1 of these 2 methods to avoid this checksum offloading problem:

- Turn off the checksum offloading in the network driver if possible.
- Turn off the checksum validation of the specific protocol in the Wireshark[®] preferences.

Additional settings for indirect communication over EtherCAT®

Set the IP address of the EtherCAT[®] Master:

- 1. Open the TwinCAT[®] System Manager.
- 2. Select [I/O-Configuration \rightarrow I/O Devices \rightarrow Device1 (EtherCAT[®])] and check the IP-address in the Adapter tab.

The IP-address of the PLCs network adapter may not be a link-local address (so not in the range of 169.254.0.1 to 169.254.255.254).

3. If necessary, change the IP-address inside the *IPv4 Protocol* properties according to the given operating system. This can be done on the controller locally or via *Remote Desktop*.

Activate IP routing on the EtherCAT[®] Master:

NOTICE

The procedure described here may vary depending on the type of PLC and operating system installed.

- 1. Open the *TwinCAT*[®] System Manager.
- Click on Advanced Settings... under [I/O-Configuration → I/O Devices → Device1 (EtherCAT[®])] in the EtherCAT tab.
- 3. Select *EoE Support* in the *Advanced Settings* window.
- 4. Enable Connect to TCP/IP Stack in the Windows Network section.
- 5. Enable *IP Enable Router* in the *Windows IP Routing* section.
- 6. Reboot the PLC for the changes to take effect.

Danfviss

- 1. Open the *TwinCAT®* System Manager.
- 2. Click on Advanced Settings... under [I/O-Configuration \rightarrow I/O Devices \rightarrow Device1 (EtherCAT[®]) \rightarrow Box 1 (VLT[®] Servo Access Box L1 \rightarrow Drive 2 (VLT[®] Integrated Servo Drive ISD 510)] in the *EtherCAT* tab.
- 3. Select [Mailbox \rightarrow EoE] in the Advanced Settings window.
- 4. Enable *Virtual Ethernet Port* and enter a valid IP Address.
- 5. Each slave in the configuration requires an IPaddress. This address is reassigned with every transition from *INIT* to *Pre-Operational* state of the slave state machine. The IP communication of the slaves is deactivated per default.

NOTICE

The last number of the IP address is the ID that is used in the ISD Toolbox to identify the device.

6.5.4.2 Network Settings for Direct Communication with Ethernet POWERLINK[®]

Disable all network protocols except TCP/IPv4 on the network interface used for direct Ethernet POWERLINK[®] communication. This prevents other PC software or the operating system using this network interface for other tasks, such as file and printer sharing and network discovery. Disabling these protocols reduces the number of non-relevant packets sent over the network interface and thus reduces the overall network load.

How to disable all unused protocols on the network interface on the PC:

- 1. Open the Network and Sharing Center.
- 2. On the left, click on *Change adapter settings*.
- 3. Right-click on the network interface used for fieldbus communication and select *Properties*.
- 4. Uncheck all checkboxes except the one for Internet Protocol Version 4 (TCP/IPv4).

Local Area Connection 2 Properties				
Networking Sharing				
Connect using:				
ASIX AX88178 USB2.0 to Gigabit Ethernet Adapter				
Configure				
This connection uses the following items:				
By Microsoft Network Monitor 3 Driver				
🗆 📮 Virtual PC Network Filter Driver				
🗆 📮 QoS Packet Scheduler				
🗆 📮 File and Printer Sharing for Microsoft Networks 👘				
□ -▲ Intel® Centrino® Wireless Bluetooth® 3.0 + High Speer				
Internet Protocol Version 6 (TCP/IPv6)				
Internet Protocol Version 4 (TCP/IPv4)				
۰				
Install Uninstall Properties				
Description				
Transmission Control Protocol/Internet Protocol. The default wide area network protocol that provides communication across diverse interconnected networks.				
OK Cancel				

Illustration 6.22 Local Area Connection 2 Properties

Disable the *IPv4 Checksum offload* on the network interfaces as described in *chapter 6.5.4.1 Network Settings for Indirect Communication*.

How to set the correct Ethernet $\mathsf{POWERLINK}^{\texttt{®}}$ master IP address:

- 1. Open the Network and Sharing Center.
- 2. On the left, click on *Change adapter settings*.
- 3. Right-click on the network interface used for fieldbus communication and select *Properties*.
- 4. Click on *Internet Protocol Version 4 (TCP/IPv4)* (the checkbox must be checked) and then click on *Properties*.
- Select Use the following IP address and use 192.168.100.240 as the IP address and 255.255.255.0 as the subnet mask. Leave all other fields empty.

internet Protocol Version 4 (TCP/IPv4) Properties					
General					
You can get IP settings assigned automatically if your network supports this capability. Otherwise, you need to ask your network administrator for the appropriate IP settings.					
Obtain an IP address automatical	y				
O Use the following IP address:					
IP address:	192 . 168 . 100 . 240				
Subnet mask:	255.255.255.0				
Default gateway:	· · ·				
Obtain DNS server address autom	atically				
O Use the following DNS server addresses:					
Preferred DNS server:					
Alternate DNS server:	•••				
Validate settings upon exit					
	OK Cancel				

Illustration 6.23 Internet Protocol Version 4 (TCP/IPv4) Properties

6.5.4.3 Network Settings for Direct Communication with EtherCAT[®]

No EtherCAT[®]-specific network interface configuration needs to be performed on the ISD Toolbox host PC.

Danfoss

Danfvis

6.5.5 ISD Toolbox Commissioning

STEP 1: Open the main window

The Main Window is the basis for all ISD Toolbox functionalities. It consists of the following components:

Illustration 6.24 Main Window

Commissioning

1	Menu bar	Contains the general functionalities for saving and loading projects, managing connections, showing and changing settings, managing open sub-tools, and showing help contents.		
2	Tool bar	Contains shortcuts for saving and loading projects, connecting to and disconnecting from networks, automatic searching for online devices, or manually adding devices.		
3	Online/Offline status and state	• Online devices are indicated by a glowing light bulb next to the device ID.		
	information	 An online device is a logical device for which a physical device exists, which the ISD Toolbox is currently connected to. 		
		- The color indicates the state of the device and is device-specific.		
		• Offline devices are indicated by a gray light bulb next to the device ID.		
		- An offline device is a logical device without a corresponding physical device. An offline device can represent a saved device configuration or state, for example for offline analysis or troubleshooting. It also contains pre-configured parameter values to be written to a physical device.		
4	Available sub-tools	A sub-tool is opened by double-clicking the left mouse button on its name in the <i>Device</i> <i>Environment</i> , or by selecting the entry and pressing the <i>Enter</i> key on the keyboard.		
5	Device environment	The Device Environment section of the Main Window lists all logical devices managed by the ISD Toolbox, visualizes their states, and serves as the user interface for accessing the device functionalities. The Device Environment window lists all available sub-tools for each added device. See the VLT® Integrated Servo Drive ISD® 510 System Programming Guide for further information on the		
		sub-tools.		
6	Workspace	This is the space for hosting the sub-tools and its size depends on the <i>Main Window</i> size. The sub-tools can be maximized, minimized, horizontally or vertically aligned, or cascaded.		
7	Watchlist window	Evaluates the parameter values of 1 or more devices by cyclically reading them from the devices. Allows parameter values to be logged and saved to a text file. It is also possible to modify/write values in the watchlist.		
8	Output window	Shows operating information, warnings, and errors. Depending on the user settings, shows messages of up to 3 different logging levels (high, medium, and low). Used for showing advanced error and warning information.		
9	Status strip	Shows the communication state of the ISD Toolbox. If connected to a network, it shows the used hardware interface (for example, network adapter) and the network name.		

Table 6.1 Legend to Illustration 6.24

STEP 2: Connect to network

Pre-configure the appropriate communication settings to connect to a network. See *chapter 6.5.4 ISD Toolbox Communication* for further information.

- 1. In the *Main Window* toolbar, click on the *Connect to bus* icon to open the *Connect to Network* window.
- 2. Select the fieldbus type and the network interface to connect to.
- 3. Click on *OK* to connect.
- 4. Verify that the connection is successful by checking the status strip in the *Main Window*.

Illustration 6.25 Connect To Network Window (Ethernet $POWERLINK^{(S)}$)

Danfoss

STEP 3: Scan for devices

1. After verifying that the ISD Toolbox is connected to the selected network, click on the *Scan for Devices* icon in the toolbar to trigger the device scan procedure.

NOTICE

If connected to an Ethernet POWERLINK[®] network in cyclic mode, select the scan range (minimum and maximum IDs) in the next window to reduce the time needed for scanning. In all other cases, the complete ID range is scanned.

- When the scan is complete, a list of available devices is showed in the Select Devices window. Select which devices to add to the Device Environment and click on OK.
- 3. All selected devices appear in the *Device Environment* window and automatically go online (indicated by a glowing light bulb next to each device name).

NOTICE

See the VLT[®] Integrated Servo Drive ISD[®] 510 System Programming Guide for further information on the ISD Toolbox software.

6.6 Motion Library

6.6.1 Function Blocks

The PLC library provides function blocks that support the functionality of the ISD devices and comply with this standard:

PLCopen[®] Technical Specification Function blocks for motion control (Formerly Part 1 and Part 2) Version 2.0 March 17, 2011.

Additionally, specific ISD function blocks provide the functionality that is not described by PLCopen[®].

The following PLCopen[®] characteristics apply to all function blocks:

- Commanding (using the inputs)
- Signaling (behaviour of the outputs)
- General calling conventions

NOTICE

See the VLT[®] Integrated Servo Drive ISD[®] 510 System Programming Guide for further information on the available function blocks and their behavior.

6.6.2 Simple Programming Template

Automation Studio™

Detailed information on how to open the sample project within the ISD package in Automation StudioTM can be found in the Automation StudioTM Help. Open the B&R Help Explorer and go to [Programming \rightarrow Examples \rightarrow Adding sample programs] and follow the instructions for library samples.

TwinCAT[®]

A basic sample PLC application for starting up the ISD 510 servo system with 1 SAB and 2 axes is provided. The project *ISD_System_SampleProject* can be downloaded from the Danfoss website.

Danfoss

7 Operation

7.1 Operating Modes

The servo drive implements several modes of operation. The behavior of the servo drive depends on the activated mode of operation. It is possible to switch between the modes while the servo drive is enabled. The supported modes of operation are according to CANopen[®] CiA DS 402 and there are also ISD-specific modes of operation. All supported modes of operation are available for EtherCAT[®] and Ethernet POWERLINK[®]. The various modes of operation are described in detail in the *VLT[®] Integrated Servo Drive ISD[®] 510 System Programming Guide*.

Mode	Description
ISD Inertia measurement	This mode measures the inertia of an axis. It is used to measure the inertia of the servo drive and the
mode	external load, and to optimize the control loop settings. The friction effects are eliminated automatically.
Profile velocity mode	In profile velocity mode, the servo drive is operated under velocity control and executes a movement with
	constant speed. Additional parameters, such as acceleration and deceleration, can be parameterized.
Profile position mode	In profile position mode, the servo drive is operated under position control and executes absolute and
	relative movements. Additional parameters, such as velocity, acceleration, and deceleration, can be parame-
	terized.
Profile torque mode	In profile torque mode, the servo drive is operated under torque control and executes a movement with
	constant torque. Linear ramps are used. Additional parameters, such as torque ramp and maximum
	velocity, can be parameterized.
Homing mode	In homing mode, the application reference position of the servo drive can be set. Several homing methods,
	such as homing on actual position, homing on block, limit switch, or home switch are available.
CAM mode	In CAM mode, the servo drive executes a synchronized movement based on a master axis. The synchroni-
	zation is done by means of a CAM profile that contains slave positions corresponding to master positions.
	CAMs can be designed graphically with the ISD Toolbox software, or can be parameterized via the PLC. The
	guide value can be provided by an external encoder, virtual axis, or the position of another axis. The
	different CAM profile types are described in the VLT® Integrated Servo Drive ISD® 510 System Programming
	Guide.
Gear mode	In gear mode, the servo drive executes a synchronized movement based on a master axis by using a gear
	ratio between the master and the slave position. The guide value can be provided by an external encoder,
	virtual axis, or the position of another axis.
Cyclic synchronous position	In cyclic synchronous position mode, the trajectory generator of the position is located in the control
mode	device, not in the servo drive.
Cyclic synchronous velocity	In cyclic synchronous velocity mode, the trajectory generator of the velocity is located in the control
mode	device, not in the servo drive.

Table 7.1 Operating Modes

7.1.1 Motion Functions

Function	Description	
Digital CAM	This functionality controls whether the digital	
switch	output is enabled or disabled, depending on the	
	axis position. It performs a function comparable	
	to switches on a motor shaft. Forward and	
	backward movements of the axis position are	
	allowed. On and off compensation and hysteresis	
	can be parameterized.	
ISD touch	This functionality stores the position actual value	
probe	after a rising or falling edge at the configured	
	digital input.	

7.2 Operating Status Indicators

The operating status of the servo drive and SAB is indicated via the LEDs on each device.

7.2.1 Operating LEDs on the Servo Drive

Illustration 7.1 shows the operating LEDs on the servo drive.

7

LED	Color	Flash status	Description
DRIVE	Green	On	Servo drive is in state
STAT			Operation enabled.
		Flashing	Auxiliary voltage is
			applied.
	Red	On	Servo drive is in Fault
			or Fault reaction active
			state.
		Flashing	DC-link voltage is not
			applied.
NET	Green/	Fieldbus dependent	Network status of the
STAT	red		device (see
			corresponding fieldbus
			standard).
Link/A	Green	-	Link/activity status of
CT X1			Hybrid In (X1)
		On	Ethernet link
			established.
		Flashing	Ethernet link
			established and active.
		Off	No link.
Link/A	Green	-	Link/activity status of
CT X2			Hybrid Out (X2)
		On	Ethernet link
			established.
		Flashing	Ethernet link
			established and active.
		Off	No link.

LED	Color	Flash status	Description
Link/A	Green	-	Link/activity status of
СТ			the Ethernet port (X3).
X3 ¹⁾		On	Ethernet link
			established.
		Flashing	Ethernet link
			established and active.
		Off	No link.

Table 7.3 Legend to Illustration 7.1

1) Advanced version only

7.2.2 Operating LEDs on the Servo Access Box

Illustration 7.2 Operating LEDs on the SAB

LED	Color	Flash status	Description
Aux 1	Green	-	State of the auxiliary
			voltage on line 1.
		On	Statemachine is in
			state Standby, Power
			up, or Operation
			enabled. Auxiliary
			voltage is applied to
			the output connectors
			on line 1.
		Off	Statemachine is in
			state U _{AUX} disabled or
			Fault. Auxiliary voltage
			is not applied to line 1.

Operation

LED	Color	Flash status	Description	
Aux 2	Green –		State of the auxiliary	
			voltage on line 2.	
		On	Statemachine is in	
			state Standby, Power	
			up, or Operation	
			enabled. Auxiliary	
			voltage is applied to	
			the output connectors	
			on line 2.	
		Off	Statemachine is in	
			state U _{AUX} disabled or	
			Fault. Auxiliary voltage	
			is not applied to line 2.	
Safe 1	Green	On	24 V for STO is present	
			on line 1.	
		Off	24 V for STO is not	
			present on line 1.	
Safe 2	Green	On	24 V for STO is present	
			on line 2.	
		Off	24 V for STO is not	
			present on line 2.	
SAB	Green	On	SAB is in state	
STAT			Operation enabled.	
		Flashing	Auxiliary voltage is	
			applied at the input.	
		Off	No auxiliary voltage is	
			applied at the input.	
	Red	On	The SAB is in state	
			Fault.	
		Flashing	Mains is not applied at	
			the input.	
NET	Green/	Fieldbus dependent.	Network status of the	
STAT	red		device (see	
			corresponding fieldbus	
			standard).	
Link/A	Green	-	Link/activity status of	
CT X1			In.	
		On	Ethernet link	
			established.	
		Flashing	Ethernet link	
			established and active.	
		Off	No link.	
Link/A	Green	-	Link/activity status of	
CT X2			Out.	
		On	Ethernet link	
			established.	
		Flashing	Ethernet link	
			established and active.	
		Off	No link.	

LED	Color	Flash status	Description
Link/A	Green	-	Link/activity status of
СТ ХЗ			line 1.
		On	Ethernet link
			established.
		Flashing	Ethernet link
			established and active.
		Off	No link.
Link/A	Green	-	Link/activity status of
CT X4			line 2.
		On	Ethernet link
			established.
		Flashing	Ethernet link
			established and active.
		Off	No link.

Table 7.4 Legend to Illustration 7.2

<u>Danfoss</u>

Danfoss

8 ISD Safety Concept

8.1 Applied Standards and Compliance

Use of the STO function requires that all provisions for safety, including relevant laws, regulations, and guidelines, are satisfied.

The integrated STO function complies with the following standards:

- EN 60204-1: 2006 Stop Category 0 uncontrolled stop
- IEC/EN 61508: 2010 SIL 2
- IEC/EN 61800-5-2: 2007 SIL 2
- IEC/EN 62061: 2005 SIL CL2
- EN ISO 13849-1: 2008 Category 3 PL d

The ISD 510 servo system has been tested for higher EMC immunity as described in IEC/EN 61326-3-1.

8.2 Abbreviations and Conventions

Abbreviation	Reference	Description	
Cat.	EN ISO	Category, level B, 1–4	
	13849-1		
DC	-	Diagnostic coverage	
FIT	-	Failure in time	
		Failure rate: 1E-9/hour	
н	EN IEC 61508	Hardware fault tolerance	
		H = n means that $n + 1$ faults may	
		lead to a loss of the safety	
		function.	
MTTFd	EN ISO	Mean time to failure – dangerous	
	13849-1	Unit: years	
PFH	EN IEC 61508	Probability of dangerous failures	
		per hour	
		Take this value into account if the	
		safety device is operated in high	
	demand mode or in		
		operating mode, where the	
frequen		frequency of demands for	
		operation made on a safety-related	
		system occurs more than once per	
		year.	
PFD	EN IEC 61508	Average probability of failure on	
		demand.	
		This value is used for low demand	
		operation.	
PL	EN ISO	Performance level	
	13849-1	A discrete level used to specify the	
capability of safety-relat		capability of safety-related parts of	
		a system to perform safety-	
		oriented functions under	
		foreseeable conditions. Levels: a-e.	

Abbreviation	Reference	Description	
SFF	EN IEC 61508	Safe Failure Fraction [%]	
		Proportion of safe failures and	
		detected dangerous failures of a	
		safety function or a subsystem as a	
		percentage of all possible failures.	
SIL	EN IEC 61508	Safety Integrity Level	
	EN IEC 62061		
STO	EN IEC	Safe Torque Off	
	61800-5-2		
SS1	EN IEC	Safe stop 1	
	61800-5-2		
SRECS	EN IEC 62061	Safety-related electrical control	
		system	
SRP/CS	EN ISO	Safety-related parts of control	
	13849-1	systems	
PDS/SR	EN IEC	Power drive system (safety-related)	
	61800-5-2		

Table 8.1 Abbreviations and Conventions

8.3 Qualified Personnel for Working with the STO Function

The STO function may only be installed, programmed, commissioned, maintained, and decommissioned by qualified personnel. Qualified personnel for the STO function are qualified electrical engineers, or persons who have received training from qualified electrical engineers and are suitably experienced to operate devices, systems, plant, and machinery in accordance with the general standards and guidelines for safety technology.

Furthermore they must:

- Be familiar with the basic regulations concerning health and safety/accident prevention.
- Have read and understood the safety guidelines given in this manual.
- Have a good knowledge of the generic and specialist standards applicable to the specific application.

Users of power drive systems (safety-related) (PDS(SR)) are responsible for:

- Hazard and risk analysis of the application.
- Identifying safety functions required and allocating SIL or PLr to each of the functions, other subsystems, and the validity of signals and commands from them.
- Designing appropriate safety-related control systems (hardware, software, parameterization, and so on).

Protective measures

- Install the ISD 510 servo system components with a protective rating of less than IP54 in an IP54 cabinet as per IEC 60529 or in an equivalent environment. In special applications, higher IP protection may be necessary.
- If external influences can influence the motor axis, for example suspended loads, use additional measures, such as a safety holding brake, to eliminate hazards.

8.4 Safety Precautions

NOTICE

After installing the STO function, perform a commissioning test as described in *chapter 8.9 Commissioning Test*. A passed commissioning test is mandatory after initial installation and after each change to the safety installation.

UNCONTROLLED MOVEMENT

External forces on the motor could cause an uncontrolled and hazardous movement that could result in death or serious injury.

• Equip the motor with additional measures for preventing uncontrolled and hazardous movement, for example mechanical brakes.

RISK OF ELECTRICAL SHOCK

The STO function itself does not supply electrical safety and is not sufficient to implement the *Emergency-Off* function as defined by EN 60204-1, resulting in risk of death or serious injury.

• Ensure electrical isolation for *Emergency-Off*, for example by switching off the mains via an additional contactor.

RISK OF ELECTRICAL SHOCK

The STO function does not isolate mains voltage to the ISD 510 servo system or auxiliary circuits. Only perform work on electrical parts of the ISD510 system or the servo drive after isolating the mains voltage supply and waiting the length of time specified in *chapter 2 Safety*. Failure to isolate the mains voltage supply and waiting the time specified could result in death or serious injury.

- Do not use the STO function to stop a running ISD 510 servo system in normal operation.
 When using the STO function the servo drive coasts to stop. Depending on the application, a mechanical brake may be required.
- Use the STO function when performing mechanical work on the ISD 510 servo system or affected area of a machine. The STO function does not provide electrical safety and must not be used as a control to start and/or stop the ISD 510 servo system.

NOTICE

The ISD 510 servo system does not implement a manual reset function as required by ISO 13849-1. The standard failure reset from the PLC cannot be used for this purpose.

For automatic restart without manual reset, observe the requirements detailed in paragraph 6.3.3.2.5 of ISO 12100:2010 or equivalent standard.

RISK OF RESIDUAL ROTATION

Due to failures in the power semiconductor of the drive, a residual rotation can result from a fault that could result in death or serious injury. The rotation can be calculated to angle = $360^{\circ}/(number of poles)$.

 Take this residual rotation into consideration and ensure that it does not pose a safety risk.

NOTICE

Take measures to ensure that common mode voltage disturbances, as described in EN/IEC 61000-4-16, do not occur in the installation. This can be done, for example, by installing according to the requirements of EN/IEC 60204-1.

NOTICE

Carry out a risk assessment to select the correct stop category for each stop function in accordance with EN 60204-1.

NOTICE

When designing the machine application, consider timing and distance for coast to stop (*Stop Category 2* or STO). See EN 60204-1 for further information.

NOTICE

All signals connected to the STO must be supplied by a SELV or PELV supply.

8.5 Functional Description

The STO function in the ISD 510 servo system features a separate STO function for each line of servo drives in daisychain format. The function is activated by inputs on the SAB. Using the STO function activates the STO for all servo drives on that line. Once the STO is activated, no torque is generated on the axes. Reset of the safety function and diagnostics can be carried out via the PLC.

8.6 Installation

Install the ISD 510 servo system as described in *chapter 4 Mechanical Installation* and *chapter 5 Electrical Installation*. Only Danfoss cables may be used for the installation of the servo system, however cables from other suppliers may be used for the user connection to the STO terminals (*STO 1 IN* and *STO 2 IN*) on the SAB.

NOTICE

If the application does not require the Safe Torque Off (STO) functionality, build a bridge by connecting +24 V from the connector STO 1 IN: +24V to STO 1 IN: +STO, and from STO 1 IN: -24 V to STO 1 IN: -STO. Repeat this process for STO line 2 if used.

Safety relays that have a plus and minus switching output signal can be directly connected to the ISD 510 servo system to activate STO (see *Illustration 8.1*). Route the wires for STO 1 and STO 2 separately and not in a single multicore cable.

Illustration 8.1 Safety Relay with Plus and Minus Switching Output

Signals with test pulses must not have test pulses of >1 ms. Longer pulses may lead to reduced availability of the servo system.

The external supply must be a SELV/PELV supply.

8.7 Operation of the ISD Safety Concept

This chapter details the basic STO signals. Some of the signals can be reached in several ways, however only access via fieldbus is described here. See the $VLT^{\textcircled{B}}$ Integrated Servo Drive ISD[@] 510 System Programming Guide for further information.

The STO function does not require any parameterization and is always enabled. To disable the function permanently, connect the STO inputs directly to the 24 V outputs *STO 1 IN: 24 V* or *STO 2 IN: 24 V* on the SAB.

The ISD 510 servo drive provides STO status signals via the fieldbus.

For general information on how to access and map data objects, see the VLT[®] Integrated Servo Drive ISD[®] 510 System Programming Guide.

Danfoss provides a library for ISD 510 to simplify the use of the fieldbus functions. See the *VLT®* Integrated Servo Drive ISD® 510 System Programming Guide for further information.

8.7.1 Statusword

The *statusword* in 0x6041 provides the STO status in bit 14. The bit is set to 1 if STO is active and 0 if STO is deactivated. All servo drives on each STO line must display the same information in this bit. Carry out a check via the PLC to compare the STO status of all servo drives on each line.

If STO is activated when the servo drive is disabled, and no attempt is made to enable the servo drive while STO is active, it is not necessary to reset the STO function after reapplying supply to the STO terminals.

If STO is activated when the servo drive is enabled, an error code is issued (see *chapter 8.7.2 Error Codes*).

by the PLC.

8.8 Fault Reset

Error code 0xFF80 can be a normal status of the application. In this case, the servo drive requires a reset signal from the PLC. To use the STO function in an

application that requires a control guard (see ISO 12100 for

details), this reset information can be given automatically

Error code 0xFF81 means that there is a fault on the servo drive that can only be reset by carrying out a power cycle.

Change bit 7 of the *controlword* from 0 to 1 to reset faults. See the *VLT[®]* Integrated Servo Drive ISD[®] 510 System Programming Guide for further information.

Complete the commissioning test as described in *chapter 8.9 Commissioning Test* after the power cycle. Operation of the ISD 510 servo system can only be resumed if the test is completed successfully. If error code 0xFF81 or 0xFF85 is issued again, contact Danfoss Service.

8.7.2 Error Codes

If bit 3 of the *statusword* is set, this indicates any faults that occur on the servo drive. If the fault occurred because of the STO circuit, the cause of the fault can be found in object 0x603F.

Error	Classifi-	Description	Reset
code	cation		
0xFF80	Fault	STO activated while the servo	Reset via the
		drive was enabled, or an	PLC.
		attempt to enable the servo	
		drive was made while STO	
		was active.	
0xFF81	Safety	Servo drive internal diagnostic	Carry out a
	fault	fault.	power cycle.
0xFF85	Safety	Internal STO supply on the	Carry out a
	fault	power card is not within	power cycle.
		limits.	

Table 8.2 Error Codes

8.9 Commissioning Test

NOTICE

Perform a commissioning test after installation of the STO function, after every change to the installed function, or after a safety fault (described in *chapter 8.7.2 Error Codes*). Perform the test for each STO line.

There are 2 ways to implement the commissioning test depending on the method used to program the PLC, however the steps of the test are the same:

- Using the Danfoss Library or the TwinCAT[®] Library.
- Bit-wise readout of the status.

Commissioning test using libraries

Depending on the application, 1 or both of the following libraries are required to program the commissioning test:

- Danfoss Library
 - MC_ReadAxisInfo_ISD51x
 - MC_ReadStatus_ISD51x
 - MC_ReadAxisError_ISD51x
 - MC_Reset_ISD51x
- TwinCAT[®] Library
 - MC_ReadStatus
 - MC_ReadAxisError
 - MC_Reset

	Test steps	Reason for the test step	Expected result for Danfoss library	Expected result for TwinCAT® library
1	Run the application (all the servo drives are enabled).	Check that the application can run.	Application runs as expected.	Application runs as expected.
2	Stop the application.	-	All servo drives are at speed 0 RPM.	All servo drives are at speed 0 RPM.
3	Disable all the servo drives.	-	All servo drives are disabled.	All servo drives are disabled.

Danfoss

ISD Safety Concept

VLT[®] Integrated Servo Drive ISD[®] 510 System

	Test steps	Reason for the test step	Expected result for Danfoss	Expected result for TwinCAT®
			library	library
4	Enable STO.	Check that STO can be	MC_ReadAxisInfo_ISD51x output	-
		activated without error.	SafeTorqueOff = True for all	
			servo drives on the	
			corresponding line.	
5	Disable STO.	Check that STO can be	MC_ReadAxisInfo_ISD51x output	-
		deactivated without error. No	SafeTorqueOff = False for all	
		reset is required.	servo drives on the	
			corresponding line.	
6	Run the application (all the	-	Application runs as expected.	Application runs as expected.
	servo drives are enabled).			
7	Enable STO.	Check that errors are	Motors are torque free. Motors	Motors are torque free. Motors
		generated correctly when STO	coast and stop after some	coast and stop after some
		is activated while the servo	time.	time.
		drives are running.	MC_ReadAxisInfo_ISD51x output	For enabled motors:
			SafeTorqueOff = True	MC_ReadStatus output ErrorStop
			and	= True
			MC_ReadStatus_ISD51x output	and
			<i>ErrorStop</i> = True	MC_ReadAxisError output
			and	AxisErrorID = 0xFF80 on all
			MC_ReadAxisError_ISD51x	enabled servo drives.
			output AxisErrorID = 0xFF80 on	
			all enabled servo drives.	
8	Try to run the application	Checks that the STO function	Application does not run.	Application does not run.
	(enable 1 or more servo	is working correctly.		
	drives).			
9	Disable STO.	Check that the STO start is	MC_ReadAxisInfo_ISD51x output	MC_ReadStatus output ErrorStop
		still inhibited by the error	SafeTorqueOff = False	= True
		signal.	and	
			MC_ReadStatus_ISD51x output	
			<i>ErrorStop</i> = True	
10	Try to run the application	Check whether reset is	Application does not run.	Application does not run.
	(enable 1 or more servo	required.		
	drives).			
11	Send a reset signal via	-	MC_ReadAxisInfo_ISD51x output	MC_ReadStatus output ErrorStop
	MC_Reset(_ISD51x).		SafeTorqueOff = False	= False
			and	
			MC_ReadStatus_ISD51x output	
			ErrorStop = False	
12	Try to run the application (all	-	Application runs as expected.	Application runs as expected.
	servo drives are enabled).			

Table 8.3 Commissioning Test using Libraries

Commissioning test using bit-wise readout

	Test steps	Reason for the test step	Expected result
1	Run the application (all the servo drives	Check that the application can run.	Application runs as expected.
	are enabled).		
2	Stop the application.	-	All servo drives are at speed 0 RPM.
3	Disable all the servo drives.	-	All servo drives are disabled.
4	Enable STO.	Check that STO can be activated without	Statusword bit $3 = 0$ and bit $14 = 1$ in all
		error.	servo drives.
5	Disable STO.	Check that STO can be deactivated	Statusword bit $3 = 0$ and bit $14 = 0$ in all
		without error. No reset is required.	servo drives.
	Test steps	Reason for the test step	Expected result
----	--	---	---
6	Run the application (all the servo drives	-	Application runs as expected.
	are enabled).		
7	Enable STO.	Check that errors are generated correctly	Motors are torque free. Motors coast and
		when STO is activated while the servo	stop after some time.
		drives are running.	Statusword bit $3 = 1$, bit $14 = 1$ and
			object 0x603F shows fault 0xFF80 in all
			servo drives.
8	Try to run the application (enable 1 or	Checks that the STO function is working	Application does not run.
	more servo drives).	correctly.	
9	Disable STO.	Check that the STO start is still inhibited	Statusword bit $3 = 1$, bit $14 = 0$ and
		by the error signal.	object 0x603F shows fault 0xFF80 in all
			servo drives.
10	Try to run the application (enable 1 or	Check whether reset is required.	Application does not run.
	more servo drives).		
11	Send a reset signal via the PLC.	-	Statusword bit $3 = 0$ in all servo drives.
12	Try to run the application (all servo drives	-	Application runs as expected.
	are enabled).		

Table 8.4 Commissioning Test using Bit-Wise Readout

8.10 Application Example

Illustration 8.2 shows an example of an installation for 2 lines that can be put in Safe Torque Off mode by separate safety circuits for each line.

The safety circuits may be remote from each other and are not supplied from the ISD 510 servo system.

The 2 lines in the example are controlled separately. If the Safe Torque Off function is triggered on line 1, line 2 remains in normal operation and the servo drives on this line are not affected. There may still be a hazard from the servo drives on line 2.

Select the safety switch devices in accordance with the requirements of the application.

1a/1b	ISD 510 servo drive on line 1	7	Safety device on line 2
2a/2b	ISD 510 servo drive on line 2	8	Line 2 emergency stop button
3	Servo Access Box (SAB)	9	Line 2 safety device contacts
4	Safety device on line 1	10	Line 1 hybrid cable
5	Line 1 emergency stop button	11	Line 2 hybrid cable
6	Line 1 safety device contacts	12	24 V DC supply

Illustration 8.2 Application Example: Safe Torque Off Function with 2 Lines

<u>Danfvisi</u>

8.11 Safety Function Characteristic Data

General information	
Response time (from switching on the	<100 ms
input until torque generation is	
disabled)	
Lifetime	20 years
Data for EN/ISO 13849-1	
Performance level (PL)	d
Category	3
Mean time to dangerous failure (MTTF _d)	233 years (limited to
for maximum system size of 32 servo	100 years if the ISD
drives on each STO line	510 servo system
	forms an entire safety
	channel)
Diagnostic coverage (DC)	60%
Data for EN/IEC 61508 and EN/IEC 62067	1
Safety integrity level (SIL)	2
Probability of failure per hour (PFH) for	<5 x 10 ⁻⁸ /h
maximum system size of 32 servo drives	
on each STO line	
Safe Failure Fraction (SFF)	>95%
Hardware fault tolerance (H)	0
Subsystem classification	Туре А
Proof test interval	1 year

Table 8.5 Safety Function Characteristic Data

8.12 Maintenance, Security, and User Accessibility

Maintenance

Operate the STO function at least once per year.

Security

If security risks exist, take suitable measures to prevent them.

User accessibility

Restrict access to the servo drives, SAB, and other ISD 510 servo system components if access to them could result in safety risks.

Danfoss

9 Diagnostics

9.1 Faults

If faults occur during servo system operation, check:

- The LEDs on the servo drive for general problems relating to communication or device status.
- The LEDs on the SAB for general problems with communication, auxiliary supply, or STO voltage.

The error codes can be read using the ISD Toolbox software, the LCP, or the PLC. The LCP only shows faults relating to the device it is connected to.

NOTICE

If the fault cannot be eliminated by 1 of the measures listed in *Table 9.1* or *Table 9.3*, notify Danfoss Service.

Have the following information available to enable Danfoss to provide help quickly and effectively:

- Type number
- Error code
- Firmware version
- System set-up (for example, number of servo drives and lines).

9.2 Servo Drive

9.2.1 Troubleshooting

First use *Table 9.1* to check the possible causes of the fault and possible solutions. The error codes are listed in *chapter 9.2.2 Error Codes*.

Fault	Possible cause	Possible solution
LCP display dark	Missing input power.	Check the input
or has no		power source.
function.	Missing or open fuses	Check the fuses and
	or circuit breaker	circuit breaker.
	tripped.	
	No power to the LCP.	Check the LCP
		cable for proper
		connection or
		damage.
		Replace any faulty
		LCP or connection
		cables.
	Incorrect contrast	Press [Status] +
	setting.	[▲]/[▼] to adjust the
		contrast.
	Display is defective.	Replace the faulty
		LCP or connection
		cable.

Fault	Possible cause	Possible solution
Servo drive	Excessive load.	Check the torques.
overheats (high		
surface		
temperature).		
Servo drive not	No drive communi-	Check the fieldbus
running.	cation or drive in	connection and the
	error mode.	status LEDs on the
		servo drive.
Servo drive does	Bearing wear.	Check the
starts up slowly or	 Incorrect 	choft
with difficulty	parameter	Shart.
with difficulty.	settings.	Check the
	 Incorrect control 	parameter
	loop parameters.	settings.
	 Incorrect torque 	
	settings.	
Drive hums and	Drive defective.	Contact Danfoss.
draws high		
current.		
Drive stops	No drive	Check the fieldbus
suddenly and	communication.	connection and the
does not restart.	 Servo drive in 	status LEDs on the
	error mode.	servo drive.
Wrong motor	Parameter error.	Check the
rotation direction.		parameter
		settings.
		Change the
		rotation direction
		if appropriate.
Drive runs	Drive defective.	Check the
normally, but	- Paramotor orror	parameter
does not generate	• Parameter error.	settings.
the expected		Contact Danfoss
torque.		
Drive screaming.	Incorrect	Check the
	calibration.	parameter
	Faulty current	settings.
	measurement.	Contact Danfoss.
	 Incorrect control 	
	loop parameters.	
Uneven running.	Defective bearing.	Check the shaft.
Vibration.	• Defective bearing.	• Check the shaft.
	 Incorrect control 	Check the
	loop parameters.	parameter
		settings.

<u>Danfoss</u>

Diagnostics

Operating Instructions

Fault	Possible cause	Possible solution	
(Unusual) running	• Defective bearing.	Check the shaft.	
noises	 Defects on connected mechanics. Incorrect control loop parameters. 	 Check for loose mechanical components on the attached mechanics. Check the parameter settings. 	
System fuse	Short circuit.	• Check the wiring.	
blows, circuit breaker trips, or drive protection trips immediately.	 Incorrect control loop parameters. 	Contact Danfoss.	
Drive speed drops	Drive is running at	Check the application	
load.	 Drive is running with incorrect parameters. 	 Check the parameter settings. 	
Brake does not	Brake control	Contact Danfoss.	
release.	defective.		
Holding brake does not hold the servo drive.	 Mechanical brake defective. Shaft load exceeds the holding torque of the brake. 	Contact Danfoss.	
Brake	Software error.	Contact Danfoss.	
engagement delayed.			
Noises when	Mechanical brake	Contact Danfoss.	
power-off brake	damaged.		
l EDs do not light	No power supply	Check the power	
up.	The power suppry.	supply.	
Error 0xFF91	Increments between	Check for velocity or	
occurs.	succeeding values too big.	guide value plausi- bility distance.	

Table 9.1 Troubleshooting Servo Drive

9.2.2 Error Codes

Code	Name	Severity (Warning/ Error/Trip lock)	Description	LCP name
0x0000	No error	Error	No error.	-
0x1000	Generic application error	Error	Generic application error.	generic err
0x2310	Overcurrent on output	Error	Overcurrent on output.	overcurr out

Code	Name	Severity (Warning/ Error/Trip lock)	Description	LCP name
0x239B	Overload on output (I2T)	Warning, error	l ² t thermal state.	overload
0x3210	DC link overvoltage	Error	Overvoltage on DC-link voltage	UDC overvolt
0x3220	DC link undervoltag e	Error	Undervoltag e on DC-link voltage.	UDC undervolt
0x4290	Overtem- perature: Power module	Error	Overtem- perature on power module.	overtemp PM
0x4291	Overtem- perature: Control card	Error	Overtem- perature on control PCB.	overtemp CC
0x4295	Overtem- perature: Power card	Error	Overtem- perature on power PCB.	overtemp PC
0x4310	Overtem- perature: Motor	Error	Overtem- perature on motor.	overtemp motor
0x5112	UAUX undervoltag e	Error, trip lock	Undervoltag e on auxiliary voltage.	undervolt UAUX
0x5530	EE Checksum Error (parameter missing)	Trip lock	Missing parameter in internal drive config- uration.	config err
0x6320	Parameter error	Trip lock	An internal parameter has an invalid value.	param err
0x7320	Internal position sensor error	Trip lock	Absolute position sensor error.	int sensor err
0x7380	External position sensor error	Error	External encoder data could not be read.	ext sensor err
0x8693	Homing error on entering homing mode	Warning	Could not enter homing mode (for example velocity not 0).	Homing mode fail

Danfoss

Diagnostics

VLT[®] Integrated Servo Drive ISD[®] 510 System

Code	Name	Severity (Warning/ Error/Trip lock)	Description	LCP name
0x8694	Homing	Warning	Could not	Homing
	error on		start homing	method fail
	start homing		method (for	
	method		example	
			drive not in	
			standstill).	
0x8695	Homing	Warning	Homing	Homing
	error		distance	distance
	distance		reached.	
0xFF01	Mechanical	Trip lock	No brake or	brake mech
	brake failure		wire failure.	fail
0xFF02	Short circuit	Trip lock	Short circuit	brake mech
	in		in brake	short
	mechanical		control.	
	brake			
	control			
0xFF0A	External	Error	External	ext IF pwr
	interface		interface	fail
	power		power	
	failure		supply	
			failure.	
0xFF60	Timing	Trip lock	Contact	timing err 1
	violation 1		Danfoss.	
0xFF61	Timing	Trip lock	Contact	timing err 2
	violation 2		Danfoss.	
0xFF62	Timing	Trip lock	Contact	timing err 3
	violation 3		Danfoss.	
0xFF63	Timing	Trip lock	Contact	timing err 4
	violation 4		Danfoss.	
0xFF64	Timing	Trip lock	Contact	timing err 5
	violation 5		Danfoss.	
0xFF65	Timing	Trip lock	Contact	timing err 6
	violation 6		Danfoss.	
0xFF70	Firmware:	Trip lock	Firmware	FW pack err
	Package		found does	
	description		not match	
	mismatch		the package	
			description.	
0xFF71	Firmware:	Warning,	Firmware	need
	Power cycle	error	update	powercycle
	needed		transfer is	
			completed	
			but a power	
			cycle is	
			required	
			before the	
			new	
			firmware is	
			active.	

Code	Name	Severity (Warning/ Error/Trip	Description	LCP name
		lock)		
0xFF72	Firmware:	Warning,	Firmware	FW update
	Update	error	update in	
	started		progress.	
			The warning	
			becomes an	
			error when	
			an attempt	
			is made to	
			enable the	
			drive in this	
			state.	
0xFF80	STO active	Error	STO	STO active
	while drive		activated	
	enabled		while servo	
			drive was	
			enabled or	
			tried to	
			enable while	
			STO active.	
0xFF81	STO	Trip lock	Dual	STO
	mismatch		diagnosis of	mismatch
			STO voltage	
			not	
			plausible.	
0xFF85	P_STO error	Trip lock	P_STO	P_STO error
			voltage on	
			power card	
			not within	
			limits.	
0xFF90	Guide value	Error	Position	guide val rev
	reversed		guide value	
			went	
			backwards	
			while servo	
			drive in CAM	
			mode.	
0xFF91	Guide value	Error	Increments	guide val
	implausible		between	impl
			succeeding	
			values too	
			big.	

Table 9.2 Error Codes for Servo Drive

9.3 Servo Access Box (SAB)

9.3.1 Troubleshooting

Table 9.3 lists potential faults on the SAB, their possible causes, and actions for correcting the faults.

Fault	Possible cause	Possible solution
LCP display	Missing input	Check the input power source.
dark or has no	power.	
function.	Missing or	Check the fuses and circuit
	open fuses or	breaker.
	circuit breaker	
	tripped.	
	No power to	Check the LCP cable for
	the LCP.	proper connection or
		damage.
		Replace any faulty LCP or
		connection cables.
	Incorrect	Press [Status] + [▲]/[▼] to
	contrast	adjust the contrast.
	setting.	
	Display is	Replace the faulty LCP or
	defective.	connection cable.
Open power	Phase-to-phase	Check the cabling.
fuses or circuit	short.	Check for loose
breaker trip.		connections.
DC-link voltage	Brake resistor	Check the brake resistor
too high.	not connected.	cabling.
	Brake resistor	Check if the lowest resistance
	too high	value has been entered.
	resistance.	
	Several servo	Avoid simultaneous
	drives are	deceleration of several
	decelerating	servo drives.
	with	Change the deceleration
	insufficient	speed of the servo drives.
	ramp time.	
	Brake resistor	Activate the brake function.
	not activated	
DC-link voltage	Incorrect mains	Check supply voltage matches
too low	supply	the allowed specification
100 100.	Supply.	detailed in <i>chapter</i> 8 ISD
		Safety Concept.
DC overcurrent.	The sum of the	Check the servo drive
	servo drive	current consumption.
	current exceeds	Avoid simultaneous
	the maximum	- Avoid simulations
	rating of the	drives
	SAB.	

Fault	Possible cause	Possible solution
U _{AUX} overcurrent.	The servo drives are consuming more power on the U _{AUX} line than allowed.	 Check the number of attached servo drives with the shell diagrams in the VLT® Integrated Servo Drive ISD® 510 System Design Guide. Avoid simultaneous lifting of the servo drive brakes
U _{AUX} overvoltage.	Incorrect U _{AUX} supply.	Check that the supply matches the allowed specifi- cation detailed in chapter 5.6 Auxiliary Supply Requirements.
U _{AUX} undervoltage.	Incorrect U _{AUX} supply.	 Check that the supply voltage matches the allowed specification detailed in <i>chapter 5.6 Auxiliary Supply Requirements.</i> Check that the output power of the supply is sufficient.
Mains phase loss.	A phase is missing on the supply side, or the voltage imbalance is too high.	Check the supply voltages and supply currents to the SAB.
Grounding fault.	Grounding fault.	 Check for proper grounding and loose connections. Check the hybrid cables for short circuits or leakage currents.
Brake resistor error.	Faulty brake resistor.	Remove the power to the SAB, wait for the discharge time to elapse then replace the brake resistor.
Brake chopper error.	Faulty brake chopper.	Check the setting in parameter 2-15 Brake Check.

Table 9.3 Troubleshooting SAB

Danfoss

9.3.2 Error Codes

Code	Name	Severity (Warning/ error/trip lock)	Description	LCP name
0x0000	No error	Error	No error.	-
0x1000	Generic application error	Error	Generic application error.	generic err
0x2120	Ground fault	Error	There is current from the output	ground fault
			phases to ground.	
0x2340	Short circuit	Error	There is a short circuit in UDC output	short circuit
			from SAB (DC Line1 and/or DC Line2).	
			Remove power to the SAB and repair	
			the short circuit.	
0x2391	AUX 1 overcurrent	Error	Current on AUX Line 1 reached	AUX1 overcurr
0.0000		-	overcurrent limit.	410/2
0x2392	AUX 2 overcurrent	Error	Current on AUX Line 2 reached	AUX2 overcurr
0	ALIX 1 waar limit awaant		Overcurrent limit.	
082393	AUX T user limit current	error	defined limit	
0x2394	AUX 2 user limit current	Warning	Current on AUX Line 2 reached user-	AUX2 curr limit
0.200		error	defined limit.	
0x2395	AUX 1 fuse failure	Error	HW fuse failure.	AUX1 fuse fail
			Current or voltage above limit on AUX	
			Line 1.	
0x2396	AUX 2 fuse failure	Error	HW fuse failure.	AUX2 fuse fail
			Current or voltage above limit on AUX	
			Line 2.	
0x2397	DC 1 overcurrent	Error	Overcurrent on DC Line 1. The SAB	DC1 overcurr
			peak current limit (approximately 200%	
			of the rated current) is exceeded.	
0x2398	DC 2 overcurrent	Error	Overcurrent on DC Line 2. The SAB	DC2 overcurr
			peak current limit (approximately 200%	
		_	of the rated current) is exceeded.	
0x2399	DC overcurrent	Error	Overcurrent. The SAB has reached the	DC overcurr
			current limit and shuts down to	
0.000			prevent any damage to the hardware.	
0x239B	Overload on output (121)	Warning,	The SAB is about to cut out due to an	overload
		error	overload (more than 100% for too	
			thermal SAB protection triggers a	
			warning at 90% and trips with an error	
			at 100%.	
0x239D	DC overcurrent	Warning,	Overcurrent. The SAB has reached the	DC overcurr
		error	current limit and shuts down to	
			prevent any damage to the hardware.	
0x3130	Mains phase loss	Warning,	Mains phase loss detected. This occurs	phase loss
		error	when a phase on mains is missing, or	
			when the mains is imbalanced.	
0x3210	DC link overvoltage	Error	The DC-link voltage exceeds the limit	UDC overvolt
			and the SAB trips.	
0x3220	DC link undervoltage	Error	The DC-link voltage is below the limit	UDC undervolt
			and the SAB trips.	
0x3291	U _{AUX} high voltage	Warning	U _{AUX} above warning limit.	UAUX high volt
0x3292	U _{AUX} overvoltage	Error	U _{AUX} above overvoltage limit.	UAUX overvolt

	Code	Name	Severity (Warning/ error/trip lock)	Description	LCP name
	0x3293	U _{AUX} low voltage	Warning	U _{AUX} below warning limit.	UAUX low volt
Ī	0x3294	U _{AUX} undervoltage	Error	U _{AUX} below undervoltage limit.	UAUX undervolt
	0x3295	UDC high voltage	Warning	The DC-link voltage (DC) is higher than the high-voltage warning limit.	UDC high volt
	0x3296	UDC low voltage	Warning	The DC-link voltage (DC) is lower than the low-voltage warning limit.	UDC low volt
	0x4220	Too low temperature: Heat sink	Warning	Heat sink temperature low. The SAB is too cold to operate. This warning is based on the temperature sensor in the IGBT module. This warning only occurs when DC-link voltage is >250 V.	low temp PM
	0x4290	Overtemperature: Heat sink	Warning, Error	The maximum temperature of the heat sink has been exceeded. The temperature fault does not reset until the temperature drops below a defined heat sink temperature (115 °C).	overtemp PM
	0x4291	Overtemperature: Control card	Warning, Error	Control card overtemperature. The cutout temperature of the control card is 80 °C.	overtemp CC
	0x4292	Overtemperature: SAB card	Warning, Error	SAB card overtemperature. The cutout temperature of the SAB card is 80 °C.	overtemp SC
	0x4293	Inrush overtemperature: SAB card	Error	Inrush fault. Too many transitions into state <i>Normal operation</i> have occurred within a short time period.	inrush SC
	0x4294	Inrush overtemperature: power module	Error	Inrush fault. Too many power-ups have occurred within a short time period.	inrush PM
	0x4410	Overtemperature: SAB	Error	Logic OR of control card temperature (see 0x4291) and/or heat sink temperature (see 0x4290) and/or SAB card temperature (see 0x4292).	overtemp SAB
	0x6320	Parameter error	Trip lock	A parameter has an invalid value.	param err
	0x6380	Configuration error (parameter missing)	Trip lock	A parameter is missing.	config err
	0x6381	Reinitialization of parameters from powercard	Trip lock	Configuration reinitialization. Configuration parameter for power unit has been reinitialized.	config reinit
	0x7111	Brake chopper short circuit	Error	The brake chopper is monitored during operation. This error appears if a short circuit occurs.	brake ch short
	0x7181	Brake resistor failure	Error	The brake resistor is monitored during operation. This error appears if a short circuit occurs.	brake r short

VLT[®] Integrated Servo Drive ISD[®] 510 System

Code	Name	Severity	Description	LCP name
		(Warning/		
		error/trip		
		lock)		
0x7182	Brake resistor power limit	Error	Brake resistor power limit exceeded.	brake r pwr lim
			The power transmitted to the brake	
			resistor is calculated as an average	
			value over the last 120 s of run time.	
			The calculation is based on the DC-link	
			voltage and the brake resistor value set	
			in parameter 2-16 (Brake resistor power	
			120 s). The error is reported when the	
			value is exceeded within 120 s.	
0x7183	Brake chopper check failed	Error	Brake check failed. The brake resistor is	brake ch check
			not connected or not working.	
0x7380	External position sensor error	Error	External encoder data could not be	ext sensor err
			read.	
0xFF21	Internal fan fault	Warning	Internal fan fault. The fan warning	fan fault
			function checks if the fan is running/	
			mounted.	
0xFF31	AUX Line 1 min off time	Warning	The minimum off time required to	AUX1 min off
			protect the internal hardware has not	
			been met.	
0xFF32	AUX Line 2 min off time	Warning	The minimum off time required to	AUX2 min off
			protect the internal hardware has not	
			been met.	
0xFF51	Internal error 1	Trip lock	Internal error 1, contact Danfoss.	PM int err 1
0xFF52	Internal error 2	Trip lock	Internal error 2, contact Danfoss.	PM int err 2
0xFF53	Internal error 3	Trip lock	Internal error 3, contact Danfoss.	PM int err 3
0xFF54	Internal error 4	Trip lock	Internal error 4, contact Danfoss.	PM int err 4
0xFF55	Internal error 5	Trip lock	Internal error 5, contact Danfoss.	PM int err 5
0xFF56	Internal error 6	Trip lock	Internal error 6, contact Danfoss.	PM int err 6
0xFF70	Firmware: Package description	Trip lock	Firmware found does not match	FW pack err
	mismatch		package description.	
0xFF71	Firmware: Power cycle	Warning,	Firmware update transfer is completed	need powercycle
	needed	error	but a power cycle is required before	
			the new firmware is active.	
0xFF72	Firmware: Update started	Warning,	Firmware update in progress. The	FW update
		error	warning becomes an error when an	
			attempt is made to enable the drive in	
			this state.	

Table 9.4 Error Codes for SAB

Danfoss

10 Maintenance, Decommissioning, and Disposal

HIGH VOLTAGE

Potentially lethal voltage is present on the connectors. Before working on the power connectors (disconnecting or connecting the cable), disconnect the SAB from the mains and wait for the discharge time to elapse.

DISCHARGE TIME

The servo drives and the SAB contain DC-link capacitors that remain charged for some time after the mains supply is switched off at the SAB. Failure to wait the specified time after power has been removed before performing service or repair work could result in death or serious injury.

• To avoid electrical shock, fully disconnect the SAB from the mains and wait for at least the time listed in *Table 10.1* for the capacitors to fully discharge before carrying out any maintenance or repair work on the ISD 510 servo system or its components.

Number	Minimum waiting time (minutes)
0–64 servo drives	10

Table 10.1 Discharge Time

10.1 Maintenance Tasks

The servo drives are largely maintenance free. Only the shaft seal (if used) is subject to wear.

The maintenance tasks listed in *Table 10.2* can be performed by qualified personnel (see *chapter 2.5 Qualified Personnel*). No other tasks are required.

Component	Maintenance	Maintenance	Instruction
	task	interval	
Servo drive	Carry out a	Every 6	Check for any
	visual	months	abnormalities on the
	inspection.		surface of the servo
			drive.
Shaft seal	Check the	Every 6	If damaged, replace
	condition and	months ¹⁾	the shaft seal.
	check for		
	leakage.		
Hybrid	Check for	Every 6	If damaged or worn:
cable	damage and	months	Replace the hybrid
	wear.		cable (see
			chapter 10.3.1 Cable
			Replacement).
Mechanical	Check the	Every 6	Ensure that the brake
holding	brake.	months	can achieve the
brake			holding torque as
(optional)			detailed in
			chapter 3.2.2.2 Brake
			(Optional).
Functional	Perform a	Every 12	Activate STO and
safety	system power	months	check the status with
	cycle and		the PLC. See
	check the		chapter 8 ISD Safety
	STO function.		Concept for further
			information.
SAB	Check the	Every 12	Check that the fan
	fan.	months	can turn and remove
			any dust or dirt.

Table 10.2 Overview of Maintenance Tasks

1) A shorter interval may be necessary depending on the application. Contact Danfoss for more information.

10.2 Inspection during Operation

Servo drives

Carry out regular inspections during operation. Check the servo drives at regular intervals for anything unusual.

Pay particular attention to:

- Unusual noises.
- Overheated surfaces (temperatures up to 100 °C can occur in normal operation).
- Uneven running.
- Strong vibrations.
- Loose fastenings.
- Condition of electrical wiring and cables.
- Poor heat dispersion.

If irregularities or problems occur, see *chapter 9.2 Servo Drive*.

SAB

Carry out regular inspections during operation.

Ensure that:

- The cooling vents are not blocked.
- The fan is not making any unusual noises.

If irregularities or problems occur, see *chapter 9.3 Servo Access Box (SAB)*.

10.3 Repair

NOTICE

Always return defective equipment to the local Danfoss sales company.

The repair tasks listed in this chapter can be performed by qualified personnel (see *chapter 2.5 Qualified Personnel*).

10.3.1 Cable Replacement

Replace the cables when the rated number of bending cycles has been reached or the cable is damaged.

NOTICE

Never disconnect or connect the cable from the servo drive with the supply voltage connected. Doing so damages the electronic circuitry. Observe the discharge time for the DC-link capacitors.

NOTICE

Do not forcefully connect or fit the connectors. Incorrect connection causes permanent damage to the connectors.

10.3.1.1 Feed-In Cable Replacement

Proceed as follows:

Disconnecting cables

- 1. Disconnect the SAB from its power source (mains network and all auxiliary supplies).
- 2. Wait for the necessary discharge time to elapse.
- Disconnect any cables connected to the X3, X4, or X5 ports on the servo drive for easier access to the feed-in cable.
- 4. Disconnect the PE wire from the decouping plate on the SAB.
- 5. Open the cable clamp holding the STO cable.
- 6. Open the cable clamp holding the feed-in cable on the SAB.
- 7. Loosen the feed-in cable connectors on the SAB.
- 8. Dismount the feed-in cable on the SAB.
- 9. Loosen the threaded ring of the connector on the servo drive.
- 10. Disconnect the feed-in cable from the servo drive.

Cable replacement

Replace the feed-in cable with a cable of identical type and length. See the *VLT®* Integrated Servo Drive ISD® 510 System Design Guide for ordering numbers.

Connecting cables

- Connect the female connector of the feed-in cable to the male connector of the 1st servo drive.
- 2. Turn the threaded rings of the connectors hand tight.
- 3. Ensure that there is no mechanical tension on the cables.
- 4. Insert the feed-in cable connectors into the correct position on the SAB (see *chapter 5.8.1 Servo Access Box*).
- 5. Secure the feed-in cable ensuring that the shield is positioned exactly under the clamp.
- 6. Secure the STO cable in the cable clamp ensuring that the shield is positioned exactly under the clamp.
- 7. Connect the PE wire to the decoupling plate.
- Reconnect any cables that were connected to the X3, X4, or X5 ports.

10.3.1.2 Loop Cable Replacement

Proceed as follows:

Disconnecting cables

- 1. Disconnect the SAB from its power source (mains network).
- 2. Wait for the necessary discharge time to elapse.
- Disconnect any cables connected to the X3, X4, or X5 ports on both servo drives for easier access to the loop cable.
- 4. Loosen the threaded rings of the loop cable connectors on both servo drives.
- 5. Disconnect the loop cable from the servo drives.

Cable replacement

Replace the loop cable with a cable of identical type and length. See the VLT[®] Integrated Servo Drive ISD[®] 510 System Design Guide for part numbers.

Connecting cables

- 1. Connect the male connector of the loop cable to the female connector on the servo drive (see *chapter 5.8.2.1 Connecting/Disconnecting Hybrid Cables*).
- 2. Connect the female connector of the loop cable to the male connector on the adjacent servo drive (see *chapter 5.8.2.1 Connecting/Disconnecting Hybrid Cables*).
- 3. Turn the threaded rings hand tight on both servo drives.
- 4. Ensure that there is no mechanical tension on the cables.
- 5. Tighten the threaded rings of the connectors on both servo drives.
- 6. Reconnect any cables that were connected to the X3, X4, or X5 ports on both servo drives.

10.4 Servo Drive Replacement

10.4.1 Dismounting

The procedure for dismounting the servo drive is the reverse of the fitting procedure described in chapter *chapter 5 Electrical Installation*.

Proceed as follows:

- 1. Disconnect the supply and wait for the discharge time to elapse.
- 2. Disconnect the electrical cables.
- 3. Dismount the servo drive.
- Replace the ISD 510 servo drive with an ISD 510 servo drive of the same type. See the VLT[®] Integrated Servo Drive ISD[®] 510 System Design Guide for part numbers.

10.4.2 Fitting and Commissioning

The procedure for fitting and commissioning the servo drive is described in *chapter 4.5.3 Fitting Instructions Servo Drive* and *chapter 6 Commissioning*.

Proceed as follows:

- 1. Check if preparation is required (see *chapter 4.4.1 Servo Drive*).
- 2. Fit the servo drive (see *chapter 4.5.3 Fitting Instructions Servo Drive*).
- 3. Connect the hybrid cables (see *chapter 5.8.2.1 Connecting/Disconnecting Hybrid Cables*).
- 4. Connect the I/O and/or encoder cables (see chapter 5.8.2.2 Connecting/Disconnecting Cables from Ports X3, X4, and X5).
- 5. Configure the servo drive parameters according to the fieldbus used (see *chapter 6.2 ID Assignment*).
- 6. Conduct a test run.

10.5 SAB Replacement

10.5.1 Dismounting

The procedure for dismounting the SAB is as follows:

- 1. Disconnect the supply and wait for the discharge time to elapse.
- 2. Disconnect the electrical cables.
- 3. Remove the decoupling plate.
- 4. Dismount the SAB.

10.5.2 Fitting and Commissioning

The procedure for fitting and commissioning the SAB is described in *chapter 4.5.5 Fitting Instructions Servo Access Box (SAB)* and *chapter 6 Commissioning*.

Proceed as follows:

- 1. Check if preparation is required (see chapter 4.4.2 Servo Access Box (SAB)).
- 2. Fit the SAB as described in *chapter 4.5.5 Fitting Instructions Servo Access Box (SAB).*
- 3. Connect the electrical cables as described in *chapter 5.8.1 Servo Access Box.*
- 4. Switch on the system as described in chapter 6.3 Switching on the ISD 510 Servo System.
- 5. Configure the SAB parameters according to the fieldbus used (see *chapter 6.2 ID Assignment*).
- 6. Conduct a test run.

Danfoss

10.6 Decommissioning of the ISD 510 Servo System

The procedure for decommissioning the servo system is the reverse of the installation procedure described in *chapter 4 Mechanical Installation*.

Proceed as follows:

- 1. Disconnect all supplies to the servo system and wait for the discharge time to elapse.
- 2. Disconnect the electrical cables.
- 3. Dismount the servo drive.
- 4. Dismount the SAB.

10.7 Product Returns

Danfoss products can be returned for disposal at no charge. A prerequisite for this is that they are free of deposits, such as oil, grease, or other types of contamination that hamper disposal.

Furthermore, foreign materials or third-party components cannot be included with the returned product. Ship the products free on board to the local Danfoss sales company.

10.8 Recycling and Disposal

10.8.1 Recycling

Take metals and plastics to recycling stations.

The entire servo drive and the SAB are classified as electronic waste, and the packaging is classified as packaging waste.

10.8.2 Disposal

Devices containing electronic components cannot be disposed of as normal domestic waste.

Dispose of the servo drives and the SAB as hazardous waste, electrical waste, recyclable waste, and so on, in accordance with applicable local regulations.

Operating Instructions

11 Specifications

11.1 Servo Drive

11.1.1 Nameplate

Check the nameplate and compare it with the order data. Use the part number for reference.

The part number uniquely identifies the drive type (see *chapter 3.2.1.1 Types*).

Ensure that the nameplate is clearly legible.

The servo drives can be identified externally only by the original Danfoss nameplate.

The following data is shown on the servo drive nameplate:

Danfoss

1	Typecode	7	U _{AUX} supply
2	Supply voltage	8	Rated power
3	Rated torque	9	Standstill torque
4	Maximum torque	10	Rated speed
5	Ambient temperature range	11	Maximum speed
6	Protection rating	-	-

Illustration 11.1 Servo Drive Nameplate

11.1.2 Characteristic Data

Table 11.1 and Table 11.2 provide a summary of typical servo drive characteristics.

Specifications	Unit	Size 1	Size 2	Size 2	Size 2
		1.5 Nm	2.1 Nm	2.9 Nm	3.8 Nm
Rated speed n _N	RPM	4600	4000	2900	2400
Rated torque M _N	Nm	1.5	2.1	2.9	3.8
Rated current I _N	A DC	1.4	1	.7	1.8
Rated power P_N	kW	0.72	0.	88	0.94
Standstill (Stall)	Nm	2.3	2.8	3.6	4.6
torque M ₀					
Standstill (Stall)	A DC	2.1	2.3	2.1	2.2
current I ₀					
Peak torque M _{max}	Nm	6.1	7.8	10.7	12.7
Peak current (rms	A DC	5.7		6.4	
value) I _{max}					
Rated Voltage	V DC		560	/680	
Inductance L 2ph	mH	18.5	26.8	32.6	33.9
Resistance R 2ph	Ω	9.01	7.78	8.61	8.64
Voltage constant	V/krms	70.6	80.9	111.0	132.0
ЕМК					
Torque constant Kt	Nm/A	1.10	1.26	1.72	2.04
Inertia	kgm ²	0.000085	0.00015	0.00021	0.00027
Shaft diameter	mm	14		19	

Danfoss

Specifications

VLT[®] Integrated Servo Drive ISD[®] 510 System

Specifications	Unit	Size 1	Size 2	Size 2	Size 2
		1.5 Nm	2.1 Nm	2.9 Nm	3.8 Nm
Pole pairs	-	4	5		
Flange size	mm	76	84		
Weight	kg	3.5	4.0	5.0	6.0

Table 11.1 Characteristic Data for Servo Drive without Brake

Specifications	Unit	Size 1	Size 2	Size 2	Size 2
		1.5 Nm	2.1 Nm	2.9 Nm	3.8 Nm
Brake inertia	kgm ²	0.0000012	0.000068	0.000068	0.000068
Brake weight	kg	0.34	0.63		
Rated torque	%	8	6		7
derating					

Table 11.2 Characteristic Data for Servo Drive with Brake

11.1.3 Dimensions

Flange

11

Servo drive	Flange thickness
Size 1, 1.5 Nm	7 mm
Size 2, 2.1 Nm	-
Size 2, 2.9 Nm	8 mm
Size 2, 3.8 Nm	8 mm

Table 11.3 Flange Thickness

All dimensions are in mm (in).

Illustration 11.2 Dimensions of ISD 510 Size 1, 1.5 Nm

<u>Danfvšš</u>

Illustration 11.3 Dimensions of ISD 510 Size 2, 2.1 Nm

Illustration 11.4 Dimensions of ISD 510 Size 2, 2.9 Nm

Illustration 11.5 Dimensions of ISD 510 Size 2, 3.8 Nm

30BE724.10

11.1.4 Permitted Forces

Illustration 11.6 Permitted Forces

Illustration 11.6 shows the maximum permitted forces on the motor shaft.

The maximum axial and radial load while assembling the motor and for any mechanical device connected to the shaft, must not exceed the values shown in *Table 11.4*. The shaft must be loaded slowly and in a constant manner: Avoid pulsating loads.

See the VLT[®] Integrated Servo Drive ISD[®] 510 System Design Guide for bearing load curves.

NOTICE

The bearing could be permanently damaged if the maximum permitted forces are exceeded.

Motor size	Radial Force (Fr) in N	Axial Force (Fa) in N
Size 1	450	1050
Size 2	900	1700

Table 11.4 Permitted Forces

11.1.5 General Specifications and Environmental Conditions

Vibration test	Random vibration: 7.54 g (2h/axis according
	to EN 60068-2-64)
	Sinusoidal vibration: 0.7 g (2h/axis
	according to EN 60068-2-6)
Maximum relative	Storage/transport: 5–93% (non-condensing)
humidity	Stationary use: 15–85% (non-condensing)
Ambient	5–40 °C above derating, maximum 55 °C
temperature range	(24-hour average maximum 35 °C)
	Transport: -25 to +70 °C
	Storage: -25 to +55 °C
Installation	Maximum 1000 m above sea level
elevation	
EMC standard for	EN 61800-3
emission and	
immunity	

Table 11.5 General Specifications and Environmental Conditions for Servo Drive

Protection ratings

Illustration 11.7 Mounting Positions

	Mounting position of	IP rating
	servo drive	(according to
	(according to DIN 42 950)	EN 60529)
Housing	All positions	IP67
Shaft without shaft	IM B5 & IM V1	IP54
seal	IM V3	IP50
Shaft with shaft	IM B5 & IM V1	IP65
seal	IM V3	IP60

11.2 Servo Access Box

11.2.1 Nameplate

The following data is shown on the SAB nameplate:

VI	_T® Servo Acc	ess Bo	ox Dan	BE612.10
2 3 4 4 P _N : 8 1npu 4 Outp Amb	.47KW(400V) / 10.18KW(4 t: 3x400-480V 50/60Hz 12 put: 565VDC - 679VDC / 1 ient: 50°C/122°F Enclosu	180V) 5A 5A re: IP20	,5	130
PAR	T NO: 000X0000 000X000 000X000 Made	000000000 in Germar	SERIAL NO: 000000M000 	
c P	UL XXXXX			
Ŕ	<u> </u>			
	CAUTION See manual for Voir manuel de WARNINC Stored charge, v Charge residuél	special cor conditions : wait 10 min le, attende	ndition/mains fuse s spéciales/fusibles n. ez 10 min.	
1	Rated power	4	Ambient temperatu	ıre

1	Rated power	4	Ambient temperature
2	Supply voltage	5	Protection rating
3	Output voltage	-	_

Illustration 11.8 SAB Nameplate

Ensure that the nameplate is clearly legible.

11.2.2 Characteristic Data

Definition	Value and unit
Input	
Input voltage	400-480 V ±10%
Efficiency	98.5% at 400 V
Input current	12.5 A continuous
	20 A intermittent
Output	
Output voltage	565-679 V ±10% ²⁾
ISD Line 1: UDC 1 & ISD Line 2: UDC 2	
Output voltage	24 V ±10%
ISD Line 1: STO 1 & ISD Line 2: STO 2	
Output voltage	24-48 V ±10%
ISD Line 1: AUX 1 & ISD Line 2: AUX 2	
Output current	15 A
ISD Line 1: AUX 1 & ISD Line 2: AUX 2	
Output current UDC	15 A
Output current	1 A ¹⁾
ISD Line 1: STO 1 & ISD Line 2: STO 2	
Output power	8.47-10.18 kW ²⁾
Housing	
Dimensions (W x H x D)	130 x 268 x 80 mm
Weight	8.3 kg

Table 11.7 Servo Access Box Characteristic Data

1) Depends on the number of servo drives connected in the application. The current per drive is 6.7 mA

2) Depends on the input voltage.

VLT[®] Integrated Servo Drive ISD[®] 510 System

11.2.3 Dimensions

All dimensions are in mm (in).

Front view

Side view

Specifications

Illustration 11.10 Dimensions: Side View

11

Danfoss

11.2.4 General Specifications and Environmental Conditions

Drotoction rating	1020
Protection rating	IP20
Vibration test	Random vibration: 1.14 g (2h/axis
	according to EN 60068-2-64)
	Sinusoidal vibration: 0.7 g (2h/axis
	according to EN 60068-2-6)
Maximum relative	Storage/transport and stationary use:
humidity	5–93% (non-condensing)
Ambient	5–50 °C operating temperature
temperature range	(24 hour average maximum 45 °C)
	Transport: -25 to +70 °C
	Storage: -25 to +55 °C
Installation elevation	Maximum 1000 m above sea level
EMC standard for	EN 61800-3
emission and	
immunity	

Table 11.8 General Specifications and Environmental Conditions SAB

11.3 Cables

NOTICE

See the VLT[®] Integrated Servo Drive ISD[®] 510 System Design Guide for cable dimensions and drawings.

All cables supplied by Danfoss have a nameplate as per the example in *Illustration 11.11*.

1	Cable type
2	Ordering code
3	Revision of specification
4	Manufacturing date
5	Length
6	Power rating
7	Signal rating
8	Signal rating for Ethernet
9	Barcode
10	Manufacturer logo

11.4 Storage

Store the servo drives and the SAB in a dry, dust-free location with low vibration ($v_{eff} \le 0.2 \text{ mm/s}$). Do not store the packaged system components on top of each other.

The storage location must be free from corrosive gases. Avoid sudden temperature changes.

11.4.1 Long-Term Storage

NOTICE

To recondition the electrolytic capacitors, servo drives and SABs not in service must be connected to a supply source once per year to allow the capacitors to charge and discharge. Otherwise the capacitors could suffer permanent damage.

12 Appendix

12.1 Glossary

A flange

The A side is the shaft side of the servomotor.

Ambient temperature

The temperature in the immediate vicinity of the servo system or component.

Automation Studio™

Automation StudioTM is a registered trademark of B&R. It is the integrated software development environment for B&R controllers.

Axial force

The force in newton-metres acting on the rotor axis in the axial direction.

Bearings

The ball bearings of the servomotor.

Beckhoff[®]

Beckhoff[®] is a registered trademark of and licensed by Beckhoff Automation GmbH, Germany.

B&R

Multi-national company, specialising in factory and process automation software and systems for a wide range of industrial applications.

B side

The rear side of the servo drive with the plug-and-socket connectors.

Brake

Mechanical holding brake on the servo drive.

CANopen[®]

 $\mathsf{CANopen}^{\circledast}$ is a registered community trademark of CAN in Automation e.V.

CE

European test and certification mark.

CiA DS 402

Device profile for drives and motion control. ${\rm CiA}^{\circledast}$ is a registered community trademark of CAN in Automation e.V.

Clamping set

A mechanical device, which, for example, can be used to secure gears to a motor shaft.

Connector (M23)

Servo drive hybrid connector.

Cooling

ISD servo drives are cooled by convection (without fans).

DC-link

Each servo drive has its own DC-link, consisting of capacitors.

DC-link voltage

A DC voltage shared by several servo drives connected in parallel.

Danfoss

DC voltage

A direct constant voltage.

EPSG

Ethernet POWERLINK[®] Standardization Group.

ETG

EtherCAT[®] Technology Group

EtherCAT[®]

EtherCAT[®] (Ethernet for Control Automation Technology) is an open high performance Ethernet-based fieldbus system. EtherCAT[®] is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Ether**CAT**

Illustration 12.1 EtherCAT[®] Logo

Ethernet POWERLINK®

Ethernet POWERLINK[®] is a deterministic real-time protocol for standard Ethernet. It is an open protocol managed by the Ethernet POWERLINK[®] Standardization Group (EPSG). It was introduced by Austrian automation company B&R in 2001.

Feed-in cable

Hybrid connection cable between the SAB and servo drive.

Feedback system

Feedback systems for servo drives in general.

Fieldbus

Communication bus between controller and servo axis and SAB; in general between controller and field nodes.

Firmware

Software in the unit; runs on the control board.

Function block

Device functionalities are accessible via the engineering environment software.

IGBT

The insulated-gate bipolar transistor is a 3 terminal semiconductor device, primarily used as an electronic switch to combine high efficiency and fast switching.

Installation elevation

Installation elevation above normal sea level, typically associated with a derating factor.

ISD

Integrated servo drive.

VLT[®] Integrated Servo Drive ISD[®] 510 System

Danfoss

ISD devices

Refers to both the ISD 510 servo drives and the SAB.

ISD servomotor

Designates the ISD servomotor (without the drive electronics).

ISD Toolbox

A Danfoss PC software tool used for parameter setting and diagnostics of ISD servo drives and the SAB.

LCP

Local control panel.

Loop cable

Hybrid connection cable between 2 servo drives, with 2 M23 connectors.

M8 connectors

Fully functional real-time Ethernet port (X3) on the B side of the advanced servo drive.

Connector (X5) for connection of the LCP to the B side of the advanced servo drive.

M12 connector

Connector (X4) for connecting I/O and/or encoder on the B side of the advanced servo drive.

M23 connectors

Connectors (X1 & X2) for connecting the hybrid feed-in and loop cables on the B side of the standard and advanced servo drive.

Motor shaft

Rotating shaft on the A side of the servo motor, typically without a key groove.

Multi-turn encoder

Describes a digital absolute encoder, in which the absolute position remains known after several revolutions.

PLC

A programmable logic controller is a digital computer used for automation of electromechanical processes, such as control of machinery on factor assembly lines.

PELV

Protected extra low voltage. Low voltage directive regarding voltage levels and distances between lines.

PLCopen[®]

The name PLCopen[®] is a registered trademark and, together with the PLCopen[®] logos, is owned by the association PLCopen[®]. PLCopen[®] is a vendor- and product-independent worldwide association, which defines a standard for industrial control programming.

POU

Program organization unit. This can be a program, function block, or function.

PWM

Pulse width modulation.

Radial force

The force in newton-metres acting at 90° to the longitudinal direction of the rotor axis.

RCCB

Residual current circuit breaker.

Resolver

A feedback device for servomotors, typically with 2 analog tracks (sine and cosine).

Safety (STO)

A servo drive safety circuit that switches off the voltages of the driver components for the IGBTs.

Scope

Is part of the ISD Toolbox software and is used for diagnosis. It enables internal signals to be depicted.

Servo Access Box (SAB)

Generates the DC-link supply for the ISD 510 servo system and can host up to 64 servo drives.

SIL 2

Safety Integrated Level II.

Single-turn encoder

Describes a digital absolute encoder, in which the absolute position for 1 revolution remains known.

SSI

Synchronous serial interface.

STO

Safe Torque Off function. On activation of STO, the servo drive is no longer able to produce torque in the motor.

TwinCAT[®]

TwinCAT[®] is a registered trademark of and licensed by Beckhoff Automation GmbH, Germany. It is the integrated software development environment for controllers from Beckhoff.

UAUX

Auxiliary supply, provides power to the control electronics of the drives and SAB.

Wireshark®

Wireshark[®] is a network protocol analyzer released under the GNU General Public License version 2.

Index

А

8
25
22

В

Brake	14
Brake connector	21

С

Cable	
Encoder	25
Fieldbus extension cable	25
Hybrid	25
I/O	25
Layout	26
Maximum lengths	26
Nameplate	92
Routing	26
Cabling	
Connecting the 3rd Ethernet device cable	42
Connecting the AUX cable	37
Connecting the encoder cable	38
Connecting the feed-in cable	37
Connecting the LCP cable	42
Connecting the mains cable	38
Connecting the Real-Time Ethernet cable	38
Connecting the STO cable	38
For 1 lines	26
For 2 lines	26
Replacing the feed-in cable	82
Replacing the loop cable	83
CAM mode	63
Characteristic data	
Servo Access Box	89
Servo drive	85
Checklist for commissioning	43
Command	66
Commissioning	43
Connectors on the Servo Access Box	
AUX	22
Diake	21
Elicouel	21
Mains	22
DF	20
Relav	22
UDC	22
Connectors on the servo drive	15
Control system	66

Cooling	15
Creating a TwinCAT®	48
Creating an Automation Studio [™] Project	44
Cyclic synchronous position mode	63
Cyclic synchronous velocity mode	63

D

Decommissioning of the ISD 510 servo system	34
Delivery	29
Description of the ISD 510 servo system 1	13
Diagnostics	74
Digital CAM switch ϵ	53
Dimensions Servo Access Box	90 86
Discharge time 1	10
Disposal	34
Due diligence 1	11

Е

Electrical environmental conditions	35
Electrical installation	35
EMC-compliant installation	35
Encoder	15
Encoder cables Connecting/disconnecting	41
Encoder connector	21
EtherCAT®	27
Ethernet connectors	22
Ethernet POWERLINK®	28

F

Fault log (on LCP)	24
Faults	74
Feedback	15
Feed-in cable replacement	82
Fieldbus	27
Foreseeable misuse	12
Function blocks	62

G

Gear mode	63
Glossary	93
Grounding	35

Н

Hand on (on LCP)..... 25

VLT[®] Integrated Servo Drive ISD[®] 510 System

High voltage	10
Homing mode	. 63
Housing	89
Hybrid cable	
Connecting/Disconnecting	39
Overview	25
PE	22

I

I/O cables	
Connecting/disconnecting	41
Encoder	25
ID assignment	
EtherCAT [®]	43
Ethernet POWERLINK®	43
Inertia measurement mode	63
Inspection during operation	82
Installation	
Aids and tools required	32
Auxiliary supply requirements	36
Clamping	32
Connecting the components	37
Coupling	33
Electrical	35
Environment	29
Grounding	35
ISD Toolbox	56
Mains supply requirements	36
Mechanical	32
Preparation	30
Safety measures during installation	29
Safety power supply requirements	36
Space requirements	32
Tightening torques	33
Intended use	11
IP rating	
SAB	92
Servo drive	88
ISD servo system overview	7
ISD Toolbox	
Commissioning	60
Communication	56
Installation	56
Overview	56
System requirements	56
ISD touch probe	63

L

LEDs on the SAB	
Aux 1	64
Aux 2	65
Link/ACT X1	65
Link/ACT X2	65
Link/ACT X3	65
Link/ACT X4	65
NET STAT	65
SAB STAT	65
Safe 1	65
Safe 2	65
LEDs on the servo drive	
DRIVE STAT	64
Link/ACT X1	64
Link/ACT X2	64
Link/ACT X3	64
NET STAT	64
Libraries	44
Local control panel (LCP)	23
Long-term storage	92
Loop cable replacement	83

Danfoss

Μ

Main menu (on LCP)	
Mains supply requirements	
Maintenance	81
Mechanical installation	29, 32
Menu keys (on LCP)	24
Misuse of the product	12
Modes of operation	63
Monitoring	82
Motion functions Digital CAM switch ISD touch probe	63 63
Motion library	62
Motor components	

Ν

Nameplate	
Cable	92
SAB	89
Servo drive	85
Navigation keys (on LCP)	24
NC axis	54

0

Operating modes	. 63
Operation	63
Operational safety	. 10

Ρ

Permitted forces	38
------------------	----

POWERLINK®	28
Pre-commissioning checklist	43
Product returns	84
Profile position mode	63
Profile torque mode	63
Profile velocity mode	63
Programming	
Automation Studio [™]	44
Connecting to the PLC	55
Creating an Automation Studio [™] Project	44
Creating an TwinCAT [®] Project	10
	40
Guidelines	40 55
Guidelines Requirements	40 55 44
Guidelines Requirements Template	40 55 44 62
Guidelines Requirements Template TwinCAT®	48 55 44 62 48

Q

Qualified personnel	11
Quick menu (on LCP)	24

R

Radial load 8	38
Recycling 8	34
Relay connectors 2	21
Repair	32
Replacing cables 8	32
Replacing the Servo Access Box 8	33
Replacing the servo drive 8	33
Reset (on LCP) 2	25
Resolver 1	15
Returning the product	34

S

Safe Torque Off (STO) 6	56
Safety	
Discharge time 1	0
During installation	29
Grounding hazard 1	0
High voltage 1	10
Instructions	9
Operational 1	0
Power supply requirements	36
Precautions	9
Symbols	9
Unintended start 1	10
Warnings 1	0

Safety concept	
Abbreviations and conventions	66
Application example	72
Characteristic data	73
Commissioning test	69
Error codes	69
Fault reset	69
Functional description	68
Installation	68
Maintenance	73
Operation	68
Precautions	67
Qualified personnel	66
Security	73
Standards	66
User accessibility	73
Sonvico	12
Service	12
Servo Access Box	
AUX connectors	22
Brake connectors	21
Characteristic data	89
Connections	19
Dimensions	90
Dismounting	83
Efficiency	89
Encoder connector	21
Environmental conditions	92
Error codes	. 78
Ethernet connectors	22
Faults	77
General specifications	92
Input current	89
Input voltage	89
Inspection during operation	82
Mains connectors	20
Nameplate	89
Output voltage	89
Overview	18
Protection rating	92
Relay connectors	21
Replacement	83
Storage	92
Troubleshooting	77
UDC connectors	. 22
Weight	89

VLT[®] Integrated Servo Drive ISD[®] 510 System

Servo drive

Characteristic data	85
Connectors	15
Dimensions	86
Dismounting	83
Environmental conditions	88
Error codes	75
Flange sizes	13
General specifications	88
Inspection during operation	82
Maintenance	81
Motor sizes	13
Nameplate	85
Overview	13
Permitted forces	88
Protection rating	88
Replacement	83
Shaft	14
Storage	92
Troubleshooting	74
Types	14
X1 & X2 hybrid connectors	16
X3 3rd Ethernet connector	16
X4 I/O and/or encoder connector	17
X5 LCP connector	17
Shaft	14
Signal	66
Software	27
Specifications	85
Startup	43
STO .	
Connectors	20
Installation	20
Statucword	60
Statusword	00
Storage	92
Supply requirements	
Auxiliary	36
Mains	36
Safety power	36
Support	
Sopport	12
Switching on the ISD 510 servo system	12 44

U

UDC connectors	22
Unintended start	10

۷

/oltage warning 10

W

Warnings	
Discharge time	
Grounding	35
High voltage	10, 35
Leakage current	
Unintended start	10
Weight	
Brake	86
Servo Access Box	
Servo drive	
Weight Brake Servo Access Box Servo drive	

Х

X1 & X2 hybrid connectors	16
X3 3rd Ethernet connector	16
X4 I/O and/or encoder connector	17
X5 LCP connector	17

Т

Template for programming	. 62
Terminology	8
Thermal protection	. 15
Tightening torques	. 33
Toolbox	56
Transport	. 29
Troubleshooting Error codes for SAB Error codes for servo drive Servo Access Box Servo drive	. 78 75 77 74
TwinCAT® NC Axis	. 54

Danfoss

Danfoss A/S Ulsnaes 1 DK-6300 Graasten vlt-drives.danfoss.com

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.

