

Produkthandbuch VLT[®] Integrated Servo Drive ISD[®] 510 System

www.danfoss.de/vlt

Danfoss

Produkthandbuch

Inhaltsverzeichnis

1 Einführung	6
1.1 Zweck des Produkthandbuchs	6
1.2 Zusätzliche Materialien	6
1.3 Copyright	6
1.4 Zulassungen und Zertifizierungen	6
1.5 Systemüberblick	7
1.5.1 Anwendungsgebiete	7
1.6 Software	7
1.7 Bezeichnungen	8
2 Sicherheit	9
2.1 In diesem Handbuch verwendete Symbole	9
2.2 Allgemeines	9
2.3 Sicherheitshinweise und Schutzmaßnahmen	9
2.4 Wichtige Sicherheitswarnungen	10
2.5 Qualifiziertes Personal	11
2.6 Sorgfaltspflicht	11
2.7 Bestimmungsgemäße Verwendung	11
2.8 Vorhersehbarer Missbrauch	12
2.9 Service und Support	12
2 Systemboschroibung	12
2 1 Übersicht	13
3.2 Servomotor	13
3.2.1 Servoantriehstynen	14
3.2.2 Komponenten des Motors	14
3 2 2 1 Welle	14
3 2 2 2 Bremse (ontional)	14
3 2 2 3 Kühlung	15
3 2 2 4 Thermischer Schutz	15
3225 Integrierte Geberschnittstellen	15
3 2 3 Antriebskomponenten	15
3.2.3.1 Stecker an den Servoantrieben	15
3.3 Servo Access Box (SAB)	18
3.3.1 Anschlüsse an der SAB	21
3.3.1.1 STO-Stecker	21
3.3.1.2 Netzanschlussstecker	21
3.3.1.3 Bremsanschlussstecker	22
3.3.1.4 Relaisanschlussstecker	
3.3.1.5 Encoder-Stecker	22

	3.3.1.6 Ethernet-Stecker (nicht enthalten)	23
	3.3.1.7 AUX-Stecker	23
	3.3.1.8 24/48 V IN Stecker	23
	3.3.1.9 UDC Stecker	24
	3.3.1.10 Hybridkabel PE	24
3.	4 Bedieneinheit (LCP)	24
	3.4.1 Übersicht	24
	3.4.2 Layout der Bedieneinheit (LCP)	24
3.	5 Kabel	26
	3.5.1 Hybridkabel	26
	3.5.2 E/A- und/oder Geberkabel	27
	3.5.3 Zusätzliche Kabel	27
3.	6 Verbindungskabel/Verkabelung	27
	3.6.1 Layout und Verlegung	27
	3.6.1.1 Standardverkabelungskonzept für 2 Linien	28
	3.6.1.2 Standardverkabelungskonzept für 1 Linie	28
3.	7 Software	28
3.	8 Feldbus	28
	3.8.1 EtherCAT [®]	29
	3.8.2 Ethernet POWERLINK [®]	29
4 Mec	hanische Installation	30
4.	1 Transport und Lieferung	30
	4.1.1 Gelieferte Teile	30
	4.1.2 Transport	30
	4.1.3 Eingangskontrolle	30
4.	2 Sicherheitsmaßnahmen bei der Installation	30
4.	3 Installationsumgebung	30
4.	4 Vorbereitungen für die Installation	30
	4.4.1 Servomotor	30
	4.4.2 Servo Access Box (SAB)	32
4.	5 Installationsanleitung	33
	4.5.1 Einbau und Platzverhältnisse	33
	4.5.2 Montagehilfen und benötigte Werkzeuge	33
	4.5.3 Montageanleitung für Servoantriebe	33
	4.5.4 Anzugsdrehmomente	34
	4.5.5 Montageanleitung für die Servo Access Box (SAB)	34
5 Elekt	trische Installation	36
5	1 Warnungen	30
5.	2 Elektrische Umgebungsbedingungen	36
5.		50

	5.3 EMV-gerechte Installation	36
	5.4 Erdung	36
	5.5 Netzversorgungsanforderungen	37
	5.6 Anforderungen an die Zusatzversorgung	37
	5.7 Anforderungen an die Sicherheitsstromversorgung	37
	5.8 Anschließen der Komponenten	38
	5.8.1 Servo Access Box	38
	5.8.2 Servomotor	40
	5.8.2.1 Anschließen/Trennen der Hybridkabel	40
	5.8.2.2 Anschließen/Trennen der Kabel von den Anschlüssen X3, X4 und X5	42
6 Ir	ibetriebnahme	44
	6.1 Checkliste vor der Inbetriebnahme	44
	6.2 ID-Zuweisung	44
	6.2.1 EtherCAT [®]	44
	6.2.2 Ethernet POWERLINK [®]	44
	6.2.2.1 ID-Zuweisung für einzelne Geräte	44
	6.2.2.2 ID-Zuweisung für mehrere Geräte	44
	6.3 Einschalten des ISD 510 Servosystems	45
	6.4 Grundlegende Programmierung	45
	6.4.1 Programmierung mit Automation Studio™	45
	6.4.1.1 Anforderungen	45
	6.4.1.2 Erstellen eines Automation Studio™ Projekts	45
	6.4.1.3 Verbinden mit der SPS	50
	6.4.2 Programmieren mit TwinCAT [®]	50
	6.4.2.1 ISD-Lieferumfang	50
	6.4.2.2 Erstellen eines TwinCAT [®] -Projekts	50
	6.4.2.3 Konfiguration als TwinCAT [®] NC-Achse	55
	6.4.2.4 Verbinden mit der SPS	56
	6.4.3 Programmierrichtlinien	56
	6.5 ISD Toolbox	56
	6.5.1 Übersicht	56
	6.5.2 Systemanforderungen	57
	6.5.3 Installation	57
	6.5.4 Kommunikation mit der ISD Toolbox	57
	6.5.4.1 Netzwerkeinstellungen zur indirekten Kommunikation	58
	6.5.4.2 Netzwerkeinstellungen zur direkten Kommunikation mit Ethernet POWER-LINK $^{\textcircled{m}}$	60
	6.5.4.3 Netzwerkeinstellungen zur direkten Kommunikation mit EtherCAT®	60
	6.5.5 Inbetriebnahme der ISD Toolbox	61

6.6 Motion-Bibliothek	63
6.6.1 Funktionsblöcke	63
6.6.2 Einfache Programmiervorlage	63
7 Betrieb	64
7.1 Betriebsmodi	64
7.1.1 Bewegungsfunktionen	65
7.2 Betriebsanzeigen	65
7.2.1 Betriebs-LEDs am Servoantrieb	65
7.2.2 Betriebs-LEDs an der Servo Access Box	66
8 ISD-Sicherheitskonzept	68
8.1 Angewendete Normen und Konformität	68
8.2 Abkürzungen und Konventionen	68
8.3 Qualifiziertes Personal für die Arbeit mit der STO-Funktion	68
8.4 Sicherheitsmaßnahmen	69
8.5 Funktionsbeschreibung	70
8.6 Installation	70
8.7 Betrieb des ISD Sicherheitskonzepts	70
8.7.1 Statusword	71
8.7.2 Fehlercodes	71
8.8 Fehlerrückstellung	71
8.9 Inbetriebnahmeprüfung	72
8.10 Anwendungsbeispiel	74
8.11 Sicherheitsbezogene Kenndaten	76
8.12 Wartung, Sicherheit und Benutzerzugriff	76
9 Diagnose	77
9.1 Störungen	77
9.2 Servomotor	77
9.2.1 Fehlersuche und -behebung	77
9.2.2 Fehlercodes	78
9.3 Servo Access Box (SAB)	80
9.3.1 Fehlersuche und -behebung	80
9.3.2 Fehlercodes	82
10 Wartung, Außerbetriebnahme und Entsorgung	86
10.1 Wartungsarbeiten	86
10.2 Inspektionen während des Betriebs	86
10.3 Reparatur	87
10.3.1 Kabel austauschen	87
10.3.1.1 Austauschen des Einspeisekabels	87

10.3.1.2 Loop-Kabel austauschen	87
10.4 Austausch des Servoantriebs	88
10.4.1 Demontage	88
10.4.2 Montage und Inbetriebnahme	88
10.5 SAB-Austausch	88
10.5.1 Demontage	88
10.5.2 Montage und Inbetriebnahme	88
10.6 Außerbetriebnahme des ISD 510 Servosystems	89
10.7 Rücknahme	89
10.8 Recycling und Entsorgung	89
10.8.1 Recycling	89
10.8.2 Entsorgung	89
11 Technische Daten	90
11.1 Servoantrieb	90
11.1.1 Typenschild	90
11.1.2 Kenndaten	90
11.1.3 Abmessungen	91
11.1.4 Zulässige Kräfte	93
11.1.5 Allgemeine Daten und Umgebungsbedingungen	93
11.2 Servo Access Box	94
11.2.1 Typenschild	94
11.2.2 Kenndaten	94
11.2.3 Abmessungen	94
11.2.4 Allgemeine Daten und Umgebungsbedingungen	97
11.3 Kabel	97
11.4 Lagerung	97
11.4.1 Langzeitlagerung	97
12 Anhang	98
12.1 Glossar	98
Index	100

Danfoss

1 Einführung

1.1 Zweck des Produkthandbuchs

Dieses Produkthandbuch dient zur Beschreibung des VLT[®] Integrated Servo Drive ISD[®] 510 Systems.

Dieses Produkthandbuch enthält Informationen zu:

- Installation
- Inbetriebnahme
- Programmieren
- Funktion
- Fehlersuche und -behebung
- Service und Wartung

Dieses Produkthandbuch richtet sich an qualifiziertes Personal. Lesen Sie es vollständig durch, um sicher und professionell mit dem ISD 510 Servosystem zu arbeiten. Berücksichtigen Sie insbesondere die Sicherheitshinweise und allgemeinen Warnungen. Dieses Produkthandbuch ist wesentlicher Bestandteil des ISD 510 Servosystems und enthält auch wichtige Hinweise zum Service. Bewahren Sie es daher immer zusammen mit dem ISD 510 Servosystem auf.

Die Einhaltung der Angaben in diesem Produkthandbuch ist Voraussetzung für:

- den störungsfreien Betrieb.
- die Erfüllung von Mängelhaftungsansprüchen.

Lesen Sie daher dieses Produkthandbuch, ehe Sie mit dem ISD 510 Servosystem arbeiten.

1.2 Zusätzliche Materialien

Verfügbare Handbücher für das ISD 510 Servosystem:

Dokument	Inhalt
VLT [®] Integrated Servo Drive	Informationen zu Installation,
ISD [®] 510 System Produk-	Inbetriebnahme und Betrieb des
thandbuch	ISD 510 Servosystems.
VLT [®] Integrated Servo Drive	Informationen zur Konfiguration
ISD [®] 510 System Projektie-	des ISD 510 Servosystems und
rungshandbuch	detaillierte technische Daten.
VLT [®] Integrated Servo Drive	Information zur Program-
ISD [®] 510 System Programmier-	mierung des ISD 510
handbuch	Servosystems.

Tabelle 1.1 Verfügbare Literatur für das ISD 510 Servosystem

Technische Literatur für Danfoss Antriebe ist auch online verfügbar unter *vlt-drives.danfoss.com/Support/Technical-Documentation/*.

1.3 Copyright

VLT[®], ISD[®] und SAB[®] sind Danfoss eingetragene Marken.

1.4 Zulassungen und Zertifizierungen

Das ISD 510 Servosystem erfüllt die unter *Tabelle 1.2* aufgeführten Standards.

IEC/EN 61800-3	Elektrische Antriebssysteme mit Drehzahlre-		
	gelung.		
	Teil 3: EMV-Anforderungen und spezielle		
	Prüfungsmethoden		
IEC/EN	Elektrische Antriebssysteme mit Drehzahlre-		
61800-5-1	gelung.		
	Teil 5-1: Sicherheitsanforderungen - elektrisch,		
	thermisch und energiebezogen.		
IEC/EN	Elektrische Antriebssysteme mit Drehzahlre-		
61800-5-2	gelung.		
	Teil 5-2: Sicherheitsanforderungen - Funktionale		
	Sicherheit.		
IEC/EN 61508	Funktionale Sicherheit sicherheitsbezogener		
	elektrischer/elektronischer/programmierbarer		
	Systeme.		
EN ISO 13849-1	Sicherheit von Maschinen – Sicherheitsbe-		
	zogene Teile von Steuerungen.		
	Teil 1: Allaemeine Projektierungsleitlinien.		
EN ISO 13849-2	Sicherheit von Maschinen – Sicherheitsbe-		
	zogene Teile von Steuerungen.		
	Teil 2: Prüfung.		
IEC/EN 60204-1	Sicherheit von Maschinen – elektrische		
	Ausrüstung von Maschinen		
	Teil 1: Allgemeine Anforderungen.		
IEC/EN 62061	Maschinensicherheit – funktionale Sicherheit		
	sicherheitsbezogener elektrischer elektromecha-		
	nischer und programmierbarer elektronischer		
	Stellerungssysteme		
IEC/EN	Elektrische Ausrüstung für Messung Begelung		
61326-3-1	und Laboreinsatz – FMV-Anforderungen		
01320 5 1	Teil 3-1: Störfestigkeitsanforderungen für sicher-		
	heitsbezogene Systeme und für Ausrüstungen		
	zur Erfüllung sicherheitsbezogener Funktionen		
	(funktionale Sicherheit) – allgemeine Industrie-		
	anwendungen		
111 5080	III-Standard für die Sicherheit von Leistungs-		
0L500C	wandlern		
2006/42/EC	Maschinenrichtlinie		
CE	CE		
2014/30/EU	EMV-Richtlinie		
2014/35/EU	Niederspannungsrichtlinie		

RoHS	Beschränkung gefährlicher Stoffe.		
(2002/95/EG)			
EtherCAT®	Ethernet für die Steuerungsautomatisierungs-		
	technologie. Ethernet-basiertes Feldbussystem		
	(weitere Informationen unter		
	Kapitel 12.1 Glossar).		
Ethernet	Ethernet-basiertes Feldbussystem:		
POWERLINK®			
PLCopen®	Technische Spezifikation.		
	Funktionsblöcke zur Bewegungssteuerung		
	(früher Teil 1 und Teil 2) Version 2.0, 17. März		
	2011.		

Tabelle 1.2 Zulassungen und Zertifizierungen

1.5 Systemüberblick

Abbildung 1.1 Übersicht über das ISD 510 Servo System

Die Servoantriebe sind dezentrale Komplettantriebe, wobei die Antriebselektronik zusammen mit dem Motorteil in einem Gehäuse untergebracht ist. Den ISD 510 Servoantrieb gibt es in 2 Ausführungen:

Standard	Mit 2 Hybridsteckern (M23), die eine Verbindung zu		
	den Leistungs- und Kommunikationssignalen eines		
	Hybridkabels herstellen.		
Advanced	Standardgerät mit 3 zusätzlichen Schnittstellen für		
	externe Geber, Ein-/Ausgänge, Feldbusgeräte und für		
	den direkten Anschluss der Bedieneinheit (LCP).		

Tabelle 1.3 Ausführungen des ISD 510 Servoantriebs

Bei diesem dezentralen System arbeiten die Servoantriebe in einem Gleichstromverbund und werden über eine SPS angesteuert. Die Bewegungssteuerung läuft autark im Servoantrieb ab, was die SPS entlastet. Das ISD 510 Servosystem benötigt Hybridkabel, die die DC-Versorgungsspannung sowie das Real-Time Ethernet-, das U_{AUX}- und das STO-Signal übertragen.

Die Servo Access Box (SAB[®]) ist die zentrale Spannungsversorgung für das ISD 510 Servosystem.

Das ISD 510-Servosystem ist für bis zu 64 ISD 510 Servoantriebe ausgelegt und besteht aus folgenden Komponenten:

- ISD 510 Servoantriebe
- Servo Access Box (SAB)
- 1 SPS (nicht enthalten)
- Verkabelung
- Blindkappen
- Software:
 - Firmware für den Servoantrieb
 - Firmware für die SAB
 - PC-Softwaretool: ISD Toolbox
 - SPS-Bibliotheken
 - Danfoss Motion Bibliothek für VLT[®] Integrated Servo Drive ISD[®] 510 System für AutomationStudio[™]
 - Danfoss Motion Bibliothek für VLT[®] Integrated Servo Drive ISD[®] 510 System für TwinCAT® 2

HINWEIS

Die ISD 510 Servoantriebe können ohne Änderung der Verdrahtungsinfrastruktur nicht in Servosystemen anderer Hersteller eingesetzt werden. Wenden Sie sich für weitere Informationen an Danfoss. Sie können Antriebe anderer Hersteller nicht im ISD 510 Servosystem einsetzen, wenn Sie Danfoss Hybridkabel verwenden.

1.5.1 Anwendungsgebiete

Potenzielle Anwendungsgebiete:

- Lebensmittel- und Getränkeautomaten
- Verpackungsmaschinen
- Pharmamaschinen
- Anwendungen, die einen Verbund dezentraler Servoantriebe erfordern.

1.6 Software

Von Zeit zu Zeit können Updates für Firmware, ISD Toolbox-Software und SPS-Bibliotheken verfügbar sein. Wenn Updates erhältlich sind, können Sie diese von der Webseite *danfoss.com* herunterladen. Mit Hilfe der ISD Toolbox-Software oder der SPS-Bibliotheken lässt sich die

Firmware auf den Servoantrieben oder auf der SAB installieren.

1.7 Bezeichnungen

ISD	Integrated Servo Drive (Integrierter		
	Servoantrieb)		
ISD 510 Servo	Dezentraler Servoantrieb		
Drive			
VLT [®] Servo Access	Gerät, das die Zwischenkreisspannung		
Box (SAB)	erzeugt und die U _{AUX} -, Real-Time Ethernet-		
	und STO-Signale über ein Hybridkabel an die		
	ISD 510 Servoantriebe weiterleitet.		
SPS	Externes Gerät zur Steuerung des ISD 510		
	Servosystems.		
Loop-Kabel	Hybridkabel zum Anschluss der Antriebe im		
	Daisy-Chain-Format.		
Einspeisekabel	Hybridkabel für den Anschluss des ersten		
	Servoantriebs an die SAB.		

Tabelle 1.4 Bezeichnungen

Eine Erläuterung sämtlicher Fachbegriffe und Abkürzungen finden Sie unter *Kapitel 12.1 Glossar*.

2 Sicherheit

2.1 In diesem Handbuch verwendete Symbole

Dieses Handbuch verwendet folgende Symbole:

Weist auf eine potenziell gefährliche Situation hin, die zu schweren oder tödlichen Verletzungen führen kann.

AVORSICHT

Weist auf eine potenziell gefährliche Situation hin, die zu leichten oder mittleren Verletzungen führen kann. Die Kennzeichnung kann ebenfalls als Warnung vor unsicheren Verfahren dienen.

HINWEIS

Weist auf eine wichtige Information hin, z. B. eine Situation, die zu Geräte- oder sonstigen Sachschäden führen kann.

2.2 Allgemeines

Die folgenden Sicherheitshinweise und Schutzmaßnahmen beziehen sich auf das ISD 510 Servosystem.

Lesen Sie die Sicherheitshinweise sorgfältig, bevor Sie mit irgendwelchen Arbeiten am ISD 510 Servosystem oder seinen Komponenten beginnen.

Beachten Sie besonders die Sicherheitshinweise in den entsprechenden Kapiteln dieser Anleitung.

GEFÄHRLICHE SITUATION

Wenn der Servoantrieb oder die Bus-Leitungen falsch angeschlossen sind, besteht die Gefahr tödlicher oder schwerer Verletzungen oder einer Beschädigung am Gerät.

Halten Sie daher unbedingt die Anweisungen in diesem Produkthandbuch sowie die lokalen und nationalen Sicherheitsvorschriften ein.

2.3 Sicherheitshinweise und Schutzmaßnahmen

Die Sicherheitshinweise und Schutzmaßnahmen müssen jederzeit eingehalten werden.

• Der einwandfreie und sichere Betrieb des ISD 510 Servosystems und seiner Komponenten setzt sachgemäßen und fachgerechten Transport, Lagerung, Montage und Installation sowie sorgfältige Bedienung und Instandhaltung voraus.

- Nur entsprechend ausgebildetes und qualifiziertes Personal darf am ISD 510 Servosystem und seinen Komponenten oder in deren Umkreis arbeiten. Siehe Kapitel 2.5 Qualifiziertes Personal.
- Verwenden Sie ausschließlich von Danfoss zugelassene Zubehör- und Ersatzteile.
- Die angegebenen Umgebungsbedingungen müssen eingehalten werden. Nähere Informationen finden Sie unter Kapitel 11.1.5 Allgemeine Daten und Umgebungsbedingungen und Kapitel 11.2.4 Allgemeine Daten und Umgebungsbedingungen.
- Die in diesem Handbuch gemachten Angaben zur Verwendung der lieferbaren Komponenten stellen lediglich Anwendungsbeispiele und Vorschläge dar.
- Der Anlagenbauer muss für seine individuelle Anwendung die Eignung der gelieferten Komponenten und die in diesem Handbuch gemachten Angaben zu ihrer Verwendung selbst überprüfen,
 - mit den für seine Anwendung geltenden Sicherheitsvorschriften und Normen abstimmen und
 - die erforderlichen Maßnahmen, Änderungen sowie Ergänzungen durchführen.
- Die Inbetriebnahme des ISD 510 Servosystems oder seiner Komponenten ist solange untersagt, bis festgestellt wurde, dass die Maschine oder Anlage, in der sie eingebaut sind, den länderspezifischen Bestimmungen, Sicherheitsvorschriften und Normen der Anwendung entspricht.
- Der Betrieb ist nur bei Übereinstimmung mit den nationalen EMV-Vorschriften für den vorliegenden Anwendungsfall erlaubt.
- Für die Einhaltung der durch nationale Vorschriften geforderten Grenzwerte ist der Hersteller der Anlage, Maschine oder des Systems verantwortlich.
- Sie müssen die technischen Daten sowie die Anschluss- und Installationsbedingungen in diesem Handbuch unbedingt einhalten.
- Die Sicherheitsvorschriften und -bestimmungen des Landes, in dem die Geräte verwendet werden, müssen strengstens befolgt werden.

 Zum Schutz des Benutzers vor Stromschlägen sowie zum Schutz des Servoantriebs und der SAB gegen Überlast ist eine Schutzerdung obligatorisch, die gemäß örtlichen und nationalen Vorschriften ausgeführt sein muss.

AWARNUNG

VORSCHRIFTSMÄSSIG ERDEN

Der Erdableitstrom ist größer als 3,5 mA. Eine fehlerhafte Erdung der Komponenten des ISD 510 Servosystems könnte zum Tod oder zu schweren Verletzungen führen.

 Aus Gründen der Bedienersicherheit ist es wichtig, die Komponenten des ISD 510 Servosystems ordnungsgemäß nach nationalen oder örtlichen Elektrovorschriften sowie den Hinweisen in diesem Handbuch zu erden.

Betriebssicherheit

- Sicherheitsrelevante Anwendungen sind nur zugelassen, wenn sie ausdrücklich und eindeutig in diesem Handbuch angegeben sind.
- Sicherheitsrelevant sind alle Anwendungen, durch die Personengefährdung und Sachschäden entstehen können.
- Die über die Software der SPS ausgeführten Stoppfunktionen unterbrechen nicht die Netzversorgung der SAB. Sie dürfen sie deshalb nicht als Sicherheitsschalter für das ISD 510 Servosystem verwenden.
- Der Servoantrieb lässt sich mit einem Softwarekommando oder einem Sollwert Null anhalten, obwohl der Servoantrieb weiter unter DC-Spannung und/oder die SAB weiter unter Netzspannung steht. Wenn der Servoantrieb abgeschaltet ist, kann er von selbst wieder anlaufen, sofern die Elektronik des Servoantriebs defekt ist, oder falls eine kurzfristige Überlastung oder ein Fehler in der Versorgungsspannung oder am Servoantrieb beseitigt wurde. Wenn ein unerwarteter Anlauf des Servomotors gemäß den Bestimmungen zur Personensicherheit (z. B. Verletzungsgefahr durch Kontakt mit sich bewegenden Maschinenteilen nach einem unerwarteten Anlauf) jedoch nicht zulässig ist, sind die oben genannten Stoppfunktionen nicht ausreichend. Achten Sie in diesem Fall darauf, dass Sie das ISD 510 Servosystem vom Netz trennen oder eine geeignete Stoppfunktion implementieren.
- Der Servoantrieb kann während der Parametereinstellung oder der Programmierung ungewollt anlaufen. Wenn dies die Personensicherheit gefährdet (z. B. Verletzungsgefahr durch Kontakt mit sich bewegenden Maschinenteilen), ist ein

unerwarteter Anlauf beispielsweise mithilfe der Safe Torque Off-Funktion oder durch eine sichere Trennung der Servoantriebe zu verhindern.

Danfoss

 Das ISD 510 Servosystem hat außer den Spannungseingängen L1, L2 und L3 an der SAB noch weitere Spannungseingänge, z. B. eine externe Hilfsspannung. Kontrollieren Sie vor Beginn von Reparaturarbeiten, ob alle Spannungseingänge abgeschaltet sind und die erforderliche Entladezeit der Zwischenkreiskondensatoren verstrichen ist (siehe den Sicherheitshinweis zum Entladevorgang in Kapitel 2.4 Wichtige Sicherheitswarnungen).

2.4 Wichtige Sicherheitswarnungen

HOCHSPANNUNG

Das ISD 510 Servosystem arbeitet mit hoher Spannung, wenn es an das elektrische Versorgungsnetz angeschlossen ist.

Sobald die Servoantriebe und die SAB an das Stromnetz angeschlossen sind, stehen sie unter gefährlicher Spannung.

Es gibt keine Anzeige am Servoantrieb oder an der SAB, die die anliegende Netzspannung anzeigt.

Fehler bei Installation, Inbetriebnahme oder Wartung können zum Tod oder zu schweren Verletzungen führen.

 Nur qualifiziertes Personal darf Installation, Inbetriebnahme und Wartung vornehmen (siehe Kapitel 2.5 Qualifiziertes Personal).

AWARNUNG

UNERWARTETER ANLAUF

Das ISD 510 Servosystem enthält Servoantriebe und die SAB, die an das elektrische Versorgungsnetz angeschlossen sind und jederzeit anlaufen können. Dies kann durch einen Feldbusbefehl, ein Sollwertsignal oder einen zurückgesetzten Fehler erfolgen. Servoantriebe und alle angeschlossenen Geräte müssen betriebsbereit sein. Fehler in der Betriebsbereitschaft können bei Anschluss an das elektrische Versorgungsnetz zum Tod, zu schweren Verletzungen, Schäden an der Ausrüstung oder zu anderen Sachschäden führen.

 Treffen Sie geeignete Ma
ßnahmen gegen unerwarteten Anlauf.

Danfoss

ENTLADEZEIT

Die Servoantriebe und die SAB enthalten Zwischenkreiskondensatoren, die auch nach Abschalten der Netzversorgung an der SAB eine gewisse Zeit geladen bleiben. Das Nichteinhalten der vorgesehenen Entladungszeit nach dem Trennen der Spannungsversorgung vor Wartungs- oder Reparaturarbeiten kann zu schweren oder tödlichen Verletzungen führen.

 Zur Vermeidung von Stromschlag ist die SAB vor allen Wartungs- oder Reparaturarbeiten am ISD 510 Servosystem oder seinen Komponenten vollständig vom Netz zu trennen. Warten Sie außerdem mindestens die in *Tabelle 2.1* angegebene Zeit ab, bis sich die Kondensatoren entladen haben.

Nummer	Mindestwartezeit (Minuten)	
0–64 Servoantriebe	10	

Tabelle 2.1 Entladezeit

HINWEIS

Schließen Sie das Hybridkabel niemals an den Servoantrieb an und trennen Sie es auch nicht, wenn das ISD 510 Servosystem mit dem Netz oder einer Zusatzversorgung verbunden ist oder wenn noch eine Spannung anliegt. Sie zerstören hierdurch die Elektronik. Vergewissern Sie sich, dass die Netzversorgung unterbrochen und die erforderliche Entladezeit für die Zwischenkreiskondensatoren verstrichen ist, bevor Sie die Hybridkabel lösen oder anschließen oder Kabel von der SAB lösen.

2.5 Qualifiziertes Personal

Die Installation, Inbetriebnahme und Wartung des ISD 510 Servosystems darf nur qualifiziertes Personal durchführen. Im Sinne dieses Handbuchs und der Sicherheitshinweise in diesem Handbuch ist qualifiziertes Personal ausgebildete Fachkräfte, die die Berechtigung haben, Geräte, Systeme und Stromkreise gemäß den Standards der Sicherheitstechnik zu montieren, zu installieren, in Betrieb zu nehmen, zu erden und zu kennzeichnen und die mit den Sicherheitskonzepten der Automatisierungstechnik vertraut sind. Ferner muss das Personal mit allen Anweisungen und Sicherheitsmaßnahmen gemäß dieser Anleitung vertraut sein.

Das Fachpersonal muss über eine geeignete Sicherheitsausrüstung verfügen und in Erster Hilfe ausgebildet sein.

2.6 Sorgfaltspflicht

Der Betreiber und/oder der Weiterverarbeiter muss sicherstellen, dass:

- das ISD 510 Servosystem und seine Komponenten ausschließlich bestimmungsgemäß verwendet werden.
- die Komponenten nur in einwandfreiem, funktionstüchtigen Zustand betrieben werden.
- das Produkthandbuch stets vollständig und in leserlichem Zustand in der Nähe des ISD 510 Servosystems zur Verfügung steht.
- nur ausreichend qualifizierte und autorisierte Fachkräfte das ISD 510 Servosystem montieren, installieren, in Betrieb nehmen und warten.
- diese Fachkräfte regelmäßig in allen zutreffenden Fragen der Arbeitssicherheit und des Umweltschutzes unterwiesen werden und die Inhalte des Produkthandbuchs sowie die darin enthaltenen Sicherheitshinweise kennen.
- die an den Komponenten angebrachten Produktkennzeichnungen und Identifikationen sowie Sicherheits- und Warnhinweise nicht entfernt und in stets lesbarem Zustand gehalten werden.
- die am jeweiligen Einsatzort des ISD 510 Servosystems geltenden nationalen und internationalen Vorschriften für die Steuerung von Maschinen und Anlagen eingehalten werden.
- die Anwender stets über alle aktuellen, für ihre Belange relevanten, Informationen zum ISD 510 Servosystem sowie dessen Anwendung und Bedienung verfügen.

2.7 Bestimmungsgemäße Verwendung

Die Komponenten des ISD 510 Servosystems sind zum Einbau in Maschinen, die in industriellen Bereichen eingesetzt werden, vorgesehen.

HINWEIS

In einer Wohnumgebung kann dieses Produkt Funkstörungen verursachen. In diesem Fall sind zusätzliche Maßnahmen zur Abschwächung dieser Störungen erforderlich. ro m

Bevor Sie das Servosystem einsetzen, müssen die folgenden Voraussetzungen erfüllt sein, um einen bestimmungsgemäßen Gebrauch der Produkte zu gewährleisten:

- Alle Anwender von Danfoss-Produkten müssen die entsprechenden Sicherheitsvorschriften und die Beschreibung der bestimmungsgemäßen Verwendung gelesen und verstanden haben.
- Änderungen an der Hardware dürfen nicht vorgenommen werden.
- Softwareprodukte dürfen nicht dekompiliert werden, und ihre Quellcodes dürfen nicht verändert werden.
- Beschädigte oder fehlerhafte Produkte dürfen nicht eingebaut oder in Betrieb genommen werden.
- Es muss gewährleistet sein, dass die Produkte entsprechend den in der Dokumentation genannten Vorschriften installiert sind.
- Vorgegebenen Wartung- und Serviceintervalle müssen eingehalten werden-
- Alle Schutzmaßnahmen müssen eingehalten werden.
- Nur die Komponenten, die in dieser Gebrauchsanweisung beschrieben werden, dürfen montiert oder installiert werden. Drittgeräte und -anlagen dürfen nur in Abstimmung mit Danfoss verwendet werden.

Das ISD 510 Servosystem **darf nicht** in folgenden Anwendungsbereichen eingesetzt werden:

- Bereiche mit explosionsgefährdeten Atmosphären.
- Mobile oder tragbare Systeme.
- Schwimmende oder schwebende Systeme.
- Bewohnte Einrichtungen.
- Anlagen, in denen Radioaktivität vorhanden ist.
- Bereiche mit extremen Temperaturschwankungen oder in denen die maximale Nenntemperatur überschritten werden kann.
- Unter Wasser.

2.8 Vorhersehbarer Missbrauch

Jede Verwendung, die Danfoss nicht ausdrücklich freigegeben hat, gilt als Missbrauch. Dies gilt auch für die Nicht-Einhaltung der festgelegten Betriebsbedingungen und Anwendungen. Für Schäden, die auf missbräuchliche Verwendung zurückzuführen sind, übernimmt Danfoss keinerlei Haftung.

2.9 Service und Support

Wenden Sie sich für Service und Support an den lokalen Servicepartner:

vlt-drives.danfoss.com/Support/Service/

Danfoss

3 Systembeschreibung

3.1 Übersicht

Das VLT[®] Integrated Servo Drive ISD[®] 510 System ist eine dezentrale Lösung mit Hochleistungsservoantrieb.

Es umfasst:

- Eine VLT[®] Servo Access Box (SAB[®]) mit zentraler Spannungsversorgung.
- VLT[®] Integrated Servo Drives ISD[®] 510.
- Verkabelungsinfrastruktur.

Die Dezentralisierung der Antriebseinheit bietet Vorteile bei der Montage, Installation und beim Betrieb. Bei Verwendung von 2 Hybridlinien kann die SAB je nach Anwendung bis zu 64 Antriebe in einem Servoantriebssystem versorgen. Sie erzeugt eine Zwischenkreisspannung von 565-680 V DC ±10 % und garantiert eine hohe Leistungsdichte. Sie ist mit einer abnehmbaren LCP-Bedieneinheit ausgestattet und basiert auf der bewährten Qualität eines Danfoss Frequenzumrichters. Die Bewegungsregelung ist im Servoantrieb integriert, sodass die Bewegungsabläufe unabhängig voneinander ablaufen können. Dies führt zu einer Reduzierung der erforderlichen Rechenleistung der zentralen SPS und ermöglicht ein hochflexibles Antriebskonzept. Danfoss bietet Bibliotheken für verschiedene IEC 61131-3 programmierbare SPS. Aufgrund der standardisierten und zertifizierten Feldbusschnittstellen der ISD-Geräte können Sie jede SPS mit EtherCAT® Masterfunktion oder Ethernet POWERLINK[®] Verwaltungsknotenfunktion verwenden. Zum Anschluss der Antriebe kommen Hybridkabel zum Einsatz, wodurch sich die Installation schnell und einfach gestaltet. Die Hybridkabel enthalten das Zwischenkreisversorgungs-, das Real-Time Ethernet, das UAUX- und das STO Signal.

3.2 Servomotor

ISD ist die Abkürzung von Integrated Servo Drive, einem Kompaktantrieb mit permanent erregtem Synchronmotor (PMSM). Das bedeutet, dass das gesamte Antriebssystem bestehend aus Motor, Positionssensor, mechanischer Bremse sowie Leistungs- und Regelelektronik in ein Gehäuse integriert ist. Zusätzliche Kreise, wie z. B. Niederspannungsversorgung, Bustreiber und funktionale Sicherheit werden innerhalb der Servoantriebselektronik implementiert. Alle Servoantriebe verfügen über 2 Hybridstecker (M23), die eine Verbindung zu den Leistungs- und Kommunikationssignalen eines Hybridkabels herstellen. Die Advanced Version verfügt über 3 zusätzliche Schnittstellen für externe Geber, Ein-/Ausgänge, Feldbusgeräte und für den direkten Anschluss der Bedieneinheit (LCP).

LEDs an der Oberseite des Servoantriebs zeigen den aktuellen Status (weitere Informationen unter *Kapitel 7.2 Betriebsanzeigen*). Die Datenübertragung erfolgt über das Real-Time Ethernet.

Der ISD 510 Servoantrieb verfügt über folgende Flanschgrößen: 76 mm, 84 mm.

Weitere Flanschgrößen von 108 mm und 138 mm sind in Planung.

	Baugröße	Baugröße	Baugröße	Baugröße
	1,	2,	2,	2,
	1,5 Nm	2,1 Nm	2,9 Nm	3,8 Nm
Flanschgröße	76 mm		84 mm	

Tabelle 3.1 Motor und Flanschgrößen

Alle Abmessungen des Servoantriebs sind in *Kapitel 11.1.3 Abmessungen* aufgeführt.

3.2.1 Servoantriebstypen

Pos.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Fest	I	S	D	5	1	0		Т					D	6																										
Variant							A		0	1	С	5			Ε	5	4	F	R	Х	Ρ	L	S	Х	Х	Т	F	0	7	6	S	Х	Ν	4	6	Х	S	Х	S	Х
e																																								
							S		0	2	С	1			Е	6	7	F	S	1	Е	С	S	С	0	F	F	0	8	4	С	0	Ν	4	0	В	К	S	С	Х
									0	2	С	9						F	М	1	Ρ	Ν					F	1	0	8			Ν	2	9		С			
									0	3	С	8									E	Ν					F	1	3	8			Ν	2	4					

Tabelle 3.2 Typencode

[01-03]	Produktgruppe	[21–22]	Bussystem	[33–35]	Motordrehzahl
ISD	VLT [®] Integrated Servo Drive	PL	Ethernet	N46	Nenndrehzahl 4600 U/min
			POWERLINK®		
[04–06]	Produktvariante	EC	EtherCAT [®]	N40	Nenndrehzahl 4000 U/min
510	ISD [®] 510	PN	PROFINET ^{®1)}	N29	Nenndrehzahl 2900 U/min
[07]	Hardwarekonfiguration	EN	Ethernet/IP ^{™1)}	N24	Nenndrehzahl 2400 U/min
Α	Advanced	[23–25]	Firmware	[36]	Mechanische Bremse
s	Standard	SXX	Standard	Х	Ohne Bremse
[08]	Antriebsdrehmoment	SC0	Kundenspezifische	В	Mit Bremse
			Version		
Т	Drehmomentregler	[26]	Sicherheit	[37]	Motorwelle
[09–12]	Drehmomentregler	т	Safe Torque Off (STO)	S	Standardmäßig glatte Welle
01C5	1,5 Nm	F	Funktionale	к	Standard-Passfeder ¹⁾
			Sicherheit ¹⁾		
02C1	2,1 Nm	[27–30]	Flanschgröße	с	Kundenspezifisch
02C9	2,9 Nm	F076	76 mm	[38]	Motorabdichtung
03C8	3,8 Nm	F084	84 mm	Х	Ohne Dichtung
[13–14]	Gleichspannung	F108	108 mm ¹⁾	S	Mit Dichtung
D6	600 V DC-Zwischenkreisspannung	F138	138 mm ¹⁾	[39–40]	Oberflächenbeschichtung
[15–17]	Gehäuse	[31–32]	Flanschtyp	SX	Standard
E54	IP54	SX	Standard	сх	Kundenspezifisch
E67	IP67 (Welle IP65)	С0	Kundenspezifische		
			Version		
[18–20]	Servoantrieb-Geberschnittstelle				
FRX	Resolver				
FS1	Singleturn Encoder				
FM1	Multiturn Encoder				
1					

Tabelle 3.3 Legende für Typencode

1) In Vorbereitung

3.2.2 Komponenten des Motors

3.2.2.1 Welle

Über die Welle wird die Kraft (Drehmoment) des Motors auf die angekuppelte Maschine übertragen.

Das Wellenmaterial ist C45+C oder vergleichbar gemäß EN 10277-2.

Die ISD 510 Servoantriebe lassen sich durch einen Wellendichtring (optional) abdichten, um die Schutzart IP65 auf der A-Seite des Motors zu erfüllen (weitere Informationen unter *Kapitel 11.1.5 Allgemeine Daten und Umgebungsbedingungen*).

3.2.2.2 Bremse (optional)

Die optionale mechanische Haltebremse ist eine Einscheibenbremse. Die Notstoppfunktion kann je nach Last maximal alle 3 Minuten und insgesamt bis zu 2000-mal ausgelöst werden.

Das übertragbare Moment (Haltemoment) beträgt:

- Baugröße 1: 2,5 Nm
- Baugröße 2: 5,3 Nm

Die Bremse arbeitet als Haltebremse nach dem Ruhestromprinzip *stromlos geschlossen*. Sie wird von der Zusatzversorgung mit 24–48 V DC versorgt. Dies

ermöglicht ein spielarmes Halten der Last im spannungslosen Zustand.

Elektrische Daten: Leistungsaufnahme:

- Baugröße 1: 1,5 W
- Baugröße 2: 1,8 W

HINWEIS

Die Haltebremse darf nicht als Arbeitsbremse missbraucht werden; dies führt zu erhöhtem Verschleiß und damit zu vorzeitigem Ausfall.

HINWEIS

Der Einsatz von Servoantrieben mit Bremsen kann, je nach der Gesamtlänge der jeweiligen Hybridlinie, die zulässige Anzahl der Antriebe reduzieren. Weitere Informationen finden Sie im Muscheldiagramm des VLT[®] Integrated Servo Drive ISD[®] 510 System Projektierungshandbuchs.

3.2.2.3 Kühlung

Die Servoantriebe sind selbstkühlend.

Die Kühlung (Wärmeabfuhr) erfolgt primär über den Flansch; ein geringer Teil wird über das Gehäuse abgeführt.

3.2.2.4 Thermischer Schutz

Thermosensoren überwachen die maximal zulässige Temperatur der Motorwicklung und schalten den Motor ab, wenn die Grenze von 140 °C überschritten wird. Thermosensoren sind auch im Antrieb zum Schutz der Elektronik vor Übertemperatur vorhanden. Eine Fehlermeldung wird über Real-Time Ethernet an die übergeordnete SPS gesendet und zusätzlich am LCP angezeigt.

3.2.2.5 Integrierte Geberschnittstellen

Der integrierte Geber misst die Rotorposition.

Es sind 3 Geber-Varianten verfügbar:

- Resolver
- 17-Bit-Singleturn Encoder
- 17-Bit-Multiturn Encoder

Tabelle 3.4 fasst die Kenndaten der einzelnen Varianten zusammen.

Daten/Typ	Resolver	Singleturn	Multiturn
		Encoder	Encoder
Signal	Sinus/	BiSS-B	BiSS-B
	Cosinus		
Genauigkeit	±10 arc	±1,6 arc min	±1,6 arc min
	min		
Auflösung	14 Bit	17 Bit	17 Bit
Maximale Anzahl	-	-	4096 (12 Bit)
der Umdrehungen			

Tabelle 3.4 Kenndaten verfügbarer Geberschnittstellen

3.2.3 Antriebskomponenten

3.2.3.1 Stecker an den Servoantrieben

In diesem Kapitel sind alle möglichen Anschlüsse für den Standard und den Advanced Servoantrieb beschrieben. In den Tabellen dieses Kapitels finden Sie maximale Kabellängen, Nennwerte und andere Grenzen.

Die Servoantriebe sind mit 5 Steckern ausgestattet.

Stecker	Beschreibung
X1	M23 Einspeise- oder Loop-Hybridkabel-
	eingang
X2	M23 Loop-Hybridkabelausgang oder
	Feldbusverlängerungskabel
X3 (nur Advanced	M8 Ethernet-Kabel (mindestens CAT5,
Version)	geschirmt)
X4 (nur Advanced	M12 E/A und/oder Geberkabel (geschirmt)
Version)	
X5 (nur Advanced	M8 LCP-Kabel (geschirmt)
Version)	

Abbildung 3.2 Stecker am ISD 510 Servo Drive

X1 und X2: Hybridstecker (M23)

Das Hybridkabel sorgt für die Stromversorgung (Netz- und Hilfsspannung), die Kommunikationsleitungen und die Übertragung der Signale für funktionale Sicherheit der einzelnen Servoantriebslinien. Die Geräte-Ein- und Ausgangsstecker werden im Inneren des Servoantriebs angeschlossen.

Abbildung 3.3 X1: Hybridstecker (M23)

Pin	Beschreibung	Hinweise	Nennwert/Parameter
A	UDC-	Negative DC-Netzver-	Betriebsspannung:
		sorgung	Negative DC-
			Versorgung (maximal
			–15 A)
В	UDC+	Positive DC-Netzver-	Betriebsspannung:
		sorgung	Positive DC-
			Versorgung (maximal
			–15 A)
С	AUX+	Zusatzversorgung	24–48 V DC, 15 A
			Absolutes Maximum
			55 V DC
D	AUX-	Zusatzversorgung,	15 A
		Erde	
PE	PE	PE-Stecker	15 A

Pin	Beschreibung	Hinweise	Nennwert/Parameter
2	STO+	Anschluss für	24 V DC ±10 %, 1 A
		Übertragung	
		funktionale Sicherheit	
3	STO-	Spannungsver-	1 A
		sorgung der	
		funktionale	
		Sicherheit, Erde	
5	TD+	Positive Ethernet-	
		Übertragung	
6	RD+	Positiver Ethernet-	•
		Empfang	Entsprechend Norm
7	TD-	Negative Ethernet-	100BASE-T
		Übertragung	
8	RD-	Negativer Ethernet-	
		Empfang	

Tabelle 3.5	Fin-Belegung	der Hybridstecker	X1	und X2	(M23)
-------------	--------------	-------------------	----	--------	-------

X3: 3. Ethernet-Stecker (M8, 4-polig)

Der Advanced ISD 510 Servoantrieb verfügt über einen zusätzlichen Feldbusanschluss (M8) zum Anschluss an ein Gerät, das über den gewählten Feldbus kommuniziert.

Pin	Beschreibung	Hinweise	Nennwert/Parameter
1	TD+	Positive Ethernet-	
		Übertragung	
2	RD+	Positiver Ethernet-	
		Empfang	Entsprechend Norm
3	TD-	Negative Ethernet-	100BASE-T
		Übertragung	
4	RD-	Negativer Ethernet-	
		Empfang	

Abbildung 3.5 Pin-Belegung des X3 3. Ethernet-Stecker (M8, 4-polig)

X4: M12 Geber- und/oder E/A-Stecker (M12, 8-polig)

Der M12 Geber- und/oder E/A-Stecker ist am Advanced Servoantrieb verfügbar und kann wie folgt verwendet oder konfiguriert werden:

- Digitalausgang
- Digitaleingang
- Analogeingang
- 24-V-Versorgung

Danfvis

• Externe Geberschnittstelle (SSI oder BiSS).

Pin	Beschreibu	Hinweise	Nennwert/Parameter
	ng		
1	Digital-	Geschaltete 24 V als	Nennspannung
	ausgang	Digitalausgang oder	24 V ±15 %
		Versorgung (24 V/	Maximaler Strom
		150 mA)	150 mA
			Maximale Schalt-
			frequenz 100 Hz
2	Erde	Erde isoliert	-
3	Eingang 1	Analog-/Digital-	Digitaleingang:
		eingang	Nennspannung 0–24 V
			Bandbreite: ≤ 100 kHz
			Analogeingang:
			Nennspannung 0–10 V
			Eingangsimpedanz
			5,46 kΩ
			Bandbreite: ≤ 25 kHz
4	/SSI CLK	Negative SSI/BiSS	SSI:
		clock out	Busgeschwindigkeit:
5	SSI DAT	Positive SSI/BiSS data	0,5 Mbit mit 25-m-
		in	Kabel
6	SSI CLK	Positive SSI/BiSS clock	BiSS:
		out	Entspricht der RS485-
			Spezifikation.
			Maximale Kabellänge
			(SSI und BiSS): 25 m
7	Eingang 2	Analog-/Digital-	Digitaleingang:
		eingang	Nennspannung 0-24 V
			Bandbreite: ≤ 100 kHz
			Analogeingang:
			Nennspannung 0–10 V
			Eingangsimpedanz
			5,46 kΩ
			Bandbreite: ≤ 25 kHz

Pin	Beschreibu	Hinweise	Nennwert/Parameter		
	ng				
8	/SSI DAT	Negative SSI/BiSS-	SSI:		
		Daten in	Busgeschwindigkeit:		
			0,5 Mbit mit 25-m-		
			Kabel		
			BiSS:		
			Entspricht der RS485-		
			Spezifikation.		
			Maximale Kabellänge		
			(SSI und BiSS): 25 m		

Abbildung 3.6 Pin-Belegung des X4 Geber- und/oder E/A-Steckers (M12)

X5: LCP-Stecker (M8, 6-polig)

Der X5-Stecker wird zur direkten Verbindung des LCPs mit dem Advanced Servoantrieb über ein Kabel verwendet.

Pin	Beschreibung	Hinweise	Nennwert/
			Parameter
1	Nicht	-	
	verwendet		
2	/LCP RST	Reset	Aktiv bei <
			0,5 V
3	LCP RS485	Positives	Drehzahl:
		RS485-Signal	38,4 kBd
4	/LCP RS485	Negatives	Die Pegel
		RS485-Signal	entsprechen
			der RS485-
			Spezifikation.
5	GND	GND	-
6	VCC	5-V-Versorgung	5 V ±10 % bei
		für LCP	120 mA
			maximaler Last

Abbildung 3.7 Pin-Belegung des X5 LCP-Steckers (M8, 6-polig)

3.3 Servo Access Box (SAB)

Die SAB ist Spannungsversorgung und zentrale Schnittstelle/Gateway zum ISD 510 Servosystem. Sie verbindet die Servoantriebe mit dem Feldbus, erzeugt die Zwischenkreisspannung für das ISD 510 Servosystem und stellt eine hohe Leistungsdichte bereit. Sie lässt sich über die Bedieneinheit (LCP) oder den Ethernet-basierten Feldbus steuern. Die LEDs an der Vorderseite zeigen den Betriebsstatus an (weitere Informationen unter *Kapitel 7.2.2 Betriebs-LEDs an der Servo Access Box*).

HINWEIS

Die SAB besitzt die Schutzart IP20. Sie ist nur für den Einsatz in einem Schaltschrank ausgelegt. Der Kontakt mit Flüssigkeiten kann die SAB beschädigen. Alle Strom- und Signalkabel werden in der SAB verdrahtet, und es können 2 unabhängige Servoantriebslinien angeschlossen werden.

Wartungsfunktionen, wie Spannungsmessung, werden ebenfalls von der SAB ausgeführt.

Abbildung 3.8 Explosionszeichnung der Servo Access Box

Danfoss

VLT[®] Integrated Servo Drive ISD[®] 510 System

Nummer	Beschreibung/Steckername	Name am	Nummer	Beschreibung/Steckername	Name am
		entsprechenden			entsprechenden
		Stecker			Stecker
1	Bedieneinheit (LCP)	-	18	Hybridkabellinie 2	-
2	Frontabdeckung	-	19	Abschirmblech	-
3	STO 1 IN: STO	+STO-	20	Erdungsschelle und Kabelzu-	-
	(für STO-Eingangsspannung 1)			gentlastung für abgeschirmtes	
				Kabel	
4	STO 1 IN: 24 V	+24V-	21	24/48 V IN	+AUX–
	(zur Überbrückung, wenn die STO-			(Hilfseingangsklemme)	
	Funktion nicht benötigt wird, siehe				
	Kapitel 3.3.1.1 STO-Stecker)				
5	LEDs für Zustandsmeldungen von	-	22	Relais 1	Relais 1
	Hilfsausgang und STO				
6	Entkopplungsklemme für STO-Kabel	-	23	Relais 2	Relais 2
7	ISD Line 2: STO 2	+STO-	24	Bremse	R- (81), R+ (82)
	(STO-Ausgang für Hybridkabellinie 2)				
8	ISD Line 2: NET 2 X4	RJ45-Stecker (ohne	25	Netz	L1 (91), L2 (92), L3
	(Ethernet-Ausgang für Hybridkabellinie	Label)		(Eingangsklemme)	(93)
	2)				
9	ISD Line 2: AUX 2	+AUX-	26	Schirmauflage für Ethernet-	-
	(Hilfsausgang für Hybridkabellinie 2)			Eingänge	
10	ISD Line 2: UDC 2	+UDC-	27	Schirmklemme für Geberkabel	-
	(UDC-Ausgang für Hybridkabellinie 2)				
11	ISD Line 1: STO 1	+STO-	28	X1	RJ45-Stecker (nicht
	(STO-Ausgang für Hybridkabellinie 1)			(Ethernet-Eingangslinie 1)	enthalten)
12	ISD Line 1: NET 1 X3	RJ45-Stecker (ohne	29	X2	RJ45-Stecker (nicht
	(Ethernet-Ausgang für Hybridkabel-	Label)		(Ethernet-Eingangsleitung 2)	enthalten)
	leitung 1)				
13	ISD Line 1: AUX 1	+AUX-	30	GND, 24 V, GX, /RS422 TXD,	Nicht gekennzeichnet
	(Hilfsausgang für Hybridkabellinie 1)			RS422 TXD, /RS422 RXD,	
				RS422 RXD	
				(Geberklemme)	
14	ISD Line 1: UDC 1	+UDC-	31	STO 2 IN: STO	+STO-
	(UDC-Ausgang für Hybridkabellinie 1)			(Für STO-Eingangsspannung 2)	
15	Erdungs-PE-Klemme für Hybridka-	-	32	STO 2 IN: 24 V	+24V-
	bellinie 2			(zur Überbrückung, wenn die	
				STO-Funktion nicht benötigt	
				wird, siehe Kapitel 3.3.1.1 STO-	
				Stecker)	
16	Erdungs-PE-Klemme für Hybridka-	-	33	Abdeckung	-
	bellinie 1				
17	Hybridkabelleitung 1	-	-	-	-

Tabelle 3.6 Legende zu Abbildung 3.8

3.3.1 Anschlüsse an der SAB

Alle erforderlichen Stecker sind im Lieferumfang der SAB enthalten.

Befolgen Sie stets die nationalen und lokalen Vorschriften zum Kabelquerschnitt und zur Umgebungstemperatur. Verwenden Sie abgeschirmte Kabel, um den Grenzwert für EMV-Emissionen einzuhalten.

3.3.1.1 STO-Stecker

Pos.	Position	Beschreibung	Zeichnung/	Nennwerte
	am SAB		Pins	
STO	Vorderseite	Für STO-Eingangs-		Nennspannung:
1		spannung 1.		24 V DC ±10 %
IN:				Nennstrom:
STO			+ STO -	Hängt von der
STO	Vorderseite	Für STO-Eingangs-	Pins (von	Zahl der
2		spannung 2.	links nach	Servoantriebe
IN:			rechts):	in der
STO			STO+	Anwendung
			STO-	ab.
				Maximale
				Stromstärke: 1
				A
				Maximaler
				Querschnitt:
				1,5 mm ²
STO	Vorderseite	Diese Stecker		Nennspannung:
1		können nur für		24 V DC ±10 %
IN:		eine Überbrückung		Nennstrom:
24		zu STO 1 IN	+ 24V -	1 A
V		verwendet werden:	Pins (von	Maximaler
STO	Vorderseite	STO und STO 2 IN:	links nach	Querschnitt:
2		STO, wenn die	rechts):	1,5 mm ²
IN:		STO-Funktion in	24+	
24		der Anwendung	24-	
V		nicht benötigt		
		wird.		
		Dieser Stecker		
		kann für jede		
		andere Funktion		
		verwendet werden.		

Pos.	Position	Beschreibung	Zeichnung/	Nennwerte
	am SAB		Pins	
ISD	Unterseite	Für STO-Ausgangs-	+ STO -	Nennspannung:
Line		spannung 1.	RR	24 V DC ±10 %
1:				Nennstrom:
STO			Pins (von	Hängt von der
1			links nach	Zahl der
ISD	Unterseite	Für STO-Ausgangs-	rechts):	Servoantriebe
Line		spannung 2.	STO+	in der
2:			STO-	Anwendung
STO				ab.
2				Maximale
				Stromstärke:
				1 A
				Maximaler
				Querschnitt:
				0,5 mm ²

Tabelle 3.7 STO-Stecker

3.3.1.2 Netzanschlussstecker

Pos.	Beschreibung	Zeichnung/	Nennwerte
		Pins	
AC mains (Netzver- sorgung)	Zur Verbindung verwendet L1/L2/L3	Pins (von links nach rechts): L1 L2 L3	Nennspannung: 400–480 V AC Nennstrom: 12,5 A Maximaler Querschnitt: 4 mm ²
PE (Netz)	Die PE-Schraube wird zum Anschluss des Schutzleiters verwendet (siehe <i>Abbildung 3.9</i>).	-	Querschnitt: 10 mm ² Weitere Informa- tionen finden Sie in <i>Kapitel 5.4 Erdung</i> .

Tabelle 3.8 Netzanschlussstecker

Abbildung 3.9 PE-Schraube

3.3.1.3 Bremsanschlussstecker

Pos.	Beschreibung	Zeichnung/Pins	Nennwerte
Brake	Für den Anschluss eines Bremswi- derstands	DC (88) = nicht verwenden +DC (89) = nicht verwenden R- (81) = Bremse - R+ (82) = Bremse -	Nennspannung: 565–778 V DC Maximaler Bremsstrom: 14,25 A Maximaler Querschnitt: 4 mm ²

Tabelle 3.9 Bremsanschlussstecker

HINWEIS

Die maximale Länge des Bremskabels beträgt 20 m (abgeschirmt).

3.3.1.4 Relaisanschlussstecker

Pos.	Beschreibung	Zeichnung/Pins	Nennwerte
Relais 1	Für eine kundendefi- nierte Reaktion verwendet. Das		Pin 1: Allgemein Pin 2: 240 V AC Pin 3: 240 V AC
	Relais kann beispielsweise auslösen, wenn die SAB eine Warnung ausgibt.	RELAY1 Pins (von links nach rechts): 1: Allgemein 2: Schließer 3: Öffner	Nennstrom: 2 A Maximaler Querschnitt: 2,5 mm ²
Relais 2		RELAY 2 Pins (von links nach rechts): 4: Allgemein 5: Schließer 6: Öffner	Pin 4: Allgemein Pin 5: 400 V AC Pin 6: 240 V AC Nennstrom: 2 A Maximaler Querschnitt: 2,5 mm ²

Danfoss

Tabelle 3.10 Relaisanschlussstecker

3.3.1.5 Encoder-Stecker

Pos.	Beschreibung	Zeichnung/Pins	Nennwert
			e
Encoder- Stecker	Zum Anschließen der SSI- oder BiSS-Geber.	Pins (von links	Maximaler Querschnit t: 0,5 mm ² . Siehe
		RS422 RXD /RS422 RXD RS422 RXD RS422 TXD /RS422 TXD GX 24 V GND	2.

Tabelle 3.11 Encoder-Stecker

HINWEIS

Die maximale Länge des Geberkabels beträgt 25 m (abgeschirmt).

<u>Danfvis</u>

Produkthandbuch

Nummer	Beschreibung	Hinweise		Nennwert/
				Parameter
		SSI	BiSS	
1	RS422 RXD	Positiv	e Daten	Busgeschwin-
2	/RS422 RXD	Negativ	ve Daten	digkeit:
3	RS422 TXD	Positiv	ve clock	SSI: 0,5 Mbit mit
4	/RS422 TXD	Negati	ve clock	25-m-Kabel
				BiSS: Entspricht
				der RS485-
				Spezifikation.
5	GX	Isolierte Erde		-
		Wenn die Geber		
		extern mit Strom		
		versorgt werden,		
		muss die Erde der		
		externen Versorgung		
		mit GX verbunden		
		werden.		
6	24 V	24 V DC ±10 %		Maximale
		(zur Versorgung des		Stromstärke:
		Gebers)		250 mA
7	GND	Erde f	ür Pin 6	-

Tabelle 3.12 Pin-Belegung für SSI- und BiSS-Geber

3.3.1.6 Ethernet-Stecker (nicht enthalten)

Steckername	Beschreibung	Zeichnung/Pins	Nennwerte
Ethernet X1	Anschluss an		Gemäß
	Feldbus		100BASE-T-
Ethernet X2	Anschluss an		Spezifikation
	Feldbus		
Ethernet X3	Verbindung mit	Pins:	
	Servolinie 1	1: TD+	
Ethernet X4	Verbindung mit	2: TD-	
	Servolinie 2	3: RD+	
		6: RD-	

Tabelle 3.13 Ethernet-Stecker

HINWEIS

Die Maximallänge der abgeschirmten X1- und X2-Ethernet-Kabel beträgt 30 m.

3.3.1.7 AUX-Stecker

Steckername	Beschreibung	Zeichnung/	Nennwerte
		Pins	
ISD Line 1:	Zum Anschluss		Nennspannung:
AUX 1	des AUX-		24–48 V DC±10 %
ISD Line 2:	Ausgangs von		Nennstrom: Hängt
AUX 2	der SAB zum		von der Zahl der
	Hybridkabel.	Pins (von	Servoantriebe in
		links nach	der Anwendung
		rechts):	ab
		AUX+	Maximale
		AUX–	Stromstärke: 15 A
			Maximaler
			Querschnitt: 2,5
			mm ²

Tabelle 3.14 AUX-Stecker

3.3.1.8 24/48 V IN Stecker

Steckername	Beschreibung	Zeichnung/	Nennwerte
		Pins	
24/48 V IN	Für den 24-	+ AUX -	Nennspannung:
Stecker	48 V DC-		24-48 V DC ±10%
	Eingang zur		Nennstrom: Hängt
	SAB		von der Zahl der
	verwendet.	Pins (von	Servoantriebe in
		links nach	der Anwendung ab
		rechts):	Maximale
		AUX+	Stromstärke: 34 A
		AUX–	Maximaler
			Querschnitt:
			4 mm ²
			Maximale
			Kabellänge: 3 m

Tabelle 3.15 24/48 V IN Stecker

3

3.3.1.9 UDC Stecker

Steckername	Beschreibung	Zeichnung/	Nennwerte
		Pins	
ISD Line 1: UDC 1	Zum Anschluss der Zwischenkreis	+ UDC -	Nennspannung: 565–778 V DC
UDC 2	Spannung zwischen SAB und Hybridkabel.	Pins (von links nach rechts): UDC+ UDC-	von der Zahl der Servoantriebe in der Anwendung ab Maximale Stromstärke: 15 A Maximaler Querschnitt: 2,5 mm ²

3.3.1.10 Hybridkabel PE

Pos.	Beschreibung	Zeichnung/Pins	Nennwerte
Hybridkabel	Zum Anschluss	Siehe	Maximaler
PE	des PE-Kabels	Abbildung 15	Querschnitt:
	zwischen	unter	2,5 mm ²
	Hybridkabel und	Abbildung 3.8.	
	Abschirmblech.		

Tabelle 3.17 Hybridkabel PE

3.4 Bedieneinheit (LCP)

3.4.1 Übersicht

Das LCP ist die grafische Benutzerschnittstelle an der SAB für Diagnose- und Betriebszwecke. Sie ist in der SAB serienmäßig enthalten, lässt sich aber auch über ein optionales Kabel

(M8-an-LCP D-SUB-Verlängerungskabel) mit Advanced Servoantrieben verbinden.

Das LCP-Display bietet dem Bediener eine schnelle Übersicht über den Zustand des Servoantriebs oder der SAB, je nachdem mit welchem Gerät es verbunden ist. Das Display zeigt Parameter und Alarme/Fehler an und erleichtert Inbetriebnahme und Fehlersuche. Darüber hinaus lassen sich einfache Funktionen ausführen, wie z. B. Aktivierung und Deaktivierung der Ausgangsleitungen an der SAB. Das LCP lässt sich auf der Vorderseite des Schaltschranks montieren und über SUB-D-Kabel (als Zubehör erhältlich) an die SAB anschließen.

3.4.2 Layout der Bedieneinheit (LCP)

Die Bedieneinheit ist in 4 Funktionsgruppen unterteilt (siehe *Abbildung 3.10*).

- A. Displaybereich
- B. Menütasten am Display.
- C. Navigationstasten und Kontrollleuchten (LEDs).
- D. Bedientasten und Quittieren (Reset)..

A. Displaybereich

Die Werte auf dem Display variieren je nachdem, ob das LCP mit einem ISD 510 Servoantrieb oder der SAB verbunden ist (siehe *Abbildung 3.10* und *Abbildung 3.11*).

Das Display ist aktiviert, wenn Netzspannung, eine DC-Bus-Zwischenkreisklemme oder eine externe 24 V DC-Versorgung den ISD 510 Servoantrieb oder die SAB mit Spannung versorgt.

Display	Beschreibung
1	Aktuelles Drehmoment
2	Temperaturantriebsmodul
3	Position
4	Drehzahl
5	Strom

Abbildung 3.10 Displaybereich bei Anschluss an einen ISD 510 Servoantrieb

Display	Beschreibung
1	U _{AUX} -Netzspannung
2	Temperatur
3	Aktuelle UDC (Strom)
4	ISD-Leistungsaufnahme
5	Aktuelle UDC (Spannung)

B. Menütasten am Display

Die Menütasten dienen zum Zugriff auf Menüs zur Parametereinstellung, zur Änderung der Statusanzeige im Normalbetrieb und zur Anzeige von Einträgen im Fehlerspeicher.

	Taste	Funktion
6	Status	Diese Taste zeigt Betriebsinformationen an.
7	Quick-Menü	Ermöglicht den Zugriff auf Parameter.
8	Hauptmenü	Ermöglicht den Zugriff auf Parameter.
9	Alarm Log	Zeigt die letzten 10 Alarme.

Tabelle 3.18 Menütasten am Display

C. Navigationstasten und Kontrollleuchten (LEDs)

Navigationstasten dienen zum Bewegen des Cursors und zur Regelung bei Hand-Steuerung. In diesem Bereich gibt es 3 Status-LED.

Danfoss

VLT[®] Integrated Servo Drive ISD[®] 510 System

	Taste	Funktion
10	Back	Bringt Sie zum vorherigen Schritt oder zur
		vorherigen Liste in der Menüstruktur zurück.
11	Abbrechen	Macht die letzte Änderung oder den letzten
		Befehl rückgängig, so lange der
		Anzeigemodus bzw. die Displayanzeige nicht
		geändert worden ist.
12	Info	Zeigt Informationen zur angezeigten
		Funktion an.
13	Navigati-	Navigieren Sie mit Hilfe der vier Navigations-
	onstasten	tasten zwischen den verschiedenen Optionen
		in den Menüs.
14	ОК	Nutzen Sie diese Taste, um auf Parameter-
		gruppen zuzugreifen oder die Wahl eines
		Parameters zu hestätigen

Tabelle 3.19 Navigationstasten

	LED	Farbe	Funktion
15	On	Grün	Die On LED ist aktiviert, wenn der
			ISD 510 Servoantrieb oder die SAB
			mit der Netz- oder Zusatzver-
			sorgung oder der DC-Bus-Klemme
			verbunden ist.
16	Warnung	Gelb	Die gelbe Warn LED leuchtet,
			wenn eine Warnung auftritt. Im
			Display erscheint zusätzlich ein
			Text, der das Problem angibt.
17	Alarm	Rot	Die rote Alarm LED blinkt bei
			einem Fehlerzustand. Im Display
			erscheint zusätzlich ein Text, der
			den Alarm näher spezifiziert.

Tabelle 3.20 Anzeigeleuchten (LEDs)

D. Bedientasten und Quittieren (Reset).

Die Bedientasten befinden sich unten am LCP.

	Taste	Funktion	
18	[Hand On]	Ermöglicht die Steuerung des	
		angeschlossenen ISD 510 Servoantriebs oder	
		der SAB über das LCP.	
		Das Umschalten zwischen den Modi Hand	
		On und Auto On ist nur in bestimmten	
		Zuständen möglich (weitere Informationen	
		im VLT [®] Integrated Servo Drive ISD [®] 510	
		System Programmierhandbuch).	
19	Off	Schaltet die SAB in den Zustand Standby	
		und den Antrieb in den Zustand Switch on	
		Disabled.	
		Dies funktioniert nur im Modus Hand On.	
		Der Modus Off ermöglicht den Übergang	
		vom Modus Hand On zum Modus Auto On.	

	Taste	Funktion		
20	Auto on	Diese Taste versetzt das System in den		
		Fernbetrieb (Autobetrieb).		
		• Im Modus Auto On wird das Gerät vom		
		Feldbus gesteuert (SPS).		
		Beachten Sie, dass das Umschalten		
		zwischen den Modi Auto On und Hand		
		On nur möglich ist, wenn sich der		
		Antrieb im Zustand Switch on disabled		
		und/oder die SAB im Zustand Standby		
		befindet.		
21	Reset	Setzt den ISD 510 Servoantrieb oder die SAB		
		nach der Beseitigung eines Fehlers zurück.		
		Das Rücksetzen ist nur im Hand On-Modus		
		möglich.		

Danfoss

Tabelle 3.21 Bedientasten und Reset

HINWEIS

Drücken Sie zur Einstellung des Display-Kontrasts [Status] und [▲]/[▼].

3.5 Kabel

3.5.1 Hybridkabel

Abbildung 3.12 Hybrid Loop-Kabel

Es gibt 2 Arten von Hybridkabeln, die mit gewinkelten und geraden M23-Steckern erhältlich sind:

- Einspeisekabel zum Anschließen des ersten Servoantriebs einer Gruppe am Anschlusspunkt der SAB.
- Loop-Kabel zum vorkonfektionierten Anschließen der ISD 510 Servoantriebe in einer Anwendung.

Beide Kabel werden von Danfoss angeboten und sind in unterschiedlichen Längen erhältlich. Weitere Informationen finden Sie im VLT[®] Integrated Servo Drive ISD[®] 510 System Projektierungshandbuch.

Beide Enden des Loop-Kabels sind mit M23-Steckern versehen.

Das Einspeisekabel ist ausgangsseitig mit einem M23-Stecker für den Anschluss an den ersten Servorantrieb versehen. Auf der Eingangsseite ist das Kabel unkonfektioniert mit einzelnen Steckern zum Anschluss an die entsprechenden Klemmen der SAB.

Minimaler Biegeradius

Die maximale Anzahl an Biegezyklen beträgt 5 Millionen beim 7,5-fachen Durchmesser (15,6 mm).

- Dauerhaft flexibel: 12-facher Kabeldurchmesser
- Dauerhaft installiert: 5-facher Kabeldurchmesser

Beschreib	Geschirm	Maximale	Anschlus	Hinweise
ung	t/	Kabellänge	s	
	ungeschir			
	mt			
Einspei-	Geschirmt	40 m ¹⁾	Signal/	Hybridkabel
sekabel			Steuerun	(Gesamtab-
			g	schirmung mit
				zusätzlicher
				Feldbus- und
				Sicherheitsab-
				schirmung).
Loop-	Geschirmt	25 m ¹⁾	Signal/	Hybridkabel
Kabel			Steuerun	(Gesamtab-
			g	schirmung mit
				zusätzlicher
				Feldbus- und
				Sicherheitsab-
				schirmung).

Tabelle 3.22 Hybridkabel

1) Maximale Gesamtlänge von 100 m für jede Linie.

3.5.2 E/A- und/oder Geberkabel

Dieses Kabel verbindet Ein-/Ausgang und/oder Geber mit dem Servoantrieb (siehe X4 in *Kapitel 3.2.3.1 Stecker an den Servoantrieben*) Das Kabel ist nicht im Lieferumfang der Servoantriebe enthalten.

E/A- und/oder Geberkabel mit M12-Steckern können bei entsprechendem Formfaktor gemäß IEC 61076-2-101 für das ISD 510 Servosystem verwendet werden.

3.5.3 Zusätzliche Kabel

Feldbusverlängerungskabel

Wenn Sie dieses Kabel nicht verwenden, setzen Sie die M23-Blindkappe auf die X2-Buchse des letzten Servoantriebs in der Anwendung.

LCP-Kabel

Es gibt 2 Arten von Kabeln für das LCP-Modul, das bei Danfoss erhältlich ist (siehe VLT[®] Integrated Servo Drive ISD[®] 510 System Projektierungshandbuch):

- Anschließen des LCP an den Servoantrieb.
- Anschließen des LCP an die SAB.

3.6 Verbindungskabel/Verkabelung

3.6.1 Layout und Verlegung

Die Servoantriebe werden durch Hybrid-Loop-Kabel miteinander verbunden. Ein Hybrideinspeisekabel mit Schnellverschlusssteckern leitet die Versorgungsspannung von der SAB zum ersten Servoantrieb.

Verlegung in Schleppketten

Das Hybridkabel ist schleppkettenfähig und daher für bewegte Anwendungen geeignet. Die Anzahl der Biegezyklen ist von den jeweiligen Gegebenheiten abhängig und muss daher für jede Anwendung im Voraus ermittelt werden (weitere Informationen unter *Kapitel 3.5.1 Hybridkabel*).

Maximale Kabellängen

M23-Einspeisekabel	40 m
M23 Loop-Kabel	25 m
Feldbusverlängerungskabel	Länge: 2 m
	Maximallänge zum nächsten
	Anschluss: 100 m
Maximale Kabellänge pro Linie	100 m

Tabelle 3.23 Maximale Kabellängen

Kapitel 3.6.1.1 Standardverkabelungskonzept für 2 Linien und Kapitel 3.6.1.2 Standardverkabelungskonzept für 1 Linie zeigen das Standardverkabelungskonzept ohne Redundanz, das Sie zum Anschluss von 1 oder 2 Stränge verwenden können (jeweils mit bis zu 32 Servoantrieben in einer Anwendung).

HINWEIS

Weitere Informationen zur Verkabelung mit Redundanz finden Sie im VLT[®] Integrated Servo Drive ISD[®] 510 System Projektierungshandbuch.

3.6.1.1 Standardverkabelungskonzept für 2 Linien

Abbildung 3.13 Standardverkabelungskonzept für 2 Linien

3.6.1.2 Standardverkabelungskonzept für 1 Linie

3.7 Software

Die Software für das ISD 510 Servosystem umfasst:

- Die Firmware des VLT[®] Integrated Servo Drive ISD[®] 510, die bereits auf dem Gerät installiert ist und die unter *Kapitel 7 Betrieb* beschriebenen Funktionen bietet.
- Die Firmware der VLT[®] Servo Access Box, die bereits auf dem Gerät installiert ist.
- Ein Paket mit SPS-Bibliotheken für Automation Studio[™] zur Bedienung der ISD 510 Geräte (weitere Informationen unter Kapitel 6.4.1 Programmierung mit Automation Studio[™]).
- Eine SPS-Bibliothek f
 ür TwinCAT® 2 zur Bedienung der ISD 510 Ger
 äte (weitere Informationen unter Kapitel 6.4.2 Programmieren mit TwinCAT®).
- ISD Toolbox: Ein Danfoss PC-basiertes Softwaretool zur Inbetriebnahme und zur Fehlerbehebung (weitere Informationen unter *Kapitel 6.5 ISD Toolbox*).

3.8 Feldbus

Das ISD 510 Servosystem verfügt über eine offene Systemarchitektur, die durch eine schnelle Ethernet(100BASE-T)basierte Kommunikation realisiert wird. Das System unterstützt EtherCAT[®] und Ethernet POWERLINK[®] Feldbusse. Weitere Informationen finden Sie im *VLT[®] Integrated Servo Drive ISD[®] 510 System Programmierhandbuch.*

In produktiven Umgebungen erfolgt die Kommunikation mit den Geräten immer über eine SPS, die als Master fungiert. Die Servoantriebe und die SAB lassen sich mit folgenden Kommunikationsmethoden steuern:

- Mithilfe der ISD-Bibliothek (für TwinCAT[®] and Automation Studio™ erhältlich).
- Mithilfe der NC-Achsenfunktionalität von TwinCAT[®].
- Mithilfe des CANopen[®] CiA DS 402 Standards durch Lesen und Schreiben in Objekte.

Die Servoantriebe und die SAB lassen sich mit folgenden Zykluszeiten betreiben (für beide Feldbusse):

- 400 µs und Vielfache davon (z. B. 800 µs, 1200 µs usw.).
- 500 µs und Vielfache davon (z. B. 500 µs, 1 ms usw.).

Wenn die Zykluszeit ein Vielfaches von 400 μs und 500 μs ist, wird 500 μs als Zeitbasis verwendet.

Der Servoantrieb und die SAB sind für beide Feldbusse nach den entsprechenden Regeln und Vorschriften Produkthandbuch

zertifiziert. Der Servoantrieb ist mit dem CANopen[®] CiA DS 402 Antriebsprofil konform.

3.8.1 EtherCAT®

Servoantrieb und SAB unterstützen die folgenden EtherCAT[®] Protokolle:

- CANopen über EtherCAT[®] (CoE)
- Dateizugriff über EtherCAT[®] (FoE)
- Ethernet über EtherCAT[®] (EoE)

Der Servoantrieb und die SAB unterstützen distributed clocks. Zum Ausgleich der Störung eines Kommunikationskabelabschnitts im System, steht die Kabelredundanz beiden Feldbussen zur Verfügung. Weitere Informationen finden Sie im VLT[®] Integrated Servo Drive ISD[®] 510 System Projektierungshandbuch.

Die EtherCAT[®] Anschlusszuweisung für Servoantrieb und SAB sind in *Abbildung 3.15* und *Abbildung 3.16* abgebildet.

XI	M23-Hybridkabeistecker zur SAB oder dem vorherigen
	Servoantrieb.
X2	M23-Hybridkabelstecker zum nächsten Servoantrieb.
X3	M8 Ethernet-Kabelstecker für andere EtherCAT® Slaves wie
	zum Beispiel dem EtherCAT® Geber.
	Der Stecker ist nur am Advanced Servoantrieb verfügbar.

Abbildung 3.15 EtherCAT[®] Anschlusszuweisung für den Servoantrieb

X1	Kabel mit RJ45-Stecker zur SPS oder zum vorherigen Slave.
X2	Kabel mit RJ45-Stecker zur SPS oder zum nächsten Slave.
Х3	RJ45-auf-M23-Hybridadapterkabel zum ersten Servoantrieb
	an Linie 1.
X4	RJ45-auf-M23-Hybridadapterkabel zum ersten Servoantrieb
	an Linie 2.
1	Anschlüsse immer intern in der SAB angeschlossen.

Abbildung 3.16 EtherCAT[®] Anschlusszuweisung für die SAB im Reihentopologiemodus (Standard)

3.8.2 Ethernet POWERLINK®

Der ISD-Antrieb und die SAB sind nach DS301 V1.1.0 zertifiziert. Die folgenden Merkmale gelten für den ISD Servoantrieb und die SAB:

- Arbeiten als geregelte Knoten.
- Beide lassen sich als Multiplex-Stationen betreiben.
- Unterstützung der Querkommunikation.
- Ringredundanz wird für Medienredundanz unterstützt.

Spezifische Anschlüsse sind nicht für Ethernet $\mathsf{POWERLINK}^{\circledast}$ zugewiesen.

Danfoss

4 Mechanische Installation

4.1 Transport und Lieferung

4.1.1 Gelieferte Teile

Die gelieferten Teile für das ISD 510 Servosystem sind:

- ISD 510 Servoantriebe
- Servo Access Box (SAB) inklusive Stecker
- Dieses Handbuch
- Einspeisungskabel (Hybridkabel)
- Loop-Kabel (hybrid)
- Blindkappen für M8-, M12- und M23-Stecker

Die Verpackungseinheit hängt von der Zahl der gelieferten Servoantriebe ab. Heben Sie die Verpackung für einen eventuellen Rückversand auf.

4.1.2 Transport

- Transportieren Sie Servoantriebe und SAB nur mit ausreichend belastbaren Transportmitteln und Hebezeugen.
- Sorgen Sie für einen vibrationsfreien Transport.
- Schwere Stöße und Schläge vermeiden.

4.1.3 Eingangskontrolle

- Überprüfen Sie nach Erhalt der Lieferung sofort, ob der Lieferumfang mit den Warenbegleitpapieren übereinstimmt. Für nachträglich reklamierte Mängel übernimmt Danfoss keine Gewährleistung.
- 2. Reklamieren Sie:
 - Erkennbare Transportschäden sofort beim Spediteur.
 - Erkennbare Mängel/unvollständige Lieferung sofort bei der zuständigen Danfoss-Vertretung.

4.2 Sicherheitsmaßnahmen bei der Installation

Beachten Sie bei der Installation unbedingt die Sicherheitshinweise in *Kapitel 2 Sicherheit*.

Achten Sie insbesondere darauf, dass folgende Punkte stets beachtet werden:

- Nur qualifiziertes Personal darf die Installation vornehmen (siehe *Kapitel 2.5 Qualifiziertes Personal*).
- Die Sorgfaltspflichten werden eingehalten.

- Sämtliche Sicherheitsvorschriften und Schutzmaßnahmen müssen eingehalten und die Umgebungsbedingungen beachtet werden.
- Das Handbuch wurde gelesen und verstanden.

4.3 Installationsumgebung

Folgende Umgebungsbedingungen müssen eingehalten werden, um das ISD 510 Servosystem sicher und effizient betreiben zu können.

Servomotor

- Der zulässige Bereich der Umgebungstemperatur für Betrieb und der Vibrationspegels dürfen nicht überschritten werden (weitere Informationen unter Kapitel 11.1.5 Allgemeine Daten und Umgebungsbedingungen).
- Der zulässige Bereich der relativen Luftfeuchtigkeit liegt bei 3–93 % (ohne Betauung).
- Für ungehinderte Belüftung muss gesorgt sein.
- Die Befestigung muss für die Anwendung geeignet, verwindungssteif usw. sein.
- SAB
 - Der zulässige Bereich der Umgebungstemperatur für Betrieb und der Vibrationspegel dürfen nicht überschritten werden (weitere Informationen unter Kapitel 11.2.4 Allgemeine Daten und Umgebungsbedingungen).
 - Der zulässige Bereich der relativen Luftfeuchtigkeit liegt bei 5–93 % (ohne Betauung).
 - Ober- und unterhalb der SAB muss mindestens 100 mm Platz sein (weitere Informationen unter Kapitel 4.5.1 Einbau und Platzverhältnisse).

Wenden Sie sich an Danfoss, wenn es nicht möglich ist, diese Umgebungsbedingungen einzuhalten.

4.4 Vorbereitungen für die Installation

4.4.1 Servomotor

Treffen Sie folgende Vorbereitungen, damit das ISD 510 Servosystem zuverlässig und effektiv installiert werden kann.

- Halten Sie die passende Halterungen f
 ür die Anwendung bereit. Sie h
 ängt von Typ, Gewicht und Drehmoment der Servoantriebe ab.
- 2. Legen Sie vor dem Befestigen des Servoantriebs die Flanschfläche plan auf. Unzureichende

<u>Danfvis</u>

Ausrichtung verkürzt die Lebensdauer der Lager und der Übertragungselemente und vermindert die Wärmeabfuhr.

- Sehen Sie Berührschutz gemäß den lokalen Vorschriften vor, wenn im Betrieb mit heißen Oberflächen zu rechnen ist.
- 4. Erden Sie den Servoantrieb wie in *Kapitel 5.4 Erdung* beschrieben.

Bauen Sie Kupplungen und andere Übertragungselemente nur gemäß den lokalen Vorschriften an.

Danfoss

4.4.2 Servo Access Box (SAB)

Bohren Sie die Löcher für die Befestigungsschrauben entsprechend der Schablone. Alle Abmessungen in mm.

130BE423.10

Abbildung 4.1 SAB-Montageschablone

Danfoss

4.5 Installationsanleitung

4.5.1 Einbau und Platzverhältnisse

Servo Access Box

- Die SAB können Seite an Seite montiert werden, benötigen jedoch für Kühlungszwecke einen Mindestabstand von 100 mm oben und unten.
- Abgesehen von ihrer eigenen Größe benötigt die SAB 100 mm Platz zwischen SAB-Abschirmblech und Kabelkanal zum Anschluss von Kabeln.

Servomotor

- Abgesehen von seiner eigenen Größe benötigt der Servoantrieb Platz für das Hybridkabel.
 Abbildung 4.2 zeigt den erforderlichen Platz bei Verwendung des Winkelsteckers. Abbildung 4.3 zeigt den erforderlichen Platz bei Verwendung des geraden Steckers.
- Der Abmessungsbedarf für die Installation ist vom verwendeten Werkzeug abhängig.

Abbildung 4.2 Erforderliche horizontale Platzverhältnisse

Abbildung 4.3 Erforderliche vertikale Platzverhältnisse

4.5.2 Montagehilfen und benötigte Werkzeuge

Für den Einbau der Servoantriebe werden entsprechende Werkzeuge für die Befestigungsschrauben (nicht enthalten) benötigt.

4.5.3 Montageanleitung für Servoantriebe

Die Servoantriebe werden mit einer M23-Transportschutzkappe geliefert. Die für den IP-Schutz verwendete M23-Blindkappe muss getrennt bestellt werden. Der Advanced Servoantrieb wird zusätzlich mit Blindkappen vom Typ M8 und M12 geliefert. Diese Blindkappen verhindern eine Verunreinigung des Servoantriebs und sind erforderlich, um die entsprechende IP-Schutzart zu erfüllen. Montieren Sie diese Kappen, wenn der Stecker nicht gebraucht wird.

HINWEIS

Achten Sie darauf, dass die Oberfläche, die mit dem Servoflansch in Kontakt kommt, unlackiert ist, um ein gutes Wärmeverhalten des Servoantriebs zu gewährleisten. Der Oberflächenkontakt muss zudem einen hinreichenden Erdungsschutz bieten.

Befestigung

Halten Sie die nachfolgende Montageanleitung ein, damit Sie den Servoantrieb sicher und effizient montieren können:

- Prüfen Sie die Gegenfläche der Motormontage und achten Sie auf eine ausreichende Wärmeabfuhr. Eine unlackierte Oberfläche ist obligatorisch.
- 2. Entfernen Sie die Wellenschutzkappe.
- Befestigen Sie den Servoantrieb mit 4 Schrauben in den 4 dafür vorgesehenen Bohrungen am Maschinensatz (siehe Abbildung 4.4 und Abbildung 4.5).
 - Verwenden Sie zur Befestigung des Servoantriebs immer die vorgesehenen Bohrungen am Montageflansch.
 - Die Bohrungen dürfen nicht verändert werden.
 - Verwenden Sie immer alle 4 Befestigungsbohrungen. Wenn weniger benutzt werden, ist mit ungleichmäßigem Lauf zu rechnen.
 - Anzugsdrehmomente finden Sie unter Kapitel 4.5.4 Anzugsdrehmomente.

Danfoss

VLT[®] Integrated Servo Drive ISD[®] 510 System

Abbildung 4.4 Montage von Servoantrieben Baugröße 1, 1,9 Nm, Baugröße 2, 2,9 Nm und Baugröße 2, 3,8 Nm

Abbildung 4.5 Montage eines Servoantriebs der Baugröße 2, 2,1 Nm

Kopplung

HINWEIS

Die Welle darf nicht bearbeitet werden. Verwenden Sie den Servoantrieb nicht, wenn die Welle

Allgemeine Anweisungen

nicht zu Ihrer Kupplung passt.

HINWEIS

Wenden Sie keine übermäßige Kraft während der Montage an:

- Überschreiten Sie nicht die in Kapitel 11.1.5 Allgemeine Daten und Umgebungsbedingungen beschriebenen Vibrationsgrenzen.
- Überschreiten Sie nicht die in Kapitel 11.1.4 Zulässige Kräfte beschriebenen Kraftwerte.
- 1. Richten Sie den Spannsatz axial zum Servoantrieb aus.
- 2. Fügen Sie die Welle in den Spannsatz.
- 3. Verschrauben Sie den Spannsatz.

4.5.4 Anzugsdrehmomente

Die Anzugsmomente für die Befestigungsschrauben finden Sie in *Tabelle 4.1*. Befestigungsschrauben immer gleichmäßig über Kreuz anziehen.

Servoantriebs-	Gewindeart/	Maximale	Anzugs-
Baugröße	Bohrungsgröße	Gewindelänge	moment
Baugröße 1, 1,5	Ø 5,8 mm	-	-
Nm			
Baugröße 2,	M6-Abstand	23 mm	6 Nm
2,1 Nm	1 mm		
Baugröße 2, 2,9	Ø 7 mm	-	-
Nm			
Baugröße 2, 3,8	Ø 7 mm	-	-
Nm			

Tabelle 4.1 Anzugsdrehmomente

HINWEIS

Die Befestigungsschrauben werden nicht mitgeliefert und sind je nach Maschinenhalterung auszuwählen.

4.5.5 Montageanleitung für die Servo Access Box (SAB)

Schritt 1: Montieren Sie das Abschirmblech

Montieren Sie das Abschirmblech gemäß Abbildung 4.6.

- 1. Schieben Sie das Abschirmblech [3] so in Position, dass die Lippen [2] korrekt in die entsprechenden Nuten auf der Grundplatte eingeführt werden.
- 2. Ziehen Sie die Schraube [1] an der Oberseite des Abschirmblechs mit 2 Nm an.
- 3. Ziehen Sie die Schraube [4] an der Unterseite des Abschirmblechs mit 2 Nm an.
Danfoss

Abbildung 4.6 Montieren Sie das Abschirmblech

Schritt 2: Montieren Sie die SAB im Schaltschrank mit den wie in *Kapitel 4.4.2 Servo Access Box (SAB)* (Vorbereitungen für die Installation) beschrieben angebrachten Bohrungen.

- Hängen Sie die SAB an den Halteschrauben an der Rückwand des Schaltschrankes auf.
- Ziehen Sie die Halteschrauben an.
- Ziehen Sie die Schrauben an der Unterseite der SAB fest.

HINWEIS

Zur Befestigung des LCP in der Schaltschranktür ist ein Fern-Einbausatz erhältlich. Weitere Informationen finden Sie im VLT[®] Integrated Servo Drive ISD[®] 510 System Projektierungshandbuch.

5 Elektrische Installation

5.1 Warnungen

Beachten Sie für den elektrischen Anschluss zusätzlich zu den Angaben in diesem Handbuch die nationalen und regionalen Vorschriften.

AWARNUNG

GEFAHR DURCH ABLEIT-/ERDUNGSSTRÖME

Die Ableit-/Erdungsströme sind größer als 3,5 mA. Eine nicht vorschriftsmäßige Erdung des der SAB und der ISD Servoantriebe kann zum Tod oder zu schweren Verletzungen führen.

• Sorgen Sie für die ordnungsgemäße Erdung der Geräte durch einen zertifizierten Elektroinstallateur nach den geltenden nationalen und regionalen elektrischen Normen und Richtlinien, die in diesem Handbuch aufgeführt sind.

HOCHSPANNUNG

Die SAB steht beim Anschluss an die Netzversorgung unter Hochspannung, wodurch es zum Tod oder zu schweren Verletzungen kommen kann.

 Achten Sie darauf, dass sich ausschließlich qualifiziertes Personal mit Inbetriebnahme und Wartung befasst.

5.2 Elektrische Umgebungsbedingungen

Folgende elektrische Umgebungsbedingungen müssen eingehalten werden, um das ISD 510 Servosystem sicher und effizient betreiben zu können:

- Geerdetes Drehstromnetz, 400–480 V AC
- Drehfeldfrequenz von 47-63 Hz
- 3 Phasen-Leitungen und Erdungsleitung
- Spannungsversorgungseingang des externen Netzteils, 24–48 V DC (PELV)
- Beachten Sie die nationalen gesetzlichen Bestimmungen.
- Der Ableitstrom ist größer als 3,5 mA. Verwenden Sie daher einen Typ-B-Fehlerstromschutzschalter.
- Die SAB muss in einem Schaltschrank montiert werden.

5.3 EMV-gerechte Installation

Befolgen Sie für eine EMV-gerechte Installation die Anweisungen in *Kapitel 5.4 Erdung* und *Kapitel 5.8 Anschließen der Komponenten*.

5.4 Erdung

Erdung für die elektrische Sicherheit

- Erden Sie den ISD Servoantrieb mit dem Schutzleiter des Einspeisekabels (siehe Kapitel 5.8 Anschließen der Komponenten).
- Achten Sie darauf, dass der Maschinenrahmen über eine sachgemäße elektrische Verbindung mit dem Flansch des Servoantriebs verfügt. Nutzen Sie die Flanschoberfläche an der Vorderseite. Achten Sie auf eine Schutzleiterverbindung an diesem Teil der Maschine. Weitere Informationen finden Sie im VLT[®] Integrated Servo Drive ISD[®] 510 System Projektierungshandbuch.
- Verwenden Sie für Netzversorgung und Steuerleitungen einen speziellen Schutzleiter.
- Erden Sie jede SAB einzeln und schleifen Sie das Erdkabel nicht zwischen mehreren SAB durch.
- Halten Sie die Erdungskabel so kurz wie möglich.
- Folgen Sie den Kabelanforderungen in diesem Handbuch.
- Sorgen Sie für einen Kabelquerschnitt von mindestens 10 mm² oder für 2 separate Erdungskabel, die die vorgeschriebenen Querschnitte einhalten. Weitere Informationen finden Sie in der Norm EN/IEC 61800-5-1.

Erdung für eine EMV-gerechte Installation

- Stellen Sie einen elektrischen Kontakt zwischen Kabelschirm und SAB-Gehäuse her, indem Sie Kabelverschraubungen aus Metall oder die mit der SAB mitgelieferten Schellen verwenden (siehe Kapitel 5.8 Anschließen der Komponenten).
- Verwenden Sie Kabel mit hoher Litzenzahl, um Schalttransienten zu vermindern.
- Verwenden Sie keine verdrillten Abschirmungsenden (pigtails).
- Halten Sie einen Mindestabstand von 200 mm zwischen Kommunikations- und Leistungskabeln ein.
- Kreuzen Sie Kabel ausschließlich im 90°-Winkel.

HINWEIS POTENZIALAUSGLEICH

Es besteht die Gefahr elektrischer Störungen, wenn das Massepotenzial zwischen ISD 510 Servosystem und Maschine abweicht. Installieren Sie Ausgleichskabel zwischen den Systemkomponenten. Der empfohlene Leitungsquerschnitt beträgt 16 mm².

36

EMV-STÖRUNGEN

Verwenden Sie abgeschirmte Kabel für Steuerleitungen und separate Kabel für Netzversorgungs- und Steuerleitungen. Die Nichtbeachtung dieser Vorgabe kann zu nicht vorgesehenem Verhalten oder reduzierter Leistung der Anlage führen. Halten Sie einen Mindestabstand von 200 mm zwischen Kommunikations- und Leistungskabeln ein.

5.5 Netzversorgungsanforderungen

Neben den in Kapitel 5.2 Elektrische Umgebungsbedingungen angegebenen elektrischen

Umgebungsbedingungen muss die Netzversorgung über folgende Eigenschaften verfügen:

- Geerdetes Drehstromnetz, 400-480 V AC
- Drehfeldfrequenz: 47–63 Hz
- 3 Phasen-Leitungen und Erdungsleitung
- Netzversorgung: 400–480 V ±10 %
- Dauer-Eingangsstrom SAB: 12,5 A
- Intermittierender Eingangsstrom SAB: 20 A

HINWEIS

Verwenden Sie Sicherungen und/oder Trennschalter auf der Versorgungsseite der SAB, um CE- oder UL-Konformität herzustellen (siehe *Tabelle 5.1*).

CE-Konf	UL-Konformität		
			(NEC 2014)
Empfohlene	Empfohlener	Maximaler	Empfohlene
Sicherungsgröße	Trennschalter	Abschaltwert	maximale
		[A]	Sicherungsgröße
gG-16	Eaton/Moller PKZM0-16	16	 Littelfuse[®] KLSR015 Littelfuse[®] FLSR015

Tabelle 5.1 Sicherungen und Trennschalter

5.6 Anforderungen an die Zusatzversorgung

Versorgen Sie die SAB über ein Netzteil mit einem Ausgangsbereich von 24–48 V DC ± 10 %. Die Ausgangswelligkeit des Netzteils muss kleiner als 250 mV_{pp} sein. Verwenden Sie Ausschließlich Netzteile, die der PELV-Spezifikation entsprechen.

Nennleistungsdiagramme finden Sie im VLT[®] Integrated Servo Drive ISD[®] 510 System Projektierungshandbuch.

HINWEIS

Verwenden Sie eine Spannungsversorgung, die nach Normen EN 61000-6-2 und EN 61000-6-4 oder ähnlich für Industriegebrauch CE-markiert ist.

Das Netzteil muss auf das ISD 510 Servosystem ausgelegt sein, was bedeutet, dass es ausschließlich zur Versorgung der SAB verwendet wird. Die maximale Kabellänge zwischen Netzteil und SAB beträgt 3 m.

5.7 Anforderungen an die Sicherheitsstromversorgung

Versorgen Sie die STO-Linie mit einem 24 V DC-Netzteil mit folgenden Eigenschaften:

- Ausgangsbereich: 24 V DC ±10 %
- Maximale Stromstärke: 1 A

HINWEIS

Verwenden Sie ein 24-V-Netzteil, das nach den Normen EN 61000-6-2 und EN 61000-6-4 oder ähnlich für den Industriegebrauch CE-markiert ist. Die Spannungsversorgung darf nur für den ISD 510-Sicherheitseingang verwendet werden. Es muss die PELV-Spezifikation erfüllen

Sie können die Zusatzversorgung für die STO-Funktion verwenden, wenn folgende Bedingungen erfüllt sind:

- Ausgangsbereich: 24 V DC ±10 %
- Maximale Kabellänge: 3 m

Danfoss

5.8 Anschließen der Komponenten

5.8.1 Servo Access Box

AWARNUNG

HOCHSPANNUNG

An den Steckern liegt lebensgefährliche Spannung an.

 Trennen Sie vor der Arbeit an den Leistungssteckern (Kabel anschließen oder trennen) unbedingt die SAB vom Netz und warten Sie die Entladezeit ab.

Schritt 1: Schließen Sie das Einspeisekabel an

1	24/48 V IN (Zusatzeingangsklemme)
2	Kabelbinder
3	Kabelschelle für ISD Linie 1: STO 1 (STO-Ausgang zu Hybridkabellinie 1)
4	PE-Erdung
5	Kabelschelle für Einspeisekabel
6	Einspeisekabel für Linie 1
7	Einspeisekabel für Linie 2

Abbildung 5.1 Anschließen des Einspeisekabels

- 1. Verbinden Sie die 4 Stecker des Einspeisekabels mit den jeweiligen Anschlussklemmen der SAB.
- 2. Befestigen Sie das Einspeisekabel [6] mithilfe der Kabelklemme [5], sodass das Schirmgeflecht genau unter der Schelle positioniert wird.

- Befestigen Sie das STO-Kabel mithilfe der Kabelschelle [3], sodass das Schirmgeflecht genau unter der Schelle positioniert wird.
- 4. Erden Sie den Schutzleiter mithilfe der Schutzerdungsklemme [4].

HINWEIS

Bei Verwendung von 2 Servoantriebslinien, wiederholen Sie den Vorgang für die zweite Linie [7].

Schritt 2: Verbinden Sie das AUX-Kabel

 1
 Kabelbinder

 2
 Kabelschelle für ISD Linie 2: STO 2 (STO-Ausgang zu Hybridkabellinie 2)

Abbildung 5.2 AUX-Stecker an der SAB

- Verbinden Sie die Drähte mit dem 24/48-V-IN(Hilfseingang)-Stecker (siehe Kapitel 3.3.1.7 AUX-Stecker).
- Verbinden Sie den 24/48-V-IN-Stecker (Hilfseingang) mit der SAB und befestigen Sie das Kabel mit dem Kabelbinder [1].

Danfoss

Schritt 3: Schließen Sie das Netzkabel an

1 Competition of the second se

1	Netzanschlussstecker
2	PE-Schraube
3	Befestigung mit Kabelbinder
4	Kabelschelle für Bremswiderstandskabel (optional)
5	Kabelschelle für Netzkabel

Abbildung 5.3 Netzanschlussstecker an der SAB

- 1. Verbinden Sie die Adern mit dem Netzanschlussstecker (siehe *Kapitel 3.3.1.2 Netzanschlussstecker*).
- Schließen Sie den Schutzleiter an die entsprechende Schraube an [2].
- 3. Stecken Sie den Netzanschlussstecker [1] ein.
- 4. Befestigen Sie das Netzkabel mithilfe der Kabelschelle [5].
- Bei Verwendung eines Bremswiderstands fangen Sie das Kabel mithilfe der Bremskabelschelle [4] ab.
- Bei Verwendung eines Relais sorgen Sie für Zugentlastung mithilfe des Kabelbinders an der Befestigung [3].

Schritt 4: Schließen Sie den Geber, Real-Time Ethernet und die STO-Kabel an

1. Öffnen Sie die Klemmenabdeckung und die Frontabdeckung mit einem Schraubendreher (siehe Grafiken *Abbildung 5.4* und *Abbildung 5.5*).

Abbildung 5.4 Öffnen der Klemmenabdeckung

Abbildung 5.5 Öffnen der Frontabdeckung

1	Ethernet-Eingang X1 & X2
2	Geberklemme
3	STO 1 IN: 24 V & STO 1 IN: STO
4	STO 2 IN: 24 V & STO 2 IN: STO
5	Kabelschellen für STO-Kabel
6	Kabelbinder für Ethernet-Kabel
7	Kabelschelle für Geberkabel

Abbildung 5.6 Geber, Real-Time Ethernet und STO-Kabel

- 1. Schließen Sie die Ethernet-Kabel [1] an und sichern Sie diese mit Kabelbindern [6] (siehe *Abbildung 5.6*).
- Verbinden Sie die STO-Adern mit den STO-Steckern STO 1 IN: 24 V [3] und STO 2 IN: 24 V [4] (siehe Kapitel 3.3.1.1 STO-Stecker) und beachten Sie die Installationshinweise in Kapitel 8.6 Installation.
- 3. Verbinden Sie die Stecker mit der SAB und sichern Sie die Kabel mit Kabelschellen [5].
- 4. Bei Verwendung eines Gebers:
 - 4a Verbinden Sie die Adern des Geberkabels mit dem entsprechenden Stecker (siehe *Kapitel 3.3.1.5 Encoder-Stecker*).
 - 4b Verbinden Sie den Geberanschluss mit der Geberklemme [2] an der SAB und sichern Sie das Kabel mit der Kabelschelle [7]. Stellen Sie sicher, dass

das Schirmgeflecht genau unter der Schelle positioniert wird.

5.8.2 Servomotor

5.8.2.1 Anschließen/Trennen der Hybridkabel

HOCHSPANNUNG

An den Steckern liegt lebensgefährliche Spannung an.

 Trennen Sie vor der Arbeit an den Leistungssteckern (Kabel anschließen oder trennen) unbedingt die SAB vom Netz und warten Sie die Entladezeit ab.

AWARNUNG

ENTLADEZEIT

Die Servoantriebe und die SAB enthalten Zwischenkreiskondensatoren, die auch nach Abschalten der Netzversorgung an der SAB eine gewisse Zeit geladen bleiben. Das Nichteinhalten der vorgesehenen Entladungszeit nach dem Trennen der Spannungsversorgung vor Wartungs- oder Reparaturarbeiten kann zu schweren oder tödlichen Verletzungen führen.

 Trennen Sie zur Vermeidung eines Stromschlags die SAB vollständig vom Netz und warten Sie mindestens die in *Tabelle 5.2* angegebene Zeit ab, ehe Sie Wartungs- oder Reparaturmaßnahmen am ISD 510 Servosystem oder dessen Komponenten vornehmen.

Nummer	Mindestwartezeit (Minuten)
0–64 Servoantriebe	10

Tabelle 5.2 Entladezeit

Allgemeine Hinweise zur Kabelinstallation

- Vermeiden Sie mechanische Spannungen bei allen Kabeln, insbesondere unter Beachtung des Bewegungsbereichs des eingebauten Servoantriebs.
- Alle Kabel müssen gemäß den örtlichen Gegebenheiten vorschriftsmäßig befestigt werden. Achten Sie darauf, dass sich die Kabel auch nach längerem Betrieb nicht lösen dürfen.
- Wenn die Stecker X3, X4 und X5 nicht genutzt werden, montieren Sie immer die entsprechende Blindkappe.

Stecken Sie die Hybridkabel niemals ein oder aus, wenn der Servoantrieb unter Spannung steht. Sie zerstören hierdurch die Elektronik. Beachten Sie die Entladezeit der Zwischenkreiskondensatoren.

Sie dürfen die Stecker nicht gewaltsam aufsetzen und montieren. Durch falsches Anschließen wird der Anschluss und/oder Stecker zerstört.

Kabel anschließen

- 1. Richten Sie die Buchse des M23-Einspeisekabels am Eingangsstecker (X1) des ersten Servoantriebs aus.
- 2. Drehen Sie den Schraubring des Kabelsteckers im Uhrzeigersinn. Nutzen Sie die Markierung *OPEN* als Referenz.
- 3. Achten Sie darauf, dass die Markierung *OPEN* am Kabelanschlussstecker zum Servoantrieb zeigt.
- 4. Drücken Sie den Stecker in Richtung des Elektronikgehäuses des Servoantriebs, bis die Dichtung vollständig von dem Kabelanschlussstecker verdeckt ist.
- 5. Ziehen Sie den M23-Einspeisekabelstecker fest, indem Sie den Schraubring im Uhrzeigersinn aus dem flachen Bereich um die Markierung *OPEN* herausdrehen.

Abbildung 5.7 Anschließen des M23-Einspeisekabels

- Um weitere Servoantriebe im Daisy-Chain-Format anzuschließen, verbinden Sie den Stecker des Loop-Kabels mit der Buchse (X2) des ersten Servoantriebs.
- 7. Stecken Sie die Buchse des Loop-Kabels auf den Stecker (X1) des nächsten Servoantriebs usw.
- 8. Ziehen Sie die Schraubringe wie in Schritt 5 beschrieben manuell fest.
- 9. Achten Sie darauf, dass die Kabel keiner mechanischen Spannung ausgesetzt werden.

1	X1 Stecker
2	X2 Buchse
3	M23-Metallblindkappe

Abbildung 5.8 Hinzufügen von Servoantrieben im Daisy-Chain-Format.

- Schrauben Sie die M23-Metallblindkappe auf die ungenutzte M23-Ausgangsbuchse (X2) am letzten Servoantrieb im ISD 510 Servosystem.
- 11. Drehen Sie die Metallblindkappe so weit zu, bis die Dichtung am Stecker abgedeckt ist.

Janfoss

Abbildung 5.9 Montage der M23-Blindkappe

AVORSICHT GEFAHR VON PERSONEN- UND/ODER SACHSCHÄDEN

Bei Nichtverwendung der M23-Metallblindkappe kann es zu einer Verletzung des Bedieners und/oder Schäden am Servoantrieb kommen.

• Bringen Sie immer die M23-Metallblindkappe wie in den Schritten 10 und 11 beschrieben an.

HINWEIS

Eine gewinkelte Ausführung des M23-Steckers ist ebenfalls erhältlich.

Das Anschlussverfahren für gerade und gewinkelte M23-Stecker ist identisch.

Trennen der Hybridkabel

- 1. Trennen Sie die SAB von der Spannungsversorgung (Netz und U_{AUX}).
- 2. Warten Sie die minimale Entladezeit ab.
- 3. Entfernen Sie den Stecker des Einspeisekabels von der SAB.
- 4. Drehen Sie den Schraubring auf dem Kabelstecker des Einspeisekabels am Servoantrieb gegen den Uhrzeigersinn, bis die Markierung *OPEN* am Stecker zum Servoantrieb zeigt.

- 5. Ziehen Sie den Stecker weg vom Gehäuse.
- Für die X1- und X2-Stecker werden Blindkappen zum Schutz mitgeliefert. Montieren Sie die Blindkappen nach Abziehen des entsprechenden Steckers.

5.8.2.2 Anschließen/Trennen der Kabel von den Anschlüssen X3, X4 und X5

Kabelführung

- Vermeiden Sie mechanische Spannungen bei allen Kabeln, insbesondere unter Beachtung des Bewegungsbereichs des eingebauten Servoantriebs.
- Alle Kabel müssen gemäß den örtlichen Gegebenheiten vorschriftsmäßig befestigt werden. Achten Sie darauf, dass sich die Kabel auch nach längerem Betrieb nicht lösen dürfen.

Anschluss von I/O- und/oder Geberkabeln

- 1. Richten Sie den Stecker des Kabels an dem mit *X4* markierten Steckeranschluss des Servoantriebs aus.
- Drücken Sie den Stecker in Richtung des Elektronikgehäuses des Servoantriebs und ziehen Sie den Schraubring des Steckers durch Rechtsdrehung fest.

Abbildung 5.10 Anschluss des I/O- und/oder Geberkabels

Abbildung 5.10 zeigt den Anschluss eines I/O- oder Geberkabels mit geradem Stecker an Anschluss X4 des Servoantriebs.

HINWEIS

Das I/O- und Geberkabel wird nicht mitgeliefert.

Anschluss des LCP-Kabels

- 1. Richten Sie die Steckverbindung des Kabels an der mit *X5* markierten LCP-Steckverbindung des Servoantriebs aus.
- Drücken Sie den Stecker in Richtung des Elektronikgehäuses des Servoantriebs und ziehen Sie den Schraubring des Steckers durch Rechtsdrehung fest.

Abbildung 5.11 Anschluss des LCP-Kabels

HINWEIS

Das LCP-Kabel ist nicht mitgeliefert. Sie können es als Zubehör bestellen.

Anschluss des 3. Ethernet-Gerätekabels

- Richten Sie den Stecker des Kabels an dem mit X3 markierten Ethernet-Steckeranschluss des Servoantriebs aus.
- Drücken Sie die Steckverbindung in Richtung des Elektronikgehäuses des Servoantriebs und ziehen Sie den Schraubring des Steckers durch Rechtsdrehung fest.

Abbildung 5.12 Anschluss des 3. Ethernet-Gerätekabels

Trennen der Kabel von den Anschlüssen X3, X4 und X5

- 1. Drehen Sie den Schraubring des Steckers gegen den Uhrzeigersinn.
- 2. Trennen Sie das Kabel vom Servoantrieb.
- Für die Anschlüsse X3, X4 und X5 werden Blindkappen zum Schutz mitgeliefert. Montieren Sie die Blindkappen nach Abziehen des entsprechenden Steckers.

6 Inbetriebnahme

UNERWARTETER ANLAUF

Das ISD 510 Servosystem enthält Servoantriebe, die an das elektrische Versorgungsnetz angeschlossen sind und jederzeit anlaufen können. Auslöser kann zum Beispiel ein Feldbusbefehl, ein Sollwertsignal oder das Zurücksetzen eines Fehlers sein. Servoantriebe und alle angeschlossenen Geräte müssen betriebsbereit sein. Fehler in der Betriebsbereitschaft können bei Anschluss des Servoantriebs an das elektrische Versorgungsnetz zum Tod, zu schweren Verletzungen, Schäden an der Ausrüstung oder zu anderen Sachschäden führen.

• Treffen Sie geeignete Maßnahmen gegen unerwarteten Anlauf.

6.1 Checkliste vor der Inbetriebnahme

Überprüfen Sie unbedingt vor der ersten Inbetriebnahme und vor Inbetriebnahme nach längerer Stillstandszeit oder Lagerung Folgendes:

- Sind alle Schraubverbindungen der mechanischen und elektrischen Teile fest angezogen?
- Sind alle elektrischen Anschlüsse korrekt?
- Besteht Berührschutz vor umlaufenden Teilen und vor Oberflächen, die heiß werden können?

6.2 ID-Zuweisung

6.2.1 EtherCAT[®]

EtherCAT[®] benötigt keine spezielle ID-Zuweisung (IP-Adresse). Eine spezielle ID-Zuordnung ist nur bei indirekter Kommunikation über die ISD Toolbox-Software erforderlich (weitere Informationen unter *Kapitel 6.5.4 Kommunikation mit der ISD Toolbox*).

6.2.2 Ethernet POWERLINK®

Die Ethernet POWERLINK[®] Masterkommunikation kann nicht aktiv sein, wenn eine ID-Zuweisung an die Geräte über die ISD Toolbox erfolgt. Eine ID-Zuweisung über die ISD Toolbox ist nur möglich, wenn Sie eine azyklische Ethernet POWERLINK[®] Kommunikation verwenden. Wenn die zyklische Kommunikation bereits gestartet wurde, senden Sie manuell einen *NMT reset* -Befehl an alle Geräte oder führen einen Aus- und Einschaltzyklus durch, um die Kommunikation über die zyklische Ethernet POWERLINK[®] Schnittstelle zu stoppen.

6.2.2.1 ID-Zuweisung für einzelne Geräte

Wenn Sie einem einzelnen Gerät eine ID zuweisen möchten, können Sie dazu das Fenster *Device Information* in der ISD Toolbox verwenden (weitere Informationen finden Sie im *VLT® Integrated Servo Drive ISD® 510 System Programmierhandbuch*). Die Einstellung einer ID für ein Gerät kann auch über das LCP erfolgen.

Einstellen der Knoten-ID direkt in einem Servoantrieb oder in der SAB

Alle IP-bezogenen Parameter befinden sich in der Parametergruppe 12-0* IP Settings. Gemäß dem Ethernet POWERLINK[®] Standard ist die IP-Adresse auf 192.168.100.xxx festgelegt. Die letzte Zahl ist der Wert von Parameter 12-60 Node ID. Für Parameter 12-02 Subnet Mask ist die Adresse auf 255.255.255.0 festgelegt und kann nicht geändert werden.

Montieren Sie das LCP an dem Servoantrieb oder der SAB, deren *Node ID* geändert werden soll. Ändern Sie den Wert in Parameter *12-60 Node ID*, um die gewünschte IP-Adresse auszuwählen.

Einstellung der Knoten-ID für einen einzelnen Servoantrieb über die SAB

Außerdem können Sie die *Node ID* eines Servoantriebs ändern, wenn das LCP mit der SAB verbunden ist. Diese Funktion ist in Parametergruppe *54-** ID Assignment* in der SAB in Untergruppe *54-1* Manual* enthalten.

- Montieren Sie das LCP an der SAB, die mit dem Servoantrieb verbunden ist, dessen Node ID geändert werden soll.
- 2. Konfigurieren der Parameter:
 - 2a 54-10 EPL ID Zuordnungszeile
 - 2b *54-11 Drive index* (Position des Servoantriebs in der Linie)
 - 2c 54-12 EPL ID assignment assign ID
- 3. Stellen Sie Parameter 54-13 EPL ID assignment start auf [1] start.

6.2.2.2 ID-Zuweisung für mehrere Geräte

Wenn Sie mehreren Geräten IDs zuweisen möchten (zum Beispiel beim Einrichten einer neuen Maschine), können Sie dazu das Unterwerkzeug SAB ID assignment der ISD Toolbox verwenden (weitere Informationen finden Sie im VLT[®] Integrated Servo Drive ISD[®] 510 System Programmierhandbuch). Die Einstellung der IDs aller Servoantriebe, die gleichzeitig mit der SAB verbunden sind, kann auch über das LCP erfolgen, wenn es mit der SAB verbunden ist.

Einstellung der Knoten-IDs aller Servoantriebe in einer SAB-Linie

Über die automatische SAB-ID-Zuweisung können Sie die *Node IDs* an allen Servoantrieben für eine bestimmte SAB-Linie automatisch einstellen lassen. Diese Funktion ist in Parametergruppe 54-** ID Assignment in der SAB in Untergruppe 54-0* Automatic enthalten.

- 1. Montieren Sie das LCP an der SAB, die mit den Servoantrieben verbunden ist, deren *Node IDs* geändert werden sollen.
- 2. Konfigurieren der Parameter:
 - 2a 54-02 EPL ID assignment line
 - 2b 54-03 EPL ID assignment start ID
- 3. Stellen Sie Parameter 54-04 EPL ID assignment start auf [1] start.

6.3 Einschalten des ISD 510 Servosystems

Schließen Sie die Verdrahtung des ISD 510 Servosystems ab, ehe Sie die Spannungsversorgung der Servoantriebe einschalten. Diese Verdrahtung beinhaltet die Spannungsversorgung und die Kommunikation des ISD 510 Systems. Ohne diese Grundvoraussetzungen können Sie die Servoantriebe nicht starten.

Sie können das ISD 510 Servosystem auf drei verschiedene Arten einschalten:

- Wenn die SAB vom Netz versorgt wird, wird die STO- und U_{AUX}-Kommunikation zum internen SAB-Controller hergestellt und U_{AUX} wird automatisch an die angeschlossenen Servoantriebe weitergegeben.
- Wenn die SAB nur mit U_{AUX} versorgt wird, sind die Steuereinheiten von SAB und Servoantrieb aktiv.
- Wenn die SAB nur mit Netzspannung versorgt wird, läuft nur die SAB-Steuereinheit und die Leistung wird an die angeschlossenen Servoantriebe weitergegeben.

Verfahren zum Einschalten des ISD 510 Servosystems

- 1. Einschalten der U_{AUX}-Spannung zur Aktivierung der SAB und der einzurichtenden Servoantriebe.
- 2. Netzspannung einschalten.
- 3. Stellen Sie die SAB auf Normal operation (siehe Kapitel 6.5.5 Inbetriebnahme der ISD Toolbox und Kapitel 6.6.2 Einfache Programmiervorlage).

Nun sind die SAB und die Servoantriebe betriebsbereit.

6.4 Grundlegende Programmierung

Mithilfe der Bibliotheken für das ISD 510 Servosystem können Sie in TwinCAT® V2 und in der Automation Studio-Umgebung ™ (Version 3.0.90 und 4.x, unterstützte Plattform SG4) die Funktionalität einfach integrieren, ohne dass Sie eine besondere Motion Runtime Library in der Steuerung benötigen. Den vorhandenen Funktionsblöcke entsprechen dem PLCopen[®] Standard. Kenntnisse der zugrunde liegenden Feldbuskommunikation und/oder des CANopen[®] CiA DS 402-Profils sind nicht erforderlich.

Die Bibliothek enthält:

- Funktionsblöcke zur Steuerung und Überwachung des Servoantriebs und der SAB.
- Funktionsblöcke für alle verfügbaren Bewegungsbefehle des Servoantriebs.
- Funktionsblöcke und Strukturen für die Erstellung von *Basic CAM*-Profilen
- Funktionsblöcke und Strukturen für die Erstellung von *Labeling CAM* -Profilen

6.4.1 Programmierung mit Automation Studio™

6.4.1.1 Anforderungen

Sie benötigen die folgenden Dateien, um VLT[®] Integrated Servo Drive ISD[®] 510 und die VLT[®] Servo Access Box in ein Automation Studio™ Projekt zu integrieren:

- Bibliothekenpaket für das ISD 510 Servosystem: Danfoss_VLT_ISD_510.zip
- XDD-Datei (XML-Gerätebeschreibung) für den Servoantrieb: 0x0300008D_ISD510.xdd
- XDD-Datei (XML-Gerätebeschreibung) für die SAB: 0x0300008D_SAB.xdd

6.4.1.2 Erstellen eines Automation Studio™ Projekts

Die folgenden Anweisungen beziehen sich auf Automation Studio[™] 3.0.90.

Detaillierte Informationen zur Installation von Automation StudioTM finden Sie in der Automation StudioTM Hilfe. Öffnen Sie den *B&R Help Explorer* und wählen Sie dort die Option [Automation software \rightarrow Software Installation \rightarrow Automation Studio].

Detaillierte Hinweise zur Erstellung eines neuen Projekts in Automation StudioTM finden Sie in der Automation StudioTM Hilfe. Öffnen Sie den *B&R Help Explorer* und wählen Sie die Option [Automation Software \rightarrow Getting Started \rightarrow Creating programs with Automation Studio \rightarrow First project with X20 CPU].

Einbinden der ISD 510 Bibliotheken in ein Automation Studio™ Proiekt:

- Öffnen Sie in Logical View den Menüeintrag [File → Import...].
- Wählen Sie im nächsten Fenster die Datei Danfoss_VLT_ISD_510.zip aus (je nach Speicherort auf der Festplatte).
- 3. Klicken Sie auf Open.
- 4. Weisen Sie im nächsten Fenster die Bibliotheken der CPU zu.
- Klicken Sie auf *Finish*. Jetzt werden die Bibliotheken in das Automation Studio[™] Projekt integriert.

Während des Einbindens wird ein neuer Ordner angelegt, der die ISD-Bibliotheken enthält:

- ISD_51x
 - Enthält Programmorganisationseinheiten (POUs), die von PLCopen[®] (Name beginnt mit MC_) definiert werden, und POUs, die von Danfoss (Name beginnt mit DD_) definiert werden. Die Danfoss POUs bieten zusätzliche Funktionen für den Servoantrieb.
 - Sie können POUs, die von PLCopen[®] definiert wurden, mit POUs kombinieren, die von Danfoss definiert wurden.
 - Die Namen der POUs, die den Servoantrieb als Ziel haben, enden alle auf _ISD51x.
- SAB_51x
 - Enthält POUs, die von Danfoss (Name beginnend mit DD_) definiert werden und Funktionen für die SAB bereitstellen.
 - Die Namen der POUs, die die SAB zum Ziel haben, enden alle auf _SAB.
- BasCam_51x
 - Enthält POUs für die Erstellung grundlegender CAMs.
- LabCam_51x
 - Enthält POUs für die Erstellung von Kennzeichnungs-CAMs.
- Intern_51x
 - Enthält POUs, die intern f
 ür die Bibliotheken ben
 ötigt werden.
 - Verwenden Sie diese POUs nicht in einer Anwendung.

Beim Einbinden des ISD_51x-Pakets werden einige Standardbibliotheken automatisch integriert, wenn sie nicht bereits Teil des Projekts sind.

Danfoss

Abbildung 6.1 Standardbibliotheken

HINWEIS

Entfernen Sie diese Bibliotheken nicht, weil andernfalls die ISD-Bibliotheken nicht funktionieren.

Innerhalb der Bibliothek sind die folgenden Listen mit Konstanten definiert:

- AxisErrorCodes
 - Konstanten für Fehlercodes der Achse.
 - Fehlercodes lassen sich mithilfe des Funktionsblocks MC_ReadAxisError_ISD51x and/or DD_ReadAxisWarning_ISD51x lesen.
- AxisTraceSignals
 - Konstanten für die Trace Signale der Achse.
 - Zur Verwendung mit dem Funktionsblock DD_Trace_ISD51x.
- BasCam_51x
 - Konstanten für die Erstellung der grundlegender CAMs.
- CamParsingErrors
 - Konstanten f
 ür Parsing-Probleme eines CAM.
 - Die Fehlerursache gibt Funktionsblock MC_CamTableSelect_ISD51x zurück.
- Danfoss_VLT_ISD510
 - Enthält die Versionsinformationen der Bibliothek
- FB_ErrorConstants
 - Konstanten für Fehler in POUs.
 - Der Grund wird in einer Ausgabe ErrorInfo.ErrorID angegeben, die in allen POUs verfügbar ist.

Danfoss

- Intern_ISD51x
 - Konstanten zur internen Verwendung in der Bibliothek.
 - Sie sind nicht zur Verwendung in einer Anwendung gedacht.
- LabCam_51x
 - Konstanten für die Erstellung von Kennzeichnung-CAMs.
- SabErrorCodes
 - Konstanten für Fehlercodes der SAB.
 - Fehlercodes lassen sich mithilfe des Funktionsblocks DD_ReadSabError_SAB and/or DD_ReadSabWarning_SAB lesen.
- SabTraceSignals
 - Konstanten f
 ür die Trace Signale der SAB.
 - Zur Verwendung mit Funktionsblock DD_Trace_SAB bestimmt.
- SdoAbortCodes
 - Konstanten f
 ür Fehler beim Lesen und Schreiben von Parametern.
 - Der Grund wird in einer Ausgabe
 AbortCode angegeben, die in mehreren
 POUs verfügbar ist.

Instanziierung von AXIS_REF_ISD51x

Innerhalb der Bibliothek *ISD_51x* gibt es einen Funktionsblock namens *AXIS_REF_ISD51x*. Erstellen Sie eine Instanz dieses Funktionsblocks für jeden Servoantrieb, den Sie regeln und überwachen müssen. Zum Herstellen einer Verbindung zum physischen Servoantrieb verknüpfen Sie jede Instanz mit einem physischen Servoantrieb. Dies erfolgt (im *Logical View*) durch Initialisierung der einzelnen Instanzen mit ihrer Knotennummer und dem Namen des Steckplatzes (z. B. 'IF3'), mit dem sie verbunden sind. Jede Instanz von *AXIS_REF_ISD51x* ist die logische Darstellung eines physischen Servoantriebs.

Abbildung 6.2 Instantiation von AXIS_REF und Einstellung der Anfangswerte

Instanziierung von SAB_REF

Innerhalb der Bibliothek *SAB_51x* gibt es einen Funktionsblock namens *SAB_REF*. Erstellen Sie eine Instanz dieses Funktionsblocks für jede SAB, die Sie steuern oder überwachen müssen. Zum Herstellen einer Verbindung zur physischen SAB verknüpfen Sie jede Instanz mit einer physischen SAB. Dies erfolgt (im Logical View) durch Initialisierung der einzelnen Instanzen mit ihrer Knotennummer und dem Namen des Steckplatzes (z. B. *IF3*), mit dem sie verbunden sind.

Jede Instanz von SAB_REF ist die logische Darstellung einer physischen SAB.

Feldbusgerät importieren und der physischen Ansicht hinzufügen

Der nächste Schritt besteht im Import des Servoantriebs ISD 510 in Automation Studio™:

- Wählen Sie den Menüeintrag [Tools → Import Fieldbus Device...].
- Wählen Sie die XDD-Datei 0x0300008D_ISD510.xdd an ihrem Speicherort auf der Festplatte aus. Diesen Import müssen Sie nur einmal für jedes Projekt ausführen. Danach ist das Gerät in Automation Studio™ bekannt.
- 3. Der ISD 510 Servoantrieb kann jetzt der Ethernet POWERLINK® Schnittstelle der Controller im *Physical View* hinzugefügt werden.
 - 3a Klicken Sie mit der rechten Maustaste auf den Controller im *Physical View* und wählen Sie [Open→POWERLINK].
 - 3b Klicken Sie mit der rechten Maustaste auf die Schnittstelle und wählen Sie Insert....

Danfoss

- 3c Wählen Sie im Fenster Select controller module den ISD 510 in der Gruppe POWERLINK Devices.
- 3d Klicken Sie auf Next.
- 3e Geben Sie im nächsten Fenster die Knotennummer des Servoantriebs ein.

Abbildung 6.3 Fügen Sie dem Projekt einen ISD 510 Servo Drive hinzu

HINWEIS

Das hier beschriebene Verfahren gilt für Automation Studio™ Version 3.0.90. Hinweise zu den entsprechenden Schritten mit V4.x finden Sie in der Automation Studio™ Hilfe.

Für jeden physischen Servoantrieb fügen Sie dem Physical View von Automation™ einen Eintrag hinzu.

Der nächste Schritt ist der Import der Servo Access Box in Automation Studio™:

- Wählen Sie den Menüeintrag [Tools → Import Fieldbus Device...].
- Wählen Sie die XDD-Datei 0x0300008D_SAB.xdd an ihrem Speicherort auf der Festplatte aus. Diesen Import müssen Sie nur einmal für jedes Projekt ausführen. Danach ist das Gerät in Automation Studio™ bekannt.
- 3. Die SAB kann nun der Ethernet POWERLINK® Schnittstelle der Steuerung in der *Physical View* hinzugefügt werden.
 - 3a Klicken Sie mit der rechten Maustaste auf den Controller im *Physical View* und wählen Sie [Open→POWERLINK].
 - 3b Klicken Sie mit der rechten Maustaste auf die Schnittstelle und wählen Sie Insert....

- 3c Wählen Sie im Fenster *Select controller* module die SAB in der Gruppe POWERLINK Devices aus.
- 3d Klicken Sie auf Next.
- 3e Geben Sie im nächsten Fenster die Knotennummer der SAB ein.

Fügen Sie für jede physische SAB im *Physical View* von Automation Studio[™] einen Eintrag hinzu.

M PLC1.CPU [POWERLINK] ×				
Slave Module	Slave Backplane	Connection	Description	
IF3				
 — Manfoss VLT(R) SAB 		ST1	Danfoss VLT(R) Servo Access Box (SAB)	
- 🛄 Danfoss VLT(R) ISD 51(ST2	Danfoss VLT(R) Integrated Servo Drive ISD 510	
Danfoss VLT(R) ISD 51(ST3	Danfoss VLT(R) Integrated Servo Drive ISD 510	
1				

Abbildung 6.4 1 SAB und 2 ISD 510 Servoantriebe der Ethernet POWERLINK[®] Schnittstelle hinzugefügt

I/O-Konfiguration und I/O-Mapping

Sie müssen die *I/O Configuration* des Servoantriebs so parametrieren, dass die Bibliothek Zugriff auf alle notwendigen Objekte hat:

- Klicken Sie mit der rechten Maustaste auf das ISD 510 und wählen Sie Open I/O Configuration öffnen.
- 2. Ändern Sie im Abschnitt Kanäle die *Cyclic transmission* der folgenden Objekte:
 - 2a Alle Subindizes des Objektes 0x5050 (Lib pdo rx_I5050 ARRAY[]) auf *Write*.
 - 2b Alle Subindizes des Objektes 0x5051 (Lib pdo tx_I5051 ARRAY[]) auf *Read*.

Sie müssen die *I/O Configuration* der SAB so parametrieren, dass die Bibliothek Zugriff auf alle notwendigen Objekte hat:

- 1. Klicken Sie mit der rechten Maustaste auf den Eintrag der SAB und wählen Sie Open I/O Configuration.
- 2. Ändern Sie im Abschnitt Kanäle die Cyclic transmission der folgenden Objekte:
 - 2a Alle Subindizes des Objektes 0x5050 (Lib pdo rx_I5050 ARRAY[]) auf *Write*.
 - 2b Alle Subindizes des Objektes 0x5051 (Lib pdo tx_I5051 ARRAY[]) auf *Read.*

Mit diesen Einstellungen wird die zyklische Kommunikation mit dem Gerät konfiguriert. Diese Parameter sind für das Funktionieren der Bibliothek erforderlich.

Sie können die Funktion "Copy & Paste" verwenden, um dieselbe *I/O Configuration* für mehrere Geräte desselben Typs zu übernehmen.

HINWEIS

Stellen Sie die Option *Module supervised* für die Servoantriebe und die SAB auf *Off*. Den Parameter finden Sie in der *I/O Configuration* des Geräts.

	Value	Description
🗄 🛶 🚰 Lib pdo rx_15050 ARRAY[]		
Q Cyclic transmission	Write	
Datatype	UDINT	UNSIGNED32
🧼 🖗 Init value		Set at bootup (clear to pr
🖃 📲 LibPdoRx2_15050_S02		
🖗 Cyclic transmission	Write	
🛶 🖗 Datatype	UDINT	UNSIGNED32
🦾 🖗 Init value		Set at bootup (clear to pr
🗄 📲 Lib Pdo Rx3_15050_S03		
	Write	
🛶 🖗 Datatype	UDINT	UNSIGNED32
🧼 🖗 Init value		Set at bootup (clear to pr
🗄 📲 LibPdoRx5_15050_S05		
🖶 📲 Lib Pdo Rx6_15050_S06		
🖶 📲 LibPdoRx7_15050_S07		
🖽 📲 Lib Pdo Rx8_15050_S08		
i		
🗄 📲 Lib pdo tx_15051 ARRAY[]		
🗄 📲 LibPdoTx1_I5051_S01		
	Read	
	UDINT	UNSIGNED32
📖 🖗 Init value		Set at bootup (clear to pre
🖻 🔤 🚰 LibPdo Tx2_15051_S02		
🛛 Cyclic transmission	Read	
🛶 🖗 Datatype	UDINT	UNSIGNED32
🦾 🖗 Init value		Set at bootup (clear to pr
🖕 📲 LibPdo Tx3_I5051_S03		
Vyclic transmission	Read	
🛶 🖗 Datatype	UDINT	UNSIGNED32
🧼 🖗 Init value		Set at bootup (clear to pr
🗄 📲 LibPdo Tx4_15051_S04		
🕮 🖓 🔛 LibPdo Tx5_15051_S05		
it••••••••••••••••••••••••••••••••••		
i∰		
i		
i:		

Abbildung 6.5 I/O-Konfiguration eines ISD 510-Geräts

Channel Name	Data Type	Task Class	PV or Channel Name	Inverse	Simulate
+ ModuleOk	BOOL				
UbPdoRx1_I5050_S01	UDINT				
LibPdoRx2_I5050_S02	UDINT				
LibPdoRx3_15050_S03	UDINT				
LibPdoRx4_15050_S04	UDINT				
LibPdoRx5_15050_\$05	UDINT				
UbPdoRx6_15050_S06	UDINT				
UbPdoRx7_15050_S07	UDINT				
UbPdoRx8_I5050_S08	UDINT				
LibPdoRx9_15050_S09	UDINT				
LibPdoTx1_I5051_S01	UDINT				
LibPdoTx2_I5051_S02	UDINT				
LibPdoTx3_I5051_S03	UDINT				
LibPdoTx4_I5051_S04	UDINT				
LibPdoTx5_I5051_S05	UDINT				
LibPdoTx6_I5051_S06	UDINT				
LibPdoTx7_I5051_S07	UDINT				
LibPdoTx8_I5051_S08	UDINT				
LibPdoTx9_I5051_S09	UDINT				

Abbildung 6.6 I/O-Mapping nach erfolgreicher Konfiguration

Mappen Sie die Ein- und Ausgänge der Instanz des Funktionsblocks *AXIS_REF_ISD51x* und die physischen Datenpunkte des Servoantriebs nach *Abbildung 6.7* (in diesem Fall ist *myAxis* eine Instanz von *AXIS_REF_ISD51x*):

recircito (Fowerkink) a	PECI.(PO.II 5/31255	po configuration, a rectice out	5.51255 [I/O mapping]	
Data Type	Task Class	PV or Channel Name	Inverse	Sir
BOOL	Automatic	myAxis.ModuleOk		
UDINT	Automatic	myAxis.RPDO[0]		
UDINT	Automatic	myAxis.RPDO[1]		
UDINT	Automatic	myAxis.RPDO[2]		
UDINT	Automatic	myAxis.RPDO[3]		
UDINT	Automatic	myAxis.RPDO[4]		
UDINT	Automatic	myAxis.RPDO[5]		
UDINT	Automatic	myAxis.RPDO[6]		
UDINT	Automatic	myAxis.RPDO[7]		
UDINT	Automatic	myAxis.RPDO[8]		
UDINT	Automatic	myAxis.TPDO[0]		
UDINT	Automatic	myAxis.TPDO[1]		
UDINT	Automatic	myAxis.TPDO[2]		
UDINT	Automatic	myAxis.TPDO[3]		
UDINT	Automatic	myAxis.TPDO[4]		
UDINT	Automatic	myAxis.TPDO[5]		
UDINT	Automatic	myAxis.TPDO[6]		
UDINT	Automatic	myAxis.TPDO[7]		
UDINT	Automatic	myAxis.TPDO[8]		
	Data Type BOOM UDINT UDINT UDINT UDINT UDINT UDINT UDINT UDINT UDINT UDINT UDINT UDINT UDINT UDINT UDINT UDINT UDINT UDINT	Data Type Task Case EX00 Adomatic U0NT Adomatic	Data Type Task Class PV or Channel Name 9001 Adomid: myNets Mode/ok 9001 Adomid: myNets Mode/ok 9001 Adomid: myNets Mode/ok 9001 Adomid: myNets Mode/ok 9001 Adomid: myNets RPD0[0] 9001 Adomid: myNets RPD0[1] 9001 Adomid: myNets RPD0[2] 9001 Adomid: myNets RPD0[3] 9001 Adomid: myNets RPD0[3] 9001 Adomid: myNets RPD0[3] 9001 Adomid: myNets RPD0[3] 9001 Adomid: myNe	Deta Type Task Class PV or Channel Name Inverse B01 Adomatic mykks RPD0[0] Inverse Inverse UDINT Adomatic myks RPD0[0] Inverse In

Abbildung 6.7 I/O-Mapping eines ISD 510 Servo Drive

Mappen Sie die Ein- und Ausgänge der Instanz des Funktionsblocks *SAB_REF* und die physischen Datenpunkte der SAB entsprechend.

Zykluszeiteinstellungen

Die Mindestzykluszeit beträgt 400 µs. Die ISD 510-Geräte können die Ethernet POWERLINK[®] Zykluszeiten in Vielfachen von 400 µs und in Vielfachen von 500 µs starten. Die Geräte werden je nach Ethernet POWERLINK[®] Konfiguration der physischen Schnittstelle beim Einschalten automatisch von der SPS parametriert. Sie können die Ethernet POWERLINK[®] Konfiguration überprüfen, indem Sie mit der rechten Maustaste unter *Physical View* auf [CPU → Open IF3 POWERLINK Configuration] klicken.

HINWEIS

Die Aufgabenzykluszeit des SPS-Programms sollte mit der Ethernet POWERLINK [®] Zykluszeit identisch sein. Andernfalls könnten Daten verloren gehen und die Leistung wird verringert.

M PLC1.CPU [IF3 POWERLINK Configuration]* ×		
₫ ₩		
lame	Value	Description
🖃 👔 IF3		X20CP1586 (POWERLINK)
🖗 Module type	Type 4	Indicates module features
🖗 Operating mode	POWERLINK V2	
🖗 MTU size	300	
	100 MBit half duplex	
🖶 🚰 POWERLINK parameters		
Activate POWERLINK communication	on	
🖗 Device name	<interfaceaddress></interfaceaddress>	
	1000	
🖗 Multiplexing prescale	8	
@ Mode	managing node	

Abbildung 6.8 Ethernet POWERLINK[®] Konfigurationsfenster zur Parametrierung der Ethernet POWERLINK[®] Zykluszeit

Stellen Sie die SPS-Zykluszeit im Automation Studio[™] ein:

- Klicken Sie unter *Physical View* mit der rechten Maustaste auf [CPU → Open Software Configuration].
- 2. Achten Sie darauf, dass die SPS-Zykluszeit mit der Ethernet POWERLINK[®] Zykluszeit identisch ist.

Danfoss

6.4.1.3 Verbinden mit der SPS

Ausführliche Informationen zum Anschließen an die SPS finden Sie in der Hilfe zum Automation StudioTM. Öffnen Sie den *B&R Help Explorer* und navigieren Sie zu [Automation Software \rightarrow Getting Started \rightarrow Creating programs with Automation Studio \rightarrow First project with X20 CPU \rightarrow Configure online connection].

6.4.2 Programmieren mit TwinCAT®

6.4.2.1 ISD-Lieferumfang

Um den Servoantrieb und die SAB in ein TwinCAT[®] Projekt zu integrieren, benötigen Sie folgende Dateien:

- Bibliothek für das ISD 510-Servosystem: Danfoss_VLT_ISD_510.lib
- ESI-Datei (Informationen zum EtherCAT® Slave) für den Servoantrieb und den SAB: *Danfoss ISD* 500.xml

6.4.2.2 Erstellen eines TwinCAT[®]-Projekts

Ausführliche Informationen zum Installieren von TwinCAT[®] finden Sie im Beckhoff Information System (infosys.beckhoff.com). Öffnen Sie das Informationssystem und wählen Sie [TwinCAT 2 \rightarrow TwinCAT Quick Start \rightarrow Installation].

Ausführliche Informationen zum Installieren von TwinCAT[®] finden Sie im Beckhoff Information System (http:// infosys.beckhoff.com). Öffnen Sie das Informationssystem und wählen Sie [TwinCAT 2 \rightarrow TwinCAT Quick Start or TwinCAT 2 \rightarrow TX1200 TwinCAT PLC \rightarrow TwinCAT PLC Control].

So integrieren Sie die ISD 510 Bibliothek in ein TwinCAT[®] Projekt:

- 1. Öffnen Sie in der Registerkarte *Resources* von TwinCAT[®] PLC Control den *Library Manager*.
- 2. Klicken Sie mit der rechten Maustaste oben links auf das Fenster *Library Manager* und wählen Sie *Additional Library*
- 3. Wählen Sie die Datei *Danfoss_VLT_ISD_510.lib* (am entsprechenden Speicherort auf der Festplatte).
- Klicken Sie auf Open. Nun werden die Bibliotheken in das TwinCAT[®] PLC Control-Projekt integriert.

In der Bibliothek werden die POUs in Ordner aufgeteilt:

- BasCam_51x
 - Enthält POUs für die Erstellung grundlegender CAMs.
- ISD_51x

- Enthält von PLCopen[®] definierte POUs (Name beginnt mit MC_) sowie von Danfoss definierte POUs (Name beginnt mit DD_). Die von Danfoss definierten POUs bieten zusätzliche Funktionen für die Achse.
- Sie können POUs, die von PLCopen[®] definiert wurden, mit POUs kombinieren, die von Danfoss definiert wurden.
- Die Namen der POUs, die den Servoantrieb als Ziel haben, enden alle auf _ISD51x.
- Intern_51x
 - Enthält POUs, die intern für die Bibliotheken benötigt werden.
 - Verwenden Sie diese POUs nicht in einer Anwendung.
- LabCam_51x
 - Enthält POUs f
 ür die Erstellung von Kennzeichnungs-CAMs.
- SAB_51x
 - Enthält von Danfoss definierte POUs (Name beginnt mit DD_) und bietet Funktionen für die SAB.
 - Die Namen der POUs, die die SAB zum Ziel haben, enden alle auf _SAB.

Beim Integrieren der ISD 510-Bibliothek werden einige Standardbibliotheken automatisch integriert, außer wenn sie bereits Bestandteil des Projekts sind.

HINWEIS

Entfernen Sie diese Bibliotheken nicht, weil andernfalls die ISD-Bibliotheken nicht funktionieren.

🎁 Library Manager	
Denfoss_VLT_ISD_5101kb*61015140507 TcTesAndSetlib 232.09125008 STANDAPOLIB 56.98120302 TcBese.lib 145.0912:14:08 TcSystem.lib 16.1.1419:38:48 TcI.bilitec.bt 10.113201212	
TcEtherCAT.lib 9.1.14 10:35:10	
	•
POU. Cat Visu Glo	

Abbildung 6.9 Library Manager nach Integration der ISD 51x Bibliothek

Innerhalb der Bibliothek sind die folgenden Listen mit Konstanten definiert:

AxisErrorCodes

- Konstanten für Fehlercodes der Achse.
- Fehlercodes lassen sich mithilfe des Funktionsblocks MC_ReadAxisError_ISD51x and/or DD_ReadAxisWarning_ISD51x lesen.
- AxisTraceSignals
 - Konstanten für die Trace Signale der Achse.
 - Zur Verwendung mit dem Funktionsblock DD_Trace_ISD51x.
- BasCam_51x
 - Konstanten f
 ür die Erstellung der grundlegender CAMs.
- CamParsingErrors
 - Konstanten f
 ür Parsing-Probleme eines CAM.
 - Die Fehlerursache gibt Funktionsblock MC_CamTableSelect_ISD51x zurück.
- Danfoss_VLT_ISD510
 - Enthält die Versionsinformation der Bibliothek.
- FB_ErrorConstants
 - Konstanten für Fehler in POUs.
 - Der Grund wird in einer Ausgabe
 ErrorInfo.ErrorID angegeben, die in allen
 POUs verfügbar ist.
- Intern_51x
 - Für die Bibliothek intern erforderliche Konstanten.
 - Sie sind nicht zur Verwendung in einer Anwendung gedacht.
- LabCam_51x
 - Konstanten für die Erstellung von Kennzeichnung-CAMs.
- SabErrorCodes
 - Konstanten für Fehlercodes der SAB.
 - Fehlercodes lassen sich mithilfe des Funktionsblocks DD_ReadSabError_SAB and/or DD_ReadSabWarning_SAB lesen.
- SabTraceSignals
 - Konstanten für die Trace Signale der SAB.
 - Zur Verwendung mit Funktionsblock DD_Trace_SAB bestimmt.
- SdoAbortCodes

- Konstanten für Fehler beim Lesen und Schreiben von Parametern.

Danfoss

 Der Grund wird in einer Ausgabe AbortCode angegeben, die in mehreren POUs verfügbar ist.

Instanziierung von AXIS_REF_ISD51x

Im Ordner ISD_51x in der Bibliothek Danfoss_VLT_ISD_510 gibt es einen Funktionsblock mit dem Namen AXIS_REF_ISD51x. Erstellen Sie eine Instanz dieses Funktionsblocks für jeden Servoantrieb, den Sie regeln und überwachen müssen. Jede Instanz von AXIS_REF_ISD51x ist die logische Darstellung eines physischen Servoantriebs.

Instanziierung von SAB_REF

Im Ordner *SAB_51x* in der Bibliothek *Danfoss_VLT_ISD_510* gibt es einen Funktionsblock mit dem Namen *SAB_REF*. Erstellen Sie eine Instanz dieses Funktionsblocks für jede SAB, die Sie steuern oder überwachen müssen.

Jede Instanz von SAB_REF ist die logische Darstellung einer physischen SAB.

HINWEIS

Prüfen Sie beim Erstellen der Bibliothek, ob die Option Replace constants unter [Project \rightarrow Options... \rightarrow Build] aktiviert ist.

Speichern und erstellen Sie anschließend das Projekt, um die automatisch erstellten variablen Informationen für den *TwinCAT® System Manager* zu aktualisieren.

Abbildung 6.10 Instanziierung von AXIS_REF_ISD51x

6

Fügen Sie ein SPS-Projekt in den TwinCAT[®] System Manager hinzu.

Um eine Verknüpfung zwischen dem *TwinCAT® PLC Control*-Projekt und dem *TwinCAT® System Manager* zu erstellen, verbinden Sie das gespeicherte Projekt, insbesondere die Ein- und Ausgänge mit dem *TwinCAT® System Manager*:

- 1. Um die Projektinformationen im *TwinCAT®* System *Manager* hinzuzufügen, klicken Sie mit der rechten Maustaste auf *PLC-Configuration* und wählen Sie *Append PLC project...*
- 2. Wählen Sie im Fenster *Insert IEC1131 Project* die Projektinformationsdatei am entsprechenden Speicherort auf der Festplatte. Die Datei hat denselben Namen wie das SPS-Projekt, nur mit der Dateiendung *.tpy*.
- 3. Klicken Sie auf Open.

Importieren Sie das Feldbus-Gerät und fügen Sie es in TwinCAT[®] hinzu

Im nächsten Schritt importieren Sie den Servoantrieb und die SAB in die *TwinCAT®* System Manager-Software:

- Kopieren Sie die ESI-Datei Danfoss ISD 500.xml in den Ordner TwinCAT Installation Folder\Io\EtherCAT auf der Festplatte. Diesen Vorgang müssen Sie für jedes Projekt nur einmal durchführen. Der TwinCAT[®] System Manager sucht beim Einschalten automatisch nach ESI-Dateien an diesem Speicherort.
- Um einen EtherCAT[®] Master hinzuzufügen, klicken Sie mit der rechten Maustaste auf [I/O-Configuration → I/O Devices] und wählen Sie Append Device....
- Wählen Sie im folgenden Fenster [EtherCAT → EtherCAT] (siehe Abbildung 6.11).
- 4. Klicken Sie auf OK.
- 5. Wählen Sie *Device 1 (EtherCAT®)* und anschließend den richtigen *Network Adapter* auf der rechten Seite des Fensters in der Registerkarte *Adapter*.
- Um eine SAB hinzuzufügen, klicken Sie mit der rechten Maustaste auf *Device1 (EtherCAT®*) und wählen Sie *Append Box....*
- Navigieren Sie zum Fenster Insert EtherCAT Device und wählen Sie [Danfoss GmbH → VLT[®] ISD Series → VLT[®] Servo Access Box L1] für Linie 1 der SAB (und/oder VLT[®] Servo Access Box L2 für Linie 2 der SAB).
- 8. Klicken Sie auf OK.
- Um einen Servoantrieb in Linie 1 der SAB hinzuzufügen, klicken Sie auf Box 1 (VLT[®] Servo Access Box L1) und wählen Sie Append Box...

 Navigieren Sie zum Fenster Insert EtherCAT Device und wählen Sie [Danfoss GmbH → VLT[®] ISD Series → VLT[®] ISD 510 Integrated Servo Drive].

Danfoss

- 11. Klicken Sie auf OK.
- 12. Wenn Sie den Antrieb als NC-Achse verwenden, beantworten Sie die Frage mit *No*. Wenn der Antrieb als NC-Achse verwendet werden sollte, ziehen Sie *Kapitel 6.4.2.3 Konfiguration als TwinCAT® NC-Achse* heran.

HINWEIS

Fügen Sie einen Eintrag in den EtherCAT[®] Master des *TwinCAT[®] System Manager* für jeden physischen Servoantrieb und jede SAB hinzu. Fügen Sie den Servoantrieb in der richtigen SAB-Leitung hinzu.

Abbildung 6.11 Fügen Sie einen EtherCAT[®] Master zum Projekt hinzu

Abbildung 6.12 Fügen Sie dem Projekt einen ISD 510 Servo Drive hinzu

Abbildung 6.13 TwinCAT[®] System Manager nach Hinzufügen des SPS-Projekts und Hinzufügen einer SAB und 2 Servoantriebe

I/O-Konfiguration und I/O-Mapping

Wenn Sie mehr als einen Servoantrieb anschließen, schließen Sie Port C (X2) des vorigen Antriebs an Port A (X1) des nächsten Servoantriebs an. Die Zuordnung des SAB-Anschlusses müssen Sie ebenfalls befolgen, siehe *Kapitel 3.8.1 EtherCAT®*. Wenn die Hardware-Einrichtung bereits vorhanden ist, können Sie die Funktion *Scan devices* des TwinCAT® System Managers verwenden, um automatisch die angeschlossenen Geräte in der richtigen Reihenfolge in die Konfiguration hinzuzufügen. Den Servoantrieb müssen Sie so konfigurieren, dass das PDO Mapping den Anforderungen der Bibliothek entspricht. Dies erfolgt im *TwinCAT® System Manager*.

- 1. Klicken Sie auf den Eintrag des ISD Servoantriebs.
- 2. Wählen Sie die Registerkarte *Slots* auf der rechten Seite des Fensters.
- 3. Entfernen Sie die aktuelle PDO-Konfiguration, indem Sie den Eintrag *Module 1 (CSV PDO)* im Feld *Slot* auswählen.
- 4. Klicken Sie auf X.
- 5. Wählen Sie Library PDO im Module-Feld.
- 6. Klicken Sie auf <.

Abbildung 6.14 ISD 510 Servo Drive mit korrekter I/O-Konfiguration

Verbinden Sie die Eingangs- und Ausgangsvariablen des SPS-Programms mit den physischen Eingängen und Ausgängen des Geräts. Dies erfolgt im *TwinCAT® System Manager*, sodass die Bibliothek auf alle nötigen Objekte zugreifen kann.

- Wählen Sie Library TxPDO über das Menü [I/O-Configuration → I/O Devices → Device1 (EtherCAT[®]) → Box 1 (VLT[®] Servo Access Box L1) → Drive 2 (VLT[®] ISD 510 Integrated Servo Drive) → Module 1 (Library PDO) → Library TxPDO].
- Wählen Sie alle Einträge von Lib pdo tx1 bis Lib pdo tx9 auf der rechten Seite des Fensters aus (siehe Abbildung 6.15).
- 3. Klicken Sie mit der rechten Maustaste und wählen Sie *Change Multi Link....*
- 4. Navigieren Sie zum Fenster Attach Variable 36.0 Byte(s) (Input) und wählen Sie [PLC-Configuration → MyFirstlsd510Project → Standard → .myAxis.TPDO]. Achten Sie darauf, dass die Option Matching Size

option im Fenster Attach Variable ausgewählt ist.

5. Klicken Sie auf OK.

6

Danfoss

- Klicken Sie auf die Bibliothek *RxPDO* über das Menü [I/O-Configuration → I/O Devices → Device1 (EtherCAT[®]) → Box1 (VLT[®] Servo Access Box L1) → Drive2 (VLT[®] ISD 510 Integrated Servo Drive) → Module1 (Library PDO) → Library RxPDO].
- 7. Wählen Sie alle Einträge von *Lib pdo rx1* bis *Lib pdo rx9* auf der rechten Seite des Fensters aus.
- 8. Klicken Sie mit der rechten Maustaste und wählen Sie *Change Multi Link....*
- Navigieren Sie zum Fenster Attach Variable 36.0 Byte(s) (Output) und wählen Sie [PLC-Configuration → MyFirstlsd510Project → Standard → .myAxis.RPDO].
- 10. Klicken Sie auf OK.
- Klicken Sie mit der rechten Maustaste auf WcState über [I/O-Configuration → I/O Devices → Device1 (EtherCAT[®]) → Box1 (VLT[®] Servo Access Box L1) → Drive2 (VLT[®] ISD 510 Integrated Servo Drive) → WcState] und wählen Sie Change Link....
- Navigieren Sie zum Fenster Attach Variable State (Input) und wählen Sie [PLC-Configuration → MyFirstlsd510Project → Standard → .myAxis.WcState].
- 13. Klicken Sie auf OK.
- Klicken Sie mit der rechten Maustaste auf State über [I/O-Configuration → I/O Devices → Device1 (EtherCAT[®]) → Box1 (VLT[®] Servo Access Box L1) → Drive2 (VLT[®] ISD 510 Integrated Servo Drive) → InfoData] und wählen Sie Change Link....
- Navigieren Sie zum Fenster Attach Variable State (Input) und wählen Sie [PLC-Configuration → MyFirstlsd510Project → Standard → .myAxis.State].
- 16. Klicken Sie auf OK.
- Klicken Sie mit der rechten Maustaste auf *netld* über [I/O-Configuration → I/O Devices → Device1 (EtherCAT[®]) → Box1 (VLT[®] Servo Access Box L1) → Drive2 (VLT[®] ISD 510 Integrated Servo Drive) → InfoData → AdsAddr] und wählen Sie Change Link....
- Navigieren Sie zum Fenster Attach Variable netld (Input) und wählen Sie [PLC-Configuration → MyFirstlsd510Project → Standard → .myAxis.AmsNetld.].
- 19. Klicken Sie auf OK.
- 20. Klicken Sie mit der rechten Maustaste auf *Port* über [I/O-Configuration \rightarrow I/O Devices \rightarrow Device1 (EtherCAT[®]) \rightarrow Box1 (VLT[®] Servo Access Box L1) \rightarrow Drive2 (VLT[®] ISD 510 Integrated Servo Drive) \rightarrow InfoData \rightarrow AdsAddr] und wählen Sie *Change Link....*

- Navigieren Sie zum Fenster Attach Variable port (Input) und wählen Sie [PLC-Configuration → MyFirstlsd510Project → Standard → .myAxis.NodeNumber.].
- 22. Klicken Sie auf OK.

Abbildung 6.15 Anschließen von Ein- und Ausgängen an physische Datenpunkte

Wiederholen Sie die Schritte 2–22 für Box 1 (VLT[®] Servo Access Box L1) und die Instanz mySAB.

Um die Mappings wieder zum SPS-Programm zu übertragen, wählen Sie *Activate Configuration...* in der Menüoption *Actions* aus.

Nach einer Neustrukturierung in *TwinCAT® PLC Control* entspricht TwinCAT® die Konfiguration *Abbildung 6.16* (in diesem Fall sind *myAxis* und *mySecondAxis* Instanzen von *AXIS_REF_ISD51x* und *mySAB* ist eine Instanz von *SAB_REF*). Die konkreten Adressen können variieren.

Abbildung 6.16 TwinCAT[®] Konfiguration: I/O-Mapping von 2 Servoantrieben und einer SAB

damit die Kommunikation zur SAB nicht unterbrochen wird, falls die U_{AUX}-Versorgung der Servoantriebe aufgrund eines Fehlers ausgeschaltet wird.

Zykluszeiteinstellungen

Die Mindestzykluszeit beträgt 400 µs. Die ISD 510-Geräte können die EtherCAT[®] Zykluszeiten in Vielfachen von 400 µs oder 500 µs starten. Die Geräte werden je nach EtherCAT[®] Konfiguration der physischen Schnittstelle beim Einschalten automatisch von der SPS parametriert. Sie können auf die Basiszeit des Systems zugreifen, indem Sie zum TwinCAT[®] System Manager navigieren und [SYSTEM-Configuration \rightarrow Real-Time Settings] auswählen. Dann können Sie ein Vielfaches dieser Basiszeit als Zykluszeiten für EtherCAT[®] auswählen.

HINWEIS

Stellen Sie die Aufgabenzykluszeit des SPS-Programms so ein, dass sie mit der EtherCAT[®] Zykluszeit identisch ist. Andernfalls können Daten verloren gehen und die Leistung wird verringert.

Stellen Sie die SPS-Zykluszeit in TwinCAT® PLC Control ein:

- 1. Navigieren Sie zur Registerkarte *Resources* und doppelklicken Sie auf *Task configuration*.
- 2. Achten Sie darauf, dass die SPS-Zykluszeit mit der EtherCAT[®] Zykluszeit identisch ist.

Abbildung 6.17 Aufgabenkonfiguration zur Parametrierung der SPS-Zykluszeit

HINWEIS

Nachdem Sie die Aufgabenzykluszeit in *TwinCAT® PLC Control* geändert haben, führen Sie einen *ReScan* der SPS-Konfiguration im *TwinCAT® System Manager* durch, um die Einstellungen zu aktualisieren. Aktivieren Sie anschließend die Konfiguration in der SPS.

6.4.2.3 Konfiguration als TwinCAT[®] NC-Achse

Sie können die Servoantriebe mit der integrierten NC-Funktion von TwinCAT[®] verwenden. Sie müssen alle Elemente, die mit der SAB verbunden sind, gemäß der Beschreibung in *Kapitel 6.4.2.2 Erstellen eines TwinCAT[®]-Projekts* durchführen.

- Fügen Sie neben der Datei Danfoss_VLT_ISD_510.lib noch die Datei TcMC2.lib hinzu (die Datei Danfoss_VLT_ISD_510.lib ist noch für den Betrieb der SAB erforderlich).
- Erstellen Sie eine Instanz von AXIS_REF (anstelle von AXIS_REF_ISD51x) f
 ür jeden Servoantrieb, der als NC-Achse verwendet wird.
- 3. Fügen Sie das SPS-Projekt im TwinCAT[®] System Manager hinzu, importieren Sie die Geräte und fügen Sie diese in TwinCAT[®] hinzu (siehe Beschreibung in *Kapitel 6.4.2.2 Erstellen eines TwinCAT[®]-Projekts*). Beantworten Sie jedoch im letzten Schritt die Frage, ob der Servoantrieb als NC-Achse verwendet wird, mit *Yes*. Dann wird eine NC-Aufgabe automatisch erstellt.

Im TwinCAT[®] System Manager müssen Sie für Antriebe, die als NC-Achsen verwendet werden, eine andere *I/O Configuration* auswählen.

- Wählen Sie abhängig vom zu verwendenden Betriebsmodus den Steckplatz CSP PDO oder CSV PDO. Standardmäßig ist CSV PDO gemappt und vorausgewählt. Wenn der Antrieb mit CSP PDO funktionieren sollte, müssen folgende Variablen gemappt werden:
 - 1a Navigieren Sie zur Registerkarte Settings der NC-Achse und wählen Sie [NC-Configuration → NC-Task 1 SAF → Axes → Axis 1]. Klicken Sie auf die Schaltfläche Link To (all Types)... und wählen Sie den gewünschten Servoantrieb.
- 2. Wählen Sie auf derselben Registerkarte die gewünschte *Unit*.
- Stellen Sie je nach ausgewählter Unit den Scaling Factor für den Achsengeber über das Menü [NC-Configuration → NC-Task 1 SAF → Axes → Axis 1 → Axis 1_Enc] auf der Registerkarte Parameter ein. Beispiel: Wenn die Einheit Degrees ausgewählt ist, beträgt der Skalierfaktor 360°/2²⁰ = 0,00034332275390625.
- Stellen Sie die *Reference Velocity* in der Registerkarte *Parameter* über das Menü [NC-Configuration → NC-Task 1 SAF → Axes → Axis 1 → Axis 1_Enc] ein.
- 5. Stellen Sie den *Output Scaling Factor* (Geschwindigkeit) auf *125* ein.

Danfoss

6. Prüfen Sie die Funktionalität und die Konfiguration in der Registerkarte *Online* der Achse.

6.4.2.4 Verbinden mit der SPS

Ausführliche Informationen zum Anschließen an die SPS finden Sie im Beckhoff Information System (*http:// infosys.beckhoff.com*). Öffnen Sie das Informationssystem und navigieren Sie zu [TwinCAT 2 \rightarrow TwinCAT System Manager \rightarrow Operation \rightarrow Controls \rightarrow Choose Target System].

6.4.3 Programmierrichtlinien

Empfehlungen zur Umsetzung:

- Initialisieren Sie die Parameter, die sich in der Regel nicht nur einmal zu Beginn des Programms ändern. Navigieren Sie zum Automation Studio[™] und verwenden Sie den Abschnitt _*INIT*.
- Rufen Sie Funktionsblöcke auf, die Informationen zum Status oder zu Fehlern liefern. Verwenden Sie dazu den Eingang *Enable* zu Beginn des Programms.
- Es wird empfohlen, eine Instanz des Funktionsblocks MC_Power_ISD51x für jede Achse einzurichten, um die Leistungsstufen zu regeln. Rufen Sie diesen Funktionsblock bei jedem SPS-Zyklus auf.
- Es wird empfohlen, eine Instanz des Funktionsblocks DD_Power_SAB für jede SAB einzurichten, um die Zwischenkreisspannung an den Ausgangsleitungen zu regeln. Rufen Sie diesen Funktionsblock bei jedem SPS-Zyklus auf.
- Rufen Sie die Funktionsblöcke auf, die (Bewegungs-)Befehle am Ende des Programms ausführen.
- Verwenden Sie keine POUs der Bibliothek (Ordner) *Intern_51x*.
- Ändern Sie bei einem Funktionsblock nicht den Referenzwert einer Achse, während diese in Betrieb ist.

Abbildung 6.18 zeigt einen Beispielcode für TwinCAT®.

Abbildung 6.18 Beispielcode für TwinCAT®

HINWEIS

Die vollständige Parameterliste finden Sie im Programmierhandbuch für das VLT[®] Integrated Servo Drive ISD[®] 510 System.

6.5 ISD Toolbox

6.5.1 Übersicht

Die ISD Toolbox ist eine eigenständige PC-Software, die Danfoss entwickelt hat. Sie dient zur Parametrierung und Diagnose der Servoantriebe und der SAB. Sie können die Geräte auch außerhalb der Produktion einsetzen. Die ISD Toolbox enthält mehrere Funktionen, die sogenannten Sub-Tools, die auch wieder über zahlreiche Funktionen verfügen. Die wichtigsten Sub-Tools sind folgende:

- Scope zur Visualisierung der Aufzeichnungsfunktion für die Servoantriebe und die SAB.
- *Parameter list* zum Lesen/Schreiben von Parametern.
- Firmware-Update
- *Drive control/SAB control* zum Betrieb der Servoantriebe und/oder der SAB für Prüfzwecke.
- *CAM editor* zum Entwerfen von CAM-Profilen für die Servoantriebe.

Die ausführliche Beschreibung der ISD Toolbox Funktionen und der vollständigen Parameterliste finden Sie im Programmierhandbuch für das VLT[®] Integrated Servo Drive ISD[®] 510 System.

6.5.2 Systemanforderungen

Um die ISD Toolbox Software zu installieren, muss der PC folgende Anforderungen erfüllen:

- Unterstützte Hardware-Plattformen: 32 Bit, 64 Bit.
- Unterstützte Betriebssysteme: Windows XP Service Pack 3, Windows 7, Windows 8.1.
- .NET Framework-Version: 3.5 Service Pack 1.
- Mindestanforderungen an die Hardware: 512 MB RAM, Intel Pentium 4 mit 2,6 GHz oder gleichwertiges Produkt, 20 MB Festplattenspeicher.
- Empfohlene Anforderungen an die Hardware: Mindestens 1 GB RAM, Intel Core i5/i7 oder kompatibles Produkt.

6.5.3 Installation

Um die Software auf dem Windows-Betriebssystem zu installieren, sind Administratorrechte erforderlich. Wenden Sie sich gegebenenfalls an Ihren Administrator.

- 1. Prüfen Sie, ob Ihr System die in Kapitel 6.5.2 Systemanforderungen beschriebenen Systemanforderungen erfüllt.
- Laden Sie die Installationsdatei f
 ür die ISD Toolbox herunter (http://drives.danfoss.com/ products/engineering-software/softwaredownload/).
- Klicken Sie mit der rechten Maustaste auf die ausführbare * <i>.exe Datei und wählen Sie Als Administrator ausführen.
- 4. Folgen Sie den Bildschirmanweisungen, um den Installationsprozess abzuschließen.

6.5.4 Kommunikation mit der ISD Toolbox

Dieses Kapitel erläutert die Ethernet-spezifischen Einstellungen der Netzwerkschnittstellen, die für die ISD Toolbox erforderlich sind. Es gibt 2 grundlegende Kommunikationsmethoden: direkte und indirekte Kommunikation. Die entsprechenden Netzwerkeinstellungen beschreiben die jeweiligen Abschnitten.

Lesen Sie die Schritte und führen Sie sie sorgfältig durch – falsche Netzwerkkonfigurationen können zum Verlust der Konnektivität einer Netzwerkschnittstelle führen.

Firewall

Je nach Firewall-Einstellungen und verwendetem Feldbus werden die von der ISD Toolbox gesendeten und empfangenen Meldungen von der Firewall des Host-Systems für die ISD Toolbox blockiert. Dies kann zu einem Kommunikationsverlust führen sowie dazu, dass keine Kommunikation mehr mit den Geräten am Feldbus möglich ist. Stellen Sie daher beim Host-System der ISD Toolbox sicher, dass eine Kommunikation mit der ISD Toolbox möglich ist. Lesen und führen Sie die Schritte sorgfältig durch – unangemessene Änderungen der Firewall-Einstellungen können zu Sicherheitsproblemen führen.

HINWEIS

Bei Verwendung einer bestimmten Netzwerkschnittstelle sollte die ISD Toolbox speziell über diese Netzwerkschnittstelle kommunizieren dürfen.

Indirekte Kommunikation

Die Kommunikation zwischen ISD 510-Geräten und der ISD Toolbox über eine SPS wird als indirekte Kommunikation bezeichnet. Zwischen der SPS und den ISD 510-Geräten liegt eine Ethernet-basierte Feldbuskommunikation vor (markiert als A in *Abbildung 6.19*), während die Kommunikation zwischen der SPS und dem Host-System der ISD Toolbox (markiert als B in *Abbildung 6.19*) nicht über Feldbus erfolgt.

Im Szenario in *Abbildung 6.19* besitzt die SPS die Master-Funktion und kommuniziert mit den Geräten in Zyklen. Daher können Sie nicht alle Funktionen der ISD Toolbox verwenden, z. B. die Antriebssteuerung. Die Einschränkungen bei Verwendung der indirekten Kommunikation werden im *Programmierhandbuch für die VLT® Integrated Servo Drives ISD® 510* erläutert.

Abbildung 6.19 Logische Ansicht der indirekten Ethernetbasierten Feldbuskommunikation (Kommunikation über SPS)

HINWEIS

Die logische Ansicht zeigt nur die Konnektivität aus einer übergeordneten Softwareperspektive und gibt nicht die tatsächliche physische Topologie des Netzwerks wieder.

Direkte Kommunikation

Für eine Ethernet-basierte Feldbuskommunikation (direkte Kommunikation) muss die ISD Toolbox eine bestimmte Netzwerkschnittstelle am Host-System der ISD Toolbox verwenden. Diese Netzwerkschnittstelle sollte nicht gleichzeitig für andere Kommunikationsarten verwendet werden.

Abbildung 6.20 Logische Ansicht der direkten Ethernetbasierten Feldbuskommunikation

HINWEIS

Die logische Ansicht zeigt nur die Konnektivität aus einer übergeordneten Softwareperspektive und gibt nicht die tatsächliche physische Topologie des Netzwerks wieder.

6.5.4.1 Netzwerkeinstellungen zur indirekten Kommunikation

Zur Kommunikation über eine SPS können alle Netzwerkschnittstellen verwendet werden, es ist dafür keine spezielle Netzwerkschnittstelle erforderlich.

Wenn Sie die Kommunikation über eine SPS herstellen, konfiguriert die ISD Toolbox anhand der ausgewählten *Network Address Translation (NAT)* eine Routing-Tabelle. Wenn Sie in der Windows-Routing-Tabelle eine Route hinzufügen möchten, sind Administratorrechte erforderlich. Daher müssen Sie beim Herstellen einer Verbindung möglicherweise Administrator-Anmeldedaten eingeben.

Führen Sie die folgenden Schritte durch, um die indirekte Kommunikation zu aktivieren.

Deaktivieren Sie IPv6 an den Netzwerkschnittstellen, die zur Kommunikation auf dem PC verwendet werden:

- 1. Öffnen Sie das Netzwerk- und Freigabecenter.
- 2. Wählen Sie Change adapter settings.
- Klicken Sie mit der rechten Maustaste auf die Netzwerkschnittstelle, die f
 ür die Feldbuskommunikation verwendet wird, und w
 ählen Sie Eigenschaften.
- 4. Falls die Funktion *TCP/IPv6* für die Netzwerkschnittstelle verfügbar ist, deaktivieren Sie diese.

23 Local Area Connection Properties Networking Sharing Connect using: Intel(R) 82579LM Gigabit Network Connection Configure... This connection uses the following items: QoS Packet Scheduler * ☑ 🗐 File and Printer Sharing for Microsoft Networks ✓ ▲ Intel® Centrino® Wireless Bluetooth® 3.0 + High Spee Internet Protocol Version 6 (TCP/IPv6) Ξ Internet Protocol Version 4 (TCP/IPv4) Link-Layer Topology Discovery Mapper I/O Driver Link-Layer Topology Discovery Responder 111 Install. Uninstall Properties Description Allows your computer to access resources on a Microsoft network. OK Cancel

Abbildung 6.21 Eigenschaften lokale Netzwerkverbindung

Wenn Sie die Netzwerk-Datenpakete über Wireshark[®] überwachen, führt die Prüfsummenentladung häufig zu Verwirrung, da die zu übertragenden Netzwerk-Datenpakete an Wireshark[®] geleitet werden, bevor die Prüfsummen berechnet wurden. Wireshark[®] zeigt an, dass diese leeren Prüfsummen ungültig sind, auch wenn die Datenpakete gültige Prüfsummen enthalten, sobald sie von der Netzwerk-Hardware ausgegeben werden.

Verwenden Sie eine dieser beiden Methoden, um das Problem der Prüfsummenentladung zu vermeiden:

- Falls möglich, schalten Sie die Prüfsummenentladung im Netzwerktreiber aus.

Zusätzliche Einstellungen für die indirekte Kommunikation über EtherCAT®

Stellen Sie die IP-Adresse des EtherCAT® Masters ein:

- 1. Öffnen Sie den TwinCAT[®] System Manager.
- Wählen Sie [I/O-Configuration → I/O Devices → Device1 (EtherCAT[®])] und überprüfen Sie die IP-Adresse in der Registerkarte Adapter. Die IP-Adresse des Netzwerkadapters der SPS ist möglicherweise keine Link-Local-Adresse (daher

nicht im Bereich von 169.254.0.1 bis 169.254.255.254).

3. Ändern Sie gegebenenfalls die IP-Adresse in den *IPv4 Protocol*-Eigenschaften je nach vorhandenem Betriebssystem. Dies können Sie in der Steuerung lokal oder über *Remote Desktop* durchführen.

Aktivieren Sie das IP Routing am EtherCAT[®] Master:

HINWEIS

Das hier beschriebene Verfahren kann je nach SPS-Typ und installiertem Betriebssystem variieren.

- 1. Öffnen Sie den TwinCAT[®] System Manager.
- Navigieren Sie zur Registerkarte EtherCAT und klicken Sie unter [I/O-Configuration → I/O Devices → Device1 (EtherCAT[®])] auf Advanced Settings....
- 3. Wählen Sie *EoE Support* im Fenster *Advanced Settings* aus.
- 4. Aktivieren Sie Connect to TCP/IP Stack im Abschnitt Windows Network.
- 5. Aktivieren Sie IP Enable Router im Abschnitt Windows IP Routing.
- 6. Starten Sie die SPS neu, um die Änderungen zu übernehmen.

Stellen Sie die IP-Adresse des EtherCAT® Slaves (Servoantrieb oder SAB) ein:

- 1. Öffnen Sie den TwinCAT[®] System Manager.
- Navigieren Sie zur Registerkarte EtherCAT und klicken Sie unter [I/O-Configuration → I/O Devices → Device1 (EtherCAT[®]) → Box 1 (VLT[®] Servo Access Box L1 → Drive 2 (VLT[®] Integrated Servo Drive ISD[®] 510)] auf Advanced Settings....
- 3. Wählen Sie [Mailbox \rightarrow EoE] im Fenster Advanced Settings aus.
- 4. Aktivieren Sie *Virtual Ethernet Port* und geben Sie eine gültige IP-Adresse ein.
- 5. Jeder Slave in der Konfiguration erfordert eine IP-Adresse. Immer wenn die Slave-Zustandsmaschine von *INIT* zu *Pre-Operational* State wechselt, wird diese Adresse neu zugeteilt. Die IP-Kommunikation der Slaves ist standardmäßig deaktiviert.

HINWEIS

Die letzte Zahl der IP-Adresse ist die ID, die die ISD Toolbox zur Identifizierung des Geräts verwendet.

Danfoss

MG75K103

6.5.4.2 Netzwerkeinstellungen zur direkten Kommunikation mit Ethernet POWERLINK[®]

Deaktivieren Sie alle Netzwerkprotokolle mit Ausnahme von TCP/IPv4 an der Netzwerkschnittstelle, die für die direkte POWERLINK[®] Kommunikation verwendet wird. Dadurch wird verhindert, dass andere PC-Software oder das Betriebssystem diese Netzwerkschnittstelle für sonstige Aufgaben verwenden wie z. B. gemeinsame Nutzung von Dateien und Druckern sowie Netzwerkerkennung. Durch die Deaktivierung dieser Protokolle wird die Anzahl unwichtiger Datenpakete reduziert, die über die Netzwerkschnittstelle gesendet werden. Dies reduziert die gesamte Netzwerklast.

So deaktivieren Sie alle nicht verwendeten Protokolle an der Netzwerkschnittstelle am PC:

- 1. Öffnen Sie das Netzwerk- und Freigabecenter.
- 2. Klicken Sie links auf Adaptereinstellungen ändern.
- Klicken Sie mit der rechten Maustaste auf die Netzwerkschnittstelle, die f
 ür die Feldbuskommunikation verwendet wird, und w
 ählen Sie Eigenschaften.
- Deaktivieren Sie alle Kontrollkästchen mit Ausnahme von Internetprotokoll Version 4 (TCP/ IPv4).

Abbildung 6.22 Eigenschaften lokale Netzwerkverbindung 2

Deaktivieren Sie *IPv4 Checksum offload* an der Netzwerkschnittstelle unter Berücksichtigung der Beschreibung in Kapitel 6.5.4.1 Netzwerkeinstellungen zur indirekten Kommunikation.

So stellen Sie die richtige Ethernet POWERLINK[®] Master-IP-Adresse ein:

- 1. Öffnen Sie das Netzwerk- und Freigabecenter.
- 2. Klicken Sie links auf Adaptereinstellungen ändern.
- Klicken Sie mit der rechten Maustaste auf die Netzwerkschnittstelle, die f
 ür die Feldbuskommunikation verwendet wird, und w
 ählen Sie Eigenschaften.
- 4. Klicken Sie auf *Internetprotokoll Version 4 (TCP/ IPv4)* (das Kontrollkästchen muss aktiviert sein) und anschließend auf *Eigenschaften*.
- Stellen Sie Folgende IP-Adresse verwenden ein und verwenden Sie die Nummer 192.168.100.240 als IP-Adresse sowie die Nummer 255.255.255.0 als Subnetzmaske. Lassen Sie alle anderen Felder frei.

Internet Protocol Version 4 (TCP/IPv4) Properties					
General					
You can get IP settings assigned automatically if your network supports this capability. Otherwise, you need to ask your network administrator for the appropriate IP settings.					
Obtain an IP address automatical	ly				
• Use the following IP address:					
IP address:	192 . 168 . 100 . 240				
Subnet mask:	255.255.255.0				
Default gateway:					
Obtain DNS server address auton	Obtain DNS server address automatically				
• Use the following DNS server add	resses:				
Preferred DNS server:					
Alternate DNS server:					
Validate settings upon exit	Adva	anced			
	ОК	Cancel			

Abbildung 6.23 Eigenschaften von Internetprotokoll Version 4 (TCP/IPv4)

6.5.4.3 Netzwerkeinstellungen zur direkten Kommunikation mit EtherCAT[®]

Sie müssen am Host-PC der ISD Toolbox keine Konfiguration der EtherCAT[®]-spezifischen Netzwerkschnittstelle durchführen.

Inbetriebnahme

Produkthandbuch

Danfoss

6.5.5 Inbetriebnahme der ISD Toolbox

SCHRITT 1: Öffnen Sie das Hauptfenster

Das Main Window ist die Grundlage für alle Funktionen der ISD Toolbox. Es besteht aus den folgenden Komponenten:

Abbildung 6.24 Hauptfenster

1	Menüleiste	Enthält die allgemeinen Funktionen zum Speichern und Laden von Projekten, zum Verwalten		
		der Verbindungen, zum Anzeigen und Ändern von Einstellungen, zum Verwalten von offenen		
		Sub-Tools und zum Anzeigen von Hilfetexten.		
2	Toolleiste	Enthält Shortcuts zum Speichern und Laden von Projekten, zum Verbinden mit bzw. zum		
		Trennen von Netzwerken, zum automatischen Suchen nach Online-Geräten oder zum		
		manuellen Hinzufügen von Geräten.		
3	Online/Offline-Status und	• Online-Geräte sind durch eine leuchtende Glühlampe neben der Geräte-ID gekennzeichnet.		
	Zustandsinformation	- Ein Online-Gerät ist ein logisches Gerät, für das ein physisches Gerät vorhanden		
		ist, mit dem die ISD Toolbox derzeit verbunden ist.		
		- Die Farbe weist auf den Zustands des Geräts hin und ist gerätespezifisch.		
		• Offline-Geräte sind durch eine graue Glühlampe neben der Geräte-ID gekennzeichnet.		
		- Ein Offline-Gerät ist ein logisches Gerät ohne entsprechendes physisches Gerät. Es kann eine gespeicherte Gerätekonfiguration bzw. einen gespeicherten Geräte- zustand darstellen, z. B. zur Offline-Analyse oder zur Fehlerbehebung. Es enthält vorkonfigurierte Parameterwerte, die auf ein physisches Gerät geschrieben werden.		
4	Verfügbare Sub-Tools	Sie können ein Sub-Tool öffnen, indem Sie mit der linken Maustaste auf den Name des Tools		
		in der Device Environment doppelklicken, oder indem Sie den Eintrag auswählen und die Taste		
		Enter auf der Tastatur drücken.		

130BE311.10

Inbetriebnahme

VLT[®] Integrated Servo Drive ISD[®] 510 System

5	Device Environment	Im Abschnitt Device Environment des Main Window werden alle von der ISD Toolbox	
		verwalteten logischen Geräte aufgelistet. Zudem werden in diesem Abschnitt deren Zustände	
		visualisiert und er dient als Benutzerschnittstelle, um auf die Gerätefunktionen zuzugreifen.	
		Im Fenster Device Environment werden alle verfügbaren Sub-Tools für jedes hinzugefügte Gerät	
		aufgelistet. Weitere Informationen zu den Sub-Tools finden Sie im Programmierhandbuch für	
		das VLT [®] Integrated Servo Drive ISD [®] 510 System.	
6	Workspace	An dieser Stelle werden die Sub-Tools verwaltet; ihre Größe ist abhängig von der Größe des	
		Main Window. Die Sub-Tools können Sie maximieren, minimieren, horizontal oder vertikal	
		ausrichten oder Sie können eine stufenförmige Ansicht einstellen.	
7	Watchlist-Fenster	Wertet die Parameterwerte von einem oder mehreren Geräten durch zyklisches Auslesen von	
		den Geräten aus. Ermöglicht das Protokollieren und Speichern von Parameterwerten in einer	
		Textdatei. Sie können auch Werte in der Watchlist modifizieren/schreiben.	
8	Ausgangsfenster	Zeigt Betriebsinformationen sowie Warn- und Fehlermeldungen an. Je nach Benutzereinstel-	
		lungen werden Meldungen von bis zu 3 verschiedenen Protokollebenen (hoch, mittel und	
		niedrig) angezeigt. Dient zum Anzeigen von ausführlicheren Informationen zu Fehler- und	
		Warnmeldungen.	
9	Statusleiste	Zeigt den Kommunikationsstatus der ISD Toolbox an. Falls eine Verbindung zu einem	
		Netzwerk besteht, wird die verwendete Hardwareschnittstelle (z. B. Netzwerkadapter) und der	
		Netzwerkname angezeigt.	

Tabelle 6.1 Legende zu Abbildung 6.24

SCHRITT 2: Mit einem Netzwerk verbinden

Konfigurieren Sie zunächst die entsprechenden Kommunikationseinstellungen, um sich mit einem Netzwerk zu verbinden. Weitere Informationen finden Sie in Kapitel 6.5.4 Kommunikation mit der ISD Toolbox.

- 1. Klicken Sie in der Symbolleiste *Main Window* auf das *Symbol Connect to bus*, um das Fenster *Connect to Network* zu öffnen.
- Wählen Sie den Feldbustyp und die Netzwerkschnittstelle, zu der eine Verbindung hergestellt werden soll.
- 3. Klicken Sie auf *OK*, um die Verbindung herzustellen.
- 4. Prüfen Sie, ob die Verbindung erfolgreich hergestellt wurde, indem Sie die Statusleiste im *Main Window* überprüfen.

Abbildung 6.25 Stellen Sie eine Verbindung zum Netzwerkfenster her (Ethernet POWERLINK[®])

SCHRITT 3: Nach Geräten suchen

 Prüfen Sie zunächst, ob die ISD Toolbox mit dem ausgewählten Netzwerk verbunden ist, und klicken Sie auf das Symbol Scan for Devices in der Symbolleiste, um die Gerätesuche einzuleiten.

HINWEIS

Wenn Sie mit einem Ethernet POWERLINK[®] Netzwerk im zyklischen Modus verbunden sind, wählen Sie den Suchbereich (niedrigste und höchste ID) im nächsten Fenster aus, um die für die Suche erforderliche Zeit zu verringern. In allen anderen Fällen wird der vollständige ID-Bereich durchsucht.

Danfoss

- 2. Wenn die Suche abgeschlossen ist, wird eine Liste aller verfügbaren Geräte im Fenster Select Devices angezeigt. Wählen Sie aus, welche Geräte in die *Device Environment* hinzugefügt werden sollen, und klicken Sie auf *OK*.
- 3. Alle ausgewählten Geräte erscheinen im Fenster Device Environment und sind sofort mit dem Netzwerk verbunden (angezeigt durch eine leuchtende Glühbirne neben dem Gerätenamen).

Weitere Informationen zur Software ISD Toolbox finden Sie im Programmierhandbuch für das VLT[®] Integrated Servo Drive ISD[®] 510 System.

6.6 Motion-Bibliothek

6.6.1 Funktionsblöcke

Die SPS-Bibliothek bietet Funktionsblöcke, die die Funktionalität der ISD-Geräte unterstützen und diesem Standard entsprechen:

Technische Daten von PLCopen[®] zu den Funktionsblöcken für die Bewegungssteuerung (früher Teil 1 und Teil 2), Version 2.0 vom 17. März 2011.

Zudem bieten spezielle ISD-Funktionsblöcke Funktionen, die nicht von PLCopen[®] vorgesehen sind.

Die folgenden Eigenschaften von PLCopen[®] gelten für alle Funktionsblöcke:

- Befehlssteuerung (über die Eingänge)
- Signalgebung (Verhalten der Ausgänge)
- Allgemeine Aufrufkonventionen

HINWEIS

Weitere Informationen zu den verfügbaren Funktionsblöcken und deren Verhalten finden Sie im Programmierhandbuch für das VLT[®] Integrated Servo Drive ISD[®] 510 System.

6.6.2 Einfache Programmiervorlage

Automation Studio[™]

Ausführliche Informationen zum Öffnen des Beispielprojekts im ISD-Paket in Automation StudioTM finden Sie in der Hilfe zum Automation StudioTM. Öffnen Sie den B&R Help Explorer und navigieren Sie zu [Programming \rightarrow Examples \rightarrow Adding sample programs]. Folgen Sie nun den Anweisungen für Beispielbibliotheken.

TwinCAT[®]

Eine grundlegende SPS-Beispielanwendung zum Einschalten des ISD 510-Servosystems mit einer SAB und 2 Achsen steht zur Verfügung. Das Projekt Danfoss

Danfoss

7 Betrieb

7.1 Betriebsmodi

Der Servoantrieb setzt mehrere Betriebsmodi ein. Das Verhalten des Servoantriebs ist abhängig vom aktivierten Betriebsmodus. Während der Servoantrieb aktiviert ist, können Sie zwischen den Modi wechseln. Die Modi werden gemäß CANopen[®] CiA DS 402 unterstützt, und es gibt auch ISD-spezifische Betriebsmodi. Alle unterstützten Betriebsmodi sind für EtherCAT[®] und Ethernet POWERLINK[®] verfügbar. Eine ausführliche Beschreibung der verschiedenen Betriebsmodi finden Sie im *Programmierhandbuch für das VLT[®] Integrated Servo Drive ISD[®] 510 System*.

Modus	Beschreibung	
ISD Inertia measurement	In diesem Modus wird die Trägheit einer Achse gemessen. Er wird zur Messung der Trägheit des	
mode	Servoantriebs und der externen Last verwendet und zur Optimierung des Regelkreises benötigt. Reibungs-	
	effekte werden automatisch beseitigt.	
Profile velocity mode	Im profile velocity mode wird der Servoantrieb mit Geschwindigkeitsregelung betrieben und führt eine	
	Bewegung mit konstanter Drehzahl aus. Zusätzliche Parameter wie Beschleunigung und Verzögerung	
	können Sie einstellen.	
Profile position mode	Im profile position mode wird der Servoantrieb mit Positionsregelung betrieben und führt eine Bewegung	
	mit absoluten und relativen Bewegungen aus. Zusätzliche Parameter wie Geschwindigkeit, Beschleunigung	
	und Verzögerung können Sie einstellen.	
Profile torque mode	Im profile torque mode wird der Servoantrieb mit Drehmomentregelung betrieben und führt eine	
	Bewegung mit konstantem Drehmoment aus. Es werden lineare Rampen eingesetzt. Zusätzliche Parameter	
	wie Drehmomentrampe und maximale Geschwindigkeit können Sie einstellen.	
Homing mode	Im homing mode können Sie für die Anwendung die Referenzposition des Servoantriebs einstellen. Es	
	stehen verschiedene Referenzfahrt-Methoden wie die Referenzfahrt zur Ist-Position, die Referenzfahrt zum	
	Anschlag, der Grenzlagenschalter oder der Endlagenschalterschalter zur Verfügung.	
CAM mode	Im CAM mode führt der Servoantrieb eine synchronisierte Bewegung anhand einer Masterachse aus. Die	
	Synchronisierung erfolgt über ein CAM-Profil, das Slave-Positionen enthält, die bestimmten Masterposi-	
	tionen zugeordnet sind. CAMs können Sie mit der Software ISD Toolbox grafisch erstellen oder über die	
	SPS parametrieren. Der Leitwert kann durch einen externen Geber, eine virtuelle Achse oder die Position	
	einer anderen Achse angegeben werden. Eine Beschreibung der verschiedenen CAM-Profiltypen finden Sie	
	im Programmierhandbuch für das VLT [®] Integrated Servo Drive ISD [®] 510 System.	
Gear mode	Im gear mode führt der Servoantrieb eine synchronisierte Bewegung anhand einer Masterachse aus. Dabei	
	wird die Getriebeübersetzung zwischen der Master- und der Slave-Position angewendet. Der Leitwert kann	
	durch einen externen Geber, eine virtuelle Achse oder die Position einer anderen Achse angegeben	
	werden.	
Cyclic synchronous position	Im cyclic synchronous position mode befindet sich der Trajektoriengenerator der Position im Steuergerät und	
mode	nicht im Servoantrieb.	
Cyclic synchronous velocity	Im cyclic synchronous velocity mode befindet sich der Trajektoriengenerator der Geschwindigkeit im	
mode	Steuergerät und nicht im Servoantrieb.	

Tabelle 7.1 Betriebsmodi

7.1.1 Bewegungsfunktionen

Funktion	Beschreibung	
Digital CAM	Diese Funktion steuert die Aktivierung bzw.	
switch	Deaktivierung des Digitalausgangs entsprechend	
	der Achsenposition. Sie ist mit Schaltern an einer	
	Motorwelle vergleichbar. Vorwärts- und	
	Rückwärtsbewegungen der Achsenpositionen sind	
	zulässig. Die Ein- und Aus-Kompensation sowie	
	die Hysterese können Sie parametrieren.	
ISD touch	Bei dieser Funktion wird die Ist-Position nach einer	
probe	steigenden oder fallenden Signalflanke am	
	konfigurierten Digitaleingang gespeichert.	

Tabelle 7.2 Bewegungsfunktionen

7.2 Betriebsanzeigen

Der Betriebsstatus des Servoantriebs und der SAB wird über LEDs an jedem Gerät angezeigt.

7.2.1 Betriebs-LEDs am Servoantrieb

Abbildung 7.1 zeigt die aktivierten LEDs am Servoantrieb an.

Abbildung 7.1 Betriebs-LEDs am Servoantrieb

LED	Farbe	Blinkstatus	Beschreibung
DRIVE	Grün	On	Der Servoantrieb
STAT			befindet sich im
			Zustand Operation
			enabled.
		Blinkt	Hilfsspannung wird
			angelegt.
	Rot	On	Servoantrieb befindet
			sich im Zustand Fault
			oder Fault reaction
			active.
		Blinkt	Zwischenkreisspannung
			wird nicht angelegt.

LED	Farbe	Blinkstatus	Beschreibung
NET	Grün/R	Feldbusabhängig	Netzwerkstatus des
STAT	ot		Geräts (siehe
			entsprechenden
			Feldbusstandard).
Link/A	Grün	-	Verbindungs-/Aktivi-
CT X1			tätsstatus von Hybrid In
			(X1)
		On	Ethernet-Verbindung
			hergestellt.
		Blinkt	Ethernet-Verbindung
			hergestellt und aktiv.
		Off	Keine Verbindung.
Link/A	Grün	-	Verbindungs-/Aktivi-
CT X2			tätsstatus von Hybrid
			Out (X2)
		On	Ethernet-Verbindung
			hergestellt.
		Blinkt	Ethernet-Verbindung
			hergestellt und aktiv.
		Off	Keine Verbindung.
Link/A	Grün	-	Verbindungs-/Aktivi-
СТ			tätsstatus des Ethernet-
X3 ¹⁾			Anschlusses (X3).
		On	Ethernet-Verbindung
			hergestellt.
		Blinkt	Ethernet-Verbindung
			hergestellt und aktiv.
		Off	Keine Verbindung.

Tabelle 7.3 Legende zu Abbildung 7.1

1) Nur Advanced Version

Danfoss

7.2.2 Betriebs-LEDs an der Servo Access Box

Abbildung 7.2 Betriebs-LEDs an der SAB

LED	Farbe	Blinkstatus	Beschreibung
Aux 1	Grün	-	Zustand der
			Hilfsspannung in Linie
			1.
		On	Zustandsmaschine
			befindet sich im
			Zustand Standby, Power
			up oder Operation
			<i>enabled</i> . An den
			Ausgangsanschlüssen
			in Linie 1 liegt eine
			Hilfsspannung an.
		Off	Zustandsmaschine
			befindet sich im
			Zustand UAUX disabled
			oder <i>Fault</i> . In Linie 1
			liegt keine
			Hilfsspannung an.

LED	Farbe	Blinkstatus	Beschreibung
Aux 2	Grün	-	Zustand der
			Hilfsspannung in Linie
			2.
		On	Zustandsmaschine
			befindet sich im
			Zustand Standby, Power
			up oder Operation
			enabled. An den
			Ausgangsanschlüssen
			in Linie 2 liegt eine
			Hilfsspannung an.
		Off	Zustandsmaschine
			befindet sich im
			Zustand UAUX disabled
			oder <i>Fault</i> . In Linie 2
			liegt keine
			Hilfsspannung an.
Safe 1	Grün	On	24 V für STO liegt an
			Linie 1 an.
		Off	24 V für STO liegt nicht
			an Linie 1 an.
Safe 2	Grün	On	24 V für STO liegt an
			Linie 2 an.
		Off	24 V für STO lieat nicht
		-	an Linie 2 an.
SAB	Grün	On	SAB befindet sich im
STAT		-	Zustand Operation
			enabled.
		Blinkt	An den Eingang wird
			eine Hilfsspannung
			angelegt.
		Off	An den Eingang wird
			keine Hilfsspannung
			angelegt.
	Rot	On	Die SAB befindet sich
			im Zustand Fault.
		Blinkt	Am Eingang liegt keine
			Netzspannung an.
NET	Grün/R	Feldbusabhängig.	Netzwerkstatus des
STAT	ot		Geräts (siehe
			entsprechenden
			Feldbusstandard).
Link/A	Grün	-	Verbindungs-/Aktivi-
CT X1			tätsstatus von <i>ln</i> .
		On	Ethernet-Verbindung
			hergestellt.
		Blinkt	Ethernet-Verbinduna
			hergestellt und aktiv.
		Off	Keine Verbindung

7

Betrieb

LED	Farbe	Blinkstatus	Beschreibung
Link/A	Grün	-	Verbindungs-/Aktivi-
CT X2			tätsstatus von Out.
		On	Ethernet-Verbindung
			hergestellt.
		Blinkt	Ethernet-Verbindung
			hergestellt und aktiv.
		Off	Keine Verbindung.
Link/A	Grün	-	Verbindungs-/Aktivi-
СТ ХЗ			tätsstatus von Linie 1.
		On	Ethernet-Verbindung
			hergestellt.
		Blinkt	Ethernet-Verbindung
			hergestellt und aktiv.
		Off	Keine Verbindung.
Link/A	Grün	-	Verbindungs-/Aktivi-
CT X4			tätsstatus von Linie 2.
		On	Ethernet-Verbindung
			hergestellt.
		Blinkt	Ethernet-Verbindung
			hergestellt und aktiv.
		Off	Keine Verbindung.

Tabelle 7.4 Legende zu Abbildung 7.2

<u>Danfoss</u>

7

Danfoss

8 ISD-Sicherheitskonzept

8.1 Angewendete Normen und Konformität

Zur Verwendung der STO-Funktion müssen alle Sicherheitsbestimmungen in einschlägigen Gesetzen, Vorschriften und Richtlinien erfüllt sein.

Die integrierte STO-Funktion erfüllt folgende Normen:

- EN 60204-1: 2006 Stoppkategorie 0 ungesteuertes Stillsetzen
- IEC/EN 61508: 2010 SIL 2
- IEC/EN 61800-5-2: 2007 SIL 2
- IEC/EN 62061: 2005 SIL CL2
- EN ISO 13849-1: 2008 Kategorie 3 PL d

Das ISD 510 Servosystem wurde wie in IEC/EN 61326-3-1 beschrieben auf eine höhere EMV-Störfestigkeit getestet.

8.2 Abkürzungen und Konventionen

Abkürzung	Sollwert	Beschreibung
Kat.	EN ISO	Kategorie, Stufe B, 1–4
	13849-1	
DC	-	Diagnosedeckungsgrad
FIT	-	Failure in Time (Ausfallrate)
		Ausfallrate: 1E-9/Stunde
н	EN IEC 61508	Hardwarefehlertoleranz
		H = n bedeutet, dass n + 1 Fehler
		zu einem Verlust der Sicherheits-
		funktion führen können.
MTTFd	EN ISO	Mean Time To Failure - dangerous
	13849-1	(Mittlere Zeit bis zu einem gefähr-
		lichen Ausfall)
		Einheit: Jahre
PFH	EN IEC 61508	Probability of Dangerous Failures
		per Hour; Wahrscheinlichkeit eines
		gefährlichen Ausfalls pro Stunde
		Dieser Wert ist zu berücksichtigen,
		wenn die Sicherheitsvorrichtung
		mit hohem Anforderungsgrad oder
		mit kontinuierlicher Anforde-
		rungsrate betrieben wird, wobei
		die Anforderung an das sicherheits-
		bezogene System mehr als einmal
		pro Jahr erfolgt.
PFD	EN IEC 61508	Average probability of failure on
		demand (Mittlere Ausfallwahr-
		scheinlichkeit im Anforderungsfall).
		Dieser Wert gilt für den Betrieb mit
		niedriger Anforderungsrate.

Abkürzung	Sollwert	Beschreibung	
PL	EN ISO	Performance Level (Leistungs-	
	13849-1	niveau)	
		Diskretes Niveau, um das	
		Vermögen sicherheitsrelevanter	
		Teile eines Systems eine sicher-	
		heitsgerichtete Funktion unter	
		gegebenen Bedingungen	
		auszuführen zu spezifizieren.	
		Levels: a–e.	
SFF	EN IEC 61508	Safe Failure Fraction [%]	
		Anteil der sicheren und erkannten	
		gefährlichen Fehler einer Sicher-	
		heitsfunktion oder eines	
		Untersystems im Verhältnis zu allen	
		möglichen Fehlern.	
SIL	EN IEC 61508	Safety Integrity Level	
	EN IEC 62061		
STO	EN IEC	Safe Torque Off	
	61800-5-2		
SS1	EN IEC	Sicherer Stopp 1	
	61800-5-2		
SRECS	EN IEC 62061	Sicherheitsbezogenes elektrisches	
		Steuerungssystem.	
SRP/CS	EN ISO	Sicherheitsbezogene Teile von	
	13849-1	Steuerungssystemen	
PDS/SR	EN IEC	Elektrische Leistungsantriebs-	
	61800-5-2	systeme (sicherheitsbezogen)	

Tabelle 8.1 Abkürzungen und Konventionen

8.3 Qualifiziertes Personal für die Arbeit mit der STO-Funktion

Nur qualifizierte Personen dürfen die STO-Funktion installieren, programmieren, in Betrieb nehmen, warten und außer Betrieb nehmen. Qualifizierte Personen für die STO-Funktion sind Elektrofachkräfte oder Personen, die entsprechende Erfahrung in der Bedienung von Geräten, Systemen, Maschinen und Anlagen gemäß den allgemein gültigen Normen und Richtlinien zur Sicherheitstechnik haben.

Außerdem müssen sie:

- mit grundlegenden Vorschriften zu Gesundheit und Sicherheit/Unfallverhütung vertraut sein.
- die Sicherheitsrichtlinien in diesem Handbuch gelesen und verstanden haben.
- verfügen über gute Kenntnisse der Fachgrundund Produktnormen für die jeweilige Anwendung.

Benutzer von Antriebssträngen (sicherheitsbezogen) (PDS(SR)) sind verantwortlich für:

- Für die Gefährdungs- und Risikoanalyse der Anwendung.
- Ermittlung erforderlicher Sicherheitsfunktionen und Zuweisung von SIL oder PLr zu allen Funktionen, anderen Teilsystemen und die Gültigkeit der Signale und Befehle aus diesen Teilsystemen.
- Für die Entwicklung geeigneter sicherheitsbezogener Steuerungssysteme (Hardware, Software, Parametrierung usw.).

Schutzmaßnahmen

- Installieren Sie die Komponenten des ISD 510 Servosystems mit einer Schutzart von weniger als IP54 in einem IP54-Schaltschrank gemäß IEC 60529 oder in einer vergleichbaren Umgebung. Bei speziellen Anwendungen kann eine höhere Schutzart erforderlich sein.
- Wenn externe Kräfte auf die Motorachse wirken (z. B. hängende Lasten), sind zur Vermeidung von Gefahren zusätzliche Maßnahmen (z. B. eine sichere Haltebremse) erforderlich.

8.4 Sicherheitsmaßnahmen

HINWEIS

Führen Sie nach Installation der STO-Funktion eine Inbetriebnahmeprüfung gemäß *Kapitel 8.9 Inbetriebnahmeprüfung* durch. Nach der ersten Installation und nach jeder Änderung der Sicherheitsinstallation müssen Sie eine erfolgreiche Inbetriebnahmeprüfung vornehmen.

UNKONTROLLIERTE BEWEGUNG

Äußere Kräfte können unkontrollierte und gefährliche Bewegungen des Motors bewirken, die zu schweren Verletzungen oder zum Tod führen können.

 Statten Sie den Motor mit zusätzlichen Sicherheitsvorkehrungen aus (z. B. mit mechanischen Bremsen), um unkontrollierte und gefährliche Bewegungen zu verhindern.

STROMSCHLAGGEFAHR

Die STO-Funktion allein sorgt nicht für elektrische Sicherheit und reicht nicht aus, um die in EN 60204-1 definierte *Emergency-Off*-Funktion zu realisieren, sodass schweren Verletzungen oder Todesfälle die Folge sein können.

• Schaffen Sie für die Emergency-Off-Funktion eine elektrische Abschaltung, beispielsweise durch Abschalten der Netzspannung über einen zusätzlichen Schütz.

STROMSCHLAGGEFAHR

Die STO-Funktion trennt nicht die Netzversorgung zum ISD 510 Servosystem oder zu Zusatzstromkreisen. Führen Sie Arbeiten an elektrischen Teilen des ISD510 Systems oder des Servoantriebs nach Abschaltung der Netzversorgung durch. Halten Sie zudem zunächst die unter *Kapitel 2 Sicherheit* angegebene Wartezeit ein. Ein nicht erfolgtes Trennen der Netzspannung und die Nichteinhaltung der angegebenen Wartezeit kann zum Tod oder zu schweren Verletzungen führen.

- Verwenden Sie die STO-Funktion, um ein ISD 510 Servosystem im Normalbetrieb anzuhalten. Bei Verwendung der STO-Funktion läuft der Servoantrieb bis zum Stillstand aus. Je nach Anwendung kann eine mechanische Bremse erforderlich sein.
- Verwenden Sie Die STO-Funktion ausschließlich für mechanische Arbeiten am ISD 510
 Servosystem oder an den betroffenen Bereichen einer Maschine. Dadurch entsteht keine elektrische Sicherheit. Sie sollten die Die STO-Funktion nicht als Steuerung zum Starten und/ oder Stoppen des ISD 510 Servosystems einsetzen.

HINWEIS

Das ISD 510 Servosystem verfügt nicht über eine manuelle Quittierfunktion nach ISO 13849-1. Die Standard-Fehlerquittierfunktion kann nicht zu diesem Zweck eingesetzt werden.

Für einen automatischen Wiederanlauf ohne manuellen Reset sind die Anforderungen in Absatz 6.3.3.2.5 der ISO 12100:2010 oder einer gleichwertigen Norm zu erfüllen.

GEFAHR EINER RESTDREHUNG

Durch Fehler im Leistungshalbleiter des Antriebs kann es versehentlich zu einer Restdrehung kommen, die zu schweren Verletzungen oder zum Tod führt. Die Drehung ergibt sich mit Winkel = 360°/(Polzahl).

 Berücksichtigen Sie die Restdrehung und stellen Sie sicher, dass dadurch kein sicherheitskritisches Problem entsteht.

HINWEIS

Ergreifen Sie Maßnahmen, um sicherzustellen, dass in der Anlage die in EN/IEC 61000-4-16 beschriebenen Spannungsstörungen nicht auftreten. Dies kann beispielsweise durch eine Installation gemäß EN/ IEC 60204-1 erfolgen.

Danfoss

Führen Sie eine Risikobeurteilung zur Auswahl der richtigen Stoppkategorie für jede Stoppfunktion gemäß EN 60204-1 durch.

HINWEIS

Bei Gestaltung der Maschinenanwendung müssen Sie Zeit und Entfernung für einen Freilauf bis zum Stopp berücksichtigen (*Stop Category 2* oder STO). Weitere Informationen finden Sie in der Norm EN 60204-1.

HINWEIS

Alle mit dem STO verbundenen Signale müssen durch eine SELV- oder PELV-Versorgung übermittelt werden.

8.5 Funktionsbeschreibung

Die STO-Funktion des ISD 510 Servosystems verfügt über eine separate STO-Funktion für jede Linie mit Servoantrieben im Daisy-Chain-Format. Die Funktion wird durch Eingänge an der SAB aktiviert. Die STO-Funktion aktiviert den STO für alle Servoantriebe in dieser Linie. Nach Aktivierung von STO wirkt kein Drehmoment mehr auf die Achsen. Das Reset der Sicherheitsfunktion und der Diagnose erfolgt über die SPS.

8.6 Installation

Installieren Sie das ISD 510 Servosystem wie in Kapitel 4 Mechanische Installation und Kapitel 5 Elektrische Installation beschrieben. Für die installation des Servosystems sind ausschließlich Danfoss Kabel zu verwenden. Kabel anderer Hersteller können Sie jedoch für die Verbindung der Benutzerschnittstelle mit den STO-Klemmen (STO 1 IN und STO 2 IN) an der SAB verwenden.

HINWEIS

Wenn Sie für die Anwendung keine Safe Torque Off (STO)-Funktionalität benötigen, können Sie eine Kabelbrücke einsetzen, indem Sie die +24 V vom Stecker STO 1 IN: +24V mit STO 1 IN: +STO und STO 1 IN: -24 V mit STO 1 IN: -STO verbinden. Wiederholen Sie diesen Prozess für die zweite STO-Linie, wenn diese genutzt wird.

Sicherheitsrelais, die über ein Plus-Minus-Umschalt-Ausgangssignal verfügen, können Sie direkt mit dem ISD 510 Servosystem verbinden, um STO zu aktivieren (siehe *Abbildung 8.1*). Verlegen Sie die Adern für STO 1 und STO 2 separat und nicht in einem einzigen mehradrigen Kabel.

Abbildung 8.1 Sicherheitsrelais mit Plus-Minus-Umschaltausgang

Bei Signalen mit Testimpulsen dürfen die Testimpulse eine Dauer von 1 ms nicht überschreiten. Längere Impulse können zu einer geringeren Verfügbarkeit des Servosystems führen.

Als externe Versorgung ist eine SELV/PELV-Versorgung erforderlich.

8.7 Betrieb des ISD Sicherheitskonzepts

In diesem Kapitel werden die grundlegenden STO-Signale näher beschrieben. Einige der Signale können auf verschiedene Arten abgenommen werden, hier finden Sie jedoch nur eine Beschreibung des Zugriffs über den Feldbus. Weitere Informationen finden Sie im VLT[®] Integrated Servo Drive ISD[®] 510 System Programmierhandbuch.

Die STO-Funktion erfordert keine Parametrierung und ist immer aktiv. Zur dauerhaften Deaktivierung der Funktion verbinden Sie die STO-Eingänge direkt mit dem 24-V-Ausgang *STO 1 IN: 24 V* oder *STO 2 IN: 24 V* an der SAB.

Der ISD 510 Servoantrieb sendet STO-Statussignale über den Feldbus.

Weitere Informationen zum Abrufen und Zuordnen von Datenobjekten finden Sie im VLT[®] Integrated Servo Drive ISD[®] 510 System Programmierhandbuch.

Danfoss stellt eine Bibliothek für das ISD 510 bereit, um die Nutzung der Feldbusfunktionen zu vereinfachen. Weitere Informationen finden Sie im *VLT[®] Integrated Servo Drive ISD[®] 510 System Programmierhandbuch*.

Das *statusword* in 0x6041 liefert den STO-Status in Bit 14. Das Bit wird auf *1* gesetzt, wenn STO aktiv ist und auf *0* wenn STO deaktiviert ist. Alle Servoantriebe in jeder STO-Linie müssen in diesem Bit dieselben Informationen anzeigen. Führen Sie eine Prüfung über die SPS durch, um den STO-Status aller Servoantriebe in jeder Linie zu vergleichen.

Wenn STO bei deaktiviertem Servoantrieb aktiviert wird und bei aktivem STO nicht versucht wird, den Servoantrieb zu aktivieren, müssen Sie die STO-Funktion nach Wiedereinschalten der Stromversorgung der STO-Klemmen nicht zurücksetzen.

Wenn STO bei aktiviertem Servoantrieb aktiviert wird, wird ein Fehlercode ausgegeben (siehe *Kapitel 8.7.2 Fehlercodes*) wird.

8.7.2 Fehlercodes

Wenn Bit 3 des *statusword* gesetzt ist, ist dies ein Hinweis auf eventuelle Fehler im Servoantrieb. Wenn der Fehler auf die STO-Schaltung zurückzuführen ist, finden Sie die Fehlerursache in Objekt 0x603F.

Fehlercode	Klassifi-	Beschreibung	Reset
	zierung		
0xFF80	Fehler	STO wurde bei	Quittieren über
		aktiviertem	die SPS.
		Servoantrieb aktiviert	
		oder bei aktivem STO	
		wurde versucht, den	
		Servoantrieb zu	
		aktivieren.	
0xFF81	Sicher-	Interner Diagnose-	Führen Sie ein
	heitsfehler	fehler des	Aus- und
		Servoantriebs.	Einschalten
			durch.
0xFF85	Sicher-	Die interne STO-	Führen Sie ein
	heitsfehler	Versorgung auf der	Aus- und
		Leistungskarte	Einschalten
		befindet sich	durch.
		außerhalb der	
		Grenzen.	

Tabelle 8.2 Fehlercodes

Der Fehlercode 0xFF80 kann auch im Normalzustand der Anwendung angezeigt werden. In diesem Fall benötigt der Antrieb ein Reset-Signal von der SPS. Um die STO-Funktion in einer Anwendung zu verwenden, die eine steuernde trennende Schutzeinrichtung benötigt (weitere Informationen in der ISO 12100), können diese ResetInformationen automatisch von der SPS übermittelt werden.

Fehlercode 0xFF81 bedeutet, dass ein Fehler im Servoantrieb vorliegt, der nur durch einen Aus- und Einschaltzyklus zurückgesetzt werden kann. Führen Sie nach dem Aus- und Einschaltzyklus die in *Kapitel 8.9 Inbetriebnahmeprüfung* beschriebene Inbetriebnahmeprüfung durch. Der Betrieb des ISD 510 Servosystems kann nur dann wieder aufgenommen werden, wenn die Prüfung erfolgreich durchgeführt wurde. Wenn erneut Fehlercode 0xFF81 oder 0xFF85 ausgegeben wird, wenden Sie sich an den Danfoss Service.

8.8 Fehlerrückstellung

Ändern Sie Bit 7 des *controlword* von 0 auf 1, um Fehler zurückzusetzen. Weitere Informationen finden Sie im *VLT®* Integrated Servo Drive ISD® 510 System Programmier-handbuch.

8.9 Inbetriebnahmeprüfung

HINWEIS

Führen Sie nach der Installation der STO-Funktion, nach jeder Änderung an der installierten Funktion und nach einem Sicherheitsfehler (siehe *Kapitel 8.7.2 Fehlercodes*) eine Inbetriebnahmeprüfung durch. Führen Sie den Test für jede STO-Linie durch.

Je nachdem, welches Verfahren zur Programmierung der SPS verwendet wurde, gibt es 2 Methoden zur Implementierung der Inbetriebnahmeprüfung. Die einzelnen Prüfungsschritte sind jedoch in beiden Fällen gleich:

- Verwendung der Danfoss Bibliothek oder der TwinCAT[®] Bibliothek.
- Bit-weises Auslesen der Statusdaten.

Inbetriebnahmeprüfung über Bibliotheken

Je nach Anwendung werden zur Programmierung der Inbetriebnahmeprüfung eine oder beide der folgenden Bibliotheken benötigt:

- Danfoss Bibliothek
 - MC_ReadAxisInfo_ISD51x
 - MC_ReadStatus_ISD51x
 - MC_ReadAxisError_ISD51x
 - MC_Reset_ISD51x
- TwinCAT[®] Bibliothek
 - MC_ReadStatus
 - MC_ReadAxisError
 - MC_Reset

	Prüfungsschritte	Grund für den Prüfungs-	Erwartetes Ergebnis für	Erwartetes Ergebnis für
		schritt	Danfoss Bibliothek	TwinCAT [®] Bibliothek
1	Starten Sie die Anwendung	Vergewissern Sie sich, dass die	Anwendung läuft wie erwartet.	Anwendung läuft wie erwartet.
	(alle Servoantriebe sind	Anwendung gestartet werden		
	aktiviert).	kann.		
2	Stoppen Sie die Anwendung.	-	Die Drehzahl aller Servoan-	Die Drehzahl aller Servoan-
			triebe beträgt 0 U/min.	triebe beträgt 0 U/min.
3	Deaktivieren Sie alle Servoan-	-	Alle Servoantriebe sind	Alle Servoantriebe sind
	triebe.		deaktiviert.	deaktiviert.
4	Aktivieren Sie STO.	Prüfen Sie, ob STO ohne	MC_ReadAxisInfo_ISD51x output	-
		Fehler aktiviert werden kann.	<i>SafeTorqueOff</i> = True für alle	
			Servoantriebe in der	
			entsprechenden Linie.	
5	Deaktivieren Sie STO.	Prüfen Sie, ob STO ohne	MC_ReadAxisInfo_ISD51x output	-
		Fehler deaktiviert werden	SafeTorqueOff = False für alle	
		kann. Kein Reset erforderlich.	Servoantriebe in der	
			entsprechenden Linie.	
6	Starten Sie die Anwendung	-	Anwendung läuft wie erwartet.	Anwendung läuft wie erwartet.
	(alle Servoantriebe sind			
	aktiviert).			

Produkthandbuch

	Prüfungsschritte	Grund für den Prüfungs-	Erwartetes Ergebnis für	Erwartetes Ergebnis für
		schritt	Danfoss Bibliothek	TwinCAT [®] Bibliothek
7	Aktivieren Sie STO.	Prüfen Sie, ob Fehler korrekt	Die Motoren sind drehmo-	Die Motoren sind drehmo-
		erzeugt werden, wenn STO bei	mentfrei. Die Motoren befinden	mentfrei. Die Motoren befinden
		laufenden Servoantrieben	sich im Freilauf und bleiben	sich im Freilauf und bleiben
		aktiviert wird.	nach einiger Zeit stehen.	nach einiger Zeit stehen.
			MC_ReadAxisInfo_ISD51x output	Für aktivierte Motoren:
			<i>SafeTorqueOff</i> = True	MC_ReadStatus output ErrorStop
			und	= True
			MC_ReadStatus_ISD51x output	und
			<i>ErrorStop</i> = True	MC_ReadAxisError output
			und	AxisErrorID = 0xFF80 an allen
			MC_ReadAxisError_ISD51x	aktivierten Servoantrieben.
			output AxisErrorID = 0xFF80 an	
			allen aktivierten Servoan-	
			trieben.	
8	Versuchen Sie, die Anwendung	Überprüfen Sie die ordnungs-	Die Anwendung läuft nicht.	Die Anwendung läuft nicht.
	zu starten (aktivieren Sie einen	gemäße Ausführung der STO-		
	oder mehrere Servoantriebe).	Funktion.		
9	Deaktivieren Sie STO.	Prüfen Sie, ob der STO-Start	MC_ReadAxisInfo_ISD51x output	MC_ReadStatus output ErrorStop
		noch durch das Fehlersignal	SafeTorqueOff = False	= True
		verhindert wird.	und	
			MC_ReadStatus_ISD51x output	
			<i>ErrorStop</i> = True	
10	Versuchen Sie, die Anwendung	Prüfen Sie, ob ein Reset	Die Anwendung läuft nicht.	Die Anwendung läuft nicht.
	zu starten (aktivieren Sie einen	erforderlich ist.		
	oder mehrere Servoantriebe).			
11	Senden Sie ein Reset-Signal	-	MC_ReadAxisInfo_ISD51x output	MC_ReadStatus output ErrorStop
	über MC_Reset(_ISD51x).		SafeTorqueOff = False	= False
			und	
			MC_ReadStatus_ISD51x output	
			ErrorStop = False	
12	Versuchen Sie, die Anwendung	-	Anwendung läuft wie erwartet.	Anwendung läuft wie erwartet.
	zu starten (alle Servoantriebe			
	sind aktiviert).			

Tabelle 8.3 Inbetriebnahmeprüfung über Bibliotheken

Inbetriebnahmeprüfung über bit-wise readout

	Prüfungsschritte	Grund für den Prüfungsschritt	Erwartetes Ergebnis
1	Starten Sie die Anwendung (alle Servoan-	Vergewissern Sie sich, dass die	Anwendung läuft wie erwartet.
	triebe sind aktiviert).	Anwendung gestartet werden kann.	
2	Stoppen Sie die Anwendung.	-	Die Drehzahl aller Servoantriebe beträgt 0
			U/min.
3	Deaktivieren Sie alle Servoantriebe.	-	Alle Servoantriebe sind deaktiviert.
4	Aktivieren Sie STO.	Prüfen Sie, ob STO ohne Fehler aktiviert	Statusword Bit 3 = 0 und Bit 14 =1 bei
		werden kann.	allen Servorantrieben.
5	Deaktivieren Sie STO.	Prüfen Sie, ob STO ohne Fehler	Statusword Bit 3 = 0 und Bit 14 =0 bei
		deaktiviert werden kann. Kein Reset	allen Servorantrieben.
		erforderlich.	
6	Starten Sie die Anwendung (alle Servoan-	-	Anwendung läuft wie erwartet.
	triebe sind aktiviert).		

<u>Danfoss</u>

	Prüfungsschritte	Grund für den Prüfungsschritt	Erwartetes Ergebnis
7	Aktivieren Sie STO.	Prüfen Sie, ob Fehler korrekt erzeugt	Die Motoren sind drehmomentfrei. Die
		werden, wenn STO bei laufenden	Motoren befinden sich im Freilauf und
		Servoantrieben aktiviert wird.	bleiben nach einiger Zeit stehen.
			Statusword Bit $3 = 1$, Bit $14 = 1$ und
			Objekt 0x603F zeigt Fehler 0xFF80 bei
			allen Servorantrieben.
8	Versuchen Sie, die Anwendung zu starten	Überprüfen Sie die ordnungsgemäße	Die Anwendung läuft nicht.
	(aktivieren Sie einen oder mehrere	Ausführung der STO-Funktion.	
	Servoantriebe).		
9	Deaktivieren Sie STO.	Prüfen Sie, ob der STO-Start noch durch	Statusword Bit $3 = 1$, Bit $14 = 0$ und
		das Fehlersignal verhindert wird.	Objekt 0x603F zeigt Fehler 0xFF80 bei
			allen Servorantrieben.
10	Versuchen Sie, die Anwendung zu starten	Prüfen Sie, ob ein Reset erforderlich ist.	Die Anwendung läuft nicht.
	(aktivieren Sie einen oder mehrere		
	Servoantriebe).		
11	Senden Sie ein Reset-Signal über die SPS.	-	Statusword bit 3 = 0 bei allen Servoran-
			trieben.
12	Versuchen Sie, die Anwendung zu starten	-	Anwendung läuft wie erwartet.
	(alle Servoantriebe sind aktiviert).		

Tabelle 8.4 Inbetriebnahmeprüfung über bit-wise readout

8.10 Anwendungsbeispiel

Abbildung 8.2 zeigt ein Installationsbeispiel für 2 Linien, die über getrennte Sicherheitskreise in den Safe Torque Off-Modus geschaltet werden können.

Die Sicherheitsschaltungen können räumlich voneinander getrennt sein und werden nicht vom ISD 510 Servosystem versorgt.

Die beiden Linien in diesem Beispiel werden getrennt angesteuert. Bei Auslösung der Safe Torque Off-Funktion in Linie 1 ist Linie 2 noch im normalen Betrieb und die Servoantriebe dieser Linie sind nicht betroffen. Dabei kann von den Servoantriebe in Linie 2 weiterhin eine Gefährdung ausgehen.

Wählen Sie die Sicherheitsschaltgeräte entsprechend der Anforderungen der Anwendung aus.

Produkthandbuch

1a/1b	ISD 510 Servoantrieb an Linie 1	7	Sicherheitsvorrichtung Linie 2
2a/2b	ISD 510 Servoantrieb an Linie 2	8	Not-Aus-Taste Linie 2
3	Servo Access Box (SAB)	9	Kontakte Sicherheitsvorrichtung Linie 2
4	Sicherheitsvorrichtung an Linie 1	10	Hybridkabel Linie 1
5	Not-Aus-Taste Linie 1	11	Hybridkabel Linie 2
6	Kontakte Sicherheitsvorrichtung Linie 1	12	24 V DC-Versorgung

Abbildung 8.2 Anwendungsbeispiel: Safe Torque Off-Funktion mit 2 Linien

8.11 Sicherheitsbezogene Kenndaten

Allgemeine Informationen	
Antwortzeit (vom Schalten am Eingang bis zur Deaktivierung der Drehmoment-	<100 ms
Erzeugung)	
Lebensdauer	20 Jahre
Daten für EN ISO 13849-1	•
Performance Level (PL)	d
Kategorie	3
Mean time to dangerous failure (MTTF _d) für die maximale Systemgröße von 32 Servoan-	233 Jahre (beschränkt auf 100 Jahre, wenn das ISD
trieben pro STO-Linie	510 Servosystem einen kompletten Sicher-
	heitskanal bildet)
DC (Diagnosedeckungsgrad)	60%
Daten für EN/IEC 61508 und EN/IEC 62061	•
Safety Integrity Level, SIL	2
Probability of failure per hour (PFH) für die maximale Systemgröße von 32 Servoan-	<5 x 10 ⁻⁸ /h
trieben pro STO-Linie	
SFF (Safe Failure Fraction)	>95%
H (Hardwarefehlertoleranz)	0
Teilsystemklassifizierung	Тур А
Intervall der Wiederholungsprüfungen	1 Jahr

Tabelle 8.5 Sicherheitsbezogene Kenndaten

8.12 Wartung, Sicherheit und Benutzerzugriff

Instandhaltung

Verwenden Sie die STO-Funktion mindestens einmal pro Jahr.

Sicherheit

Wenn Sicherheitsrisiken bestehen, treffen Sie geeignete Maßnahmen zu deren Vermeidung.

Benutzerzugriff

Beschränken Sie den Zugriff auf die Servoantriebe, SAB und sonstige Bauteile des ISD 510-Servosystems, wenn der Zugriff darauf zu Sicherheitsrisiken führen kann.

<u>Danfvis</u>

9 Diagnose

9.1 Störungen

Wenn beim Betrieb des Servosystems Fehler auftreten, müssen Sie Folgendes überprüfen:

- Die LEDs am Servoantrieb auf allgemeine Probleme hinsichtlich der Kommunikation oder des Gerätestatus.
- Die LEDs an der SAB auf allgemeine Probleme hinsichtlich der Kommunikation, Zusatzversorgung oder STO-Spannung

Die Fehlercodes können mithilfe der ISD Toolbox-Software, dem LCP oder der SPS ausgelesen werden. Das LCP zeigt nur Fehler zum angeschlossenen Gerät an.

HINWEIS

Wenn sich die Störung nicht durch eine der in *Tabelle 9.1* oder *Tabelle 9.3* aufgeführten Maßnahmen beseitigen lässt, verständigen Sie den Danfoss Service.

Halten Sie folgende Angaben bereit, damit Danfoss Ihnen zielgerichtet und effizient helfen kann:

- Typennummer
- Fehlercode
- Firmwareversion
- Systemeinrichtung (z. B. Anzahl von Servoantrieben und Strängen).

9.2 Servomotor

9.2.1 Fehlersuche und -behebung

Überprüfen Sie die möglichen Störungsursachen zuerst anhand von *Tabelle 9.1*. Die Fehlercodes sind in *Kapitel 9.2.2 Fehlercodes* aufgeführt.

Fehler	Mögliche Ursache	Mögliche Lösung
LCP-Display	Fehlende Eingangs-	Prüfen Sie die Netzein-
dunkel oder hat	leistung	gangsquelle.
keine Funktion.	Fehlende oder	Prüfen Sie die
	offene Sicherungen	Sicherungen und
	oder Trennschalter	Trennschalter.
	ausgelöst.	
	Keine Stromver-	• Prüfen Sie, ob das
	sorgung zum LCP.	LCP-Kabel richtig
		angeschlossen
		oder
		möglicherweise
		beschädigt ist.
		Ersetzen Sie
		defekte LCP- oder
		Anschlusskabel.
	Falsche Kontrastein-	Drücken Sie auf
	stellung.	[Status] + [▲]/[▼], um
		den Kontrast
		anzupassen.
	Display ist defekt.	Ersetzen Sie das
		defekte LCP oder
		Anschlusskabel.
Servoantrieb	Zu hohe Belastung	Überprüfen Sie die
überhitzt (hohe		Drehmomente.
Oberflächentem-		
peratur).		
Servoantrieb läuft	Keine Kommuni-	Prüfen Sie die
nicht	kation mit Antrieb	Feldbus-Verbindung
	oder Antrieb im	und die Status-LEDs
	Fehlermodus	am Servoantrieb.
Motor lauft nicht	Lagerverschleiß	Uberpruten Sie das
oder lauft nur	Falsche Parame-	Lager und die
angsam/scriwer	tereinstellungen	wene.
an	Falsche	Überprüfen Sie die
	Regelkreis-	Parametereinstel-
	Parameter	lungen.
	Falsche	
	Drehmoment-	
	Einstellungen	
Motor brummt	Antrieb defekt	Wenden Sie sich an
und hat hohe		Danfoss.
Stromaufnahme		
Motor stoppt	Keine Kommuni-	Prüfen Sie die
plötzlich und läuft	kation mit	Feldbus-Verbindung
nicht wieder an	Antrieb	und die Status-LEDs
	Servoantrieb im	am Servoantrieb.
	Fehlermodus	

<u>Danfoss</u>

Diagnose

VLT[®] Integrated Servo Drive ISD[®] 510 System

Fehler	Mögliche Ursache	Mögliche Lösung
Falsche Drehrichtung des Motors	Parameterfehler	 Überprüfen Sie die Parametereinstel- lungen. Ändern Sie ggf. die Drehrichtung.
Motor läuft normal, aber bringt nicht das erwartete Drehmoment auf.	 Antrieb defekt Parameterfehler 	 Überprüfen Sie die Parametereinstel- lungen. Wenden Sie sich an Danfoss.
Antrieb sehr laut	 Falsche Kalibrierung Falsche Strommessung Falsche Regelkreis- Parameter 	 Überprüfen Sie die Parametereinstel- lungen. Wenden Sie sich an Danfoss.
Unruhiger Lauf.	Lager defekt	Überprüfen Sie die Welle.
Vibrationen (Ungewöhnliche) Laufgeräusche	 Lager defekt Falsche Regelkreis- Parameter Lager defekt Mängel an angeschlossener 	 Überprüfen Sie die Welle. Überprüfen Sie die Parametereinstel- lungen. Überprüfen Sie die Welle. Prüfen Sie die
	Mechanik • Falsche Regelkreis- Parameter	angeschlossene Mechanik auf lose mechanische Bauteile. • Überprüfen Sie die Parametereinstel- lungen.
Sicherung brennt durch, Trennschalter schaltet ab oder Motorüberlast- schutz schaltet sofort ab.	 Kurzschluss. Falsche Regelkreis- Parameter 	 Überprüfen Sie die Verkabelung Wenden Sie sich an Danfoss.
Starker Drehzahl- rückgang bei Belastung	 Antrieb läuft mit Stromgrenze. Antrieb läuft mit falschen Parametern 	 Überprüfen Sie die Anwendung. Überprüfen Sie die Parametereinstel- lungen.
Bremse lässt sich nicht lösen.	Bremsansteuerung defekt	Wenden Sie sich an Danfoss.

Fehler	Mögliche Ursache	Mögliche Lösung
Motor-	Mechanische	Wenden Sie sich an
Haltebremse hält	Bremse defekt	Danfoss.
den Servomotor nicht.	 Wellenlast überschreitet den Haltemoment der Bremse. 	
Verzögertes	Software-Fehler	Wenden Sie sich an
Einfallen der		Danfoss.
Bremse		
Geräusche bei	Mechanische Bremse	Wenden Sie sich an
eingeschalteter	beschädigt	Danfoss.
Abstellbremse		
LEDs leuchten	Keine Stromver-	Prüfen Sie die
nicht.	sorgung	Netzversorgung.
Fehler 0xFF91 tritt	Schritte zwischen	Überprüfen Sie die
auf.	aufeinanderfol-	Geschwindigkeit oder
	genden Werten zu	den Richtwert des
	hoch	Plausibilitätsabstands

Tabelle 9.1 Fehlersuche am Servoantrieb

9.2.2 Fehlercodes

Code	Bezeichnun	Schweregra	Beschreibun	LCP-
	g	d	g	Bezeichnun
		(Warnung/		g
		Fehler/		
		Abschaltblo-		
		ckierung)		
0x0000	Kein Fehler	Fehler	Kein Fehler.	-
0x1000	Allgemeiner	Fehler	Allgemeiner	generic err
	Anwendungs		Anwendungs	
	fehler		fehler	
0x2310	Überstrom	Fehler	Überstrom	overcurr out
	am Ausgang		am Ausgang.	
0x239B	Überlast am	Warnung,	l ² t	overload
	Ausgang	Fehler	thermischer	
	(I2T)		Zustand	
0x3210	Zwischen-	Fehler	Überspannu	UDC
	kreisüberspa		ng im	overvolt
	nnung		Zwischenkrei	
			s	
0x3220	Zwischen-	Fehler	Überspannu	UDC
	kreisuntersp		ng im	undervolt
	annung		Zwischenkrei	
			s	
0x4290	Übertem-	Fehler	Übertem-	overtemp
	peratur:		peratur im	PM
	Power		Leistungsmo	
	module		dul	
0x4291	Übertem-	Fehler	Übertem-	overtemp CC
	peratur:		peratur in	
	Steuerkarte		der Steuer-	
			platine	

Diagnose

Code	Bezeichnun	Schweregra	Beschreibun	LCP-
	g	d	g	Bezeichnun
		(Warnung/		g
		Fehler/		
		Abschaltblo-		
		ckierung)		
0x4295	Übertem-	Fehler	Übertem-	overtemp PC
	peratur:		peratur in	
	Leistungskar		der	
	te		Stromplatine	
0x4310	Übertem-	Fehler	Übertem-	overtemp
	peratur:		peratur im	motor
	Motor		Motor	
0x5112	U _{AUX} -	Fehler,	Unterspannu	undervolt
	Unterspannu	Abschaltblo-	ng bei der	UAUX
	na	ckierung	Hilfsspannun	
			a	
0x5530	FF-Prüfsum-	Abschaltblo-	5 Fehlender	config err
	menfehler	ckierung	Parameter in	comy ch
	(Parameter	chierung	der internen	
	(Falancee)		Antriebskon-	
			figuration	
0x6320	Software	Abschalthlo	Fin interner	param orr
0x0320	Foblor	ckierung	Parameter	
		ckierung	woist oinon	
			ungültigen	
			Wort ouf	
0,7220	Interne	Abschalthla	Abcoluto	int concor
0x7320	Position	ckierung	Position	orr
	Concor	ckierung	Soncor	en
	Echlor		Echlor	
0v7380	Extorno	Fablar	Extorno	avt concor
00/ 300	Position		Geberdaten	err
	Sensor		konnten	en
	Febler		nicht	
			aelesen	
			wordon	
0v8603	Poforonz-	Warnung	Homing	Homing
0x0095	fabrtfablar	Wannung	mode konnto	modo fail
			nicht	
	doc		aufgorufon	
	Referenz		wordon (z P	
	fabrtmadus		Coschwin	
	Tanifuniouus		diakoit nicht	
0,0604	Poforon7	Warnung	UJ. Poforona	Homing
0x0094	fabrtfabler	warnung	fabrimadur	mothod fail
	hoim Start		konnto nicht	methoù fall
	dor			
	Deference		auigeruien	
	Reierenz-		werden (z. B.	
	ianrtmethod		Antried nicht	
	e		III) Chillete :: -1\	
0.0555			Stillstand).	
0x8695	Referenz-	Warnung	Referenz-	Homing
	tahrtfehler		tahrtabstand	distance
	Abstand		erreicht	

Code	Bezeichnun	Schweregra	Beschreibun	LCP-
	g	d	g	Bezeichnun
		(Warnung/		g
		Fehler/		
		Abschaltblo-		
		ckierung)		
0xFF01	Mechanische	Abschaltblo-	Kein Brems-	brake mech
	Bremse	ckierung	oder	fail
	defekt		Kabeldefekt	
0xFF02	Kurzschluss	Abschaltblo-	Kurzschluss	brake mech
	in	ckierung	in Bremsan-	short
	mechanische		steuerung	
	r Bremsan-			
	steuerung			
0xFF0A	Externe	Fehler	Externe	ext IF pwr
	Schnittstelle		Schnittstelle	fail
	Stromausfall		Stromausfall	
0xFF60	Timing-	Abschaltblo-	Wenden Sie	timing err 1
	Fehler 1	ckierung	sich an	
			Danfoss.	
0xFF61	Timing-	Abschaltblo-	Wenden Sie	timing err 2
	Fehler 2	ckierung	sich an	
			Danfoss.	
0xFF62	Timing-	Abschaltblo-	Wenden Sie	timing err 3
	Fehler 3	ckierung	sich an	
			Danfoss.	
0xFF63	Timing-	Abschaltblo-	Wenden Sie	timing err 4
	Fehler 4	ckierung	sich an	
			Danfoss.	
0xFF64	Timing-	Abschaltblo-	Wenden Sie	timing err 5
	Fehler 5	ckierung	sich an	
			Danfoss.	
0xFF65	Timing-	Abschaltblo-	Wenden Sie	timing err 6
	Fehler 6	ckierung	sich an	
			Danfoss.	
0xFF70	Firmware:	Abschaltblo-	Gefundene	FW pack err
	Abweichung	ckierung	Firmware	
	Paketbe-		stimmt nicht	
	schreibung		mit der	
			Paketbe-	
			schreibung	
			überein.	

Danfoss

Diagnose

VLT[®] Integrated Servo Drive ISD[®] 510 System

Code	Bezeichnun	Schweregra	Beschreibun	LCP-
	g	d	g	Bezeichnun
		(Warnung/		g
		Fehler/		
		Abschaltblo-		
		ckierung)		
0xFF71	Firmware:	Warnung,	Firmwa-	need
	Aus- und	Fehler	reupdate-	powercycle
	Einschalt-		Übertragung	
	zyklus		ist	
	erforderlich		abgeschloss	
			en, bevor	
			die neue	
			Firmware	
			jedoch aktiv	
			werde kann,	
			ist ein Aus-	
			und	
			Einschalt-	
			zyklus	
			erforderlich.	
0xFF72	Firmware:	Warnung,	Firmwa-	FW update
	Update	Fehler	reupdate	
	gestartet		wird	
			ausgeführt.	
			Die Warnung	
			wird zum	
			Fehler, wenn	
			Sie	
			versuchen,	
			den Antrieb	
			in diesem	
			Zustand	
			anlaufen zu	
			lassen.	
0xFF80	STO bei	Fehler	STO	STO active
	aktiviertem		aktiviert,	
	Antrieb aktiv		wenn der	
			Servoantrieb	
			aktiviert war	
			oder	
			versucht	
			wurae, inn	
			SIU ZU	
0.5501	CTO .		aktivieren.	CTO .
UXFF81		Abschaltblo-	Duale	SIU
	mismatch	CKIERUNG		mismatch
			der SIO-	
			spannung	
			j unplausibel.	

Code	Bezeichnun	Schweregra	Beschreibun	LCP-
	g	d	g	Bezeichnun
		(Warnung/		g
		Fehler/		
		Abschaltblo-		
		ckierung)		
0xFF85	P_STO error	Abschaltblo-	P_STO	P_STO error
		ckierung	Spannung	
			der	
			Leistungskar	
			te liegt nicht	
			innerhalb	
			der Grenzen.	
0xFF90	Führungswer	Fehler	Positionsfüh-	guide val rev
	t vertauscht		rungswert	
			drehte	
			rückwärts,	
			während der	
			Servoantrieb	
			im CAM	
			mode lief.	
0xFF91	Führungswer	Fehler	Schritte	guide val
	t unplausibel		zwischen	impl
			aufeinander-	
			folgenden	
			Werten zu	
			hoch	

Tabelle 9.2 Fehlercodes für Servoantrieb

9.3 Servo Access Box (SAB)

9.3.1 Fehlersuche und -behebung

In *Tabelle 9.3* sind mögliche Störungen an der SAB, deren mögliche Ursachen und Lösungen zur Fehlerbehebung aufgeführt.

Danfoss

Diagnose

Produkthandbuch

Fehler	Mögliche	Mögliche Lösung	
	Ursache		
LCP-Display	Fehlende	Prüfen Sie die Netzein-	
dunkel oder hat	Eingangsleistung	gangsquelle.	
keine Funktion.	Fehlende oder	Prüfen Sie die Sicherungen	
	offene	und Trennschalter.	
	Sicherungen oder		
	Trennschalter		
	ausgelöst.		
	Keine Stromver-	Prüfen Sie, ob das I CP-	
	sorgung zum I CP.	Kabel richtig	
		angeschlossen oder	
		möglicherweise	
		beschädigt ist.	
		Ersetzen Sie defekte	
		LCP- oder	
		Anschlusskabel.	
	Falsche Kontrast-	Drücken Sie auf [Status] +	
	einstellung.	[▲]/[▼], um den Kontrast	
		anzupassen.	
	Displav ist defekt.	Ersetzen Sie das defekte	
		LCP oder Anschlusskabel.	
Offene Netzsi-	Phasenkurz-	Überprüfen Sie die	
cherungen oder	schluss.	Verkabelung.	
Trennschalter			
ausgelöst.		Pruten Sie, ob alle	
aasgelest		Kontakte fest	
		angeschlossen sind.	
Zwischenkreis-	Bremswiderstand	Überprüfen Sie die	
spannung zu	nicht	Verdrahtung des Bremswi-	
hoch.	angeschlossen.	derstands.	
	Bremswiderstand	Prüfen Sie, ob der	
	zu hoch.	niedrigste Widerstandswert	
		eingegeben wurde.	
	Mehrere Servoan-	Vermeiden Sie die	
	triebe verzögern	gleichzeitige	
	mit	Verzögerung mehrerer	
	unzureichender	Servoantriebe.	
	Rampenzeit.	Ändern Sie die Verzöge-	
		rungsdrehzahl der	
		Servoantriebe.	
	Duo no avaida unter u	Alethnianan Cia -li-	
	Bremswiderstand-	AKUVIEREN SIE DIE	
	FUNKTION NICHT	Breinsfunktion.	
	aktiviert.		
Zwischenkreis-	Faische Netzver-	Pruten Sie, ob die Versor-	
spannung zu	sorgung.	gungsspannung mit der	
mearig.		zulassigen Spezifikation in	
		kapitel 8 ISD-Sicherheits-	
		konzept übereinstimmt.	

Fehler	Mögliche Ursache	Mögliche Lösung
DC-Überstrom.	Der Summenstrom des Servoantriebs überschreitet den maximalen Nennwert der SAB.	 Prüfen Sie den Stromverbrauch des Servoantriebs. Vermeiden Sie die gleichzeitige Beschleu- nigung aller Servoantriebe.
U _{AUX} -Überstrom	Die Servoantriebe verbrauchen an der U _{AUX} -Linie mehr Strom als zulässig.	 Prüfen Sie die Anzahl der angeschlossenen Servoantriebe anhand der Schaltpläne im VLT[®] Integrated Servo Drive ISD[®] 510 System Projek- tierungshandbuch. Vermeiden Sie das gleichzeitige Lösen der Bremsen am Servoantrieb.
U _{AUX} - Überspannung.	Falsche U _{AUX} - Netzversorgung.	Prüfen Sie, ob die Versor- gungsspannung mit der zulässigen Spezifikation in <i>Kapitel 5.6 Anforderungen</i> an die Zusatzversorgung übereinstimmt.
U _{AUX} - Unterspannung.	Falsche U _{AUX} - Netzversorgung.	 Prüfen Sie, ob die Versorgungsspannung mit der zulässigen Spezifikation in <i>Kapitel 5.6 Anforde-</i> <i>rungen an die</i> <i>Zusatzversorgung</i> übereinstimmt. Überprüfen Sie, ob die Ausgangsleistung der Spannungsversorgung ausreichend ist.
Netzphasen- ausfall.	Versorgungsseitig fehlt eine Phase, oder die Unsymmetrie in der Netzspannung ist zu hoch.	Kontrollieren Sie die Versor- gungsspannung und die Netzströme zur SAB.

Danfoss

Diagnose

VLT[®] Integrated Servo Drive ISD[®] 510 System

Fehler	Mögliche Ursache	Mögliche Lösung
Erdungsfehler.	Erdungsfehler.	 Prüfen Sie, ob Frequen- zumrichter und Motor richtig geerdet und alle Anschlüsse fest angezogen sind. Prüfen Sie die Hybridkabel auf Kurzschlüsse oder Ableitströme.

Fehler	Mögliche Ursache	Mögliche Lösung
Bremswiderstand	Bremswiderstand	Entfernen Sie die Netzver-
Fehler.	defekt.	sorgung zur SAB, warten
		Sie die Entladezeit ab und
		tauschen Sie dann den
		Bremswiderstand aus.
Bremschopper	Bremschopper	Überprüfen Sie die
Fehler.	defekt.	Einstellung in Parameter
		2-15 Brake Check.

Tabelle 9.3 Fehlersuche SAB

9.3.2 Fehlercodes

Code	Bezeichnung	Schweregr	Beschreibung	LCP-Bezeichnung
		ad		_
		(Warnung		
		/Fehler/		
		Abschaltbl		
		ockierung		
)		
0x0000	Kein Fehler	Fehler	Kein Fehler.	-
0x1000	Allgemeiner Anwendungs- fehler	Fehler	Allgemeiner Anwendungsfehler	generic err
0x2120	Erdschluss	Fehler	Entladung zwischen Ausgangsphasen und Erde	ground fault
0x2340	Kurzschluss	Fehler	Am UDC-Ausgang von der SAB liegt	short circuit
			ein Kurzschluss vor (DC-Linie 1 und/	
			oder DC-Linie 2). Schalten Sie die SAB	
			ab und beheben Sie den Kurzschluss.	
0x2391	AUX 1 Überstrom	Fehler	Strom in AUX-Linie 1 hat Überstrom-	AUX1 overcurr
			grenze erreicht.	
0x2392	AUX 2 Überstrom	Fehler	Strom in AUX-Linie 2 hat Überstrom-	AUX2 overcurr
			grenze erreicht.	
0x2393	AUX 1-Anwenderstromgrenze	Warnung,	Strom in AUX-Linie 1 hat benutzerdefi-	AUX1 curr limit
		Fehler	nierte Grenze erreicht.	
0x2394	AUX 2-Anwenderstromgrenze	Warnung,	Strom in AUX-Linie 2 hat benutzerdefi-	AUX2 curr limit
		Fehler	nierte Grenze erreicht.	
0x2395	AUX 1-Sicherungsfehler	Fehler	HW-Sicherungsfehler.	AUX1 fuse fail
			Strom oder Spannung oberhalb der	
			Grenze in AUX-Linie 1.	
0x2396	AUX 2-Sicherungsfehler	Fehler	HW-Sicherungsfehler.	AUX2 fuse fail
			Strom oder Spannung oberhalb der	
			Grenze in AUX-Linie 2.	
0x2397	DC 1 Überstrom	Fehler	Überstrom in DC-Linie 1. Die Spitzen-	DC1 overcurr
			stromgrenze der SAB (ca. 200 % des	
			Nennstroms) ist überschritten.	
0x2398	DC 2-Überstrom	Fehler	Überstrom in DC-Linie 2 Die Spitzen-	DC2 overcurr
			stromgrenze der SAB (ca. 200 % des	
			Nennstroms) ist überschritten.	

Produkthandbuch

Code	Bezeichnung	Schweregr ad (Warnung /Fehler/ Abschaltbl ockierung	Beschreibung	LCP-Bezeichnung
0,2200	DC Überrtrom) Fablar	Überstrom Die CAR het die	
0x2399	DC-oberstrom	renier	Stromgrenze erreicht und schaltet ab, um zu Schäden an der Hardware zu verhindern.	De overeun
0x239B	Überlast am Ausgang (I2T)	Warnung, Fehler	Die SAB schaltet aufgrund von Überlastung (mehr als 100 % über zu lange Zeit) bald ab. Der Zähler für den elektronisch thermischen Schutz der SAB gibt bei 90 % eine Warnung aus und schaltet bei 100 % mit einem Fehler ab.	overload
0x239D	DC-Überstrom	Warnung, Fehler	Überstrom. Die SAB hat die Stromgrenze erreicht und schaltet ab, um zu Schäden an der Hardware zu verhindern.	DC overcurr
0x3130	Netzphasenausfall	Warnung, Fehler	Netzphasenausfall erkannt. Dies tritt auf, wenn eine Phase am Netz fehlt oder bei einer Netzasymmetrie.	phase loss
0x3210	Zwischenkreisüberspannung	Fehler	Die Zwischenkreisspannung überschreitet die Grenze und die SAB schaltet ab.	UDC overvolt
0x3220	Zwischenkreisunterspannung	Fehler	Die Zwischenkreisspannung liegt unterhalb der Grenze und die SAB schaltet ab.	UDC undervolt
0x3291	U _{AUX} Hochspannung	Warnung	U _{AUX} oberhalb der Warngrenze.	UAUX high volt
0x3292	U _{AUX} Überspannung	Fehler	U _{AUX} oberhalb der Überspannungs- grenze.	UAUX overvolt
0x3293	U _{AUX} niedrige Spannung	Warnung	U _{AUX} unterhalb der Warngrenze.	UAUX low volt
0x3294	U _{AUX} -Unterspannung	Fehler	U _{AUX} unterhalb der Unterspannungs- grenze.	UAUX undervolt
0x3295	UDC Hochspannung	Warnung	Die Zwischenkreisspannung (DC) liegt oberhalb der Überspannungswarnungs- grenze des Steuersystems.	UDC high volt
0x3296	UDC niedrige Spannung	Warnung	Die Zwischenkreisspannung (DC) liegt unter dem Spannungsgrenzwert des Steuersystems.	UDC niedrige Spannung
0x4220	Zu niedrige Temperatur: Kühlkörper	Warnung	Niedrige Kühlkörpertemperatur. Die SAB ist zu kalt für den Betrieb. Diese Warnung basiert auf den Messwerten des Temperaturfühlers im IGBT-Modul. Diese Warnung erfolgt nur, wenn die Zwischenkreisspannung >250 V ist.	low temp PM
0x4290	Übertemperatur: Kühlkörper	Warnung, Fehler	Der Kühlkörper überschreitet seine maximal zulässige Temperatur. Sie können den Temperaturfehler erst dann quittieren, wenn die Temperatur eine definierte Kühlkörpertemperatur (115 °C) wieder unterschritten hat.	overtemp PM

VLT[®] Integrated Servo Drive ISD[®] 510 System

Code	Bezeichnung	Schweregr	Beschreibung	LCP-Bezeichnung
		ad		
		(Warnung		
		/Fehler/		
		Abschaltbl		
		ockierung		
)		
0x4291	Übertemperatur: Steuerkarte	Warnung,	Steuerkartenübertemperatur:	overtemp CC
		Fehler	Die Abschalttemperatur der Steuerkarte	
			beträgt 80 °C.	
0x4292	Übertemperatur: SAB	Warnung,	SAB-Kartenübertemperatur	overtemp SC
	Steuerkarte	Fehler	Die Abschalttemperatur der SAB-Karte	
			beträgt 80 °C.	
0x4293	Einschaltstrom-Übertem-	Fehler	Einschaltstrom-Fehler. Zu viele	inrush SC
	peratur: SAB Steuerkarte		Übergänge in den Zustand Normal	
			operation haben innerhalb zu kurzer	
			Zeit stattgefunden.	
0x4294	Einschaltstrom-Übertem-	Fehler	Einschaltstrom-Fehler. Zu viele Einschal-	inrush PM
	peratur: Leistungsmodul		tungen (Netz-Ein) haben innerhalb zu	
			kurzer Zeit stattgefunden.	
0x4410	Übertemperatur: SAB	Fehler	Logisches ODER von Steuerkartentem-	overtemp SAB
			peratur (siehe 0x4291) und/oder	
			Kühlkörpertemperatur (siehe 0x4290)	
			und/oder SAB-Kartentemperatur (siehe	
			0x4292).	
0x6320	Software-Fehler	Abschaltb-	Ein Parameter hat einen ungültigen	param err
		lockierung	Wert.	
0x6380	Konfigurationsfehler	Abschaltb-	Ein Parameter fehlt.	config err
	(fehlender Parameter)	lockierung		
0x6381	Reinitialisierung der	Abschaltb-	Reinitialisierung der Konfiguration.	config reinit
	Parameter der Leistungskarte	lockierung	Konfigurationsparameter für die	
0.7111		5 1 1	Leistungseinneit wurde reinitialisiert.	
0x/111	Bremschopperkurzschluss	Fenler	Der Bremschopper wird wahrend des	brake ch short
			Betriebs überwacht. Dieser Fehler wird	
0.7101	Due no esta indevente en elfe la la u	Fable r	Der Bremerviderstend wird wöhrend	levelos y ele eve
0x7181	Bremswiderstandienier	Fenier	des Betriebs überwestet. Dieser Fehler	brake r short
			wird hei einem Kurzschluss angezeigt	
0,7192	Promewiderstand Leistungs	Fahlar	Leistungegrenze des Promouiderstands	braka r pur lim
0x7162	dronzo	renier	überschritten. Die auf den Bromswi	
	grenze		derstand übertragene Leistung wird als	
			Mittelwert für die letzten 120 s	
			herechnet. Die Berechnung erfolgt	
			anhand der Zwischenkreissnannung	
			und des in Parameter 2-16 (Brake	
			resistor nower 120 s) eingestellten	
			Bremswiderstandswerts Der Fehler	
			wird gemeldet wenn der Wert	
			innerhalb von 120 s überschritten wird.	
0x7183	Bremschopperprüfung fehlge-	Fehler	Bremsprüfung fehlgeschlagen. Der	brake ch check
	schlagen		Bremswiderstand ist nicht	
			angeschlossen oder funktioniert nicht	
0x7380	Externe Position Sensor Fehler	Fehler	Externe Geberdaten konnten nicht	ext sensor err
			gelesen werden.	

Produkthandbuch

Code	Bezeichnung	Schweregr	Beschreibung	LCP-Bezeichnung
		ad		
		(Warnung		
		/Fehler/		
		Abschaltbl		
		ockierung		
)		
0xFF21	Interner Lüfterfehler	Warnung	Interner Lüfterfehler. Die Lüfterwarn-	fan fault
			funktion prüft, ob der Lüfter läuft bzw.	
			installiert ist.	
0xFF31	AUX-Linie 1, minimale	Warnung	Die minimal erforderliche Abschaltzeit	AUX1 min off
	Abschaltzeit		zum Schutz der internen Hardware	
			wurde nicht eingehalten.	
0xFF32	AUX-Linie 2, minimale	Warnung	Die minimal erforderliche Abschaltzeit	AUX2 min off
	Abschaltzeit		zum Schutz der internen Hardware	
			wurde nicht eingehalten.	
0xFF51	Interner Fehler 1	Abschaltb-	Interner Fehler 1, wenden Sie sich an	PM int err 1
		lockierung	Danfoss.	
0xFF52	Interner Fehler 2	Abschaltb-	Interner Fehler 2, wenden Sie sich an	PM int err 2
		lockierung	Danfoss.	
0xFF53	Interner Fehler 3	Abschaltb-	Interner Fehler 3, wenden Sie sich an	PM int err 3
		lockierung	Danfoss.	
0xFF54	Interner Fehler 4	Abschaltb-	Interner Fehler 4, wenden Sie sich an	PM int err 4
		lockierung	Danfoss.	
0xFF55	Interner Fehler 5	Abschaltb-	Interner Fehler 5, wenden Sie sich an	PM int err 5
		lockierung	Danfoss.	
0xFF56	Interner Fehler 6	Abschaltb-	Interner Fehler 6, wenden Sie sich an	PM int err 6
		lockierung	Danfoss.	
0xFF70	Firmware: Abweichung	Abschaltb-	Die gefundene Firmware passt nicht	FW pack err
	Paketbeschreibung	lockierung	zur Paketbeschreibung.	
0xFF71	Firmware: Aus- und Einschalt-	Warnung,	Firmwareupdate-Übertragung ist	need powercycle
	zyklus erforderlich	Fehler	abgeschlossen, bevor die neue	
			Firmware jedoch aktiv werde kann, ist	
			ein Aus- und Einschaltzyklus	
			erforderlich.	
0xFF72	Firmware: Update gestartet	Warnung,	Firmwareupdate wird ausgeführt. Die	FW update
		Fehler	Warnung wird zum Fehler, wenn Sie	
			versuchen, den Antrieb in diesem	
			Zustand anlaufen zu lassen.	

Tabelle 9.4 Fehlercodes für SAB

Danfoss

10 Wartung, Außerbetriebnahme und Entsorgung

HOCHSPANNUNG

An den Steckern liegt lebensgefährliche Spannung an. Trennen Sie vor der Arbeit an den Leistungssteckern (Kabel anschließen oder trennen) unbedingt die SAB vom Netz und warten Sie die Entladezeit ab.

ENTLADEZEIT

Die Servoantriebe und die SAB enthalten Zwischenkreiskondensatoren, die auch nach Abschalten der Netzversorgung an der SAB eine gewisse Zeit geladen bleiben. Das Nichteinhalten der vorgesehenen Entladungszeit nach dem Trennen der Spannungsversorgung vor Wartungs- oder Reparaturarbeiten kann zu schweren oder tödlichen Verletzungen führen.

 Trennen Sie zur Vermeidung von Stromschlägen vor allen Wartungs- oder Reparaturarbeiten am ISD 510 Servosystem oder dessen Komponenten die SAB vollständig vom Netz und warten Sie mindestens die in *Tabelle 10.1* aufgeführte Zeit ab, bis sich die Kondensatoren vollständig entladen haben.

Nummer	Mindestwartezeit (Minuten)
0–64 Servoantriebe	10

Tabelle 10.1 Entladezeit

10.1 Wartungsarbeiten

Die Servoantriebe sind weitestgehend wartungsfrei. Nur an der Wellendichtring (falls verwendet) tritt Verschleiß auf.

Die in *Tabelle 10.2* aufgeführten Wartungsarbeiten können von Fachpersonal durchführt werden (siehe *Kapitel 2.5 Qualifiziertes Personal*). Weitere Arbeiten sind nicht vorgesehen.

Bauteil	Wartungs-	Wartungs-	Anweisung
	arbeit	intervall	
Servoantrieb	Eine	Alle 6	Prüfen Sie die
	Sichtprüfung	Monate	Oberfläche des
	durchführen.		Servoantriebs auf
			Unregelmäßigkeiten.
Wellen-	Prüfen Sie	Alle 6	Ersetzen Sie bei
dichtring	den Zustand	Monate ¹⁾	Beschädigung den
	und kontrol-		Wellendichtring.
	lieren Sie sie		
	auf Undich-		
	tigkeiten.		
Hybridkabel	Auf Beschädi-	Alle 6	Bei Beschädigungen
	gungen und	Monate	oder Verschleiß:
	Verschleiß		Hybridkabel
	prüfen.		austauschen (siehe
			Kapitel 10.3.1 Kabel
			austauschen).
Mechanische	Prüfen Sie die	Alle 6	Stellen Sie sicher, dass
Haltebremse	Bremse.	Monate	die Bremse das
(optional)			Haltemoment wie in
			Kapitel 3.2.2.2 Bremse
			(optional) beschrieben
			erreichen kann.
Funktionale	Führen Sie	Alle 12	Aktivieren Sie die STO-
Sicherheit	einen Aus-	Monate	Funktion und prüfen
	und		Sie den Status mit der
	Einschalt-		SPS. Weitere Informa-
	zyklus durch		tionen finden Sie in
	und prüfen		Kapitel 8 ISD-Sicher-
	Sie die STO-		heitskonzept.
	Funktion.		
SAB	Prüfen Sie	Alle 12	Prüfen Sie, ob sich der
	den Lüfter.	Monate	Lüfter drehen kann
			und entfernen Sie
			Staub oder Schmutz.

Tabelle 10.2 Übersicht der Wartungsarbeiten

1) Je nach Anwendung kann ein kürzeres Intervall erforderlich sein. Weitere Informationen erhalten Sie von Danfoss.

10.2 Inspektionen während des Betriebs

Servoantriebe

Führen Sie während des Betriebs regelmäßige Inspektionen durch. Kontrollieren Sie die Servoantriebe in festen Intervallen auf eventuelle Besonderheiten.

Achten Sie dabei insbesondere auf:

- Ungewöhnliche Geräusche.
- Überhitzte Oberflächen (Temperaturen bis zu 100 °C können bei Normalbetrieb vorkommen).
- Unruhiger Lauf.

- Verstärkte Vibrationen.
- Lockere Befestigungselemente.
- Zustand der elektrischen Leitungen.
- Erschwerte Wärmeabfuhr.

Bei Unregelmäßigkeiten oder Störungen siehe Kapitel 9.2 Servomotor.

SAB

Führen Sie während des Betriebs regelmäßige Inspektionen durch.

Vergewissern Sie sich, dass ...

- die Lüftungsöffnungen nicht verstopft sind.
- der Lüfter keine ungewöhnlichen Geräusche macht.

Bei Unregelmäßigkeiten oder Störungen siehe Kapitel 9.3 Servo Access Box (SAB).

10.3 Reparatur

HINWEIS

Schicken Sie defekte Geräte immer an die örtliche Danfoss Vertretung zurück.

Die in diesem Kapitel aufgeführten Wartungsarbeiten können von Fachpersonal durchführt werden (siehe *Kapitel 2.5 Qualifiziertes Personal*).

10.3.1 Kabel austauschen

Tauschen Sie Kabel aus, die beschädigt sind oder deren Biegezyklenzahl erreicht ist.

HINWEIS

Trennen Sie niemals ein Kabel unter Spannung vom Servoantrieb oder schließen es unter Spannung an. Sie zerstören hierdurch die Elektronik. Beachten Sie die Entladezeit der Zwischenkreiskondensatoren.

HINWEIS

Sie dürfen die Stecker nicht gewaltsam aufsetzen und montieren. Fehlerhafte Anschlüsse verursachen Schäden an den Steckern.

10.3.1.1 Austauschen des Einspeisekabels

Gehen Sie folgendermaßen vor:

Kabel trennen

- 1. Trennen Sie die SAB von der Spannungsquelle (Netzversorgung und alle Zusatzquellen).
- 2. Warten Sie die erforderliche Entladezeit ab.

- Trennen Sie alle Kabel von den Anschlüssen X3, X4 oder X5 des Servoantriebs, um einen einfachen Zugang zum Einspeisekabel zu erhalten.
- 4. Trennen Sie den Schutzleiter (PE) von der Abfangplatte der SAB.
- Öffnen Sie die Kabelschelle, mit der das STO-Kabel befestigt ist.
- 6. Öffnen Sie die Kabelschelle, mit der das Einspeisekabel an der SAB befestigt ist.
- 7. Lösen Sie die Stecker des Einspeisekabels an der SAB.
- 8. Lösen Sie das Einspeisekabel an der SAB.
- 9. Lösen Sie den Schraubring des Steckers am Servoantrieb.
- 10. Trennen Sie das Einspeisekabel vom Servoantrieb.

Kabel austauschen

Tauschen Sie das Einspeisekabel gegen ein gleiches Kabel mit identischer Länge aus. Die Bestellnummern finden Sie im VLT[®] Integrated Servo Drive ISD[®] 510 System Projektierungshandbuch.

Kabel anschließen

- 1. Stecken Sie die Buchse des Einspeisekabels auf den Stecker des ersten Servoantriebs.
- 2. Ziehen Sie die Schraubringe des Steckers handfest an.
- Achten Sie darauf, dass die Kabel keiner mechanischen Spannung ausgesetzt werden.
- 4. Verbinden Sie die Stecker des Einspeisekabels mit den entsprechenden Anschlüssen an der SAB (siehe *Kapitel 5.8.1 Servo Access Box*).
- Befestigen Sie das Einspeisekabel so, dass das Schirmgeflecht genau unter der Schelle positioniert wird.
- 6. Befestigen Sie das STO-Kabel so, dass das Schirmgeflecht genau unter der Schelle positioniert wird.
- 7. Verbinden Sie den Schutzleiter (PE) mit dem Abschirmblech.
- 8. Schließen Sie alle Kabel wieder an, die mit den Anschlüssen X3, X4 oder X5 verbunden waren.

10.3.1.2 Loop-Kabel austauschen

Gehen Sie folgendermaßen vor:

Kabel trennen

- 1. Trennen Sie die SAB von der Spannungsquelle (Netzversorgung).
- 2. Warten Sie die erforderliche Entladezeit ab.

- Trennen Sie alle Kabel von den Anschlüssen X3, X4 oder X5 der beiden Servoantriebe, um einen einfachen Zugang zum Loop-Kabel zu erhalten.
- 4. Lösen Sie die Schraubringe der Loop-Kabelstecker an beiden Servoantrieben.
- 5. Trennen Sie das Loop-Kabel von den Servoantrieben.

Kabel austauschen

Tauschen Sie das Loop-Kabel gegen ein gleiches Kabel mit identischer Länge aus. Die Teilenummern finden Sie im VLT[®] Integrated Servo Drive ISD[®] 510 System Projektierungshandbuch.

Kabel anschließen

- 1. Verbinden Sie den Stecker des Loop-Kabels mit der Buchse des Servoantriebs (siehe *Kapitel 5.8.2.1 Anschließen/Trennen der Hybridkabel*).
- 2. Verbinden Sie die Buchse des Loop-Kabels mit dem Stecker des Servoantriebs (siehe Kapitel 5.8.2.1 Anschließen/Trennen der Hybridkabel).
- 3. Ziehen Sie die Schraubringe an beiden Servoantrieben handfest an.
- 4. Achten Sie darauf, dass die Kabel keiner mechanischen Spannung ausgesetzt werden.
- 5. Ziehen Sie die Schraubringe der Stecker an beiden Servoantrieben an.
- Schließen Sie alle Kabel, die an den Anschlüssen X3, X4 oder X5 angeschlossen waren, wieder an beide Servoantriebe an.

10.4 Austausch des Servoantriebs

10.4.1 Demontage

Die Demontage des Servoantriebs erfolgt sinngemäß in umgekehrter Reihenfolge wie für die Montage in Kapitel *Kapitel 5 Elektrische Installation* beschrieben.

Gehen Sie folgendermaßen vor:

- 1. Trennen Sie die Stromversorgung und warten Sie die Entladezeit ab.
- 2. Trennen Sie die elektrischen Kabel.
- 3. Demontieren Sie den Servoantrieb.
- Ersetzen Sie den ISD 510 Servoantrieb durch einen ISD 510 Servoantrieb desselben Typs. Die Teilenummern finden Sie im VLT[®] Integrated Servo Drive ISD[®] 510 System Projektierungshandbuch.

10.4.2 Montage und Inbetriebnahme

Die Montage und Inbetriebnahme des Servoantriebs erfolgt wie in *Kapitel 4.5.3 Montageanleitung für Servoantriebe* und *Kapitel 6 Inbetriebnahme* beschrieben.

Gehen Sie folgendermaßen vor:

- 1. Prüfen Sie, ob eine Vorbereitung erforderlich ist (siehe *Kapitel 4.4.1 Servomotor*).
- 2. Montieren Sie den Servoantrieb (siehe Kapitel 4.5.3 Montageanleitung für Servoantriebe).
- Schließen Sie die Hybridkabel an (siehe Kapitel 5.8.2.1 Anschließen/Trennen der Hybridkabel).
- 4. Schließen Sie die I/O- und/oder Geberkabel an (siehe Kapitel 5.8.2.2 Anschließen/Trennen der Kabel von den Anschlüssen X3, X4 und X5).
- 5. Konfigurieren Sie die Servoantriebsparameter je nach verwendetem Feldbus (siehe *Kapitel 6.2 ID-Zuweisung*).
- 6. Führen Sie einen Probelauf durch.

10.5 SAB-Austausch

10.5.1 Demontage

Das Verfahren für die Demontage der SAB lautet wie folgt:

- 1. Trennen Sie die Stromversorgung und warten Sie die Entladezeit ab.
- 2. Trennen Sie die elektrischen Kabel.
- 3. Entfernen Sie das Abschirmblech.
- 4. Demontieren Sie die SAB.

10.5.2 Montage und Inbetriebnahme

Die Montage und Inbetriebnahme der SAB erfolgt wie in Kapitel 4.5.5 Montageanleitung für die Servo Access Box (SAB) und Kapitel 6 Inbetriebnahme beschrieben.

Gehen Sie folgendermaßen vor:

- 1. Prüfen Sie, ob eine Vorbereitung erforderlich ist (siehe *Kapitel 4.4.2 Servo Access Box (SAB*)).
- 2. Schließen Sie die SAB wie in Kapitel 4.5.5 Montageanleitung für die Servo Access Box (SAB) beschrieben an.
- 3. Schließen Sie die elektrischen Kabel wie in Kapitel 5.8.1 Servo Access Box beschrieben an.
- 4. Schalten Sie das System wie in *Kapitel 6.3 Einschalten des ISD 510 Servosystems* beschrieben ein.

- 5. Konfigurieren Sie die SAB-Parameter je nach verwendetem Feldbus (siehe *Kapitel 6.2 ID-Zuweisung*).
- 6. Führen Sie einen Probelauf durch.
- 10.6 Außerbetriebnahme des ISD 510 Servosystems

Die Außerbetriebnahme des Servosystems erfolgt sinngemäß in umgekehrter Reihenfolge wie für die Montage in *Kapitel 4 Mechanische Installation* beschrieben.

Gehen Sie folgendermaßen vor:

- 1. Unterbrechen Sie die Stromversorgung des Servosystems und warten Sie die Entladezeit ab.
- 2. Trennen Sie die elektrischen Kabel.
- 3. Demontieren Sie den Servoantrieb.
- 4. Demontieren Sie die SAB.

10.7 Rücknahme

Sie können Danfoss-Produkte zur Entsorgung kostenlos zurückgeben. Voraussetzung ist allerdings, dass das Produkt frei von Rückständen wie Öl, Schmierfett oder anderen Verunreinigungen ist, die die Entsorgung erschweren.

Weiterhin dürfen bei der Rücksendung keine Fremdstoffe oder Fremdkomponenten enthalten sein.

Schicken Sie die Produkte FOB an die lokale Danfoss-Vertretung.

10.8 Recycling und Entsorgung

10.8.1 Recycling

Geben Sie Metalle und Kunststoffe zur Wiederverwertung.

Der gesamte Servoantrieb gilt als Elektroschrott, die Verpackung als Verpackungsmüll.

10.8.2 Entsorgung

Einrichtungen, die elektronische Komponenten enthalten, können nicht als normaler Hausmüll entsorgt werden.

Entsorgen Sie die Servoantriebe und die SAB gemäß der örtlich geltenden Vorschriften als Sondermüll, Elektroschrott, Edelschrott usw.

VLT[®] Integrated Servo Drive ISD[®] 510 System

Danfoss

11 Technische Daten

11.1 Servoantrieb

11.1.1 Typenschild

Prüfen Sie das Typenschild und vergleichen Sie es mit den Bestelldaten. Verwenden Sie die Teilenummer als Referenz. Mit der Teilenummer ist der Antriebstyp eindeutig identifizierbar (siehe *Kapitel 3.2.1.1 Typen*).

Achten Sie auf gute Lesbarkeit des Typenschilds.

Die Servoantriebe sind von außen nur über das Original Danfoss-Typenschild zu identifizieren.

Die folgenden Daten sind auf dem Typenschild des Servoantriebs angegeben:

	VLT [®] ISD 510 Danfoss	13.10
1 2	SISD510AT01C9D6E54FRXECSXXTF084SXN40XSXSX	130BE6
3 4 5 6	Niput1:560-680VDC 1.4A Input2: 24-48VDC 0.3A 7 M _N : 2.6Nm n _N : 3000rpm P _N : 800W 8 7 M _{max} : 10.5Nm n _{max} : 3800rpm M ₀ : 3.5Nm 8 9 Ambient: 5* 40°C/41° 104°F 11 10	
	PART NO: 000G0000 SERIAL NO: 000000M000 000G000000000000000000000000	
1		

Typecode	7	U _{AUX} Versorgung
Versorgungsspannung	8	Nennleistung
Nenndrehmoment	9	Stillstandsdreh-
		moment
Maximales Drehmoment	10	Nenndrehzahl
Umgebungstemperatur	11	Maximaldrehzahl
Schutzart	-	-
	Typecode Versorgungsspannung Nenndrehmoment Maximales Drehmoment Umgebungstemperatur Schutzart	Typecode7Versorgungsspannung8Nenndrehmoment9Maximales Drehmoment10Umgebungstemperatur11Schutzart-

Abbildung 11.1 Typenschild des Servoantriebs

11.1.2 Kenndaten

Tabelle 11.1 und Tabelle 11.2 liefern eine Zusammenfassung der typischen Eigenschaften von Servoantrieben.

Technische Daten	Einheit	Baugröße 1	Baugröße 2	Baugröße 2	Baugröße 2
		1,5 Nm	2,1 Nm	2,9 Nm	3,8 Nm
Nenndrehzahl n _N	U/min	4600	4000	2900	2400
Nenndrehmoment	Nm	1,5	2,1	2,9	3,8
MN					
Nennstrom I _N	A DC	1,4	1	1,7	1,8
Nennleistung P_N	kW	0,72	0,	,88	0,94
Stillstandsdreh-	Nm	2,3	2,8	3,6	4,6
moment M ₀					
Stillstandsstrom I_0	A DC	2,1	2,3	2,1	2,2
Spitzendrehmoment	Nm	6,1	7,8	10,7	12,7
M _{max}					
Spitzenstrom	A DC	5,7		6,4	
(Effektivwert) I _{max}					
Nennspannung	V DC		560)/680	
Induktivität L 2ph	mH	18,5	26,8	32,6	33,9
Widerstand R 2ph	Ω	9,01	7,78	8,61	8,64
Spannungskon-	V/krms	70,6	80,9	111,0	132,0
stante EMK					

Produkthandbuch

Technische Daten	Einheit	Baugröße 1	Baugröße 2	Baugröße 2	Baugröße 2
		1,5 Nm	2,1 Nm	2,9 Nm	3,8 Nm
Drehmomentkon-	Nm/A	1,10	1,26	1,72	2,04
stante K _t					
Trägheitsmoment	kgm ²	0,000085	0,00015	0,00021	0,00027
Wellendurchmesser	mm	14	19		
Polpaare	-	4	5		
Flanschgröße	mm	76	84		
Gewicht	kg	3,5	4,0	5,0	6,0

Tabelle 11.1 Kenndaten für Servoantriebe ohne Bremse

Technische Daten	Einheit	Baugröße 1	Baugröße 2	Baugröße 2	Baugröße 2	
		1,5 Nm	2,1 Nm	2,9 Nm	3,8 Nm	
Bremsenträgheit	kgm ²	0,000012	0,000068	0,000068	0,000068	
Bremsengewicht	kg	0,34	0,63			
Reduzierung des Nenndrehmoments	%	8	6 7		7	

Tabelle 11.2 Kenndaten für Servoantriebe ohne Bremse

11.1.3 Abmessungen

Flansch

Servoantrieb	Flanschdicke
Baugröße 1, 1,5 Nm	7 mm
Baugröße 2, 2,1 Nm	-
Baugröße 2, 2,9 Nm	8 mm
Baugröße 2, 3,8 Nm	8 mm

Tabelle 11.3 Flanschdicke

Alle Abmessungen sind in [mm] (in) angegeben.

Abbildung 11.2 Abmessungen von ISD 510, Baugröße 1, 1,5 Nm

<u>Danfvšš</u>

Abbildung 11.5 Abmessungen von ISD 510, Baugröße 2, 3,8 Nm

11.1.4 Zulässige Kräfte

Abbildung 11.6 Zulässige Kräfte

Abbildung 11.6 zeigt die maximal zulässigen Kräfte an der Motorwelle an.

Beim Zusammenbau des Motors sowie bei allen mit der Welle verbundenen mechanischen Geräten darf die maximale Axial- und Radiallast die in *Tabelle 11.4* angezeigten Werte nicht überschreiten. Die Welle muss langsam und konstant belastet werden: Vermeiden Sie pulsierende Lasten.

Informationen zu den Lagerbelastungskurven finden Sie im Projektierungshandbuch für das VLT[®] Integrated Servo Drive ISD[®] 510 System.

HINWEIS

Wenn die zulässigen Kräfte überschritten werden, könnte das Lager dauerhaft beschädigt werden.

Motorbaugröße	Radialkraft (Fr) in N	Axialkraft (Fa) in N
Baugröße 1	450	1050
Baugröße 2	900	1700

Tabelle 11.4 Zulässige Kräfte

11.1.5 Allgemeine Daten und Umgebungsbedingungen

Vibrationstest	Zufällige Vibrationen: 7,54 g (2h/Achse nach
	EN 60068-2-64)
	Sinusförmige Vibrationen: 0,7 g (2h/Achse
	nach EN 60068-2-6)
Maximale relative	Lagerung/Transport: 5–93 % (nicht konden-
Feuchtigkeit	sierend)
	Ortsfester Einsatz: 15–85 % (nicht konden-
	sierend)
Umgebungstem-	5–40 °C über der Leistungsreduzierung,
peratur	maximal 55 °C (im 24-Stunden-Durchschnitt
	maximal 35 °C)
	Transport: -25 bis +70 °C
	Lagerung: -25 bis +55 °C
Aufstellungshöhe	Maximal 1000 m über dem Meeresspiegel
EMV-Norm für	EN 61800-3
Störaussendung	
und Störfestigkeit	

Tabelle 11.5 Allgemeine Daten und Umgebungsbedingungen für den Servoantrieb

Schutzarten

30BE724.10

Abbildung 11.7 Montagepositionen

	Montageposition des	IP-Schutzart
	Servoantriebs	(nach EN
	(nach DIN 42 950)	60529)
Gehäuse	Alle Positionen	IP67
Welle ohne	IM B5 & IM V1	IP54
Wellendichtring	IM V3	IP50
Welle mit Wellen-	IM B5 & IM V1	IP65
dichtring	IM V3	IP60

IM V1

Tabelle 11.6 Schutzarten

11.2 Servo Access Box

11.2.1 Typenschild

Die folgenden Daten sind auf dem Typenschild der SAB angegeben:

1、	VĽ	T [®] Servo Access	s Box	Danfoss	E612.10	
2 3 4	[^] P _N : 8. [^] Input: [^] Outpu [^] Ambi	47KW(400V) / 10.18KW(480V) : 3x400-480V 50/60Hz 12.5A ut: 565VDC - 679VDC / 15A ent: 50°C/122°F Enclosure: IP:) 20 / ⁵		130E	
	PART	NO: 000X0000 000X000000 000X0000000 Made in Ge	SERI DOOOOMO ermany	AL NO: 000000M000		
	X	CE				
		CAUTION: See manual for spect Voir manuel de cond WARNING: Stored charge, wait 1 Charge residuélle, at	ial conditi litions spe 10 min. tendez 10	ion/mains fuse áciales/fusibles) min.		
1		Nennleistung	4	Umgebungstemperati	ur	
2		Versorgungssnannung	5	Schutzart		

1	Nennleistung	4	Umgebungstemperatur
2	Versorgungsspannung	5	Schutzart
3	Ausgangsspannung	-	_

Abbildung 11.8 Typenschild der SAB

Achten Sie auf gute Lesbarkeit des Typenschilds.

11.2.3 Abmessungen

Alle Abmessungen sind in [mm] (in) angegeben.

11.2.2 Kenndaten

Definition	Wert und Einheit
Eingang	
Eingangsspannung	400-480 V ±10 %
Wirkungsgrad	98,5 % bei 400 V
Eingangsstrom	12,5 A Dauerlast
	20 A intermitteriend
Ausgang	
Ausgangsspannung	565-679 V ±10 % ²⁾
ISD Line 1: UDC 1 und ISD-Linie 2: UDC 2	
Ausgangsspannung	24 V ±10 %
ISD Line 1: STO 1 und ISD Line 2: STO 2	
Ausgangsspannung	24-48 V ±10 %
ISD Line 1: AUX 1 und ISD Line 2: AUX 2	
Ausgangsstrom	15 A
ISD Line 1: AUX 1 und ISD Line 2: AUX 2	
Ausgangsstrom UDC	15 A
Ausgangsstrom	1 A ¹⁾
ISD Line 1: STO 1 und ISD Line 2: STO 2	
Ausgangsleistung	8,47-10,18 kW ²⁾
Gehäuse	
Abmessungen (B x H x T)	130 x 268 x 80 mm
Gewicht	8,3 kg

Tabelle 11.7 Kenndaten der Servo Access Box

1) Ist abhängig von der Anzahl der an die Anwendung angeschlossenen Servoantriebe. Die aktuelle Stromstärke pro Antrieb beträgt 6,7 mA

2) Hängt von der Eingangsspannung ab.

Technische Daten

Produkthandbuch

Vorderansicht

Abbildung 11.9 Abmessungen: Vorderansicht

11

Seitenansicht

Abbildung 11.10 Abmessungen: Seitenansicht

1 1 130BE313.10

Produkthandbuch

11.2.4 Allgemeine Daten und Umgebungsbedingungen

Schutzart	IP20
Vibrationstest	Zufällige Vibrationen: 1,14 g (2h/Achse
	nach EN 60068-2-64)
	Sinusförmige Vibrationen: 0,7 g (2h/Achse
	nach EN 60068-2-6)
Maximale relative	Lagerung/Transport und ortsfester Einsatz:
Feuchtigkeit	5–93 % (nicht kondensierend)
Umgebungstem-	5–50 °C Betriebstemperatur
peratur	(im 24-Stunden-Durchschnitt maximal
	45 °C)
	Transport: -25 bis +70 °C
	Lagerung: -25 bis +55 °C
Aufstellungshöhe	Maximal 1000 m über dem Meeresspiegel
EMV-Norm für	EN 61800-3
Störaussendung	
und Störfestigkeit	

Tabelle 11.8 Allgemeine Daten und Umgebungsbedingungen SAB

11.3 Kabel

HINWEIS

Kabelabmessungen und Zeichnungen finden Sie im Projektierungshandbuch für das VLT[®] Integrated Servo Drive ISD[®] 510 System.

Alle von Danfoss gelieferten Kabel verfügen über ein Typenschild (siehe Beispiel in *Abbildung 11.11*).

1 2 3 4 5 6 7 8 9	Danfoss ISD 510 Hybrid xxxx Cable Ordering no. 175Gxxxx Rev. x. Specification no. 175Rxxx Rev. xxx. yy.mm.dd Length: xxxx Power rating: 5 x 2.5mm ² 1000V 18A Signal rating: 2 x 0.5mm ² 300V Signal rating Ethernet: 2 x 2 x AWG24 300V	
1	Kabeltyp	
2	Bestellcode	
3	Spezifikations- und Revisionsnummer	
4	L la vata lluva na datuva	

3	Spezifikations- und Revisionsnummer
4	Herstellungsdatum
5	Länge
6	Nennleistung
7	Signalleistung
8	Signalleistung für Ethernet
9	Barcode
10	Herstellerlogo

Abbildung 11.11 Beispiel eines Typenschilds für ein Kabel

11.4 Lagerung

Wenn Servomotoren und die SAB eingelagert werden, achten Sie auf eine trockene, staubfreie und schwingungsarme Umgebung (v_{eff} ≤0,2 mm/s).

Lagern Sie die verpackten Systemkomponenten nicht übereinander.

Der Lagerort muss frei von korrosiven Gasen sein. Abrupte Temperaturschwankungen dürfen nicht auftreten.

11.4.1 Langzeitlagerung

HINWEIS

To recondition the electrolytic capacitors, servo drives and SABs not in service must be connected to a supply source once per year to allow the capacitors to charge and discharge. Otherwise the capacitors could suffer permanent damage.

12 Anhang

12.1 Glossar

A-Flansch

Bei der A-Seite handelt es sich um die Wellenseite des Servomotors.

Umgebungstemperatur

Temperatur in unmittelbarer Umgebung des Servosystems oder seiner Komponenten.

Automation Studio™

Automation Studio[™] ist eine eingetragene Marke von B&R. Dabei handelt es sich um die integrierte Software-Entwicklungsumgebung für B&R-Controller.

Axialkraft

Kraft in Newtonmeter, die in Längsrichtung auf die Rotorachse wirkt.

Lager

Kugellager des Servomotors.

Beckhoff[®]

Beckhoff[®] ist eine eingetragene Marke und lizenziert von der Beckhoff Automation GmbH, Deutschland.

B&R

Multinationales Unternehmen, das auf Software und Systeme zur Fabrik- und Prozessautomatisierung für einen breite Auswahl von Industrieanwendungen spezialisiert ist.

B-Seite

Die Rückseite des Servoantriebs mit Steckern.

Bremse

Mechanische Haltebremse am Servoantrieb.

CANopen[®]

CANopen[®] ist eine eingetragene Gemeinschaftsmarke von CAN in Automation e.V.

CE

Prüf- und Zertifizierungszeichen für Europa.

CiA DS 402

Geräteprofil für Antriebe und für die Bewegungssteuerung. CiA[®] ist eine eingetragene Gemeinschaftsmarke von CAN in Automation e.V.

Spannsatz

Mechanische Vorrichtung zur Fixierung von Zahnrädern auf einer Motorwelle.

Stecker (M23)

Hybrid-Stecker für Servoantrieb.

Kühlung

ISD-Servoantriebe arbeiten nach dem Prinzip der Konvektionskühlung (ohne Lüfter).

Zwischenkreis

Jeder Servoantrieb besitzt einen eigenen Zwischenkreis, der aus Kondensatoren besteht.

Zwischenkreisspannung

Beschreibt eine Gleichspannung, die sich über mehrere Servoantriebe verteilt, da die Antriebe parallel geschaltet sind.

Gleichspannung

Beschreibt eine konstante Gleichspannung.

EPSG

Ethernet POWERLINK[®] Standardization Group.

ETG

EtherCAT[®] Technology Group

EtherCAT[®]

EtherCAT[®] (Ethernet for Control Automation Technology) ist ein offenes Ethernet-basiertes leistungsstarkes Feldbussystem. EtherCAT[®] ist eine eingetragene Marke und patentierte Technologie lizenziert durch die Beckhoff Automation GmbH, Deutschland.

Abbildung 12.1 EtherCAT[®] Logo

Ethernet POWERLINK®

Ethernet POWERLINK[®] ist ein deterministisches Echtzeitprotokoll für Standard-Ethernet. Es handelt sich um ein offenes Protokoll, das von der Ethernet POWERLINK[®] Standardization Group (EPSG) verwaltet wird. Eingeführt wurde es vom österreichischen Unternehmen B&R im Jahr 2001.

Einspeisekabel

Hybrid-Verbindungskabel zwischen SAB und Servoantrieb.

Gebersystem

Gebersysteme für Servoantriebe im Allgemeinen.

Feldbus

Kommunikationsbus zwischen Steuerung und Servoachse und SAB; allgemein zwischen Steuerung und Feldknoten.

Firmware

Software im Gerät; läuft auf der Steuerkarte.

Funktionsblock

Auf die Gerätefunktionen können Sie über die Engineering-Software zugreifen.

IGBT

Der Bipolartransistor mit isolierter Gate-Elektrode ist ein 3poliges Halbleiterbauteil, das hauptsächlich als elektronischer Schalter verwendet wird, um hohe Effizienz und schnelles Schalten zu kombinieren.

Aufstellungshöhe

Aufstellhöhe über NN (Normal Null), normalerweise mit einem Leistungsreduzierungsfaktor verbunden.

ISD

Integrated Servo Drive.

ISD-Geräte

Bezieht sich auf die ISD 510-Servoantriebe und die SAB.

ISD Servomotor

Bezeichnet den ISD-Servomotor (ohne Antriebselektronik).

ISD Toolbox

Ein Danfoss PC-Software-Tool zur Parametereinstellung und Diagnose an ISD-Servoantrieben und der SAB.

LCP

LCP-Bedieneinheit.

Loop-Kabel

Hybrid-Verbindungskabel zwischen 2 Servoantrieben, mit 2 M23-Steckern.

M8-Stecker

Voll funktionsfähige Real-Time Ethernet-Schnittstelle (X3) auf der B-Seite des Advanced Servoantriebs. Stecker (X5) zum Anschließen des LCP an der B-Seite des Advanced Servoantriebs.

M12-Stecker

Stecker (X4) zum Anschließen von I/O und/oder Geber auf der B-Seite des Advanced Servoantriebs.

M23-Stecker

Stecker (X1 & X2) zum Anschließen des Einspeise- und Loop-Hybridkabels auf der B-Seite des Standard und des Advanced Servoantriebs.

Motorwelle

Rotorende auf der A-Seite des Servomotors, typischerweise ohne Passfedernut.

Multiturn Encoder

Bezeichnet einen digitalen Absolutwertgeber, in dem die absolute Position nach mehreren Umdrehungen gespeichert bleibt.

SPS

Eine speicherprogrammierbare Steuerung ist ein Digitalrechner, der für die Automatisierung von

elektromechanischen Prozessen wie die Steuerung der Maschinen auf Fertigungsstraßen in einer Fabrik verwendet wird.

PELV

Schutzkleinspannung. Niederspannungsrichtlinie bezüglich Spannungsniveaus und Abständen zwischen Linien.

PLCopen[®]

Der PLCopen[®] ist eine eingetragene Marke und zusammen mit den PLCopen[®]-Logos im Besitz von der Organisation PLCopen[®]. PLCopen[®] ist eine verkaufs- und produktunabhängige internationale Organisation, die einen Standard für die industrielle Steuerungsprogrammierung festlegt.

POU

Program organization unit (Programm-Organisationseinheit). Hierbei kann es sich um ein Programm, einen Funktionsblock oder eine Funktion handeln.

PWM

Pulsbreitenmodulation.

Radialkraft

Beschreibt die Kraft in Newtonmeter, die im 90°-Winkel auf die Längsrichtung der Rotorachse wirkt.

RCCB

Residual current circuit breaker (Differenzstrom-Schutz-schalter).

Resolver

Gebersystem für Servomotoren, in der Regel mit 2 Analogspuren (Sinus und Cosinus).

Sicherheit (STO)

Sicherheitsschaltung der Servoantriebe, wobei die Spannungen der Treiberbausteine für die IGBT abgeschaltet werden.

Scope

Ist Bestandteil der Software ISD Toolbox und dient zur Diagnose. Ermöglicht die Darstellung von internen Signalen.

Servo Access Box (SAB)

Dient zur Spannungsversorgung für den Zwischenkreis des ISD 510-Servosystems und kann bis zu 64 Servoantriebe aufnehmen.

SIL 2

Beschreibt das Safety Integrated Level II.

Singleturn Encoder

Digitaler Absolutwertgeber, bei dem die absolute Position für eine Umdrehung bekannt bleibt.

SSI

Synchronous Serial Interface.

sto

Funktion "Safe Torque Off". Bei Aktivierung der STO kann der Servoantrieb im Motor kein Drehmoment mehr erzeugen.

TwinCAT[®]

TwinCAT[®] ist eine eingetragene Marke und lizenziert von der Beckhoff Automation GmbH, Deutschland. Dabei handelt es sich um die integrierte Software-Entwicklungsumgebung für Controller von Beckhoff.

UAUX

Hilfsstromversorgung, versorgt die Steuerelektronik der Antriebe und SAB mit Strom.

Wireshark®

Wireshark[®] ist ein Programm zur Analyse von Netzwerkprotokollen, das unter der GNU General Public License Version 2 herausgegeben wurde.

Index

А

Abmessungen	
Servo Access Box	4
Servoantrieb	1
Alarmprotokoll (am LCP) 2	5
Anforderungen an die Zusatzversorgung	7
Anwendungsgebiete	7
Anzugsmomente 3	4
Außerbetriebnahme des ISD 510 Servosystems	9
Austausch der Servo Access Box 8	8
Austausch des Servoantriebs 8	8
Austauschen des Einspeisekabels 8	7
Austauschen von Kabeln 8	7
Auto on (am LCP) 2	6
AUX-Stecker 2	3
Axiallast	3

В

1
9
3
1
1
1
)
5
3
5
2
4
4 3 3 1 4 4 3 55 8 5 2 4

С

CAM mode	64
Checkliste vor der Inbetriebnahme	44
Checkliste zur Inbetriebnahme	44
Cyclic synchronous position mode	64
Cyclic synchronous velocity mode	64

D

Diagnose	77
Digital CAM switch	65

Е

Einrichtung	44
Einschalten des ISD 510 Servosystems	45
Elektrische Installation	36
Elektrische Umgebungsbedingungen	36
EMV-gerechte Installation	36
Encoder-Stecker	22
Entladezeit	11
Entsorgung	89
Erdung	36
Erstellen eines Automation Studio™ Projekts	45
Erstellen eines TwinCAT®	50
EtherCAT [®]	29
Ethernet POWERLINK®	29
Ethernet-Stecker	23

F

Fehlerspeicher (am LCP)	25
Fehlersuche und -behebung	
Feniercodes für SAB	82
Fehlercodes für Servoantrieb	78
Servo Access Box	80
Servoantrieb	77
Feldbus	28
Funktionsblöcke	63

G

Gear mode	64
Geber	15
Geberkabel Anschließen/Trennen	42
Geberschnittstelle	15
Gehäuse	94
Gewicht Bremse Servo Access Box Servoantrieb	91 94 91
Glossar	98

Н

Hand on (am LCP)	26
Hauptmenü (am LCP)	. 25
Hochspannung	. 10
Homing mode	. 64
Hybridkabel	
Anschließen/Trennen	40
PE	24
Übersicht	. 26

Hantoss

Hybridstecker X1 und X2 1	6
I	
I/O-Kabel Anschließen/Trennen 4 Geber 2	27
ID-Zuweisung EtherCAT®	4
Inbetriebnahme 4	4
Inertia measurement mode 6	64
Inspektionen während des Betriebs 8	6
Installation Anforderungen an die Sicherheitsstromversorgung	7784336674373000
Instandhaltung 8	6
IP-Schutzart SAB)7)3
ISD Toolbox Inbetriebnahme	51 57 57 56
ISD-Servosystem – Übersicht	ני ד
150-361 V03y3(CIII - UDEISICII(/

Κ

Kabel	
Aufbau des	27
E/A	27
Feldbusverlängerungskabel	27
Geber	27
Hybrid	26
Maximale Längen	27
Typenschild	97
Verlegung	27
Kenndaten	
Servo Access Box	94
Servoantrieb	90
Komponenten des Motors	14
Kühlung	15

L	
Lagerung	97
LCP	
Bedientaste	24
Displaybereich	24
Kabel	27
Menütaste	24
Navigationstaste	24
Reset	24
Übersicht	24
LEDs (am LCP)	26
LEDs am Sanvaantrich	
	65
DRIVE STAT	65
LINVACTAT	65
Link/ACT X3	65
NET STAT	65
LEDs on der SAR	
	66
Αυχ 7	66
Link/ACT X1	66
Link/ACT X2	67
Link/ACT X3	67
Link/ACT X4	67
NET STAT	66
SAB STAT	66
Safe 1	66
Safe 2	66
Lieferung	30
Long-term storage	97
Loop-Kabel austauschen	87

Μ

Mechanische Installation	30, 33
Menütasten (am LCP)	25
Missbrauch des Produkts	12
Motion-Bibliothek	63

Ν

Navigationstasten (am LCP)	25
NC-Achse	55
Netzversorgungsanforderungen	37

Ρ

POWERLINK [®]	29
Profile position mode	64
Profile torque mode	64
Profile velocity mode	64

Programmieren

Anforderungen	45
Automation Studio [™]	45
Erstellen eines Automation Studio™ Projekts	45
Erstellen eines TwinCAT®-Projekts	50
Richtlinien	56
TwinCAT [®]	50
TwinCAT [®] NC-Achse	55
Verbinden mit der SPS	56
Vorlage	63
-	

Q

Qualifiziertes Personal	11
Quick-Menü (am LCP)	25

R

Radiallast	93
Recycling	89
Relaisanschlussstecker	22
Reparatur	87
Reset (am LCP)	26
Resolver	15
Rücknahme	89
Rücknahme des Produkts	89

S

Safe Torque Off (STO)	68
Safety concept Operation	70
Safety-Konzept	
Abkürzungen und Konventionen	68
Anwendungsbeispiel	74
Benutzerzugriff	76
Fehlercodes	71
Fehlerrückstellung	71
Funktionsbeschreibung	70
Inbetriebnahmeprüfung	72
Installation	70
Instandhaltung	76
Kenndaten	76
Normen	68
Qualifiziertes Personal	68
Schutzmaßnahmen	69
Sicherheit	76
Service	12

Servo Access Box	
Abmessungen	94
Allgemeine technische Daten	97
Anschlüsse	21
Ausgangsspannung	94
Austausch	88
AUX-Stecker	23
Bremsanschlussstecker	22
Demontage	88
Eingangsspannung	94
Eingangsstrom	94
Encoder-Stecker	22
Ethernet-Stecker	23
Fehlercodes	82
Fehlersuche und -behehung	80
Gewicht	94
Inspektionen während des Betriebs	26
Konndaton	00
	07
Notzanschlussstockor	27 21
Polaisanschlussstecker	21
Cebutzart	22
Schulzart	9/
Storungen	80
iypenschild	94
UDersicht	18
UDC Stecker	24
Umgebungsbedingungen	9/
Wirkungsgrad	94
Servoantrieb	
Abmessungen	91
Allgemeine technische Daten	93
Austausch	88
Demontage	88
Fehlercodes	78
Fehlersuche und -behebung	77
Flanschgrößen	13
Hybridstecker X1 und X2	16
Inspektionen während des Betriebs	86
Instandhaltung	86
Kenndaten	90
Lagerung	97
Motorbaugrößen	13
Schutzart	93
Stecker	15
Typen	14
Typenschild	90
Übersicht	13
Umgebungsbedingungen	93
Welle	14
X3 3 Ethernet-Stecker	16
XA Geber- und/oder E/A-Stockor	16
X7 GCDE1- UNU/OUELL/A-DIECKEL	17
7ulässiga Kräfta	02
	20

Sicherheit Anforder

Stellerheit	
Anforderungen an die Spannungsversorgung	37
Bei der Installation	30
Betriebsbereit	10
Entladezeit	11
Handbuch	. 9
Hochspannung	10
Schutzmaßnahmen	. 9
Symbole	. 9
Unerwarteter Anlaut	10
Vorschriftsmaßig erden	10
warnungen	10
Signal	69
Software	28
Sorgfaltspflicht	11
Spannungswarnung	10
Stecker am Servoantrieb	15
Stecker an der Servo Access Box	
AUX	23
Bremse	22
Ethernet	23
Geber	22
Netz	21
PE	24
Relais	22
UDC	24
Steuerungssystem	69
STO	
Installation	70
Statusword	71
Stecker	21
Störungen	77
Systemüberblick	. 7

Т

90
15
56
30
55
97
94
90

Ü

Überwachung	86
U	
UDC Stecker	24
Unerwarteter Anlauf	10

-Unterstützung...... 12

۷

_

Verkabelung	
Anschließen des Einspeisekabels	38
Anschluss des 3. Ethernet-Gerätekabels	43
Anschluss des AUX-Kabels	38
Anschluss des Geberkabels	39
Anschluss des LCP-Kabels	43
Anschluss des Netzkabels	39
Anschluss des Real-Time Ethernet-Kabels	39
Anschluss des STO-Kabels	39
Austauschen des Einspeisekabels	87
Austauschen des Loop-Kabels	87
Für 1 Linie	28
Für 2 Linien	28
Versorgungsanforderungen	
Netz	37
Sicherheitsstromversoraung	37
Zusatz	37
Vorhersehbarer Missbrauch	12
Vorlage zum Programmieren	63

W

Warnungen	
Ableitstrom	
Entladezeit	11
Erdung	
Hochspannung	10, 36
Unerwarteter Anlauf	10
Welle	

Х

X3 3. Ethernet-Stecker	16
X4 Geber- und/oder E/A-Stecker	16
X5 LCP-Stecker	17

Ζ

Zulässige Kräfte	3
------------------	---

Die in Katalogen, Prospekten und anderen schriftlichen Unterlagen, wie z.B. Zeichnungen und Vorschlägen enthaltenen Angaben und technischen Daten sind vom Käufer vor Übernahme und Anwendung zu prüfen. Der Käufer kann aus diesen Unterlagen und zusätzlichen Diensten keinerlei Ansprüche gegenüber Danfoss oder Danfoss-Mitarbeitern ableiten, es sei denn, dass diese vorsätzlich oder grob fahrlässig gehandelt haben. Danfoss behält sich das Recht vor, ohne vorherige Bekanntmachung im Rahmen der angemessenen und zumutbaren Änderungen an seinen Produkten – auch an bereits in Auftrag genommenen – vorzunehmen. Alle in dieser Publikation enthaltenen Warenzeichen sind Eigentum der jeweiligen Firmen. Danfoss und das Danfoss-Logo sind Warenzeichen der Danfoss A/S. Alle Rechte vorbehalten.

.....

Danfoss A/S Ulsnaes 1 DK-6300 Graasten vlt-drives.danfoss.com

