

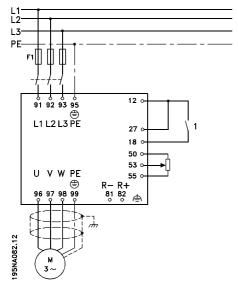
#### ■ Inhaltsverzeichnis

| Kurzanleitung                                          | 3  |
|--------------------------------------------------------|----|
| Allgemeine Warnung                                     |    |
| Mechanische Montage                                    | 3  |
| Elektrische Montage; Leistung                          | 3  |
| Elektrische Montage; Steuerleitungen                   | 3  |
| Programmierung                                         | 3  |
| Motorstart                                             | 4  |
| Sicherheitshinweise                                    | 4  |
| Warnung vor unerwartetem Anlauf                        | 4  |
| Finlaitum n VIII 0000                                  | _  |
| Einleitung zu VLT 2800                                 |    |
| Software-Version                                       |    |
| Allgemeine Warnung                                     |    |
| Die nachfolgenden Bestimmungen dienen Ihrer Sicherheit |    |
| Warnung vor unerwartetem Anlauf                        |    |
| Bedieneinheit                                          |    |
| Manuelle Initialisierung                               |    |
| Hand Auto                                              |    |
| Automatische Motoranpassung                            | 11 |
| Programmierung                                         | 12 |
| Betrieb und Display                                    |    |
| Last und Motor                                         |    |
| Sollwerte & Grenzwerte                                 |    |
| Ein- und Ausgänge                                      |    |
| Sonderfunktionen                                       |    |
|                                                        |    |
| Installation                                           | 56 |
| Abmessungen                                            | 56 |
| Mechanische Installation                               |    |
| Allgemeine Informationen zur elektrischen Installation | 61 |
| EMV-gemäße elektrische Installation                    | 62 |
| Elektrische Installation                               | 63 |
| Sicherheitsbügel                                       | 65 |
| Vorsicherungen                                         | 65 |
| Netzanschluß                                           | 65 |
| Motoranschluß                                          | 65 |
| EMV-Schalter                                           | 66 |
| Drehrichtung des Motors                                | 66 |
| Parallelschaltung von Motoren                          | 66 |
| Motorkabel                                             | 67 |
| Thermischer Motorschutz                                | 67 |
| Bremswiderstand                                        | 67 |
| Erdanschluß                                            | 67 |
| Zwischenkreiskopplung                                  | 67 |
| Anzugsmoment, Leistungsklemmen                         | 68 |
| Steuerung der mechanischen Bremse                      | 68 |
| Zugang zu Steuerkabelklemmen                           | 68 |
| Elektrische Installation, Steuerkabel                  | 69 |
| Anzugsmomente, Steuerkabel                             | 70 |



| Elektrische Installation, Steuerklemmen                         |    |
|-----------------------------------------------------------------|----|
| Relaisanschluß                                                  |    |
| VLT Software Dialog                                             | 70 |
| Anschlußbeispiele                                               | 71 |
|                                                                 |    |
| Alles über den VLT 2800                                         | 72 |
| Bestellformular                                                 | 72 |
| Displayanzeigen                                                 | 73 |
| Warn- und Alarmmeldungen                                        | 73 |
| Warnwörter, erweiterte Zustandswörter und Alarmwörter           | 77 |
| Besondere Bedingungen                                           | 78 |
| Aggressive Umgebungen                                           | 78 |
| Leistungsreduzierung wegen hoher Taktfrequenz - VLT 2800        | 78 |
| Temperaturabhängige Taktfrequenz                                | 79 |
| Galvanische Trennung (PELV)                                     | 79 |
| EMV-Emission                                                    | 79 |
| UL-Standard                                                     | 8  |
| Allgemeine technische Daten                                     | 82 |
| Technische Daten, Netzversorgung 1 x 220 - 240 V / 3 x200 -240V | 86 |
| Technische Daten, Netzversorgung 3 x 380 - 480 V                | 87 |
| Weitere Literatur                                               | 88 |
| Mitgelieferte Dokumente                                         | 88 |
|                                                                 |    |
| ndex                                                            | 96 |




#### **■** Kurzanleitung

#### **■** Allgemeine Warnung

Die vorliegende Kurzanleitung zur Schnellinbetriebnahme ermöglicht es dem Anwender, in fünf Schritten eine schnelle, EMV-gemäße Installation des Frequenzumrichters vorzunehmen. Die Betriebsanleitung - ebenfalls als Anlage beigefügt - enthält weitere Installationsbeispiele und beschreibt alle Funktionen im Detail.



Vor Beginn der Montagearbeiten unbedingt die Sicherheitshinweise auf nächster Seite lesen!



#### **■** Mechanische Montage

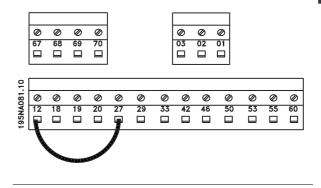
Frequenzumrichter der Serie VLT 2800 können seitlich nebeneinander angebracht werden. Wandmontage ist möglich. Um ausreichend Kühlung zu gewährleisten, ist ein Freiraum von mindestens 10 cm jeweils über und unter dem Gerät erforderlich und sicherzustellen.

Die notwendigen Bohrungen gemäß den in Sektion *Mechanische Abmessungen* angegebenen Maßen ausführen. Beachten Sie bitte die unterschiedlichen Gerätespannungen.

Alle vier Schrauben nachziehen.

Abschaltplatte für die Stromleitungen und Erdungsschraube (Klemme 95) montieren.

#### ■ Elektrische Montage; Leistung


Beachten Sie, daß die Stromklemmen abnehmbar sind.

Netzverbindung zu den Netzklemmen 91, 92 und 9'3 des Frequenzumrichters sowie Erdung zu Klemme 95 herstellen.

Motor und Motorklemmen U, V und W des Frequenzumrichters durch ein abgeschirmtes Kabel verbinden. Die Abschirmung endet im Schirmanschluß.

#### ■ Elektrische Montage; Steuerleitungen

Frontabdeckung unter dem Bedienfeld entfernen. Eine Drahtbrücke zwischen Klemme 12 und 27 setzen.



#### **■** Programmierung

Am Bedienfeld die Programmierung vornehmen.

[QUICK MENU] drücken, um in das Schnellkonfigurationsmenü zu gelangen.

Die Parameter können mit Hilfe von [+] und [-] gewählt werden. Durch Betätigen von [CHANGE DATA] kann der jeweilige Parameterwert geändert werden.

Änderungen werden mit [+] und [-] programmiert. Die Änderung einer Parametereinstellung jeweils mit [CHANGE DATA] beenden.

Änderungen von Parameterwerten werden nach einem Netzausfall automatisch gespeichert. Wenn rechts im Display drei Punkte erscheinen, bedeutet dies, daß der Parameterwert mehr als dreistellig ist. Um den Wert anzusehen, muß [CHANGE DATA] betätigt werden.

[QUICK MENU] drücken:



#### Motorparameter gemäß den Typenschilddaten einstellen

| Motorleistung [kW] | Parameter 102 |
|--------------------|---------------|
| Motorspannung [V]  | Parameter 103 |
| Motorfrequenz [Hz] | Parameter 104 |
| Motorstrom [A]     | Parameter 105 |
| Motornenndrehzahl  | Parameter 106 |

#### AMA aktivieren:

| Automat. Motoranpassung | Parameter 107 |
|-------------------------|---------------|
|                         |               |

#### Sollwertbereich einstellen

| Min. Sollwert, Ref <sub>MIN</sub> | Parameter 204 |
|-----------------------------------|---------------|
| Max. Sollwert, Ref MAX            | Parameter 205 |

#### Rampenzeiten einstellen

| Hochlauframpenzeit | Parameter 207 |
|--------------------|---------------|
| ('Rampe Auf') [s]  |               |
| Rücklauframpenzeit | Parameter 208 |
| ('Rampe Ab') [s]   |               |

In Parameter 002 Ort-/Fernsteuerung kann zur Bedienung des Frequenzumrichters Fern [0], d.h.

über die Steuerklemmen, oder Ort [1], d.h. über die Bedieneinheit, gewählt werden.

#### Ortsteuerung auf Ort [1] einstellen

Ortsteuerung = Ort [1] Par. 002

### Motordrehzahl durch Einstellen von Ort Sollwert einstellen

Ort Sollwert Parameter 003

#### **■** Motorstart

[START] betätigen, um den Motor anzulassen. Motordrehzahl durch Einstellen von Parameter 003 Ort Sollwert einstellen.

Prüfen Sie, ob der Drehsinn der Motorwelle Rechtslauf ist. Falls nicht, einfach zwei beliebige Motorkabelphasen vertauschen.

Zum Anhalten des Motors [STOP/RESET] drücken. Um in den Displaymodus zurückzugelangen, [QUICK MENU] drücken.

Die Tasten [QUICK MENU] + [+] gleichzeitig drücken, um Zugang zu sämtlichen Parametern zu erhalten.

#### **■** Sicherheitshinweise



Der Frequenzumrichter steht bei Netzanschluß unter lebensgefährlicher Spannung. Durch unsachgemäße

Installation des Motors oder des Frequenzumrichters können ein Ausfall des Gerätes, schwere Personenschäden oder sogar tödliche Verletzungen verursacht werden.

Befolgen Sie daher stets die Anweisungen in dieser Kurzanleitung sowie die jeweils gültigen nationalen bzw. internationalen Vorschriften und Sicherheitsbestimmungen.

Das Berühren spannungeführender Teile - auch nach der Trennung vom Netz - kann lebensgefährlich sein. Mindestens 4 Minuten warten!

- 1. Bei Reparaturarbeiten muß die Netzversorgung des Frequenzumrichters abgeschaltet sein.
- 2. Die Taste [STOP/RESET] auf dem Bedienfeld des Frequenzumrichters unterbricht die Netzversorgung nicht und darf deshalb nicht als Sicherheitsabschaltung benutzt werden.
- 3. Es ist dafür Sorge zu tragen, daß gemäß den örtlichen und nationalen Vorschriften eine

- ordnungsgemäße Erdung des Gerätes erfolgt, der Anwender gegen Leitungsspannung geschützt und der Motor gegen Überlastung abgesichert ist.
- 4. Der Ableitstrom gegen Erde ist höher als 3,4 mA.
- Ein Überlastungsschutz des Motors ist in der Werkseinstellung nicht enthalten. Wenn diese Funktion gewüncht wird, Parameter 128 Thermischer Motorschutz auf den Datenwert ETR Abschaltung oder ETR Warnung einstellen.
- Vor einem Entfernen der Motor- und Netzstecker ist sicherzustellen, daß die Netzversorgung unterbrochen ist.



#### ■ Warnung vor unerwartetem Anlauf

 $\triangle$ 

Der Motor kann mit einem digitalen Befehl, einem Bus-Befehl, einem Sollwert oder

LCP Stopp angehalten werden, obwohl

der Frequenzumrichter weiter unter Netzspannung steht. Ist ein unbeabsichtigtes Anlaufen des Motors gemäß den Bestimmungen zur Personensicherheit jedoch unzulässig, so sind die oben genannten Stoppfunktionen nicht ausreichend.

Während der Programmierung des Frequenzumrichters kann der Motor ohne Vorwarnung anlaufen. Daher immer die Stopptaste [STOP/RESET] betätigen, bevor Datenwerte geändert werden.

Ist der Motor abgeschaltet, so kann er von selbst wieder anlaufen, sofern die Elektronik des Frequenzumrichters defekt ist, oder falls eine kurzfristige Überlastung oder ein Fehler in der Versorgungsspannung bzw. am Motoranschluss beseitigt wurde.



#### **ACHTUNG!:**

Bezeichnet einen wichtigen Hinweis.



Bezeichnet eine allgemeine Warnung.



Bezeichnet eine Warnung vor Hochspannung.



# **Produkthandbuch Software-Version: 2.8x**







Dieses Produkthandbuch ist auf die VLT Serie 2800 Frequenzumrichter mit Software-Versionsnummer 2.8x anwendbar. Software-Versionsnummer: siehe Parameter 640 Software-Versionsnummer.





Berühren elektrischer Bauteile kann sehr gefährlich sein, auch wenn das Gerät keinen Strom führt. Stellen Sie außerdem sicher, dass andere Spannungseingänge von der Belastungsteilung durch den DC-Bus getrennt sind. Warten Sie mindestens 4 Minuten nach dem Entfernen des Eingangsstroms, bevor Sie den Frequenzumrichter warten.

195NA139.10



#### **■** Allgemeine Warnung

Der Frequenzumrichter steht bei Netzanschluß unter lebensgefährlicher Spannung. Durch unsachgemäße Installation des Motors oder Frequenzumrichters können ein Ausfall des Gerätes, schwere Personenschäden oder sogar tödliche Verletzungen verursacht werden. Beachten Sie daher stets die Hinweise in diesem Handbuch sowie die jeweils gültigen örtlichen und nationalen Vorschriften und Sicherheitsbestimmungen.

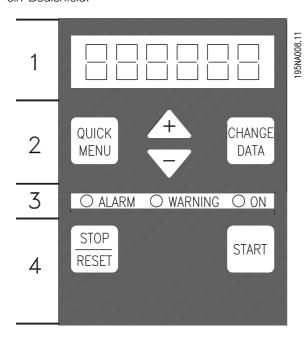
#### ■ Die nachfolgenden Bestimmungen dienen **Ihrer Sicherheit**

- 1. Bei Reparaturen muss der Frequenzumrichter vom Netz getrennt werden. Vergewissern Sie sich, dass die Netzversorgung unterbrochen und die erforderliche Zeit zum Entladen des Zwischenkreises verstrichen ist, bevor Sie die Motor- und Netzstecker abziehen.
- 2. Die Taste [STOP/RESET] auf der Bedieneinheit des Frequenzumrichters trennt das Gerät nicht von der Netzversorgung und darf deshalb nicht als Sicherheitsschalter benutzt werden.
- 3. Gemäß den geltenden nationalen und örtlichen Vorschriften muss das Gerät geerdet, der Benutzer gegen die Versorgungsspannung und der Motor gegen Überlastung geschützt werden.
- 4. Der Ableitstrom gegen Erde ist höher als 3,5 mA.
- 5. Ein Überlastungsschutz des Motors ist in der Werkseinstellung nicht enthalten. Wenn diese Funktion erforderlich ist, stellen Sie Parameter 128 Thermischer Motorschutz auf Datenwert ETR-Abschaltung oder Datenwert ETR-Warnung ein. Für den nordamerikanischen Markt: Die ETR-Funktionen beinhalten Motorüberlastungsschutz der Klasse 20 gemäß NEC.
- 6. Die Stecker für die Motor- und Netzversorgung dürfen nicht entfernt werden, wenn der Frequenzumrichter an die Netzversorgung angeschlossen ist. Vergewissern Sie sich, dass die Netzversorgung unterbrochen und die erforderliche Zeit zum Entladen des Zwischenkreises verstrichen ist, bevor Sie die Motor- und Netzstecker abziehen.
- 7. Beachten Sie bitte, dass der Frequenzumrichter außer den Netzeingängen L1, L2 und L3 noch weitere Spannungseingänge hat, wenn die DC-Zwischenkreisklemmen benutzt werden. Stellen Sie sicher, dass vor Beginn der Reparaturarbeiten alle Spannungseingänge abgeschaltet sind und die erforderliche Zeit verstrichen ist.

#### ■ Warnung vor unerwartetem Anlauf

- 1. Der Motor kann mit einem digitalen Befehl, einem Bus-Befehl, einem Sollwert oder LCP Stopp angehalten werden, obwohl der Frequenzumrichter weiter unter Netzspannung steht. Ist ein unbeabsichtigtes Anlaufen des Motors gemäß den Bestimmungen zur Personensicherheit jedoch unzulässig, so sind die oben genannten Stoppfunktionen nicht ausreichend.
- 2. Während der Programmierung des VLT-Frequenzumrichters kann der Motor ohne Vorwarnung anlaufen. Daher immer die Stopptaste [STOP/RESET] betätigen, bevor Datenwerte geändert werden.
- 3. Ist der Motor abgeschaltet, so kann er von selbst wieder anlaufen, sofern die Elektronik des Frequenzumrichters defekt ist, oder falls eine kurzfristige Überlastung oder ein Fehler in der Netzversorgung bzw. am Motoranschluss beseitigt wurde.

#### ■ Verwendung an isoliertem Stromnetz


Siehe Abschnitt EMV-Schalter bezüglich der Verwendung an einem isolierten Netz.

Es ist wichtig, den Empfehlungen bezüglich der Installation am IT-Netz zu beachten, da ausreichender Schutz der kompletten Anlage erfüllt sein muss. Bei Nichtverwendung entsprechender Überwachungsvorrichtungen für IT-Netz kann Beschädigung auftreten.



#### **■** Bedieneinheit

Vorne am Frequenzumrichter befindet sich ein Bedienfeld.



Die Funktionen des Bedienfelds sind in vier Gruppen aufgeteilt:

- 1. Sechsstelliges LED-Display.
- 2. Tasten zum Ändern der Parameter und der Anzeigefunktion.
- 3. Leuchtanzeigen.
- 4. Bedientasten für Ortsteuerung.

Alle Datenanzeigen erfolgen über ein sechsstelliges LED-Display, das im Normalbetrieb ständig eine Betriebsvariable anzeigen kann. Als Ergänzung zum Display gibt es drei Leuchtanzeigen für Netzanschluss (ON), Warnung (WARNING) und Alarm (ALARM). Die meisten Parametersätze des Frequenzumrichters sind unmittelbar über das Bedienfeld änderbar, es sei denn, diese Funktion wurde über den Parameter 018 Eingabesperre gesperrt [1].

#### **■** Bedientasten

[SCHNELLMENÜ] bietet Zugang zu den zum Schnellmenü gehörigen Parametern.
Die Taste [SCHNELLMENÜ] wird auch benutzt, wenn eine Änderung eines Parameterwertes nicht übernommen werden soll.
Siehe auch [SCHNELLMENÜ] + [+].

**[DATEN ÄNDERN]** dient zum Ändern einer Einstellung. Mit der Taste[DATEN ÄNDERN] wird außerdem die Änderung von Parametereinstellungen übernommen.

[+] / [-] dienen zur Parameterauswahl und Änderung der gewählten Parameterwerte.

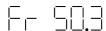
Diese Tasten dienen im Displaymodus auch zum Umschalten zwischen den Anzeigen der Betriebsvariablen.

Die Tasten **[SCHNELLMENÜ] + [+]** müssen gleichzeitig gedrückt werden, um Zugang zu allen Parametern zu erhalten. Siehe *Menümodus*.

**[STOPP/RESET]** dient zum Anhalten des angeschlossenen Motors oder zum Quittieren (Reset) des Frequenzumrichters nach einer Störung. Kann als *Wirksam* [1] oder *Blockiert* [0] in Parameter 014 *Taster Stopp* gewählt werden. Im Displaymodus blinkt die Anzeige, wenn die Stoppfunktion aktiviert wird.

#### **ACHTUNG!:**

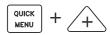
Wenn die Taste [STOPP/RESET] in Parameter 014 auf *Taster Stopp*auf *Blockiert* [0] eingestellt ist und kein Stoppbefehl über die digitalen Eingänge oder die serielle Schnittstelle gegeben wird, so kann der Motor nur durch Abschalten der Netzspannung für den Frequenzumrichter gestoppt werden.


**[START]** dient zum Starten des Frequenzumrichters. Ist immer aktiv, aber die [START]-Taste kann einen Stoppbef ehl nicht aufheben.

#### ■ Manuelle Initialisierung

Netzspannung ausschalten. [QUICK MENU] + [+] + [CHANGE DATA] Tasten gedrückt halten und gleichzeitig die Netzspannung einschalten. Tasten loslassen; der Frequenzumrichter ist nun in der Werkseinstellung programmiert.




#### ■ Displayanzeige-Zustände Anzeigemodus



Im Normalbetrieb kann ständig eine Betriebsvariable nach Wahl des Anwenders angezeigt werden. Mit den Tasten [+/-] können die folgenden Optionen im Displaymodus angezeigt werden:

- Ausgangsfrequenz [Hz]
- Ausgangsstrom [A]
- Ausgangsspannung [V]
- Zwischenkreisspannung [V]
- Ausgangsleistung [kW]
- Skalierte Ausgangsfrequenz fout x Par. 008

#### Menümodus



Zum Aufruf des Menümodus müssen [QUICK MENU] und [+] gleichzeitig gedrückt werden.

Im Menümodus können die meisten Parameter des Frequenzumrichters geändert werden. Mit den [+/-] Tasten werden die Parameter nacheinander angezeigt. Während der Anzeige im Menümodus blinkt die jeweilige Parameternummer.



Das Display zeigt, dass die Einstellung in Parameter 102 *Motorleistung, P\_{M,N}* 0,75 inst. Um den Wert 0,75 zu ändern, muss zuerst [CHANGE DATA] gedrückt werden. Der Parameterwert kann dann über die [+/-]-Tasten geändert werden.



Wenn das Display für einen gegebenen Parameter rechts drei Punkte anzeigt, hat der Parameterwert mehr als drei Stellen. Zur Anzeige des Werts [CHANGE DATA] drücken.



Das Display zeigt, dass die Einstellung für Parameter 128 Thermischer Motorschutz Abschaltung, Thermistor [2] ist.

#### Quick-Menü



Die Taste [QUICK MENU] bietet Zugriff auf die 12 wichtigsten Parameter des Frequenzumrichters. Nach der Programmierung ist der Frequenzumrichter in den meisten Fällen betriebsbereit. Wenn die Taste [QUICK MENU] im Anzeigemodus gedrückt wird, wird das Quick-Menü gestartet. Mit den [+/-] Tasten können Sie die Parameter im Quick-Menü nacheinander anzeigen und dann den Parameterwert nach dem Drücken von [CHANGE DATA] mit den [+/-] Tasten ändern.

Die Quick-Menü-Parameter sind:

- Par. 100 Konfiguration
- Par. 101 Drehmomentkennlinie
- Par. 102 Motorleistung P<sub>M.N</sub>
- Par. 103 MotorspannungU<sub>M.N</sub>
- Par. 104 Motorfrequenz f<sub>M,N</sub>
- Par. 105 Motorstrom I<sub>M.N</sub>
- Par. 106 Motornenndrehzahl n<sub>M,N</sub>
- Par. 107 Automatische Motoranpassung
- Par. 202 Max. Frequenz f<sub>MAX</sub>
- Par. 203 Sollwertbereich
- Par. 204 Min. Sollwert Ref<sub>MIN</sub>
- Par. 205 Max. Sollwert Ref<sub>MAX</sub>
- Par. 207 Rampe-Auf Zeit
- Par. 208 Rampe-Ab Zeit
- Par. 002 Betriebsart (Ort/Fern)
- Par. 003 Ortsollwert

Parameter 102 - 106 können auf dem Typenschild des Motors abgelesen werden.

#### **■** Hand Auto

Während des normalen Betriebsablaufs arbeitet der Frequenzumrichter im Automatikbetrieb, wo er über die Steuerklemmen mit einem - analogen oder digitalen - Führungssignal angesteuert wird. In jedem Fall kann der Frequenzumrichter im Handbetrieb über die Bedieneinheit lokal mit dem entsprechenden Führungssignal angesteuert werden.

Beim Schalten in den Handbetrieb bleiben die folgenden steuerklemmenseitigen Steuersignale aktiv:



- Hand Start (LCP2)
- Stop Aus (LCP2)
- Quittieren
- Freilaufstopp invers
- · Quittieren und Motorfreilauf invers
- Schnell-Stopp invers
- Stopp invers
- Reversierung
- Gleichsspannungsbremse invers
- LSB-Parametersatzanwahl
- MSB-Parametersatzanwahl
- Thermistor
- Präziser Stopp invers
- Präziser Stopp/Start invers
- Festdrehzahl Jog
- Stopp-Befehl über serielle Kommunikationsschnittstelle

#### Umschalten zwischen Auto- und Handbetrieb

Durch Aufrufen der Funktion [Daten ändern] im [Display-Modus] wird die aktive Betriebsart des Frequenzumrichters angezeigt.



Handbetrieb durch Herauf-/Herunterrollen der Dis playanzeige aufrufen.



Befindet sich der Frequenzumrichter im Handbetrieb, wird folgende Datenanzeige ausgegeben:



Der angezeigte Sollwert kann mit folgenden Tasten geändert werden:



# if

#### **ACHTUNG!:**

Bitte beachten: Parameter 020 kann die Betriebsartwahl sperren.

#### **Automatische Motoranpassung**

Die automatische Motoranpassung (AMA) wird folgendermaßen durchgeführt:

- 1. In Parameter 107 *Automatische Motoranpassung* Datenwert [2] wählen. "107" blinkt nun und "2" nicht.
- 2. Die AMA wird durch Drücken von Start aktiviert.
  "107" blinkt nun, und horizontale Striche bewegen sich von links nach rechts im Datenwertfeld.

- 3. Wenn "107" nochmals mit dem Wert [0] erscheint, ist die AMA abgeschlossen. [STOP/RESET] drücken, um die Motordaten zu speichern.
- 4. "107" blinkt dann weiter mit dem Wert [0]. Sie können nun fortfahren.



#### **ACHTUNG!:**

VLT 2880-2882 haben keine AMA-Funktion.



#### ■ Betrieb und Display

| 001 Sprache            |     |
|------------------------|-----|
| (SPRACHAUSWAHL)        |     |
| Wert:                  |     |
| ★Englisch (ENGLISH)    | [0] |
| Deutsch (DEUTSCH)      | [1] |
| Französisch (FRANCAIS) | [2] |
| Dänisch (DANSK)        | [3] |
| Spanisch (ESPANOL)     | [4] |
| Italienisch (ITALIANO) | [5] |
|                        |     |

#### **Funktion:**

In diesem Parameter wird gewählt, in welcher Sprache die Anzeigen im Display erscheinen sollen, wenn die Bedieneinheit angeschlossen ist.

#### Beschreibung der Auswahl:

Wählbar sind die aufgeführten Sprachen. Die Werkseinstellung kann variieren.

# 002 Betriebsart (Ort/Fern) (BETRIEBSART) Wert: ★Fernsteuerung (FERN) [0] Ortsteuerung (ORT) [1]

#### **Funktion:**

Zur Auswahl stehen zwei Betriebsarten für den Frequenzumrichter; Fernsteuerung [0] und Ortsteuerung [1]. Siehe auch Parameter 013 Ortsteuerung, falls Ortsteuerung [1] gewählt ist.

#### Beschreibung der Auswahl:

Ist Fernsteuerung [0] gewählt, so kann der Frequenzumrichter gesteuert werden über:

- 1. Steuerklemmen oder serielle Schnittstelle.
- Taste [START]. Diese kann jedoch Stoppbefehle, die über die digitalen Eingänge oder die serielle Schnittstelle übertragen wurden, nicht außer Kraft setzen.
- 3. Tasten [STOP/RESET] und [JOG], sofern sie aktiv sind.

Ist Ortsteuerung [1] gewählt, kann der Frequenzumrichter gesteuert werden über:

- 1. Taste [START]. Diese kann jedoch Stoppbefehle über die Digitaleingänge nicht außer Kraft setzen (siehe Parameter 013 *Sollwert Ort Modus*).
- 2. Tasten [STOP/RESET] und [JOG], sofern sie aktiv sind.
- Taste [FWD/REV], sofern diese über Parameter
   016 Ort Reversierung, aktiv gewählt und Parameter

- 013 Sollwert Ort Modus auf Ort ohne Schlupf [1] oder Ort wie Par. 100 [3] eingestellt wurde. Parameter 200 Ausgangsfrequenzbereich ist auf Beide Richtungen einzustellen.
- 4. Parameter 003 Ort Sollwert, der das Einstellen des Sollwertes mit den Tasten [+] und [-] ermöglicht.
- 5. Externen Steuerbefehl, der an die digitalen Eingänge angeschlossen werden kann (siehe Parameter 013 *Sollwert Ort Modus* ).



#### **ACHTUNG!:**

Die Tasten [JOG] und [FWD/REV] befinden sich auf der Bedieneinheit.

#### 003 Ortsollwert

#### (ORT SOLLWERT)

#### Wert

Par. 013 Sollwert Ort Modus auf [1] oder [2]:

0 - f<sub>MAX</sub> (Par. 202)

★ 50 Hz

Par. 013 Sollwert Ort Modus auf [3] oder [4]:

Ref<sub>MIN</sub> - Ref<sub>MAX</sub> (par. 204-205)

#### **Funktion:**

In diesem Parameter kann manuell ein Ortsollwert eingestellt werden. Die Einheit des Ortsollwerts hängt von der in Parameter 100 Konfiguration gewählten Konfiguration ab.

#### Beschreibung der Auswahl:

Um den Ortsollwert benutzen zu können, muss Parameter 002 *Betriebsart (Ort/Fern)* auf *Ort* [1] eingestellt sein. Der Ortsollwert ist nicht über die serielle Kommunikation einstellbar.

# 004 Aktiver Parametersatz(AKTIVER PARAMETERSATZ)Wert:Werkseinstellung (WERKSEINSTELLUNG)[0]★Parametersatz 1 (SATZ 1)[1]Parametersatz 2 (SATZ 2)[2]Parametersatz 3 (SATZ 3)[3]Parametersatz 4 (SATZ 4)[4]Externe Anwahl (EXTERNE ANWAHL)[5]

#### **Funktion:**

Hier wird der aktive Parametersatz ausgewählt. Alle Parameter sind über vier individuelle Parametersätze programmierbar. Zwischen diesen Sätzen kann in



diesem Parameter über einen digitalen Eingang oder die serielle Schnittstelle gewechselt werden.

#### Beschreibung der Auswahl:

Werkseinstellung [0] enthält die ab Werk eingestellten Werte. Parametersatz 1-4 [1]-[4] sind vier individuelle, frei wählbare Sätze. Externe Anwahl [5] wird benutzt, wenn der Wechsel zwischen den vier Sätzen über einen digitalen Eingang oder über die serielle Schnittstelle im Fernsteuerungsmodus erfolgen soll.

| 005 Programmierungssatz             |     |
|-------------------------------------|-----|
| (PAR-SATZ PROGRAM)                  |     |
| Wert:                               |     |
| Werkseinstellung (WERKSEINSTELLUNG) | [0] |
| Satz 1 (SATZ 1)                     | [1] |
| Satz 2 (SATZ 2)                     | [2] |
| Satz 3 (SATZ 3)                     | [3] |
| Satz 4 (SATZ 4)                     | [4] |

#### Funktion:

★Aktiver Satz (AKT. SATZ)

Hier kann gewählt werden, welcher Parametersatz während des Betriebs programmiert werden soll (sowohl über das Bedienfeld als auch die serielle Schnittstelle). Es ist z.B. möglich, *Satz 2* [2] zu programmieren, während *Satz 1* [1] als aktiver Satz in Parameter 004 *Aktiver Par.satz* gewählt ist.

#### Beschreibung der Auswahl:

Werkseinstellung [0] enthält die ab Werk gespeicherten Daten und kann als Datenquelle werden, wenn die übrigen Sätze wieder in einen bekannten Zustand zurückversetzt werden sollen. Satz 1-4 [1]-[4] sind individuelle Sätze, die im Betrieb frei programmiert werden können. Wird Aktiver Satz[5] gewählt, so ist der Programmierungssatz gleich Parameter 004 Aktiver Par.satz.



#### **ACHTUNG!:**

Werden Daten im aktiven Satz geändert bzw. in diesen kopiert, so wirken sich die Änderungen unverzüglich auf die Funktion des Gerätes aus.

| 006 Par.satz Kopie                  |     |
|-------------------------------------|-----|
| (KOPIER FUNKTION)                   |     |
| Wert:                               |     |
| ★Keine Kopie (KEINE KOPIE)          | [0] |
| Kopie auf Satz 1 von #              |     |
| (SATZ 1 VON #)                      | [1] |
| Kopie aktiver Satz auf Satz 2 von # |     |
| (SATZ 2 VON #)                      | [2] |
|                                     |     |

Kopie aktiver Satz auf 3 von #
(SATZ 3 VON #) [3]
Kopie aktiver Satz auf Satz 4 von #
(SATZ 4 VON #) [4]
Kopie aktiver Satz auf alle
(KOPIE AUF ALLE VON #) [5]

#### **Funktion:**

Kopiert wird vom in Parameter 005 *Program-mierungssatz* gewählten aktiven Satz auf den/die in diesem Parameter gewählten Satz/Sätze.



[5]

#### **ACHTUNG!:**

Es kann nur im Stoppmodus kopiert werden (Motor durch Stoppbefehl angehalten).

#### Beschreibung der Auswahl:

Der Kopiervorgang beginnt, nachdem die gewünschte Kopierfunktion gewählt und die Taste [OK]/[CHANGE DATA] gedrückt wurde. Das Display zeigt an, daß der Kopiervorgang abläuft.

| [0] |
|-----|
| [1] |
|     |
| [2] |
|     |
| [3] |
|     |

#### **Funktion:**

Parameter 007 *LCP-Kopie* wird benutzt, wenn die integrierte Kopierfunktion des Bedienfelds verwendet werden soll. Die Funktion wird benutzt, wenn beim Umstellen des LCP 2-Bedienfelds alle Parametereinstellungen von einem Frequenzumrichter auf einen anderen übertragen werden sollen.

#### Beschreibung der Auswahl:

Wählen Sie Upload aller Parameter [1], wenn alle Parameterwerte auf das Bedienfeld übertragen werden sollen. Wählen Sie Download aller Parameter [2], wenn alle übertragenen Parameterwerte auf den Frequenzumrichter übertragen werden sollen, an dem das Bedienfeld montiert ist. Wählen Sie Download leistungsabhängiger Parameter [3], wenn nur die leistungsabhängigen Parameter heruntergeladen werden sollen. Dies ist immer dann der Fall, wenn ein Download auf einen Frequenzumrichter durchgeführt werden soll, der eine andere Nennleistung als der hat, von dem die Parametereinstellungen stammen.



ACHTUNG!:

Uploads/Downloads sind nur im Stoppmodus möglich. Ein Download kann <u>nur</u> zu einem Frequenzumrichter mit der gleichen Software-Versionsnummer erfolgen (siehe Parameter

Software-Versionsnummer erfolgen (siehe Parameter 626 *Datenbankldentifikationsnummer*).

#### 008 Displayskalierung der Ausgangsfrequenz

#### (SKAL.MOT.FREQ.)

#### Wert:

0,01 - 100,00

★ 1,00

#### Funktion:

In diesem Parameter wird der Faktor gewählt, der mit der Ausgangsfrequenz malgenommen (multipliziert) wird. Der Wert wird im Display angezeigt, wenn Parameter 009-012 *Displayanzeige* auf *Ausgangsfrequenz x Skalierung* [5] eingestellt sind.

#### Beschreibung der Auswahl:

Stellen Sie den gewünschten Skalierungsfaktor ein.

#### 009 Große Displayanzeige

#### (DISPLAY ZEILE 2)

| (DISPLAY ZEILE 2)                     |      |
|---------------------------------------|------|
| Wert:                                 |      |
| Keine Anzeige (KEINE)                 | [O]  |
| Resultierender Sollwert [%]           |      |
| (SOLLWERT [%])                        | [1]  |
| Resultierender Sollwert [Einheit]     |      |
| (SOLLWERT [EINHEIT])                  | [2]  |
| Istwert [Einheit] (ISTWERT [EINHEIT]) | [3]  |
| *Frequenz [Hz] (FREQUENZ [HZ])        | [4]  |
| Ausgangsfrequenz x Skalierung         |      |
| (FREQUENZ X SKAL.)                    | [5]  |
| Motorstrom [A] (MOTORSTROM [A])       | [6]  |
| Dehmoment [%] (MOMENT [%])            | [7]  |
| Leistung [kW] (LEISTUNG [KW])         | [8]  |
| Leistung [PS] (LEISTUNG [HP])         | [9]  |
| Motorspannung [V]                     |      |
| (MOTORSPANNUNG [V])                   | [11] |
| DC-Zwischenkreisspannung [V]          |      |
| (DC-SPANNUNG [V])                     | [12] |
| Therm. Belast. Motor [%]              |      |
| (TH. MOTORSCHUTZ [%])                 | [13] |
| Therm. Belast. Wechselrichter [%]     |      |
| (TH. FC-SCHUTZ [%])                   | [14] |
| Motorlaufstunden [h]                  |      |
| (MOTORLAUFSTUNDEN)                    | [15] |
| Digitaleingänge [Bin]                 |      |
| (DIGITALEINGANG [BIN])                | [16] |
| Analogeingang 53 [V]                  |      |

| (ANALOGEING. 53 [V])                        | [17] |
|---------------------------------------------|------|
| Analogeingang 60 [mA] (ANALOGEING. 60 [MA]) | [19] |
| Pulssollwert [Hz]                           |      |
| (PULS SOLLWERT [HZ])                        | [20] |
| Externer Sollwert [%]                       |      |
| (EXT.SOLLWERT [%])                          | [21] |
| Zustandswort [Hex] (STATUSWORT [HEX])       | [22] |
| Kühlkörpertemperatur [°C]                   |      |
| (TEMP.KUEHLKOE. [°C])                       | [25] |
| Alarmwort [Hex] (ALARMWORT [HEX])           | [26] |
| Steuerwort [Hex] (STEUERWORT [HEX])         | [27] |
| Warnwort [Hex]                              |      |
| (WARNWORT [HEX])                            | [28] |
| Erweitertes Zustandswort [Hex]              |      |
| (ZUSTANDSWORT [HEX])                        | [29] |
| Kommunikations-Option Warnung               |      |
| (COMM OPT WARN [HEX])                       | [30] |
| Pulszähler                                  |      |
| (PULSZÄHLER)                                | [31] |
|                                             |      |

#### **Funktion:**

In diesem Parameter kann der Datenwert gewählt werden, der beim Einschalten des Frequenzumrichters in der zweiten Zeile der Bedieneinheit LCP 2 angezeigt werden soll. Die Datenwerte sind in der Displayanzeige auch Bestandteil der Bildlaufleiste. In den Parametern 010-012 *Displayanzeige* können drei weitere Datenwerte zur Anzeige in der ersten Displayzeile gewählt werden.

#### Beschreibung der Auswahl:

Keine Anzeige ist nur in den Parametern 010-012 Kleine Displayanzeige wählbar.

Resultierender Sollwert [%] liefert einen Prozentwert für den resultierenden Sollwert im Bereich von Minimaler Sollwert, Ref<sub>MIN</sub> bis Maximaler Sollwert, Ref<sub>MAX</sub>.

Sollwert [Einheit] liefert den resultierenden Sollwert in Hz in der Betriebsart Ohne Rückführung. In der Betriebsart Mit Rückführung wird die Sollwerteinheit in Parameter 416 Soll-Istwert-Einheit gewählt.

Istwert [Einheit] liefert den resultierenden Signalwert mit Hilfe der in den Parametern 414, Min. Istwert, FB<sub>LOW</sub>, 415, Max. Istwert, FB<sub>HIGH</sub> und 416 Soll-Istwert-Einheiten gewählten Einheit/Skalierung.

Frequenz [Hz] gibt die Ausgangsfrequenz des Frequenzumrichters an.

Ausgangsfrequenz x Skalierung [-] entspricht der aktuellen Ausgangsfrequenz f<sub>M</sub> multipliziert mit dem in Parameter 008 Displayskalierung der Ausgangsfrequenz eingestellten Faktor.



Motorstrom [A] gibt den Phasenstrom des Motors als Effektivwert an.

Drehmoment [%] gibt die aktuelle Motorlast im Verhältnis zu seinem Nennmoment an.

Leistung [kW] gibt die aktuell vom Motor aufgenommene Leistung in kW an.

Leistung [PS] gibt die aktuell vom Motor aufgenommene Leistung in amerikanischen PS (HP) an.

Motorspannung [V] gibt die dem Motor zugeführte Spannung an.

DC-Spannung [V] gibt die Zwischenkreisspannung des Frequenzumrichters an.

Thermische Belastung, Motor [%] gibt die berechnete/geschätzte thermischen Belastung des Motors an. Die Abschaltgrenze liegt bei 100 %.

Thermische Belastung [%] gibt die thermische Belastung des Frequenzumrichters an. 100 % ist die Abschaltgrenze.

Motorlaufstunden [h] gibt die Anzahl der Stunden an, die der Motor seit dem letzten Reset in Parameter 619 Rückstellung Stundenzähler gelaufen ist.

Digitaleingänge gibt den Signalzustand der 5 Digitaleingänge (18, 19, 27, 29 und 33) an. Klemme 18 entspricht dem am weitesten links stehenden Bit. '0' = Kein Signal, '1' = angeschlossenes Signal.

Analogeingang 53 [V] gibt den Spannungswert an Klemme 53 an.

Analogeingang 60 [mA] gibt den aktuellen Stromwert an Klemme 60 an.

Pulssollwert [Hz] gibt den an Klemme 33 angeschlossenen Sollwert in Hz an.

Externer Sollwert [%] gibt die Summe der externen Sollwerte (Summe aus Analogsollwert/Pulssollwert/serielle Schnittstelle) im Bereich zwischen minimalem Sollwert , Ref $_{MIN}$  und maximalem Sollwert , Ref $_{MAX}$  in % an.

Statuswort [Hex] gibt einen oder mehrere Zustände in Hex-Code an. Siehe auch Serielle Kommunikation im Projektierungshandbuch.

Kühlkörpertemperatur [°C] gibt die aktuelle Kühlkörpertemperatur des Frequenzumrichters an. Die Abschaltgrenze liegt bei 90-100 °C, die Wiedereinschaltgrenze bei  $70 \pm 5$  °C.

Alarmwort [Hex] gibt einen oder mehrere Alarme im Hex-Code an. Siehe auch Serielle Kommunikation im Projektierungshandbuch.

Steuerwort [Hex] gibt das Steuerwort des Frequenzumrichters an. Siehe auch Serielle Kommunikation im Projektierungshandbuch.

Warnwort [Hex] gibt eine oder mehrere Warnungen im Hex-Code an. Siehe auch Serielle Kommunikation im Projektierungshandbuch.

Erweitertes Zustandswort [Hex] gibt einen oder mehrere Statuszustände im Hex-Code an. Siehe auch Serielle Kommunikation im Projektierungshandbuch.

Warnung Kommunikationsoptionskarte [Hex] gibt bei einem Fehler im Kommunikationsbus ein Warnwort aus. Nur aktiv, wenn Kommunikationsoptionen installiert sind.

Ohne Kommunikationsoptionen wird 0 Hex angezeigt.

Pulszähler gibt die Anzahl der vom Gerät registrierten Pulse an.

# 010 Kleine Displayzeile 1.1 (DISPLAY ZEILE 1.1)

#### Wert:

Siehe Par. 009 Große Displayanzeige

\* Analogeingang 53 [V] [17]

#### **Funktion:**

In diesem Parameter kann der erste von drei in der Displayzeile 1, Position 1 der LCP Bedieneinheit anzuzeigenden Datenwerten gewählt werden. Diese Funktion ist z. B. beim Einstellen des PID-Reglers nützlich, da sie die Prozessreaktionen auf Sollwertveränderungen anzeigt. Die Displayanzeige erfolgt durch Drücken der Taste [DISPLAY STATUS].

#### Beschreibung der Auswahl:

Siehe Parameter 009 Große Displayanzeige.

#### 011 Kleine Displayanzeige 1.2

#### (DISPLAY ZEILE 1.2)

#### Wert:

Siehe Parameter 009 Große Displayanzeige

★ Motorstrom [A][6]

#### **Funktion:**

Siehe Funktionsbeschreibung zu Parameter 010 Kleine Displayanzeige.



#### Beschreibung der Auswahl:

Siehe Parameter 009 Große Displayanzeige .

# 012 Kleine Displayanzeige 1.3 (DISPLAY ZEILE 1.3)

#### Wert:

Siehe Parameter 009 Große Displayanzeige.

★ Istwert [Einheit] [3]

#### **Funktion:**

Siehe Funktionsbeschreibung unter Parameter 010 Kleine Displayanzeige.

#### Beschreibung der Auswahl:

013 Ort-Steuerung

Siehe Parameter 009 Große Displayanzeige.

# (SOLLW. ORT MODUS) Wert: Blockiert (BLOCKIERT) [0] Ort-Steuerung und Regelung ohne Rückführung ohne Schlupfausgleich (ORT OHNE SCHLUPF) [1] Fern-Betrieb und Regelung ohne Rückführung

ohne Schlupfausgleich (ORT + EXT. ST.) [2]

Ort-Steuerung wie Par. 100 (ORT/WIE P100) [3]

★Fern-Betrieb wie Par. 100 (ORT+ EXT.ST./P100) [4]

#### Funktion:

Hier wird die gewünschte Funktion gewählt, wenn in Parameter 002 Betriebsart (Ort/Fern) der Wert Ort [1] gewählt wurde.

#### Beschreibung der Auswahl:

Wenn *Blockiert* [0] gewählt wird, kann über Parameter 003 *Ort* kein Sollwert eingestellt werden.
Um *Blockiert* [0] zu ermöglichen, muss Parameter 002 *Betriebsart Ort/Fern* auf *Fern* [0] eingestellt sein.

Ort-Steuerung ohne Schlupf [1] wird benutzt, wenn die Drehzahl des Motors über Parameter 003 Ortsollwert eingestellt werden soll. Im Falle dieser Wahl wechselt Parameter 100 Konfiguration automatisch auf Drehzahlregelung ohne Rückführung [0].

Fern-Betrieb ohne Schlupf [2] funktioniert wie Ort-Steuerung ohne Schlupf [1], wobei der Frequenzumrichter hier jedoch auch über die Digitaleingänge gesteuert werden kann.

Ort-Steuerung wie Par. 100 [3] wird benutzt, wenn die Drehzahl des Motors über Parameter 003 Ortsollwert eingestellt werden soll, jedoch ohne dass Parameter 100 Konfiguration automatisch auf Drehzahlregelung ohne Rückführung [0] wechselt.

Fern-Betrieb wie Par. 100 [4] funktioniert wie Ort-Steuerung wie Par. 100 [3], wobei der Frequenzumrichter hier jedoch auch über die Digitaleingänge gesteuert werden kann.

Wechsel von Fern auf Ort in Parameter 002 Betriebsart (Ort/Fern), während dieser Parameter auf Fern-Betrieb ohne Schlupf [1] eingestellt ist: Aktuelle Motorfrequenz und -laufrichtung werden beibehalten. Entspricht die aktuelle Motorlaufrichtung nicht dem Reversiersignal (negativer Sollwert), so stellt sich der Sollwert auf 0.

Wechsel von Ort auf Fern in Parameter 002 Betriebsart (Ort/Fern), während dieser Parameter auf Fern-Betrieb ohne Schlupf [1] eingestellt ist: Die gewählte Konfiguration in Parameter 100 Konfiguration ist aktiv. Der Wechsel erfolgt übergangslos.

Wechsel von Fern auf Ort in Parameter 002 Betriebsart (Ort/Fern), während dieser Parameter auf Fern-Betrieb wie Par. 100 [4] eingestellt ist: Der aktuelle Sollwert wird beibehalten. Ist das Sollwertsignal negativ, so stellt sich der Ortsollwert auf 0.

Wechsel von Ort auf Fern in Parameter 002 Betriebsart (Ort/Fern), während dieser Parameter auf Fern eingestellt ist: Der Ortsollwert wird durch das im Fern-Betrieb eingestellte Sollwertsignal ersetzt.

#### 014 Ort Stopp

#### (TASTER STOP)

#### Wert:

Blockiert (BLOCKIERT) [0] ★Wirksam (WIRKSAM) [1]

#### **Funktion:**

In diesem Parameter kann auf dem Bedienfeld und LCP-Bedienfeld die Taste [STOP] anund abgewählt werden.

#### Beschreibung der Auswahl:

Wird in diesem Parameter *Blockiert* [0] gewählt, so ist die Taste [STOP] nicht aktiv.

## 5

#### **ACHTUNG!:**

Wenn *Blockiert* [0] gewählt wird, kann der Motor nicht über die [STOP]-Taste angehalten werden.



[0]

[1]

#### VLT® Serie 2800

# 015 Ort Festdrehzahl (LOCAL JOGGING) Wert: ★Blockiert (BLOCKIERT)

### Funktion:

Wirksam (WIRKSAM)

In diesem Parameter kann auf dem LCP-Bedienfeld die Festdrehzahlfunktion an- und abgewählt werden.

#### Beschreibung der Auswahl:

Wird in diesem Parameter *Blockiert* [0] gewählt, so ist die Taste [JOG] nicht aktiv.

# 016 Ort Reversierung (TASTER REVERS.) Wert:

★Blockiert (BLOCKIERT) [0]Wirksam (WIRKSAM) [1]

#### Funktion:

In diesem Parameter kann auf dem Bedienfeld die Reversierungsfunktion an-/abgewählt werden. Diese Taste kann nur benutzt werden, wenn Parameter 002 Ort-/Fernsteuerung auf Ortsteuerung [1] und Parameter 013 Sollwert Ort Modus auf Ortsteuerung ohne Schlupf [1] oder Ortsteuerung wie Parameter 100 [3] eingestellt wurde.

#### Beschreibung der Auswahl:

Wird in diesem Parameter *Blockiert* [0] gewählt, so ist die Taste [FWD/REV] nicht aktiv. Siehe auch Parameter 200 *Ausgangsfrequenzbereich*.

#### 017 Ort Abschaltquittierung

#### (TASTER RESET)

#### Wert:

Blockiert (BLOCKIERT) [0] ★Wirksam (WIRKSAM) [1]

#### **Funktion:**

In diesem Parameter kann auf dem Bedienfeld die Quittierfunktion (Reset) an- und abgewählt werden.

#### Beschreibung der Auswahl:

Wird in diesem Parameter *BLOCKIERT* [0] gewählt, so ist die Quittierfunktion nicht aktiv.



#### **ACHTUNG!:**

Blockiert [0] nur dann wählen, wenn über die Digitaleingänge ein externes Quittiersignal angeschlossen ist.

# 018 Eingabesperre (EINGABESPERRE) Wert: ★Wirksam (DATENEING. WIRKSAM) [0] Dateneingabe gesperrt (DATENEING. GESPERRT) [1]

#### **Funktion:**

In diesem Parameter kann die Bedienmöglichkeit gesperrt werden, so dass über die Bedientasten keine Datenänderungen vorgenommen werden können.

#### Beschreibung der Auswahl:

Bei Wahl von Eingabe gesperrt [1] sind über die Parameter keine Datenänderungen möglich, wohl aber über die serielle Kommunikation. Parameter 009-012 Displayanzeige kann über das Bedienfeld geändert werden.

#### 019 Betriebszustand bei Netzeinschaltung, Ortbedienung

#### (NETZ-EIN-MODUS)

#### Wert:

Auto-Neustart mit gespeichertem Sollwert
(AUTO NEUSTART) [0]

\*Zwangsstopp mit gespeichertem Sollwert
(ORT=STOPP) [1]

Stopp, Ort-Sollwert wurde auf 0 gesetzt
(ORT=STOPP+SOLLW.=0) [2]

#### **Funktion:**

Einstellen des gewünschten Betriebszustandes bei Einschalten der Netzversorgung. Die Funktion ist nur aktiv, wenn in Parameter 002 *Ort-/Fernsteuerung* der Wert *Ortsteuerung* [1] gewählt wurde.

#### Beschreibung der Auswahl:

Automatischer Wiederanlauf mit gespeichertem Ort-Sollwert [0] ist zu wählen, wenn der Frequenzumrichter mit dem Ortsollwert (einzustellen in Parameter 003 Ortsollwert) und dem Start/Stopp-Zustand anlaufen soll, die unmittelbar vom Abschalten der Versorgungsspannung über die Bedientasten vorgegeben waren. Zwangsstopp mit gespeichertem Sollwert [1] ist zu wählen, wenn der Frequenzumrichter beim



Wiedereinschalten der Versorgungsspannung weiterhin angehalten bleiben soll, bis die Taste [START] betätigt wird. Nach einem Startbefehl wird die Motordrehzahl über die Rampenfunktion bis auf den gespeicherten Sollwert des Parameters 003 *Ort Sollwert* hochgefahren.

Zwangsstopp, Sollw. auf 0 setzen [2] ist zu wählen, wenn der Frequenzumrichter beim Wiedereinschalten der Versorgungsspannung angehalten bleiben soll. Parameter 003 Ortsollwert ist auf Null zu setzen.

#### **ACHTUNG!:**

Bei Betrieb über Fernsteuerung (Parameter 002 Ort-/Fernsteuerung) hängt der Start/Stopp-Zustand bei Netzeinschaltung von den externen Steuersignalen ab. Wird in Parameter 302 Digitaleingang der Wert Pulsstart [8] gewählt, so verbleibt der Motor nach der Netzeinschaltung weiterhin im gestoppten Zustand.

### 020 Handbetrieb (HANDBETRIEB)

#### Wert:

★Blockiert (BLOCKIERT) [0]Aktiv (WIRKSAM) [1]

#### Funktion:

Mit diesem Parameter kann eingestellt werden, ob eine Umschaltung zwischen Auto- und Handbetrieb möglich ist. Im Automatikbetrieb wird der Frequenzumrichter durch externe Signale gesteuert. Im Handbetrieb erfolgt die Ansteuerung des Frequenzumrichters dagegen direkt durch die Steuereinheit über ein lokales Führungssignal.

#### Beschreibung der Auswahl:

Wird in diesem Parameter *Blockiert* [0] gewählt, so ist die Handbetriebsanwahl nicht aktiv. Bei Anwahl von *Wirksam* [1] kann zwischen Hand- und Automatikbetrieb umgeschaltet werden. Nähere Informationen finden Sie im Abschnitt *Bedieneinheit*.

## 024 Benutzerdefiniertes Schnellmenü (SCHNELLMENÜ)

#### Wert:

★Blockiert (BLOCKIERT) [0]
Wirksam (WIRKSAM) [1]

#### Funktion:

In diesem Parameter kann der Standard-Parametersatz für die Schnellmenütaste auf dem LCP 2-Bedienfeld ausgewählt werden.

Mit dieser Funktion können in Parameter 025 Einst. Schnellmenü bis zu 20 Parameter für die Schnellmenü-Taste ausgewählt werden.

#### Beschreibung der Auswahl:

Wird *Blockiert* [0] gewählt, so gilt der Standard-Parametersatz der Schnellmenü-Taste. Wird *Wirksam* [1] gewählt, so gilt das benutzerdefinierte Schnellmenü.

#### 025 Einstellung Schnellmenü

#### (EINST.SCHNELLM.)

#### Wert:

[Index 1 - 20] Wert: 0 - 999 ★ 000

#### **Funktion:**

In diesem Parameter wird definiert, welche Parameter im Schnellmenü erforderlich sind, wenn Parameter 024 *Schnellmenü* auf *Wirksam* [1] eingestellt ist.Á Bis zu 20 Parameter können für das Schnellmenü aewählt werden.



#### **ACHTUNG!:**

Bitte beachten, dass dieser Parameter nur über das LCP 2-Bedienfeld eingestellt werden kann. Siehe *Bestellformular* .

#### Beschreibung der Auswahl:

Das Schnellmenü wird folgendermaßen eingestellt:

- 1. Parameter 025 *Einst.Schnellmenü* wählen und [DATEN ÄNDERN] drücken.
- Index 1 zeigt den ersten Parameter im Schnellmenü. Mit den [+ / -] Tasten kann zwischen den Indexnummern gewechselt werden. Index 1 wählen.
- Mit[< >] kann zwischen den drei Stellen gewechselt werden. Die Taste [<] einmal drücken. Anschließend kann die letzte Stelle der Parameternummer mit den Tasten [+ / -] gewählt werden. Index 1 auf 100 für Parameter 100 Konfiguration setzen.
- 4. [OK] drücken, wenn Index 1 auf 100 gesetzt ist.
- 5. Schritte 2 4 wiederholen, bis alle gewünschten Parameter für die Schnellmenü-Taste eingestellt sind.
- 6. [OK] drücken, um die Einstellung des Schnellmenüs abzuschließen.



Wenn Parameter 100 Konfiguration für Index 1 gewählt ist, startet das Schnellmenü bei jedem Aktivieren des Schnellmenüs mit diesem Parameter.

Beachten Sie, dass Parameter 024 *Schnellmenü* und Parameter 025 *Einst.Schnellmenü* bei der Initialisierung auf die Werkseinstellung zurückgesetzt werden.



#### **■** Last und Motor

| 100 Konfiguration                         |    |
|-------------------------------------------|----|
| (KONFIGURATION)                           |    |
| Wert:                                     |    |
| ★Drehzahlregelung ohne Istwertrückführung |    |
| (MIT SCHLUPFKOMP.)                        | [( |

| A Bronzamiegolang omie istwertracitiannang |     |
|--------------------------------------------|-----|
| (MIT SCHLUPFKOMP.)                         | [0] |
| Drehzahlregelung mit Istwertrückführung    |     |
| (MIT RUECKFUEHRPID)                        | [1] |
| Prozeßregelung mit Istwertrückführung      |     |
| (PID-PROZESS)                              | [3] |
|                                            |     |

#### **Funktion:**

Dieser Parameter dient zur Auswahl der Konfiguration, an die der Frequenzumrichter angepaßt werden soll. Hierdurch wird die Anpassung an eine gegebene Konfiguration einfach, da die Parameter, die in einer gegebenen Konfiguration nicht verwendet werden, nicht aktiviert werden können.

#### Beschreibung der Auswahl:

Wenn *Drehzahlregelung mit Schlupfkompensation* [0] gewählt wird, wird eine normale Drehzahlregelung (ohne Rückführsignal) mit automatischer Lastund Schlupfkompensation für eine konstante Drehzahl bei unterschiedlichen Lasten erzielt. Die Kompensationen sind aktiv, können aber ggf. in Parameter 134 *Lastkompensation* und Parameter 136 *Schlupfausgleich* ausgeschaltet werden.

Wenn *Drehzahlregelung mit Istwertrückführung* [1] gewählt wird, wird eine bessere Drehzahlgenauigkeit erzielt. Es muß ein Rückführsignal hinzugefügt und der PID-Regler muß in Parametergruppe 400 *Sonderfunktionen* eingestellt werden.

Wenn Prozeßregelung mit Istwertrückführung [3] gewählt wird, wird der interne Prozeßregler für eine präzise Prozeßregelung in Abhängigkeit von einem gegebenen Prozeßsignal aktiviert. Das Prozeßsignal kann in den gegebenen Prozeßeinheiten oder als ein Prozentwert eingegeben werden. Es muß ein Rückführsignal vom Prozeß hinzugefügt und der PID-Regler muß in Parametergruppe 400 Sonderfunktionen eingestellt werden. Prozeßregelung mit Istwertrückführung ist nicht aktiv, wenn eine DeviceNet-Karte installiert ist und in Parameter 904 Instanztypen Instanz 20/70 bzw. 21/71 gewählt wird.

# 101 Drehmomentkennlinie (MOMENTKENNL.)

| ,                                             |     |
|-----------------------------------------------|-----|
| Wert:                                         |     |
| ★Konstantes Drehmoment                        |     |
| (KONSTANTES DREHMOMENT)                       | [1] |
| Quadratisches Dremoment niedrig               |     |
| (MOMENT: NIEDRIG)                             | [2] |
| Quadratisches Drehmoment mittel               |     |
| (MOMENT: MITTEL)                              | [3] |
| Quadratisches Drehmoment hoch                 |     |
| (MOMENT: HOCH)                                | [4] |
| Quadratisches Drehmoment niedrig mit CT-Start |     |
| (QUADR.TIEF-CT START)                         | [5] |
| Quadratisches Drehmoment mittel mit CT-Start  |     |
| (QUADR.MITT-CT START)                         | [6] |
| Quadratisches Drehmoment hoch mit CT-Start    |     |
| (QUADR.HOCH-CT START)                         | [7] |
| SONDERMOTOR MO.                               |     |
| (SONDERMOTOR MO.)                             | [8] |

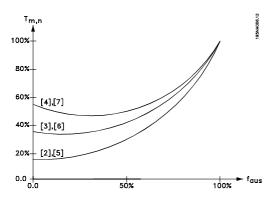
CT = Konstantmoment

#### **Funktion:**

In diesem Parameter kann das Prinzip für die Anpassung der U/f-Kennlinie des Frequenzumrichters an die Drehmomentkennlinie der Last angepasst werden. Siehe Par. 135 *U/f-Verhältnis*.

#### Beschreibung der Auswahl:

WirdKonstantes Moment [1] gewählt, so wird eine lastabhängige U/f-Kennlinie erzielt, in der die Ausgangsspannung und Ausgangsfrequenz bei steigender Last erhöht wird, um einen konstanten Motorlauf zu gewährleisten.


Quadratisches Drehmoment niedrig [2], Quadratisches Drehmoment mittel [3] oderQuadratisches Drehmoment hoch [4] ist bei Anwendungen mit quadratischer Belastung zu wählen (z.B. Kreiselpumpen, Lüfter). Quadratisches Drehmoment - niedrig mit CT-Start [5], - mittel mit CT-Start [6] oder hoch mit CT-Start [7] ist zu wählen, wenn ein höheres Losbrechmoment als mit den zuvor genannten Kennlinien gewünscht wird.



#### **ACHTUNG!:**

Last- und Schlupfkompensation ist bei Auswahl von quadratischem Drehmoment oder speziellem Motordrehmoment nicht aktiv.





Spezialles MOtordrehmoment [8] ist zu wählen, wenn eine spezielle U/f-Kennlinie zur Anpassung an einen gegebenen Motor gewünscht wird. Die Eckwerte werden in den Parametern 423-428 Spannung/Frequenz eingestellt.

#### **ACHTUNG!:**

Bitte beachten, daß bei Änderung eines in den Typenschildparametern 102-106 eingestellten Werts eine automatische Änderung der Parameter 108 Statorwiderstand und 109 Statorreaktanz erfolgt.

#### 102 Motorleistung P<sub>M,N</sub>

#### (MOTORLEISTUNG)

#### Wert:

0,25 - 22 kW

\* abhängig vom Gerät

#### Funktion:

Hier muß ein Leistungswert [kW]  $P_{M,N}$ eingestellt werden, der der Motornennleistung entspricht. Werksseitig ist ein Nennleistungswert [kW]  $P_{M,N}$  eingestellt, der dem Gerätetyp entspricht.

#### Beschreibung der Auswahl:

Einen Wert einstellen, der den Angaben auf dem Typenschild des Motors entspricht. Einstellungen in einer Größenordnung unter oder über den Werkseinstellungen sind möglich.

#### 103 Motorspannung U<sub>M,N</sub>

#### (MOTORSPANNUNG)

#### Wert:

Für 200 V Geräte: 50 - 999 V ★ 230 V

Für 400 V Geräte: 50 - 999 V ★ 400 V

#### Funktion:

Hiermit wird die Nenn-Motorspannung  $\mathsf{U}_{\mathsf{M},\mathsf{N}}$  für entweder Stern- Y oder Dreieckschaltung  $\Delta$  eingestellt.

★ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert

#### Beschreibung der Auswahl:

Unabhängig von der Netzspannung des Frequenzumrichters einen Wert wählen, der den Angaben auf dem Typenschild des Motors entspricht.

#### 104 Motorfrequenz f<sub>M,N</sub>

#### (MOTORFREQUENZ)

#### Wert:

24-1000 Hz

★ 50 Hz

#### **Funktion:**

Hier wird die Motornennfrequenz f<sub>M,N</sub> eingestellt.

#### Beschreibung der Auswahl:

Einen Wert wählen, der den Angaben auf dem Typenschild des Motors entspricht.

#### 105 Motorstrom I<sub>M.N</sub>

#### (MOTORSTROM)

#### Wert:

0,01 - I<sub>MAX</sub>

★ abhängig von der Motorwahl

#### **Funktion:**

Der Motornennstrom  $I_{M,N}$  wird bei der Berechnung des Drehmoments und des thermischen Überlastschutzes im Frequenzumrichter berücksichtigt.

#### Beschreibung der Auswahl:

Einen Wert einstellen, der den Angaben auf dem Typenschild des Motors entspricht. Den Motorstrom  $I_{M,N}$  unter Berücksichtigung einer Stern- Y bzw. Dreiecksschaltung  $\Delta$  des Motors einstellen.

#### 106 Motornenndrehzahl

#### (MOTOR NENNDREHZ.)

#### Wert:

100 -  $f_{M,N} \times 60$  (max. 60000 UPM)

★ Abhängig von Parameter 104 Motorfrequenz, f<sub>M,N</sub>

#### **Funktion:**

Hier ist der Wert aus den Typenschilddaten des Motors für die Motornenndrehzahl  $n_{M,N}$  einzugeben.

#### Beschreibung der Auswahl:

Einen Wert wählen, der den Angaben auf dem Typenschild des Motors entspricht.





#### **ACHTUNG!:**

Der max. Wert ist gleich f<sub>M,N</sub> x 60. f<sub>M,N</sub> ist in Parameter 104 *Motorfrequenz,*  $f_{M,N}$  einzustellen.

#### 107 Automatische Motoranpassung, AMT (MOTORANPASSUNG)

#### Wert:

\*Anpassung aus (MOTORANPASSUNG AUS) [0] Motoranpassung an (MOTORANPASSUNG AN)

[2]



#### **ACHTUNG!:**

AMT für VLT 2880-82 nicht möglich

#### **Funktion:**

Motoranpassung ist ein Algorithmus, der den Statorwiderstand R<sub>S-</sub> bei Motorstillstand mißt. Dies bedeutet, daß der Motor kein Drehmoment liefert. AMT ist bei der Grundeinstellung von Einheiten hilfreich, wenn der Frequenzumrichter an den verwendeten Motor angepaßt werden soll. Die Funktion wird besonders dann benutzt, wenn die Werkseinstellung die Daten des Motors nicht ausreichend abdeckt.

Zur bestmöglichen Anpassung des Frequenzumrichters wird empfohlen, die AMT an einem kalten Motor durchzuführen. Achtung: wiederholte AMT-Durchläufe können zu einer Überhitzung des Motor und als Folge zu einem erhöhten Stator-Widerstand R führen.s-. In der Regel ist dies jedoch nicht kritisch.

Die AMT wird folgendermaßen durchgeführt:

#### AMT starten:

- 1. STOPP-Signal geben.
- 2. Parameter 107 Motoranpassung auf Wert [2] Motoranpassung ein einstellen.
- 3. START-Signal geben und Parameter 107 Motoranpassung wird auf [0] zurückgesetzt, wenn die AMT abgeschlossen ist.

#### AMT abschließen:

Die AMT wird durch ein QUITTIEREN-Signal abgeschlossen. Parameter 108 Statorwiderstand, Rs wird mit dem optimierten Wert aktualisiert.

#### AMT abbrechen:

Die AMT kann während der Optimierung durch ein STOPP-Signal abgebrochen werden.

Bei Benutzung der AMT-Funktion müssen die folgenden Punkte beachtet werden:

Damit die AMT die Motorparameter so gut wie möglich definieren kann, müssen die richigen Typenschilddaten für den am Frequenzumrichter

- angeschlossenen Motor in die Parameter 102 bis 106 eingegeben werden.
- Das Display zeigt Alarmmeldungen an, wenn während der Motoranpassung Fehler auftreten.
- In der Regel kann die AMT-Funktion die Rs--Werte für Motoren messen, die ein- bis zweimal größer/kleiner als die Nennwerte des Frequenzumrichters sind.
- Zum Abbrechen der Motoranpassung die [STOP/RESET] Taste drücken.

#### **ACHTUNG!:**

AMT darf nicht bei parallelgeschalteten Motoren verwendet werden. Während einer AMT dürfen keine Änderungen der

Parametersätze vorgenommen werden. Verfahren für vom SLCP gesteuerte AMT: Siehe Kapitel Bedieneinheit.

#### Beschreibung der Auswahl:

Motoranpassung an [2] wählen, wenn der Frequenzumrichter eine automatische Motoranpassung durchführen soll.

#### 108 Statorwiderstand Rs (STATORWIDERSTAND)

#### Wert:

 $0.000 - X.XXX \Omega$ 

\* abhängig von der Motorwahl

#### **Funktion:**

Nach Einstellung der Parameter 102-106 Typenschilddaten werden verschiedene Parameter einschließlich Statorwiderstand R S automatisch eingestellt. Ein manuell eingegebener Wert für Rs muß für einen kalten Motor gelten. Die Wellenleistung kann durch Feineinstellung von Rs und Xs verbessert werden, siehe Verfahren unten.



#### **ACHTUNG!:**

Parameter 108 Statorwiderstand Rs und 109 Statorreaktanz X s werden normalerweise nicht geändert, wenn die Typenschilddaten eingestellt wurden.

#### Beschreibung der Auswahl:

Rs kann folgendermaßen eingestellt werden:

- 1. Werkseinstellungen für R<sub>S</sub> verwenden, die der Frequenzumrichter selbst auf Basis der Daten auf dem Typenschild des Motors wählt.
- 2. Der Wert wird vom Motorlieferanten angegeben.
- ★ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert



- 3. Der Wert wird durch manuelle Messung ermittelt: Rs kann durch Messung des Widerstands RPHASE-PHASE zwischen zwei Phasenklemmen berechnet werden. Wenn R<sub>PHASE-PHASE</sub> weniger als 1-2 Ohm beträgt (typisch für Motoren > 5,5 kW, 400 V), muß ein spezielles Ohmmeter verwendet werden (Thomson-Brücke o.ä.).  $R_S = 0.5 \times R_{PHASE-PHASE}$ .
- 4. Rs wird automatisch eingestellt, wenn die AMA abgeschlossen ist. Siehe Parameter 107 Automatische Motoanpassung.

#### 109 Statorreaktanz Xs (STATOR REAKTANZ)

#### Wert:

 $0.00 - X,XX \Omega$ 

\* abhängig von der Motorwahl

#### Funktion:

Nach Einstellung der Parameter 102-106 Typenschilddaten werden verschiedene Parameter einschließlich Statorreaktanz X<sub>S</sub>X automatisch eingestellt. Die Wellenleistung lässt sich durch Einstellen von R<sub>S</sub> und X<sub>S</sub> verbessern. Vorgehensweise nachstehend beschrieben.

#### Beschreibung der Auswahl:

X<sub>S</sub> kann folgendermaßen eingestellt werden:

- 1. Der Wert wird vom Motorlieferanten angegeben.
- 2. Der Wert wird durch manuelle Messung von X<sub>S</sub> durch Anschluss eines Motors an das Netz und Messen der Phasenspannung U<sub>M</sub> und des Leerlaufstroms of ermittelt.

$$\mathbf{X}\mathbf{s} = \frac{\mathbf{U}\mathbf{m}}{\sqrt{3}\mathbf{x}\mathbf{I}\phi} - \frac{\mathbf{X}_{\mathbf{L}}}{2}$$

X<sub>L</sub>: siehe Parameter 142.

3. Benutzung der Werkseinstellungen von X<sub>S</sub>, die der VLT-Frequenzumrichter selbst aufgrund der Daten auf dem Motortypenschild wählt.

#### 117 Resonanzdämpfung (RESONANZDÄMPFUNG)

#### Wert:

AUS- 100% **★**AUS %

[AUS -100] [AUS]

**Funktion:** 

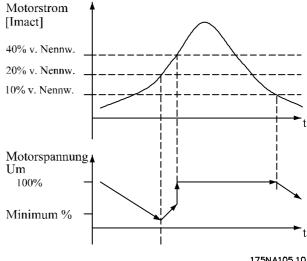
Die Resonanzdämpfung kann im CT-Modus optimiert werden. In diesem Parameter wird der Beeinflussungsgrad festgelegt.

Der Wert kann zwischen 0 % (AUS) und 100 % eingestellt werden. 100 % entspricht 50 % Reduktion des U/F-Verhältnisses.

Die Standardeinstellung ist AUS.

Interne Einstellungen (unveränderlich):

Der Resonanzfilter ist ab 10 % der Nenndrehzahl aktiv. In diesem Fall sind es 5 Hz und darüber.


Drehzahl muss von 0 bis zum Strömungsnennwert gehen: 500 ms

Drehzahl muss vom Nennwert bis Strömungswert

0 gehen: 500 ms

#### Funktionsbeschreibung:

Der Filter überwacht den aktiven Motornennstrom und ändert die Motorspannung entsprechend der nachfolgenden Abbildung. Der Filter reagiert auf Werte, die sich auf den Nennstrom des Motors beziehen.



175NA105.10

Wenn der aktive Motornennstrom unter 10 % liegt, wird die Motorspannung wie oben erwähnt über die Drehzahl verringert, bis die Spannung die Einstellung aus Par. 117 erreicht. Wenn der aktive Motornennstrom über 20 % liegt, wird die Spannung über die oben genannte Drehzahl erhöht. Wenn der aktive Motornennstrom 40 % erreicht, wird die Motorspannung sofort auf normale Motorspannung erhöht.

Die Reduktion der Motorspannung hängt von der Einstellung des Parameters 117 ab.

#### Beschreibung der Auswahl:

Stellen Sie den Grad der Motorstrom- [Imact] beeinflussung auf das U/F-Verhältnis zwischen 0 % (AUS) und 100 % ein. 100 % entspricht 50 % Reduktion des U/F-Verhältnisses. Die Standardeinstellung ist AUS.



## 119 Hohes Startmoment (STARTMOMENT HOCH)

#### Wert:

0,0 - 0,5 s

★ 0,0 s

#### Funktion:

Zur Gewährleistung eines hohen Anlaufmoments sind ca. 1,8 x I <sub>INV.</sub> für max. 0,5 s zulässig. Allerdings wird der Strom durch die Schutzgrenze des Frequenzumrichters (Wechselrichters) begrenzt. In der Einstellung 0 s ist das Startmoment nicht erhöht.

#### Beschreibung der Auswahl:

Stellen Sie die notwendige Zeit ein, in der ein hohes Startmoment beim Anlauf gewünscht wird.

# 120 Startverzögerung (STARTVERZÖGERUNG)

#### Wert:

0,0 - 10,0 s

★ 0.0 s

#### **Funktion:**

Dieser Parameter aktiviert eine Startverzögerung nach Erfüllung der Startbedingungen. Nach Ablauf der Zeit geht die Ausgangsfrequenz auf den Sollwert hoch.

#### Beschreibung der Auswahl:

Erforderliche Zeit vor Beginn der Beschleunigung eingeben.

#### 121 Startfunktion

#### (STARTFUNKTION)

#### Wert:

Zeitverzögerung DC-Halten
(ZEITVERZ. DC-HALTEN) [0]
Zeitverzögerung DC-Bremse
(ZEITVERZ. DC-BREMSE) [1]

★Zeitverzögerung Motorfrequenz

(ZEITVERZ. MOTORFR.)

(ZEITVERZ. MOTORFR.) [2] Startfrequenz/rechtslauf

(START FUNKT. RECHTS) [3]

Startfrequenz wie vorgewählten Drehrichtung (STARTFUNKT. WIE REF.)

#### **Funktion:**

Hiermit wird der während der Startverzögerung (Parameter 120 *Startverzögerung*) erforderliche Modus eingestellt.

#### Beschreibung der Auswahl:

Zeitverzögerung DC-Halten [0] auswählen, um den Motor während der Startverzögerung mit einer

DC-Haltespannung zu versorgen. Spannung in Parameter 137 *DC-Halt* einstellen.

Zeitverzögerung DC-Bremse [1] wählen, um den Motor während der Startverzögerung mit einer DC-Bremsspannung zu versorgen. Spannung in Parameter 132 Spannung DC-Br einstellen.

Zeitverzögerung Motorfrequenz [2] auswählen, und der Motor wird während der Startverzögerung nicht vom Frequenzumrichter gesteuert (Wechselrichter ausgeschaltet).

Startfrequenz/rechtslauf [3] wählen, um während der Startverzögerung die unter Parameter 130 Startfrequenz und 131 Startspannung beschriebene Funktion zu erhalten.

Unabhängig vom Wert, den das Sollwertsignal annimmt, ist die Ausgangsfrequenz gleich der Einstellung in Parameter 130 *Startfrequenz*, und die Ausgangsspannung entspricht der Einstellung in Parameter 131 *Startspannung*. Diese Funktion wird typisch in Hub/Senkvorrichtungen verwendet. Sie wird besonders in Anwendungen mit einem Konusanker-Motor eingesetzt, wo die Drehrichtung zu Beginn im Uhrzeigersinn erfolgt und dann von einer Sollrichtung gefolgt wird.

Startfrequenz wie vorgewählten Drehrichtung [4] wählen, um die in Parameter 130 Startfrequenz und 131 Startspannung beschriebene Funktion während der Startverzögerung zu erhalten.

Die Drehrichtung des Motors erfolgt immer in der Sollrichtung. Wenn das Sollwertsignal Null ist, hat die Ausgangsfrequenz 0 Hz, während die Ausgangsspannung der Einstellung in Parameter 131 Startspannung entspricht. Wenn das Sollwertsignal nicht Null ist, entspricht die Ausgangsfrequenz Parameter 130 Startfrequenz und die Ausgangsspannung Parameter 131 Startspannung. Diese Funktion wird typisch in Hub/Senkvorrichtungen mit Gegengewicht eingesetzt. Sie wird besonders in Anwendungen mit einem Konusanker-Motor eingesetzt. Der Konusanker-Motor kann mit Parameter 130 Startfrequenz und Parameter 131 Startspannung anlaufen

#### 122 Stoppfunktion

#### (STOPPFUNKTION)

#### Wert:

★Motorfreilauf (FREILAUF)

DC-Haltebremse (DC-HALT)

[O] [1]

[4]



#### Funktion:

Hiermit wird die Funktion des Frequenzumrichters eingestellt, nachdem die Ausgangsfrequenz geringer als der Wert in Parameter 123 Freg. Stoppfunkt. geworden ist, oder nach einem Stoppbefehl und wenn die Ausgangsfrequenz auf 0 Hz zurückgegangen ist.

#### Beschreibung der Auswahl:

Motorfreilauf [0] ist zu wählen, wenn die Motorsteuerung durch den Frequenzumrichter ausgeschaltet werden soll (Wechselrichter ausgeschaltet).

DC-Halt [1] ist zu wählen, wenn Parameter 137 DC-Haltespannung aktiviert werden soll.

#### 123 Mindestfrequenz für die Aktivierung der Funktion bei Stopp

#### (FREQ.STOPPFUNKT.)

#### Wert:

0,1 - 10 Hz

★ 0,1 Hz

#### Funktion:

In diesem Parameter wird die Ausgangsfrequenz eingestellt, bei der die in Parameter 122 Stoppfunktion ausgewählte Funktion aktiviert werden soll.

#### Beschreibung der Auswahl:

Erforderliche Ausgangsfrequenz einstellen.

#### **ACHTUNG!:**

Wenn Parameter 123 höher eingestellt ist als Parameter 130, dann wird die Startverzögerungsfunktion (Parameter 120 und 121) übersprungen.

#### **ACHTUNG!:**

Wenn Parameter 123 zu hoch eingestellt ist und in Parameter 122 DC-Halt gewählt wurde, springt die Ausgangsfrequenz

ohne Hochlaufen zu dem Wert in Parameter 123. Dies verursacht möglicherweise eine Überstromwarnung/einen Überstromalarm.

#### 126 DC-Bremszeit (DC-BREMSZEIT)

#### Wert:

0 - 60 s

★ 10 s

#### Funktion:

In diesem Parameter wird die DC-Bremszeit eingestellt, zu der Parameter 132 Spannung DC-Br aktiv werden soll.

#### Beschreibung der Auswahl:

Gewünschte Zeit einstellen.

#### 127 DC-Bremse Startfrequenz (DC-BR.STARTFREQ.)

#### Wert:

0,0 (AUS) - Par. 202 Obere Grenze Ausgangsfrequenz, f<sub>MAX</sub>

★ OFF

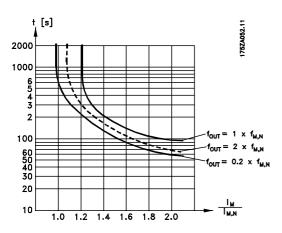
#### **Funktion:**

In diesem Parameter wird die Einschaltfrequenz der DC-Bremse eingestellt, bei der die DC-Bremse in Verbindung mit einem Stoppbefehl aktiviert wird.

#### Beschreibung der Auswahl:

Erforderliche Frequenz einstellen.

#### 128 Thermischer Motorschutz (THERM. MOTORSCHU)


#### ★Kein Motorschutz (KEIN MOTORSCHUTZ) [0] Thermistor Warnung (WARNUNG THERMISTOR) [1] Thermistor Abschaltung (ABSCHALT THERMISTOR) [2] ETR-Warnung 1 (ETR WARN 1) [3] [4] ETR-Abschaltung 1 (ETR ABSCHALT.1) ETR-Warnung 2 (ETR WARN 2) [5] ETR-Abschaltung 2 (ETR ABSCHALT 2) [6] ETR Warnung 3 (ETR WARN 3) [7] ETR-Abschaltung 3 (ETR ABSCHALT.3) [8] ETR Warnung 4 (ETR WARN 4) [9] ETR-Abschaltung 4 (ETR ABSCHALT.4) [10]

#### **Funktion:**

Der Frequenzumrichter kann die Motortemperatur auf zwei unterschiedliche Weisen überwachen:

- Mit einem am Motor montierten PTC-Thermistor. Thermistor zwischen Klemme 50 (+10 V) und einer der digitalen Eingangsklemmen 18, 19, 27 oder 29 anschließen. Siehe Parameter 300 Digitaleingänge
- Berechnung der thermischen Belastung (ETR - Elektronisch thermisches Relais) basierend auf aktueller Last und Zeit. Dies wird mit dem Motornennstrom I<sub>M.N</sub> und der Motornennfrequenz f<sub>M,N</sub> verglichen. Die Berechnungen berücksichtigen die notwendige Lastverringerung bei niedrigen Drehzahlen, wenn die innere Lüftung des Motors reduziert ist.





Die ETR-Funktionen 1-4 beginnen erst mit der Lastermittlung, wenn auf die entsprechende Satzanwahl umgeschaltet wird. Dies bedeutet, dass die ETR-Funktion auch beim Wechsel zwischen zwei oder mehreren Motoren verwendet werden kann.

#### Beschreibung der Auswahl:

Kein Motorschutz [0] ist zu wählen, wenn Warnung oder Abschaltung bei überlastetem Motor nicht erfolgen sollen.

Warnung Thermistor [1] ist zu wählen, wenn eine Warnung ausgegeben werden soll, wenn der angeschlossene Thermistor zu heiß wird. Abschaltung Thermistor [2] ist zu wählen, wenn eine

Abschaltung erfolgen soll, wenn der angeschlossene Thermistor zu heiß wird.

ETR-Warnung 1-4 ist zu wählen, wenn eine Warnung erfolgen soll, wenn der Motor laut Berechnungen überlastet ist. Der Frequenzumrichter kann auch so programmiert werden, dass er ein Warnsignal über Digitalausgang gibt. ETR-Abschaltung 1-4 ist zu wählen, wenn eine Abschaltung erfolgen soll, wenn der Motor laut Berechnungen überlastet ist.



#### **ACHTUNG!:**

Diese Funktion kann die einzelnen Motoren bei parallel geschalteten Motoren nicht schützen.

#### 130 Startfrequenz

#### (STARTFREQUENZ)

Wert:

0,0 - 10,0 Hz ★ 0,0 Hz

#### **Funktion:**

Die Startfrequenz ist nach einem Startbefehl für die in Parameter 120 Startverzögerung eingestellte Zeit aktiv. Die Ausgangsfrequenz 'springt' zur nächsten eingestellten Frequenz. Einige Motoren, z.B. Konusanker-Motoren, benötigen eine erhöhte Spannung/Startfrequenz (Verstärkung), um die mechanische Bremse zu lösen. Hierzu

werden die Parameter 130 Startfrequenz und 131 Startspannung benutzt.

#### Beschreibung der Auswahl:

Stellen sie die gewünschte Startfrequenz ein. Es wird davon ausgegangen, dass Parameter 121 Startverzögerung auf Startfrequenz/Horizontalbetrieb [3] oder Startfrequenz/Vertikalbetrieb [4] gesetzt und in Parameter 120 Startverzögerung eine Zeit eingestellt wurde sowie ein Referenzsignal vorhanden ist.

#### **ACHTUNG!:**

Wenn Parameter 123 höher eingestellt ist als Parameter 130, dann wird die Startverzögerungsfunktion (Parameter 120 und 121) übersprungen.

#### 131 Startspannung (STARTSPANNUNG)

#### Wert:

0,0 - 200,0 V

★ 0.0 V

#### **Funktion:**

Startspannung ist nach einem Startbefehl für die in Parameter 120 Startverzögerung eingestellte Zeit aktiv. Dieser Parameter kann z.B. für Hub-/Senkanwendungen (Konusankermotoren) verwendet werden.

#### Beschreibung der Auswahl:

Spannung auf den zum Ausschalten der mechanischen Bremse nötigen Wert einstellen. Es wird davon ausgegangen, daß Parameter 121 Startfunktion auf Startfrequenz/Horizontalbetrieb [3] bzw. Startfrequenz/Vertikalbetrieb [4] gesetzt und in Parameter 120 Startverzögerung eine Zeit eingestellt wurde sowie ein Referenzsignal vorhanden ist.

#### 132 Spannung DC-Bremse

#### (SPANNUNG DC-BR)

#### Wert:

0 - 100% der max. DC-Bremsspannung

★ 0%

#### **Funktion:**

In diesem Parameter wird die DC-Bremsspannung eingestellt, die bei Stopp aktiviert werden soll, wenn die in Parameter 127 DC-Bremse Startfreguenz eingestellte DC-Bremsfrequenz erreicht ist oder DC-Bremse invers über einen Digitaleingang bzw. die serielle Schnittstelle aktiv ist. Anschließend ist die DC-Bremsspannung für die in Parameter 126 DC-Bremszeit eingestellte Zeit aktiv.

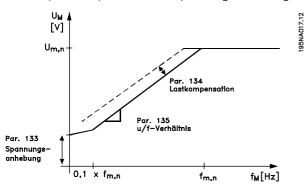


#### Beschreibung der Auswahl:

Als Prozentwert der vom Motor abhängigen max. DC-Bremsspannung eingeben.

#### 133 Spannungsanhebung

#### (SPANNUNGSANHEBUN)


#### Wert:

0,00 - 100,00 V

\* abhängig vom Gerät

#### **Funktion:**

Durch diesen Parameter kann ein höheres Startmoment erreicht werden. Normalerweise benötigen kleinere Motore (< 1,0kw) eine höhere Spannungsanhebung.



#### Beschreibung der Auswahl:

Der Wert wird unter sorgfältiger Berücksichtigung der Tatsache gewählt, daß der Motorstart unter der aktuellen Last nur so gerademöglich ist.



Achtung: Wird eine zu hohe Spannungsanhebung gewählt, kann dies zu Übermagnetisierung

und Überhitzung des Motors führen, und der Frequenzumrichter kann abschalten.

#### 134 Lastkompensation

#### (LASTKOMP.)

#### Wert:

0,0 - 300,0%

★ 100,0%

#### **Funktion:**

In diesem Parameter wird die Lastkennlinie eingestellt. Bei Erhöhung der Lastkompensation erhält der Motor bei zunehmenden Lasten eine erhöhte Spannung und Frequenz. Sie wird z.B. bei Motoren/Anwendungen verwendet, bei denen eine große Differenz zwischen Vollast- und Leerlaufstrom des Motors besteht.

#### **ACHTUNG!:**

Wird dieser Wert zu hoch eingestellt, kann der Frequenzumrichter wegen Überstrom abschalten.

#### Beschreibung der Auswahl:

Ist die Werkseinstellung nicht ausreichend, muß die Lastkompensation so eingestellt werden, daß ein Motorstart bei einer gegebenen Last möglich ist.



Achtung: Zu starke Lastkompensation kann zu Instabilität führen.

#### 135 U/f-Verhältnis

#### (U/F-VERHAELTN)

#### Wert:

0,00 - 20,00 V/Hz

\* abhängig vom Gerät

#### **Funktion:**

Dieser Parameter ermöglicht eine lineare Veränderung des Verhältnisses von Ausgangsspannung (U) zu Ausgangsfrequenz (f), um eine richtige Motormagnetisierung und dadurch optimale Dynamik, Genauigkeit und Effizienz zu gewährleisten. Das U/f-Verhältnis hat nur dann Auswirkungen auf die Spannungskennlinie, wenn die Auswahl Konstantmoment [1] in Parameter 101 Drehmomentkennlinie erfolgte.

#### Beschreibung der Auswahl:

Das U/f-Verhältnis wird nur dann geändert, wenn es unmöglich ist, die richtigen Motordaten in Parameter 102-109 einzustellen. Der in der Werkseinstellung programmierte Wert basiert auf Leerlaufbetrieb.

# 136 Schlupfausgleich (SCHLUPFAUSGL.)

#### Wert:

-500 - +500% des Nenn-Schlupfausgleichs

**★** 100%

#### **Funktion:**

Der Schlupfausgleich wird automatisch berechnet, d.h. auf Basis der Nenn-Motordrehzahl n<sub>M,N</sub>. In diesem Parameter kann der Schlupfausgleich fein eingestellt werden. Hierdurch werden Toleranzen des Wertes für n <sub>M,N</sub> kompensiert. Schlupfausgleich ist nur dann aktiv, wenn die Auswahl *Mit Schlupfkomp*. [0] in Parameter 100 *Konfiguration* und *Konst.Moment* [1] in Parameter 101 *Drehmomentkennlinie* getroffen wurde.

#### Beschreibung der Auswahl:

Einen Prozentwert eingeben.



#### 137 DC-Haltespannung

#### (DC-HALTESP.)

#### Wert:

0 - 100% der max. DC-Haltespannung

★ 0%

#### **Funktion:**

Dieser Parameter wird zum Halten des Motors (Haltemoment) bei Start/Stopp benutzt.

#### Beschreibung der Auswahl:

Dieser Parameter kann nur verwendet werden, wenn eine Auswahl für *DC-Halt* in Parameter 121 *Startfunktion* oder 122 *Stoppfunktion* getroffen wurde. Als Prozentwert der vom Motor abhängigen max. DC-Haltespannung eingeben.

#### 138 Bremsabschaltfrequenz

#### (MECH. BR. AUS)

#### Wert:

0,5 - 132,0/1000,0 Hz

★ 3,0 Hz

#### **Funktion:**

Hier wird die Frequenz eingestellt, wann die mechanische Bremse über den in Parameter 323 Relais 1-3, Ausgang bzw. 341 Ausgang 46, digital definierten Ausgang gelöst wird.

#### Beschreibung der Auswahl:

Programmieren Sie die gewünschte Frequenz.

#### 139 Bremseinschaltfrequenz

#### (MECH.BR.EIN)

#### Wert:

0,5 - 132,0/1000,0 Hz

★ 3,0 Hz

#### **Funktion:**

Hier wird die Frequenz eingestellt, wann die mechanische Bremse über den in Parameter 323 Relais 1-3, Ausgang bzw. 341 Ausgang 46, digital definierten Ausgang gelöst aktiviert wird.

#### Beschreibung der Auswahl:

Programmieren Sie die gewünschte Frequenz.

#### 140 Strom, Mindestwert

#### (MIN. WERT STROM)

#### Wert:

0 % - 100 % des Wechselrichterausgangsstroms

**★** 0 %

#### **Funktion:**

Hiermit wird der Mindestwert des Motorstroms zum Lösen der mechanischen Bremse eingestellt. Die Stromüberwachung ist nur vom Stopp bis zu dem Punkt aktiv, an dem die Bremse gelöst wird.

#### Beschreibung der Auswahl:

Hierbei handelt es sich um eine zusätzliche Sicherheitsvorkehrung, die garantiert, dass bei Starten eines Hebe-/Absenkvorgangs die Last nicht verloren geht.

#### 142 Streureaktanz X<sub>L</sub>

#### (STREUREAKTANZ)

#### Wert:

 $0,000 - XXX,XXX \Omega$ 

★ abhängig von der Motorwahl X<sub>L</sub> ist die Summe der Rotor- und Statorstreureaktanz.

#### Funktion:

Nach Einstellung der Parameter 102-106

Typenschilddaten verschiedene Parameter
einschließlich der Streureaktanz X<sub>L</sub> automatisch
eingestellt. Die Wellenleistung kann durch
Feineinstellung der Streureaktanz X<sub>L</sub> verbessert werden.

#### **ACHTUNG!:**

Parameter 142 Streureaktanz  $X_L$  wird normalerweise nicht geändert, wenn die Typenschilddaten 102-106 eingestellt wurden.

#### Beschreibung der Auswahl:

X<sub>L</sub> kann folgendermaßen eingestellt werden:

- 1. Der Wert wird vom Motorlieferanten angegeben.
- Benutzung der Werkseinstellungen von X<sub>L</sub>, die der Frequenzumrichter selbst aufgrund der Motor-Typenschilddaten wählt.

#### 143 Interne Gebläsesteuerung

#### (GEBLÄSESTEUERUNG)

#### Wert:

\*Automatisch (AUTOMATISCH) [0]
Immer eingeschaltet (IMMER EIN) [1]
Immer ausgeschaltet (IMMER AUS) [2]



#### Funktion:

Dieser Parameter kann so eingestellt werden, daß das automatische Gebläse automatisch ein- und ausgeschaltet wird. Das interne Gebläse kann auch immer ein- bzw. ausgeschaltet sein.

#### Beschreibung der Auswahl:

Wird Automatisch [0] gewählt, so wird das interne Gebläse abhängig von der Umgebungstemperatur und Last des Frequenzumrichters ein- und ausgeschaltet. Wird Immer eingeschaltet [1] bzw. Immer ausgeschaltet [2] gewählt, so bleibt das Gebläse immer ein- bzw. ausgeschaltet.

#### **ACHTUNG!:**

Wird Immer ausgeschaltet [2] bei hoher Taktfrequenz, langen Motorkabeln oder hoher Ausgangsleistung benutzt, so wird die Lebensdauer des Frequenzumrichters verkürzt.

#### 144 Verstärkung Wechselspannungsbremse

#### (VERST.AC-BR.)

#### Wert:

1,00 - 1,50

★ 1,30

#### **Funktion:**

In diesem Parameter wird die Wechselspannungsbremse eingestellt. In Parameter 144 kann das Generatormoment eingestellt werden, das auf den Motor wirken kann, ohne daß die Zwischenkreisspannung den Warnpegel übersteigt.

#### Beschreibung der Auswahl:

Der Wert wird erhöht, wenn ein größeres mögliches Bremsmoment gewünscht wird. Wird 1,0 gewählt, so ist die Wechselspannungsbremse nicht aktiv.

#### **ACHTUNG!:**

Wird der Wert in Par. 144 erhöht, so erhöht sich gleichzeitig der Motorstrom beträchtlich, wenn Generatorlasten wirken. Der Parameter sollte deshalb nur geändert werden, wenn durch Messungen garantiert ist, daß der Motorstrom in allen Betriebssituationen niemals den zulässigen Wert überschreitet. Bitte beachten: Der Strom kann nicht auf der Anzeige abgelesen werden.

#### 146 Spannungsvektor quittieren

#### (SP.VEKTOR QUITT.)

#### Wert:

\*Aus (AUS)

Quittieren (QUITTIEREN)

[O] [1]

#### **Funktion:**

Wenn der Spannungsvektor quittiert wird, wird er bei jedem neuen Prozeßbeginn auf den gleichen Startpunkt gesetzt.

#### Beschreibung der Auswahl:

Quittieren (1) wählen, wenn einmalige Prozesse jedesmal laufen, wenn sie auftreten. Hierdurch wird die Wiederholpräzision beim Stopp verbessert. Aus (0) z.B. zum Heben/Absenken oder bei Synchronmotoren benutzen. Es ist vorteilhaft, wenn Motor und Frequenzumrichter immer synchronisiert sind.

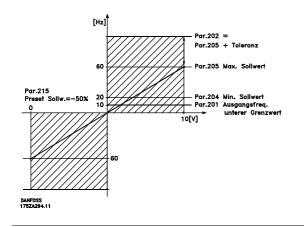


#### ■ Sollwerte & Grenzwerte

#### 200 Ausgangsfrequenz Bereich

#### (AUSGANGSFREQUENZ RNG/ROT)

#### Wert:


| 310111                        |     |
|-------------------------------|-----|
| ★Eine Richtung, 0 - 132 Hz    |     |
| (132 HZ EINE RICHT.)          | [0] |
| Beide Richtungen, 0 -132 Hz   |     |
| (132 HZ BEIDE RICHT.)         | [1] |
| Linkslauf, 0 -132 Hz          |     |
| (132 HZ LINKSLAUF)            | [2] |
| 0-1000 Hz, Eine Richtung      |     |
| (1000 HZ EINE RICHT.)         | [3] |
| Beide Richtungen, 0 - 1000 Hz |     |
| (1000 HZ BEIDE RICHT.)        | [4] |
| Linkslauf, 0 - 1000 Hz        |     |
| (1000 HZ LINKSLAUF)           | [5] |
|                               |     |

#### **Funktion:**

Mit Hilfe dieses Parameters kann eine unbeabsichtigte Drehrichtungsumkehr (Reversierung) verhindert werden. Außerdem kann eine höchstzulässige Ausgangsfrequenz gewählt werden, die unabhängig von der Einstellung anderer Parameter gelten soll. Wird nicht zusammen mit Prozeßregelung mit Istwertrückführung in Parameter 100 Konfiguration benutzt.

#### Beschreibung der Auswahl:

Stellen Sie die gewünschte Drehrichtung und die maximale Ausgangsfrequenz ein. Bitte beachten: wird "Nur Rechtelauf" [0]/[3] oder "Nur Linkslauf" [2]/[5] gewählt, ist die Ausgangsfrequenz auf den Frequenzbereich f beschränkt.<sub>MIN</sub> -f<sub>MAX</sub>. Wird "Beide Richtungen" [1]/[4] gewählt, ist die Ausgangsfrequenz auf den Frequenzbereich ± f beschränkt. MAX (die Minimalfrequenz ist ohne Bedeutung).



#### 201 Ausgangsfrequenzgrenze niedrig, f<sub>MIN</sub>

#### (MIN.FREQUENZ)

#### Wert:

0,0 - f<sub>MAX</sub> ★ 0,0 Hz

#### **Funktion:**

In diesem Parameter kann für die Motorfrequenz eine Mindestgrenze gewählt werden, die die Mindestdrehzahl bestimmt, mit der der Motor laufen soll. Wenn Beide Richtungen in Parameter 200 Ausgangsfrequenz Bereich/Richtung gewählt wurde, ist die Mindestfrequenz ohne Bedeutung.

#### Beschreibung der Auswahl:

Einstellbar ist ein Wert von 0,0 Hz bis zu der in Parameter 202 Ausgangsfrequenzgrenze hoch,  $f_{MAX}$  eingestellten Höchstfrequenz.

#### 202 Ausgangsfrequenzgrenze hoch, fMAX

#### (MAX.FREQUENZ)

#### Wert:

f<sub>MIN</sub> - 132/1000 Hz (Par. 200 Ausgangsfrequenz Bereich/Richtung)

★ 132 Hz

#### **Funktion:**

In diesem Parameter kann für die Ausgangsfrequenz eine Höchstgrenze gewählt werden, die die Höchstdrehzahl bestimmt, mit der der Motor laufen soll.

#### **ACHTUNG!:**

Die Ausgangsfrequenz des Frequenzumrichters kann niemals einen Wert höher als 1/10 der Taktfrequenz (Parameter 411 Taktfrequenz) annehmen.

#### Beschreibung der Auswahl:

Einstellbar ist ein Wert von f<sub>MIN</sub> bis zu dem in Parameter 200 Ausgangsfrequenz Bereich/Richtung gewählten Wert.

#### 203 Sollwertbereich (SOLLWERTBEREICH)

★Min. Sollwert - Max. Sollwert (MIN - MAX) [0] -Max. Sollwert - Max. Sollwert (-MAX - +MAX) [1]

#### **Funktion:**

In diesem Parameter wird gewählt, ob das Sollwertsignal positiv sein muß oder positiv und negativ sein kann. Die Mindestgrenze kann ein negativer Wert



sein, es sei denn, in Parameter 100 Konfiguration wurde Drehzahlregelung mit Istwertrückführung programmiert. Min. Sollwert - Max. Sollwert [0] wählen, wenn Prozeßregelung mit Istwertrückführung [3] in Parameter 100 Konfiguration gewählt wurde.

#### Beschreibung der Auswahl:

Wählen Sie den gewünschten Bereich.

# 204 Minimaler Sollwert, SOLLW.<sub>MIN</sub> (MIN-SOLLWERT)

#### Wert:

Par. 100 Konfig. = Drehzahlregelung mit Schlupfkompensation [0]. -100.000,000 - Par. 205 SOLLW.<sub>MAX</sub> ★ 0,000 Hz

Par. 100 Konfig. = mit Istwertrückführung [1]/[3]. -Par. 414 Minimaler Istwert - Par. 205 SOLLW.<sub>MAX</sub>

★ 0,000 Upm/par 416

#### Funktion:

Der Minimale Sollwert steht für den niedrigsten Wert, den die Summe aller Sollwerte annehmen kann. Ist in Parameter 100 Konfiguration, Drehzahlregelung mit Istwertrückführung [1] oder Prozeßregelung mit Istwertrückführung [3] gewählt, so wird der Minimale Sollwert durch Parameter 414 Minimaler Istwert begrenzt. Minimaler Sollwert wird ignoriert, wenn Ort-Sollwert aktiv ist.

Die Sollwerteinheit kann der folgenden Tabelle entnommen werden:

| Par. 100 Konfiguration                            | Einheit  |
|---------------------------------------------------|----------|
| Drehzahlregelung mit Schlupfkom-<br>pensation [0] | Hz       |
| Drehzahlregelung mit Istwertrück-<br>führung [1]  | Upm      |
| Prozeßregelung mit Istwertrück-<br>führung [3]    | Par. 416 |

#### Beschreibung der Auswahl:

Ein Minimaler Sollwert wird eingestellt, wenn der Motor mit einer gegebenen Mindestdrehzahl laufen soll, unabhängig davon, ob der resultierende Sollwert 0 ist.

#### 205 Maximaler Sollwert, SOLLW.<sub>MAX</sub>

#### (MAX-SOLLWERT)

#### Wert:

Par. 100 Konfig. = Drehzahlregelung

mit Schlupfkompensation [0].

Par. 204 Sollwert<sub>MIN</sub> - 1000,000 Hz ★ 50,000 Hz

Par. 100 Konfig. = Mit Istwertrückführung [1]/[3]. Par. 204 Sollwert<sub>MIN</sub> - Par. 415 Max. Istwert

★ 50,000 Upm/par 416

#### **Funktion:**

Der Maximale Sollwert steht für den höchsten Wert, den die Summe aller Sollwerte annehmen kann. Ist Mit Istwertrückführung [1]/[3] in Parameter 100 Konfiguration eingestellt, so kann der Maximale Sollwert den in Parameter 415 Maximaler Istwert eingestellten Wert nicht überschreiten. Maximaler Sollwert wird ignoriert, wenn Ort-Sollwert aktiv ist.

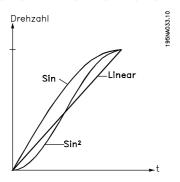
Die Sollwerteinheit kann der folgenden Tabelle entnommen werden:

| Par. 100 Konfiguration            | Einheit  |
|-----------------------------------|----------|
| Drehzahlregelung mit Schlupfkom-  | Hz       |
| pensation [0]                     |          |
| Drehzahlregelung mit Istwertrück- | Upm      |
| führung [1]                       |          |
| Prozeßregelung mit Istwertrück-   | Par. 416 |
| führung [3]                       |          |

#### Beschreibung der Auswahl:

Ein Maximaler Sollwert wird eingestellt, wenn die Motordrehzahl max. den voreingestellten Wert betragen soll, unabhängig davon, ob der resultierende Sollwert höher als der Maximale Sollwert ist.

# 206 Rampentyp (RAMPENVERLAUF) Wert: ★Linear (LINEAR) [0] Sinusförmig (SINUS-FORM) [1] Sinus² förmig (SINUS 2-FORM) [2]


#### **Funktion:**

Zwischen linearem, sinusförmigem und sinus<sup>2</sup> förmigem Rampentyp kann frei gewählt werden.



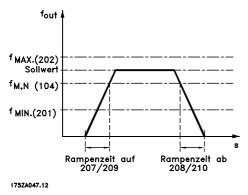
#### Beschreibung der Auswahl:

Wählen Sie den gewünschten Rampentyp abhängig von den Anforderungen an den Beschleunigungs-/Verzögerungsvorgang.



#### 207 Rampenzeit Auf 1

#### (RAMPE AUF 1)


#### Wert:

0,02 - 3600,00 s

★ 3,00 s (VLT 2803-2875) 10,00 s (VLT 2880-2882)

#### **Funktion:**

Rampenzeit Auf ist die Beschleunigungszeit von 0 Hz bis zur Motornennfrequenz  $f_{M,N}$  (Parameter 104 *Motorfrequenz, f\_{M,N}).* Es wird vorausgesetzt, dass der Ausgangsstrom den Stromgrenzwert nicht erreicht (Einstellung in Parameter 221 *Stromgrenze I<sub>LIM</sub>*).



#### Beschreibung der Auswahl:

Programmieren Sie die gewünschte Rampenzeit Auf.

# 208 Rampenzeit Ab 1 (RAMPENZEIT AB 1)

#### Wert:

0,02 - 3600,00 s

★ 3,00 s (VLT 2803-2875) 10,00 s (VLT 2880-2882)

#### **Funktion:**

Die Rampenzeit Ab ist die Verzögerungszeit von der Motornennfrequenz  $f_{M,N}$  (Parameter 104 *Motorfrequenz, f\_{M,N}*) bis 0 Hz, vorausgesetzt, es

entsteht im Wechselrichter keine Überspannung durch die Erzeugung des Motorbetriebs.

#### Beschreibung der Auswahl:

Programmieren Sie die gewünschte Rampenzeit Ab.

#### 209 Rampenzeit auf 2

#### (RAMPE AUF 2)

#### Vert:

0,02 - 3600,00 s

★ 3,00 s (VLT 2803-2875) 10,00 s (VLT 2880-2882)

#### **Funktion:**

Siehe Beschreibung von Parameter 207 Rampenzeit Auf 1.

#### Beschreibung der Auswahl:

Programmieren Sie die gewünschte Rampenzeit Auf. Der Wechsel von Rampe 1 auf Rampe 2 erfolgt über die Aktivierung des Signals *Rampe 2* über einen Digitaleingang.

#### 210 Rampenzeit Ab 2

#### (RAMPE AB 2)

#### Wert:

0,02 - 3600,00 s

\* 3,00 s (VLT 2803-2875) 10,00 s (VLT 2880-2882)

#### **Funktion:**

Siehe Beschreibung von Parameter 208 Rampenzeit Ab 1.

#### Beschreibung der Auswahl:

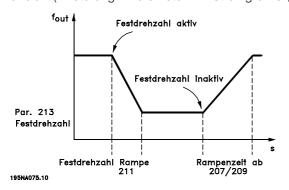
Programmieren Sie die gewünschte Rampenzeit Ab. Der Wechsel von Rampe 1 auf Rampe 2 erfolgt über die Aktivierung des Signals *Rampe 2* über einen Digitaleingang.

#### 211 Rampenzeit Festdrehzahl - Jog

#### (RAMPE FESTDREHZAHL JOG)

#### Wert:

0,02 - 3600,00 s


★ 3,00 s (VLT 2803-2875) 10,00 s (VLT 2880-2882)

#### **Funktion:**

Rampenzeit Festdrehzahl - Jog ist die Beschleunigungszeit von 0 Hz bis zur Motornennfrequenz  $f_{M,N}$  (Parameter 104 *Motorfrequenz, f\_{M,N}*). Es wird vorausgesetzt,



dass der Ausgangsstrom den Stromgrenzwert nicht erreicht (Einstellung in Parameter 221 *Stromgrenze I<sub>LIM</sub>*).



Die Rampenzeit Festdrehzahl beginnt mit der Aktivierung der Festdrehzahl über das Bedienfeld, einen der digitalen Eingänge bzw. die serielle Schnittstelle.

#### Beschreibung der Auswahl:

Programmieren Sie die gewünschte Rampenzeit.

#### 212 Rampenzeit Ab, Schnellstopp

#### (RAMPE Q-STOPP)

#### Wert:

0,02 - 3600,00 s

\* 3,00 s (VLT 2803-2875) 10,00 s (VLT 2880-2882)

#### **Funktion:**

Die Rampenzeit Ab, Schnellstopp ist die Verzögerungszeit von der Motornennfrequenz bis 0 Hz, vorausgesetzt, es entsteht im Wechselrichter keine Überspannung durch generatorischen Betrieb des Motors bzw. wenn der zurückgespeiste Strom die Stromgrenze überschreitet (Einstellung in Parameter 221 Stromgrenze I<sub>LIM</sub>. Schnellstopp wird über einen der digitalen Eingänge oder die serielle Schnittstelle aktiviert.

#### Beschreibung der Auswahl:

Programmieren Sie die gewünschte Rampenzeit Ab.

#### 213 Frequenz Festdrehzahl - Jog

#### (FREQUENZ JOG)

#### Wert:

0,0 - Par. 202 Ausgangsfrequenzgrenze hoch, f<sub>MAX</sub>

★ 10.0 Hz

#### **Funktion:**

Die Festdrehzahlfrequenz f<sub>JOG</sub> ist bei aktivierter Festdrehzahlfunktion eine feste Ausgangsfrequenz des Frequenzumrichters. Jog kann über die digitalen Eingänge, serielle Schnittstelle oder das Bedienfeld aktiviert werden, wenn diese Funktion in Parameter 015 *Taster JOG Festdrehzahl* aktiv eingestellt wurde.

#### Beschreibung der Auswahl:

Programmieren Sie die gewünschte Frequenz.

## 214 Sollwert-Funktion (SOLLWERT-FUNKT.)

#### Wert

**Funktion:** 

\*Addierend zum Sollwert (ADD.ZUM SOLLWERT)
Erhöhung des Sollwertes-Relativ (RELATIV)
Externe Anwahl (EXTERNE ANWAHL)

[0] [1] [2]

Hier kann definiert werden, wie Festsollwerte zu den übrigen Sollwerten addiert werden sollen; hierzu Addierend zum Sollwert oder Erhöhung des Sollwertes-Relativ benutzen. Mit der Funktion Externe Anwahl kann auch festgelegt werden, ob Wechsel zwischen externen und Festsollwerten erfolgen soll. Externer Sollwert ist die Summe der Analogsollwerte, der Puls- und aller Bussollwerte.

#### Beschreibung der Auswahl:

Bei Auswahl von Addieren zum Sollwert [0] wird einer der Festsollwerte (Parameter 215-218 Festsollwert) als prozentualer Wert des Sollwertbereichs (Ref MIN - Ref MAX) zu den übrigen externen Sollwerten addiert. Bei Auswahl von Erhöhen des Sollwertes-Relativ [1] wird einer der Festsollwerte (Parameter 215-218 Festsollwert) als prozentualer Wert der Summe der aktuellen externen Sollwerte addiert.

Bei Auswahl von Externe Anwahl [2] kann über einen digitalen Eingang zwischen externen und Festsollwerten gewechselt werden. Die Festsollwerte sind ein prozentualer Wert des Sollwertbereichs.

#### **ACHTUNG!:**

Bei Auswahl von Addierend zum Sollwert oder Erhöhen des Sollwertes-Relativ ist einer der Festsollwerte immer aktiv. Sollen die Festsollwerte keine Auswirkung haben, müssen sie auf 0% (Werkseinstellung) eingestellt werden.

215 Festsollwert 1 (FESTSOLLWERT 1)

216 Festsollwert 2 (FESTSOLLWERT 2)

217 Festsollwert 3 (FESTSOLLWERT 3)

218 Festsollwert 4 (FESTSOLLWERT 4)

#### Wert

-100,00% - +100,00% 

des Sollwertbereichs/externen Sollwertes

#### **Funktion:**

In den Parametern 215-218 Festsollwert können vier Festsollwerte programmiert werden.



Der Festsollwert kann als prozentualer Wert des Sollwertbereichs (Ref<sub>MIN</sub> - Ref<sub>MAX</sub>) oder als prozentualer Wert der übrigen externen Sollwerte eingegeben werden, je nachdem, welche Wahl in Parameter 214 *Sollwert-Funktion* getroffen wurde. Die Auswahl der Festsollwerte kann über die digitalen Eingänge oder die serielle Schnittstelle erfolgen.

| FSollwert. | FSollwert |                |
|------------|-----------|----------------|
| Anw. msb   | Anw. Isb  |                |
| 0          | 0         | Festsollwert 1 |
| 0          | 1         | Festsollwert 2 |
| 1          | 0         | Festsollwert 3 |
| 1          | 1         | Festsollwert 4 |

#### Beschreibung der Auswahl:

Programmieren Sie den/die Festsollwert(e), die wählbar sein sollen.

#### 219 Frequenzkorrektur Auf/ Ab

#### (ANPASSUNGSWERT-%)

#### Wert:

0,00 - 100% des jeweiligen Sollwertes

★ 0,00%

#### **Funktion:**

In diesem Parameter kann der prozentuale Wert programmiert werden, der zu den Fern-Sollwerten addiert bzw. hiervon subtrahiert werden soll. Der Fern-Sollwert ist die Summe der Festsollwerte, analogen Sollwerte, Pulssollwerte und aller etwaigen Sollwerte der seriellen Schnittstelle.

#### Beschreibung der Auswahl:

Wenn Frequenzkorrektur Auf über einen digitalen Eingang aktiviert wird, wird der in Parameter 219 Frequenzkorrektur Auf/Ab festgelegte Wert zum Fern-Sollwert addiert.

Wenn Frequenzkorrektur Ab über einen digitalen Eingang aktiviert wird, wird der in Parameter 219 Frequenzkorrektur Auf/Ab festgelegte Wert vom Fern-Sollwert subtrahiert.

#### 221 Stromgrenze, I LIM

#### (STROMGRENZE)

#### Wert:

0 - XXX,X % von par. 105

**★** 160 %

#### Funktion:

Hier wird der maximale Ausgangsstrom  $I_{LIM}$  programmiert. Die Werkseinstellung entspricht dem maximalen Ausgangsstrom  $I_{MAX}$ . Soll die Stromgrenze

als Motorschutz verwendet werden, programmieren Sie den Motornennstrom. Wird die Stromgrenze auf über 100% (des Ausgangsnennstroms des Frequenzumrichters I<sub>INV.</sub>) eingestellt, kann der Frequenzumrichter nur intermittierend, d.h. kurzzeitig betrieben werden. Nach einer Belastung mit mehr als I<sub>INV.</sub> muß sichergestellt werden, daß die Last für einen ausreichenden Zeitraum geringer als I<sub>INV.</sub> ist. Beachten Sie, daß bei Einstellung der Stromgrenze auf einen geringeren Wert als I<sub>INV.</sub> das Beschleunigungsmoment im gleichen Umfang reduziert wird.

#### Beschreibung der Auswahl:

Programmieren Sie den maximalen Ausgangsstrom I<sub>LIM</sub>.

## 223 Warnung: Strom unterer Grenzwert, IMIN-GRENZE

#### (I-MIN GRENZE)

#### Wert:

0,0 - Par. 224 Warnung: Strom oberer

Grenzwert, IMAX-GRENZE

★ 0,0 A

#### **Funktion:**

Fällt der Ausgangsstrom unter die voreingestellte Grenze I MIN-GRENZE ab, erfolgt eine Warnung. Die Parameter 223-228 Warnfunktionen haben während des Hochlaufs nach einem Startbefehl und nach einem Stoppbefehl sowie während eines Stopps keine Funktion. Die Warnfunktionen werden aktiviert, wenn die Ausgangsfrequenz ihren resultierenden Sollwert erreicht hat. Die Signalausgänge können so programmiert werden, daß sie ein Warnsignal über Klemme 46 und über den Relaisausgang geben.

#### Beschreibung der Auswahl:

Die untere Ausgangsstrom-Warngrenze I<sub>MIN-GRENZE</sub> muß innerhalb des normalen Betriebsbereichs des Frequenzumrichters programmiert werden.





Die Parameter 223-228 Warnfunktionen haben während des Hochlaufs nach einem Startbefehl und nach einem Stoppbefehl sowie während eines Stopps keine Funktion. Die Warnfunktionen werden aktiviert, wenn die Ausgangsfrequenz ihren resultierenden Sollwert erreicht hat. Die Signalausgänge können so programmiert werden, daß sie ein Warnsignal über Klemme 46 und über den Relaisausgang geben.

#### Beschreibung der Auswahl:

Die untere Ausgangsfrequenz-Warngrenze f MIN-GRENZE muß innerhalb des normalen Betriebsbereichs des Frequenzumrichters programmiert werden. Siehe Zeichnung zu Parameter 223 Warnung: Strom unterer Grenzwert, I MIN-GRENZE.

#### 224 Warnung: Strom oberer Grenzwert, MAX-GRENZE (I-MAX GRENZE)

#### Wert:

0 - I<sub>MAX-GRENZE</sub>

★ IMAX-GRENZE

#### **Funktion:**

Übersteigt der Ausgangsstrom die voreingestellte Grenze I MAX-GRENZE, so erfolgt eine Warnung. Die Parameter 223-228 Warnfunktionen haben während des Hochlaufs nach einem Startbefehl und nach einem Stoppbefehl sowie während eines Stopps keine Funktion. Die Warnfunktionen werden aktiviert, wenn die Ausgangsfrequenz ihren resultierenden Sollwert erreicht hat. Die Signalausgänge können so programmiert werden, daß sie ein Warnsignal über Klemme 46 und über den Relaisausgang geben.

#### Beschreibung der Auswahl:

Der obere Signalwert des Ausgangsstroms IMAX-GRENZE muß innerhalb des normalen Betriebsbereichs des Frequenzumrichters programmiert sein. Siehe Zeichnung zu Parameter 223 Warnung: Strom unterer Grenzwert, I<sub>MIN-GRENZE</sub>.

#### 225 Warnung: Frequenz unterer Grenzwert, **fMIN-GRENZE**

#### (F-MIN-GRENZE)

#### Wert:

0,0 - Par. 226 Warn.: Frequenz oberer Grenzwert, f<sub>MAX-GRENZE</sub>

**★** 0,0 Hz

#### **Funktion:**

Fällt die Ausgangsfrequenz unter die voreingestellte Grenze f<sub>MIN-GRENZE</sub>, erfolgt eine Warnung.

#### 226 Warnung: Frequenz oberer Grenzwert **fMAX-GRENZE**

#### (F-MAX-GRENZE)

#### Wert:

Par. 200 Ausgangsfrequenz Bereich/Richtung = 0-132 Hz [0]/[1].

Par. 225 f<sub>MIN-GRENZE</sub> - 132 Hz

★ 132,0 Hz

Par. 200 Ausgangsfrequenz Bereich/Richtung = 0-1000 Hz [2]/[3].

Par. 225 f<sub>MIN-GRENZE</sub> - 1000 Hz

★ 132,0 Hz

#### **Funktion:**

Übersteigt die Ausgangsfrequenz die voreingestellte Grenze f MAX-GRENZE, so erfolgt eine Warnung. Die Parameter 223-228 Warnfunktionen haben während des Hochlaufs nach einem Startbefehl und nach einem Stoppbefehl sowie während eines Stopps keine Funktion. Die Warnfunktionen werden aktiviert, wenn die Ausgangsfrequenz ihren resultierenden Sollwert erreicht hat. Die Signalausgänge können so programmiert werden, daß sie ein Warnsignal über Klemme 46 und über den Relaisausgang geben.

#### Beschreibung der Auswahl:

Die obere Ausgangsfrequenz-Warngrenze fMAX-GRENZE muß innerhalb des normalen Betriebsbereichs des Frequenzumrichters programmiert werden. Siehe Zeichnung zu Parameter 223 Warnung: Strom unterer Grenzwert, I MIN-GRENZE.



# 227 Warnung: Istwert unterer Grenzwert, ISTW MIN-GRENZE

#### (WARN.ISTW.TIEF)

#### Wert:

-100.000,000 - Par. 228 Warn.: ISTW.<sub>MAX-GRENZE</sub>

★ -4000,000

#### **Funktion:**

Fällt das Istwertsignal unter die voreingestellte Grenze ISTW. MIN-GRENZE, erfolgt eine Warnung. Die Parameter 223-228 Warnfunktionen haben während des Hochlaufs nach einem Startbefehl und nach einem Stoppbefehl sowie während eines Stopps keine Funktion. Die Warnfunktionen werden aktiviert, wenn die Ausgangsfrequenz ihren resultierenden Sollwert erreicht hat. Die Signalausgänge können so programmiert werden, daß sie ein Warnsignal über Klemme 46 und über den Relaisausgang geben. Die Einheit für den Istwert bei Istwertrückführung wird in Parameter 416 Anzeigewert programmiert.

#### Beschreibung der Auswahl:

Programmieren Sie den gewünschten Wert innerhalb des Istwertbereichs (Parameter 414 *Minimaler Istwert ISTW<sub>MIN</sub>* und 415 *Maximaler Istwert, ISTW<sub>MAX</sub>*).

# 228 Warnung: Istwert oberer Grenzwert, ISTW MAX-GRENZE (WARN.ISTW.HOCH)

#### Wert:

Par. 227 Warn.: ISTW MIN-GRENZE - 100.000,000

★ 4000,000

#### **Funktion:**

Übersteigt das Istwertsignal die voreingestellte Grenze ISTW. MAX-GRENZE, erfolgt eine Warnung. Die Parameter 223-228 Warnfunktionen haben während des Hochlaufs nach einem Startbefehl und nach einem Stoppbefehl sowie während eines Stopps keine Funktion. Die Warnfunktionen werden aktiviert, wenn die Ausgangsfrequenz ihren resultierenden Sollwert erreicht hat. Die Signalausgänge können so programmiert werden, daß sie ein Warnsignal über Klemme 46 und über den Relaisausgang geben. Die Einheit für den Istwert bei Istwertrückführung wird in Parameter 416 Anzeigewert programmiert.

#### Beschreibung der Auswahl:

Programmieren Sie den gewünschten Wert innerhalb des Istwertbereichs (Parameter 414 *Minimaler Istwert ISTW<sub>MIN</sub>* und 415 *Maximaler Istwert, ISTW<sub>MAX</sub>*).

#### 229 Frequenzüberbrückung, Bandbreite

#### (BANDBR.FREQ. AUSB)

#### Wert:

0 (AUS) - 100 Hz

#### **Funktion:**

Bei einigen Systemen müssen aufgrund mechanischer Resonanzen in der Anlage bestimmte Ausgangsfrequenzen vermieden werden. In den Parametern 230-231 *Frequenzüberbrückung* können diese Ausgangsfrequenzen programmiert werden. In diesem Parameter kann für alle diese Frequenzen eine Bandbreite definiert werden.

#### Beschreibung der Auswahl:

Die in diesem Parameter eingestellte Bandbreite hat ihren Mittenwert auf den in den Parametern 230 Frequenzüberbrückung 1 und 231 Frequenzüberbrückung 2 eingestellten Werten.

## 230 Frequenzausblendung 1 (F1-AUSBLENDUNG)

### 231 Frequenzausblendung 2 (F2-AUSBLENDUNG)

#### Wert:

0 - 1000 Hz

★ 0,0 Hz

#### **Funktion:**

Bei einigen Systemen müssen aufgrund mechanischer Resonanzen in der Anlage bestimmte Ausgangsfrequenzen vermieden werden.

#### Beschreibung der Auswahl:

Programmieren Sie die auszublendenden Frequenzen. Siehe auch Parameter 229 Frequenzausblendung, Bandbreite.

<sup>★ =</sup> Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert



### **■**Ein- und Ausgänge

| Digitale Eingänge              | Klemme Nr.              | 18 <sup>1</sup> | 19 <sup>1</sup> | 27           | 29            | 33           |
|--------------------------------|-------------------------|-----------------|-----------------|--------------|---------------|--------------|
|                                | Par.Nr.                 | 302             | 303             | 304          | 305           | 307          |
| Wert:                          |                         |                 |                 |              |               |              |
| Ohne Funktion                  | (OHNE FUNKTION)         | [0]             | [0]             | [0]          | [0]           | <b>★</b> [0] |
| Reset                          | (RESET)                 | [1]             | [1]             | [1]          | [1]           | [1]          |
| Motorfreilauf invers           | (MOTORFREILAUF          | [2]             | [2]             | [2]          | [2]           | [2]          |
|                                | NVERS)                  |                 |                 |              |               |              |
| Reset und Motorfreilauf invers | (RESET UND FREIL. INV.) | [3]             | [3]             | <b>★</b> [3] | [3]           | [3]          |
| Schnell-Stop                   | (SCHNELLSTOPP)          | [4]             | [4]             | [4]          | [4]           | [4]          |
| Gleichspannungsbremse invers   | (DC-BREMSE INVERS)      | [5]             | [5]             | [5]          | [5]           | [5]          |
| Stopp invers                   | (STOPP INVERS)          | [6]             | [6]             | [6]          | [6]           | [6]          |
| Start                          | (START)                 | <b>★</b> [7]    | [7]             | [7]          | [7]           | [7]          |
| Pulsstart                      | (PULSSTART)             | [8]             | [8]             | [8]          | [8]           | [8]          |
| Reversierung                   | (REVERSIERUNG)          | [9]             | <b>★</b> [9]    | [9]          | [9]           | [9]          |
| Reversierung und Start         | (START + REVERSIERUNG)  | [10]            | [10]            | [10]         | [10]          | [10]         |
| Nur Start rechts wirksam       | (START RECHTS           | [11]            | [11]            | [11]         | [11]          | [11]         |
|                                | WIRKSAM)                |                 |                 |              |               |              |
| Nur Start links wirksam        | (START LINKS WIRKSAM)   | [12]            | [12]            | [12]         | [12]          | [12]         |
| Festdrehzahl (Jog)             | (FESTDREHZAHL)          | [13]            | [13]            | [13]         | <b>★</b> [13] | [13]         |
| Sollwert speichern             | (SOLLWERT SPEICHERN)    | [14]            | [14]            | [14]         | [14]          | [14]         |
| Ausgangsfrequenz speichern     | (AUSGANG SPEICHERN)     | [15]            | [15]            | [15]         | [15]          | [15]         |
| Drehzahl auf                   | (DREHZAHL AUF)          | [16]            | [16]            | [16]         | [16]          | [16]         |
| Drehzahl ab                    | (DREHZAHL AB)           | [17]            | [17]            | [17]         | [17]          | [17]         |
| Frequenzkorrektur auf          | (FREQKORREKTUR AUF)     | [19]            | [19]            | [19]         | [19]          | [19]         |
| Frequenzkorrektur ab           | (FREQKORREKTUR AB)      | [20]            | [20]            | [20]         | [20]          | [20]         |
| Rampe 2                        | (RAMPE 2)               | [21]            | [21]            | [21]         | [21]          | [21]         |
| Festsollwertanwahl, LSB        | (FESTSOLLW.ANWAHL,      | [22]            | [22]            | [22]         | [22]          | [22]         |
|                                | LSB)                    |                 |                 |              |               |              |
| Festsollwertanwahl, MSB        | (FESTSOLLW.ANWAHL       | [23]            | [23]            | [23]         | [23]          | [23]         |
|                                | MSB)                    |                 |                 |              |               |              |
| Festsollwert ein               | (FESTSOLLWERT EIN)      | [24]            | [24]            | [24]         | [24]          | [24]         |
| Thermistor                     | (THERMISTOR)            | [25]            | [25]            | [25]         | [25]          |              |
| Präziser Stop invers           | (PRAEZ.STOPP INV.)      | [26]            | [26]            |              |               |              |
| Präziser Start/Stopp           | (PRAEZ. START/STOPP)    | [27]            | [27]            |              |               |              |
| Puls-Sollwert                  | (PULS-SOLLWERT)         |                 |                 |              |               | [28]         |
| Puls-Istwerteingabe            | (PULS-ISTWERT)          |                 |                 |              |               | [29]         |
| Pulseingang                    | (PULSEINGANG)           |                 |                 |              |               | [30]         |
| Parametersatzwahl, Isb         | (PAR.SATZ ANWAHL LSB)   | [31]            | [31]            | [31]         | [31]          | [31]         |
| Parametersatzwahl, msb         | (PAR.SATZ ANWAHL MSB)   | [32]            | [32]            | [32]         | [32]          | [32]         |
| Reset und Start                | (RESET + START)         | [33]            | [33]            | [33]         | [33]          | [33]         |
| Pulszähler Start               | (PULSZÄHLERSTART)       | [34]            | [34]            | 11           |               |              |

1. Alle Funktionen von Klemme 18 und 19 werden von einem Leistungsschalter gesteuert, d.h., dass die Wiederholgenauigkeit der Ansprechzeit konstant bleibt. Verwendung zum Starten/Stoppen, Programmsatzumschaltung und insbesondere zur Änderung der digitalen Voreinstellung, z.B. zur Einstellung eines reproduzierbaren Stopp-Punktes bei Kriechdrehzahl. Weitere Informationen siehe VLT 2800, Anweisung für präzisen Stopp, MI.28.CX.02.



### Funktion:

In den Parametern 302-307, *Digitale Eingänge*, können verschiedene Funktionen in Bezug auf die digitalen Eingänge (Klemmen 18-33) ausgewählt werden.

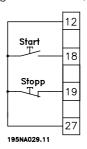
### Beschreibung der Auswahl:

Ohne Funktion ist zu wählen, wenn der Frequenzumrichter auf die der Klemme zugeführten Signale nicht reagieren soll.

Reset setzt den Frequenzumrichter nach einem Alarm zurück, einige Alarmmeldungen können jedoch erst zurückgesetzt werden, wenn die Netzspannung unterbrochen und dann wieder angeschlossen wird. Siehe Tabelle unter Liste der Warn- und Alarmmeldungen. Reset wird auf der Signalvorderflanke aktiviert.

Motorfreilaufstopp invers koppelt den Motor vom Frequenzumrichter sofort ab (Ausgangstransistoren werden abgeschaltet), so dass der Motor bis zum Stopp frei ausläuft. Logisch '0' führt zum Freilaufstopp.

Reset und Motorfreilauf invers dient zum gleichzeitigen Aktivieren von Motorfreilauf und Reset. Logisch '0' führt zu Freilaufstopp und Reset. Reset wird auf der Signalrückflanke aktiviert.


Schnellstopp invers dient zum Aktivieren der in Parameter 212 Rampenzeit Ab, Schnellstopp programmierten Schnellstopprampe. Logisch '0' führt zu Schnellstopp.

Gleichspannungsbremse invers dient zum Anhalten des Motors durch Anlegen einer Gleichspannung über einen bestimmten Zeitraum, siehe Parameter 126, 127 und 132 Gleichspannungsbremse. Beachten Sie, dass die Funktion nur aktiv ist, wenn der Wert in den Parametern 126 Gleichspannungsbremszeit und 132 Spannung Gleichspannungsbremse nicht 0 ist. Logisch '0' bewirkt Gleichspannungsbremsung.

Stopp invers, logisch '0' bedeutet, dass die Motordrehzahl gemäß der gewählten Rampe zum Stopp verringert wird.

Keiner der o.a. Stoppbefehle darf für Reparaturzwecke benutzt werden. Beachten Sie bitte, dass der Frequenzumrichter außer den Spannungseingängen L1, L2 und L3 noch weitere Spannungseingänge hat, wenn die DC-Busklemmen benutzt werden. Sicherstellen, dass vor Beginn der Reparaturarbeiten alle Spannungseingänge abgeschaltet sind und die erforderliche Zeit (4 min) verstrichen ist.

Start ist zu wählen, wenn ein Start/Stopp-Befehl gewünscht wird. Logisch '1' = Start, logisch '0' = Stopp.



*Pulsstart*, wird mindestens 14 ms ein Impuls angelegt, so startet der Frequenzumrichter den Motor, sofern kein Stoppbefehl gegeben wurde. Der Motor kann durch kurzes Aktivieren von *Stopp invers* angehalten werden.

Reversierung wird zur Umkehr der Motordrehrichtung verwendet. Logisch '0' bewirkt keine Reversierung Logisch '1' führt zur Drehrichtungsumkehr. Das Reversierungssignal ändert nur die Drehrichtung, es aktiviert nicht die Startfunktion. Nicht aktiv in Prozessregelung mit Istwertrückführung. Siehe auch Parameter 200 Ausgangsfrequenz Bereich/Richtung.

Start, Reversierung dient für Start/Stopp und Reversierung mit dem gleichen Signal. Es ist gleichzeitig kein anderer aktiver Startbefehl zulässig. Dient als Pulsstart-Reversierung, sofern Pulsstart für Klemme 18 gewählt wurde. Ist nicht aktiv für Prozessregelung mit Istwertrückführung. Siehe auch Parameter 200 Ausgangsfrequenz Bereich/Richtung.

Nur Start rechts wird verwendet, wenn der Motor beim Start nur im Rechtslauf laufen soll. Nicht anwenden bei Prozessregelung mit Istwertrückführung.

Nur Start links wird verwendet, wenn der Motor beim Start nur im Linkslauf laufen soll. Nicht anwenden bei Prozessregelung mit Istwertrückführung. Siehe auch Parameter 200 Ausgangsfrequenz Bereich/Richtung.

Festdrehzahl (Jog) dient dazu, die Ausgangsfrequenz auf die in Parameter 213 Frequenz Festdrehzahleingestellte Festdrehzahlfrequenz einzustellen. Festdrehzahl (Jog) ist unabhängig von einem Startbefehl aktiv, aber nicht, wenn Motorfreilauf invers, Schnellstopp invers oder Gleichstrombremse aktiv sind.

Mit Sollwert speichern wird der aktuelle Sollwert gespeichert. Der Sollwert kann nun nur mit Drehzahl Auf und Drehzahl Ab geändert werden. Ist Sollwert speichern aktiv, so wird die Programmierung nach einem Stoppbefehl und bei einem Netzausfall gespeichert.



MitFrequenz speichern wird die aktuelle Ausgangsfrequenz (in Hz) gespeichert. Die Ausgangsfrequenz kann nun nur mit *Drehzahl Auf* und *Drehzahl Ab* geändert werden.

### **ACHTUNG!:**

Ist Ausgang speichern aktiv, kann der Frequenzumrichter nur gestoppt werden, wenn Motorfreilauf invers, Schnellstopp oder Gleichspannungsbremse über einen digitalen Eingang gewählt ist.

Drehzahl auf und Drehzahl ab sind zu wählen, wenn eine digitale Steuerung der Drehzahl auf/ab gewünscht wird. Diese Funktion ist nur aktiv, wenn Sollwert speichern oder Ausgang speichern gewählt wurde. Ist Drehzahl auf aktiv, so werden der Sollwert bzw. die Ausgangsfrequenz erhöht; ist Drehzahl ab aktiv, so wird der Sollwert bzw. die Ausgangsfrequenz reduziert. Die Ausgangsfrequenz wird über die Rampenzeiten in den Parametern 209-210 Rampenzeit 2 geändert. Ein Impuls (logisch '1' mindestens für 14 ms und Pausenzeit mindestens 14 ms) führt zu einer Drehzahländerung von 0,1 % (Sollwert) bzw. 0,1 Hz (Ausgangsfrequenz). Beispiel:

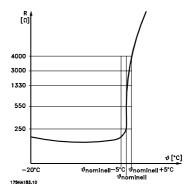
| Klemme<br>29 | Klemme<br>33 | Sollw.<br>speichern/<br>Freq.<br>speichern | Funktion                     |
|--------------|--------------|--------------------------------------------|------------------------------|
| 0            | 0            | 1                                          | Keine<br>Drehz.än-<br>derung |
| 0            | 1            | 1                                          | Drehzahl auf                 |
| 1            | 0            | 1                                          | Drehzahl ab                  |
| 1            | 1            | 1                                          | Drehzahl ab                  |

Sollwert speichem kann geändert werden, selbst wenn der Frequenzumrichter gestoppt ist. Der Sollwert wird auch bei Netztrennung gespeichert.

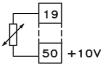
Frequenzkorrektur auf/ab ist zu wählen, wenn der Sollwert um einen in Parameter 219 Anpassungswert-% eingestellten Wert erhöht oder verringert werden soll.

| Frequenz-<br>korrektur | Frequenz-<br>korrektur | Funktion             |
|------------------------|------------------------|----------------------|
| ab                     | auf                    |                      |
| 0                      | 0                      | Keine Drehz.änderung |
| 0                      | 1                      | Beschl. um % Wert    |
| 1                      | 0                      | Verlangs. um % Wert  |
| 1                      | 1                      | Verlangs. um % Wert  |

Rampe 2 ist zu wählen, wenn zwischen Rampe 1 (Parameter 207-208) und Rampe 2 (Parameter


209-210) gewechselt werden soll. Logisch '0' bewirkt Rampe 1 und logisch '1' Rampe 2.

Festsollwertanwahl, Isb und Festsollwertanwahl, msb ermöglicht die Auswahl eines der vier Festsollwerte gemäß nachstehender Tabelle:


| Festsollwert | Festsollwert | <b>Funktion</b> |
|--------------|--------------|-----------------|
| msb          | Isb          |                 |
| 0            | 0            | Festsollwert 1  |
| 0            | 1            | Festsollwert 2  |
| 1            | 0            | Festsollwert 3  |
| 1            | 1            | Festsollwert 4  |

Festsollwert ein dient zum Wechsel zwischen Fernsteuersollwert und Festsollwert. Voraussetzung ist die Auswahl von Externe Anwahl [2] in Parameter 214 Sollwert-Funkt. Logisch '0' = Fernsteuersollwerte aktiv, logisch '1' = einer der vier Festsollwerte aktiv, siehe vorstehende Tabelle.

Thermistor ist zu wählen, wenn ein möglicherweise im Motor integrierter Thermistor in der Lage sein soll, den Frequenzumwandler im Fall einer Motorüberhitzung zu stoppen. Der Abschaltwert liegt bei  $3~\mathrm{k}\Omega$ .



Wenn ein Motor statt dessen einen Klixon-Thermoschalter hat, kann dieser ebenfalls am Eingang angeschlossen werden. Bei parallel geschalteten Motoren müssen die Thermistoren/Thermoschalter in Serie geschaltet werden (Gesamtwiderstand unter 3 k $\Omega$ ). Parameter 128 *Thermischer Motorschutz* muss für *Thermistorwarnung* [1] oder *Thermistorauslösung* [2] programmiert und der Thermistor zwischen einem Digitaleingang und Klemme 50 (Versorgungsspannung + 10 V) angeschlossen werden.



195NA077.10



Präziser Stopp invers ist zu wählen, wenn eine hohe Genauigkeit bei der Wiederholung eines Stoppbefehls erzielt werden soll. Logisch '0' bedeutet, dass die Motordrehzahl gemäß der gewählten Rampe zum Stopp verringert wird.

Präziser Start/Stopp ist zu wählen, wenn eine hohe Genauigkeit bei der Wiederholung eines Start-/Stopbefehls erzielt werden soll.

Puls-Sollwerteingabe ist zu wählen, wenn das Sollwertsignal eine Pulssequenz (Frequenz) ist. 0 Hz entspricht Parameter 204 Minimaler Sollwert, Sollw<sub>MIN</sub>. Die in Parameter 327 Pulssollwert, max. Frequenz eingestellte Frequenz entspricht Parameter 205 Maximaler Sollwert, Sollw<sub>MAX</sub>.

Puls-Istwerteingabe ist zu wählen, wenn das Istwertsignal eine Pulssequenz (Frequenz) ist. In Parameter 327 Pulssollwert/max. Frequenz wird die maximale Pulssollwertfrequenz eingestellt.

Pulseingang ist zu wählen, wenn eine spezifische Anzahl von Pulsen zu Präziser Stopp führen muss, siehe Parameter 343 Präziser Stopp und Parameter 344 Zählerwert.

Parametersatzwahl, Isb und Parametersatzwahl, msb ermöglichen die Wahl eines von vier Parametersätzen. Hierzu muss allerdings Parameter 004 Externe Anwahl gesetzt werden.

Reset und Start dient als Startfunktion. Liegen 24 V am digitalen Eingang an, so wird der Frequenzumrichter zurückgesetzt, und der Motor läuft auf den Wert des Festsollwerts hoch.

Impulszählerstart wird zum Starten einer Zählerstopp-Sequenz mit einem Impulssignal verwendet. Der Impuls muss mindestens 14 ms andauern und darf nicht länger als die Zählperiode sein. Siehe auch Parameter 343 sowie die Einführung, MI28CXYY.

### 308 Klemme 53, Analogeingangsspannung

### (EING.53 ANALOG)

### Wert:

| Ohne Funktion (OHNE FUNKTION) | [0]  |
|-------------------------------|------|
| ★Sollwert (SOLLWERT)          | [1]  |
| Istwert (ISTWERT)             | [2]  |
| Wobbel (WOBB. DELTA FREQ [%]) | [10] |

### Funktion:

In diesem Parameter können die verschiedenen Funktionen für Klemme 53 eingestellt werden. Die

Skalierung des Eingangssignals erfolgt in Parameter 309 *Klemme 53, min. Skalierung* und Parameter 310 *Klemme 53, max. Skalierung*.

### Beschreibung der Auswahl:

Ohne Funktion [0]. Ist zu wählen, wenn der Frequenzumrichter nicht auf die an diese Klemme angeschlossenen Signale reagieren soll. Sollwert [1]. Wenn diese Funktion gewählt ist, kann der Sollwert mit einem analogen Sollwertsignal geändert werden. Werden Sollwertsignale an mehr als einen Eingang angeschlossen, so werden diese Sollwertsignale addiert. Wird ein Spannungsistwertsignal angeschlossen, ist Istwert [2] an Klemme 53 zu wählen. Wobbel [10]

Die Dreieckfrequenz kann über Analogeingang gesteuert werden. Ist WOBB. DELTA FREQ als Analogeingang gewählt (Par. 308 oder Par. 314) ist der in Par. 702 gewählte Wert gleich 100 % des Analogeingangs.

Beispiel: Analogeingang = 4-20 mA, Dreieckfreq. Par. 702 = 5 Hz  $\rightarrow 4$  mA = 0 Hz und 20 mA = 5 Hz. Bei Wahl dieser Funktion siehe Anleitung Wobbel MI28JXYY für weitere Informationen.

### 309 Klemme 53, min. Skalierung

### (EIN.53 SKAL-MIN)

### Wert:

0,0 - 10,0 Volt

★ 0,0 Volt

### Funktion:

In diesem Parameter wird der Signalwert eingestellt, der dem minimalen Sollwert bzw. minmalen Istwert, Parameter 204 *Minimaler Sollwert, Ref<sub>MIN</sub>* / 414 *Minimaler Istwert, FB<sub>MIN</sub>* entspricht.

### Beschreibung der Auswahl:

Gewünschten Spannungswert einstellen. Aus Genauigkeitsgründen sollte eine Kompensation für Spannungsabfall in langen Signalkabeln erfolgen. Soll die Timeout-Funktion verwendet werden (Parameter 317 Zeit nach Sollwertfehler und 318 Funktion nach Sollwertfehler), so muß der programmierte Wert höher als 1 Volt sein.



### 310 Klemme 53, max. Skalierung

### (EIN.53 SKAL-MAX)

### Wert:

0,0 - 10,0 Volt

\* 10,0 Volt

### Funktion:

In diesem Parameter wird der Signalwert eingestellt, der dem maximalen Sollwert bzw. maximalen Istwert, Parameter 205 *Maximaler Sollwert, Ref<sub>MAX</sub>* / 414 *Maximaler Istwert, FB<sub>MAX</sub>* entspricht.

### Beschreibung der Auswahl:

Gewünschten Spannungswert einstellen. Aus Genauigkeitsgründen sollte eine Kompensation für Spannungsabfall in langen Signalkabeln erfolgen.

### 314 Klemme 60, Analogeingangsstrom

### (EING.60 ANALOG)

### Wert:

|   | 110.0                         |      |
|---|-------------------------------|------|
|   | Ohne Funktion (OHNE FUNKTION) | [0]  |
|   | Sollwert (SOLLWERT)           | [1]  |
| , | ★Istwert (ISTWERT)            | [2]  |
|   | Wobbel (WOBB. DELTA FREQ [%]) | [10] |
|   |                               |      |

### Funktion:

In diesem Parameter können die verschiedenen Funktionsmöglichkeiten des Eingangs an Klemme 60 gewählt werden. Die Skalierung des Eingangssignals erfolgt in Parameter 315 Klemme 60, min. Skalierung und Parameter 316 Klemme 60, max. Skalierung.

### Beschreibung der Auswahl:

Ohne Funktion [0]. Ist zu wählen, wenn der Frequenzumrichter nicht auf die an diese Klemme angeschlossenen Signale reagieren soll. Sollwert [1]. Wenn diese Funktion gewählt ist, kann der Sollwert mit einem analogen Sollwertsignal geändert werden. Sind Sollwertsignale mit mehreren Eingängen verbunden, müssen diese Sollwertsignale addiert werden.

Ist ein Stromistwertsignal angeschlossen, wählen Sie *Istwert* [2] an Klemme 60.

Wobbel [10]

Die Dreieckfrequenz kann über Analogeingang gesteuert werden. Ist WOBB. DELTA FREQ als Analogeingang gewählt (Par. 308 oder Par. 314) ist der in Par. 702 gewählte Wert gleich 100 % des Analogeingangs.

Beispiel: Analogeingang = 4-20 mA, Dreieckfreq. Par.  $702 = 5 \text{ Hz} \rightarrow 4 \text{ mA} = 0 \text{ Hz}$  und 20 mA = 5

Hz. Bei Wahl dieser Funktion siehe Anleitung Wobbel MI28JXYY für weitere Informationen.

### 315 Klemme 60, min. Skalierung

### (EIN.60 SKAL-MIN)

### Wert:

0,0 - 20,0 mA

★ 4.0 mA

### **Funktion:**

In diesem Parameter kann der Signalwert eingestellt werden, der dem minimalen Sollwert oder minimalen Istwert in Par. 204 *Min. Sollwert, Ref<sub>MIN</sub>* bzw. 414 *Min. Istwert, FB<sub>MIN</sub>* entspricht.

### Beschreibung der Auswahl:

Gewünschten Stromwert einstellen. Soll die Timeout-Funktion verwendet werden (Parameter 317 Zeit nach Sollwertfehler und 318 Funktion nach Sollwertfehler), so muss der programmierte Wert höher als 2 mA sein.

### 316 Klemme 60, max. Skalierung

### (EIN.60 SKAL-MAX)

### Wert:

0,0 - 20,0 mA

★ 20,0 mA

### **Funktion:**

In diesem Parameter wird der Signalwert eingestellt, der dem maximalen Sollwert, Parameter 205 *Maximaler Sollwert, Ref MAX* entsprechen soll.

### Beschreibung der Auswahl:

Gewünschten Stromwert einstellen.

# 317 Zeit nach Sollwertfehler (ZEITN.SOLLW.FEHL)

### Wert:

1 - 99 s

**★** 10 s

### **Funktion:**

Fällt der Signalwert des an einer der Eingangsklemmen 53 bzw. 60 angeschlossenen Soll- bzw. Istwertsignals länger als die eingestellte Zeit unter 50% der minimalen Skalierung, so wird die in Parameter 318 Funktion nach Sollwertfehler eingestellte Funktion aktiviert. Diese Funktion ist nur aktiv, wenn in Parameter 309 Klemme 53, min. Skalierung ein Wert höher als 1 Volt



bzw. in Parameter 315 Klemme 60, min. Skalierung ein Wert höher als 2 mA gewählt wurde.

### Beschreibung der Auswahl:

Erforderliche Zeit einstellen.

| 318 Funktion nach Sollwertfehler  |     |
|-----------------------------------|-----|
| (FUNKT.N.SOLLWF.)                 |     |
| Wert:                             |     |
| ★Ohne Funktion (AUS)              | [0] |
| Ausgangsfrequenz speichern        |     |
| (AUSGANG SPEICHERN)               | [1] |
| Stopp (STOPP)                     | [2] |
| Festdrehzahl (FESTDREHZAHL (JOG)) | [3] |
| Max. Drehzahl (MAXIMALE DREHZAHL) | [4] |
| Stopp und Abschaltung             |     |
| (STOPP+ABSCHALTUNG)               | [5] |

### **Funktion:**

Dieser Parameter ermöglicht die Auswahl der Funktion, die nach Ablauf des Timeout (Parameter 317 Zeit nach Sollwertfehler) aktiviert werden soll. Tritt eine Timeout-Funktion gleichzeitig mit einer Bus-Timeout-Funktion (Parameter 513 Bus-Timeout-Zeit), so wird die Timeout-Funktion in Parameter 318 aktiviert.

### Beschreibung der Auswahl:

Die Ausgangsfrequenz des Frequenzumrichters kann:

- auf dem aktuellen Wert gespeichert werden [1],
- bis zum Stopp fahren [2],
- bis zur Festdrehzahl fahren [3],
- bis zur max. Ausgangsfrequenz fahren [4],
- bis zum Stopp mit anschließender Abschaltung fahren [5].

| 319 Analogausgang Klemme 42       |     |
|-----------------------------------|-----|
| (FUNKTION AUS. 42)                |     |
| Wert:                             |     |
| Ohne Funktion (OHNE FUNKTION)     | [0] |
| Externer Sollwert minmax. 0-20 mA |     |
| (SOLLW MIN-MAX = 0-20 MA)         | [1] |
| Externer Sollwert minmax. 4-20 mA |     |
| (SOLLW MIN-MAX = 4-20 MA)         | [2] |
| Istwert minmax. 0-20 mA           |     |
| (FB MIN-MAX = $0-20$ MA)          | [3] |
| Istwert minmax. 4-20 mA           |     |
| (FB MIN-MAX = $4-20$ MA)          | [4] |
| Ausgangsfrequenz 0-max 0-20 mA    |     |
| (0-FMAX. = 0-20 MA)               | [5] |
| Ausgangsfrequenz 0-max 4-20 mA    |     |

| (0-FMAX. = 4-20 MA)                          | [6]  |
|----------------------------------------------|------|
| ♦Ausgangsstrom 0-I <sub>INV</sub> 0-20 mA    |      |
| (0-IINV = 0-20 MA)                           | [7]  |
| Ausgangsstrom 0-I <sub>IINV</sub> 4-20 mA    |      |
| (0-IINV = 4-20 MA)                           | [8]  |
| Ausgangsleistungg 0-P <sub>M,N</sub> 0-20 mA |      |
| (0-PNOM = 0-20 MA)                           | [9]  |
| Ausgangsleistungg 0-P <sub>M,N</sub> 4-20 mA |      |
| (0-PNOM = 4-20 MA)                           | [10] |
| Wechselrichtertemperatur 20-100 °C 0-20 m    | nΑ   |
| (TEMP 20-100 C=0-20 MA)                      | [11] |
| Wechselrichtertemperatur 20-100 °C 4-20 m    | nΑ   |
| (TEMP 20-100 C=4-20 MA)                      | [12] |
|                                              |      |

### **Funktion:**

Der analoge Ausgang kann für die Angabe eines Prozesswertes dienen. Es ist die Auswahl aus den beiden Ausgangssignalen 0 - 20 mA und 4 - 20 mA möglich.

Bei Verwendung als Spannungsausgang (0 - 10 V) muss ein Abschlusswiderstand von 500  $\Omega$  gegen Masse (Klemme 55) geschaltet werden. Bei Verwendung als Stromausgang darf der Gesamtanschlusswiderstand 500  $\Omega$  nicht überschreiten.

### Beschreibung der Auswahl:

Ohne Funktion. Wird gewählt, wenn der analoge Ausgang nicht benutzt wird.

Externer Sollw<sub>MIN</sub> - Sollw<sub>MAX</sub> 0-20 mA/4-20 mA. Es entsteht ein Ausgangssignal, das proportional zum resultierenden Sollwert im Intervall Minimaler Sollwert, Sollw<sub>MIN</sub> - Maximaler Sollwert, Sollw<sub>MAX</sub> (Parameter 204/205) ist.

SW<sub>MIN</sub>-SW<sub>MAX</sub> 0-20 mA/ 4-20 mA. Es entsteht ein Ausgangssignal, das proportional zum Istwert im Intervall Minimaler Istwert, Istw<sub>MIN</sub> -Maximaler Istwert, Istw<sub>MAX</sub> (Parameter 414/415) ist.

0-f<sub>MAX</sub> 0-20 mA/4-20 mA.

Es entsteht ein Ausgangssignal, das proportional zur Ausgangsfrequenz im Intervall 0 - f<sub>MAX</sub> (Parameter 202 *Ausgangsfrequenzgrenze hoch, f<sub>MAX</sub>*) i st.

0 - I<sub>INV</sub> 0-20 mA/4-20 mA. Es entsteht ein Ausgangssignal, das proportional

zum Ausgangsstrom im Intervall 0 - I<sub>INV</sub> ist.

0 - P<sub>M,N</sub> 0-20 mA/4-20 mA.

Es entsteht ein Ausgangssignal, das proportional zur aktuellen Ausgangsleistung ist. 20 mA entspricht dem in Parameter 102 *Motorleistung*, *P<sub>M,N</sub>* eingestellten Wert.

0 - Temp.<sub>MAX</sub> 0-20 mA/4-20 mA.



Es entsteht ein Ausgangssignal, das proportional zur aktuellen Kühlkörpertemperatur ist. 0/4 mA entspricht einer Kühlkörpertemperatur von weniger als 20 °C, und 20 mA entspricht 100 °C.

### 323 Relaisausgang 1-3

### (AUSG. 1-3 RELAIS)

| Wert:                                                     |       |
|-----------------------------------------------------------|-------|
| Ohne Funktion (OHNE FUNKTION)                             | [0]   |
| Frequenzumrichter bereit (INV BEREIT)                     | [1]   |
| Freigabe keine Warnung (FREIG. KEINE WARNUN               | 1G[2] |
| Motor ein (MOTOR DREHT)                                   | [3]   |
| Sollwert entspricht Motordrehzahl, keine Warnung          | g     |
| ( SOLLW.=MOTORDRZ.K.WA)                                   | [4]   |
| Motor dreht, keine Warnung                                |       |
| (MOTOR DREHT K. WARN.)                                    | [5]   |
| Betrieb innerhalb der Grenzwerte, keine Warnung           | )     |
| (LIMIT OK KEINE WARN.)                                    | [6]   |
| Bereit, keine Unter-/Überspannung                         |       |
| (BER. KEINE U./UEBSP.)                                    | [7]   |
| Alarm oder Warnung                                        |       |
| (ALARM OD. WARNUNG)                                       | [8]   |
| Strom höher als Stromgrenze, par. 221                     |       |
| (STROMGRENZE)                                             | [9]   |
| Alarm (ALARM)                                             | [10]  |
| Ausgangsfrequenz höher als f <sub>LOW</sub> Par. 225      |       |
| (UEBER MIN. WARNFREQ.)                                    | [11]  |
| Ausgangsfrequenz niedriger als f <sub>HIGH</sub> Par. 226 |       |
| (UNTER MAX. WARNFREQ.)                                    | [12]  |
| Ausgangsstrom höher als I <sub>LOW</sub> Par. 223         |       |
| (UEBER MIN. WARNSTROM)                                    | [13]  |
| Ausgangsstrom niedriger als I <sub>HIGH</sub> Par. 224    |       |
| (UNTER MAX. WARNSTROM)                                    | [14]  |
| Istwert höher als FB <sub>LOW</sub> Par. 227              |       |
| (ÜBER MIN.ISTWERT-B.)                                     | [15]  |
| Istwert höher als FB <sub>HIGH</sub> Par. 228             |       |
| (UNTER MAX.ISTWERT-B)                                     | [16]  |
| Relais 123 (RELAIS 123)                                   | [17]  |
| Reversierung (REVERSIERUNG)                               | [18]  |
| Warnung Übertemp. (WARNUNG UEBERTEMP)                     | [19]  |
| Ortbetrieb (ORTBETRIEB)                                   | [20]  |
| Nicht im Frequenzbereich Par. 225/226                     |       |
| (AUSSERH.FREQ-GRENZE)                                     | [22]  |
| Außerh.Stromber.                                          |       |
| (AUSSERH.STROMGRENZE)                                     | [23]  |
| Außerh. Istwertbereich                                    |       |
| (AUS ISTWERT-GRENZE)                                      | [24]  |
| Mechanische Bremssteuerung                                |       |
| (STEUERUNG MECH. BR.)                                     | [25]  |
| Steuerwort Bit 11                                         |       |
| (STEUERWORT BIT 11)                                       | [26]  |

### **Funktion:**

Der Relaisausgang kann zur Zustandsangabe oder für eine Warnung benutzt werden. Der Ausgang wird aktiviert (1-2 geschlossen), wenn eine bestimmte Bedingung erfüllt ist.

### Beschreibung der Auswahl:

Ohne Funktion. Ist zu wählen, wenn der Frequenzumrichter nicht auf Signale reagieren soll.

Frequenzumrichter bereit, die Versorgungsspannung liegt an der Steuerkarte des Frequenzumrichters an, und der Frequenzumrichter ist betriebsbereit.

Freigabe, keine Warnung, der Frequenzumrichter ist betriebsbereit, es wurde aber noch kein Startbefehl gegeben. Keine Warnung.

Motor dreht ist aktiv, wenn ein Startbefehl vorliegt oder die Ausgangsfrequenz über 0,1 Hz liegt. Auch während "Rampe Ab" aktiv.

Sollwert entspricht Motordrehzahl, keine Warnung, Drehzahl entspricht Sollwert.

Motor dreht, keine Warnung, es wurde ein Startbefehl gegeben. Keine Warnung.

Bereit - keine Über-/Unterspannung, der Frequenzumrichter ist betriebsbereit; die Steuerkarte erhält Versorgungsspannung, und es liegen keine aktiven Steuersignale an den Eingängen an. Die Netzspannung liegt innerhalb der Spannungsgrenzen.

Alarm oder Warnung, der Ausgang wird durch einen Alarm oder eine Warnung aktiviert.

Stromgrenze, der Ausgangsstrom ist höher als der in Parameter 221 Stromgrenze I<sub>LIM</sub> programmierte Wert.

Alarm, der Ausgang wird durch einen Alarm aktiviert.

Ausgangsfrequenz höher als f<sub>LOW</sub>, die Ausgangsfrequenz ist höher als der in Parameter 225, *F-Min. Grenze*, f<sub>LOW</sub> eingestellte Wert.

Ausgangsfrequenz niedriger als f<sub>HIGH</sub>, die Ausgangsfrequenz ist niedriger als der in Parameter 226, *F-Max. Grenze*, f<sub>HIGH</sub> eingestellte Wert.

Ausgangsstrom über I<sub>LOW</sub>, der Ausgangsstrom ist höher als der in Parameter 223 *I min Grenze, I<sub>LOW</sub>* eingestellte Wert.

Ausgangsstrom unter I<sub>HIGH</sub>, der Ausgangsstrom ist niedriger als der in Parameter 224 *I max* Grenze, I<sub>HIGH</sub> eingestellte Wert.



Istwert höher als  $FB_{LOW}$ , der Istwert hat den in Parameter 227 eingestellten Wert Warnung: Istwert tief,  $FB_{LOW}$  überschritten.

Istwert niedriger als FB<sub>HIGH</sub>, der Istwert hat den in Parameter 228 eingestellten Wert Warnung: Istwert hoch, I<sub>HIGH</sub> unterschritten.

Relais 123 wird nur mit Profibus verwendet.

Reversierung, der Relaisausgang wird aktiviert, wenn der Motor rückwärts dreht. Wenn der Motor vorwärts dreht, ist der Wert 0 V DC.

Warnung Übertemperatur, die Temperaturgrenze ist entweder im Motor oder Frequenzumrichter oder an einem am digitalen Eingang angeschlossenen Thermistor überschritten.

Ort-Betrieb, der Ausgang ist aktiv, wenn in Parameter 002 Betriebsart (Ort/Fern), Ort [1] ausgewählt wurde.

Nicht im Frequenzbereich, die Ausgangsfrequenz liegt außerhalb des in den Parametern 225 und 226 programmierten Bereichs.

Nicht im Strombereich, der Motorstrom liegt außerhalb des in den Parametern 223 und 224 programmierten Bereichs.

Nicht im Istwertbereich, das Istwertsignal liegt außerhalb des in den Parametern 227 und 228 programmierten Bereichs.

Mechanische Bremssteuerung, ermöglicht die Steuerung einer externen mechanischen Bremse (siehe Abschnitt zur Steuerung der mechanischen Bremse im Projektierungshandbuch).

# 327 Pulssollwert, max. Frequenz (PULSE SOLLW. MAX)

### Wert:

150 - 67600 Hz

★ 5000 Hz

### Funktion:

In diesem Parameter wird der Signalwert eingestellt, der dem maximalen Istwert, Parameter 205 *Maximaler Sollwert, Ref<sub>MAX</sub>* oder dem maximalen Istwert, Parameter 415*Maximaler Istwert, FB<sub>MAX</sub>* entspricht.

### Beschreibung der Auswahl:

Gewünschten Pulssollwert oder Pulsistwert für Klemme 33 einstellen.

### 328 Maximaler Puls 29 (MAX PULS 29)

### Wert:

150 - 67600 Hz

★ 5000 Hz

### **Funktion:**

In diesem Parameter wird der Signalwert eingestellt, der dem maximalen Wert in Parameter 205 *Maximaler Sollwert, Sollw <sub>MAX</sub>* oder dem Maximalen Istwert in Parameter 415 *Max. Istwert, FB<sub>MAX</sub> entspricht*.

### **ACHTUNG!:**

Gilt nur für DeviceNet. Weitere Informationen s. MG90BXYY.

# 341 Digital-/Pulsausgang Klemme 46 (DO 46 FUNKTION)

### (DO 46 FUNKTION

| Wert:                                     |      |
|-------------------------------------------|------|
| Frequenzumrichter bereit (INV BEREIT)     | [O]  |
| Parameter [0] - [20] siehe Parameter 323  |      |
| Puls-Sollwert (PULS-SOLLWERT)             | [21] |
| Parameter [22] - [25] siehe Parameter 323 |      |
| Puls-Istwerteingabe (PULS-ISTWERT)        | [26] |
| Ausgangsfrequenz (PULS AUSGANGSFREQ.)     | [27] |
| Pulsstrom (PULSSTROM)                     | [28] |
| Pulsleistung (PULSLEISTUNG)               | [29] |
| Pulstemperatur (PULSTEMP)                 | [30] |

### **Funktion:**

Der digitale Ausgang kann zur Statusangabe oder für eine Warnung benutzt werden. Der digitale Ausgang (Klemme 46) gibt ein 24 V Gleichspannungssignal, wenn eine bestimmte Bedingung erfüllt ist. Die Klemme kann auch als Frequenzausgang benutzt werden. Parameter 342 stellt die maximale Pulsfrequenz ein.

### Beschreibung der Auswahl:

Pulssollwert Sollwmin - Sollwmax

Es ergibt sich ein Ausgangssignal, das proportional zum resultierenden Sollwert im Intervall Minimaler Sollwert, Sollw<sub>MIN</sub> - Maximaler Sollwert, Sollw<sub>MAX</sub> (Parameter 204/205) ist.

Puls-Istwert FB<sub>MIN</sub>-FB<sub>MAX</sub>.

Es entsteht ein Ausgangssignal, das proportional zum Istwert im Intervall Minimaler Istwert, Istw $_{MIN}$  - Maximaler Istwert, Istw $_{MAX}$  (Parameter 414/415) ist.

Ausgangsfrequenzgrenze 0-f<sub>MAX</sub>

Es entsteht ein Ausgangssignal, das proportional zur Ausgangsfrequenz im Intervall 0 - f<sub>MAX</sub> (Parameter 202 *Ausgangsfrequenzgrenze hoch, f<sub>MAX</sub>*) ist.



Pulsstrom 0 - I<sub>INV</sub>

Es entsteht ein Ausgangssignal, das pro portional zum Ausgangsstrom zwischen 0 - I<sub>INV</sub> ist.

Pulsleistung 0 - P<sub>M,N</sub>.

Es entsteht ein Ausgangssignal, das proportional zum Ausgangsstrom ist. Par. 342 entspricht dem in Parameter 102 eingestellten Wert *Motorleistung*,  $P_{M.N.}$ 

Pulstemperatur 0 - Temp. MAX.

Es entsteht ein Ausgangssignal, das proportional zur aktuellen Kühlkörpertemperatur ist. 0 Hz entspricht einer Kühlkörpertemperatur von weniger als 20° C, und Parameter 342 entspricht 100° C.



### **ACHTUNG!:**

Der Ausgang (Klemme 46) steht für DeviceNet nicht zur Verfügung. Min. Ausgangsfrequenz am Frequenzausgang = 16 Hz

### 342 Klemme 46, max. Pulswert

### (AUS 46 MAX PULS)

### Wert:

150 - 10000 Hz

★ 5000 Hz

### **Funktion:**

Dieser Parameter dient zur Einstellung der Maximalfrequenz des Pulsausgangssignals.

### Beschreibung der Auswahl:

Gewünschte Frequenz einstellen.

### 343 Präzise Stoppfunktion

### (PRÄZISER STOPP)

### Wert:

| À | Präziser Start/Stopp (NORMAL)                    | [0] |
|---|--------------------------------------------------|-----|
|   | Zählerstopp mit Quittieren                       |     |
|   | (ZÄHLSTOPP QUITTIEREN)                           | [1] |
|   | Zählerstopp ohne Quittieren                      |     |
|   | (ZÄHLSTOPP OHNE QUITTIEREN)                      | [2] |
|   | Drehzahlkompensierter Stopp                      |     |
|   | (DRZ KMP STOPP)                                  | [3] |
|   | Drehzahlkompensierter Zählerstopp mit Quittieren |     |
|   | (DRZ. KMP ZSTOPP M. QUITT.)                      | [4] |
|   | Drehzahlkompensierter Zählerstopp ohne Quittiere | n   |
|   | (DRZ KMP ZSTOPP O. QUITT.)                       | [5] |
|   |                                                  |     |

### **Funktion:**

In diesem Parameter wird die auf einen Stoppbefehl folgende Stoppfunktion gewählt. Alle sechs Auswahlmöglichkeiten enthalten eine präzise Stopproutine und gewährleisten so eine hohe Wiederholgenauigkeit.

Die Auswahlmöglichkeiten stellen Kombinationen der nachfolgend beschriebenen Funktionen dar.

# 鹛

### **ACHTUNG!:**

Pulsstart [8] darf <u>nicht</u> zusammen mit der präzisen Stoppfunktion benutzt werden.

### Beschreibung der Auswahl:

Präziser Rampenstopp [0] wird gewählt, um eine hohe Wiederholgenauigkeit am Stoppunkt zu erzielen. Zählerstopp. Sobald der Frequenzumrichter ein Puls-Startsignal erhalten hat, läuft er, bis die anwenderprogrammierte Pulszahl an Klemme 33 empfangen wurde. Auf diese Weise aktiviert ein internes Stoppsignal den normalen Rampenstopp (Parameter 208).

Die Zählerfunktion wird auf der Flanke des Startsignals (beim Übergang von Stopp zu Start) aktiviert (startet die Zählung).

Drehzahlkompensierter Stopp. Um unabhängig von der aktuellen Drehzahl präzise am gleichen Punkt zu stoppen, wird ein empfangenes Stoppsignal intern verzögert, wenn die aktuelle Drehzahl geringer als die maximale Drehzahl ist (Einstellung in Parameter 202). Quittieren. Zählerstopp und Drehzahlkompensierter Stopp können mit oder ohne Quittieren kombiniert werden.

Zählerstopp mit Reset [1]. Nach jedem präzisen Stopp wird die Anzahl der während Rampe Ab auf 0 Hz gezählten Pulse zurückgesetzt.

Zählerstopp ohne Quittieren [2]. Die während Rampe Ab auf 0 Hz gezählte Anzahl von Pulsen wird vom Zählerwert in Parameter 344 subtrahiert.

# 344 Zählerwert (ZÄHLERWERT)

### Wert:

0 - 999999

★ 100000 Pulse

### Funktion:

In diesem Parameter kann der Zählerwert für die integrierte präzise Stoppfunktion (Parameter 343) gewählt werden.

### Beschreibung der Auswahl:

Die Werkseinstellung ist 100000 Pulse. Die höchste Frequenz (max. Auflösung), die an Klemme 33 registriert werden kann, beträgt 67,6 kHz.



### 349 Verzögerung Drehzahlkompensierung

### (VERZ. DREHZKOMP)

### Wert:

0 ms - 100 ms

★ 10 ms

### Funktion:

In diesem Parameter kann die Systemverzögerungszeit (Sensor, SPS usw.) eingestellt werden. Bei drehzahlkompensiertem Stopp hat die Verzögerungszeit bei verschiedenen Frequenzen einen wesentlichen Einfluß darauf, wie gestoppt wird.

### Beschreibung der Auswahl:

Die Werkseinstellung ist 10 ms. Hierbei entspricht die Gesamtverzögerung von Sensor, SPS und anderer Hardware dieser Einstellung.



### **ACHTUNG!:**

Nur wirksam für drehzahlkompensierten Stopp.



### **■** Sonderfunktionen

# 400 Bremsfunktion (BREMSFUNKTION) Wert: Aus (AUS) Mit Bremswiderstand (MIT BREMSWIDERSTAND) Wechselstrombremse (AC-BREMSE) Zwischenkreiskopplung (ZWK-KOPPLUNG) [5]

Werkseinstellung abhängig vom Gerät.

### **Funktion:**

Mit Bremswiderstand [1] ist zu wählen, wenn der Frequenzumrichter über einen internen Bremstransistor verfügt und ein Bremswiderstand an den Klemmen 81, 82 angeschlossen ist. Der Anschluß eines Bremswiderstands ermöglicht eine höhere Zwischenkreisspannung beim Bremsen (generatorischer Betrieb).

Wechselstrombremse [4] kann zur Verbesserung der Bremswirkung verwendet werden, ohne Bremswiderstände zu benutzen. Bitte beachten, daß Wechselstrombremse [4] nicht so wirksam ist wie Mit Bremswiderstand [1].

### Beschreibung der Auswahl:

Mit Bremswiderstand [1] wählen, wenn ein Bremswiderstand angeschlossen ist. Wechselstrombremse [4] wählen, wenn kurzzeitige generatorische Lasten auftreten. Zur Einstellung der Bremse siehe Parameter 144 Verst. AC-BR.

Zwischenkreiskopplung [5] wählen, wenn diese Funktion gewünscht wird.



### **ACHTUNG!:**

Eine geänderte Auswahl wird erst wirksam, wenn die Netzspannung getrennt und wieder angeschlossen wird.

### 405 Quittierfunktion (QUITTIERUNGSART) ★Manuell quittieren (MANUELL TASTER O.KL.) [0] 1 x automatisch quittieren (1 X AUTOMATISCH) [1] 3 x automatisch quittieren (3 X AUTOMATISCH) [3] 10 x automatisch quittieren (10 X AUTOMATISCH) [10] Quittieren beim Einschalten (QUITT. BEI EIN.) [11]

### **Funktion:**

Dieser Parameter ermöglicht die Wahl, ob nach einer Abschaltung die Quittierung und der Neustart manuell erfolgen oder der Frequenzumrichter die Quittierung und den Neustart automatisch durchführen soll. Außerdem kann die Anzahl der Neustartversuche eingestellt werden. Die Zeit zwischen den Versuchen wird in Parameter 406 Automatische Wiedereinschaltzeit eingestellt.

### Beschreibung der Auswahl:

Wenn Manuell quittieren [0] gewählt wird, erfolgt das Quittieren mit der [STOP/RESET] Taste, über einen digitalen Eingang oder die serielle Schnittstelle. Wenn der Frequenzumrichter nach einer Abschaltung die Quittierung und den Neustart automatisch durchführen soll, dann ist Datenwert [1], [3] oder [10] zu wählen. Wenn Quittieren beim Einschalten [11] gewählt wird, quittiert der Frequenzumrichter bei einem Fehler in Zusammenhang mit einem Netzspannungsausfall.



Der Motor kann ohne Vorwarnung anlaufen.

# 406 Automatische Wiedereinschaltzeit (MAX.WIEDEREIN-Z)

### Wert:

0 - 10 s

★ 5 s

### **Funktion:**

In diesem Parameter wird die Zeit eingestellt, die zwischen einer Abschaltung und der Einleitung der automatischen Quittierungsfunktion vergehen soll. Voraussetzung ist, daß automatisches Quittieren in Parameter 405 *Quittierfunktion* gewählt wurde.

### Beschreibung der Auswahl:

Erforderliche Zeit einstellen.

# 409 Zeitverzögerung Stromgrenze, I<sub>LIM</sub> (ZEITVERZ.STR.GR)

### Wert:

0 - 60 s (61=AUS)

**★** AUS

### **Funktion:**

Wenn der Frequenzumrichter registriert, daß der Ausgangsstrom die Stromgrenze I<sub>LIM</sub> (Parameter 221 *Stromgrenze*) während der eingestellten Zeit erreicht hat, schaltet er ab. Verwendung zum Schutz der Anwendung, ähnlich wie der ETR, falls angewählt, für den Motorschutz.



### Beschreibung der Auswahl:

Wählen Sie, wie lange der Frequenzumrichter der Ausgangsstrom an der Stromgrenze I<sub>LIM</sub> halten soll, bevor er abschaltet. In der Einstellung AUS hat Parameter 409 *Zeitverzögerung Stromgrenze*, I<sub>LIM</sub> keine Funktion, d.h. es findet keine Abschaltung statt.

### 411 Taktfrequenz

### (TAKTFREQUENZ)

### Wert:

3000 - 14000 Hz (VLT 2803 - 2875) ★ 4500 Hz 3000 - 10000 Hz (VLT 2880 -2882) ★ 4500 Hz

### **Funktion:**

Der eingestellte Wert bestimmt die Taktfrequenz des Wechselrichters. Eine Änderung der Taktfrequenz kann Störgeräusche vom Motor verringern.



### **ACHTUNG!:**

Die Ausgangsfrequenz des Frequenzumrichters kann niemals einen Wert höher als 1/10 der Taktfrequenz annehmen.

### Beschreibung der Auswahl:

Bei laufendem Motor wird die Taktfrequenz in Parameter 411 *Taktfrequenz* auf ein möglichst geringes Motorgeräusch eingestellt.



### **ACHTUNG!:**

Die Taktfrequenz wird automatisch als Funktion der Last reduziert. Siehe *Temperaturabhängige Taktfrequenz* unter *Sonderfunktionen*.

Ist *LC-Filter* in Parameter 412 gewählt, so beträgt die Mindest-Taktfrequenz 4,5 kHz.

### 412 Variable Taktfrequenz

### (VAR.TAKTFREQUENZ)

### Wert:

★Kein LC-Filter (KEIN LC-FILTER) [2]LC-Filter angeschlossen (LC-FILTER) [3]

### Funktion:

Der Parameter muß auf *LC-Filter* eingestellt werden, wenn ein LC-Filter zwischen dem Frequenzumrichter und dem Motor angeschlossen ist.

### Beschreibung der Auswahl:

LC-Filter [3] muß eingestellt werden, wenn ein LC-Filter zwischen dem Frequenzumrichter und dem Motor angeschlossen ist, da der Frequenzumrichter sonst den LC-Filter nicht schützen kann.

### **ACHTUNG!:**

Ist LC-Filter gewählt, so wird die Taktfrequenz auf 4,5 kHz geändert.

# 413 Übermodulationsfaktor (FAKTOR ÜBERMOD.)

### Wert:

Aus (AUS) [0] ★Ein (EIN) [1]

### **Funktion:**

In diesem Parameter kann die Übermodulationsfunktion der Ausgangsspannung eingestellt werden.

### Beschreibung der Auswahl:

Aus [0] bedeutet, daß keine Übermodulation der Ausgangsspannung erfolgt und damit ein Drehmoment-Rippel an der Motorwelle vermieden wird. Dies kann z.B. bei Schleifmaschinen von Vorteil sein. Ein [1] bedeutet, daß eine Ausgangsspannung erzielt werden kann, die höher als die Netzspannung ist (bis 5 %).

# 414 Minimaler Istwert, FB<sub>MIN</sub> (MIN. ISTWERT)

### Wert:

-100.000,000 - Par. 415 FB<sub>MAX</sub>

★ 0,000

### **Funktion:**

Parameter 414 *Minimaler Istwert, FB<sub>MIN</sub>* und 415 *Maximaler Istwert, FB<sub>MAX</sub>* dienen zum Skalieren des Displays, so daß dieses das Istwertsignal in einer Prozeßeinheit proportional zum Eingangssignal anzeigt.

### Beschreibung der Auswahl:

Den Wert einstellen, der im Display als minimaler Istwert am gewählten Istwert-Eingang angezeigt werden soll (Parameter 308/314 *Analogeingänge*).

### 415 Maximaler Istwert, FB<sub>MAX</sub>

### (MAX. ISTWERT)

### Wert:

FB<sub>MIN</sub> - 100.000,000

★ 1500,000

### **Funktion:**

Siehe Beschreibung zu Parameter 414 *Minimaler Istwert, FB<sub>MIN</sub>*.



### Beschreibung der Auswahl:

Den Wert einstellen, der bei Erreichen des maximalen Istwerts am gewählten Istwert-Eingang im Display angezeigt werden soll (Parameter 308/314 Analogeingänge).

| 416 | Anzei | gewert |
|-----|-------|--------|
|     |       | -      |

| (SUL-ISTW-EINHEIT)                          |      |
|---------------------------------------------|------|
| Wert:                                       |      |
| keine (KEINE)                               | [0]  |
| % (%)                                       | [1]  |
| ppm (PPM)                                   | [2]  |
| rpm (RPM)                                   | [3]  |
| bar (BAR)                                   | [4]  |
| Takte/min (TAKTE/MI)                        | [5]  |
| Pulse/s (PULSE/S)                           | [6]  |
| Einheiten/s (EINHEITEN/S)                   | [7]  |
| Einheiten/min (EINHEITEN/MI)                | [8]  |
| Einheiten/St. (EINHEITEN/ST.)               | [9]  |
| °C (°C)                                     | [10] |
| Pa (PA)                                     | [11] |
| I/s (L/S)                                   | [12] |
| $m^3/s$ ( $M^3/S$ )                         | [13] |
| I/min (L/MIN)                               | [14] |
| m <sup>3</sup> /min (M <sup>3</sup> /MIN)   | [15] |
| I/St. (L/ST.)                               | [16] |
| m <sup>3</sup> /St (M <sup>3</sup> /ST)     | [17] |
| kg/s (KG/S)                                 | [18] |
| kg/min (KG/MIN)                             | [19] |
| kg/St. (KG/ST.)                             | [20] |
| Tonnen/min (T/MIN)                          | [21] |
| Tonnen/St (T/ST)                            | [22] |
| Meter (M)                                   | [23] |
| Nm (NM)                                     | [24] |
| m/s (M/S)                                   | [25] |
| m/min (M/MIN)                               | [26] |
| °F (°F)                                     | [27] |
| In wg (IN WG)                               | [28] |
| Gallonen/s (GAL/S)                          | [29] |
| Ft <sup>3</sup> /s (FT <sup>3</sup> /S)     | [30] |
| Gallonen/min (GAL/MIN)                      | [31] |
| Ft <sup>3</sup> /min (FT <sup>3</sup> /MIN) | [32] |
| Gallonen/St (GAL/ST)                        | [33] |
| Ft <sup>3</sup> /St (FT <sup>3</sup> /ST)   | [34] |
| Lb/s (LB/S)                                 | [35] |
| Lb/min (LB/MIN)                             | [36] |
| Lb/St (LB/ST)                               | [37] |
| Lbft(LB FT)                                 | [38] |
| Ft/s (FT/S)                                 | [39] |
| Ft/min (FT/MIN)                             | [40] |

### **Funktion:**

Möglichkeit zur Auswahl verschiedener Einheiten zur Anzeige auf dem Display. Die Einheit wird angezeigt, wenn eine Bedieneinheit angeschlossen ist und Sollwert [Einheit] [2] oder Istwert [Einheit] [3] in einem der Parameter 009-012 Displayzeile und im Displaymodus ausgewählt wurde. Die Einheit wird in Prozeßregelung mit Istwertrückführung auch als Einheit für Min./Max. Sollwert und Min./Max. Istwert benutzt.

### Beschreibung der Auswahl:

Gewünschte Einheit für das Soll-/Istwertsignal wählen.

## **ACHTUNG!:**

Die Parameter 417-421 werden nur benutzt, wenn in Parameter 100 Konfiguration die Einstellung Drehzahlregelung mit Istwertrückführung [1] erfolgte.

### 417 Drehzahl PID Proportionalverstärkung

### (DRZ P-VERSTAERK)

0,000 (AUS) -1,000 ★ 0,010

### **Funktion:**

Proportionalverstärkung gibt an, um welchen Faktor die Regelabweichung (Abweichung zwischen Istwertsignal und Sollwert) verstärkt werden soll.

### Beschreibung der Auswahl:

Eine schnelle Regelung wird bei hoher Verstärkung erzielt. Ist die Verstärkung jedoch zu hoch, so kann der Prozeß durch Übersteuerung instabil werden.

### 418 Drehzahl PID integrationszeit

### (DRZ INTEGR. ZEIT)

### Wert:

20,00 - 999,99 ms (1000 = AUS)

★ 100 ms

### **Funktion:**

Die Integrationszeit bestimmt, wie lange der PID-Regler zum Ausgleichen der Regelabweichung benötigt. Je größer die Regelabweichung, desto stärker ist der Frequenzbeitrag des Integrators. Die Integrationszeit ist die Zeit, die der Integrator benötigt, um die gleiche Änderung wie die Proportionalverstärkung zu erzielen.

### Beschreibung der Auswahl:

Eine schnelle Regelung wird bei kurzer Integrationszeit erzielt. Ist diese Zeit jedoch zu kurz, so kann der



Prozeß instabil werden. Ist die Intergrationszeit lang, so kann es zu großen Abweichungen vom gewünschten Sollwert kommen, da der Prozeßregler lange braucht, um die Regelabweichung auszugleichen.

419 Drehzahl PID Differentiationszeit
(DRZ DIFF. ZEIT)

### Wert:

0,00 (AUS) - 200,00 ms

★ 20,00 ms

### **Funktion:**

Der Differentiator reagiert nicht auf eine konstante Regelabweichung. Er wirkt nur bei Änderungen der Regelabweichung. Je schneller sich die Regelabweichung ändert, desto stärker wird die Verstärkung des Differentiators. Die Verstärkung ist proportional zur Geschwindigkeit, mit der sich die Regelabweichung ändert.

### Beschreibung der Auswahl:

Eine schnelle Regelung wird bei einer langen Differentiationszeit erreicht. Ist diese Zeit jedoch zu lang, so kann der Prozeß instabil werden. Wenn die Differentiationszeit 0 ms beträgt, ist die D-Funktion nicht aktiv.

# 420 Drehzahl PID Diff.verstärk.grenze (DRZ BEGR.D-VERST)

### Wert:

5,0 - 50,0

### **Funktion:**

Für die Verstärkung des Differentiators kann eine Grenze eingestellt werden. Da die D-Verstärkung mit höheren Frequenzen zunimmt, kann eine Begrenzung der Verstärkung sinnvoll sein. Hierdurch läßt sich ein reines D-Glied bei niedrigen Frequenzen und ein konstantes D-Glied bei höheren Frequenzen erzielen.

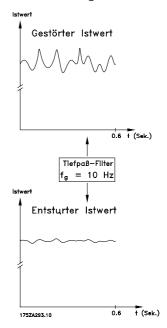
### Beschreibung der Auswahl:

Gewünschte Verstärkungsgrenze einstellen.

# 421 Drehzahl PID Tiefpaßfilterzeit (DRZ FILTER ZEIT)

### Wert:

20 - 500 ms


★ 100 ms

★ 5.0

### **Funktion:**

Störungen des Istwertsignals werden durch ein Tiefpaßfilter erster Ordnung gedämpft, um ihren

Einfluß auf die Regelung zu mindern. Dies kann z.B. von Vorteil sein, wenn das Signal stark gestört ist. Siehe Zeichnung.

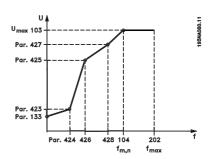


### Beschreibung der Auswahl:

Wird eine Zeitkonstante (t) von 100 ms programmiert, so ist die Eckfrequenz des Tiefpaßfilters 1/0,1=10 RAD/s entsprechend  $(10/2 \times \pi)=1,6$  Hz. Der Prozeßregler wird daher nur ein Istwertsignal regeln, das sich mit einer Frequenz von weniger als 1,6 Hz ändert. Ändert sich das Istwertsignal um mehr als 1,6 Hz, so wird es durch das Tiefpaßfilter gedämpft.

### 423 U1 Spannung

### (U1 SPANNUNG)


### Wert:

0,0 - 999,0 V

★ Par. 103

### **Funktion:**

Die Parameter 423-428 werden benutzt, wenn in Parameter 101 *Drehmomentkennlinie* die Auswahl *Spezial Motor Modus* [8] erfolgte. Auf der Basis von vier definierbaren Spannungen und drei Frequenzen kann eine U/f-Kennlinie festgelegt werden. Die Spannung bei 0 Hz wird in Parameter 133 *Startspannung* eingestellt.





### Beschreibung der Auswahl:

Ausgangsspannung (U1) für die erste Ausgangsfrequen z (F1), Parameter 424 *F1 Frequenz* einstellen.

### 424 F1 Frequenz

### (F1-FREQUENZ)

### Wert:

0.0 - Par. 426 F2 Frequenz

★ Par. 104 Motorfrequenz

### Funktion:

Siehe Parameter 423 U1 Spannung .

### Beschreibung der Auswahl:

Ausgangsfrequenz (F1) passend für die erste Ausgangsspannung (U1), Parameter 423 *U1 Spannung* einstellen.

### 425 U2 Spannung

### (U2-SPANNUNG)

### Wert:

0,0 - 999,0 V

★ Par. 103

### **Funktion:**

Siehe Parameter 423 U1 Spannung.

### Beschreibung der Auswahl:

Ausgangsspannung (U2) passend für die zweite Ausgangsfrequenz (F2), Parameter 426 *F2 Frequenz*einstellen.

### 426 F2 Frequenz

### (F2-FREQUENZ)

### Wert:

Par. 424 F1 Frequenz - Par. 428 F3 Frequenz

★ Par. 104 Motorfrequenz

### **Funktion:**

Siehe Parameter 423 U1 Spannung.

### Beschreibung der Auswahl:

Ausgangsfrequenz (F2) passend für die zweite Ausgangsspannung (U2), Parameter 425 *U2 Spannung* einstellen.

### 427 U3 Spannung

### (U3-SPANNUNG)

### Wert:

0,0 - 999,0 V

★ Par. 103

### **Funktion:**

Siehe Parameter 423 U1 Spannung.

### Beschreibung der Auswahl:

Ausgangsspannung (U3) passend für die dritte Ausgangsfrequenz (F3), Parameter 428 F3 Frequenz einstellen.

### 428 F3 Frequenz

### (F3-FREQUENZ)

### Wert

Par. 426 F2 Frequenz - 1000 Hz

\* Par. 104 Motorfrequenz

### **Funktion:**

Siehe Parameter 423 U1 Spannung.

### Beschreibung der Auswahl:

Ausgangsfrequenz (F3) passend für die dritte Ausgangsspannung (U3), Parameter 427 *U3 Spannung* einstellen.

### **ACHTUNG!:**

Die Parameter 437-444 werden nur benutzt, wenn in Parameter 100 Konfiguration die Einstellung Prozeßregelung mit Istwertrückführung [3] erfolgte.

# 437 Prozeß PID normal/invers Regelung (PID NORM./INVERS)

### Wert:

★Normal (NORMAL) Invers (INVERTIERT) [0] [1]

### **Funktion:**

Hier kann gewählt werden, ob der Prozeßregler die Ausgangsfrequenz bei Regelabweichung zwischen Sollwert/Istwert und dem tatsächlichen Prozeßzustand erhöhen/verringern soll.

### Beschreibung der Auswahl:

Wenn der Frequenzumrichter die Ausgangsfrequenz bei einem Anstieg des Istwertsignals verringern soll, *Normal* [0] wählen.



Wenn der Frequenzumrichter die Ausgangsfrequenz bei einem Anstieg des Istwertsignals erhöhen soll, *Invers* [1] wählen.

# 438 Prozeß PID anti windup (PID ANTI WINDUP)

### Wert:

Blockiert (BLOCKIERT) [0]

★Wirksam (WIRKSAM) [1]

### **Funktion:**

Hier kann gewählt werden, ob der Prozeßregler weiterhin mit dem Ausregeln einer Regelabweichung fortfahren soll, obwohl eine Erhöhung bzw. Verringerung der Ausgangsfrequenz nicht möglich ist.

### Beschreibung der Auswahl:

Die Werkseinstellung ist Wirksam [1], was dazu führt, daß das Integrationsglied im Verhältnis zur aktuellen Ausgangsfrequenz initialisiert wird, wenn entweder die Stromgrenze, Spannungsgrenze oder die maximale bzw. minimale Frequenz erreicht ist. Der Prozeßregler schaltet erst dann wieder zu, wenn die Regelabweichung entweder Null ist oder ihr Vorzeichen geändert hat. Blockiert [0] ist zu wählen, wenn der Integrator weiterhin wegen der Regelabweichung integrieren soll, obwohl diese sich nicht ausregeln läßt.

### **ACHTUNG!:**

Wird Blockiert [0] gewählt, so muß der Integrator bei einer Vorzeichenänderung der Regelabweichung erst von dem Niveau herabintegrieren, das durch eine frühere Regelabweichung erreicht wurde, bevor eine Änderung der Ausgangsfrequenz erfolgen kann.

# 439 Prozeß PID Startfrequenz (PID-START FREQ.)

### Wert:

f<sub>MIN</sub> - f<sub>MAX</sub> (Parameter 201/202)

★ Par. 201 Ausgangsfrequenz niedrig, f<sub>MIN</sub>

### Funktion:

Bei einem Startsignal reagiert der Frequenzumrichter als Drehzahlregelung ohne Istwertrückführung und ändert sich erst dann in Regelung mit Istwertrückführung, wenn die programmierte Startfrequenz erreicht ist. Hierdurch kann eine Frequenz eingestellt werden, die der Drehzahl entspricht, mit der der Prozeß normalerweise abläuft; somit lassen sich die gewünschten Prozeßbedingungen schneller erreichen.

### Beschreibung der Auswahl:

Gewünschte Startfrequenz einstellen.

### ACHTUNG!:

Wenn der Frequenzumrichter vor Erreichen der gewünschten Startfrequenz die Stromgrenze erreicht, wird der Prozeßregler nicht

aktiviert. Um den Regler dennoch aktivieren zu können, muß die Startfrequenz auf die gewünschte Ausgangsfrequenz verringert werden. Dies kann während des Betriebs erfolgen.

### 440 Prozeß PID Proportionalverstärkung

### (PROZ. PROP. VERSTAERK.)

### Wert:

0.0 - 10.00

★ 0.01

### **Funktion:**

Die Proportionalverstärkung gibt an, wie stark die Regelabweichung zwischen Sollwert- und Istwertsignal verstärkt werden soll.

### Beschreibung der Auswahl:

Eine schnelle Regelung wird bei hoher Verstärkung erzielt. Ist die Verstärkung jedoch zu hoch, kann der Prozeß durch Übersteuerung instabil werden.

### 441 Prozeß PID Integrationszeit

### (PID INTEGR. ZEIT)

### Wert:

0,01 - 9999,99 (OFF)

★ OFF

### **Funktion:**

Der Integrator bewirkt eine steigende Verstärkung bei einer konstanten Regelabweichung zwischen Sollwert- und Istwertsignal. Je größer die Abweichung, desto schneller der Anstieg der Verstärkung. Die Integrationszeit ist die Zeit, die der Integrator benötigt, um die gleiche Verstärkung wie die Proportionalverstärkung zu erzielen.

### Beschreibung der Auswahl:

Eine schnelle Regelung wird bei kurzer Integrationszeit erzielt. Ist diese Zeit jedoch zu kurz, kann der Prozeß durch Übersteuerung instabil werden. Ist die Integrationszeit lang, so kann es zu großen Abweichungen vom gewünschten Sollwert kommen, da der Prozeßregler lange braucht, um die Regelabweichung auszugleichen.



# 442 Prozeß PID Differentiationszeit (PID DIFF. ZEIT)

### Wert:

0,00 (OFF) - 10,00 s

★ 0,00s

### **Funktion:**

Der Differentiator reagiert nicht auf eine konstante Regelabweichung. Er erzeugt nur dann eine Verstärkung, wenn sich die Regelabweichung ändert. Je schneller sich die Regelabweichung ändert, desto stärker wird die Verstärkung des Differentiators. Die Verstärkung ist proportional zur Geschwindigkeit, mit der sich die Regelabweichung ändert.

### Beschreibung der Auswahl:

Bei langer Differentiationszeit wird eine schnelle Regelung erreicht. Ist diese Zeit jedoch zu lang, so kann der Prozeß durch Übersteuerung instabil werden.

# 443 Prozeß PID Diff. Verstärk.Grenze (PID DIFF. VERST.)

### Wert:

5,0 - 50,0

★ 5.0

### **Funktion:**

Für die Verstärkung des Differentiators kann eine Grenze eingestellt werden. Die Verstärkung des Differentiators steigt bei schnellen Abweichungen; es kann daher sinnvoll sein, diese Verstärkung zu begrenzen. Hierdurch wird eine reine Verstärkung des Differentiators bei langsamen Änderungen und eine konstante Verstärkung bei schnellen Regelabweichungen erzielt.

### Beschreibung der Auswahl:

Gewünschte Grenze für die Differentiatorverstärkung einstellen.

# 444 Prozeß PID Tiefpaßfilterzeit (PID FILTER ZEIT)

### Wert:

0,02 - 10,00

★ 0,02

★ = Werkseinstellung. () = Displaytext. [] = bei Kommunikation über serielle Schnittstelle benutzter Wert

### Funktion:

Störungen des Istwertsignals werden durch ein Tiefpaßfilter erster Ordnung gedämpft, um ihren Einfluß auf die Prozeßregelung zu mindern. Dies kann z.B. von Vorteil sein, wenn das Signal stark gestört ist.

### Beschreibung der Auswahl:

Gewünschte Zeitkonstante (t) wählen. Wird eine Zeitkonstante (t) von 0,1 s programmiert, so ist die

Eckfrequenz des Tiefpaßfilters 1/0,1 = 10 RAD/s entsprechend  $(10 / (2 \times \pi)) = 1,6$  Hz. Der Prozeßregler wird daher nur ein Istwertsignal regeln, das sich mit einer Frequenz von weniger als 1,6 Hz ändert. Ändert sich das Istwertsignal um mehr als 1,6 Hz, so wird es durch das Tiefpaßfilter gedämpft.

### 

### **Funktion:**

Diese Funktion ermöglicht das 'Abfangen' eines drehenden Motors, der z.B. aufgrund eines Netzausfalls nicht mehr vom Frequenzumrichter geregelt wird. Die Funktion wird immer dann aktiviert, wenn ein Startbefehl aktiv ist. Damit der Frequenzumrichter den Motor abfangen kann, muß die Motordrehzahl geringer sein als die der in Parameter 202 Ausgangsfrequenzgrenze hoch, f<sub>MAX</sub> eingestellten Frequenz entsprechende Frequenz.

### Beschreibung der Auswahl:

Blockiert [0] wählen, wenn diese Funktion nicht gewünscht wird.

OK - gleiche Richtung [1] wählen, wenn der Motor beim Einsatz der Funktion nur in die gleiche Richtung drehen kann. OK - gleiche Richtung [1] sollte gewählt werden, wenn in Parameter 200 Ausgangsfrequenz Bereich/Richtung die Auswahl Eine Richtung getroffen wurde.

OK - beide Richtungen [2] wählen, wenn der Motor beim Einsatz der Funktion in beide Richtungen drehen kann.

DC Bremse und Start [3] wählen, wenn der Frequenzumrichter den Motor zuerst mit der DC-Bremse bremsen kann, worauf der Startbefehl erfolgt. Voraussetzung ist, daß die Parameter 126-127/132 DC Bremse aktiviert sind. Bei schnellerem Motorleerlauf kann der Frequenzumrichter einen drehenden Motor nicht abfangen, ohne daß DC Bremse und Start gewählt ist.

Einschränkungen:



- Zu geringe Trägheit führt zu einer Lastbeschleunigung, die gefährlich sein oder das richtige Abfangen eines drehenden Motors verhindern kann. Statt dessen DC Bremse wählen.
- Wird die Last z.B. durch den Motorleerlauf angetrieben, so kann das Gerät aufgrund von Überspannung abschalten.
- Die Fangschaltung funktioniert nicht bei Drehzahlen unter 250/min.

### 451 Steuersollwert bei Reglerbetrieb

### (STEUERSOLLWERT)

### Wert:

0 - 500 % \* 100 %

### **Funktion:**

Dieser Parameter ist nur aktiv, wenn in Parameter 100 Konfiguration die Wahl Drehzahlregelung mit Istwertrückführung erfolgt ist. Ein prozentualer Anteil des Sollwerts wird nicht vom PID-Regler erfaßt und damit auch nicht geregelt. Jede Sollwertänderung wirkt sich somit direkt auf die Motordrehzahl aus. Mit dem Steuersollwert wird dabei eine hohe Dynamik bei weniger Oberwellen erreicht.

### Beschreibung der Auswahl:

Der gewünschte Prozentwert kann zwischen f $_{\text{MIN}}$  -  $f_{\text{MAX}}$  gewählt werden. Werte über 100 % werden benutzt, wenn die Sollwertänderungen nur gering sind.

### 452 Reglerbandbreite

### (REGLERBAND)

### Wert:

0 - 200 % \* 10 %

### **Funktion:**

Dieser Parameter ist nur aktiv, wenn in Parameter 100 Konfiguration die Wahl Drehzahlregelung mit Istwertrückführung erfolgt ist.

Die Reglerbandbreite (Bandbreite) begrenzt den Ausgang des PID-Reglers als Prozentsatz der Motorfrequenz  $f_{M,N}$ .

### Beschreibung der Auswahl:

Der gewünschte Prozentwert kann für die Motorfrequenz f<sub>M,N</sub> gewählt werden. Bie reduzierter Reglerbandbreite sind die Drehzahlschwankungen bei der Ersteinstellung geringer.

| 455 Frequenzbereichüberwachung |     |
|--------------------------------|-----|
| (FREQ.BER.UEBERW)              |     |
| Wert:                          |     |
| Blockiert                      | [0] |
| <b></b> ₩irksam                | [1] |

### **Funktion:**

Dieser Parameter wird verwendet, wenn Warnung 35 Regelabweichung Frequenzbereich bei Prozeßregelung mit Istwertrückführung in der Anzeige abgeschaltet werden muß. Dieser Parameter beeinflußt nicht das Warnwort 2.

### Beschreibung der Auswahl:

Wirksam [1] wählen, um die Anzeige im Display zu aktivieren, wenn Warnung 35 Regelabweichung Frequenzbereich auftritt. Blockiert [0]wählen, um die Anzeige im Display zu deaktivieren, wenn Warnung 35 Regelabweichung Frequenzbereich auf tritt.

# 456 Bremsspannung reduzieren (BREMSSP.RED.) Wert: 0 - 25 V bei 200 V-Gerät ★ 0 0 - 50 V bei 400 V-Gerät ★ 0

### **Funktion:**

Einstellung der Spannung, um die der Wert für Widerstandsbremsung reduziert wird. Nur aktiv, wenn in Parameter 400 Mit Bremswiderstand gewählt ist.

### Beschreibung der Auswahl:

Je mehr der Wert reduziert wird, um so schneller erfolgt die Reaktion auf eine generatorische Überlast. Sollte nur benutzt werden, wenn es Probleme mit Überspannung in den Zwischenkreisen gibt.

### 461 Istwertumwandlung

### (ISTW.-KONVERSION)

### Wert:

★Linear (LINEAR) [0]
Radiziert (RADIZIERT) [1]

### **Funktion:**

In diesem Parameter wird eine Funktion ausgewählt, die ein angeschlossenes Istwertsignal vom Prozess in einen Istwert umwandelt, der der Quadratwurzel des angeschlossenen Signals entspricht. Dies wird z.B. verwendet, wenn die Regulierung eines Durchflusses

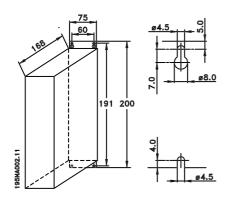


(Menge) auf Basis des Drucks als Istwertsignal erforderlich ist (Durchfluss = konstant x  $\sqrt{Druck}$ ). Diese Umwandlung ermöglicht das Einstellen des Sollwerts, so dass es eine lineare Verbindung zwischen dem Sollwert und dem erforderlichen Durchfluss gibt.

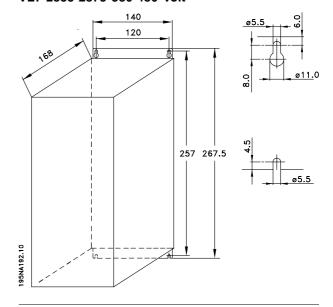
### Beschreibung der Auswahl:

Wenn *Linear* [0] ausgewählt ist, sind das Istwertsignal und der Istwert proportional. Wenn *Radiziert* [1] ausgewählt ist, wandelt der Frequenzumrichter das Istwertsignal in einen radizierten Istwert um.

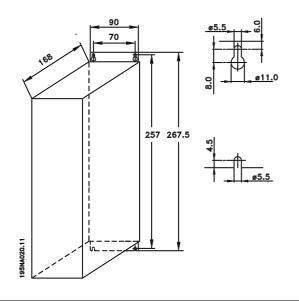
### **ACHTUNG!:**


Die Parametergruppen 500 Serielle
Kommunikation und 600 Servicefunktionen
sind in diesem Handbuch nicht enthalten.
Wenden Sie sich bitte an Danfoss und fragen Sie nach
dem VLT 2800 Projektierungshandbuch.

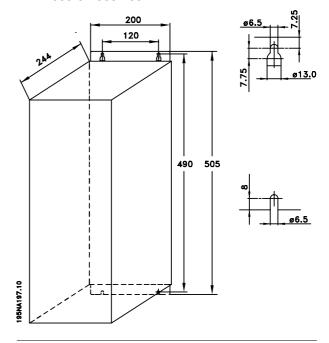



### **■** Abmessungen

Die Zeichnungen unten zeigen die Abmessungen. Alle Angaben sind in mm.

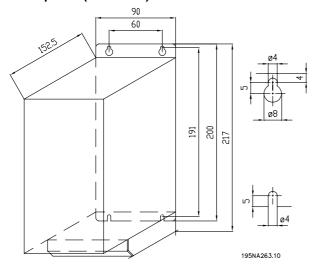

VLT 2803-2815 200-240 Volt VLT 2805-2815 380-480 Volt

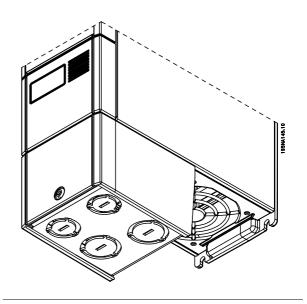



VLT 2840 200-240 Volt VLT 2855-2875 380-480 Volt

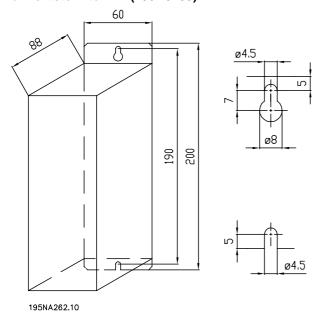


VLT 2822 200-240 Volt VLT 2822-2840 380-480 Volt



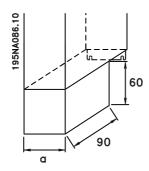


### VLT 2880-82 380-480V





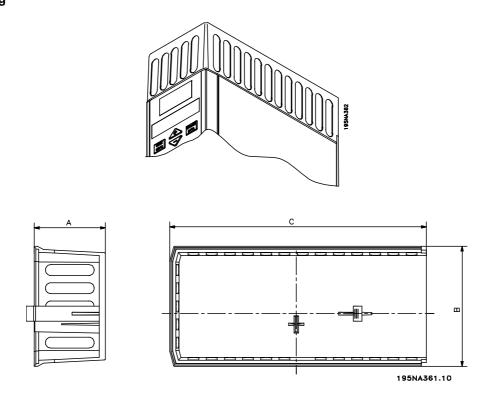

### ■ Motorspulen (195N3110)






### ■ Funkentstörfilter 1B (195N3103)

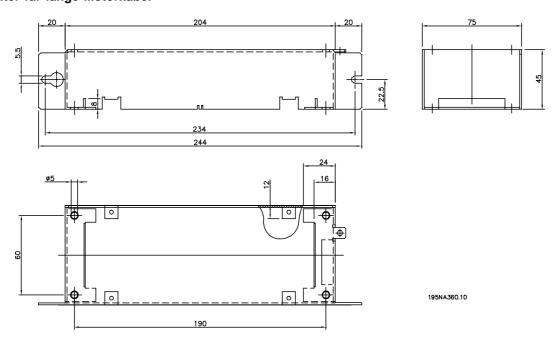



### **■** Klemmenabdeckung

Die nachfolgende Zeichnung zeigt die Abmessungen für NEMA 1 Klemmenabdeckungen für for VLT 2803-2875. Das Maß 'a' ist abhängig vom Gerätetyp.

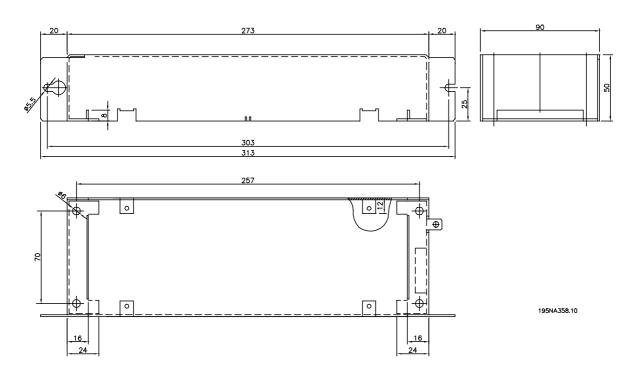




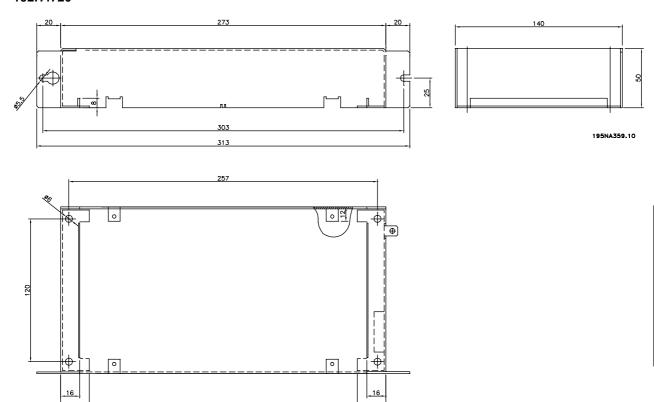

### ■ IP 21-Lösung



### Abmessungen


| Тур                                              | Codenummer | Α  | В   | С   |
|--------------------------------------------------|------------|----|-----|-----|
| VLT 2803-2815 200-240 V, VLT 2805-2815 380-480 V | 195N2118   | 47 | 80  | 170 |
| VLT 2822 200-240 V, VLT 2822-2840 380-480 V      | 195N2119   | 47 | 95  | 170 |
| VLT 2840 200-240 V, VLT 2855-2875 380-480 V      | 195N2120   | 47 | 145 | 170 |
| VLT 2880-2882 380-480 V                          | 195N2126   | 47 | 205 | 245 |

### **■** EMV-Filter für lange Motorkabel




### 192H4719





### 192H4720



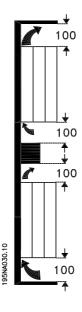
### 192H4893



### **■** Mechanische Installation

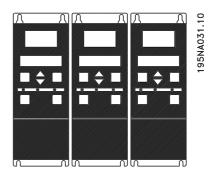


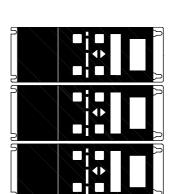
Beachten Sie die für Einbau geltenden Anforderungen, siehe nebenstehende Übersicht.


Der Frequenzumrichter wird durch Luftzirkulation gekühlt. Damit das Gerät seine Kühlluft abgeben kann, muß der freie Abstand über und unter dem Gerät mindestens 100 mm betragen. Zum Schutz des Geräts vor Überhitzung muß sichergestellt werden, daß die Umgebungstemperatur nicht über die für den Frequenzumrichter angegebene Maximaltemperatur ansteigt und auch die 24-Std.-Durchschnittstemperatur nicht überschritten wird. Die Maximaltemperatur in 24-Stunden-Durchschnitt kann den Allegmeinen technischen Daten entnommen werden. Bei einem Umgebungstemperaturbereich von 45 °C bis 55°C wird die Leistung des Frequenzumrichters herabgesetzt. Siehe Leistungsreduzierung an die Umgebungstemperatur. Beachten Sie bitte, daß sich die Lebensdauer des Frequenzumrichters verringert, wenn keine Leistungsreduzierung entsprechend der Umgebungstemperatur vorgenommen wird.

### **■** Einbau

Alle Geräte mit IP 20-Gehäuse müssen in Schaltschränke und-tafeln eingebaut werden. IP 20 ist für den Türeinbau ungeeignet. In den USA sind Geräte mit NEMA-1-Gehäuse für den Türeinbau zugelassen.


### ■ Abstand bei mechanischer Installation


Alle Geräte benötigen einen Abstand von mindestens 100 mm zu anderen Bauteilen und Gehäuselüftungsschlitzen.



### ■ Nebeneinander

Alle VLT 2800 können seitlich nebeneinander und in beliebiger Position installiert werden, da die Geräte keine seitliche Lüftung benötigen.





195NA0147.10

### **ACHTUNG!:**

Bei der IP 21-Lösung erfordern alle Geräte mindestens 100 mm Lüftung auf jeder Seite. Das bedeutet, dass eine Montage nebeneinander nicht erlaubt ist.



### ■ Allgemeine Informationen zur elektrischen Installation

### **■** Hochspannungswarnung



Der Frequenzumrichter steht bei Netzanschluß unter gefährlicher Spannung. Durch unsachgemäße Installation des

Motors oder Frequenzumrichters können ein Ausfall des Gerätes, schwere Personenschäden oder sogar tödliche Verletzungen verursacht werden. Beachten Sie daher stets die Hinweise in diesem Handbuch sowie die jeweils gültigen örtlichen und nationalen Vorschriften und Sicherheitsbestimmungen Das Berühren elektrischer Teile - auch nach der Trennung vom Netz - kann lebensgefährlich sein: Warten Sie mindestens 4 Minuten.

### **ACHTUNG!:**

Der Betreiber bzw. Elektroinstallateur ist für eine ordnungsgemäße Erdung und die Einhaltung der nationalen und örtlichen Sicherheitsbestimmungen verantwortlich.

### ■ Erdung

Die folgenden Grundsätze müssen bei der Installation beachtet werden.

- Sicherheitserdung: Beachten Sie bitte, daß der Frequenzumrichter einen hohen Ableitstrom aufweist und deshalb aus Sicherheitsgründen vorschriftsmäßig zu erden ist. Beachten Sie die örtlichen Sicherheitsvorschriften.
- Hochfrequenzerdung: Halten Sie Erdungskabel so kurz wie möglich.

Schließen Sie die verschiedenen Erdungssysteme an und achten Sie hierbei auf eine geringstmögliche Kabelimpedanz. Die geringstmögliche Kabelimpedanz ergibt sich bei Verwendung möglichst kurzer Motorkabel und möglichst großer Anschlußoberflächen. Beispielsweise hat ein Flachleiter eine geringere HF-Impedanz als ein für den gleichen Leiterquerschnitt C<sub>VESS</sub> berechneter Rundleiter. Bei Einbau mehrerer Geräte in Schaltschränke sollte die metallische Schrankrückwand als gemeinsamer Erdpunkt verwendet werden. Die Metallgehäuse der verschiedenen Geräte müssen mit geringstmöglicher HF-Impedanz an der Schrankrückwand angeschlossen werden. Hierdurch werden unterschiedliche HF-Spannungen in den verschiedenen Geräten und Störströme in etwaigen Verbindungskabel zwischen den Geräten vermieden. Die Störstrahlung verringert sich. Um eine geringe HF-Impedanz zu erzielen, können die Befestigungsschrauben der Geräte als HF-Anschluß an der Rückwand verwendet werden.

Isolierlackschichten o.ä. an den Befestigungspunkten müssen sorgfältig entfernt werden.

### ■ Zusätzlicher Schutz

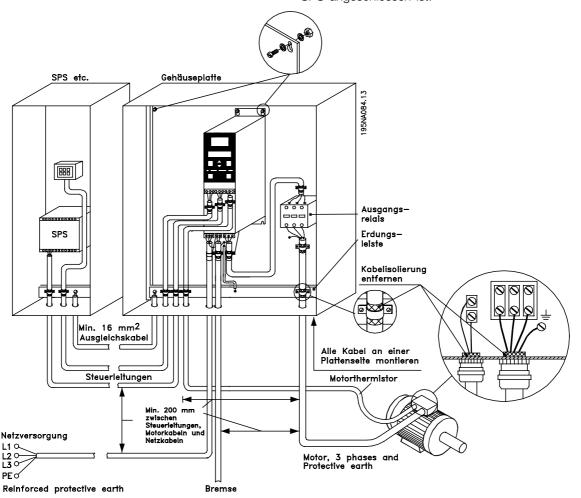
RCD-RelaisFehlerstrom-Schutzschalter, Nullung oder Erdung können ein zusätzlicher Schutz sein, vorausgesetzt, die örtlichen Sicherheitsvorschriften werden eingehalten. Bei Erdungsfehlern können Gleichspannungsanteile im Fehlstrom entstehen. Niemals einen RCD (Fehlerstrom-Schutzschalter) Typ A verwenden, da sie für Fehlerströme mit Gleichspannungsanteil ungeeignet sind. Bei Verwendung von RCD-Relais müssen die örtlichen Bestimmungen eingehalten werden. Wenn RCD-Relais verwendet werden, müssen sie geeignet sein für:

- den Schutz von Installationen mit Gleichspannungsanteil im Fehlstrom (Drehstrom-Gleichrichterbrücke),
- kurzzeitiges Ableiten von Impulsstromspitzen beim Einschalten,
- hohe Ableitströme.

Bei 200 V Einphasen-Geräten mit geringen Ableitströmen (Typencode R4) muss N vor L1 angeschlossen werden.

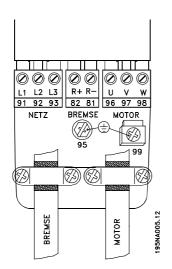
### ■ Hochspannungsprüfung

Eine Hochspannungsprüfung kann durch Kurzschließen der Anschlüsse U, V, W, L1, L2 und L3 und 1 s langes Anlegen von max. 2160 V Gleichspannung zwischen diesem Kurzschludd und Klemme 95 erfolgen.

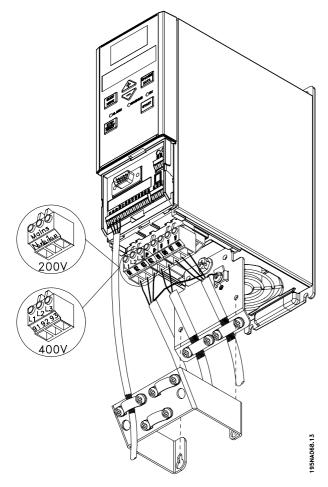



### **■** EMV-gemäße elektrische Installation

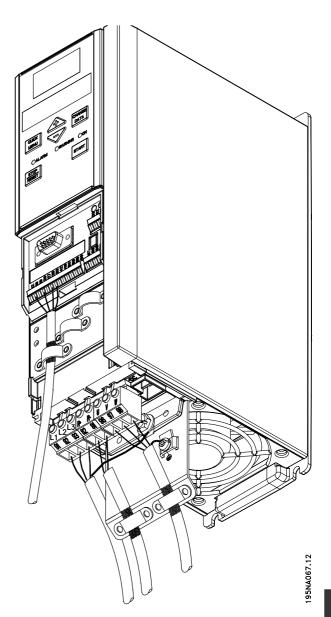
Allgemeine Hinweise für eine EMV-gemäße elektrische Installation:


- Nur abgeschirmte Motorkabel und abgeschirmte Steuerkabel verwenden.
- Abschirmung beidseitig erden.
- Installation mit verdrillten Abschirmungsenden (Pigtails) vermeiden, da diese die Abschirmung bei hohen Frequenzen beeinträchtigen. Statt dessen Kabelbügel verwenden.
- Auf einwandfreien elektrischen Kontakt von der Montageplatte über die Montageschrauben zum Metallgehäuse des Frequenzumrichters achten.
- Zahnscheiben und galvanisch leitfähige Montageplatten verwenden.
- In Schaltschränken keine nicht abgeschirmten Motorkabel verwenden.

Die Zeichnung unten zeigt eine EMV-gemäße elektrische Installation, bei der der Frequenzumrichter in einen Schaltschrank montiert und an eine SPS angeschlossen ist.

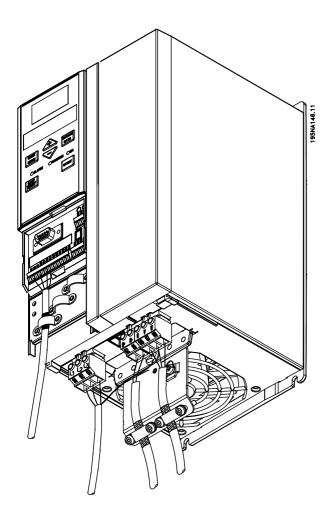




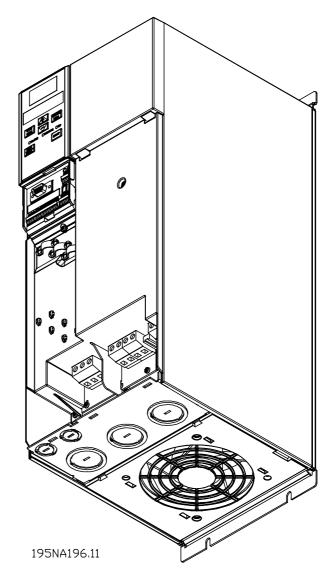


### **■** Elektrische Installation



Siehe auch Abschnitt Bremsanschluss(-klemmen).




VLT 2803-2815 200-240 V, 2805-2815 380-480 V

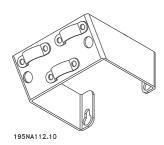



VLT 2822 200-240 V, 2822-2840 380-480 V





VLT 2840 200-240 V, 2855-2875 380-480 V




VLT 2880-2882 380-480 V

Bitte beachten: Alle Geräte werden mit zwei Bodenplatten, eine für metrische Kabelverschraubungen, die andere für die Leitungseinführung, geliefert.



### **■** Sicherheitsbügel



<u>^</u>

Soll die galvanische Trennung (PELV) zwischen den Steuerklemmen und den Hochspannungsklemmen gewährleistet

werden, so muß der mitgelieferte Sicherheitsbügel am VLT 2803-2815, 200-240 V und VLT 2805-2815, 380-480 V montiert werden.

### **■** Vorsicherungen

Bei allen Gertätetypen ist die Haupteinspeisung des Frequenzumrichters durch externe Vorsicherungen abzusichern. Für II/cUL-Anwendungen mit einer Hauptversorgungsspannung von 200-240 V müssen Vorsicherungen vom Typ Bussmann KTN (200-240 Volt) oder Ferraz Shawmut Typ ATMR (max 30A) verwendet werden. Bei UL/cUL-Anwendungen mit einer Hauptversorgungsspannung von 380-480 Volt sind Vorsicherungen vom Typ Bussmann KTS-R (380-480 Volt) zu verwenden. Für die vorschriftsmäßige Bemessung der Vorsicherungen siehe Technische Daten.

### ■ Netzanschluß

Bitte beachten: bei einer Spannungsversorgung von 1 x 200-240 V ist der Neutralleiter an Klemme N  $_{(L2)}$  anzuschließen. Der Phasenleiter ist an Klemme L1  $_{(L1)}$  anzuschließen.

| Nr. | N <sub>(L2)</sub> L1 <sub>(L1)</sub> ( | (L3) | Netzspannung 1 x 220-240 V |
|-----|----------------------------------------|------|----------------------------|
|     | N L1                                   |      |                            |
| Nr. | 95                                     |      | Erdanschluß                |
|     |                                        |      |                            |
| Nr. | N <sub>(L2)</sub> L1 <sub>(L1)</sub>   | (L3) | Netzspannung 3 x 220-240 V |
|     | L2 L1                                  | L3   |                            |
| Nr. | 95                                     |      | Erdanschluß                |
|     |                                        |      |                            |
| Nr. | 91 92 93                               | Net  | zspannung 3 x 380-480 V    |

Erdanschluß

### **ACHTUNG!:**

Bitte prüfen, ob die Netzspannung der auf dem Typenschild angegebenen Netzspannung des Frequenzumrichters entspricht.

400-Volt Geräte mit Funkentstörfiltern dürfen nicht an Netze angeschlossen werden, in denen die Spannung zwischen Phase und Erde 300 V übersteigt. Bitte beachten, daß die Netzspannung in IT-Netzen und in Netzen mit Dreieckerdung 300 V zwischen Phase und Erde übersteigen kann. Geräte mit Typencode R5 dürfen an Netze mit einer Spannung von bis zu 400 V zwischen Phase und Erde angeschlossen werden.

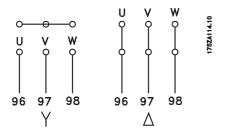
Zur richtigen Bemessung des Kabelquerschnitts siehe *Technische Daten*. Für weitere Informationen siehe auch den Abschnitt *Galvanische Trennung*.

### ■ Motoranschluß

Schließen Sie den Motor an die Klemmen 96, 97, 98 und die Erdung an Klemme 99 an.

| Nr. | 96 97 | 98             | Motorspannung 0-100% der  |  |
|-----|-------|----------------|---------------------------|--|
|     |       |                | Netzspannung.             |  |
|     | U     | W              | 3 Drähte vom Motor        |  |
|     | U1 V1 | W1             | 6 Drähte vom Motor,       |  |
|     | W2 U2 | V2             | Dreieckschaltung          |  |
|     | U1 V1 | W1             | 6 Drähte vom motor        |  |
|     |       | Sternschaltung |                           |  |
|     |       |                | U2, V2, W2 müssen separat |  |
|     |       |                | zusammenverbunden werden  |  |
|     |       |                | (Klemme ist optional)     |  |
| Nr. | PE    |                | Erdanschluß               |  |

Zur richtigen Bemessung des Kabelquerschnitts siehe *Technische Daten*.


An die Frequenzumrichter können alle dreiphasigen asynchronen Standardmotoren angeschlossen werden. Kleinere Motoren werden üblicherweise in Stern (220/380 V,  $\Delta$ / Y), größere Motoren in Dreieck (380/660 V,  $\Delta$ / Y) geschaltet. Die richtige Schaltung und Spannung sind auf dem Typenschild des Motors angegeben.



### **ACHTUNG!:**

Bei Motoren ohne Phasentrennung muß ein LC-Filter am Ausgang des Frequenzumrichters montiert werden.





### **■** EMV-Schalter

### Erdfreie Netzversorgung:

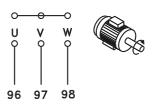
Wird der Frequenzumrichter von einer isolierten Netzstromquelle (IT-Netz) oder TT/TN-S Netz mit geerdetem Zweig versorgt, so wird empfohlen, den EMV-Schalter auf OFF (AUS) zu stellen. Siehe dazu IEC 364-3. Falls optimale EMV-Leistung benötigt wird, parallele Motoren angeschlossen werden oder das Motorkabel länger als 25 m ist, wird empfohlen, den Schalter in die Stellung ON (EIN) zu stellen. In der AUS-Stellung sind die internen EMV-Kapazitäten (Filterkondensatoren) zwischen Chassis und Zwischenkreis abgeschaltet, um Schäden am Zwischenkreis zu vermeiden und die Erdkapazitätsströme (gemäß IEC 61800-3) zu verringern.

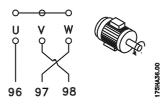
Beachten Sie bitte auch den Anwendungshinweis *VLT im IT-Netz*, MN.90.CX.02. Es ist wichtig, Erdschluss-Überwachungsgeräte zu verwenden, die zusammen mit Leistungselektronik einsetzbar sind (IEC 61557-8).

### **ACHTUNG!:**

Den EMV-Schalter nicht betätigen, wenn das Gerät an das Netz angeschlossen ist. Vergewissern Sie sich bitte, dass die Netzversorgung unterbrochen ist, bevor Sie den EMV-Schalter betätigen.




### **ACHTUNG!:**


Mit dem EMV-Schalter werden die Kondensatoren galvanisch von der Masse getrennt.

Der neben der Klemme 96 befindliche Schalter Mk9 muss zum Abklemmen des EMV-Filters ausgebaut werden.

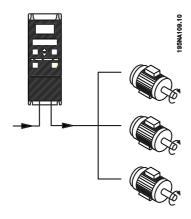
Der EMV-Schalter ist nur für VLT 2880-2882 verfügbar.

### ■ Drehrichtung des Motors





Die Werkseinstellung ist Rechtsdrehung, wobei der Ausgang des Frequenzumrichters folgendermaßen geschaltet ist:


Klemme 96 an U-Phase,

Klemme 97 an V-Phase.

Klemme 98 an W-Phase.

Die Drehrichtung kann durch Vertauschen zweier Phasen an den Motorklemmen umgekehrt werden.

### ■ Parallelschaltung von Motoren



Der Frequenzumrichter kann mehrere parallel geschaltete Motoren steuern. Wenn die Motoren verschiedene Drehzahlen haben sollen, müssen Motoren mit unterschiedlichen Nenndrehzahlen eingesetzt werden. Da sich die Drehzahl der Motoren gleichzeitig ändert, bleibt jeweils das Verhältnis zwischen den Nenndrehzahlen im gesamten Bereich gleich. Der Gesamtstromverbrauch der Motoren darf den maximalen Ausgangsnennstrom I<sub>INV</sub> des Frequenzumrichters nicht übersteigen.



Bei sehr unterschiedlichen Motorgrößen können beim Anlaufen und bei niedrigen Drehzahlen Probleme auftreten. Der Grund hierfür ist, dass durch den relativ hohen Ohmschen Widerstand im Stator kleiner Motoren eine höhere Spannung zum Anlaufen und bei niedrigen Drehzahlen erforderlich ist.

In Systemen mit parallel geschalteten Motoren kann das elektronische Thermorelais (ETR) des Frequenzumrichters nicht als Motorschutz für einzelne Motoren eingesetzt werden. Aus diesem Grund muss ein zusätzlicher Motorschutz vorgesehen werden, z. B. Thermistoren in allen Motoren oder ein individuelles Thermorelais. (Schutzschalter sind als Schutz nicht geeignet).

### **ACHTUNG!:**

Parameter 107 Automatische Motoranpassung, AMT kann bei parallel geschalteten Motoren nicht benutzt werden. Parameter 101 Drehmomentkennlinie muss bei parallel geschalteten Motoren auf Spezielle Motorkennlinie [8] eingestellt werden.

### ■ Motorkabel

Zur richtigen Bemessung von Querschnitt und Länge der Motorkabel siehe Technische Daten. Befolgen Sie stets die nationalen und örtlichen Vorschriften zum Kabelguerschnitt.

### **ACHTUNG!:**

Werden nicht abgeschirmte Kabel verwendet, werden einige EMV-Anforderungen nicht erfüllt, siehe EMV-Prüfergebnisse im

Projektierungshandbuch.

Zur Einhaltung der EMV-Spezifikationen bzgl. der Störabstrahlung muß das Motorkabel abgeschirmt sein, sofern für das betreffende Funkentstörfilter nicht anders angegeben. Um Störpegel und Ableitströme auf ein Minimum zu reduzieren, muß das Motorkabel so kurz wie möglich gehalten werden. Die Abschirmung des Motorkabels muß mit dem Metallgehäuse des Frequenzumrichters und dem Metallgehäuse des Motors verbunden werden. Die Abschirmungen müssen mit größtmöglicher Oberfläche (Kabelschelle) angeschlossen werden. Dies wird durch unterschiedliche Montagevorrichtungen in den verschiedenen Frequenzumrichtern ermöglicht. Installation mit verdrillten Abschirmungsenden (Pigtails) vermeiden, da diese die Abschirmung bei hohen Frequenzen beeinträchtigen. Ist die Unterbrechung der Abschirmung z.B. zur Montage eines Motorschutzes oder Motorrelais erforderlich,

muß die Abschirmung mit der geringstmöglichen HF-Impedanz fortgeführt werden.

### **■** Thermischer Motorschutz

Das elektronische Thermorelais in UL-zugelassenen Frequenzumrichtern ist für Einzelmotorschutz UL-zugelassen, wenn Parameter 128 Therm. Motorschu auf Abschalt Thermistor und Parameter 105 Motorstrom, I<sub>M. N</sub> auf den Motornennstrom (siehe Typenschild des Motors) programmiert wurden.

### ■ Bremswiderstand

| Nr. | 81 | 82 | Bremswiderstands- |
|-----|----|----|-------------------|
|     | R- | R+ | klemmen           |

Das Anschlußkabel für den Bremswiderstand muß abgeschirmt/umflochten sein. Die Abschirmung mit Kabelbügeln mit dem Metallgehäuse des Frequenzumrichters und dem Metallgehäuse des Bremswiderstands verbinden. Der Querschnitt des Bremskabels muß dem Bremsmoment angepaßt werden.

Zur Bemessung der Bremswiderstände siehe Projektierungshandbuch.



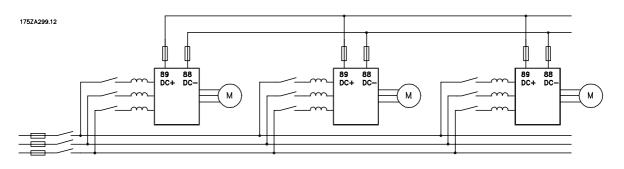
### **ACHTUNG!:**

Beachten Sie, daß die Spannung an den Klemmen bis zu 850 V DC betragen kann.

### ■ Erdanschluß

Da die Ableitströme gegen Erde höher als 3,5 mA sein können, muß der Frequenzumrichter immer gemäß den nationalen und örtlichen Vorschriften geerdet werden. Für einen guten mechanischen Anschluß des Erdkabels an Klemme 95 muß der Kabelguerschnitt mindestens 10 mm<sup>2</sup> betragen, oder er muß aus zwei getrennt abgeschlossenen Erdkabeln bestehen. Um den Schutz noch weiter zu verbessern, kann ein RCD (Fehlerstromschutzschalter) installiert werden, der sicherstellt, daß der Frequenzumrichter bei zu hohem Ableitstrom abschaltet. Siehe auch den RCD-Anwendungshinweis MN.90.GX.02.

### **■** Zwischenkreiskopplung


Die Zwischenkreiskopplung ermöglicht die Kopplung der DC-Zwischenkreise mehrerer Frequenzumrichter. Hierzu muss die Installation um zusätzliche



Sicherungen und Wechselstromdrosseln erweitert werden (siehe Zeichnung unten). Zur Aktivierung der Zwischenkreiskopplung muss Parameter 400 *Bremsfunktion* auf *Zwischenkreiskopplung* [5] eingestellt werden.

Für DC-Zwischenkreiskopplung 6,3-mm-Faston-Stecker verwenden. Weitere Informationen erhalten Sie bei Danfoss oder in Anleitung MI.50.NX.02.

| Nr. | 88 | 89 | Zwischenkreiskopplung |
|-----|----|----|-----------------------|
|     | -  | +  |                       |





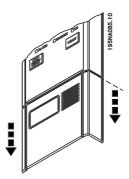
Achtung! Die Spannung zwischen den Klemmen 88 und 89 kann bis zu 850 V DC betragen.

### ■ Anzugsmoment, Leistungsklemmen

Leistungs- und Erdungsklemmen sind mit folgenden Anzugsmomenten anzuziehen:

| VLT   | Klemmen       | Anzugsmo- |
|-------|---------------|-----------|
|       |               | ment [Nm] |
| 2803- | Netzanschluss | 0.5-0.6   |
| 2875  | Bremse        |           |
|       | Erde          | 2-3       |
| 2880- | Netzanschluss | 1.2-1.5   |
| 2882  | Bremse        |           |
|       | Erde          | 2-3       |

Tritt für den Frequenzwandler ein Alarmzustand oder eine Überspannung auf, so wird die mechanische Bremse sofort eingeschaltet.



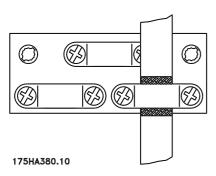

### **ACHTUNG!:**

Diese Anwendung gilt nur für Heben/Absenken ohne Gegengewicht.

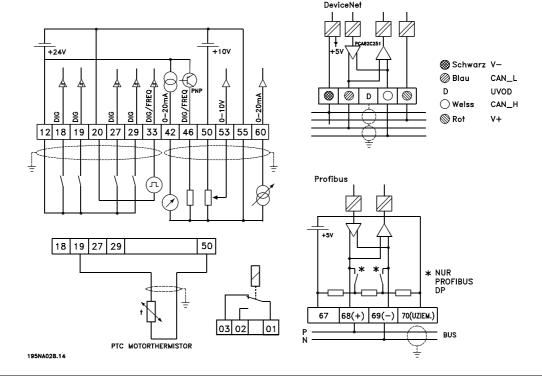
### ■ Zugang zu Steuerkabelklemmen

Alle Steuerkabelklemmen befinden sich unter der Abdeckplatte vorn auf dem Frequenzumrichter. Die Abdeckplatte kann durch Abziehen nach unten entfernt werden (siehe Zeichnung).




### ■ Steuerung der mechanischen Bremse

In Hebe-/Absenkanwendungen muss eine elektromagnetische Bremse gesteuert werden. Die Bremse wird mit einem Relaisausgang bzw. digitalen Ausgang (Klemme 46) gesteuert. Der Ausgang muss für den Zeitraum geschlossen (spannungsfrei) bleiben, in dem der Frequenzumrichter den Motor nicht 'unterstützen' kann, da z.B. die Last zu groß ist. Steuerung mech. Bremse in Parameter 323 bzw. 341 für Anwendungen mit einer elektromagnetischen Bremse wählen.


Wenn die Ausgangsfrequenz die in Parameter 138 eingestellte Bremsabschaltfrequenz überschreitet, wird die Bremse gelöst, wenn der Motorstrom den in Parameter 140 voreingestellten Wert überschreitet. Die Bremse wird aktiviert, wenn die Ausgangsfrequenz geringer als die in Parameter 139 eingestellte Bremseinschaltfrequenz ist.



### **■** Elektrische Installation, Steuerkabel



Steuerkabel müssen abgeschirmt sein. Die Abschirmung muß mit einem Bügel am Gehäuse des Frequenzumrichters angeschlossen werden. Normalerweise muß die Abschirmung auch am Gehäuse des Steuergeräts angeschlossen werden (siehe Installationsanleitung für das jeweilige Gerät). Bei sehr langen Steuerkabeln und analogen Signalen können abhängig von der Installation in seltenen Fällen 50/60 Hz-Brummschleifen durch von den Netzkabeln übertragene Störungen auftreten. In diesem Fall kann es erforderlich sein, die Abschirmung aufzutrennen und evtl. einen 100 nF-Kondensator zwischen Abschirmung und Gehäuse zu schalten.





### ■ Anzugsmomente, Steuerkabel

Steuerkabel sind mit einem Anzugsmoment von 0,22-0,25 Nm anzuschließen.

### **■** Elektrische Installation, Steuerklemmen

Zur richtigen Terminierung der Steuerkabel siehe *Erdung* abgeschirmter Steuerkabel im Projektierungshandbuch.



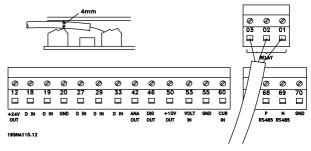


0 0

| Nr.                 | Funktion                                           |  |
|---------------------|----------------------------------------------------|--|
| 01-03               | Die Relaisausgänge 01-03 können zur                |  |
|                     | Statusanzeige und für Alarm-/Warnmeldungen benutzt |  |
|                     | werden.                                            |  |
| 12                  | 24 V DC Versorgungsspannung.                       |  |
| 18-33               | Digitale Eingänge.                                 |  |
| 20, 55              | Masseanschluss für Ein-                            |  |
|                     | und Ausgangsklemmen.                               |  |
| 42                  | Analoger Ausgang für die Frequenzanzeige,          |  |
|                     | Sollwert, Strom oder Drehmoment.                   |  |
| 46 <sup>1</sup>     | Digitaler Ausgang für die Anzeige von Status,      |  |
|                     | Warnungen oder Alarmen sowie                       |  |
|                     | Frequenzausgang.                                   |  |
| 50                  | +10 V DC Versorgungsspannung                       |  |
|                     | für Potentiometer oder Thermistor.                 |  |
| 53                  | Analoger Spannungseingang 0 - 10 V DC.             |  |
| 60                  | Analoger Stromeingang 0/4 - 20 mA.                 |  |
| 67 <sup>1</sup>     | + 5 V DC Versorgungsspannung                       |  |
|                     | für Profibus.                                      |  |
| 68, 69 <sup>1</sup> | RS 485, Serielle Kommunikation.                    |  |
| 70 <sup>1</sup>     | Masseanschluss für die Klemmen 67, 68 und 69.      |  |
|                     | Dieser Anschluss wird normalerweise nicht benutzt. |  |

Die Anschlussklemmen gelten nicht für DeviceNet. Weiterführende Informationen finden Sie im DeviceNet-Handbuch MG.90.BX.YY

### ■ Relaisanschluß


Zur Programmierung des Relaisausgangs siehe Parameter 323 *Relaisausgang*.

| Nr. | 01 | - 02 | 1 - 2 Schließer (normalerweise offen)       |
|-----|----|------|---------------------------------------------|
|     | 01 | - 03 | 1 - 3 Öffner (normalerweise<br>geschlossen) |

### **ACHTUNG!:**

Beachten Sie bitte, daß die Kabelumhüllung für das Relais die erste Reihe der Steuerkartenklemmen bedecken muß -

ansonsten ist die galvanische Trennung (PELV) nicht gewährleistet. Max. Kabeldurchmesser: 4 mm. Siehe Zeichnung.

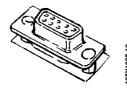


### ■ Schalter 1-4

Der Dip-Schalter befindet sich nur auf der Steuerkarte mit Profibus DP-Kommunikation.

Die gezeigte Schalterposition entspricht der Werkseinstellung.




Schalter 1 und 2 dienen zur Kabelterminierung für die RS 485-Schnittstelle. Ist der Frequenzwandler das erste oder letzte Gerät im Bussystem, so müssen die Schalter 1 und 2 EIN sein. Bei den übrigen Frequenzwandlern müssen die Schalter 1 und 2 AUS sein. Schalter 3 und 4 haben keine Funktion.

### ■ VLT Software Dialog

Anschluß an Klemmen 68-70 oder Sub D:

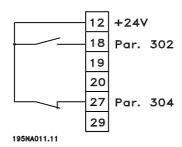
- PIN 3 GND
- PIN 8 P-RS 485
- PIN 9 N-RS 485

### ■ D-Sub-Stecker:



Eine LCP 2-Bedieneinheit kann an die D-Sub-Buchse der Steuerkarte angeschlossen werden.

Bestellnummer: 175N0131.


LCP-Bedieneinheiten mit der Bestellnummer 175Z0401 dürfen nicht angeschlossen werden.



### ■ Anschlußbeispiele

### ■ Start/Stopp 3:

Start/Stopp mit Klemme 18 und Motorfreilaufstopp mit Klemme 27.

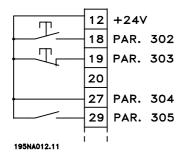


Par. 302 Digitaleingang = Start [7]

Par. 304 Digitaleingang = Motorfreilaufstopp

invers [2]

Für präzisen Start/Stopp werden die folgenden Einstellungen verwendet:


Par. 302 Digitaleingang = Präziser Start/Stopp [27]

Par. 304 Digitaleingang = Motorfreilaufstopp

invers [2]

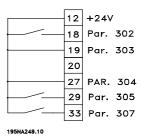
### ■ Pulsstart/-stopp

Pulsstart mit Klemme 18 und Pulsstopp mit Klemme 19. Außerdem wird die Festdrehzahlfrequenz mit Klemme 29 aktiviert.



Par. 302 Digitaleingang = Puls-Start [8]

Par. 303 Digitaleingang = Stopp invers [6]


Par. 304 Digitaleingang = Motorfreilaufstopp

invers [2]

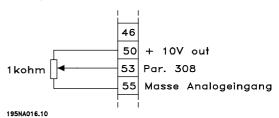
Par. 305 Digitaleingang = Festdrehzahl [13]

### ■ Drehzahlkorrektur auf/ab

Drehzahlkorrektur auf/ab mit Klemmen 29/33.



Par. 302 Digitaleingang = Start [7]


Par. 303 Digitaleingang = Sollwert speichern [14]

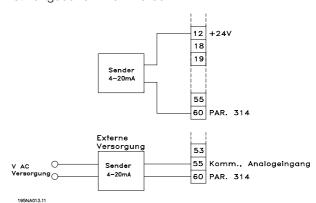
Par. 305 Digitaleingang = Drehzahl auf [16]

Par. 307 Digitaleingang = Drehzahl ab [17]

### **■** Potentiometer Sollwert

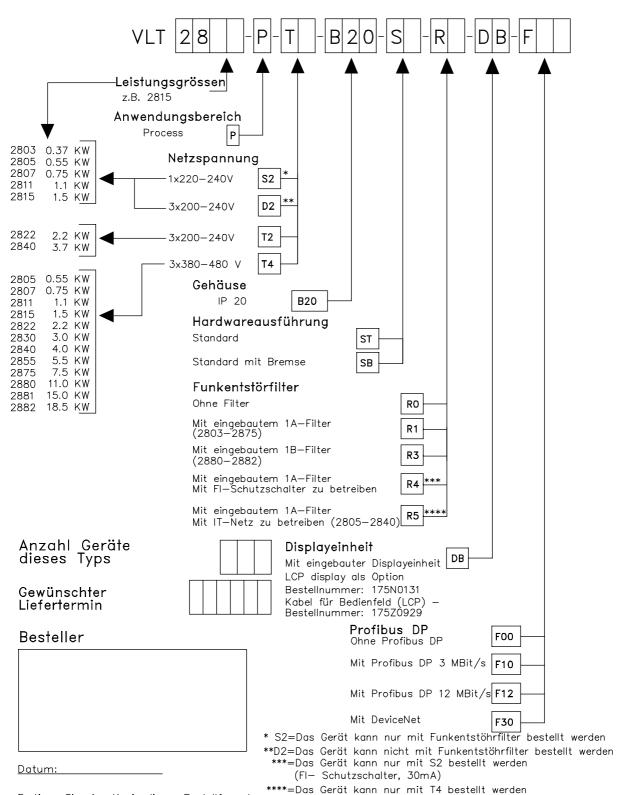
Spannungssollwert über ein Potentiometer.




Par. 308 Analogeingang = Sollwert [1]

Par. 309 Klemme 53, min. Skalierung = 0 Volt

Par. 310 Klemme 53, max. Skalierung = 10 Volt


### ■ Anschluss eines zweiadrigen Transmitters

Anschluss eines zweiadrigen Transmitters als Istwertgeber an Klemme 60.



Par. 314 Analogeingang = Istwert [2]

Par. 315 Klemme 60, min. Skalierung = 4 mA Par. 316 Klemme 60, max. Skalierung = 20 mA



Fertigen Sie eine Kopie dieses Bestellformulars an.
Senden oder faxen Sie das ausgefüllte Bestell—
formular an die nächstgelegene Danfoss—Vertretung

195NA026.18



## **■** Displayanzeigen

#### Fr

Der Frequenzumrichter zeigt die aktuelle Ausgangsfrequenz in Hertz [Hz] an.

#### lo

Der Frequenzumrichter zeigt den aktuellen Ausgangsstrom in Ampere [A] an.

#### Uo

Der Frequenzumrichter zeigt die aktuelle Ausgangsspannung in Volt [V] an.

#### Ud

Der Frequenzumrichter zeigt die Zwischenschaltspannung in Volt [V] an.

#### Po

Der Frequenzumrichter zeigt die ermittelte Ausgangsleistung in Kilowatt [kW] an.

#### **Anhalten**

Diese Meldung wird angezeigt, falls versucht wird, einen Parameterwert bei laufendem Motor zu ändern. Motor anhalten und Parameterwert ändern.

#### LCP

Diese Meldung wird bei Einbau einer LCP2-Bedieneinheit und Aufrufen der Funktion [SCHNELLMENÜ] oder [DATEN ÄNDERN] angezeigt. Bei Einbau einer LCP2-Bedieneinheit ist eine Parameteränderung nur auf diese Weise möglich.

#### На

Der Frequenzumrichter zeigt die Sollfrequenz für den Handbetrieb in Hertz [Hz] an.

#### SC

Der Frequenzumrichter zeigt die skalierte Ausgangsfrequenz an (gegenwärtige Ausgangsfrequenz x Parameter 008).

#### ■ Warn- und Alarmmeldungen

Eine Warn- bzw. Alarmmeldung wird auf dem Display als Zahlencode **Err. xx** angezeigt. Eine Warnung wird auf dem Display angezeigt, bis der Fehler beseitigt ist, während ein Alarm dauernd blinkt, bis die [STOP/RESET] Taste gedrückt wird. Die Tabelle zeigt die verschiedenen Warn- und Alarmmeldungen und ob ein Fehler zur Abschaltung des Frequenzumrichters führt. Nach einer *Abschaltung* wird die Netzversorgung abgeschaltet und der Fehler beseitigt. Die Netzversorgung wird dann wieder angeschlossen und der Frequenzumrichter zurückgesetzt. Der Frequenzumrichter ist nun betriebsbereit. Eine *Abschaltung* kann manuell auf drei verschiedene Weisen zurückgesetzt werden:

- 1. Mit der Steuertaste [STOP/RESET].
- 2. Über einen digitalen Eingang.
- 3. Über die serielle Schnittstelle.

Außerdem kann in Parameter 405 *Quittierfunktion* ein automatischer Reset gewählt werden. Wenn sowohl Warnung als auch Alarm markiert sind, kann dies bedeuten, daß eine Warnung vor einem Alarm erfolgt. Es kann auch bedeuten, daß der Anwender programmieren kann, ob eine Warnung oder ein Alarm für einen gegebenen Fehler erfolgen soll. Dies ist z.B. in Parameter 128 *Thermischer Motorschutz* möglich. Nach einer Abschaltung läuft der Motor im Freilauf, und auf dem Frequenzumrichter blinkt ein Alarm und eine Warnung; wenn der Fehler verschwindet, blinkt nur der Alarm. Nach einem Reset ist der Frequenzumrichter wieder betriebsbereit.



| Nr.    | Text                                             | Warnung | Alarm | Ab-<br>schalt-<br>block. |
|--------|--------------------------------------------------|---------|-------|--------------------------|
| 2      | Sollwertfehler (SOLLWERTFEHLER)                  | Х       | X     | X                        |
| 4      | Phasenfehler (NETZPHASENFEHLER)                  | X       | X     | X                        |
| 5      | Spannung oberer Grenzwert (DC SPANNUNG HOCH)     | X       |       |                          |
| 5<br>6 | Spannung unterer Grenzwert (DC SPANNUNG NIEDRIG) | Χ       |       |                          |
| 7      | Überspannung (DC ÜBERSPANNUNG)                   | Χ       | Χ     | Χ                        |
| 8      | Unterspannung (DC UNTERSPANNUNG)                 | Χ       | Χ     | Х                        |
| 9      | Wechselrichter überlastet (WECHSELRICHTER ZEIT)  | Χ       | Χ     |                          |
| 10     | Motor überlastet ( MOTOR, ZEIT)                  | Χ       | Χ     |                          |
| 11     | Motorthermistor (MOTORTHERMISTOR)                | Χ       | Χ     |                          |
| 12     | Stromgrenze (STROMGRENZE)                        | Χ       | Χ     |                          |
| 13     | Überstrom (ÜBERSTROM)                            | Х       | Χ     | Χ                        |
| 14     | Erdungsfehler (ERDUNGSFEHLER)                    |         | Χ     | Χ                        |
| 15     | Schaltmodusfehler (SCHALTMODUSFEHLER)            |         | Χ     | Χ                        |
| 16     | Kurzschluß (KURZ SCHLUSS)                        |         | Χ     | Χ                        |
| 17     | Standard-Bus-Timeout (STD BUSTIMEOUT)            | Х       | Χ     |                          |
| 18     | HPFB-Bus-Timeout (HPFB BUSTIMEOUT)               | Х       | Χ     |                          |
| 33     | Außerhalb Frequenzbereich (AUSSERH.D.BEREICH)    | Χ       |       |                          |
| 34     | HPFB-Kommunikationsfehler (PROFIBUS OPT. FEHLER) | Χ       | Χ     |                          |
| 35     | Stromsp.fehler (STROMSP.FEHLER)                  |         | Χ     | Χ                        |
| 36     | Übertemperatur (UEBERTEMP)                       |         | Χ     |                          |
| 37-45  | Interner Fehler (INTERNER FEHLER)                |         | Χ     | Χ                        |
| 50     | AMT nicht möglich                                |         | Χ     |                          |
| 51     | AMT Fehler Typenschilddaten (AMT TYP.DATENFEHL)  |         | Χ     |                          |
| 54     | AMT falscher Motor (AMT FALSCH. MOT.)            |         | Χ     |                          |
| 55     | AMT Timeout (AMT TIMEOUT)                        |         | Χ     |                          |
| 56     | AMT Warnung während AMT (AMT WARN. BEI AMT)      |         | Χ     |                          |
| 99     | Blockiert (BLOCKIERT)                            | Χ       |       |                          |

| LED-Anzeige           |              |
|-----------------------|--------------|
| Warnung               | gelb         |
| Alarm                 | rot          |
| Abschaltung blockiert | gelb und rot |

### WARNUNG/ALARM 2: Sollwertfehler

Das Spannungs- bzw. Stromsignal an Eingang 53 bzw. 60 liegt unter 50% des in Parameter 309 bzw. 315 eingestellten Wertes *Eingang, Skal-Min*.

#### WARNUNG/ALARM 4: Netzphasenfehler

Fehlende Phase in der Netzspannung. Versorgungsspannung des Frequenzumrichters prüfen. Dieser Fehler ist nur bei Drehstromversorgung aktiv. Der Alarm kann auch bei schwankender Last erfolgen. In diesem Fall müssen die Schwankungen z.B. durch eine Trägheitsscheibe gedämpft werden.

### WARNUNG 5: Spannungswarnung hoch

Ist die Zwischenkreisspannung (UDC) höher als *Spannungswarnung hoch*, so gibt der Frequenzumrichter eine Warnung, und der Motor läuft unverändert weiter. Bleibt UDC über dem Grenzwert für Spannungswarnung, so schaltet der Wechselrichter nach einem festen Zeitraum ab. Die Zeit

ist geräteabhängig und auf 5 -10 s eingestellt. Hinweis: Der Frequenzumrichter schaltet mit einem Alarm 7 (Überspannung) ab. Eine Spannungswarnung kann auftreten, wenn die angeschlossene Netzspannung zu hoch ist. Prüfen, ob die Versorgungsspannung zum Frequenzumrichter paßt, siehe *Technische Daten*. Eine Spannungswarnung kann auch erfolgen, wenn die Motorfrequenz aufgrund einer zu kurzen Rampenzeit zu schnell reduziert wird.

## **WARNUNG 6: Unterer Spannungsgrenzwert**

Ist die Zwischenkreisspannung (UDC) geringer als *Spannungswarnung niedrig*, so gibt der Frequenzumrichter eine Warnung, und der Motor läuft unverändert weiter. Eine Spannungswarnung kann auftreten, wenn die angeschlossene Netzspannung zu niedrig ist. Prüfen, ob die Versorgungsspannung zum Frequenzumrichter paßt, siehe *Technische Daten*. Beim Abschalten des Frequenzumrichters wird kurz Warnung 6 (und Warnung 8) angezeigt.

## WARNUNG/ALARM 7: Überspannung

Überschreitet die Zwischenkreisspannung (UDC) die Überspannungsgrenze des Wechselrichters, so wird der Wechselrichter abgeschaltet, bis UDC erneut



unter die Überspannungsgrenze fällt. Bleibt UDC über der Überspannungsgrenze, so schaltet der Wechselrichter nach einem festen Zeitraum ab. Die Zeit ist geräteabhängig und auf 5 - 10 s eingestellt. Eine UDC-Überspannung kann auftreten, wenn die Motorfrequenz aufgrund einer zu kurzen Rampenzeit zu schnell reduziert wird. Wenn der Wechselrichter abschaltet, wird eine Abschaltungsquittierung generiert. Hinweis: *Spannungswarnung hoch* (Warnung 5) kann somit auch einen Alarm 7 auslösen.

#### WARNUNG/ALARM 8: Unterspannung

Unterschreitet die Zwischenkreisspannung (UDC) die Unterspannungsgrenze des Wechselrichters, so wird der Wechselrichter abgeschaltet, bis UDC erneut die Unterspannungsgrenze überschreitet. Bleibt UDC unter dem Unterspannungsgrenzwert, so schaltet der Wechselrichter nach einem festen Zeitraum ab. Die Zeit ist geräteabhängig und auf 2 - 15 s eingestellt. Eine Unterspannung kann auftreten, wenn die angeschlossene Netzspannung zu niedrig ist. Prüfen, ob die Versorgungsspannung zum Frequenzumrichter paßt, siehe Technische Daten. Beim Abschalten des Frequenzumrichters wird kurz Warnung 8 (und Warnung 6) angezeigt und eine Abschaltquittierung generiert. Hinweis: Spannungswarnung niedrig (Warnung 6) kann so auch einen Alarm 8 auslösen.

#### WARNUNG/ALARM 9: Wechselrichter überlastet

Der elektronische thermische Wechselrichterschutz zeigt an, dass der Frequenzumrichter aufgrund von Überlastung (Ausgangsstrom zu lange zu hoch) abschalten wird. Der Zähler des elektronischen thermischen Wechselrichterschutzes gibt bei 98% eine Warnung und schaltet bei 100% mit einem Alarm ab. Der Frequenzumrichter kann erst dann zurückgesetzt werden, wenn der Zählerwert unter 90% fällt. Der Fehler liegt in einer zu langen Überlastung des Frequenzumrichters.

#### WARNUNG/ALARM 10: Motor überlastet

Der Motor ist gemäß dem elektronischen thermischen Wechselrichterschutz zu heiß. In Parameter 128 kann gewählt werden, ob der Frequenzumrichter eine Warnung oder einen Alarm ausgeben soll, wenn der Zähler 100% erreicht. Der Fehler besteht darin, dass der Motor zu lange mit mehr als 100% belastet worden ist. Prüfen, ob die Motorparameter 102-106 korrekt eingestellt sind.

#### WARNUNG/ALARM 11: Motorthermistor

Der Motor ist zu heiß, oder der Thermistor/Thermistoranschluss ist gelöst. In Parameter 128 *Thermischer Motorschutz* kann eingestellt werden, ob der Frequenzumrichter eine Warnung oder einen Alarm ausgeben

soll. Prüfen, ob der PTC-Thermistor korrekt zwischen den Klemmen 18, 19, 27 oder 29 (digitale Eingänge) und Klemme 50 (+ 10 V Versorgung) angeschlossen ist.

### WARNUNG/ALARM 12: Stromgrenze

Der Ausgangsstrom ist größer als der Wert in Parameter 221 Stromgrenze<sub>LIM</sub>, und der Frequenzumrichter schaltet nach der in Parameter 409 Abschaltverzögerung eingestellten Zeit ab.

### WARNUNG/ALARM 13: Überstrom

Die Spitzenstromgrenze des Wechselrichters (ca. 200% des Ausgangsnennstroms) ist überschritten. Die Warnung dauert ca. 1-2 s, wonach der Frequenzumrichter abschaltet und einen Alarm gibt. Frequenzumrichter ausschalten und prüfen, ob sich die Motorwelle drehen läßt und die Motorgröße zum Frequenzumrichter paßt.

### ALARM 14: Erdungsfehler

Es ist ein Erdschluss zwischen den Ausgangsphasen und Erde entweder im Kabel zwischen Frequenzumrichter und Motor oder im Motor vorhanden. Frequenzumrichter ausschalten und den Erdschluß beseitigen.

#### ALARM 15: Schaltmodusfehler

Fehler im Schaltnetzteil (interne Stromversorgung). Bitte wenden Sie sich an Ihre Danfoss-Vertretung.

## ALARM: 16: Kurzschluss

Kurzschluss an den Motorklemmen oder im Motor. Stromversorgung des Frequenzumrichters trennen und Kurzschluss beseitigen.

### WARNUNG/ALARM 17: Standard-Bus-Timeout

Es besteht keine serielle Kommunikation zum Frequenzumrichter. Die Warnung ist nur aktiv, wenn Parameter 514 Bus-Time-Out-Funktion auf einen anderen Wert als AUS gesetzt ist. Wird Parameter 514 Bus-Time-Out-Funktion auf Stopp und Abschaltung [5] gesetzt, so erfolgt zuerst eine Warnung, dann Rampe ab mit Abschaltung und einem Alarm. Parameter 513 Bus-Time-Out-Zeit kann ggf. erhöht werden.

## WARNUNG/ALARM 18: HPFT-Bus-Timeout

Es besteht keine serielle Kommunikation mit der Kommunikationsoptionskarte des Frequenzumrichters. Die Warnung ist nur aktiv, wenn Parameter 804 Bus-Time-Out Funktion auf einen anderen Wert als AUS gesetzt wurde. Wird Parameter 804 Bus-Time-Out-Funktion auf Stopp und Abschaltung gesetzt, so erfolgt zuerst eine Warnung, dann Rampe ab mit Abschaltung und einem Alarm. Parameter 803 Bus-Time-Out-Zeit kann ggf. erhöht werden.



## WARNUNG 33: Regelabweichung Frequenzbereich

Diese Warnung ist aktiv, wenn die Ausgangsfrequenz den Wert in Ausgangsfrequenzgrenze niedrig (Parameter 201) bzw. Ausgangsfrequenzgrenze hoch (Parameter 202) erreicht hat. Ist der Frequenzumrichter auf Prozeßregelung mit Istwertrückführung (Parameter 100) eingestellt, so bleibt die Warnung auf dem Display aktiv. Ist der Frequenzumrichter in einem anderen Modus als Prozeßregelung mit Istwertrückführung, so wird Bit 008000 Außerhalb des Frequenzbereichs in Warnwort 2 aktiv, es ist aber keine Warnung auf dem Display aktiv.

## WARNUNG/ALARM 34: HPFB Kommunikationsfehler

Der Kommunikationsfehler tritt nur in Feldbus-Versionen auf. Hinsichtlich des Alarmtyps konsultieren Sie bitte die Feldbus-Dokumentation für den Parameter 953.

#### ALARM 35: Stromsp. Fehler

Dieser Alarm tritt auf, wenn der Frequenzumrichter zu oft innerhalb von 1 min an das Netz angeschlossen wurde.

### WARNUNG/ALARM 36: Übertemperatur

Steigt die Temperatur im Leistungsmodul über 75 - 85 °C (geräteabhängig), so gibt der Frequenzumrichter eine Warnung aus, und der Motor läuft unverändert weiter. Steigt die Temperatur weiter, so wird die Taktfrequenz automatisch reduziert. Siehe Temperaturabhängige Taktfrequenz .

Steigt die Temperatur im Leistungsmodul über 92 - 100 °C (geräteabhängig), so schaltet der Frequenzumrichter ab. Der Temperaturfehler kann erst dann zurückgesetzt werden, wenn die Temperatur unter 70 °C abgesunken ist. Die Toleranz beträgt ±5 °C. Die Erhitzung kann folgende Ursachen haben:

- Zu hohe Umgebungstemperatur.
- Zu lange Motorkabel.
- Zu hohe Netzspannung.

#### **ALARM 37-45: Interner Fehler**

Bei Auftreten einer dieser Fehler wenden Sie sich bitte an Danfoss.

Alarm 37, interner Fehler Nr. 0: Kommunikationsfehler zwischen Steuerkarte und BMC.

Alarm 38, interner Fehler Nr. 1: Flash-EEPROM-Fehler auf Steuerkarte.

Alarm 39, interner Fehler Nr. 2: RAM-Fehler auf Steuerkarte.

Alarm 40, interner Fehler Nr. 3: Kalibrationskonstante in EEPROM.

Alarm 41, interner Fehler Nr. 4: Datenwerte in EEPROM.

Alarm 42, interner Fehler Nr. 5: Fehler in Motorparameter-Datenbank.

Alarm 43, interner Fehler Nr. 6: Allgemeiner Steuerkartenfehler.

Alarm 44, interner Fehler Nr. 7: Minimale Softwareversion der Steuerkarte oder BMC.

Alarm 45, interner Fehler Nr. 8: I/O-Fehler (digitaler Ein-/Ausgang, Relais oder analoger Ein-/Ausgang).

## ACHTUNG!:

Beim Neustart nach einem Alarm 38-45 zeigt der Frequenzumrichter einen Alarm 37 an. In Parameter 615 kann der eigentliche Alarmcode ausgelesen werden.

## ALARM 50: AMT nicht möglich.

Es kann eine von drei Möglichkeiten vorliegen:

- Der berechnete R<sub>S</sub> Wert fällt außerhalb der erlaubten Grenzen.
- Der Motorstrom in mindestens einer der Motorphasen ist zu gering.
- Der benutzte Motor ist wahrscheinlich für die Durchführung der AMT-Berechnungen zu klein.

#### ALARM 51: AMT-Fehler Typenschilddaten

Es besteht eine Inkonsistenz zwischen den festgestellten Motordaten. Motordaten für den relevanten Parametersatz prüfen.

#### **ALARM 52: AMT fehlende Motorphase**

Durch die AMT-Funktion wurde eine fehlende Motorphase erkannt.

#### **ALARM 55: AMT Timeout**

Die Berechnungen dauern zu lange, möglicherweise aufgrund von Störungen in den Motorkabeln.

#### ALARM 56: AMT Warnung während AMT

Eine Frequenzumrichter-Warnung erfolgt während der AMT.

## WARNUNG 99: Dateneingabe gesperrt

Siehe Parameter 18.





Alarm-/Warngrenzwerte:

|                    | Ohne Bremse         | Mit Bremse          | Ohne Bremse     | Mit Bremse      |
|--------------------|---------------------|---------------------|-----------------|-----------------|
| VLT 2800           | 1 / 3 x 200 - 240 V | 1 / 3 x 200 - 240 V | 3 x 380 - 480 V | 3 x 380 - 480 V |
|                    | [VDC]               | [VDC]               | [VDC]           | [VDC]           |
| Unterspannung      | 215                 | 215                 | 410             | 410             |
| Unterer Spannungs- | 230                 | 230                 | 440             | 440             |
| grenzwert          |                     |                     |                 |                 |
| Spannungswarnung   | 385                 | 400                 | 765             | 800             |
| hoch               |                     |                     |                 |                 |
| Überspannung       | 410                 | 410                 | 820             | 820             |

Bei den Angaben zur Spannung handelt es sich um die Zwischenkreisspannung des Frequenzumrichters mit einer Toleranz von ±5 %. Die entsprechende Stromspannung ist die Zwischenkreisspannung geteilt durch 1,35.

# ■ Warnwörter, erweiterte Zustandswörter und Alarmwörter

Warnwörter, Zustandswörter und Alarmwörter werden im Hex-Format angezeigt. Bei mehreren Warn-, Zustands- bzw. Alarmwörtern werden alle Warn-, Zustands bzw. Alarmwörter angezeigt. Warn-, Zustands- und Alarmwörter können auch über die serielle Schnittstelle mit den Parametern 540, 541 bzw. 538 ausgelesen werden.

| Bit (Hex) | Warnwörter                      |
|-----------|---------------------------------|
| 800000    | HPFB-Bus-Timeout                |
| 000010    | Standard-Bus-Timeout            |
| 000040    | Stromgrenze                     |
| 080000    | Motorthermistor                 |
| 000100    | Motor überlastet                |
| 000200    | Wechselrichter überlastet       |
| 000400    | Unterspannung                   |
| 000800    | Überspannung                    |
| 001000    | Spannungswarnung niedrig        |
| 002000    | Spannungswarnung hoch           |
| 004000    | Phasenfehler                    |
| 010000    | Sollwertfehler                  |
| 400000    | Regelabweichung Frequenzbereich |
| 800000    | Profibus-Kommunikationsfehler   |
| 4000000   | Schaltmodusfehler               |
| 80000000  | Kühlkörper Übertemperatur       |

| Bit (Hex)            | Erweiterte Statuswörter   |
|----------------------|---------------------------|
| 000001               | Rampenbetrieb             |
| 000002               | Optimierung läuft         |
| 000004               | Start vorw./rückwärts     |
| 800000               | Verlangsamen              |
| 000010               | Beschleunigen             |
| 000020               | Istwert hoch              |
| 000040               | Istwert niedrig           |
| 080000               | Strom hoch                |
| 000100               | Strom niedrig             |
| 000200 Frequenz hoch |                           |
| 000400               | Frequenz niedrig          |
| 002000               | Bremsung                  |
| 008000               | Außerhalb Frequenzbereich |

| Bit (Hex) | Alarmwörter                   |
|-----------|-------------------------------|
| 000002    | Abschaltung                   |
| 000004    | Optimierung nicht ok          |
| 000040    | HPFB-Bus-Timeout              |
| 080000    | Standard-Bus-Timeout          |
| 000100    | Kurzschluß                    |
| 000200    | Schaltmodusfehler             |
| 000400    | Erdschluß                     |
| 000800    | Überstrom                     |
| 002000    | Motorthermistor               |
| 004000    | Motor überlastet              |
| 008000    | Wechselrichter überlastet     |
| 010000    | Unterspannung                 |
| 020000    | Überspannung                  |
| 040000    | Phasenfehler                  |
| 080000    | Sollwertfehler                |
| 100000    | Kühlkörper Übertemperatur     |
| 2000000   | Profibus-Kommunikationsfehler |
| 8000000   | Stromsp. Fehler               |
| 10000000  | Interner Fehler               |



#### **■** Besondere Bedingungen

#### ■ Aggressive Umgebungen

Wie alle elektronischen Geräte enthält auch ein Frequenzumrichter zahlreiche mechanische und elektronische Bauteile, die mehr oder weniger durch Umgebungseinflüsse beschädigt werden können.



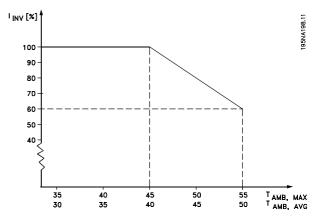
Der Frequenzumrichter darf daher nicht in Umgebungen installiert werden, deren Atmosphäre Flüssigkeiten, Partikel oder

Gase enthält, welche die elektronischen Bauteile beeinträchtigen oder beschädigen können. Werden für den Frequenzumrichter nicht die erforderlichen Schutzmaßnahmen getroffen, so erhöht dies das Risiko von Ausfällen und verkürzt die Lebensdauer des Frequenzumrichters.

Flüssigkeiten können sich schwebend in der Luft befinden und im Frequenzumrichter kondensieren. Darüber hinaus können sie die galvanische Korrosion von Komponenten und Metallbauteilen fördern. Dampf, Öl und Salzwasser können ebenfalls zur Korrosion von Komponenten und Metallbauteilen führen. Für solche Umgebungen empfiehlt sich der Einbau der Geräte in Schaltschränke. Die Schaltschränke müssen mindestens Schutzart IP 54 entsprechen.

Schwebepartikel wie z.B. Staub können zu mechanischen, elektrischen und thermischen Ausfällen im Frequenzumrichter führen. Eine Staubschicht um den Ventilator des Frequenzumrichters ist ein typisches Anzeichen für einen zu hohen Grad an Schwebepartikeln. In sehr staubiger Umgebung empfiehlt sich der Einbau der Geräte in Schaltschränke. Die Schaltschränke müssen mindestens Schutzart IP 54 entsprechen.

Aggressive Gase wie Schwefel-, Stickstoff- und Chlorverbindungen fördern bei hoher Feuchtigkeit und Temperatur chemische Reaktionen an den Bauteilen des Frequenzumrichters. Diese chemischen Reaktionen beeinträchtigen und beschädigen schnell die Elektronik. In solchen Umgebungen empfiehlt sich der Einbau der Geräte in Schränke mit Frischluftzufuhr, damit die aggressiven Gase vom Frequenzumrichter ferngehalten werden.


### **ACHTUNG!:**

Die Aufstellung eines Frequenzumrichters in aggressiver Umgebung erhöht das Risiko von Ausfällen und verkürzt zudem die Lebensdauer des Gerätes erheblich.

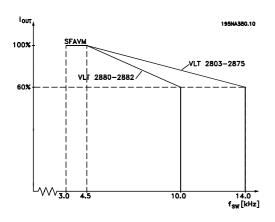
Vor der Installation des Frequenzumrichters muß die Umgebungsluft auf Flüssigkeiten, Partikel und Gase geprüft werden. Dies kann durch Untersuchung vorhandener Installationen am gleichen Ort erfolgen. Typische Anzeichen für schädliche Flüssigkeiten in der Luft sind Wasser oder Öl auf oder Korrosion von Metallteilen. Übermäßige Staubansammlungen finden sich häufig auf Schaltschränken und vorhandenen elektrischen Installationen. Anzeichen für aggressive Schwebegase sind die Schwarzverfärbung von Kupferstäben und Kabelenden in vorhandenen elektrischen Installationen.

## ■ Leistungsreduzierung wegen erhöhter Umgebungstemperatur

Die Umgebungstemperatur (T<sub>AMB,MAX</sub>) ist die maximal zulässige Temperatur. Der über 24 h gemessene Durchschnittswert (T<sub>AMB,AVG</sub>) muss mindestens 5 °C darunter liegen. Wird der Frequenzumrichter bei Temperaturen über 45 °C betrieben, so ist eine Reduzierung des Ausgangsnennstroms notwendig.



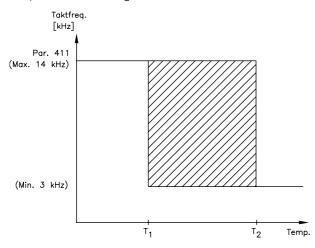
## ■ Leistungsreduzierung wegen hoher Taktfrequenz - VLT 2800


Eine höhere Taktfrequenz (einzustellen in Parameter 411 *Taktfrequenz*) führt zu höheren Verlusten in der Elektronik des Frequenzumrichters.

Die VLT Serie 2800 verfügt über ein Pulsmuster, das eine Einstellung der Taktfrequenz im Bereich von 3,0-10,0/14,0 kHz zulässt.

Übersteigt die Taktfrequenz 4,5 kHz, so reduziert der Frequenzumrichter automatisch den Ausgangsnennstrom I<sub>VLT,N</sub>.

In beiden Fällen erfolgt die Reduzierung linear bis auf 60 % von I<sub>VLT.N</sub>.






### ■ Temperaturabhängige Taktfrequenz

Diese Funktion ermöglicht die höchstmögliche Taktfrequenz ohne thermische Überlastung des Frequenzumrichters. Die innere Temperatur stellt das Maß dafür dar, wie die Taktfrequenz auf der Last, der Umgebungstemperatur, der Netzspannung und der Kabellänge basieren kann.

Diese Funktion gewährleistet, daß der Frequenzumrichter die Taktfrequenz automatisch zwischen f<sub>sw,min</sub> und f<sub>sw, max</sub> einstellt (Parameter 411), siehe Abbildung unten.



175NA020.13

Bei Verwendung des LC-Filters beträgt die minimale Takt frequenz 4,5 kHz.

## ■ Galvanische Trennung (PELV)

PELV wird durch galvanische Trennbauteile zwischen den Steuerkreisen und den mit der Netzspannung verbundenen Schaltungen erzielt. Der VLT ist so ausgelegt, daß er die Anforderungen bzgl. Scbutztrennung durch die erforderlichen Kriechstrom-/Luftabstände erfüllen. Diese Anforderungen sind in der Norm EN 50 178 beschrieben. Ebenfalls ist es erforderlich, daß

die Installation gemäß den örtlichen/nationalen PELV-Vorschriften erfolgt.

Alle Steuerklemmen, Klemmen für die serielle Kommunikation und Relaisklemmen sind sicher vom Netzpotential getrennt, d.h. sie entsprechen den PELV-Anforderungen. Schaltungen, die an den Steuerklemmen 12, 18, 19, 20, 27, 29, 33, 42, 46, 50, 55, 53 und 60 angeschlossen sind, sind galvanisch miteinander verbunden. Die an den Feldbus angeschlossene serielle Kommunikation ist galvanisch von den Steuerklemmen isoliert, hierbei handelt es sich jedoch nur um eine funktionelle Isolation. Die Relaiskontakte an den Klemmen 1 - 3 sind von den anderen Steuerkreisen durch erhöhte Isolation getrennt, d.h. sie erfüllen PELV selbst wenn an den Relaisklemmen Netzpotential anliegt.

Die nachfolgend aufgeführten Bauelemente sorgen für die sichere galvanische Trennung. Sie erfüllen die Anforderungen an erhöhte Isolation und die zugehörigen Tests nach EN 50 178.

- Transformator und Optokoppler in der Spannungsversorgung.
- 2. Optokoppler zwischen Basis-Motorsteuerung und Steuerkarte.
- 3. Isolation zwischen Steuerkarte und Leistungsteil.
- 4. Relaiskontakte und Klemmen für andere Schaltungen auf der Steuerkarte.

PELV-Isolation der Steuerkarte ist unter folgenden Bedingungen garantiert:

- TT Netz mit max. 300 V RMS zwischen Phase und Erde.
- TN Netz mit max. 300 V RMS zwischen Phase und Erde.
- IT Netz mit max. 400 V RMS zwischen Phase und Erde.

Um den PELV-Schutzgrad beizubehalten, müssen alle steuerklemmenseitig angeschlossenen Geräte den PELV-Anforderungen entsprechen, d.h. Thermistoren müssen beispielsweise verstärkt/zweifach isoliert sein.

### **■** EMV-Emission

Folgende Ergebnisse wurden unter Verwendung eines Frequenzumrichters der VLT Serie 2800 mit abgeschirmtem Steuerkabel, eines Steuerkastens mit Potentiometer, abgeschirmtem Motorkabel, abgeschirmtem Bremskabel sowie einer Bedieneinheit LCP2 mit Kabel erzielt.



| VLT 2803-2875                                                          | Emission                                                     |                         |                                                                    |                               |  |  |
|------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------|--------------------------------------------------------------------|-------------------------------|--|--|
|                                                                        | Industri                                                     | ebereich                | Wohnbereich, Geschäfts- und<br>Gewerbebereiche sowie Kleinbetriebe |                               |  |  |
|                                                                        | EN 55011                                                     | Klasse 1A               | EN 55011 Klasse 1B                                                 |                               |  |  |
| Einstellung                                                            | Leitungsgebunden Abgestrahlt 150 kHz - 30 MHz 30 MHz - 1 GHz |                         | Leitungsgebunden<br>150 kHz - 30 MHz                               | Abgestrahlt<br>30 MHz - 1 GHz |  |  |
| 3 x 480 V-Version mit<br>1A-EMV-Filter                                 | Ja<br>25 m abgeschirmt                                       | Ja<br>25 m abgeschirmt  | Nein                                                               | Nein                          |  |  |
| 3 x 480 V Version mit<br>1A-EMV-Filter (R5: Für<br>IT-Netze)           | Ja Ja 5 m abgeschirmt 5 m abgeschirmt                        |                         | Nein                                                               | Nein                          |  |  |
| 1 x 200 V-Version mit<br>1A-EMV-Filter <sup>1</sup> .                  | Ja<br>40 m abgeschirmt                                       | Ja<br>40 m abgeschirmt  | Ja<br>15 m abgeschirmt                                             | Nein                          |  |  |
| 3 x 200 V-Version mit<br>1A-EMV-Filter (R4: Zur<br>Verwendung mit RCD) | Ja<br>20 m abgeschirmt                                       | Ja<br>20 m abgeschirmt  | Ja<br>7 m abgeschirmt                                              | Nein                          |  |  |
| 3 x 480 V-Version mit<br>1A+1B-EMV-Flter                               | mit Ja Ja 50 m abgeschirmt 50 m abgeschirm                   |                         | Ja<br>25 m abgeschirmt                                             | Nein                          |  |  |
| 1 x 200 V-Version mit<br>1A+1B-EMV-Filter <sup>1</sup> ·               | Ja<br>100 m abgeschirmt                                      | Ja<br>100 m abgeschirmt | Ja<br>40 m abgeschirmt                                             | Nein                          |  |  |
| VLT 2880-2882                                                          |                                                              | Emi                     | ssion                                                              |                               |  |  |
|                                                                        | Industriebereich                                             |                         | Wohnbereich, Geschäfts- und<br>Gewerbebereich sowie Kleinbetriebe  |                               |  |  |
|                                                                        | EN 55011                                                     | Klasse 1A               | EN 55011 Klasse 1B                                                 |                               |  |  |
| Einstellung                                                            | Leitungsgebunden Abgestrahlt 150 kHz - 30 MHz 30 MHz - 1 GHz |                         | Leitungsgebunden<br>150 kHz - 30 MHz                               | Abgestrahlt<br>30 MHz - 1 GHz |  |  |
| 3 x 480 V-Version mit<br>1B-EMV-Filter                                 | Ja<br>50 m                                                   | Ja<br>50 m              | Ja<br>50 m                                                         | Nein                          |  |  |

<sup>1.</sup> Für VLT 2822-2840 3 x 200-240 V gelten die gleichen Werte wie für die 480 V-Version mit 1A-EMV-Filter.





## • EN 55011:

Industrielle, wissenschaftliche und medizinische Hochfrequenzgeräte (ISM-Geräte) -Funkstörungen - Grenzwerte und Messverfahren

Klasse 1A:

Im Industriebereich eingesetzte Geräte (erhöhte Störumgebung).

Klasse 1B:

In Umgebungen mit öffentlichem Versorgungsnetz (Wohnbereich, Geschäfts- und Gewerbebereich sowie Kleinbetriebe) eingesetzte Geräte.

### **■** UL-Standard

Dieses Gerät ist UL-zugelassen.



## ■ Allgemeine technische Daten

| Netzversorgung (L1, L2, L3):                                               |                                         |
|----------------------------------------------------------------------------|-----------------------------------------|
| Versorgungsspannung VLT 2803-2815 220-240 V (N, L1)                        | 1 x 220/230/240 V ±10%                  |
| Versorgungsspannung VLT 2803-2840 200-240 V                                |                                         |
| Versorgungsspannung VLT 2805-2882 380-480 V                                |                                         |
| Versorgungsspannung VLT 2805-2840 (R5)                                     | 400 V + 10 %                            |
| Netzfrequenz                                                               | 50/60 Hz ± 3 Hz                         |
| Max. Ungleichgewicht zwischen Netzphasen ± 2,0                             | 0 % der Versorgungsnennspannung         |
| Verzerrungsleistungsfaktor (λ)                                             | 0,90 bei Nennlast                       |
| Verschiebungsleistungsfaktor (cos φ)                                       | nahe Eins (> 0,98)                      |
| Schalten am Netzeingang L1, L2, L3                                         | 2 x/Min.                                |
| Max. Kurzschlussstrom                                                      | 100,000 A                               |
| Siehe "Besondere Betriebsbedingungen" im Projektierungshandbuch.           |                                         |
| Ausgangsdaten (U, V, W):                                                   |                                         |
| Ausgangsspannung                                                           |                                         |
| Ausgangsfrequenz                                                           |                                         |
| Motornennspannung, 200-240-V-Geräte                                        |                                         |
| Motornennspannung, 380-480-V-Geräte                                        |                                         |
| Motornennfrequenz                                                          |                                         |
| Schalten am Ausgang                                                        |                                         |
| Rampenzeiten                                                               | 0,02 - 3600 Sek                         |
| Drehmomentkennlinien:                                                      |                                         |
| Anlaufmoment (Parameter 101 Drehmomentkennlinie = Konstantes Moment)       |                                         |
| Anlaufmoment (Parameter 101 Drehmomentkennlinie = Quadratisches Moment)    | 160% für 1 min.*                        |
| Anlaufmoment (Parameter 119 Hohes Startmoment)                             | 180% für 0,5 s.*                        |
| Übermoment (Parameter 101 Drehmomentkennlinie = Konstantes Moment)         |                                         |
| Übermoment (Parameter 101 Drehmomentkennlinie = Quadratisches Moment) .    |                                         |
| *Prozentwert auf Nennstrom des Frequenzumrichters bezogen.                 |                                         |
| Steuerkarte, digitale Eingänge:                                            |                                         |
| Anzahl programmierbarer digitaler Eingänge                                 | 5                                       |
| Klemmennummern                                                             |                                         |
| Spannungsniveau                                                            | 0 - 24 V DC (PNP positive Logik)        |
| Spannungsniveau, logisch '0'                                               | - · · · · · · · · · · · · · · · · · · · |
| Spannungsniveau, logisch '1'                                               | > 10 V DC                               |
| Max. Spannung am Eingang                                                   |                                         |
| Eingangswiderstand, R <sub>i</sub> (Klemmen 18, 19, 27, 29)                |                                         |
| Eingangswiderstand, R <sub>i</sub> (Klemme 33)                             |                                         |
| Alle digitalen Eingänge sind galvanisch von der Versorgungsspannung (PELV) |                                         |
| Hochspannungsklemmen getrennt. Siehe Abschnitt Galvanische Trennung.       |                                         |
|                                                                            |                                         |



| Steuerkarte, analoge Eingänge:                                     |                                       |
|--------------------------------------------------------------------|---------------------------------------|
| Anzahl analoger Spannungseingänge                                  | 1                                     |
| Klemmennummer                                                      |                                       |
| Spannungsniveau                                                    |                                       |
| Eingangswiderstand, R <sub>i</sub>                                 | ,                                     |
| Max. Spannung                                                      |                                       |
| Analoger Stromeingang                                              |                                       |
| Klemmennummer                                                      |                                       |
| Strombereich                                                       |                                       |
| Eingangswiderstand, R <sub>i</sub>                                 | ,                                     |
| Max. Strom                                                         |                                       |
| Auflösung für analoge Eingänge                                     |                                       |
|                                                                    |                                       |
| Genauigkeit der analogen Eingänge                                  |                                       |
| Abfragezeit                                                        |                                       |
| Die analogen Eingänge sind galvanisch von der Versorgungsspannu    |                                       |
| Hochspannungsklemmen getrennt. Siehe Abschnitt Galvanische Tre     | nnung.                                |
| Steuerkarte, Pulseingang:                                          |                                       |
| Anzahl programmierbarer Pulseingänge                               | 1                                     |
| Klemmennummer                                                      |                                       |
| Max. Frequenz an Klemme 33                                         | 67,6 kHz (Gegentakt)                  |
| Max. Frequenz an Klemme 33                                         | 5 kHz (offener Kollektor)             |
| Min. Frequenz an Klemme 33                                         | 4 Hz                                  |
| Spannungsniveau                                                    |                                       |
| Spannungsniveau, logisch '0'                                       | , , , , , , , , , , , , , , , , , , , |
| Spannungsniveau, logisch '1'                                       |                                       |
| Max. Spannung am Eingang                                           |                                       |
| Eingangswiderstand, R <sub>i</sub>                                 |                                       |
| Abfragezeit                                                        |                                       |
| Auflösung                                                          |                                       |
| Genauigkeit (100 Hz - 1 kHz) Klemme 33                             |                                       |
|                                                                    |                                       |
| Genauigkeit (1 kHz - 67,5 kHz) Klemme 33                           |                                       |
| Der Pulseingang (Klemme 33) ist galvanisch von der Versorgungssp.  |                                       |
| Hochspannungsklemmen getrennt. Siehe Abschnitt Galvanische Tre     | mnung.                                |
| Steuerkarte, Digital/Frequenzausgang:                              |                                       |
| Anzahl programmierbarer Digital/Frequenzausgänge                   | 1                                     |
| Klemmennummer                                                      | 46                                    |
| Spannungsniveau am Digital/Frequenzausgang                         | 0 - 24 V DC (PNP, offener Kollektor)  |
| Max. Ausgangsstrom am Digital/Frequenzausgang                      |                                       |
| Max. Last am Digital/Frequenzausgang                               |                                       |
| Max. Kapazität am Frequenzausgang                                  |                                       |
| Min. Ausgangsfrequenz am Frequenzausgang                           |                                       |
| Max. Ausgangsfrequenz am Frequenzausgang                           |                                       |
| Genauigkeit am Frequenzausgang                                     |                                       |
| Auflösung am Frequenzausgang                                       |                                       |
| Der digitale Ausgang ist galvanisch von der Versorgungsspannung (I |                                       |
|                                                                    | PELV) und anderen Hochspan-           |
| nungsklemmen getrennt. Siehe Abschnitt Galvanische Trennung.       |                                       |
| Steuerkarte, Analogausgang:                                        |                                       |
| Anzahl programmierbarer Analogausgänge                             |                                       |
| Klemmennummer                                                      |                                       |
| Strombereich am Analogausgang                                      | 0/4 - 20 mA                           |



| Max. Last gegen Masse am Analogausgang                                                                                                                                                         | Ω   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Genauigkeit am Analogausgang max. Fehler: 1,5 % der Gesamtsk                                                                                                                                   |     |
| Auflösung am Analogausgang                                                                                                                                                                     | Bit |
| Der Analogausgang ist galvanisch von der Versorgungsspannung (PELV) und anderen Hochspan-<br>nungsklemmen getrennt. Siehe Abschnitt Galvanische Trennung.                                      |     |
| Steuerkarte, 24 V DC-Ausgang:                                                                                                                                                                  |     |
| Klemmennummer                                                                                                                                                                                  | 12  |
| Max. Last                                                                                                                                                                                      | nΑ  |
| Die 24 V DC-Versorgung ist von der Versorgungsspannung (PELV) getrennt, hat aber das gleiche Potential wie die analogen und digitalen Ein- und Ausgänge. Siehe Abschnitt Galvanische Trennung. |     |
| Steuerkarte, 10 V DC-Ausgang:                                                                                                                                                                  |     |
| Klemmennummer                                                                                                                                                                                  |     |
| Ausgangsspannung                                                                                                                                                                               |     |
| Die 10 V DC-Versorgung ist galvanisch von der Versorgungsspannung (PELV) und anderen Hochspannungsklemmen getrennt. Siehe Abschnitt Galvanische Trennung.                                      |     |
| Steuerkarte, RS 485 serielle Schnittstelle: Klemmennummern                                                                                                                                     |     |
| Klemmennummer                                                                                                                                                                                  | X-) |
| Klemme 67+5                                                                                                                                                                                    |     |
| Klemme 70                                                                                                                                                                                      | 69  |
| Vollständige galvanische Isolierung. Siehe Abschnitt Galvanische Trennung.                                                                                                                     |     |
| Weiterführende Informationen zum DeviceNet-Kommunikationsnetz finden sie im DeviceNet-Handbuch MG.90.BX.                                                                                       | ΥΥ  |
| Relaisausgänge:1)                                                                                                                                                                              |     |
| Programmierbare Relaisausgänge                                                                                                                                                                 |     |
| Klemmennummer, Steuerkarte                                                                                                                                                                     |     |
| Max. Klemmenleistung (AC-1) an 1-3, 1-2, Steuerkarte                                                                                                                                           |     |
| Max. Klemmenleistung (DC-1 (IEC 947)) an 1-3, 1-2, Steuerkarte                                                                                                                                 |     |
| Min. Klemmenleistung (AC/DC) an 1-3, 1-2, Steuerkarte                                                                                                                                          | ПА  |
| getrennt. Siehe Abschnitt Galvanische Trennung.                                                                                                                                                |     |
| 1) Nennwerte für bis zu 300.000 Schaltvorgänge. Bei induktiven Lasten wird die Anzahl der Schaltvorgänge                                                                                       |     |
| um 50 % reduziert. Anderenfalls kann auch der Strom um 50 % reduziert werden, um 300.000 Schaltvorgänge                                                                                        |     |
| zu erreichen.                                                                                                                                                                                  | 5-  |
|                                                                                                                                                                                                |     |
| Kabellängen und -querschnitte:                                                                                                                                                                 |     |
| Max. Motorkabellänge, abgeschirmtes Kabel                                                                                                                                                      |     |
| Max. Motorkabellänge, unabgeschirmtes Kabel                                                                                                                                                    |     |
| Max. Motorkabellänge, abgeschirmtes Kabel und Motorspule                                                                                                                                       |     |
| Max. Motorkabellänge, unabgeschirmtes Kabel und Motorspule                                                                                                                                     |     |
| Max. Motorkabellänge, abgeschirmtes Kabel und Funkentstörfilter 1B                                                                                                                             |     |
| Max. Motorkabellange, abgeschirmtes Kabel und Funkentstörfilter 1B/LC                                                                                                                          |     |
| Max. Querschnitt zum Motor, siehe nächster Abschnitt.                                                                                                                                          | •   |
| Max. Querschnitt für Steuerkabel, starres Kabel                                                                                                                                                | n²) |
| Max. Querschnitt für Steuerkabel, flexibles Kabel                                                                                                                                              |     |
| Max. Querschnitt für Steuerkabel, Kabel mit eingeschlossenem Kern                                                                                                                              | ۷G  |
| Für die Übereinstimmung mit EN 55011 1A und EN 55011 1B muß das Motorkabel unter bestimmten Umständen verkürzt werden. Siehe EMV-Emission.                                                     |     |





| Steuerungseigenschaften:                                                                        |        |
|-------------------------------------------------------------------------------------------------|--------|
| Frequenzbereich                                                                                 | 00 Hz  |
| Auflösung der Ausgangsfrequenz                                                                  | 00 Hz  |
| Wiederholgenauigkeit für <i>Präziser Start/Stopp</i> (Klemmen 18, 19) ≤ ± 0,                    | 5 ms   |
| System-Reaktionszeit (Klemmen 18, 19, 27, 29, 33)≤ 26,                                          |        |
| Drehzahlregelbereich (ohne Rückführung)                                                         |        |
| Drehzahlsteuerbereich (mit Rückführung)                                                         | nzahl  |
| Drehzahlgenauigkeit (ohne Rückführung)                                                          | UPM    |
| Drehzahlgenauigkeit (mit Rückführung)                                                           | UPM    |
| Alle Angaben basieren auf einem vierpoligen Asynchronmotor                                      |        |
| Umgebung:                                                                                       |        |
| Gehäuse                                                                                         | P 20   |
| Gehäuse mit Optionen                                                                            | MA 1   |
| Vibrationstest                                                                                  | 0,7 g  |
| Max. relative Feuchtigkeit                                                                      | etrieb |
| Umgebungstemperatur                                                                             | 0 °C)  |
| Leistungsreduzierung wegen hoher Umgebungstemperatur, siehe Besondere Betriebsbe-               |        |
| dingungen im Projektierungshandbuch                                                             |        |
| Min. Umgebungstemperatur bei Volllast                                                           | 0 °C   |
| Min. Umgebungstemperatur bei reduzierter Leistung                                               | 0 °C   |
| Temperatur bei Lagerung/Transport25 - +65/7                                                     | '0 °C  |
| Max. Höhe ü. d. Meeresspiegel                                                                   | 00 m   |
| Leistungsreduzierung bei hohem Luftdruck, siehe Besondere Bedingungen im Projektierungshandbuch |        |
| EMV-Normen, Emission EN 61081-2, EN 61800-3, EN 5                                               | 5011   |
| EMV-Normen, Störfestigkeit                                                                      | . EN   |
| 50082-1/2, EN 61000-4-2, EN 61000-4-3, EN 61000-4-4, EN 61000-4-5, EN 61000-4-6, EN 61800-3     |        |
| Siehe Besondere Betriebsbedingungen im Projektierungshandbuch                                   |        |
| Sicherungsvorrichtungen:                                                                        |        |

- Elektronischer thermischer Motorschutz gegen Überlastung.
- Die Temperaturüberwachung des Kühlkörpers gewährleistet ein Abschalten des Frequenzumrichters bei einer Temperatur von 100 °C. Eine Überlasttemperatur kann erst zurückgesetzt werden, wenn die Kühlkörpertemperatur unter 70 °C sinkt.
- Der Frequenzumrichter ist gegen Kurzschlüsse an den Motorklemmen U, V, W geschützt.
- Bei einer fehlenden Netzphase schaltet der Frequenzumrichter ab.
- Die Überwachung der Zwischenkreisspannung gewährleistet, daß der Frequenzumrichter abschaltet, wenn die Zwischenkreisspannung zu niedrig oder zu hoch ist.
- Der Frequenzumrichter ist gegen Erdschluß an den Motorklemmen U, V, W geschützt.



## ■ Technische Daten, Netzversorgung 1 x 220

### - 240 V / 3 x200 -240V

| Nach internationalen Normen |                        | Тур                                    | 2803  | 2805  | 2807  | 2811  | 2815  | 2822  | 2840  |
|-----------------------------|------------------------|----------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| AA                          | Ausgangsstrom          | I <sub>INV.</sub> [A]                  | 2.2   | 3.2   | 4.2   | 6.0   | 6.8   | 9.6   | 16    |
|                             | (3 x 200 – 240 V)      | I <sub>MAX</sub> (60 s) [A]            | 3.5   | 5.1   | 6.7   | 9.6   | 10.8  | 15.3  | 25.6  |
| - <del></del>               | Ausgangsleistung       | S <sub>INV.</sub> [kVA]                | 0.9   | 1.3   | 1.7   | 2.4   | 2.7   | 3.8   | 6.4   |
| -                           | (230 V)                |                                        |       |       |       |       |       |       |       |
| ·                           | Typische Leistung an   | $P_{M,N}$ [kW]                         | 0.37  | 0.55  | 0.75  | 1.1   | 1.5   | 2.2   | 3.7   |
|                             | der Welle              |                                        |       |       |       |       |       |       |       |
|                             | Typische Leistung an   | P <sub>M,N</sub> [PS]                  | 0.5   | 0.75  | 1.0   | 1.5   | 2.0   | 3.0   | 5.0   |
|                             | der Welle              |                                        |       |       |       |       |       |       |       |
|                             | Max. Kabelquer-        | [mm <sup>1</sup> ]/[AWG] <sup>2)</sup> | 4/10  | 4/10  | 4/10  | 4/10  | 4/10  | 4/10  | 4/10  |
|                             | schnitt, Motor         |                                        |       |       |       |       |       |       |       |
|                             |                        |                                        |       |       |       |       |       |       |       |
| ΑΑ                          | Eingangsstrom          | I <sub>L,N</sub> [A]                   | 5.9   | 8.3   | 10.6  | 14.5  | 15.2  | -     | -     |
|                             | (1 x 220-240 V)        | I <sub>L,MAX</sub> (60 s) [A]          | 9.4   | 13.3  | 16.7  | 23.2  | 24.3  | -     | -     |
|                             | Eingangsstrom          | I <sub>L,N</sub> [A]                   | 2.9   | 4.0   | 5.1   | 7.0   | 7.6   | 8.8   | 14.7  |
| <b>-</b>                    | (3 x 200-240 V)        | I <sub>L,MAX</sub> (60 s) [A]          | 4.6   | 6.4   | 8.2   | 11.2  | 12.2  | 14.1  | 23.5  |
|                             | Max. Kabelquer-        | [mm <sup>2</sup> /AWG] <sup>1)</sup>   | 4/10  | 4/10  | 4/10  | 4/10  | 4/10  | 4/10  | 4/10  |
|                             | schnitt, Versorgung    |                                        |       |       |       |       |       |       |       |
|                             | Max. Vorabsicherung    | IEC/UL <sup>2)</sup> [A]               | 20/20 | 20/20 | 20/20 | 20/20 | 20/20 | 20/20 | 25/25 |
|                             | Wirkungsgrad 3)        | [%]                                    | 95    | 95    | 95    | 95    | 95    | 95    | 95    |
|                             | Leistungsabfall bei    | [W]                                    | 24    | 35    | 48    | 69    | 94    | 125   | 231   |
|                             | max. Last              |                                        |       |       |       |       |       |       |       |
|                             | Gewicht                | [kg]                                   | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   | 3,7   | 6.0   |
|                             | Schutzart <sup>4</sup> | Тур                                    | IP 20 |

- 1. American Wire Gauge. Der max. Kabelquerschnitt ist der größte Kabelquerschnitt, der an den Klemmen angeschlossen werden kann. Nationale und örtliche Vorschriften müssen immer beachtet werden.
- 2. Vorsicherungen vom Typ gG müssen für Installation nach IEC-Vorschriften benutzt werden. Wenn UL/cUL eingehalten werden sollen, müssen Vorsicherungen des Typs Bussmann KTN-R 200 V, KTS-R 500 V oder Ferraz Shawmut, Typ ATMR (max. 30A) verwendet werden. Die Sicherungen müssen für den Schutz in einer Schaltung ausgelegt sein, die max. 100.000 A/ms (symmetrisch) bei max. 500 V liefern kann.
- 3. Gemessen mit einem 25 m langen abgeschirmten/in Rohr geführtem Motorkabel bei Nennlast und -frequenz.
- 4. Standard für VLT 2805-2875 ist IP 20, NEMA
- 1 ist auf Wunsch lieferbar.



## ■ Technische Daten, Netzversorgung 3 x 380 - 480 V

| Entspricht    | t internationalen Normen               | Тур                                  | 2805        | 2807        | 2811        | 2815          | 2822          | 2830          |
|---------------|----------------------------------------|--------------------------------------|-------------|-------------|-------------|---------------|---------------|---------------|
|               | Ausgangsstrom                          | I <sub>INV.</sub> [A]                | 1.7         | 2.1         | 3.0         | 3.7           | 5.2           | 7.0           |
|               | (3 x 380-480 V)                        | I <sub>MAX</sub> (60 s) [A]          | 2.7         | 3.3         | 4.8         | 5.9           | 8.3           | 11.2          |
|               | Ausgangsleistung (400                  | S <sub>INV.</sub> [kVA]              | 1.1         | 1.7         | 2.0         | 2.6           | 3.6           | 4.8           |
|               | V) Typische Leistung an                | P <sub>M,N</sub> [kW]                | 0.55        | 0.75        | 1.1         | 1.5           | 2.2           | 3.0           |
|               | der Welle                              | , IAI''IM [1564]                     | 0.00        | 0.70        |             | 1.0           | 2.2           | 0.0           |
|               | Typische Leistung an                   | P <sub>M,N</sub> [PS]                | 0.75        | 1.0         | 1.5         | 2.0           | 3.0           | 4.0           |
|               | der Welle                              |                                      |             |             |             |               |               |               |
|               | Max. Kabelquerschnitt,                 | [mm <sup>2</sup> /AWG] <sup>1)</sup> | 4/10        | 4/10        | 4/10        | 4/10          | 4/10          | 4/10          |
|               | Motor                                  |                                      |             |             |             |               |               |               |
| д             | Fingangaatram                          | I [A]                                | 1.0         | 1.0         | 0.6         | 0.0           | 4.7           | 6.1           |
| - 12          | Eingangsstrom                          |                                      | 1.6         | 1.9         | 2.6         | 3.2           | 4.7           | 6.1           |
| ***           | (3 x 380-480 V) Max. Kabelquerschnitt, | [mm <sup>2</sup> /AWG] <sup>1)</sup> | 2.6<br>4/10 | 3.0<br>4/10 | 4.2<br>4/10 | 5.1<br>4/10   | 7.5<br>4/10   | 9.8<br>4/10   |
| $\rightarrow$ | Versorgung                             | [IIIII /AVVO]                        | 4/10        | 4/10        | 4/10        | 4/10          | 4/10          | 4/10          |
| 00            | Max. Vorabsicherung                    | IEC/UL <sup>2)</sup> [A]             | 20/20       | 20/20       | 20/20       | 20/20         | 20/20         | 20/20         |
|               | Wirkungsgrad <sup>3)</sup>             | [%]                                  | 96          | 96          | 96          | 96            | 96            | 96            |
|               | Leistungsabfall bei max.               | [W]                                  | 28          | 38          | 55          | 75            | 110           | 150           |
|               | Last                                   |                                      |             |             |             |               |               |               |
|               | Gewicht                                | [kg]                                 | 2.1         | 2.1         | 2.1         | 2.1           | 3.7           | 3.7           |
|               | Schutzart <sup>4</sup>                 | Тур                                  | IP 20       | IP 20       | IP 20       | IP 20         | IP 20         | IP 20         |
|               |                                        |                                      |             |             |             |               |               |               |
| Entspricht    | t internationalen Normen               | Тур                                  | 2840        | 2855        | 2875        | 2880          | 2881          | 2882          |
| AA            | Ausgangsstrom                          | I <sub>INV.</sub> [A]                | 9.1         | 12          | 16          | 24            | 32.0          | 37.5          |
|               | (3 x 380-480 V)                        | I <sub>MAX</sub> (60 s) [A]          | 14.5        | 19.2        | 25.6        | 38.4          | 51.2          | 60.0          |
|               | Ausgangsleistung (400                  | S <sub>INV.</sub> [kVA]              | 6.3         | 8.3         | 11.1        | 16.6          | 22.2          | 26.0          |
|               | <u>V)</u>                              |                                      |             |             |             |               |               |               |
|               | Typische Leistung an                   | $P_{M,N}$ [kW]                       | 4.0         | 5.5         | 7.5         | 11.0          | 15.0          | 18.5          |
|               | der Welle                              |                                      |             |             |             |               |               |               |
|               | Typische Leistung an                   | P <sub>M,N</sub> [PS]                | 5.0         | 7.5         | 10.0        | 15.0          | 20.0          | 25.0          |
|               | der Welle                              |                                      |             |             |             |               |               |               |
|               | Max. Kabelquerschnitt,                 | [mm <sup>2</sup> /AWG] <sup>1)</sup> | 4/10        | 4/10        | 4/10        | 16/6          | 16/6          | 16/6          |
|               | Motor                                  |                                      |             |             |             |               |               |               |
|               |                                        |                                      |             |             |             |               |               |               |
| A             | Eingangsstrom                          | I <sub>L,N</sub> [A]                 | 8.1         | 10.6        | 14.9        | 24.0          | 32.0          | 37.5          |
|               | (3 x 380-480 V)                        | I <sub>L,MAX</sub> (60 s) [A]        | 13.0        | 17.0        | 23.8        | 38.4          | 51.2          | 60            |
|               | Max. Kabelquerschnitt,                 | [mm <sup>2</sup> /AWG] <sup>1)</sup> | 4/10        | 4/10        | 4/10        | 16/6          | 16/6          | 16/6          |
|               | Versorgung                             |                                      |             |             |             |               |               |               |
|               | Max. Vorabsicherung                    | IEC/UL <sup>2)</sup> [A]             | 20/20       | 25/25       | 25/25       | 50/50         | 50/50         | 50/50         |
|               | Wirkungsgrad <sup>3)</sup>             | [%]                                  | 96          | 96          | 96          | 97            | 97            | 97            |
|               |                                        | [W]                                  | 200         | 275         | 372         | 412           | 562           | 693           |
|               | Leistungsabfall bei max.               | [ V V ]                              |             |             |             |               |               |               |
|               | Leistungsabfall bei max.<br>Last       | [**]                                 |             |             |             |               |               |               |
|               |                                        | [kg]                                 | 3.7         | 6.0         | 6.0         | 18.5          | 18.5          | 18.5          |
|               | Last                                   |                                      |             | 6.0<br>IP20 | 6.0<br>IP20 | 18.5<br>IP20/ | 18.5<br>IP20/ | 18.5<br>IP20/ |

- 1. American Wire Gauge. Der max. Kabelquerschnitt ist der größte Kabelquerschnitt, der an den Klemmen angeschlossen werden kann. Nationale und örtliche Vorschriften müssen immer beachtet werden.
- 2. Vorsicherungen vom Typ gG müssen für Installation nach IEC-Vorschriften benutzt werden. Wenn UL/cUL eingehalten werden sollen, müssen Vorsicherungen des Typs Bussmann KTN-R 200 V, KTS-R 500 V oder Ferraz Shawmut, Typ ATMR (max. 30A) verwendet werden. Die Sicherungen müssen für den Schutz in einer Schaltung ausgelegt sein, die max. 100.000 A/ms (symmetrisch) bei max. 500 V liefern kann.
- 3. Gemessen mit einem 25 m langen abgeschirmten/in Rohr geführtem Motorkabel bei Nennlast und -frequenz.
- 4. Standard für VLT 2805-2875 ist IP 20, NEMA 1 ist auf Wunsch lieferbar.



## **■** Weitere Literatur

## ■ Mitgelieferte Dokumente

Nachfolgend eine Liste der für den VLT 2800 verfügbaren Dokumentation. Beachten Sie, daß es länderspezifische Abweichungen geben kann.

| Mitgeliefert:                       |             |
|-------------------------------------|-------------|
| Betriebsanleitung                   | MG.28.AX.YY |
| Diverse Literatur für den VLT 2800: |             |
| Projektierungshandbuch              | MG.28.EX.YY |
| Datenblatt                          | MD.28.AX.YY |
| Anleitungen für VLT Serie 2800:     |             |
| LCP remote-mounting kit             | MI.56.AX.51 |
| Filteranleitung                     | MI.28.B1.02 |
| VLT 2800 DeviceNet cable            | MI.28.F1.02 |
| Cold plate                          | MI.28.D1.02 |
| Precise stop                        | MI.28.C1.02 |
| Kommunikation mit VLT 2800:         |             |
| Profibus-Handbuch                   | MG.90.AX.YY |
| VLT 2800 DeviceNet-Handbuch         | MG.90.AX.YY |



## ■ Parameterliste mit Werkseinstellungen

| PNU- | Parameter                       | Werkseinstellung       | 4 Pa-    | Konv. | Daten- |
|------|---------------------------------|------------------------|----------|-------|--------|
| Nr.  | beschreibung                    |                        | rameter- | index | typ    |
|      |                                 |                        | sätze    |       |        |
| 001  | Sprache                         | Englisch               | Nein     | 0     | 5      |
| 002  | Betriebsart (Ort/Fern)          | Fernsteuerung          | Ja       | 0     | 5      |
| 003  | Ortsollwert                     | 000,000.000            | Ja       | -3    | 4      |
| 004  | Aktiver Parametersatz           | Parametersatz 1        | Nein     | 0     | 5      |
| 005  | Parametersatz, Programm         | Aktiver Parametersatz  | Nein     | 0     | 5      |
| 006  | Kopieren von Parametersätzen    | Keine Kopie            | Nein     | 0     | 5      |
| 007  | LCP-Kopie                       | Keine Kopie            | Nein     | 0     | 5      |
| 800  | Displayskalierung               | 1.00                   | Ja       | -2    | 6      |
| 009  | Displayzeile 2                  | Frequenz [Hz]          | Ja       | 0     | 5      |
| 010  | Kleine Displayzeile 1,1         | Sollwert [%]           | Ja       | 0     | 5      |
| 011  | Kleine Displayzeile 1,2         | Motorstrom [A]         | Ja       | 0     | 5      |
| 012  | Kleine Displayzeile 1,3         | Leistung [kW]          | Ja       | 0     | 5      |
| 013  | Ortsteuerung                    | Fernsteuerung          | Ja       | 0     | 5      |
|      |                                 | wie Par. 100           |          |       |        |
| 014  | Taster Stop                     | Aktiv                  | Ja       | 0     | 5      |
| 015  | Taster Jog Festdrehzahl         | Blockiert              | Ja       | 0     | 5      |
| 016  | Taster Reversierung             | Blockiert              | Ja       | 0     | 5      |
| 017  | Taster Reset                    | Aktiv                  | Ja       | 0     | 5      |
| 018  | Eingabesperre                   | Wirksam                | Ja       | 0     | 5      |
| 019  | Modus beim                      | Stopp erzwungen,       | Ja       | 0     | 5      |
|      | Einschalten                     | gespeicherten Sollwert |          |       |        |
|      |                                 | verw.                  |          |       |        |
| 020  | Eingabesperre für Handbetrieb   | Aktiv                  | Nein     | 0     | 5      |
| 024  | Benutzerdefiniertes Schnellmenü | Blockiert              | Nein     | 0     | 5      |
| 025  | Schnellmenü-Einstellung         | 000                    | Nein     | 0     | 6      |

### 4 Parametersätze:

'Ja' bedeutet, dass der Parameter in jedem der vier Parametersätze individuell programmiert werden kann, d.h., ein einzelner Parameter kann vier verschiedene Datenwerte annehmen. 'Nein' bedeutet, dass der Datenwert in allen vier Parametersätzen gleich ist.

## Konv.index:

Die Zahl bezieht sich auf eine Umrechnungszahl, die beim Schreiben oder Lesen mit einem Frequenzumwandler über die serielle Schnittstelle verwendet werden muss.

Siehe Datenzeichen in Serielle Kommunikation im Projektierungshandbuch.

## Datentyp:

Anzeige des Typs und der Länge des Telegramms.

| Datentyp | Beschreibung       |
|----------|--------------------|
| 3        | Ganzzahl 16        |
| 4        | Ganzzahl 32        |
| 5        | Ohne Vorzeichen 8  |
| 6        | Ohne Vorzeichen 16 |
| 7        | Ohne Vorzeichen 32 |
| 9        | Textblock          |



| PNU- | Parameter                         | Werkseinstellung                | 4 Pa-     | Konv. | Daten-        |
|------|-----------------------------------|---------------------------------|-----------|-------|---------------|
| Nr.  | beschreibung                      |                                 | rameter-  | index | typ           |
|      |                                   |                                 | sätze     |       |               |
| 100  | Konfiguration                     | Drehz.regel., offener           | Ja        | 0     | 5             |
|      |                                   | Reg.kreis                       |           |       |               |
| 101  | Drehmomentkennlinie               | Konstantes Drehmoment           | Ja        | 0     | 5             |
| 102  | Motorleistung P <sub>M,N</sub>    | abhängig vom Gerät              | Ja        | 1     | 6             |
| 103  | Motorspannung, U <sub>M,N</sub>   | abhängig vom Gerät              | Ja        | -2    | 6             |
| 104  | Motorfrequenz, f <sub>M,N</sub>   | 50 Hz                           | Ja        | -1    | 6             |
| 105  | Motorstrom, I <sub>M,N</sub>      | abhängig vom gewählten<br>Motor | Ja        | -2    | 7             |
| 106  | Motornenndrehzahl                 | abhängig von Par. 102           | Ja        | 0     | 6             |
| 107  | Automatische Motoreinstellung     | Optimierung aus                 | Ja        | 0     | 5             |
| 108  | Statorwiderstand, R <sub>i</sub>  | abhängig vom gewählten<br>Motor | Ja        | -3    | 7             |
| 109  | Statorreaktanz, X <sub>S</sub>    | abhängig vom gewählten          | Ja        | -2    | 7             |
| 4.47 | D                                 | Motor                           |           |       |               |
| 117  | Resonanzdämpfung                  | AUS                             | Ja<br>·   | 0     | 6             |
| 119  | Hohes Startmoment                 | 0,0 s                           | <u>Ja</u> | -1    | 5             |
| 120  | Startverzögerung                  | 0,0 s                           | Ja        | -1    | 5             |
| 121  | Startfunktion                     | Zeitverzög. Motorfreil.         | Ja        | 0     | 5             |
| 122  | Stoppfunktion                     | Coast                           | Ja        | 0     | 5             |
| 123  | Min. Freq. zur Aktivier. von Par. | 0,1 Hz                          | Ja        | -1    | 5             |
| 126  | Gleichspannungsbremszeit          | 10 s                            | Ja        | -1    | 6             |
| 127  | Einschaltfrequenz d. DC-Bremse    | AUS                             | Ja        | -1    | 6             |
| 128  | Thermischer Motorschutz           | Kein Motorschutz                | Ja        | 0     | 5             |
| 130  | Startfrequenz                     | 0,0 Hz                          | Ja        | -1    | 5             |
| 131  | Startspannung                     | 0,0 V                           | Ja        | -1    | 6             |
| 132  | DC-Bremsspannung                  | 0%                              | Ja        | 0     | 5             |
| 133  | Startspannung                     | abhängig vom Gerät              | Ja        | -2    | 6             |
| 134  | Lastausgleich                     | 100 %                           | Ja        | -1    | 6             |
| 135  | U/f-Verhältnis                    | abhängig vom Gerät              | Ja        | -2    | 6             |
| 136  | Schlupfausgleich                  | 100 %                           | Ja        | -1    | 3             |
| 137  | DC-Haltespannung                  | 0%                              | Ja        | 0     | 5             |
| 138  | Bremsabschaltfrequenz             | 3,0 Hz                          | Ja        | -1    | 6             |
| 139  | Bremseinschaltfrequenz            | 3,0 Hz                          | Ja        | -1    | 6             |
| 140  | Mindestwert Strom                 | 0%                              | Ja        | 0     | <u>5</u><br>7 |
| 142  | Streureaktanz                     | abhängig vom gewählten<br>Motor | Ja        | -3    | 7             |
| 143  | Interne Lüfterregelung            | Automatisch                     | Ja        | 0     | 5             |
| 144  | AC-Bremsfaktor                    | 1.30                            | Ja        | -2    | 5             |
|      |                                   |                                 |           |       |               |





| PNU- | Parameter                             | Werkseinstellung        | 4         | Konv  | Daten |
|------|---------------------------------------|-------------------------|-----------|-------|-------|
| Nr.  | Beschreibung                          |                         | Par.sätze | Index | Тур   |
| 200  | Ausgangsfrequenz Bereich              | 0-132 Hz, Eine Richtung | Ja        | 0     | 5     |
| 201  | Ausgangsfrequenz-                     | 0,0 Hz                  | Ja        | -1    | 6     |
|      | grenze f, niedrig MIN                 |                         |           |       |       |
| 202  | Ausgangsfrequenz-                     | 132 Hz                  | Ja        | -1    | 6     |
|      | grenze f, hoch <sub>MAX</sub>         |                         |           |       |       |
| 203  | Sollwertbereich                       | Min. Soll - Max Soll    | Ja        | 0     | 5     |
| 204  | Minimaler Sollwert Ref <sub>MIN</sub> | 0,000 Hz                | Ja        | -3    | 4     |
| 205  | Maximaler Sollwert Ref <sub>MAX</sub> | 50.000 Hz               | Ja        | -3    | 4     |
| 206  | Rampentyp                             | Linear                  | Ja        | 0     | 5     |
| 207  | RAMPE AUF 1                           | 3,00 s                  | Ja        | -2    | 7     |
| 208  | Rampenzeit Ab 1                       | 3,00 s                  | Ja        | -2    | 7     |
| 209  | Rampenzeit auf 2                      | 3,00 s                  | Ja        | -2    | 7     |
| 210  | Rampenzeit ab 2                       | 3,00 s                  | Ja        | -2    | 7     |
| 211  | Rampenzeit Festdrehzahl - Jog         | 3,00 s                  | Ja        | -2    | 7     |
| 212  | Rampenzeit Ab, Schnellstopp           | 3,00 s                  | Ja        | -2    | 7     |
| 213  | Jog Frequenz                          | 10,0 Hz                 | Ja        | -1    | 6     |
| 214  | Sollwert-Funktion                     | zum Sollwert addierend  | Ja        | 0     | 5     |
| 215  | Fester Sollwert 1                     | 0.00%                   | Ja        | -2    | 3     |
| 216  | Fester Sollwert 2                     | 0.00%                   | Ja        | -2    | 3     |
| 217  | Fester Sollwert 3                     | 0.00%                   | Ja        | -2    | 3     |
| 218  | Fester Sollwert 4                     | 0.00%                   | Ja        | -2    | 3     |
| 219  | Frequenzkorrektur Auf/Ab              | 0.00%                   | Ja        | -2    | 6     |
|      | Sollwert                              |                         |           |       |       |
| 221  | Stromgrenze                           | 160 %                   | Ja        | -1    | 6     |
| 223  | Warnung Strom unterer Grenzwert       | 0,0 A                   | Ja        | -1    | 6     |
| 224  | Warnung Strom oberer Grenzwert        | I <sub>MAX</sub>        | Ja        | -1    | 6     |
| 225  | Warnung Unterfrequenz                 | 0,0 Hz                  | Ja        | -1    | 6     |
| 226  | Warnung Frequenz oberer               | 132,0 Hz                | Ja        | -1    | 6     |
|      | Grenzwert                             |                         |           |       |       |
| 227  | Warnung Istwert niedrig               | -4000.000               | Ja        | -3    | 4     |
| 228  | Warnung Istwert oberer Grenzwert      | 4000.000                | Ja        | -3    | 4     |
| 229  | Frequenzausblendung,                  | 0 Hz (AUS)              | Ja        | 0     | 6     |
|      | Bandbreite                            |                         |           |       |       |
| 230  | Frequenzausblendung 1                 | 0,0 Hz                  | Ja        | -1    | 6     |
| 231  | Frequenzausblendung 2                 | 0,0 Hz                  | Ja        | -1    | 6     |



| PNU- | Parameter                      | Werkseinstellung              | 4 Param-  | Konv. | Daten- |
|------|--------------------------------|-------------------------------|-----------|-------|--------|
| Nr.  | beschreibung                   |                               | etersätze | index | typ    |
| 302  | Digitaler Eingang, Klemme 18   | Start                         | Ja        | 0     | 5      |
| 303  | Digitaler Eingang, Klemme 19   | Reversierung                  | Ja        | 0     | 5      |
| 304  | Digitaler Eingang, Klemme 27   | Quittieren und Freilauf       | Ja        | 0     | 5      |
|      |                                | Freilauf                      |           |       |        |
| 305  | Digitaler Eingang, Klemme 29   | Festdrehzahl (Jog)            | Ja        | 0     | 5      |
| 307  | Digitaler Eingang, Klemme 33   | Ohne Funktion                 | Ja        | 0     | 5      |
| 308  | Kl. 53, Spannung Analogeingang | Sollwert                      | Ja        | 0     | 5      |
| 309  | Kl. 53, min. Skalierung        | 0,0 V                         | Ja        | -1    | 6      |
| 310  | Kl. 53, max. Skalierung        | 10,0 V                        | Ja        | -1    | 6      |
| 314  | Kl. 60, Analogeingang          | Ohne Funktion                 | Ja        | 0     | 5      |
| 315  | Kl. 60, min. Skalierung        | 0,0 mA                        | Ja        | -4    | 6      |
| 316  | Kl. 60, max. Skalierung        | 20,0 mA                       | Ja        | -4    | 6      |
| 317  | Zeit nach Sollwertfehler       | 10 s                          | Ja        | -1    | 5      |
| 318  | Funktion nach Sollwertfehler   | Ohne Funktion                 | Ja        | 0     | 5      |
| 319  | Kl. 42, Analogausgang          | $0-I_{MAX} = 0-20 \text{ mA}$ | Ja        | 0     | 5      |
| 323  | Relaisausgang                  | Steuerung bereit              | Ja        | 0     | 5      |
| 327  | Puls Sollwert                  | 5000 Hz                       | Ja        | 0     | 7      |
| 341  | Kl. 46, digitaler Ausgang      | Steuerung bereit              | Ja        | 0     | 5      |
| 342  | Kl. 46, max. Pulswert          | 5000 Hz                       | Ja        | 0     | 6      |
| 343  | Präzise Stoppfunktion          | Normaler Rampenstopp          | Ja        | 0     | 5      |
| 344  | Zählerwert                     | 100000 Pulse                  | Ja        | 0     | 7      |
| 349  | Verzög. Drehzahlkompens.       | 10 ms                         | Ja        | -3    | 6      |

## 4 Parametersätze:

'Ja' bedeutet, dass der Parameter in jedem der vier Parametersätze individuell programmiert werden kann, d.h., ein einzelner Parameter kann vier verschiedene Datenwerte annehmen. 'Nein' bedeutet, dass der Datenwert in allen vier Parametersätzen gleich ist.

## Konv.index:

Die Zahl bezieht sich auf eine Umrechnungszahl, die beim Schreiben oder Lesen mit einem Frequenzumwandler über die serielle Schnittstelle verwendet werden muss.

Siehe Datenzeichen in Serielle Kommunikation im Projektierungshandbuch.

### Datentyp:

Anzeige des Typs und der Länge des Telegramms.

| Datentyp | Beschreibung       |
|----------|--------------------|
| 3        | Ganzzahl 16        |
| 4        | Ganzzahl 32        |
| 5        | Ohne Vorzeichen 8  |
| 6        | Ohne Vorzeichen 16 |
| 7        | Ohne Vorzeichen 32 |
| 9        | Textblock          |





| PNU- | Parameter                         | Werkseinstellung       | 4 Pa-    | Konv. | Daten- |
|------|-----------------------------------|------------------------|----------|-------|--------|
| Nr.  | beschreibung                      | _                      | rameter- | index | typ    |
|      | ·                                 |                        | sätze    |       |        |
| 400  | Bremsfunktion                     | Abhängig vom Gerätetyp | Nein     | 0     | 5      |
| 405  | Quittierfunktion                  | Manuell quittieren     | Ja       | 0     | 5      |
| 406  | Autom. Wiedereinschaltzeit        | 5 s                    | Ja       | 0     | 5      |
| 409  | Zeitverzögerung Stromgrenze       | Aus (61 s)             | Ja       | 0     | 5      |
| 411  | Taktfrequenz                      | 4,5 kHz                | Ja       | 0     | 6      |
| 412  | Ausg.frequenzabh. Taktfrequenz    | Kein LC-Filter         | Ja       | 0     | 5      |
| 413  | Übermodulationsfaktor             | Ein                    | Ja       | 0     | 5      |
| 414  | Min. Ist-Wert                     | 0.000                  | Ja       | -3    | 4      |
| 415  | Max. Ist-Wert                     | 1500.000               | Ja       | -3    | 4      |
| 416  | Anzeigewert                       | Keine Einheit          | Ja       | 0     | 5      |
| 417  | Drehzahl PID Proport.verstärkg.   | 0.010                  | Ja       | -3    | 6      |
| 418  | Drehzahl PID Integrationszeit     | 100 ms                 | Ja       | -5    | 7      |
| 419  | Drehzahl PID Differentiationszeit | 20,00 ms               | Ja       | -5    | 7      |
| 420  | Drehzahl PID Different.verstärk   | 5.0                    | Ja       | -1    | 6      |
|      | grenze                            |                        |          |       |        |
| 421  | Drehzahl PID Tiefpassfilter       | 20 ms                  | Ja       | -3    | 6      |
| 423  | U1 Spannung                       | Par. 103               | Ja       | -1    | 6      |
| 424  | F1 Frequenz                       | Par. 104               | Ja       | -1    | 6      |
| 425  | U2 Spannung                       | Par. 103               | Ja       | -1    | 6      |
| 426  | F2 Frequenz                       | Par.                   | Ja       | -1    | 6      |
| 427  | U3 Spannung                       | Par. 103               | Ja       | -1    | 6      |
| 428  | F3 Frequenz                       | Par.                   | Ja       | -1    | 6      |
| 437  | Proz. PID norm./inv.              | Normal                 | Ja       | 0     | 5      |
| 438  | Proz. PID Anti-Windup             | Aktiv                  | Ja       | 0     | 5      |
| 439  | Proz. PID Startfrequenz           | Par. 201               | Ja       | -1    | 6      |
| 440  | Proz. PID Start                   | 0.01                   | Ja       | -2    | 6      |
|      | Proportionalverstärk.             |                        |          |       |        |
| 441  | Proz. PID Integrationszeit        | AUS (9999,99 s)        | Ja       | -2    | 7      |
| 442  | Proz. Regler-Differenzierungszeit | Aus (0,00 s).          | Ja       | -2    | 6      |
| 443  | Proz. PID DiffVerstgrenze         | 5.0                    | Ja       | -1    | 6      |
| 444  | Proz. Regler-Tiefpassfilterzeit   | 0,02 S.                | Ja       | -2    | 6      |
| 445  | Fangschaltung                     | Blockiert              | Ja       | 0     | 5      |
| 451  | Drehzahl PID Steuersollwert       | 100%                   | Ja       | 0     | 6      |
| 452  | Reglerbandbreite                  | 10 %                   | Ja       | -1    | 6      |
| 456  | Bremsspannung reduzieren          |                        | Ja       | 0     | 5      |
| 461  | Istwertumwandlung                 | Linear                 | Ja       | 0     | 5      |



| PNU- | Parameter                              | Werkseinstellung | 4         | Konv  | Daten |
|------|----------------------------------------|------------------|-----------|-------|-------|
| Nr.  | Beschreibung                           |                  | Par.sätze | Index | Тур   |
| 500  | Adresse                                | 1                | Nein      | 0     | 5     |
| 501  | Baudrate                               | 9600 BAUD        | Nein      | 0     | 5     |
| 502  | Motorfreilauf                          | Logisch ODER     | Ja        | 0     | 5     |
| 503  | Schnellstopp                           | Logisch ODER     | Ja        | 0     | 5     |
| 504  | Gleichspannungsbremse                  | Logisch ODER     | Ja        | 0     | 5     |
| 505  | Start                                  | Logisch ODER     | Ja        | 0     | 5     |
| 506  | Reversierung                           | Logisch ODER     | Ja        | 0     | 5     |
| 507  | Parametersatzwahl                      | Logisch ODER     | Ja        | 0     | 5     |
| 508  | Festsollwertanwahl                     | Logisch ODER     | Ja        | 0     | 5     |
| 509  | Bus-Festdrehzahl 1                     | 10,0 Hz          | Ja        | -1    | 6     |
| 510  | Bus-Festdrehzahl 2                     | 10,0 Hz          | Ja        | -1    | 6     |
| 512  | Telegrammprofil                        | FC-Protokoll     | Ja        | 0     | 5     |
| 513  | Bus-Time-Out Zeit                      | 1 s              | Ja        | 0     | 5     |
| 514  | Bus-Time-Out Funktion                  | Aus              | Ja        | 0     | 5     |
| 515  | Datenanzeige: Sollwert %               |                  | Nein      | -1    | 3     |
| 516  | Datenanzeige: Sollwert [Einheit]       |                  | Nein      | -3    | 4     |
| 517  | Datenanzeige: Istwert [Einheit]        |                  | Nein      | -3    | 4     |
| 518  | Datenanzeige: Frequenz                 |                  | Nein      | -1    | 3     |
| 519  | Datenanzeige: Frequenz x Skalierung    |                  | Nein      | -1    | 3     |
| 520  | Datenanzeige: Motorstrom               |                  | Nein      | -2    | 7     |
| 521  | Datenanzeige: Drehmoment-              |                  | Nein      | -1    | 3     |
| 522  | Datenanzeige: Leistung [kW]            |                  | Nein      | 1     | 7     |
| 523  | Datenanzeige: Leistung [HP]            |                  | Nein      | -2    | 7     |
| 524  | Datenanzeige: Motorspannung [V]        |                  | Nein      | -1    | 6     |
| 525  | Datenanzeige: DC-Spannung              |                  | Nein      | 0     | 6     |
| 526  | Datenanzeige: Thermischer Motor        | schutz           | Nein      | 0     | 5     |
| 527  | Datenanzeige: Thermischer Schutz       |                  | Nein      | 0     | 5     |
| 528  | Datenanzeige: Digitaler Eingang        |                  | Nein      | 0     | 5     |
| 529  | Datenanzeige: Analogeingang, Ana       | schluss 53       | Nein      | -1    | 5     |
| 531  | Datenanzeige: Analogeingang, Ana       |                  | Nein      | -4    | 5     |
| 532  | Datenanzeige: Pulssollwert             |                  | Nein      | -1    | 7     |
| 533  | Datenanzeige: Externer Sollwert        |                  | Nein      | -1    | 6     |
| 534  | Datenanzeige: Zustandswort             |                  | Nein      | 0     | 6     |
| 537  | Datenanzeige: Wechselrichtertemperatur |                  | Nein      | 0     | 5     |
| 538  | Datenanzeige: Alarmwort                |                  | Nein      | 0     | 7     |
| 539  | Datenanzeige: Steuerwort               |                  | Nein      | 0     | 6     |
| 540  | Datenanzeige: Warnwort                 |                  | Nein      | 0     | 7     |
| 541  | Datenanzeige: erw. Zustandswort        |                  | Nein      | 0     |       |
|      | - acondine orgon or vvi Zaotan aovvort |                  | 1 10111   | 0     | ,     |





| PNU- | Parameter                                           | Werkseinstellung   | 4 Pa-    | Konv. | Daten- |
|------|-----------------------------------------------------|--------------------|----------|-------|--------|
| Nr.  | beschreibung                                        |                    | rame-    | index | typ    |
|      |                                                     |                    | tersätze |       |        |
| 600  | Betriebsstunden                                     |                    | Nein     | 73    | 7      |
| 601  | Betriebsstunden                                     |                    | Nein     | 73    | 7      |
| 602  | KWh-Zähler                                          |                    | Nein     | 2     | 7      |
| 603  | Anzahl d. Einschaltungen                            |                    | Nein     | 0     | 6      |
| 604  | Anzahl Temperaturüberschreitungen                   |                    | Nein     | 0     | 6      |
| 605  | Anzahl Überspannungen                               |                    | Nein     | 0     | 6      |
| 615  | Fehlerprotokoll: Fehlercode                         |                    | Nein     | 0     | 5      |
| 616  | Fehlerprotokoll: Zeit                               |                    | Nein     | 0     | 7      |
| 617  | Fehlerprotokoll: Werte                              |                    | Nein     | 0     | 3      |
| 618  | Rückstellen des kWh-Zählers                         | Keine Rückstellung | Nein     | 0     | 7      |
| 619  | Rückstellen des Betriebsstunden-                    | Keine Rückstellung | Nein     | 0     | 5      |
|      | zählers                                             |                    |          |       |        |
| 620  | Betriebsart                                         | Normalbetrieb      | Nein     | 0     | 5      |
| 621  | Typenschild: Gerätetyp                              |                    | Nein     | 0     | 9      |
| 624  | Typenschild: Softwareversion                        |                    | Nein     | 0     | 9      |
| 625  | Typenschild: LCP-Identifikationsnr.                 |                    | Nein     | 0     | 9      |
| 626  | Typenschild: Datenbank-Identifikation               |                    | Nein     | -2    | 9      |
| 627  | Typenschild: Version Stromführ. Teile               |                    | Nein     | 0     | 9      |
| 628  | Typenschild: Anwendungsoption, Typ                  |                    | Nein     | 0     | 9      |
| 630  | Typenschild: Kommunikationsoption,                  |                    | Nein     | 0     | 9      |
| 632  | Typenschild: BMC-Software-Identifika                |                    | Nein     | 0     | 9      |
| 634  | Typenschild: Geräteidentifikation für Kommunikation |                    | Nein     | 0     | 9      |
| 635  | Typenschild: Software Bestellnr.                    |                    | Nein     | 0     | 9      |
| 640  | Softwareversion                                     |                    | Nein     | -2    | 6      |
| 641  | BMC-Software-Identifikation                         |                    | Nein     | -2    | 6      |
| 642  | Leistungskarten-Identifikation                      |                    | Nein     | -2    | 6      |

## 4 Parametersätze:

'Ja' bedeutet, dass der Parameter in jedem der vier Parametersätze individuell programmiert werden kann, d.h., ein einzelner Parameter kann vier verschiedene Datenwerte annehmen. 'Nein' bedeutet, dass der Datenwert in allen Parametersätzen gleich ist.

## Konv.index:

Die Zahl bezieht sich auf eine Umrechnungszahl, die beim Schreiben oder Lesen mit einem Frequenzumwandler über die serielle Schnittstelle verwendet werden muss.

Siehe Datenzeichen in Serielle Kommunikation im Projektierungshandbuch.

## Datentyp:

Anzeige des Typs und der Länge des Telegramms.

| Datentyp | Beschreibung       |
|----------|--------------------|
| 3        | Ganzzahl 16        |
| 4        | Ganzzahl 32        |
| 5        | Ohne Vorzeichen 8  |
| 6        | Ohne Vorzeichen 16 |
| 7        | Ohne Vorzeichen 32 |
| 9        | Textblock          |



■Index Е Α Abmessungen......56 Allgemeine Warnung...... 8 Erdung ...... 61 Analogausgang ...... 42 Analogeingangs......40 Anschluss eines zweiadrigen Transmitters.......71 Ausgangsfrequenz ...... 30 Automatische Motoranpassung......11 В G Galvanische Trennung (PELV)......79 Bedienfeld......9 Bedientasten 9 Betriebszustand bei Netzeinschaltung, Ortbedienung........... 17 Hochspannungsprüfung .......61 Hochspannungswarnung......61 Bremsspannung reduzieren ......54 Bremswiderstand......67 I D DATEN ÄNDERN ...... 9 Istwertumwandlung ...... 54 Κ Display ...... 9 Klemmenabdeckung......57 Drehzahlkorrektur auf/ab ......71 L 



| LCP-Kopie                                                  | Rampenzeit Ab, Schnellstopp      |        |
|------------------------------------------------------------|----------------------------------|--------|
| Leistungsreduzierung wegen erhöhter Umgebungstemperatur 78 | Rampenzeit Auf                   | 32     |
| Leistungsreduzierung wegen hoher Taktfrequenz              | Rampenzeit Festdrehzahl - Jog    | 32     |
| Literatur                                                  | RCD-Relais                       |        |
|                                                            | Relaisanschluß                   | 70     |
| NA                                                         | Relaisausgang 1-3                | 43     |
| М                                                          | Resonanzdämpfung                 |        |
| Maximaler Puls 29                                          | Reversierung                     | 38     |
| Mechanische Installation 60                                |                                  |        |
| Mechanischen Bremse                                        | 6                                |        |
| Menümodus                                                  | S                                |        |
| Motoranschluß                                              | Sollwert,                        |        |
| Motorfangschaltung53                                       | Schalter 1-4                     |        |
| Motorfrequenz21                                            | Schlupfausgleich                 |        |
| Motorkabel 67                                              | SCHNELLMENÜ                      |        |
| Motorleistung21                                            | Software Dialog                  |        |
| Motornenndrehzahl                                          | Sollwert-Funktion                |        |
| Motorspannung21                                            | SONDERMOTOR MO                   |        |
| Motorspulen 57                                             | Spannung DC-Bremse               |        |
| Motorstrom                                                 | Spannungsanhebung                |        |
|                                                            | Spannungsvektor quittieren       |        |
| NI .                                                       | Sprache                          |        |
| N                                                          | Start/Stopp 3:                   |        |
| Nebeneinander                                              | Startfrequenz                    | 26     |
| Netzanschluß                                               | Startfunktion                    | 24     |
| Netzversorgung                                             | Startmoment                      |        |
|                                                            | Startverzögerung                 | 24     |
| 0                                                          | Statorreaktanz                   | 23     |
|                                                            | Statorwiderstand                 | 22     |
| Ortsollwert                                                | Steuerkabel                      | 69, 70 |
|                                                            | Steuerkabelklemmen               | 68     |
| P                                                          | Steuerklemmen                    | 70     |
| Parallelschaltung von Motoren                              | STOPP/RESET                      | 9      |
| Parameterliste mit Werkseinstellungen                      | Stoppfunktion                    | 24     |
| Potentiometer Sollwert 71                                  | Streureaktanz                    | 28     |
| Prozeß PID                                                 | Strom, Mindestwert               | 28     |
| Prozeß Prozement Istwertrückführung                        | Stromgrenze,                     | 34     |
| Präzise Stoppfunktion                                      |                                  |        |
| Pulssollwert, max. Frequenz                                | _                                |        |
| •                                                          | Т                                |        |
| Pulsstart/-stopp71                                         | Taktfrequenz                     |        |
|                                                            | Temperaturabhängige Taktfrequenz |        |
| Q                                                          | Thermischer Motorschutz          |        |
| Quadratisches Dremoment                                    | Thermischer Motorschutz          |        |
| Quick-Menü                                                 | Thermistor                       | 26, 39 |
| Quittierfunktion 47                                        |                                  |        |
| Quittion drinktion 41                                      |                                  |        |
|                                                            | U                                |        |
| R                                                          | U/f-Verhältnis                   |        |
| RCD 67                                                     | UL-Standard                      | 81     |
| Radiziert                                                  |                                  |        |
| Rampentyp                                                  | V                                |        |
| Rampenzeit Ah 32                                           | V                                |        |



| Verstärkung Wechselspannungsbremse  Verzögerung Drehzahlkompensierung  Vier Sätzen  Vorsicherungen | 46 |
|----------------------------------------------------------------------------------------------------|----|
| w                                                                                                  |    |
| Warn- und Alarmmeldungen                                                                           | 73 |
| Warnwörter, erweiterte Zustandswörter und Alarmwörter                                              | 77 |
| Wechselstrombremse                                                                                 | 47 |
| Z                                                                                                  |    |
| Zeit nach Sollwertfehler                                                                           | 41 |
| Zusätzlicher Schutz                                                                                | 61 |
| Zwischenkreiskopplung                                                                              | 67 |
| Zählerwert                                                                                         | 45 |
| Ü                                                                                                  |    |
| Übermodulationsfaktor                                                                              | 15 |