

■ Índice

Introdução	. 3
Software version	. 3
Normas de segurança	. 4
Advertência contra partidas indesejadas	. 4
Introdução	. 6
Literatura disponível	
·	
Tecnologia	. 8
Escolha do conversor de freqüência	13
Modo de torque de sobrecarga normal/alto	
Formulário para pedidos Série VLT 5000 - Código de tipos	
Seleção de módulos e acessórios	
Ferramentas de Software de PC	
Gama de produtos	21
Acessórios para o VLT da Série 5000	22
Dados técnicos	33
Dados técnicos gerais	33
Dados elétricos	39
Fusíveis	56
Medidas, dimensőes	60
Dimensőes mecânicas	60
Instalação mecânica	63
Instalação mecânica	63
Landala a War alifad da a	
Instalação eléctrica	
Aterramento de segurança	
Proteção adicional (RCD)	-
Instalação elétrica - alimentação de rede	
Instalação elétrica - cabos do motor	
Ligação do motor	
Sentido de rotação do motor	67
Instalação elétrica - cabo do freio	68
Instalação elétrica - chave de temperatura do resistor do freio	68
Instalação elétrica - Divisão da carga	68
Instalação elétrica - fonte de 24 Volts CC externa	71
Instalação elétrica - saída do relé	71
Instalação elétrica - cabos de controle	77
Instalação elétrica - ligação do bus	80
Instalação elétrica - cuidados com EMC	81
Utilização de cabos de emc corretos	
Instalação elétrica - Aterramento dos cabos de controle	
Chave de RFI	

Comunicação serial	. 89
Palavra de estado de acordo com oPerfil FC	. 94
Status Word de acordo com o Perfil do FC	. 96
Palavra de controle segundo oPerfil do barramento de campo	. 98
Palavra de estado de acordo com o Perfil do barramento de campo	. 99
Exemplo de telegrama	102
Exemplos de ligação	109
Correia transportadora	109
Bomba	110
Ponterolante	111
Regulação de torque, feedback de velocidade	112
Controladores VLT 5000	113
PID para controle de processo	115
PID para regulação de velocidade	116
PI para regulação de torque	117
Condições especiais	118
Isolamento galvânico (PELV)	118
Condições de operação extremas	119
Tensão de pico no motor	120
Chaveamento na entrada	121
Redução	122
Proteção térmica do motor	125
Vibração e choque	125
Umidade do ar	125
Ambientes agressivos	126
Eficiência	127
Etiqueta CE	130
Níveis de compatibilidade requeridos	134
Imunidade a EMC	134
Definiçőes	137
Programação de fábrica	140
Índice	140

■ Software version

VLT da Série 5000

Guia de Projeto Software versão: 3.7x

Este Guia de Projeto pode ser usado para todos os conversores de freqüência da Série VLT 5000 com os softwares de versões 3.7x. O número de versão do software pode ser visto no parâmetro 624. O rótulo CE e C-tick não abrange as unidades VLT 5001-5062, de 525-600 V.

As tensőes do conversor de freqüência são perigosas sempre que o equipamento estiver ligado à rede elétrica. A instalação incorreta do motor ou do conversor de frequência pode causar danos ao equipamento, ferimentos graves à pessoas ou morte.

Portanto, as instruções do Guia de Projeto, bem como as normas nacionais e locais devem ser obedecidas.

■ Normas de segurança

- 1. O conversor de freqüência deve ser desligado da rede elétrica quando reparos forem realizados. Verifique se a rede elétrica foi desligada e se passou o tempo necessário antes de remover as ligações do motor e da rede.
- 2. O botão [Stop/Reset] no painel de controle do conversor de freqüência não desliga o equipamento da rede elétrica e portanto não deve ser utilizado como interruptor de segurança.
- 3. A ligação à terra de proteção do equipamento deve estar instalada, o operador deve estar protegido contra a tensão de alimentação e o motor deve estar protegido contra sobrecarga conforme as normas nacionais e locais aplicáveis.
- 4. As correntes de fuga à terra são acima de 3.5 mA.
- 5. A proteção contra a sobrecarga do motor não está incluída na programação de fábrica. Se desejar esta função, programe o parâmetro 128 com o valor ETR Trip ou com o valor ETR Warning. Observação: A função é iniciada com 1,16 vezes a corrente nominal do motor e com a frequência nominal do motor.
 - Para o mercado Norte Americano: As funções ETR oferecem proteção da classe 20 contra sobrecarga do motor, em conformidade com a NEC.
- 6. Não remova as ligações do motor e de alimentação elétrica enquanto o conversor de freqüência estiver ligado à rede elétrica. Verifique se a alimentação da rede foi desligada antes de remover as ligações do motor e da rede.
- 7. Observe que o conversor de fregüência tem mais entradas de tensão do que L1, L2 e L3, depois da instalação da divisão de carga (ligação do circuito intermediário de CC) e de 24 V CC externo. Verifique se todas as entradas de tensão foram desconectadas e se foi aguardado o tempo necessário antes de iniciar o trabalho de reparo.

■ Advertência contra partidas indesejadas

- 1. O motor pode ser parado mediante os comandos digitais, os comandos via serial, as referências ou uma parada local, enquanto o conversor de frequência estiver ligado à rede. O motor pode ser parado mediante os comandos digitais, os comandos via serial, as referências ou uma parada local, enquanto o conversor de freqüência estiver ligado à rede. estas funções de parada não serão suficientes.
- 2. Durante a programação de parâmetros, o motor pode partir. Portanto, a tecla de parada [STOP/RESET] deve sempre estar ativada e em seguida os dados podem ser modificados.
- 3. Um motor que parou pode partir se ocorrerem falhas na eletrônica do conversor de frequência, se ocorrer uma sobrecarga temporária, ou quando uma falha na rede de alimentação ou na alimentação do motor cessar.

■ Uso em rede elétrica isolada

Consulte a seção Interruptor de RFI com relação ao uso em rede elétrica isolada.

É importante obedecer as recomendações relativas à instalação em redes elétricas IT, uma vez que é exigida proteção suficiente da instalação como um todo. Falta de cuidados, ou não-utilização de dispositivos de monitoramento apropriados para redes elétricas IT, pode resultar em danos.

Advertência:

Tocar as partes elétricas pode ser mortal - mesmo depois de desligar a rede elétrica.

Certifique-se também de que as outras entradas de tensão, como a fonte externa de 24 V CC, divisão de carga (ligação dos circuitos CC intermediários), bem como a conexão do motor para cinetic back-up, tenham sido desconectadas.

Utilizando VLT 5001-5006, 200-240 V: aguarde pelo menos 4 minutos Utilizando VLT 5008-5052, 200-240 V: aguarde pelo menos 15 minutos Utilizando VLT 5001-5006, 380-500 V: aguarde pelo menos 4 minutos Utilizando VLT 5008-5062, 380-500 V: aguarde pelo menos 15 minutos Utilizando VLT 5072-5302, 380-500 V: aguarde pelo menos 20 minutos Utilizando VLT 5352-5552, 380-500 V: aguarde pelo menos 40 minutos Utilizando VLT 5001-5005, 525-600 V: aguarde pelo menos 4 minutos Utilizando VLT 5006-5022, 525-600 V: aguarde pelo menos 15 minutos Utilizando VLT 5042 - 5352, 525-600 V: aguarde pelo menos 30 minutos Utilizando VLT 5042 - 5352, 525-690 V: aguarde pelo menos 20 minutos Utilizando VLT 5042 - 5352, 525-690 V: aguarde pelo menos 20 minutos

■Introdução

Este guia de projeto foi realizado como um instrumento para ser utilizado no projeto de uma instalação ou de um sistema que inclui

um VLT da Série 5000. Publicações técnicas específicas sobre o VLT da Série 5000: Instruções operacionais e Guia de design.

Instruções operacionais: Fornece instruções para uma instalação ideal, colocação em

funcionamento e assistência técnica.

Guia de design: Fornece todas as informações para finalidade de projeto, bem como

uma boa visão sobre a tecnologia, gama de produtos, dados técnicos

etc.

As Instruções operacionais incluem uma instrução de Configuração rápida e acompanham a unidade.

Ao ler este Guia de design, encontrará vários símbolos que requerem uma atenção especial.

Os símbolos usados são os seguintes:

Indica uma advertência geral

NOTA!

Indica algo que deve ser observado pelo leitor

Indica uma advertência de alta voltagem

■ Literatura disponível

Veja abaixo uma lista da literatura disponível para o VLT 5000. Lembre-se que podem ocorrer variações de um país para outro.

Fornecidos junto com a unidade:

Instruções operacionais	MG.51.AX.YY
Guia de Instalação de Alta Potência	
Comunicação com o VLT 5000:	
Manual do Profibus do VLT 5000	MG 10 FX YY

Manual do Profibus do VLT 5000	MG.10.EX.YY
Manual do DeviceNet do VLT 5000	MG.50.HX.YY
Manual do LonWorks do VLT 5000	MG.50.MX.YY
Manual do Modbus do VLT 5000	MG.10.MX.YY
Manual do Interbus do VLT 5000	MG.10.OX.YY

Opções de aplicação para o VLT 5000:

Manual do opcional SyncPos do VLT 5000	MG.10.EX.YY
Manual do controlador de posicionamento do VLT 5000	MG.50.PX.YY
Manual do controlador de sincronização do VLT 5000	MG.10.NX.YY
Opção de rotação do anel	MI.50.ZX.02
Opção da função de oscilação	MI.50.JX.02
Opção de controle de Tensão e Bobinadeira	. MG.50.KX.02

Instruções para o VLT 5000:

Divisão de carga	. MI.50.NX.02
Resistores de Freio do VLT 5000	MI.90.FX.YY
Resistores de freio para aplicações horizontais (VLT 5001 - 5011) (apenas para Inglês e Alemão)	MI.50.SX.YY
Módulos de filtro LC	MI.56.DX.YY
Conversor para entradas do encoder (5 V TTL para 24 V CC) (apenas em combinação de	
Inglês/Alemão)	MI.50.IX.51
Placa Traseira para a Série VLT 5000	MN.50.XX.02

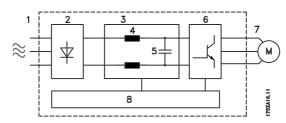
Literatura variada do VLT 5000:

Guia de Design	MG.51.BX.YY
Incorporação de um Profibus do VLT 5000 em um sistema Simatic S5	MC.50.CX.02
Incorporação de um Profibus do VLT 5000 em um sistema Simatic S7	MC.50.AX.02
Guindastes e a série VLT 5000	MN.50.RX.02

Diversos (somente em inglês):

Proteção contra riscos elétricos	MN.90.GX.02
Escolha de pré-fusíveis	MN.50.OX.02
VLT sobre rede elétrica IT	MN.90.CX.02
Filtragem de correntes harmônicas	MN.90.FX.02
Tratamento de ambientes agressivos	MN.90.IX.02
Contactores CI-TITM - conversores de freqüências VLT®	MN.90.KX.02
Conversores de frequências VLT® e painéis de operador UniOP	MN.90.HX.02

X = número da versão YY = versão do idioma



■ Princípio de controle

Um conversor de freqüência retifica a corrente alternada (CA) da rede de alimentação em corrente contínua (CC). Em seguida, esta

tensão CC é convertida em corrente CA com amplitude e freqüência variáveis.

Deste modo, são fornecidas ao motor tensão e freqüência variáveis, que permite o controle amplo da velocidade variável de motores CA padrão, trifásicos.

1. Tensão de rede elétrica

3 x 200 - 240 V CA, 50 / 60 Hz.

3 x 380 - 500 V CA, 50 / 60 Hz.

3 x 525 - 600 V CA, 50 / 60 Hz.

3 X 525 - 690 V CA, 50 / 60 Hz.

2. Retificador

Uma ponte retificadora trifásica que converte corrente CA em corrente CC.

3. Circuito intermediário

Tensão CC = 1,35 x tensão de rede elétrica [V].

4. Bobinas de circuito intermediário Estabiliza a corrente do circuito intermediário e limita a carga sobre a rede elétrica e componentes (transformador de rede elétrica, fiação, fusíveis e contactores).

5. Capacitor do circuito intermediário Estabiliza a tensão do circuito intermediário.

6. Inversor

Converte a tensão CC em tensão CA variável com uma freqüência variável.

7. Tensão do motor

Tensão CA variável, 0-100% da tensão da rede elétrica.

Freqüência variável: 0,5-132/0,5-1000 Hz.

8. Placa de controle

É onde se localiza o computador que controla o inversor que gera o padrão de pulsos mediante o qual a tensão CC é convertida em tensão CA variável com freqüência variável.

VVC^{plus}princípio de controle

O conversor de freqüência contém um sistema inversor de controles chamado VVC^{plus}, que é um outro conhecido desenvolvimento do Voltage Vector Control (VVC), ou seja, do Danfoss VLT série 3000.

O VVC^{plus} controla um motor de indução alimentando-o com uma freqüência variável e uma tensão compatíveis com ele. Se a carga do motor for alterada, a magnetização do motor também é alterada, bem como a sua velocidade. Como conseqüência, a corrente do motor é medida continuamente e a demanda real de tensão e escorregamento do motor são calculados de um modelo de motor. A freqüência e a tensão do motor são ajustadas para garantir a operação otimizada do motor em condições variadas.

O desenvolvimento do princípio do VVC^{plus} é o resultado da necessidade de manter uma regulagem

vantajosa, sem sensores, que seja adaptada às diferentes características do motor sem precisar reduzir sua capacidade nominal.

Primeiramente e mais importante, a medição da corrente e o modelo do motor foram melhorados. A corrente é dividida em partes magnetizadoras e geradoras de torque e permite uma estimativa muito maior e mais rápida das cargas reais do motor. Agora é possível compensar mudanças rápidas de carga. Torque total assim como controle de velocidade extremamente preciso, podem agora ser obtidos mesmo em baixas velocidades ou até mesmo parado.

No "modo motor especial", podem ser utilizados motores síncronos e/ou motores em paralelo de imã permanente.

São garantidas boas propriedades de controle de torque, transições suaves de operação no limite de corrente e alta proteção de torque máximo.

Após a adaptação automática do motor, o VVC^{plus} ajuda a garantir um controle extremamente preciso do motor.

Vantagens do sistema de controle VVCplus:

- Agora, controle preciso de velocidade, mesmo a baixa velocidade.
- Resposta rápida de torque total do eixo do motor ao sinal recebido
- Boa compensação para cargas escalonadas
- Transição controlada da operação normal para a operação em limite de corrente (e vice versa)
- Proteção segura de torque máximo em todas as faixas de velocidades, também no caso de enfraquecimento do campo magnético.
- Grande tolerância à variação dos dados do motor
- Controle de torque, compreendendo ambos os controles do componente gerador de torque e do componente magnetizador da corrente:
- Torque de retenção total (loop fechado).

Como padrão, o conversor de freqüência vem com vários componentes completos que normalmente seriam adquiridos separadamente. Esses componentes completos (filtro RFI, bobinas DC, grampos de tela e porta de comunicação serial) são economizadores de espaço que simplificam a instalação, uma vez que o conversor de freqüência satisfaz a maior parte dos requisitos sem componentes suplementares.

Entradas de controle e saídas de sinal programáveis em quatro Configurações

O conversor de freqüência usa uma técnica digital que torna possível programar as diferentes entradas de controle e saídas de sinal e selecionar quatro Configurações diferentes definidas pelo usuário para todos os parâmetros.

Para o usuário, é fácil programar as funções desejadas por meio do painel de controle no conversor de freqüência ou na interface de usuário do RS 485.

Proteção contra interferência da rede elétrica
O conversor de freqüência é protegido contra os fenômenos transitórios que ocorrem na rede de alimentação elétrica, como ao ativar a correção do fator de potência ou quando os fusíveis queimam.

A tensão nominal do motor e o torque total podem ser mantidos com valores de até 10% abaixo da tensão da rede elétrica.

Interferência de menor importância na rede elétrica Como por padrão o conversor de freqüência possui bobinas de circuito intermediário, ocorre somente uma pequena quantidade de interferência harmônica da rede elétrica. Isto garante um bom fator de potência (corrente de pico mais baixo), que reduz a carga na instalação.

Proteção VLT avançada

A medição de corrente em todas as três fases do motor fornece uma proteção perfeita do conversor de freqüência contra falhas de aterramento e de curto-circuito na ligação do motor.

A monitoração constante de todas as três fases do motor permite ligar a saída do motor, por exemplo, por meio de um contator.

A monitoração eficiente das três fases da rede elétrica garante que a unidade pare no caso de queda de fase. Isso evita sobrecarga no inversor e nos capacitores do circuito intermediário, o que reduziria drasticamente a vida útil do conversor de freqüência.

Como padrão, o conversor de freqüência possui proteção térmica integral. Se ocorrer uma situação de sobrecarga térmica, esta função desligará o inversor.

Isolamento galvânico confiável

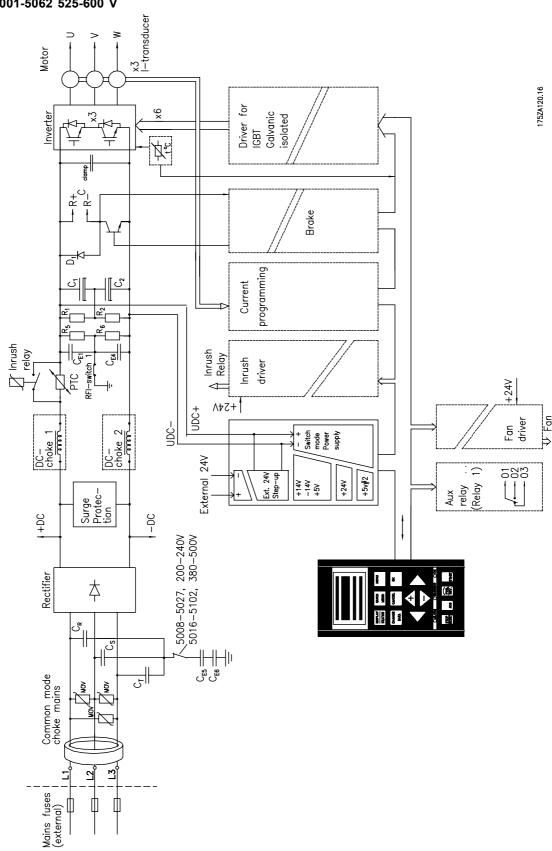
No conversor de freqüência, todos os terminais de controle assim como os terminais 1-5 (relés AUX) são alimentados por ou ligados a circuitos que satisfazem os requisitos PELV relativos ao potencial da rede elétrica.

Proteção avançada do motor

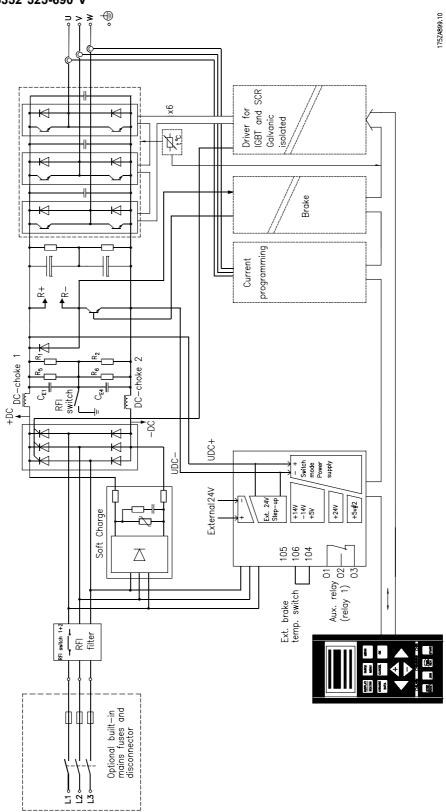
O conversor de freqüência possui proteção integrada eletrônica e térmica do motor.

O conversor de freqüência calcula a temperatura do motor com base na corrente, na freqüência e no tempo.

Diferentemente da proteção bimetálica tradicional, a proteção eletrônica leva em consideração a redução de resfriamento a baixas freqüências resultante da velocidade reduzida dos ventiladores (motores com ventilação interna).


A proteção térmica do motor é comparável a um termistor de motor normal.

Para obter proteção máxima contra superaquecimento do motor se o motor for coberto ou bloqueado, ou no caso de falha do ventilador, um termistor pode ser integrado e conectado à entrada do termistor do conversor de freqüência (terminais 53/54), consulte o parâmetro 128 das Instruções de operação.



■ Diagrama para VLT 5001-5027 200-240 V, VLT 5001-5102 380-500V, VLT 5001-5062 525-600 V

■ Diagrama Principal do VLT 5122-5552 380-500 V e VLT 5042-5352 525-690 V

Observação: A chave de RFI fica sem função nos drives 525-690 V.

■ Como selecionar o conversor de freqüência

Um conversor de freqüência deve ser selecionado com base na corrente do motor, com carga máxima na unidade. A corrente de saída nominal I _{VLT,N} deve ser igual ou maior que a corrente de motor necessária.

O conversor de freqüência é fornecido para quatro faixas de tensão de rede elétrica: 200-240 V, 380-500 V, 525-600 V e 525-690 V..

■ Modo de torque de sobrecarga normal/alto

Esta função habilita o conversor de freqüência a aplicar um torque de 100% constante, ao utilizar um motor de tamanho maior.

A escolha entre uma característica de torque normal e de torque alto, em situação de sobrecarga, é feita no parâmetro 101.

É também onde se escolhe entre uma característica de torque constante (CT) alto/normal ou uma característica de torque VT alto/normal.

Se for escolhida uma *característica de torque alto*, um motor usando o conversor de freqüência atinge um torque de até 160%, durante 1 minuto, tanto no CT quanto no VT.

Se for escolhida uma característica de torque normal, um motor de maior tamanho permite um desempenho de torque de até 110%, durante até 1 minuto, tanto no CT quanto no VT. Esta função é usada principalmente em bombas e ventiladores, uma vez que essas aplicações não requerem um torque de sobrecarga.

A vantagem de escolher uma característica de torque normal para um motor de tamanho maior é que o conversor de freqüência produzirá constantemente um torque de 100%, sem que haja uma redução, em conseqüência de um motor maior.

NOTA!:

Esta função <u>não pode</u> ser selecionada para os VLT 5001-5006, 200-240 Volts e VLT 5001-5011, 380-500 Volts.

■ Digite a seqüência de números do código para pedido

A série de conversores de freqüência VLT 5000 é oferecida em uma grande faixa de variantes. Com base na sua encomenda, é atribuído um número ao conversor de freqüência, número este que consta da plaqueta de identificação da unidade. O número pode ter a seguinte aparência:

VLT5008PT5B20EBR3DLF10A10C0

Isto significa que o conversor de freqüência está com a seguinte configuração:

- Unidade de 5,5 kW em 160% torque (Posição 1-7: VLT 5008)
- Cartão de controle de processos (Posição 8: P)
- Tensão de alimentação de 380-500 V, trifásica (Posição 9-10: T5)
- Gabinete IP20 Tipo Estante de Livros (Posição 11-13: B20)
- Versão de hardware estendido com freio (Posição 14-15: EB)
- Filtro de RFI embutido (Posição 16-17: R3)
- Fornecida com display (Posição 18-19: DL)
- Opcional de Profibus embutido (Posição 20-22: F10)
- Controlador SyncPos programável embutido (Posição 23-25: A10)

 Placas de circuito impresso sem revestimento protetor (Posição 26-27: C0)

Variantes e opcionais possíveis

A seguir, você terá uma visão geral das variantes possíveis que podem ser colocadas juntas: Acompanhe a descrição da designação, abaixo.

Unidades VLT 5001-5052, 200-240 V Designação do código do tipo: T2

Poté	Potência (kW) Tipo				Gabinete			Variante de HW			Filtro de RFI		
	Torque		C00	B20	C20	CN1	C54	ST	SB	EB	R0	R1	R3
110%	160%												
		9-10	11-13	11-13	11-13	11-13	11-13	14-15	14-15	14-15	16-17	16-17	16-17
	0.75	5001		Х	Х		Х	Х	Х	х			Х
	1.1	5002		Х	Х		Х	Х	Х	х			Х
	1.5	5003		Х	Х		х	Х	Х	Х			Х
	2.2	5004		Х	Х		х	Х	Х	Х			Х
	3	5005		Х	Х		Х	х	х	Х			х
	3.7	5006		Х	Х		Х	х	х	Х		Х	
7.5	5.5	5008			х		Х	х	Х	х	х		Х
11	7.5	5011			Х		Х	Х	х	Х	Х		Х
15	11	5016			Х		Х	Х	х	Х	Х		Х
18.5	15	5022			Х		Х	Х	х	Х	Х		Х
22	18.5	5027			Х		Х	Х	х	Х	Х		Х
30	22	5032	х			х	Х	х	Х	х	х	х	
37	30	5042	х			х	Х	х	Х	х	х	х	
45	37	5052	х			х	Х	х	х	Х	х	Х	

C00	Compact IP00	DE	Estendido com freio, desconexão e fusíveis
B20	IP20 Tipo Estante de Livros	DX	Estendido sem freio, com desconexão e fusíveis
C20	IP20 Compacto	PS	Standard com fonte de alimentação de 24 V
CN1	Nema1 Compacto	PB	Standard com fonte de alimentação de 24 V, freio, fusível e desconexão
C54	IP54 Compacto	PD	Standard com fonte de alimentação de 24 V, fusível e desconexão
ST	Standard	PF	Standard com fonte de alimentação de 24 V e fusível
SB	Standard com freio	R0	Sem filtro
EB	Estendido com freio	R1	Filtro classe A1
EX	Estendido sem freio	R3	Filtro classe A1 e B

Unidades VLT 5001-5552, 380-500 V Designação do código do tipo: T5

å	Dotência (VVV)	Tipo			Cabinoto	oto					>	Varianto do HW	MH of						Filtro do DE	100	
1	relicia (nw)				dan	212						מוומווב	, i					i	2	1	
	Torque		800	B20	C20	CN CN	C54	ST	SB	EB	ĭ	씸	ĭ	PS	В	D D	F	8	듄	22	В6
110%	160%							_													
		9-10	11-13	11-13	11-13	11-13	11-13	14-15	14-15	14-15	14-15 1	14-15 1	14-15 1	14-15 1	14-15 1	14-15	14-15	16-17	16-17	16-17	16-17
	0.75	5001		×	×		×	×	×	×										×	
	1.1	5002		×	×		×	X	×	×										×	
	1.5	5003		×	×		×	×	×	×										×	
	2.2	5004		×	×		×	×	×	×										×	
	3	5005		×	×		×	×	×	×										×	
	3.7	2006		×	×		×	×	×	×										×	
	5.5	2008		×	×		×	×	×	×										×	
	7.5	5011		×	×		×	×	×	×									×		
15	11	5016			×		×	X	X	X								×		×	
18.5	15	5022			×		×	×	×	×								×		×	
22	18.5	5027			×		×	X	×	×								×		×	
30	22	5032			×		×	X	×	×								×		×	
37	30	5042			×		×	Х	×	×								×		×	
45	37	5052			×		×	×	×	×								×		×	
22	45	5062			×		×	×	×	×								×		×	
75	22	5072			×		×	×	×	×								×		×	
06	75	5102			×		×	X	×	×								×		×	
110	06	5122	×			×	×	X	X	X	×	×	×	×	×	×	×	×	×		×
132	110	5152	×			×	×	×	×	×	×	×	×	×	×	×	×	×	×		×
160	132	5202	×			×	×	×	×	×	×	×	×	×	×	×	×	×	×		×
200	160	5252	×			×	×	X	×	×	×	×	×	×	×	×	×	×	×		×
250	200	5302	×			×	×	×	×	×	×	×	×	×	×	×	×	×	×		×
315	250	5352	×			×	×	×	×	×	×	×	×	×	×	×	×	×	×		
355	315	5452	×			×	×	X	×	×	×	×	×	×	×	×	×	×	×		
400	355	5502	×			×	×	×	×	×	×	×	×	×	×	×	×	×	×		
450	400	5552	×			×	×	X	×	×	×	×	×	×	×	×	×	×	×		
S	OOG! treamed							ü	2;000tg	24 moo o	Estandido com frais dasconavão a fiistuais	,	siovjeri								
3	Collibact IFOO							חח	ESIGNAL		alo, descr	וובאמט מ	l usi veis								
B20	IP20 Tipo Estante de Livros	de Livros						Σ	Estendic	to sem fre	Estendido sem freio, com desconexão e fusíveis	lesconex.	ão e fusí	veis							
C20	IP20 Compacto							PS	Standard	d com fon	Standard com fonte de alimentação de 24 V	nentação	de 24 V								
CN1	Nema1 Compacto							В	Standar	d com fon	te de alim	nentação	de 24 V,	freio, fus	ivel e de	Standard com fonte de alimentação de 24 V, freio, fusível e desconexão	_				
C54	IP54 Compacto							PD	Standard	d com fon	Standard com fonte de alimentação de 24 V, fusível e desconexão	nentação	de 24 V,	fusível e	descone	∍xão					
ST	Standard							PF	Standard	d com fon	Standard com fonte de alimentação de 24 V e fusível	nentação	de 24 V	e fusível							
SB	Standard com freio	•						R0	Sem filtro	o.											
EB	Estendido com freio	. <u>o</u>						꾼	Filtro classe A1	isse A1											
EX	Estendido sem freio	<u>.</u>						R3	Filtro cla	Filtro classe A1 e B	В										
								R6	Filtro LC	para ins	Filtro LC para instalações marítimas	narítimas									

Unidades VLT 5001-5062, 525-600 V Designação do código do tipo: T6

Potênc	ia (kW)	Tipo		Gabinete		Variante de HW		Filtro de RFI
Tor	que		C00	C20	CN1	ST	EB	R0
110%	160%							
		9-10	11-13	11-13	11-13	14-15	14-15	16-17
1.1	0.75	5001		х		Х	х	Х
1.5	1.1	5002		Х		х	х	х
2.2	1.5	5003		Х		х	х	х
3.0	2.2	5004		Х		х	х	х
4.0	3.0	5005		Х		х	х	х
5.5	4.0	5006		Х		х	х	х
7.5	5.5	5008		Х		х	х	х
7.5	7.5	5011		х		х	х	х
15	11	5016		х		х	х	х
18.5	15	5022		х		х	х	х
22	18.5	5027		х		х	х	х
30	22	5032		х		Х	Х	х
37	30	5042		х		Х	Х	х
45	37	5052		х		Х	Х	х
55	45	5062		X		х	x	x

Unidades VLT 5042-5352, 525-690 V Designação do código do tipo: T7

Potênci	a (kW)	Tipo	(Sabinete	Э				Varia	açőes d	le hard	ware				Filtro o	de RFI
Tord	que		C00	CN1	C54	ST	SB	EB	EX	DE	DX	PS	PB	PD	PF	R0	R1 ¹
110%	160%																
		9-10	11-13	11-13	11-13	14-15	14-15	14-15	14-15	14-15	14-15	14-15	14-15	14-15	14-15	16-17	16-17
45	37	5042	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
55	45	5052	Х	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ
75	55	5062	Х	Χ	Χ	X	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ
90	75	5072	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
110	90	5102	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
132	110	5122	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
160	132	5152	X	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ
200	160	5202	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
250	200	5252	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
315	250	5302	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
400	315	5352	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ

1. R1 não está disponível com as variantes DX, PF e PD

Tensão (posição 9-10)

Os drives estão disponíveis em três tensões nominais. Esteja ciente de que alguns drives, com tensão de alimentação de 500 V, correspondem a um motor com potência maior que 400 V - consulte os dados técnicos individuais.

- T2 tensão de alimentação de 200-240 V trifásica
- T5- tensão de alimentação de 380-500 V trifásica
- T6- tensão de alimentação de 525-600 V trifásica
- T7- tensão de alimentação de 525-690 V trifásica

Variantes de gabinetes (posição 11-13)

As unidades do Tipo Estante de Livros estão disponíveis para uso em cabines de controle - o desenho esguio acomoda muitas unidades compactos.

 o desenho esguio acomoda muitas unidades em uma única cabine. As unidades Compactas foram desenhadas para montagem em paredes ou máquinas. Unidades com potências maiores também estão disponíveis como unidades IP00, para montagem em cabines de controle.

- C00 gabinete IP00 Compacto
- B20 gabinete IP20 Tipo Estante de Livros
- C20 gabinete IP20 Compacto
- CN1 gabinete Nema1 Compacto, também satisfazendo às especificações do IP20/21
- C54 gabinete IP54 Compacto, também satisfazendo às demandas do NEMA12

Variações de hardware (posições 14-15)

As variações de hardware diferem, dependendo da potência.

- ST hardware padrão
- SB hardware padrão e circuito chopper adicional do freio
- EB Hardware estendido (fonte de alimentação de 24 V externa, para backup do cartão de controle e conexões de distribuição da carga) e um circuito chopper adicional do freio

- EX Hardware estendido (fonte de alimentação de 24 V externa, para backup do cartão de controle e conexões de distribuição da carga)
- DE Hardware estendido (fonte de alimentação de 24 V externa para backup da placa de controle e conexões de distribuição de carga), um circuito chopper adicional do freio, desconexões e fusíveis
- DX Hardware estendido (fonte de alimentação de 24 V externa para backup do cartão de controle e conexões de distribuição da carga), desconexões e fusíveis
- PS Hardware padrão com fonte de alimentação de 24 V externa para backup do cartão de controle
- PB Hardware padrão com fonte de alimentação de 24 V externa para backup do cartão de controle, circuito chopper do freio, fusíveis e desconexões
- PD Hardware padrão com fonte de alimentação de 24 V externa para backup do cartão de controle, fusíveis de rede elétrica e opção de desconexão
- PF Hardware padrão com fonte de alimentação de 24 V externa para backup do cartão de controle e fusíveis de rede elétrica embutidos

Variantes de filtro de RFI (posição 16-17) As variantes diferentes do filtro de RFI oferecem a possibilidade de conformidade com a classe A1 e a classe B, de acordo com a EN55011.

- R0 Nenhum desempenho de filtro é especificado
- R1 Em conformidade com o filtro classe A1
- R3 Em conformidade com as classes A1 e B
- R6 Em conformidade com as aprovações marítimas (VLT 5122-5302, 380-500 V)

A conformidade depende do comprimento do cabo Esteja ciente de que para algumas potências os filtros vêm sempre embutidos de fábrica.

Display (posição 18-19)

A unidade de controle (display e teclado)

- D0 Sem display na unidade (que não é possível para os gabinetes IP54 e IP21 VLT 5352-5552, 380-480 V)
- DL Display fornecido com a unidade

Opcional de Fieldbus (posição 20-22)

Há uma ampla seleção de opcionais de fieldbus de alto desempenho disponível

- F0 Sem opcional de fieldbus embutido
- F10 Profibus DP V0/V1 12 Mbaud
- F13 Profibus DP V0/FMS 12 Mbaud
- F20 Modbus Plus
- F30 DeviceNet
- · F40 LonWorks Topologia livre
- F41 LonWorks 78 kbps
- F42 LonWorks 1,25 Mbps

• F50 - Interbus

Opcionais de aplicação (posição 23-25)

Há diferentes opcionais de aplicação disponíveis para melhorar a funcionalidade do conversor de fregüência

- A00 Nenhum opcional embutido
- A10 Controlador SyncPos programável (incompatível com o Modbus Plus e LonWorks)
- A11 Controlador SyncPos programável (não é possível com o Modbus Plus e LonWorks)
- A12 Controlador de posicionamento (incompatível com o Modbus Plus e LonWorks)
- A31 Relés adicionais 4 relés para 250 VCA (incompatível com as opções de fieldbus)

Revestimento protetor (posição 26-27)

Para aumentar a proteção do drive contra ambientes poluídos, é possível encomendar placas de circuito impresso revestidos.

- · C0 Placas sem revestimento protetor (VLT 5352-5552, 380-500 V e VLT 5042-5352, 525-690 V), disponível somente com placas revestidas
- · C1 Placas com revestimento protetor

■ Formulário para pedidos Série VLT 5000

- Código de tipos Faixas de potência Faixas de utilização 5001 P 5002 Tensões de alimentação 5003 T2 5004 Т5 5005 5006 Т6 T7 5008 5011 Gabinete 5016 B20 5022 C00 5027 C20 5032 C54 5042 5052 CN1 5062 Opções de hardware 5072 5102 5122 SB 5152 PS 5202 5252 PB PD 5302 5352 PF 5402 EB 5452 5502 5552 EX DE 5602 DX Filtro RFI RO R1 R3 R6 Unidade de controle (LCP) DO DL Opção da placa de bus F00 Número de F10 unidades F13 deste tipo F20 Data de F30 fornecimento F40 requerida F41 Encomendado por: F42 F50 Com placa de relé (não com a opção "fieldbus") A00 A10 <u>Data:</u> 175ZA896.15 A11 Guarde uma cópia do formulário de encomenda. Preencha—o e envie—o por A12 carta ou fax para o escritório de A31 vendas da Danfoss mais próximo. Revestimento protetor CO C1

■ Seleção de módulos e acessórios

A Danfoss oferece um grande número de módulos e acessórios para o VLT série 5000.

■ Módulo de filtro LC

O filtro LC reduz o tempo de subida da tensão (dV/dt) e o ripple de corrente (ΔI) no motor, com isso tornando a corrente e a tensão quase senoidais. O ruído acústico do motor é, portanto, reduzido ao mínimo.

Vide também as instruções MI.56.DX.51.

■ Unidade de controle LCP

Unidade de controle com display e teclado para programação de conversores de freqüência VLT. Disponível como opção para as unidades IP 00 e IP 20.

Invólucro: IP 65.

■ Kits de montagem remota do LCP

A opção de kit remoto torna possível mover o monitor para longe do conversor de freqüência, por exemplo, para o painel frontal de uma cabine integrada.

Dados técnicos

Invólucro: Frente do IP 65

Comprimento máximo

do cabo

entre o VLT e a unidade: 3 m

Padrão de

comunicação: RS 422

Também é feito referência às instruções MI.56.AX.51 (IP 20) e MI.56.GX.52 (IP 54).

■ Tampa superior IP 4x

A tampa superior IP 4x é um elemento opcional para o invólucro que está disponível para as unidades Compactas IP 20.

Se for utilizada uma tampa IP 4x, a unidade IP 20 é atualizada para ficar em conformidade com o invólucro IP 4x na parte superior. Na prática, isto significa que a unidade fica em conformidade com a IP 40 nas superfícies superior e horizontal.

A tampa superior encontra-se disponível para as seguintes unidades Compactas:

VLT tipo 5001-5006, 200-240 V

VLT tipo 5001-5011, 380-500 V

VLT tipo 5001-5011, 525-600 V

■ Tampa de terminal

Com uma tampa de terminal, é possível montar-se remotamente uma unidade IP 20, tipo VLT 5008-5052. A tampa de terminal está disponível para as seguintes unidades compactas:

VLT tipo 5008-5027, 200-240 V

VLT tipo 5016-5102, 380-500 V

VLT tipo 5016-5062, 525-600 V

■ Contactores

A Danfoss também fabrica uma gama completa de contactores.

■ Resistências de freio

Os resistores de freio são usados em aplicações onde é necessária alta potência ou uma elevada carga de inércia tiver que ser interrompida. O resistor de freio é usado para remover a energia, consulte também as instruções MI.50.SX.YY e MI.90.FX.YY.

■ Filtro de harmônicas

As correntes harmônicas não afetam diretamente o consumo de energia, mas têm um impacto nas seguintes condições:

A corrente total mais alta que deve ser definida pelas instalações

- Aumentos de carga no transformador (às vezes, requer um transformador maior ou componentes mais modernos)
- Aumentos na perda de calor no transformador e na instalação
- Em alguns casos, demandas de cabos maiores, interruptores e fusíveis

Distorção de tensão mais alta devido à corrente mais alta

 Aumento no risco de distúrbio de equipamento eletrônico conectado à mesma grade

Uma alta porcentagem na carga do retificador (por exemplo, conversores de freqüência) aumentará a corrente harmônica, que deve ser reduzida para evitar as conseqüências mencionadas anteriormente. Dessa forma, o conversor de freqüência tem, como padrão, bobinas CC incorporadas, que reduzem a corrente total em aproximadamente 40% (em relação a dispositivos sem disposição de supressão harmônica), diminuindo para 40-45% ThiD.

Em alguns casos, precisa-se de mais supressão (por exemplo, componentes mais modernos com conversores de freqüência). Para esta finalidade, a Danfoss pode oferecer dois filtros harmônicos avançados, AHF05 e AHF10, diminuindo a corrente harmônica para 5% e 10%, respectivamente. Para obter mais detalhes, consulte a instrução MG.80.BX.YY.

■ Ferramentas de Software de PC Software para PC - MCT 10

Todos os drives estão equipados com uma porta de comunicação serial. Disponibilizamos uma ferramenta de PC para comunicação entre o PC e o conversor de freqüências, o Software MCT 10 Set-up da Ferramenta de Controle de Movimento do VLT.

Software MCT 10 Set-up

O MCT 10 foi desenvolvido como uma ferramenta fácil de se usar para definir os parâmetros nos conversores de fregüências.

O Software MCT 10 Set-up sera útil para:

- Planejamento de uma rede de comunicações off-line. O MCT 10 contém um banco de dados de conversores de freqüências completo.
- Atribuição de conversores de freqüências on line
- Gravação de configurações de todos os conversores de freqüências
- Substituição de um drive em uma rede
- Expansão de uma rede existente
- Drives desenvolvidos futuramente serão suportados

Suporte de Software MCT 10 para o Profibus DP-V1, por meio de uma Conexão Master classe 2. Isto torna possível ler/gravar parâmetros on line, em um conversor de frequências, através de rede Profibus. Isto eliminará a necessidade de uma rede extra para comunicação.

Os Módulos do Software MCT 10 Set-up

Os seguintes módulos estão incluídos no pacote de software:

Software MCT 10 Set-up

Programação dos parâmetros Copiar de e para os conversores de freqüências Documentação e impressão das programações de parâmetros, inclusive diagramas

SyncPos

Criando o programa SyncPos

Número para colocação de pedido:

Coloque o pedido do CD, que contém o software de instalação do MCT 10, usando o número de código 130B1000.

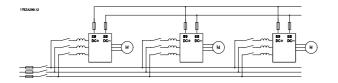
MCT 31

A ferramenta de PC para cálculo de harmônicas do MCT 31 permite estimar facilmente a distorção de harmônicas em uma determinada aplicação. Tanto a distorção de harmônicas dos conversores de freqüências da Danfoss quanto a dos conversores similares, com diferentes medidas adicionais de redução de harmônicas, como por exemplo os filtros AHF da Danfoss e os retificadores de pulso 12-18 podem ser calculadas.

Número para colocação de pedido:

Encomende o CD que contém a ferramenta de PC MCT 31, usando o número de código 130B1031.

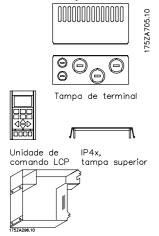
■ Reatores de linha para aplicações de divisão de carga

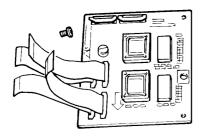

Os reatores de linha são usados quando conectar conversores de freqüência unidos em uma aplicação de divisão de carga.

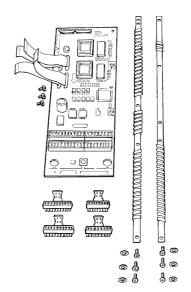
Unidades 200 - 240 V

-					
VLT	Nominal	Entrada	Tensão	Indutividade	Pedido
tipo	potência no CT	corrente	queda		número
	[kW]	[A]	[%]	[mH]	
5001	0.75	3.4	1.7	1.934	175U0021
5002	1.10	4.8	1.7	1.387	175U0024
5003	1.50	7.1	1.7	1.050	175U0025
5004	2.20	9.5	1.7	0.808	175U0026
5005	3.0	11.5	1.7	0.603	175U0028
5006	4.0	14.5	1.7	0.490	175U0029
5008	5.5	32.0	1.7	0.230	175U0030
5011	7.5	46.0	1.7	0.167	175U0032
5016	11.0	61.0	1.7	0.123	175U0034
5022	15.0	73.0	1.7	0.102	175U0036
5027	18.5	88.0	1.7	0.083	175U0047

Unidades 380 -500 V


	VLT	Nominal	Entrada	Tensão	Indutividade	Pedido
	tipo	potência no CT	corrente	queda		número
		[kW]	[A]	[%]	[mH]	
5001		0.75	2.3	1	3.196	175U0015
5002		1.1	2.6	1	2.827	175U0017
5003		1.5	3.8	1	1.934	175U0021
5004		2.2	5.3	1	1.387	175U0024
5005		3	7.0	1	1.050	175U0025
5006		4	9.1	1	0.808	175U0026
5008		5.5	12.2	1	0.603	175U0028
5011		7.5	15.0	1	0.490	175U0029
5016		11	32.0	1	0.230	175U0030
5022		15	37.5	1	0.196	175U0031
5027		18.5	44.0	1	0.167	175U0032
5032		22	60.0	1	0.123	175U0034
5042		30	72.0	1	0.102	175U0036
5052		37	89.0	1	0.083	175U0047
5062		45	104.0	1	0.070	175U1009
5072		55	144.6	1	0.051	175U0070
5102		75	174.1	_1	0.042	175U0071


Consulte também a instrução MI.50.NX.YY para obter mais informações.


■ Acessórios para o VLT da Série 5000

Tampa inferior do IP 20

Memoría opcional

Aplicação opcional

■ Números para pedidos, hardware diversos:

Tipo	Descrição	N°. para pedido
IP 4x tampa superior/NEMA 1 kit1)	Opção, VLT 5001-5006, 200-240 V	175Z0928
IP 4x tampa superior/NEMA 1 kit1)	Opção, VLT 5001-5011, 380-500 V e 525-600 V	175Z0928
Placa de ligação NEMA 122)	Opção, VLT 5001-5006, 200-240 V	175H4195
Placa de ligação NEMA 122)	Opção, VLT 5001-5011, 380-500 V	175H4195
Tampa terminal do IP 20	Opção, VLT 5008-5016, 200-240 V	175Z4622
Tampa terminal do IP 20	Opção, VLT 5022-5027, 200-240 V	175Z4623
Tampa terminal do IP 20	Opção, VLT 5016-5032, 380-500 V e 525-600 V	175Z4622
Tampa terminal do IP 20	Opção, VLT 5042-5062, 380-500 V e 525-600 V	175Z4623
Tampa terminal do IP 20	Opção, VLT 5072-5102, 380-500 V	175Z4280
Tampa inferior do IP 20	VLT 5032-5052, 200 - 240 V	176F1800
Kit do Adaptador de Terminal	VLT 5032-5052, 200 - 240 V IP 00/Nema 1(IP 20), ST	176F1805
Kit do Adaptador de Terminal	VLT 5032-5052, 200 - 240 V IP 00/Nema 1(IP 20), SB	176F1806
Kit do Adaptador de Terminal	VLT 5032-5052, 200 - 240 V IP 00/Nema 1(IP 20), EB	176F1807
Kit do Adaptador de Terminal	VLT 5032-5052, 200 - 240 V IP 54, ST	176F1808
Kit do Adaptador de Terminal	VLT 5032-5052, 200 - 240 V IP 54, SB	176F1809
Conversor do encoder / 5 V TTL Lines	driver / 24 V CC	175Z1929

Kits de Instalação da Rittal

Tipo	Descrição	N °. do Pedido
Gabinete Rittal TS8 para o IP003)	Kit de instalação para o gabinete com 1800 mm de altura, VLT5122-5152;	176F1824
	380-500 V, VLT 5042-5152, 525-690 V	
Gabinete Rittal TS8 para o IP003)	Kit de instalação para o gabinete com 2000 mm de altura, VLT5122-5152,	176F1826
	380-500 V; VLT 5042-5152, 525-690 V	
Gabinete Rittal TS8 para o IP003)	Kit de instalação para o gabinete com 1800 mm de altura, VLT5202-5302,	176F1823
	380-500 V; VLT 5202-5352, 525-690 V	
Gabinete Rittal TS8 para o IP003)	Kit de instalação para o gabinete com 2000 mm de altura, VLT5202-5302,	176F1825
	380-500 V; VLT 5202-5352, 525-690 V	
Gabinete Rittal TS8 para o IP003)	Kit de instalação para o gabinete com 2000 mm de altura, VLT5352-5552,	176F1850
	380-500 V	
Suporte para os gabinetes IP21 e IP54 3)	Opcional, VLT5122-5302, 380-500 V; VLT 5042-5352, 525-690 V	176F1827
Kit de blindagem de rede elétrica	Kit de proteção: : VLT 5122-5302, 380-500 V	176F0799
	VLT 5042-5352, 525-690 V	
	Kit de proteção: : VLT 5352-5552, 380-500 V	176F1851

¹⁾ A tampa superior IP 4xNEMA aplica-se apenas às unidades Compact IP 20 e destina-se unicamente a superfícies horizontais compatíveis com IP 4x. O kit também contém uma chapa de ligação (UL).

■ Números de pedido, opções do cartão

de controle etc.:

Painel de controle local:

-			
Tipo	Descrição	Nº de pedido	
Opção de Painel de	Painel de controle local separado,	175Z0401	
controle local IP 65	somente para unidades IP 20		
Kit de montagem remota	Kit de montagem remota para Painel	175Z0850	inclui cabo de 3 m
do Painel de controle	de controle local, para unidades IP		
local/IP00/IP20/NEMA 1	00/20		
Kit de montagem remota	Kit de montagem remota para Painel	175Z7802	inclui cabo de 3 m
do Painel de controle local	de controle local, para unidades IP 54		
IP 54			
Cabo para Painel de	Cabo separado	175Z0929	cabo de 3 m
controle local			

²⁾ A placa de ligação NEMA 12 (UL) aplica-se somente às unidades IP 54 compactas.

³⁾ Para detalhes: Consulte o Guia de Instalação de Alta Potência, MI.90.JX.YY.

Painel de controle local: Unidade de controle com display e teclado.

Fornecido exclusivamente com Painel de controle local.

1. A tampa superior IP 4xNEMA 1 é somente para unidades Compact IP 20 e destina-se unicamente a superfícies horizontais compatíveis com IP 4x. O kit também contém uma placa de ligação (UL).

2. A placa de ligação NEMA 12 (UL) é somente para unidades IP 54 compactas.

Opçoes de barramento de campo e acessórios:

Profibus:		Não	Revestido
			Revestido
The c	Descrip	revestido	NIO ala sa aliala
Tipo Profibus opcão DP V0/V1	Descrição	Nº de pedido	N° de pedido 175Z2625
	Opção de memória inclusa	175Z0404	1/5/2025
Profibus opção DP V0/V1	exclusive opção de memória	175Z0402	47570700
Profibus opção DP V0/FMS	Opção de memória incl.	175Z3722	175Z3723
Tipo	Descrição	N	l° de pedido
Conector Profibus Sub D9	VLT 5001-5027, 200-240 V		75Z3568
para IP 20 / IP 00	VLT 5001-5102, 380-500 V		
•	VLT 5001-5062, 525-600 V		
	VLT 5032-5052, 200-240 V	1	76F1822
LonWorks:			
Opção LonWorks, Free topology	Opção de memória inclusa	176F1500	176F1503
Opção LonWorks, Free topology	exclusive opção de memória	176F1512	
Opção LonWorks, 78 KBPS	Opção de memória inclusa	176F1501	176F1504
Opção LonWorks, 78 KBPS	exclusive opção de memória	176F1513	
Opção LonWorks, 1,25 MBPS	Opção de memória inclusa	176F1502	176F1505
Opção LonWorks, 1,25 MBPS	exclusive opção de memória	176F1514	
DeviceNet:			
Opção DeviceNet	Opção de memória inclusa	176F1580	176F1581
Opção DeviceNet	exclusive opção de memória	176F1584	1701 1301
	Storage of the storag		
Modbus:			
Modbus Plus para unidades Compact	Opção de memória inclusa	176F1551	176F1553
Modbus Plus para unidades Compact	Exclusive opção de memória	176F1559	
Modbus Plus para unidades Bookstyle	Opção de memória inclusa	176F1550	176F1552
Modbus Plus para unidades Bookstyle	Exclusive opção de memória	176F1558	
Modbus RTU	Não-montado na fábrica	175Z3362	
Interbus:			
Interbus	Opção de memória inclusa	175Z3122	175Z3191
	- - - - - - - - - - - - - -		

Exclusive opção de memória

175Z2900

Interbus

Opções de aplicativo:

Controlador programável SyncPos	Opção de aplicativo	175Z0833	175Z3029
Controlador sincronizador	Opção de aplicativo	175Z3053	175Z3056
Controlador de posicionamento	Opção de aplicativo	175Z3055	175Z3057
Opção de cartão de relê	Opção de aplicativo	175Z2500	175Z2901
Opção Winder	Não-montado na fábrica, SW	175Z3245	_
	versão 3.40		
Opção de rotação do anel	Não-montado na fábrica, SW	175Z3463	_
	versão 3.41		
Opção Wobble	Não-montado na fábrica, SW	175Z3467	
	versão 3.41		

As opções podem ser adquiridas como opções incorporadas na fábrica, consulte as informações para pedidos.

Para obter informações sobre barramento de campo e compatibilidade da opção de aplicativo com versões anteriores de software, entre em contato com o fornecedor Danfoss.

Se as opções de Fieldbus tiverem que ser utilizadas sem a opção de aplicação, uma versão com a opção de memória deverá ser solicitada.

■ Filtros LC para VLT da Série 5000

Quando um motor é controlado por um conversor de freqüência, o ruído de ressonância será audivel no motor. Tal ruído, que é resultado do projeto do motor, ocorre devido ao chaveamento do inversor no conversor de freqüência. A freqüência do ruído de ressonância corresponde, dessa forma, à freqüência de chaveamento do conversor de freqüência.

Para o VLT da Série 5000, a Danfoss poderá fornecer um filtro LC para absorver o ruído acústico do motor.

O filtro reduz o tempo de subida da tensão, a tensão máxima de carga U_{PEAK} e o ripple de corrente ΔI no motor, tornando a corrente e a tensão quase senoidais. Com isso, o ruído acústico do motor é reduzido ao mínimo.

Por causa da corrente de ondulação nas bobinas, haverá algum ruído oriundo das bobinas. Este problema pode ser resolvido integrando-se o filtro a um gabinete.

■ Números para pedido, módulos de filtro LC Alimentação de rede elétrica 3 x 200 - 240 V

Torque de sobre	carga alto					
Filtro LC para	Filtro LC	Corrente	Torque máximo	Freqüência máx.	Dissipação de	Nº. do
Tipo de VLT	gabinete	nominal em 200 V	em TC/TV	de saída	potência	pedido
5001-5003	IP 20 Tipo Estante de	7,8 A	160%	120 Hz		175Z0825
	Livros					
5004-5006	IP 20 Tipo Estante de	15,2 A	160%	120 Hz		175Z0826
	Livros					
5001-5006	IP 20 Compacto	15,2 A	160%	120 Hz		175Z0832
5008	IP 00 Compacto	25 A	160%	60 Hz	85 W	175Z4600
5011	IP 00 Compacto	32 A	160%	60 Hz	90 W	175Z4601
5016	IP 00 Compacto	46 A	160%	60 Hz	110 W	175Z4602
5022	IP 00 Compacto	61 A	160%	60 Hz	170 W	175Z4603
5027	IP 00 Compacto	73 A	160%	60 Hz	250 W	175Z4604
5032	IP 20 Compacto	88 A	150 %	60 Hz		175Z4700
5045	IP 20 Compacto	115 A	150 %	60 Hz		175Z4702
5052	IP 20 Compacto	143 A	150 %	60 Hz		175Z4702
Torque de sobre	carga normal					
5008	IP 00 Compacto	32 A	110%	60 Hz	90 W	175Z4601
5011	IP 00 Compacto	46 A	110%	60 Hz	110 W	175Z4602
5016	IP 00 Compacto	61 A	110%	60 Hz	170 W	175Z4603
5022	IP 00 Compacto	73 A	110%	60 Hz	250 W	175Z4604
5027	IP 00 Compacto	88 A	110%	60 Hz	320 W	175Z4605
5032	IP 20 Compacto	115 A	110 %	60 Hz		175Z4702
5042	IP 20 Compacto	143 A	110 %	60 Hz		175Z4702
5052	IP 20 Compacto	170 A	110 %	60 Hz		175Z4703

NOTA!:

Quando forem utilizados filtros LC a freqüência de chaveamento deve ser 4,5 kHz (consulte o parâmetro 411).

Alimentação da rede elétrica 3 x380 -500 V

			_			
Filtro LC para tipo	Filtro LC	Corrente nominal a	Torque	Freqüência máx.	Dissipação de	Nº. do
VLT	gabinete	400/500 V	máximo em TC/TV	de saída	potência	pedido
5001-5005	IP 20 Tipo Estante de Livros	7,2 A / 6,3 A	160%	120 Hz		175Z0825
5006-5011	IP 20 Tipo Estante de	16 A / 14,5 A	160%	120 Hz		175Z0826
3000-3011	•	10 A / 14,5 A	100%	120 HZ		17320620
5001-5011	Livros IP 20 Compacto	16 A / 14,5 A	160%	120 Hz		175Z0832
5016	IP 00 Compacto	24 A / 21,7 A	160%	60 Hz	170 W	175Z4606
5022	IP 00 Compacto	32 A / 27,9 A	160%	60 Hz	180 W	175Z4607
5027	IP 00 Compacto	37,5 A / 32 A	160%	60 Hz	190 W	175Z4608
5032	IP 00 Compacto	44 A / 41,4 A	160%	60 Hz	210 W	175Z4609
5042	IP 00 Compacto	61 A / 54 A	160%	60 Hz	290 W	175Z4610
5052	IP 00 Compacto	73 A / 65 A	160%	60 Hz	410 W	175Z4611
5062	IP 20 Compacto	90 A / 80 A	160 %	60 Hz	400 W	175Z4700
5072	IP 20 Compacto	106 A / 106 A	160 %	60 Hz	500 W	175Z4701
5102	IP 20 Compacto	147 A / 130 A	160 %	60 Hz	600 W	175Z4702
5122	IP 20 Compacto	177 A / 160 A	160 %	60 Hz	750 W	175Z4703
5152	IP 20 Compacto	212 A / 190 A	160 %	60 Hz	750 W	175Z4704
5202	IP 20 Compacto	260 A / 240 A	160 %	60 Hz	900 W	175Z4705
5252	IP 20 Compacto	315 A / 302 A	160 %	60 Hz	1000 W	175Z4706
5302	IP 20 Compacto	395 A / 361 A	160 %	60 Hz	1100 W	175Z4707
5352	IP 20 Compacto	480 A / 443 A	160 %	60 Hz	1700 W	175Z3139
5452	IP 20 Compacto	600 A / 540 A	160 %	60 Hz	2100 W	175Z3140
5502	IP 20 Compacto	658 A / 590 A	160 %	60 Hz	2100 W	175Z3141
5552	IP 20 Compacto	745 A / 678 A	160 %	60 Hz	2500 W	175Z3142
Torque de sobreca	arga normal					
5016	IP 00 Compacto	32 A / 27,9 A	110%	60 Hz	180 W	175Z4607
5022	IP 00 Compacto	37,5 A / 32 A	110%	60 Hz	190 W	175Z4608
5027	IP 00 Compacto	44 A / 41,4 A	110%	60 Hz	210 W	175Z4609
5032	IP 00 Compacto	61 A / 54 A	110%	60 Hz	290 W	175Z4610
5042	IP 00 Compacto	73 A / 65 A	110%	60 Hz	410 W	175Z4611
5052	IP 00 Compacto	90 A / 78 A	110%	60 Hz	480 W	175Z4612
5062	IP 20 Compacto	106 A / 106 A	110 %	60 Hz	500 W	175Z4701
5072	IP 20 Compacto	147 A / 130 A	110 %	60 Hz	600 W	175Z4702
5102	IP 20 Compacto	177 A / 160 A	110 %	60 Hz	750 W	175Z4703
5122	IP 20 Compacto	212 A / 190 A	110 %	60 Hz	750 W	175Z4704
5152	IP 20 Compacto	260 A / 240 A	110 %	60 Hz	900 W	175Z4705
5202	IP 20 Compacto	315 A / 302 A	110 %	60 Hz	1000 W	175Z4706
5252	IP 20 Compacto	368 A / 361 A	110 %	60 Hz	1100 W	175Z4707
5302	IP 20 Compacto	480 A / 443 A	110 %	60 Hz	1700 W	175Z3139
5352	IP 20 Compacto	600 A / 540 A	110 %	60 Hz	2100 W	175Z3140
5452	IP 20 Compacto	658 A / 590 A	110 %	60 Hz	2100 W	175Z3141
5502	IP 20 Compacto	745 A / 678 A	110 %	60 Hz	2500 W	175Z3142
5552	IP 20 Compacto	800 A / 730 A	110%	60 Hz	Entre em contato o	com a Danfoss.

Filtros LC para os VLT 5001-5062, 525 - 600 V, entre em contato com a Danfoss.

NOTA!:

Quando forem utilizados filtros LC a freqüência de chaveamento deve ser 4,5 kHz (consulte o parâmetro 411).

Os filtros LC do VLT 5352-5502 podem ser utilizados na freqüência de chaveamento de 3 kHz. Utilize o padrão de chave 60 $^{\circ}$ AVM

Torque de sobrecarga de	Torque de sobrecarga	Corrente nominal a	Freqüência de saída máxima	Potência	N°. para pedido do	N°. para pedido
160%	de 110%	690 V	(Hz)	dissipada (W)	IP00	do IP20
5042		46	60	240	130B2223	130B2258
5052	5042	54	60	290	130B2223	130B2258
5062	5052	73	60	390	130B2225	130B2260
5072	5062	86	60	480	130B2225	130B2260
5102	5072	108	60	600	130B2226	130B2261
5122	5102	131	60	550	130B2228	130B2263
5152	5122	155	60	680	130B2228	130B2263
5202	5152	192	60	920	130B2229	130B2264
5252	5202	242	60	750	130B2231	130B2266
5302	5252	290	60	1000	130B2231	130B2266
5352	5302	344	60	1050	130B2232	130B2267
	5352	400	60	1150	130B2234	130B2269

Filtros dU/dt para o VLT 5000

Os filtros dU/dt reduzem a dU/dt a aprox. 500 V / μ s. Estes filtros não reduzem o ruído ou o Upeak.

NOTA!:

Ao utilizar os filtros dU/dt, a freqüência de chaveamento deve ser 1,5 kHz (consulte o parâmetro 411).

Alimentação de	rede elétrica 3 x 690 V					
Torque de	Torque de sobrecarga	Corrente nominal a	Freqüência de	Potência	N°. para pedido do	N°. para pedido
sobrecarga de	de 110%	690 V	saída máxima	dissipada (W)	IP00	do IP20
160%			(Hz)	u.oo.pada (11)	00	
5042		46	60	85	130B2153	130B2187
5052	5042	54	60	90	130B2154	130B2188
5062	5052	73	60	100	130B2155	130B2189
5072	5062	86	60	110	130B2156	130B2190
5102	5072	108	60	120	130B2157	130B2191
5122	5102	131	60	150	130B2158	130B2192
5152	5102	155	60	180	130B2159	130B2193
5202	5152	192	60	190	130B2160	130B2194
5252	5202	242	60	210	130B2161	130B2195
5302	5252	290	60	350	130B2162	130B2196
5352	5302	344	60	480	130B2163	130B2197
	5352	400	60	540	130B2165	130B2199

■ Resistores de freio, VLT 5001 - 5052 / 200 - 240 V

Resistores de freio padrões

	10% do ciclo útil				40% do ciclo úti	
	Resistência	Potência	No. de Código.	Resistência	Potência	No. de Código.
VLT	[ohm]	[kW]		[ohm]	[kW]	
5001	145	0.065	175U1820	145	0.260	175U1920
5002	90	0.095	175U1821	90	0.430	175U1921
5003	65	0.250	175U1822	65	0.80	175U1922
5004	50	0.285	175U1823	50	1.00	175U1923
5005	35	0.430	175U1824	35	1.35	175U1924
5006	25	0.8	175U1825	25	3.00	175U1925
5008	20	1.0	175U1826	20	3.50	175U1926
5011	15	1.8	175U1827	15	5.00	175U1927
5016	10	2.8	175U1828	10	9.0	175U1928
5022	7	4.0	175U1829	7	10.0	175U1929
5027	6	4.8	175U1830	6	12.7	175U1930
5032	4.7	6	175U1954	Não disponível	Não disponível	Não disponível
5042	3.3	8	175U1955	Não disponível	Não disponível	Não disponível
5052	2.7	10	175U1956	Não disponível	Não disponível	Não disponível

Consulte a instrução MI.90.FX.YY para obter mais informações.

Resistores de freio flatpack para transportadores horizontais

Tipo de VLT	Motor [kW]	Resistor [ohm]	Tamanho	Número para	Ciclo útil máx. [%]
				pedido	
5001	0.75	150	150 Ω 100 W	175U1005	14.0
5001	0.75	150	150 Ω 200 W	175U0989	40.0
5002	1.1	100	100 Ω 100 W	175U1006	8.0
5002	1.1	100	100 Ω 200 W	175U0991	20.0
5003	1.5	72	72 Ω 200 W	175U0992	16.0
5004	2.2	47	50 Ω 200 W	175U0993	9.0
5005	3	35	35 Ω 200 W	175U0994	5.5
5005	3	35	72 Ω 200 W	2 x 175U0992 ¹	12.0
5006	4	25	50 Ω 200 W	2 x 175U0993 ¹	11.0
5008	5.5	20	40 Ω 200 W	2 x 175U0996 ¹	6.5
5011	7.5	13	27 Ω 200 W	2 x 175U0995 ¹	4.0

1. Encomendar 2 peças.

Ângulo de montagem para resistor flatpack 100 W 175U0011

Ângulo de montagem para resistor flatpack 200 W 175U0009

Quadro de montagem para 1 resistor estreito (tipo estante de livro delgado) 175U0002

Quadro de montagem para 2 resistores estreitos (tipo estante de livro delgado) 175U0004 Quadro de montagem para 2 resistores largos (Tipo estante de livros largo) 175U0003

Consulte a *Instrução MI.50.BX*.YY para obter mais informações.

■ Números para pedidos, Resistores de Freio, VLT 5001 - 5552 / 380 - 500 V

Resistores de freio padrão

		10% do ciclo	útil		40% do ciclo útil	
	Resistência	Potência	No. de Código.	Resistência	Potência	No. de Código
VLT	[ohm]	[kW]		[ohm]	[kW]	
5001	620	0.065	175U1840	620	0.260	175U1940
5002	425	0.095	175U1841	425	0.430	175U1941
5003	310	0.250	175U1842	310	0.80	175U1942
5004	210	0.285	175U1843	210	1.35	175U1943
5005	150	0.430	175U1844	150	2.0	175U1944
5006	110	0.60	175U1845	110	2.4	175U1945
5008	80	0.85	175U1846	80	3.0	175U1946
5011	65	1.0	175U1847	65	4.5	175U1947
5016	40	1.8	175U1848	40	5.0	175U1948
5022	30	2.8	175U1849	30	9.3	175U1949
5027	25	3.5	175U1850	25	12.7	175U1950
5032	20	4.0	175U1851	20	13.0	175U1951
5042	15	4.8	175U1852	15	15.6	175U1952
5052	12	5.5	175U1853	12	19.0	175U1953
5062	9.8	15	175U2008	9.8	38.0	175U2008
5072	7.3	13	175U0069	5.7	38.0	175U0068
5102	5.7	15	175U0067	4.7	45.0	175U0066
5122 ²⁾	3.8	22	175U1960			
5152 ²⁾	3.2	27	175U1961			
5202 ²⁾	2.6	32	175U1962			
5252 ²⁾	2.1	39	175U1963			•
5302 ²⁾	1.65	56	2 x 175U1061 ¹⁾			•
5352-5552 ²)	2.6	72	2 x 175U1062 ^{1) 3)}			

- 1. Encomendar 2 peças.
- 2. Resistores selecionados para ciclo de 300 segundos.
- 3. Classificação satisfeita até o VLT 5452, o torque é reduzido para o VLT 5502 e VLT 5552.

Consulte a instrução MI.90.FX.YY para obter mais informações.

Resistores de freio flatpack para transportadores horizontais

Tipo de VLT	Motor [kW]	Resistor [ohm]	Tamanho	Número para	Ciclo útil máx. [%]
				pedido	
5001	0.75	630	620 Ω 100 W	175U1001	14.0
5001	0.75	630	620 Ω 200 W	175U0982	40.0
5002	1.1	430	430 Ω 100 W	175U1002	8.0
5002	1.1	430	430 Ω 200 W	175U0983	20.0
5003	1.5	320	310 Ω 200 W	175U0984	16.0
5004	2.2	215	210 Ω 200 W	175U0987	9.0
5005	3	150	150 Ω 200 W	175U0989	5.5
5005	3	150	300 Ω 200 W	2 x 175U0985 ¹	12.0
5006	4	120	240 Ω 200 W	2 x 175U0986 ¹	11.0
5008	5.5	82	160 Ω 200 W	2 x 175U0988 ¹	6.5
5011	7.5	65	130 Ω 200 W	2 x 175U0990 ¹	4.0

1. Encomendar 2 peças.

Ângulo de montagem para o resistor flatpack 100 W 175U0011

Ângulo de montagem para o resistor Flatpack 200 W 175U0009

Suporte de montagem para 1 resistor estreito (Tipo Estante de Livros delgada) 175U0002 Suporte de montagem para 2 resistores estreitos (Tipo Estante de Livros delgada) 175U0004

Suporte de montagem para 2 resistores largos (Tipo estante de livros larga) 175U0003

Consulte a Instrução MI.50.BX.YY para obter mais informações.

Para o VLT 5001-5062, 550-600 V, entre em contacto com Danfoss.

■ Números para pedidos, Filtros de harmônicas

Os Filtros de harmônicas são utilizados para reduzir as freqüências harmônicas de rede elétrica

AHF 010: 10% de distorção de corrente
AHF 005: 5% de distorção de corrente

380-415 V, 50 Hz

I _{AHF,N}	Utilizado Motor Típico	Número Danfoss para	pedidos	VLT 5000
	[kW]	AHF 005	AHF 010	
10 A	4, 5.5	175G6600	175G6622	5006, 5008
19 A	7.5	175G6601	175G6623	5011
26 A	11	175G6602	175G6624	5016
35 A	15, 18.5	175G6603	175G6625	5022, 5027
43 A	22	175G6604	175G6626	5032
72 A	30, 37	175G6605	175G6627	5042, 5052
101 A	45. 55	175G6606	175G6628	5062, 5072
144 A	75	175G6607	175G6629	5102
180 A	90	175G6608	175G6630	5122
217 A	110	175G6609	175G6631	5152
289 A	132, 160	175G6610	175G6632	5202, 5252
324 A		175G6611	175G6633	
370 A	200	175G6688	175G6691	5302
Valores nominais ma	niores podem ser consequidos,	conectando-se unidades	de filtro em paralelo	
434 A	250	Duas unida	ades de 217 A	5352
578 A	315	Duas unidades de 289 A		5452
613 A	355	Unidades de 289 A e 324 A		5502
648 A	400	Duas unida	ades de 324 A	5552

Observe que a correspondência do conversor de freqüência Danfoss com o filtro é calculada a priori, com base em 400 V e assumindo uma carga típica de motor (de 4 ou 2 pólos): a serie VLT 5000 está baseada em uma aplicação de torque máx. de 160%. A corrente pré-calculada do filtro pode ser diferente dos valores nominais da corrente de entrada do VLT 5000, como estabelecido nas respectivas instruções funcionais, uma vez que esses números baseiam-se em condições operacionais diferentes.

440-480 V, 60 Hz

I _{AHF,N}	Utilizado Motor Típico	Número Danfoss par	a pedidos	VLT 5000
,	[HP]	AHF 005	AHF 010	
19 A	10, 15	175G6612	175G6634	5011, 5016
26 A	20	175G6613	175G6635	5022
35 A	25, 30	175G6614	175G6636	5027, 5032
43 A	40	175G6615	175G6637	5042
72 A	50, 60	175G6616	175G6638	5052, 5062
101 A	75	175G6617	175G6639	5072
144 A	100, 125	175G6618	175G6640	5102, 5122
180 A	150	175G6619	175G6641	5152
217 A	200	175G6620	175G6642	5202
289 A	250	175G6621	175G6643	5252
324 A	300	175G6689	175G6692	5302
370 A	350	175G6690	175G6693	5352
Valores nominais ma	niores podem ser consequidos.	conectando-se unidades	de filtro em paralelo	
506 A	450	Unidades	de 217 A e 289 A	5452
578 A	500	Duas unidades de 289 A		5502
648 A	600	Duas uni	dades de 324 A	5552

Observe que a correspondência do conversor de freqüência Danfoss com o filtro é calculada a priori, com base em 480 V e assumindo uma carga típica de motor (de 4 ou 2 pólos): a serie VLT 5000 está baseada em uma aplicação de torque máx. de 160%. A corrente pré-calculada do filtro pode ser diferente dos valores nominais da corrente de entrada do VLT 5000, como estabelecido nas respectivas instruções funcionais, uma vez que esses números baseiam-se em condições operacionais diferentes.

500 V, 50 Hz

I _{AHF,N}	Utilizado Motor Típico	Número Danfoss para	pedidos	
,	[kW]	AHF 005	AHF 010	VLT 5000
10 A	4, 5.5	175G6644	175G6656	5006, 5008
19 A	7.5, 11	175G6645	175G6657	5011, 5016
26 A	15, 18.5	175G6646	175G6658	5022, 5027
35 A	22	175G6647	175G6659	5032
43 A	30	175G6648	175G6660	5042
72 A	37, 45	175G6649	175G6661	5052, 5062
101 A	55, 75	175G6650	175G6662	5062, 5072
144 A	90, 110	175G6651	175G6663	5102, 5122
180 A	132	175G6652	175G6664	5152
217 A	160	175G6653	175G6665	5202
289 A	200	175G6654	175G6666	5252
324 A	250	175G6655	175G6667	5302
Valores nominais ma	niores podem ser conseguidos,	conectando-se unidades	de filtro em paralelo	
434 A	315	Duas unid	ades de 217 A	5352
469 A	355	Unidades de	e 180 A e 289 A	5452
578 A	400	Duas unid	ades de 289 A	5502
648 A	500	Duas unid	ades de 324 A	5552

Observe que a correspondência do conversor de freqüência Danfoss com o filtro é calculada a priori, com base em 500 V e assumindo uma carga típica de motor. a série VLT 5000 baseia-se em uma aplicação de torque de 160%. A corrente pré-calculada do filtro pode ser diferente dos valores nominais da corrente de entrada do VLT 5000, como estabelecido nas respectivas instruções funcionais, uma vez que esses números baseiam-se em condições operacionais diferentes. Para outras combinações, consulte o MG.80.BX.YY.

690 V, 50 Hz

I AHF,N	Utilizado motor	N°. para pedido	N°. para pedido	VLT 5000 160%	VLT 5000 110%
	típico	AHF 005	AHF 010		
	(kW)				
43	37, 45	130B2328	130B2293	5042, 5042	5042
72	55, 75	130B2330	130B2295	5062, 5072	5052, 5062
101	90	130B2331	130B2296	5102	5072
144	110, 132	130B2333	130B2298	5122, 5152	5102, 5122
180	160	130B2334	130B2299	5202	5152
217	200	130B2335	130B2300	5252	5202
289	250	130B2331 &	130B2301	5302	5252
		130B2333			
324	315	130B2333 &	130B2302	5352	5302
		130B2334			
370	400	130B2334 &	130B2304		5352
		130B2335			

■ Dados técnicos gerais

Alimentação de rede elétrica (L1, L2, L3):	
Tensão de alimentação, unidades de 200-240 V Tensão de alimentação, unidades de 380-500 V Unidades com tensão de alimentação 525-600 V Unidades com tensão de alimentação 525-690 V Freqüência de alimentação Consulte a seção sobre condições especiais no Guia de Design	3 x 380/400/415/440/460/500 V ±10% 3 x 525/550/575/600 V ±10% 3 x 525/550/575/600/690 V ±10%
Desbalanceamento máx. da tensão de alimentação:	
VLT 5001-5011, 380-500 V e 525-600 V e VLT 5001-5006, 200-240 V VLT 5016-5062, 380-500 V e 525-600 V e VLT 5008-5027, 200-240 V VLT 5072-5552, 380-500 V e VLT 5032-5052, 200-240 V	±3,0% da tensão de alimentação nominal ±3,0% da tensão de alimentação nominal 0,90 nominal com carga nominal próximo da unidade (>0,98)
Dados de saída do VLT (U, V, W):	
Tensão de saída Freqüência de saída do VLT 5001-5027, 200-240 V Freqüência de saída do VLT 5032-5052, 200-240 V Freqüência de saída do VLT 5001-5052, 380-500 V Freqüência de saída do VLT 5062-5302, 380-500 V Freqüência de saída do VLT 5352-5552, 380-500 V Freqüência de saída do VLT 5001-5011, 525-600 V Freqüência de saída do VLT 5016-5052, 525-600 V Freqüência de saída do VLT 5062, 525-600 V Freqüência de saída do VLT 5042-5302, 525-690 V Freqüência de saída do VLT 5352, 525-690 V Freqüência de saída do VLT 5352, 525-690 V Tensão nominal do motor, unidades de 200-240 V Tensão nominal do motor, unidades de 380-500 V Tensão nominal do motor, unidades de 525-690 V Freqüência nominal do motor, unidades de 525-690 V Tensão nominal do motor, unidades de 525-690 V	0-132 Hz, 0-1000 Hz 0-132 Hz, 0-450 Hz 0-132 Hz, 0-1000 Hz 0-132 Hz, 0-1000 Hz 0-132 Hz, 0-450 Hz 0-132 Hz, 0-300 Hz 0-132 Hz, 0-700 Hz 0-132 Hz, 0-1000 Hz 0-132 Hz, 0-1000 Hz 0-132 Hz, 0-450 Hz 0-132 Hz, 0-200 Hz 0-132 Hz, 0-150 Hz 200/208/220/230/240 V 380/400/415/440/460/480/500 V 525/550/575 V 525/550/575/690 V 50/60 Hz
Características de torque:	
Torque de partida, VLT 5001-5027, 200-240 V e VLT 5001-5552, 380- Torque de partida, VLT 5032-5052, 200-240 V Torque de partida, VLT 5001-5062, 525-600 V Torque de partida, VLT 5042-5352, 525-690 V Torque de partida Torque de aceleração	
Torque de sobrecarga, VLT 5001-5027, 200-240 V e VLT 5001-5552 VLT 5001-5062, 525-600 V e VLT 5042-5352, 525-690 V	

sobrecarga alto (160%). Para torque de sobrecarga normal (110%), os valores são menores.

Frenagem em nível de torque de sobrecarga alto Duração do ciclo (s) Ciclo útil da frenagem com Ciclo útil da frenagem em torque torque 100% excessivo (150/160%) 200-240 V 5001-5027 120 Contínua 40% 5032-5052 300 10% 10% 380-500 V 5001-5102 120 Contínua 40% 5122-5252 600 Contínua 10% 40% 10% 5302 600 40%¹⁾ 5352-5552 600 $10\%^{2}$ 525-600 V 5001-5062 120 Contínua 40% 525-690 V 5042-5352 600 40% 10%

Para o VLT 5502, o torque é de 145%.

Para o VLT 5552, o torque é de 130%.

Cartão de controle, entradas digitais:

N°. de entradas digitais programáveis	8
N°. do terminal	
Nível de tensão	ógica PNP positiva)
Nível de tensão, '0' lógico	< 5 V CC
Nível de tensão, '1' lógico	>10 V CC
Tensão máxima na entrada	28 V CC
Resistência de entrada, R _i	2 kΩ
Tempo de varredura por entrada	3 ms
Isolamento galvânico confiável: Todas as entradas digitais são isoladas galvanicamente da	ì
tensão de alimentação (PELV). Além disto, as entradas digitais podem ser isoladas dos ou	tros
terminais no cartão de controle pela utilização de uma fonte externa de 24 V CC e abrindo	а
chave 4. O VLT 5001-5062, 525-600 V não atende à PELV.	
Cartão de controle, entradas analógicas:	

Número de entradas de tensão analógica programáveis/entradas de te	ermistor 2
N°. do terminal	53, 54
Nível de tensão	0 - ±10 V CC (graduável)
Resistência de entrada, R _i	10 kΩ
N°. de entradas de corrente analógica programáveis	
N°. do Terminal	60
Faixa de corrente	0/4 - ±20 mA (graduável)
Resistência de entrada, R _i	200 Ω
Resolução	10 bits + sinal
Precisão na entrada	Erro máx. 1% do fundo de escala
Tempo de varredura por entrada	3 ms
N°. terminal terra	55
Isolamento galvânico confiável: Todas as entradas analógicas são is	soladas galvanicamente da
1001amorko garrantoo oomavoi. Todab ab orkitadab ahalogidab bab k	5

tensão de alimentação (PELV)* e das demais entradas e saídas.

¹⁾ VLT 5502 com torque de 90%. Com torque de 100%, o ciclo útil de frenagem é 13%. Com rede elétrica nominal de 441-500 V, torque de 100%, o ciclo útil de frenagem é 17%.

VLT 5552 com torque de 80%. Com torque de 100%, o ciclo útil de frenagem é 8%.

²⁾ Com base no ciclo de 300 segundos:

^{*} VLT 5001-5062, 525-600 V não atende à PELV.

Cartão de controle, entradas de pulso/encoder:	
Nº. de entradas programáveis de pulso/encoder	4
N°. do terminal	17, 29, 32, 33
Freqüência máx. no terminal 17	5 kHz
Freqüência máx. nos terminais 29, 32, 33	20 kHz (PNP coletor aberto)
Freqüência máx. nos terminais 29, 32, 33	65 kHz (Push-pull)
Nível de tensão	0-24 V CC (lógica PNP positiva)
Nível de tensão, '0' lógico	
Nível de tensão, '1' lógico	
Tensão máxima na entrada	
Resistência de entrada, R _i	
Tempo de varredura por entrada	
Resolução	
Precisão (100-1 kHz), terminais 17, 29, 33	
Precisão (1-5 kHz), terminal 17	
Precisão (1-65 kHz), terminais 29, 33	
Isolamento galvânico confiável: Todas as entradas de pulso/encoder são iso de alimentação (PELV)*. Além disso, as entradas de pulso e do encoder po	
terminais, no cartão de controle, conectando uma fonte externa de 24 V CC	
* VLT 5001-5062, 525-600 V não atende à PELV.	e abrillao a chave 4.
VET 3001-3002, 323-000 V Hab atchide a T EEV.	
Cartão de controle, saídas digital/pulso e analógica:	
N°. de saídas digitais e analógicas programáveis	2
N°. do terminal	42, 45
Nível de tensão na saída digital/pulso	0 - 24 V CC
Carga mínima para a terra (terminal 39) na saída digital/pulso	
Faixas de freqüência (saída digital usada como saída de pulso)	
Faixa de corrente na saída analógica	
Carga máxima para a terra (terminal 39) na saída analógica	
Precisão da saída analógica:	
Resolução na saída analógica	
Isolamento galvânico confiável: Todas as saídas digitais e analógicas são	_
da tensão de alimentação (PELV)* bem como das outras entradas e saída	S.
* VLT 5001-5062, 525-600 V não atende à PELV.	
Cartão de controle, alimentação de 24 V CC:	
N°. do terminal	12, 13
Carga máx. (proteção a curto-circuito)	200 mA
Nº. dos terminais terra	20, 39
Isolamento galvânico confiável: A fonte de alimentação de 24 V CC está ga	Ilvanicamente isolada da tensão
de alimentação (PELV)*, mas está no mesmo potencial que as saídas ana	lógicas.
* VLT 5001-5062, 525-600 V não atende à PELV.	
Cartão de controle, comunicação serial RS 485:	
	60 (TV: DV:\ 60 (TV DV:\
N° de terminal	00 (174, 874), 09 (17-, 87-)
Isolamento galvânico de segurança: Isolamento galvânico total.	

Saídas de relé: 1) Carga máx. de terminal (CC1(IEC 947)) em 4-5, cartão de controle 25 V CC, 2 A / 50 V CC, 1 A, 50 W Carga máx. de terminal (CC1) em 4-5, cartão de controle para aplicações UL/cUL 30 V CA, 1 A / 42.5 V CC, 1 A Nºs dos terminais, cartão de potência (cargas resistiva e indutiva) 1-3 (freio ativado), 1-2 (freio desativado) Carga máx. de terminal (CC-1 (IEC 947)) em 1-3, 1-2, cartão de potência . 25 V CC, 2 A / 50 V CC, 1 A, 50 W Carga mín. de terminal (CA/CC) nos terminais 1-3, 1-2, cartão de potência 24 V CC, 10 mA / 24 V CA, 100 mA 1) Valores nominais para um limite de até 300.000 operações. Para cargas indutivas, o número de operações é reduzido de 50%, alternativamente a corrente pode ser reduzida de 50%, mantendo, desse modo, o limite de 300.000 operações. Terminais do resistor de freio (somente nas unidades SB, EB, DE e PB): Fonte de alimentação externa de 24 V CC: Pré-fusível mín. 6 A Isolamento galvânico confiável: Isolamento galvânico total se a fonte de alimentação externa de 24 V CC também for do tipo PELV. Comprimentos dos cabos, seções transversais e conectores Comprimento máx. do cabo do motor, cabo blindado VLT 5011 525-600 V e VLT 5008, modo sobrecarga normal, Comprimento máx. do cabo da divisão de carga, cabo blindado 25 m, desde o conversor de fregüência à barra CC. Seção transversal máx. do cabo para motor, freio e divisão de carga, consulte os dados Elétricos Seção transversal máxima do cabo da alimentação CC de 24 V externa Se for necessário estar em conformidade com o UL/cUL, deve-se utilizar o cabo de cobre com classe de temperatura de 60/75°C (VLT 5001 - 5062 380 - 500 V, 525 - 600 V e VLT 5001 - 5027 200 - 240 V). Se for necessário estar em conformidade com o UL/cUL, deve-se utilizar o cabo de cobre com classe de temperatura de 75°C (VLT 5072 - 5552 380 - 500 V, VLT 5032 - 5052 200 - 240 V, VLT 5042 - 5352 525 - 690 V). Os conectores são para uso com cabos de cobre e alumínio, a menos que seja especificado um outro. Precisão da leitura do visor (parâmetros 009-012): Corrente do motor [6] carga de 0-140% Erro máx: ± 2,0% da corrente de saída nominal % torque [7], carga de -100 - 140% Erro máx: ±5% do tamanho nominal do motor

Saída [8], potência HP [9], carga de 0-90%	Erro máx: ±5% da saída nominal
Características de controle:	
Faixa de freqüência	0 - 1000 Hz
Resolução na freqüência de saída	
Tempo de resposta do sistema	
Velocidade, faixa de controle (malha aberta)	1:100 de velocidade de sincronização
Velocidade, faixa de controle (malha fechada)	1:1000 de velocidade de sincronização
Velocidade, precisão (malha aberta)	< 1500 rpm: erro máx. ± 7.5 rpm
	>1500 rpm: erro máx. de 0,5% da velocidade atual
Velocidade, precisão (malha fechada)	
	•
Precisão do controle de torque (malha aberta)	0-150 rpm: erro máx. ±20% de torque nominal
	150-1500 rpm: erro máx. ±10% de torque nominal
Precisão do controle de torque (retorno de velocidade)	
Todas as características de controle são baseadas em un	n motor de 4 pólos assíncrono
Externos:	
Gabinete (depende da potência) Teste de vibração	ntório. 3 direções durante 2 horas (IEC 68-2-34/35/36) 93 % (IEC 68-2-3) para armazenagem/transporte condensação (IEC 721-3-3; classe 3K3) para operação
Temperatura ambiente mín. com desempenho reduzido	
Temperatura durante a armazenagem/transporte	
Altitude máx. acima do nível do mar	
Derating para altitude acima de 1000 m, acima do nível de	
Normas EMC aplicadas, Emissão	
Normas EMC aplicadas, Imunidade EN 61 EN 61000-4-5, EN 61000-4-6, VDE 0160/1990.12	
Consulte a seção sobre condições especiais no Guia de	Desian
O VLT 5001-5062, 525 - 600 V não está em conformidade	_

Proteção da Série VLT 5000:

- Proteção térmica eletrônica do motor contra sobrecarga.
- A monitoração da temperatura de dissipação de calor garante que o conversor de freqüência seja desligado, se a temperatura atingir 90°C para o IP 00, IP 20 e Nema 1. Para o IP 54, a temperatura de corte é de 80°C. A proteção de sobrecarga térmica só pode ser desarmada quando a temperatura do dissipador cair abaixo dos 60°C.

Para as unidades mencionadas abaixo, os limites são os seguintes:

- O VLT 5122, 380-500 V, desliga em 75°C e pode ser reinicializado se a temperatura cair abaixo de 60°C.
- O VLT 5152, 380-500 V, desliga em 80°C e pode ser reinicializado se a temperatura cair abaixo de 60°C.
- O VLT 5202, 380-500 V, desliga em 95°C e pode ser reinicializado se a temperatura cair abaixo de 65°C.
- O VLT 5252, 380-500 V, desliga em 95°C e pode ser reinicializado se a temperatura cair abaixo de 65°C.
- O VLT 5302, 380-500 V, desliga em 105°C e pode ser reinicializado se a temperatura cair abaixo de 75°C.
- O VLT 5352-5552, 380-500 V, desliga em 85°C e pode ser reinicializado se a temperatura cair abaixo de 60°C.
- O VLT 5042-5122, 525-690 V, desliga em 75°C e pode ser reinicializado se a temperatura cair abaixo de 60°C.
- O VLT 5152, 525-690 V, desliga em 80°C e pode ser reinicializado se a temperatura cair abaixo de 60°C.
- O VLT 5202-5352, 525-690 V, desliga em 100°C e pode ser reinicializado se a temperatura cair abaixo de 70°C.
- · O conversor de freqüência também está protegido contra curtos-circuitos, nos terminais U, V, W do motor.
- · O conversor de freqüência tem proteção contra falha de aterramento, nos terminais U, V, W do motor.
- A monitoração da tensão do circuito intermediário assegura o desligamento do conversor de freqüência, quando a tensão nesses circuitos se tornar demasiado alta ou baixa.
- Se uma fase do motor estiver ausente, o conversor de freqüência é desligado. Consulte o parâmetro 234 Monitor da fase do motor.
- · Se houver uma falha de rede elétrica, o conversor de freqüência é capaz de iniciar uma desaceleração controlada.
- · Se uma das fases de rede elétrica estiver ausente, o conversor de freqüência desliga quando for aplicada carga ao motor.

■ Dados elétricos

■ Tipo Livro e Compacto, Rede elétrica 3 x 200 - 240 V

De acordo com os re	quisitos internacionais	Tipo de VLT	5001	5002	5003	5004	5005	5006
<u>a_a</u>	Corrente de saída	I _{VLT,N} [A]	3.7	5.4	7.8	10.6	12.5	15.2
	_	I _{VLT, MAX} (60 s) [A]	5.9	8.6	12.5	17	20	24.3
	Saída (240 V)	S _{VLT,N} [kVA]	1.5	2.2	3.2	4.4	5.2	6.3
0000	Típica saída de eixo	P _{VLT,N} [kW]	0.75	1.1	1.5	2.2	3.0	3.7
	Típica saída de eixo	P _{VLT,N} [HP]	1	1.5	2	3	4	5
	Seção transversal máx. do cab freio e distribuição de carga [m	•	4/10	4/10	4/10	4/10	4/10	4/10
	Corrente de entrada nominal	(200 V)I _{L,N} [A]	3.4	4.8	7.1	9.5	11.5	14.5
	Seção transversal máx do cabo potência [mm²]/[AWG] ²)),	4/10	4/10	4/10	4/10	4/10	4/10
	Pré-fusíveis máx	[-]/UL ¹⁾ [A]	16/10	16/10	16/15	25/20	25/25	35/30
	Eficiência ³⁾		0.95	0.95	0.95	0.95	0.95	0.95
	Peso IP 20 EB Tipo Livro	[kg]	7	7	7	9	9	9.5
	Peso IP 20 EB Compacto	[kg]	8	8	8	10	10	10
	Peso IP 54 Compacto	[kg]	11.5	11.5	11.5	13.5	13.5	13.5
	Perda de potência em carga máx.	[W]	58	76	95	126	172	194
	Invólucro		IP 20/	IP 20/ IP54				

- 1. Para o tipo de fusível, consulte a seção Fusíveis.
- 2. American Wire Gauge.
- 3. Medido com cabos de motor blindados de 30 m com valores nominais de carga e freqüência.

■ Compacto, Alimentação de rede elétrica 3 x 200- 240 V

e acordo com os requisitos	internacionais	Tipo de VLT		5008	5011	5016	5022	5027	
	Torque de sobrecarga norm	al (110 %):							
	Corrente de saída	I _{VLT,N} [A]		32	46	61.2	73	88	
		I _{VLT, MAX} (60 s) [A]		35.2	50.6	67.3	80.3	96.8	
	Saída (240 V)	S _{VLT,N} [kVA]		13.3	19.1	25.4	30.3	36.6	
	Típica saída de eixo	P _{VLT,N} [kW]		7.5	11	15	18.5	22	
88	Típica saída de eixo	P _{VLT,N} [HP]		10	15	20	25	30	
	Torque de sobrecarga alta (160 %):								
	Corrente de saída	I _{VLT,N} [A]		25	32	46	61.2	73	
0000		I _{VLT, MAX} (60 s) [A]		40	51.2	73.6	97.9	116.8	
	Saída (240 V)	S _{VLT,N} [kVA]		10	13	19	25	30	
	Típica saída de eixo	P _{VLT,N} [kW]		5.5	7.5	11	15	18.5	
	Típica saída de eixo	P _{VLT,N} [HP]		7.5	10	15	20	25	
	Seção transversal máx. do ca	bo para o motor,	IP 54	16/6	16/6	35/2	35/2	50/0	
	freio e distribuição de carga [n	mm ² /AWG] ²⁾⁵⁾	IP 20	16/6	35/2	35/2	35/2	50/0	
	Seção transversal mín. do cat	oo para motor, freio		10/0	1010	1010	10/0	1010	
	e distribuição de carga ⁴⁾ [mm²	² /AWG] ²⁾		10/8	10/8	10/8	10/8	16/6	
	Corrente de entrada nominal	(200 V) I _{L,N} [A]		32	46	61	73	88	
	Seção transversal máx. do ca	abo,	IP 54	16/6	16/6	35/2	35/2	50/0	
	potência [mm²]/[AWG]²)5)		IP 20	16/6	35/2	35/2	35/2	50/0	
[A A	Pré-fusíveis máx	[-]/UL ¹⁾ [A]		50	60	80	125	125	
	Eficiência ³⁾			0.95	0.95	0.95	0.95	0.95	
	Peso IP 20 EB	[kg]		21	25	27	34	36	
0000 0000	Peso IP 54	[kg]		38	40	53	55	56	
	Perda de energia à carga máx								
	- torque de sobrecarga alta	[W]							
	(160 %)			340	426	626	833	994	
	- torque de sobrecarga	[W]							
	normal (110 %)			426	545	783	1042	1243	
				IP 20/					
	Invólucro			IP 54					

- 1. Para o tipo de fusível, consulte a seção Fusíveis.
- 2. American Wire Gauge.
- 3. Medido com cabos de motor blindados de 30 m com valores nominais de carga e freqüência.
- 4. A seção transversal mínima do cabo é a menor seção transversal permitida para instalação nos terminais para compatibilidade com IP 20. Obedeça sempre as normas nacionais e locais sobre seção transversal mínima do cabo.
- 5. Cabos de alumínio com seção transversal acima de 35 mm² devem ser conectados para uso de um conector de Al-Cu.

■ Compacto, Alimentação de rede elétrica 3 x 200- 240 V

e acordo com os requisito	s internacionais	Tipo de VLT	5032	5042	5052
	Torque de sobrecarga normal (110 %):				
	Corrente de saída	I _{VLT,N} [A] (200-230 V)	115	143	170
		I _{VLT, MAX} (60 s) [A] (200-230 V)	127	158	187
		I _{VLT,N} [A] (231-240 V)	104	130	154
		I _{VLT, MAX} (60 s) [A] (231-240 V)	115	143	170
	Saída	S _{VLT,N} [kVA] (208 V)	41	52	61
		S _{VLT,N} [kVA] (230 V)	46	57	68
		S _{VLT,N} [kVA] (240 V)	43	54	64
	Típica saída de eixo	[HP] (208 V)	40	50	60
8	Típica saída de eixo	[kW] (230 V)	30	37	45
	Torque de sobrecarga alta (160 %):				
	Corrente de saída	I _{VLT,N} [A] (200-230 V)	88	115	143
0000		I _{VLT, MAX} [A] (200-230 V)	132	173	215
		I _{VLT,N} [A] (231-240 V)	80	104	130
		I _{VLT, MAX} [A] (231-240 V)	120	285	195
	Saída	S _{VLT,N} [kVA] (208 V)	32	41	52
nn		S _{VLT,N} [kVA] (230 V)	35	46	57
		S _{VLT,N} [kVA] (240 V)	33	43	54
	Típica saída de eixo	[HP] (208 V)	30	40	50
		[kW] (230 V)	22	30	37
	Seção transversal máx. do cabo para o	[mm²] ^{4,6}		120	
	motor e a distribuição de carga	[AWG] ^{2,4,6}		300 mcm	
	Seção transversal máx. do cabo para	[mm²] ^{4,6}		25	
	frear	[AWG] ^{2,4,6}		4	
	Torque de sobrecarga normal (110 %):	7			
	Corrente de entrada nominal	I _{L,N} [A] (230 V)	101.3	126.6	149.9
	Torque de sobrecarga normal (150 %):	500 1 1 1			
	Corrente de entrada nominal	I _{L,N} [A] (230 V)	77,9	101,3	126,6
	Seção transversal máx. do cabo	[mm ²] ^{4,6}		120	
0 0	fonte de alimentação	[AWG] ^{2,4,6}		300 mcm	
	Seção transversal mín. do cabo para o	[mm ²] ^{4,6}		6	
	motor, fonte de	[AWG] ^{2,4,6}		8	
	alimentação e a distribuição de carga	[,		Ü	
0000	Pré-fusíveis máx. (rede elétrica) [-]/UL	[A] ¹	150/150	200/200	250/25
	Eficiência ³⁾	74	100/100	0,96-0,97	200/20
	Perda de potência	Sobrecarga normal [W]	1089	1361	1612
	- Grada de potencia	Sobrecarga flormar [W]	838	1089	1361
	Peso	<u> </u>			
		IP 00 [kg] IP 20 Nema1 [kg]	101 101	101	101 101
	Peso	IP 54 Nema12 [kg]	104	104	104

- 1. Para o tipo de fusível, consulte a seção Fusíveis.
- 2. American Wire Gauge.
- 3. Medido com cabos de motor blindados de 30 m com valores nominais de carga e freqüência.
- 4. A seção transversal máx.do cabo é a seção transversal máxima permitida para encaixar nos terminais. A seção transversal mínima do cabo é a menor seção transversal permitida para seções transversals. Obedeça sempre as normas nacionais e locais sobre seção transversal mínima do cabo.
- 5. Peso sem o contêiner de transporte.
- 6. Pino de conexão: M8 Freio: M6.

■ Tipo Estante de Livros e Compacto, Alimentação de rede elétrica 3x 380 - 500 V

acordo com os rec	quisitos internacionais	Tipo de VLT	5001	5002	5003	5004
	Corrente de saída	I _{VLT,N} [A] (380-440 V)	2.2	2.8	4.1	5.6
		I _{VLT, MAX} (60 s) [A] (380-440 V)	3.5	4.5	6.5	9
3 1		I _{VLT,N} [A] (441-500 V)	1.9	2.6	3.4	4.8
		I _{VLT, MAX} (60 s) [A] (441-500 V)	3	4.2	5.5	7.7
== <u>€</u> ≥	Saída	S _{VLT,N} [kVA] (380-440 V)	1.7	2.1	3.1	4.3
000		S _{VLT,N} [kVA] (441-500 V)	1.6	2.3	2.9	4.2
	Típica saída de eixo	P _{VLT,N} [kW]	0.75	1.1	1.5	2.2
	Típica saída de eixo	P _{VLT,N} [HP]	1	1.5	2	3
n e	Seção transversal máx. do cabo presion de distribuição de carga [mm²]	•	4/10	4/10	4/10	4/10
	Corrente de entrada nominal	_N [A] (380 V)	2.3	2.6	3.8	5.3
	Corrente de entrada nominal	I _{L,N} [A] (380 V) I _{L N} [A] (460 V)	2.3		3.8	5.3
<u>s a</u>		I _{L,N} [A] (460 V)	2.3 1.9 4/10	2.6 2.5 4/10		4.8
	Seção transversal máx. do cabo,	I _{L,N} [A] (460 V)	1.9	2.5	3.4	4.8 4/10
8 8 = - -		I _{L,N} [A] (460 V)	1.9 4/10	2.5 4/10	3.4 4/10	4.8 4/10 16/1
	Seção transversal máx. do cabo, Pré-fusíveis máx. [-]/UL ¹⁾ [A]	I _{L,N} [A] (460 V)	1.9 4/10 16/6	2.5 4/10 16/6	3.4 4/10 16/10	4.8 4/10 16/1
	Seção transversal máx. do cabo, Pré-fusíveis máx. [-]/UL ¹⁾ [A] Eficiência ³⁾	I _{L,N} [A] (460 V)	1.9 4/10 16/6 0.96	2.5 4/10 16/6 0.96	3.4 4/10 16/10 0.96	4.8 4/10 16/1 0.96
	Seção transversal máx. do cabo, Pré-fusíveis máx. [-]/UL ¹) [A] Eficiência ³) Peso IP 20 EB Tipo Livro [kg]	I _{L,N} [A] (460 V)	1.9 4/10 16/6 0.96	2.5 4/10 16/6 0.96	3.4 4/10 16/10 0.96 7	4.8 4/10 16/1 0.96 7.5
	Seção transversal máx. do cabo, Pré-fusíveis máx. [-]/UL ¹⁾ [A] Eficiência ³⁾ Peso IP 20 EB Tipo Livro [kg] Peso IP 20 EB Compacto [kg]	I _{L,N} [A] (460 V)	1.9 4/10 16/6 0.96 7 8 11.5	2.5 4/10 16/6 0.96 7 8 11.5	3.4 4/10 16/10 0.96 7 8 11.5	4.8 4/10 16/1 0.96 7.5 8.5 12
	Seção transversal máx. do cabo, Pré-fusíveis máx. [-]/UL ¹⁾ [A] Eficiência ³⁾ Peso IP 20 EB Tipo Livro [kg] Peso IP 20 EB Compacto [kg] Peso IP 54 Compacto [kg]	I _{L,N} [A] (460 V) potência [mm²]/[AWG]²)	1.9 4/10 16/6 0.96 7	2.5 4/10 16/6 0.96 7	3.4 4/10 16/10 0.96 7	4.8 4/10 16/1 0.96 7.5 8.5
	Seção transversal máx. do cabo, Pré-fusíveis máx. [-]/UL¹) [A] Eficiência ³) Peso IP 20 EB Tipo Livro [kg] Peso IP 20 EB Compacto [kg] Peso IP 54 Compacto [kg] Perda de potência em carga	I _{L,N} [A] (460 V) potência [mm²]/[AWG]²)	1.9 4/10 16/6 0.96 7 8 11.5	2.5 4/10 16/6 0.96 7 8 11.5	3.4 4/10 16/10 0.96 7 8 11.5	4.8 4/10 16/10 0.96 7.5 8.5 12

- 1. Para o tipo de fusível, consulte a seção Fusíveis.
- 2. American Wire Gauge.
- 3. Medido com cabos de motor blindados de 30 m com valores nominais de carga e freqüência.

IP 20/

IP 54

IP 20/

IP 54

IP 20/

IP 54

IP 20/

IP 54

Tipo Estante de Livros e Compacto, Alimentação de rede elétrica 3x 380 - 500 V

cordo com os requi	isitos internacionais	Tipo de VLT	5005	5006	5008	5011
	Corrente de saída	I _{VLT,N} [A] (380-440 V)	7.2	10	13	16
0		I _{VLT, MAX} (60 s) [A] (380-440 V)	11.5	16	20.8	25.6
31		I _{VLT,N} [A] (441-500 V)	6.3	8.2	11	14.5
		I _{VLT, MAX} (60 s) [A] (441-500 V)	10.1	13.1	17.6	23.2
6	Saída	S _{VLT,N} [kVA] (380-440 V)	5.5	7.6	9.9	12.2
30		S _{VLT,N} [kVA] (441-500 V)	5.5	7.1	9.5	12.6
	Típica saída de eixo	P _{VLT,N} [kW]	3.0	4.0	5.5	7.5
	Típica saída de eixo	P _{VLT,N} [HP]	4	5	7.5	10
al al	Seção transversal máx. do	Seção transversal máx. do cabo para o motor,		4/10		
3	freio e distribuição de caro	freio e distribuição de carga [mm²]/[AWG]²)			4/10	4/10
	Corrente de entrada nominal	I _{L,N} [A] (380 V)	7	9.1	12.2	15.0
		I _{L,N} [A] (460 V)	6	8.3	10.6	14.0
8 8	Seção transversal máx. do	o cabo, potência [mm²]/[AWG]²)	4/10	4/10	4/10	4/10
	Pré-fusíveis máx. [-]/UL1)	[A]	16/15	25/20	25/25	35/3
□□□ □□□ □□□ □□□ □□□ □□□ □□□ □□□	Eficiência 3)		0.96	0.96	0.96	0.96
0000	Peso IP 20 EB Tipo Livro	[kg]	7.5	9.5	9.5	9.5
	Peso IP 20 EB Compacto	[kg]	8.5	10.5	10.5	10.5
	Peso IP 54 EB Compacto	[kg]	12	14	14	14
	Perda de energia à carga	[W]	139	198	250	295
			139	190	250	295

1. Para o tipo de fusível, consulte a seção Fusíveis.

Invólucro

- 2. American Wire Gauge.
- 3. Medido com cabos de motor blindados de 30 m com valores nominais de carga e freqüência.

■ Compacto, Alimentação de rede elétrica

3 x 380 - 500 V

De acordo com as exigên	cias internacionais	Tipo de VLT		5016	5022	5027
_	Torque de sobrecarga norn	nal (110 %):				
	Corrente de saída	I _{VITN} [A] (380-440 V)		32	37.5	44
		I _{VLT, MAX} (60 s) [A] (380-440 V)		35.2	41.3	48.4
		I _{VLT,N} [A] (441-500 V)		27.9	34	41.4
		I _{VLT, MAX} (60 s) [A] (441-500 V)		30.7	37.4	45.5
	Saída	S _{VLTN} [kVA] (380-440 V)		24.4	28.6	33.5
(S		S _{VI T.N} [kVA] (441-500 V)		24.2	29.4	35.8
	Potência típica no eixo	P _{VLT,N} [kW]		15	18.5	22
	Potência típica no eixo	P _{VLT,N} [HP]		20	25	30
	Torque de sobrecarga alta	(160 %):				
<u> </u>	Corrente de saída	I _{VLT.N} [A] (380-440 V)		24	32	37.5
0000		I _{VLT, MAX} (60 s) [A] (380-440 V)		38.4	51.2	60
		I _{VLT.N} [A] (441-500 V)		21.7	27.9	34
		I _{VLT, MAX} (60 s) [A] (441-500 V)		34.7	44.6	54.4
	Saída	SVLT.N [kVA] (380-440 V)		18.3	24.4	28.6
		S _{VLT.N} [kVA] (441-500 V)		18.8	24.2	29.4
	Potência típica no eixo	P _{VLT.N} [kW]		11	15	18.5
	Potência típica no eixo	P _{VLTN} [HP]		15	20	25
	Seção transversal máx. do c	abo para o motor,	IP 54	16/6	16/6	16/6
	freio e divisão de carga [mm²	²]/[AWG] ²⁾	IP 20	16/6	16/6	35/2
	Seção transversal mín. do ca	abo para o motor,				
	freio e divisão de carga [mm2	2]/[AWG] ^{2) 4)}		10/8	10/8	10/8
	Corrente de entrada nominal	I _{I N} [A] (380 V)		32	37.5	44
		I _{I N} [A] (460 V)		27.6	34	41
	Seção transversal máx. do c	abo,	IP 54	16/6	16/6	16/6
	potência [mm 2]/[AWG]		IP 20	16/6	16/6	35/2
	Pré-fusíveis máx	[-]/UL ¹⁾ [A]		63/40	63/50	63/60
	Eficiência3)			0.96	0.96	0.96
=== 4\\(\phi\)	Peso do IP 20 EB	[kg]		21	22	27
0000	Peso do IP 54	[kg]		41	41	42
	Perda de potência em carga	máx.				
	- torque de sobrecarga alta (1	160 %) [W]		419	559	655
	- torque de sobrecarga norma	al (110 [W]				
	%)			559	655	768
	Gabinete			IP 20/	IP 20/	IP 20/
	Gabinete			IP 54	IP 54	IP 54

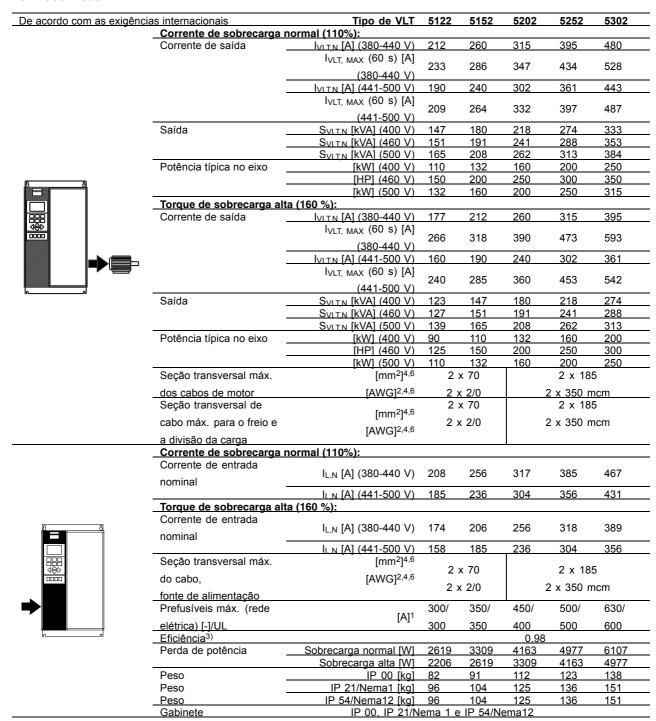
- 1. Para o tipo de fusível, consulte a seção Fusíveis.
- 2. American Wire Gauge.
- 3. Medido com cabos de motor blindados de 30 m, com valores nominais de carga e freqüência.
- 4. A seção transversal mínima do cabo é a menor seção transversal que couber nos terminais na instalação, para compatibilizar com o IP 20. Atenda sempre às normas nacionais e locais, sobre seção transversal mínima do cabo.

Compacto, Alimentação de rede elétrica 3 x 380 - 500 V

De acordo com as exigência	s internacionais	Tipo d	e VLT	5032	5042	5052
	Torque de sobrecarga no	rmal (110 %):				
	Corrente de saída	I _{VLT.N} [A] (380-4	140 V)	61	73	90
		I _{VLT. MAX} (60 s) [A] (380-4	40 V)	67.1	80.3	99
		I _{VLT.N} [A] (441-5		54	65	78
		I _{VLT, MAX} (60 s) [A] (441-5		59.4	71.5	85.8
	Saída	S _{VLT.N} [kVA] (380-4		46.5	55.6	68.6
0		S _{VLT.N} [kVA] (441-5	500 V)	46.8	56.3	67.5
	Potência típica no eixo		ı [kW]	30	37	45
	Potência típica no eixo		, [HP]	40	50	60
	Torque de sobrecarga alt	a (160 %):				
<u> </u>	Corrente de saída	I _{VLT.N} [A] (380-4	140 V)	44	61	73
0000		I _{VLT, MAX} (60 s) [A] (380-4	40 V)	70.4	97.6	116.8
		I _{VLT,N} [A] (441-5		41.4	54	65
		I _{VLT, MAX} (60 s) [A] (441-5		66.2	86	104
	Saída	SVLTN [kVA] (380-4		33.5	46.5	55.6
<u></u>		S _{VLT.N} [kVA] (441-5		35.9	46.8	56.3
•	Potência típica no eixo		ı [kW]	22	30	37
•	Potência típica no eixo		(HP)	30	40	50
•	Seção transversal máx. do		IP 54	35/2	35/2	50/0
	freio e divisão da carga [mi	n ²]/[AWG] ²⁾⁵⁾	IP20	35/2	35/2	50/0
	Seção transversal mín. do					
	freio e divisão da carga [mi			10/8	10/8	16/6
	Corrente de entrada nomin		380 V)	60	72	89
		I _{I N} [A] (4	160 V)	53	64	77
	Seção transversal máx. do	cabo.	IP 54	35/2	35/2	50/0
N A	potência [mm 2]/[AWG] ^{2) 5)}		IP 20	35/2	35/2	50/0
	Pré-fusíveis máx	[-]/UI	¹⁾ [A]	80/80	100/100	125/125
	Eficiência ³⁾		-	0.96	0.96	0.96
	Peso do IP 20 EB		[kg]	28	41	42
<u>4\$</u> 0 0000	Peso do IP 54		[kg]	54	56	56
888	Perda de potência em carg	a máx.				
	- torque de sobrecarga alta		[W]			
	%)	`		768	1065	1275
	- torque de sobrecarga nor	mal	Γ\Λ/1			
h		mai	[W]	1065	1275	1571
•	(110 %)			IP 20/	IP 20/	IP 20/
	Gabinete					
				IP 54	IP 54	IP 54

- 1. Para o tipo de fusível, consulte a seção Fusíveis.
- 2. American Wire Gauge.
- 3. Medido com cabos de motor blindados de 30 m, com valores nominais de carga e freqüência.
- 4. A seção transversal mínima do cabo é a menor seção transversal que couber nos terminais na instalação, para compatibilizar com o IP 20. Atenda sempre às normas nacionais e locais, sobre seção transversal mínima do cabo.
- 5. Cabos de alumínio, com seção transversal acima de 35 mm², devem estar conectados por meio de um conector de Al-Cu.

Compacto, Alimentação de rede elétrica 3 x 380 - 500 V


acordo com as exigênci		Tipo de VLT		5062	5072	5102
	Torque de sobrecarga no Corrente de saída	ormal (110 %): 		106	147	177
	001101110 00 001100					
		I _{VLT, MAX} (60 s) [A] (380-440 V)		117	162	195
		I _{VLT,N} [A] (441-500 V)		106	130	160
	0-1-	I _{VLT, MAX} (60 s) [A] (441-500 V)		117	143	176
	Saída	<u>S_{VITN} [kVA] (380-440 V)</u> S _{VITN} [kVA] (441-500 V)		80.8 91.8	102 113	123 139
	Potência típica no eixo	P _{VLT,N} [kW] (400 V)		<u>91.6</u> 55	75	90
8	Fotericia tipica no eixo	P _{VLT,N} [HVV] (460 V)		75	100	125
		P _{VLTN} [kW] (500 V)		75 75	90	110
□	Torque de sobrecarga al			73	90	110
1 37	Corrente de saída	I _{VITN} [A] (380-440 V)		90	106	147
70	Concine de Salda	I _{VLT, MAX} (60 s) [A] (380-440 V)		135	159	221
		I _{VLT,N} [A] (441-500 V)		80	106	130
		I _{VLT, MAX} (60 s) [A] (441-500 V)		120	159	195
	Saída	S _{VLT.N} [kVA] (380-440 V)		68.6	73.0	102
	Galda	S _{VITN} [kVA] (441-500 V)		69.3	92.0	113
n	Potência típica no eixo	P _{VLT,N} [kW] (400 V)		45	55	75
	Totoriola tipica no cixo	P _{VLT.N} [HP] (460 V)		60	75	100
		P _{VLT.N} [kW] (500 V)		55	75	90
	T VII,N IKVVI (OOO V)				150/300	150/30
	Seção transversal máx. do	o cabo para o motor,	IP 54	50/0 ⁵⁾	mcm ⁶⁾	mcm ⁶⁾
	freio e divisão de carga [m	nm²]/[AWG]²)	IP20	50/05)	120/250 mcm ⁵⁾	120/25 mcm ⁵⁾
	Seção transversal mín. do freio e divisão da carga [m			16/6	25/4	25/4
	Corrente de entrada nomir			104	145	174
	Concine de ciniada nomi	ILN [A] (460 V)		104	128	158
	Seção transversal máx. do	· • • · ·	IP 54	50/0 ⁵⁾	150/300	150/30
<u> </u>	•	,			mcm 120/250	mcm 120/25
	potência [mm ²]/[AWG] ²⁾		IP 20	50/0 ⁵⁾	mcm ⁵⁾	mcm ⁵⁾
	Pré-fusíveis máx	[-]/UL ¹⁾ [A]		160/150	225/225	250/25
4 0 0	Eficiência ³⁾			>0,97	>0,97	>0,97
0000	Peso do IP 20 EB	[kg]		43	54	54
	Peso do IP 54	[kg]		60	77	77
	Perda de potência em carç - torque de sobrecarga alta %)			1122	1058	1467
vvi	- torque de sobrecarga no	rmal [W]		1322	1467	1766
	(110 %)			1022	170/	1700
	Gabinete			IP20/	IP20/	IP20/
				IP 54	IP 54	IP 54

- 1. Para o tipo de fusível, consulte a seção Fusíveis.
- 2. American Wire Gauge.
- 3. Medido com cabos de motor blindados de 30 m, com valores nominais de carga e freqüência.
- 4. A seção transversal mínima do cabo é a menor seção transversal que couber nos terminais na instalação, para compatibilizar com o IP 20. Atenda sempre às normas nacionais e locais, sobre seção transversal mínima do cabo.
- 5. Cabos de alumínio, com seção transversal acima de 35 mm², devem estar conectados por meio de um conector de Al-Cu.
- 6. Freio e divisão da carga: 95 mm 2 / AWG 3/0

■ Compacto, Alimentação de rede elétrica

3 x 380 - 500 V

- 1. Para obter o tipo de fusível, consulte a seção Fusíveis
- 2. American Wire Gauge.
- 3. Medido com cabos de motor blindados de 30 m, com valores nominais de carga e freqüência.
- 4. A seção transversal máx. do cabo é a máxima seção transversal permitida para encaixar nos terminais. Atenda sempre às normas nacionais e locais, sobre seção transversal mínima do cabo.
- 5. Peso sem o contêiner de transporte.
- 6. Parafuso de fixação da fonte de alimentação e motor: M10; Freio e divisão da carga: M8

■ Compacto, Alimentação de rede elétrica

3 x 380 - 500 V

e acordo com as exi	gências internacionais	Tipo de VLT	5352	5452	5502	5552
	Corrente de sobrecarga	normal (110%):				
	Corrente de saída	I _{VI T,N} [A] (380-440 V)	600	658	745	800
		I _{VLT, MAX} (60 s) [A]	660	724	820	880
	-	(380-440 V) I _{VLTN} [A] (441-500 V)	540	590	678	730
	-	I _{VLT, MAX} (60 s) [A] (441-500 V)	594	649	746	803
	<u>Saída</u>	S _{VLT.N} [kVA] (400 V)	416	456	516	554
	_	S _{VLT,N} [kVA] (460 V)	430	470	540	582
		S _{VLT,N} [kVA] (500 V)	468	511	587	632
	Potência típica no eixo	[kW] (400 V)	315	355	400	450
А	_	[HP] (460 V)	450	500	550/600	600
		[kW] (500 V)	355	400	500	530
	Torque de sobrecarga al					
	Corrente de saída	I _{VLT,N} [A] (380-440 V)	480	600	658	695
4 6 0 1000		I _{VLT, MAX} (60 s) [A]	720	900	987	1042
	-	(380-440 V)				
	■ ¬ -	I _{VLT,N} [A] (441-500 V)	443	540	590	678
		I _{VLT, MAX} (60 s) [A]	665	910	005	1017
		(441-500 V)	665	810	885	1017
n	Saída	S _{VLT.N} [kVA] (400 V)	333	416	456	482
	Caida	S _{VLT.N} [kVA] (460 V)	353	430	470	540
	-	S _{VLT.N} [kVA] (500 V)	384	468	511	587
	Potência típica no eixo	[kW] (400 V)	250	315	355	400
	1 otericia tipica no cixo	[HP] (460 V)	350	450	500	550
	-	[kW] (500 V)	315	355	400	500
	Seção transversal máx.	[mm ²] ^{4,6}	313			300
	do cabo para o motor e	[AWG] ^{2,4,6}			x240	
	a divisão da carga.			4x50	00 mcm	
	Seção transversal máx.	[mm ²] ^{4,6}		2	x185	
	do cabo,	[AWG] ^{2,4,6}				
	para o freio			2x35	50 mcm	
	Corrente de sobrecarga	normal (110%):				
	Corrente de entrada nominal	I _{L,N} [A] (380-440 V)	590	647	733	787
	nominai _	I _{L.N} [A] (441-500 V)	531	580	667	718
	Torque de sobrecarga al		001	000	001	7.10
	Corrente de entrada	I _{L.N} [A] (380-440 V)	472	590	647	684
8	nominal _					
	Seção transversal máx.	I _{I.N} [A] (441-500 V) [mm ²] ^{4,6}	436	531	580	667
	do cabo da fonte de	[AWG] ^{2,4,6}		4	x240	
0000		[AVVG] ^{2,4,0}		4x50	00 mcm	
	alimentação Prefusíveis máx. (rede					
	elétrica) [-]/UL	[A] ¹	700/700	900/900	900/900	900/90
	Eficiência ³⁾			(0,98	
J	Perda de potência	Sobrecarga normal [W]	7630	7701	8879	9428
		Sobrecarga alta [W]	6005	6960	7691	7964
	Peso	IP 00 [kg]	221	234	236	277
	Peso _	IP 21/Nema1 [kg]	263	270	272	313
	Dooo	IP 54/Nema12 [kg]	262	270	272	313
	Peso	ir 54/Nemaiz įkyj	263	1 e IP 54/N		010

- 1. Para obter o tipo de fusível, consulte a seção Fusíveis
- 2. American Wire Gauge.
- 3. Medido com cabos de motor blindados de 30 m, com valores nominais de carga e freqüência.
- 4. A seção transversal máx. do cabo é a máxima seção transversal permitida para encaixar nos terminais. Atenda sempre às normas nacionais e locais, sobre seção transversal mínima do cabo.
- 5. Peso sem o contêiner de transporte.
- 6. Parafuso de fixação da fonte de alimentação, motor e divisão da carga: M10 (terminal com furo de fixação), 2xM8 (bloco terminal), M8 (freio)

■ Compacto, Rede elétrica 3 x 525 - 600 V

internacionais	Tipo de VLT	5001	5002	5003	5004
Touris de cabracarea norm	-1 (440.9/)-				
		2.6	2 9	4 1	5.2
Obreme de Sanda					5.7
					4.9
					5.4
Saída					5.0
					4.9
Típica saída de eixo					3
					4
		1.8	2.6	2.9	4.1
-		2.9	4.2	4.6	6.6
-		1.7	2.4	2.7	3.9
1		2.7	3.8	4.3	6.2
Saída		1.7	2.5	2.8	3.9
		1.7	2.4	2.7	3.9
Típica saída de eixo		0.75	1.1	1.5	2.2
Típica saída de eixo		1	1.5	2	3
Seção transversal máx. do ca					
freio e distribuição de carga [n	m ² 1/[Δ\/\/G] ²)	4/10	4/10	4/10	4/10
noto e distribuição de carga (n	т уригој				
Torque de sobrecarga norma	al (110 %):				
Corrente de entrada					
nominal	I _{L,N} [A] (550 V)	2.5	2.8	4.0	5.1
nominal					
	I _{L.N} [A] (600 V)	2.5	2.8	3.6	5.1 4.6
Torque de sobrecarga alta (I _{L.N} [A] (600 V)				
Torque de sobrecarga alta (Corrente de entrada	I _{L.N} [A] (600 V)				
Torque de sobrecarga alta (I _{L.N} [A] (600 V) 160 %): I _{L,N} [A] (550 V)	1.8	2.5	2.8	4.6
Torque de sobrecarga alta (Corrente de entrada nominal	I _{L,N} [A] (600 V) 160 %): I _{L,N} [A] (550 V) I _{L,N} [A] (600 V)	1.8	2.5 2.5 2.2	2.8 2.5	4.6
Torque de sobrecarga alta (Corrente de entrada nominal Seção transversal máx. do cal	I _{L,N} [A] (600 V) 160 %): I _{L,N} [A] (550 V) I _{L,N} [A] (600 V) Do, potência [mm²]/[AWG]²)	2.2 1.8 1.6 4/10	2.5 2.5 2.2 4/10	2.8 2.5 4/10	4.6 4.0 3.6 4/10
Torque de sobrecarga alta (Corrente de entrada nominal Seção transversal máx. do cal Pré-fusíveis máx	I _{L,N} [A] (600 V) 160 %): I _{L,N} [A] (550 V) I _{L,N} [A] (600 V)	2.2 1.8 1.6 4/10 3	2.5 2.5 2.2 4/10 4	2.8 2.5 4/10 5	4.6 4.0 3.6 4/10 6
Torque de sobrecarga alta (Corrente de entrada nominal Seção transversal máx. do cal Pré-fusíveis máx Eficiência 3)	I _{L,N} [A] (600 V) 160 %): I _{L,N} [A] (550 V) I _{L,N} [A] (600 V) Do, potência [mm²]/[AWG]²) [-]/UL¹¹ [A]	1.8 1.6 4/10 3 0.96	2.5 2.5 2.2 4/10 4 0.96	3.6 2.8 2.5 4/10 5 0.96	4.6 4.0 3.6 4/10 6 0.96
Torque de sobrecarga alta (Corrente de entrada nominal Seção transversal máx. do cal Pré-fusíveis máx Eficiência 3) Peso IP 20 EB	I _{L,N} [A] (600 V) 160 %): I _{L,N} [A] (550 V) I _{L,N} [A] (600 V) Do, potência [mm²]/[AWG]²)	2.2 1.8 1.6 4/10 3	2.5 2.5 2.2 4/10 4	2.8 2.5 4/10 5	4.6 4.0 3.6 4/10 6
Torque de sobrecarga alta (Corrente de entrada nominal Seção transversal máx. do cal Pré-fusíveis máx Eficiência 3)	I _{L,N} [A] (600 V) 160 %): I _{L,N} [A] (550 V) I _{L,N} [A] (600 V) Do, potência [mm²]/[AWG]²) [-]/UL¹¹ [A]	1.8 1.6 4/10 3 0.96	2.5 2.5 2.2 4/10 4 0.96	3.6 2.8 2.5 4/10 5 0.96	4.6 4.0 3.6 4/10 6 0.96
	Corrente de saída Saída Típica saída de eixo Típica saída de eixo Torque de sobrecarga alta (1 Corrente de saída Saída Típica saída de eixo Típica saída de eixo Típica saída de eixo Típica saída de eixo Seção transversal máx. do cai freio e distribuição de carga [n	Torque de sobrecarga normal (110 %): Corrente de saída	Torque de sobrecarga normal (110 %): Corrente de saída	Torque de sobrecarga normal (110 %): Corrente de saída	Torque de sobrecarga normal (110 %): Corrente de saída

- 1. Para os tipos de fusíveis, consulte a seção *Fusíveis* .
- 2. American Wire Gauge.
- 3. Medido com cabos de motor blindados de 30 m com valores nominais de carga e freqüência.

Compacto, Rede elétrica 3 x 525 - 600 V

e acordo com os requis	sitos internacionais	Tipo de VLT	5005	5006	5008	5011
	Torque de sobrecarga norma	,				
	Corrente de saída	I _{VLT,N} [A] (550 V)	6.4	9.5	11.5	11.5
		I _{VLT, MAX} (60 s) [A] (550 V)	7.0	10.5	12.7	12.7
		I _{VLT,N} [A] (575 V)	6.1	9.0	11.0	11.0
		I _{VLT, MAX} (60 s) [A] (575 V)	6.7	9.9	12.1	12.1
	Saída	S _{VLT,N} [kVA] (550 V)	6.1	9.0	11.0	11.0
		S _{VLT,N} [kVA] (575 V)	6.1	9.0	11.0	11.0
a	Típica saída de eixo	P _{VLT,N} [kW]	4	5.5	7.5	7.5
	Típica saída de eixo	P _{VLT,N} [HP]	5	7.5	10.0	10.0
	Torque de sobrecarga alta (1	60%):				
	Corrente de saída	I _{VLT,N} [A] (550 V)	5.2	6.4	9.5	11.5
000		I _{VLT, MAX} (60 s) [A] (550 V)	8.3	10.2	15.2	18.4
		I _{VLT,N} [A] (575 V)	4.9	6.1	9.0	11.0
		I _{VLT, MAX} (60 s) [A] (575 V)	7.8	9.8	14.4	17.6
	Saída	S _{VLT,N} [kVA] (550 V)	5.0	6.1	9.0	11.0
		S _{VLT,N} [kVA] (575 V)	4.9	6.1	9.0	11.0
	Típica saída de eixo	P _{VLT,N} [kW]	3	4	5.5	7.5
	Típica saída de eixo	P _{VLT,N} [HP]	4	5	7.5	10
	Seção transversal máx. do cab					
	freio e distribuição de carga [m	m²]/[AWG]²)	4/10	4/10	4/10	4/10
	Torque de sobrecarga norma	ıl (110 %):				
	Corrente de entrada					
	nominal	I _{L,N} [A] (550 V)	6.2	9.2	11.2	11.2
		I _{L,N} [A] (600 V)	5.7	8.4	10.3	10.3
	Torque de sobrecarga alta (1		0.1	0.4	10.0	10.0
8 8	Corrente de entrada	70,				
	nominal	I _{L,N} [A] (550 V)	5.1	6.2	9.2	11.2
	Hominai	L [A] (600) (A)	4.6	<i>E</i> 7	0.4	10.2
	0	I _{L,N} [A] (600 V)	4.6	5.7	8.4	10.3
	Seção transversal máx. do cab		4/10	4/10	4/10	4/10
	Pré-fusíveis máx	[-]/UL ¹⁾ [A]	8	10	15	20
	Eficiência 3)		0.96	0.96	0.96	0.96
<u> </u>	Peso IP 20 EB	[kg]	10.5	10.5	10.5	10.5
	Perda de energia à carga	[W]	160	236	288	288
		1001				
	máx.	[44]	100	200	200	

- 1. Para os tipos de fusíveis, consulte a seção Fusíveis .
- 2. American Wire Gauge.
- 3. Medido com cabos de motor blindados de 30 m com valores nominais de carga e freqüência.

■ Compacto, Rede elétrica 3 x 525 - 600 V

De acordo com os requisitos internacionais		Tipo de VLT	5016	5022	5027
	Torque de sobrecarga normal (110 %):			
	Corrente de saída	I _{VLT,N} [A] (550 V)	23	28	34
		I _{VLT, MAX} (60 s) [A] (550 V)		31	37
		I _{VLT,N} [A] (575 V)	22	27	32
		I _{VLT, MAX} (60 s) [A] (575 V)	24	30	35
	Saída	S _{VLT.N} [kVA] (550 V)	22	27	32
		S _{VLT.N} [kVA] (575 V)	22	27	32
	Típica saída de eixo	P _{VLT,N} [kW]	15	18.5	22
	Típica saída de eixo	P _{VLT.N} [HP]	20	25	30
	Torque de sobrecarga alta (160 %):				
<u>₩</u>	Corrente de saída	I _{VLT,N} [A] (550 V)	18	23	28
3.0.0		I _{VLT, MAX} (60 s) [A] (550 V)	29	37	45
		I _{VLT,N} [A] (575 V)	17	22	27
		I _{VLT, MAX} (60 s) [A] (575 V)	27	35	43
	Saída	S _{VLT,N} [kVA] (550 V)	17	22	27
		S _{VLT.N} [kVA] (575 V)	17	22	27
	Típica saída de eixo	P _{VLT,N} [kW]	11	15	18.5
	Típica saída de eixo	P _{VLT.N} [HP]	15	20	25
	Seção transversal máx. do cabo para o		16	16	35
	freio e distribuição de carga [mm²]/[AW	/G] ²⁾	6	6	2
	Seção transversal mín. do cabo para o	motor,	0.5	0.5	10
	freio e distribuição de carga [mm2]/[AW	G] ⁴⁾	20	20	8
	Torque de sobrecarga normal (110 %):			
	Corrente de entrada nominal	I _{L.N} [A] (550 V)	22	27	33
		I _{L,N} [A] (600 V)	21	25	30
(S)	Torque de sobrecarga alta (160 %):				
	Corrente de entrada nominal	I _{L.N} [A] (550 V)	18	22	27
		I _{L.N} [A] (600 V)	16	21	25
	Seção transversal máx. do cabo,		16	16	35
0000	potência [mm ²]/[AWG] ²⁾		6	6	2
	Pré-fusíveis máx	[-]/UL ¹⁾ [A]	30	35	45
	Eficiência ³⁾		0.96	0.96	0.96
	Peso IP 20 EB	[ka]	23	23	30
	Perda de potência em carga	[W]		-	
	máx	• •	576	707	838
	Invólucro			IP 20 / Nen	20.1

- 1. Para o tipo de fusível, consulte a seção Fusíveis.
- 2. American Wire Gauge.
- 3. Medido com cabos de motor blindados de 30 m com valores nominais de carga e freqüência.
- 4. A seção transversal mínima do cabo é a menor seção transversal permitida para instalação nos terminais para compatibilidade com IP 20. Obedeça sempre as normas nacionais e locais sobre seção transversal mínima do cabo.

Compacto, Rede elétrica 3 x 525 - 600 V

De acordo com os requisitos internacionais		Tipo de VLT	5032	5042	5052	5062
	Torque de sobrecarga normal (1	10 %):				
	Corrente de saída	I _{VLT.N} [A] (550 V)	43	54	65	81
		I _{VLT, MAX} (60 s) [A] (550 V)	47	59	72	89
		I _{VLT,N} [A] (575 V)	41	52	62	77
		I _{VLT, MAX} (60 s) [A] (575 V)	45	57	68	85
	Saída	S _{VLT,N} [kVA] (550 V)	41	51	62	77
		S _{VLT.N} [kVA] (575 V)	41	52	62	77
- 8	Típica saída de eixo	P _{VLT,N} [kW]	30	37	45	55
	Típica saída de eixo	P _{VLT.N} [HP]	40	50	60	75
	Torque de sobrecarga alta (160 %	%):				
1 <u>6</u> 0	Corrente de saída	I _{VLT.N} [A] (550 V)	34	43	54	65
000		I _{VLT, MAX} (60 s) [A] (550 V)	54	69	86	104
		I _{VLT,N} [A] (575 V)	32	41	52	62
		I _{VLT, MAX} (60 s) [A] (575 V)	51	66	83	99
	Saída	S _{VLT.N} [kVA] (550 V)	32	41	51	62
h		S _{VLT,N} [kVA] (575 V)	32	41	52	62
	Típica saída de eixo	P _{VLT.N} [kW]	22	30	37	45
	Típica saída de eixo	P _{VLT,N} [HP]	30	40	50	60
	Seção transversal máx. do cabo p	35	50	50	50	
	freio e distribuição de carga [mm²]]/[AWG] ²⁾⁵⁾	2	1/0	1/0	1/0
	Seção transversal mín. do cabo pa	ara o motor,	10	16	16	16
	freio e distribuição de carga [mm²]]/[AWG] ⁴⁾	8	6	6	6
	Torque de sobrecarga normal (1	10 %):				
	Corrente de entrada nominal	I _{L.N} [A] (550 V)	42	53	63	79
		I _{L.N} [A] (600 V)	38	49	58	72
8	Torque de sobrecarga alta (160 %	%):				
	Corrente de entrada nominal	I _{L,N} [A] (550 V)	33	42	53	63
		I _{L.N} [A] (600 V)	30	38	49	58
	Seção transversal máx. do cabo		35	50	50	50
0000	potência [mm ²]/[AWG] ^{2) 5)}		2	1/0	1/0	1/0
	Pré-fusíveis máx	[-]/UL ¹⁾ [A]	60	75	90	100
	Eficiência ³⁾		0.96	0.96	0.96	0.96
·	Peso IP 20 EB	[kg]	30	48	48	48
	Perda de potência em carga	[W]		4000	4004	
	máx		1074	1362	1624	2016
	Invólucro			ID 20	/ Nema 1	

- 1. Para o tipo de fusível, consulte a seção Fusíveis.
- 2. American Wire Gauge.
- 3. Medido com cabos de motor blindados de 30 m com valores nominais de carga e freqüência.
- 4. A seção transversal mínima do cabo é a menor seção transversal permitida para instalação nos terminais para compatibilidade com IP 20. Obedeça sempre as normas nacionais e locais sobre seção transversal mínima do cabo.
- 5. Cabos de alumínio com seção transversal acima de 35 mm² devem ser conectados para uso de um conector de Al-Cu.

■ Alimentação de rede elétrica 3 x 525 - 690 V

De acordo com as exigê	encias internacionais	Tipo de VLT	5042	5052	5062	5072	5102		
	Torque de sobrecarga non								
	Corrente de saída	I _{VLT.N} [A] (525-550 V)	56	76	90	113	137		
	_	I _{VLT, MAX} (60 s) [A]							
		(525-550 V)	62	84	99	124	151		
	-	(525-550 V) I _{VLTN} [A] (551-690 V)	54	73	86	108	131		
	-		34	13	00	100	131		
		I _{VLT, MAX} (60 s) [A]	59	80	95	119	144		
		(551-690 V)							
	Saída _	S _{VLT,N} [kVA] (550 V)	53	72	86	108	131		
	<u>-</u>	S _{VLT,N} [kVA] (575 V)	54	73	86	108	130		
		S _{VLT,N} [kVA] (690 V)	65	87	103	129	157		
	Potência típica no eixo _	[kW] (550 V)	37	45	55	75	90		
A A	_	[HP] (575 V)	50	60	75	100	125		
		[kW] (690 V)	45	55	75	90	110		
	Torque de sobrecarga alta	a (160 %):							
	Corrente de saída	I _{VLT,N} [A] (525-550 V)	48	56	76	90	113		
4⊕> □□□□		I _{VLT, MAX} (60 s) [A]	70	0.4	44.4	405	470		
talada		(525-550 V)	72	84	114	135	170		
	_	I _{VITN} [A] (551-690 V)	46	54	73	86	108		
	_	I _{VLT, MAX} (60 s) [A]							
			69	81	110	129	162		
h	0-11-	(551-690 V)	40	F0	70	00	400		
	Saída _	S _{VLT,N} [kVA] (550 V)	46	53	72	86	108		
	_	S _{VITN} [kVA] (575 V)	<u>46</u>	54	73	86	108		
	Date and Main and alice	S _{VITN} [kVA] (690 V)	<u>55</u>	65	87	103	129		
	Potência típica no eixo _	[kW] (550 V)	30	37	45	<u>55</u>	<u>75</u>		
	_	[HP] (575 V)	40	50	60	<u>75</u>	100		
	0 7 - 4	[kW] (690 V)	37	45	55	75	90		
	Seção transversal máx.	[mm ²] ^{4,6}			2 x 70				
	dos cabos de motor	[AWG] ^{2,4,6}							
	Seção transversal de	[mm214.6	[mm ²] ^{4,6}						
	cabo máx. para o freio e	2 x 2/0							
	·	[AWG] ^{2,4,6}							
	a divisão da carga	mal (110.9/).							
	Torque de sobrecarga nor	mai (110 %):							
	Corrente de entrada	I _{L,N} [A] (550 V)	60	77	89	110	130		
	nominal _	12,14 [7 1] (000 1)		• •					
	_	I _{I,N} [A] (575 V)	58	74	85	106	124		
		I _{I,N} [A] (690 V)	58	77	87	109	128		
	Torque de sobrecarga alta	a (160 %):							
6	Corrente de entrada	L . [A] /EEO \ O	E2	60	77	00	110		
	nominal	I _{L,N} [A] (550 V)	53	60	77	89	110		
		I _{I N} [A] (575 V)	51	58	74	85	106		
	=	II N [A] (690 V)	50	58	77	87	109		
	Seção transversal máx.	[mm ²] ^{4,6}				<u> </u>	100		
0000	•				2 x 70)			
	do cabo,	[AWG] ^{2,4,6}			2 x 2/	0			
	fonte de alimentação				2 × 2/				
	Prefusíveis máx. (rede		40-	400	000	202	050		
	_ elétrica) [-]/UL	[A] ¹	125	160	200	200	250		
	Eficiência ³⁾		0.97	0.97	0.98	0.98	0.98		
	Perda de potência	Sobrecarga normal [W]	1458						
	reida de potencia	Sobrecarga normai [w] Sobrecarga alta [W]	1355	<u>1717</u> 1459	<u>1913</u> 1721	2262 1913	2662 2264		
	Poso		1333	1409		1913	2204		
	Peso _	IP 00 [kg]			82				
	Peso _	IP 21/Nema1 [kg] IP 54/Nema12 [kg]			96 06				
	Peso		lome 1 -	ID E4/N	96 omo12				
	Gabinete	IP 00, IP 21/N	<u>iema 1 e</u>	: IP 54/N	ema 12				

- 1. Para obter o tipo de fusível, consulte a seção *Fusíveis*
- 2. American Wire Gauge.
- 3. Medido com cabos de motor blindados de 30 m, com valores nominais de carga e freqüência.
- 4. A seção transversal máx. do cabo é a máxima seção transversal permitida para encaixar nos terminais. Atenda sempre às normas nacionais e locais, sobre seção transversal mínima do cabo.
- 5. Peso sem o contêiner de transporte.
- 6. Parafuso de fixação da fonte de alimentação e motor: M10; Freio e divisão da carga: M8

■ Alimentação de rede elétrica 3 x 525 - 690 V

De acordo com as exig	encias internacionais	Tipo de VLT	5122	5152	5202	5252	5302	5352
	Torque de sobrecarga r							
	Corrente de saída	I _{VLT.N} [A] (525-550 V)	162	201	253	303	360	418
		I _{VLT, MAX} (60 s) [A]						
			178	221	278	333	396	460
	-	(525-550 V)	155	192	242	290	244	400
	-	I _{VLT,N} [A] (551-690 V)	155	192	242	290	344	400
		I _{VLT, MAX} (60 s) [A]	171	211	266	319	378	440
	Coido	(551-690 V) S _{VITN} [kVA] (550 V)	151	191	241	200	242	200
	Saída	S _{VITN} [kVA] (550 V)	<u>154</u> 154	191 191	241	289 289	343 343	398
	-	S _{VLT,N} [kVA] (575 V)						398
	Detâncie tínice no civo		<u>185</u> 110	229 132	289 160	347	411	478
	Potência típica no eixo	[kW] (550 V) [HP] (575 V)	150	200	250	200 300	250 350	315 400
A A	-	[hP] (575 V) [kW] (690 V)	132	160	200	250	315	400
	Torque de sobrecarga a		132	100	200	230	313	400
	Corrente de saída	I _{VLTN} [A] (525-550 V)	137	162	201	253	303	360
333 4⊕ > □□□□	Corrente de Salua	I _{VLT, MAX} (60 s) [A]	131	102	201	200	303	300
0000		(525-550 V)	206	243	302	380	455	540
	<u> </u>	I _{VITN} [A] (551-690 V)	131	155	192	242	290	344
	<u>-</u>	I _{VLT. MAX} (60 s) [A]	131	100	192	242	290	344
	-	, , , , , , , , , , , , ,	197	233	288	363	435	516
, <u>"</u> ,	-	(551-690 V)						
	Saída	S _{VLT,N} [kVA] (550 V)	131	154	191	241	289	343
	-	S _{VLT,N} [kVA] (575 V)	130	154	191	241	289	343
		S _{VITN} [kVA] (690 V)	157	185	229	289	347	411
	Potência típica no eixo	[kW] (550 V)	90	110	132	160	200	250
	<u>-</u>	[HP] (575 V)	125	150	200	250	300	350
		[kW] (690 V)	110	132	160	200	250	315
	Seção transversal máx.	[mm ²] ^{4,6}	2 >	k 70		2	x 185	
	dos cabos de motor	[AWG] ^{2,4,6}	2 x	2/0		2 x 3	350 mcm	
	Seção transversal de	[mm ²] ^{4,6}	2 x 70		2 x 185			
	cabo máx. para o freio							
	e a divisão da carga	[AWG] ^{2,4,6}	2 x	2/0		2 x 3	350 mcm	
	Torque de sobrecarga r	normal (110 %)·						
	Corrente de entrada	101111a1 (110 /0):						
	nominal	I _{L,N} [A] (550 V)	158	198	245	299	355	408
	Hominai	I _{I N} [A] (575 V)	151	189	234	286	339	390
		I _{I N} [A] (690 V)	155	197	240	296	352	400
	Torque de sobrecarga a	, ,						
	Corrente de entrada	, ,	120	150	100	245	200	255
	nominal	I _{L,N} [A] (550 V)	130	158	198	245	299	355
	_	I _{I,N} [A] (575 V)	124	151	189	234	286	339
		I _{LN} [A] (690 V)	128	155	197	240	296	352
	Seção transversal máx.	[mm ²] ^{4,6}	2 1	< 70		2	x 185	
	do cabo,	[AWG] ^{2,4,6}		2/0			350 mcm	
	fonte de alimentação			210		Z X 3	JOU MICH	
	Prefusíveis máx. (rede	FA 74	245	250	250	400	F00	EEO
	elétrica) [-]/UL	[A] ¹	315	350	350	400	500	550
	Eficiência ³⁾					0,98		
	Perda de potência	Sobrecarga normal [W]	3114	3612	4292	5155	5821	6149
	<u> </u>	Sobrecarga alta [W]	2664	2952	3451	4275	4875	5185
	Peso	IP 00 [kg]	82	91	112	123	138	151
	Peso	IP 21/Nema1 [kg]	96	104	125	136	151	165
	FESU	II Z I/NCIIIa I INGI						
	Peso	IP 54/Nema12 [kg]	96	104	125	136	151	165

- 1. Para obter o tipo de fusível, consulte a seção Fusíveis
- 2. American Wire Gauge.
- 3. Medido com cabos de motor blindados de 30 m, com valores nominais de carga e freqüência.
- 4. A seção transversal máx. do cabo é a máxima seção transversal permitida para encaixar nos terminais. Atenda sempre às normas nacionais e locais, sobre seção transversal mínima do cabo.
- 5. Peso sem o contêiner de transporte.
- 6. Parafuso de fixação da fonte de alimentação e motor: M10; Freio e divisão da carga: M8

■ Fusíveis

Em conformidade com o UL

Para estar em conformidade com as aprovações UL/cUL, devem ser utilizados prefusíveis de acordo com a tabela a seguir.

200-240 V

VLT	Bussmann	SIBA	Fusível Littel	Ferraz-Shawmut
5001	KTN-R10	5017906-010	KLN-R10	ATM-R10 ou A2K-10R
5002	KTN-R10	5017906-010	KLN-R10	ATM-R10 ou A2K-10R
5003	KTN-R25	5017906-016	KLN-R15	ATM-R15 ou A2K-15R
5004	KTN-R20	5017906-020	KLN-R20	ATM-R20 ou A2K-20R
5005	KTN-R25	5017906-025	KLN-R25	ATM-R25 ou A2K-25R
5006	KTN-R30	5012406-032	KLN-R30	ATM-R30 ou A2K-30R
5008	KTN-R50	5014006-050	KLN-R50	A2K-50R
5011	KTN-R60	5014006-063	KLN-R60	A2K-60R
5016	KTN-R85	5014006-080	KLN-R80	A2K-80R
5022	KTN-R125	2028220-125	KLN-R125	A2K-125R
5027	KTN-R125	2028220-125	KLN-R125	A2K-125R
5032	KTN-R150	2028220-160	L25S-150	A25X-150
5042	KTN-R200	2028220-200	L25S-200	A25X-200
5052	KTN-R250	2028220-250	L25S-250	A25X-250

380-500 V

	Bussmann	SIBA	Fusível Littel	Ferraz-Shawmut
5001	KTS-R6	5017906-006	KLS-R6	ATM-R6 ou A6K-6R
5002	KTS-R6	5017906-006	KLS-R6	ATM-R6 ou A6K-6R
5003	KTS-R10	5017906-010	KLS-R10	ATM-R10 ou A6K-10R
5004	KTS-R10	5017906-010	KLS-R10	ATM-R10 ou A6K-10R
5005	KTS-R15	5017906-016	KLS-R16	ATM-R16 ou A6K-16R
5006	KTS-R20	5017906-020	KLS-R20	ATM-R20 ou A6K-20R
5008	KTS-R25	5017906-025	KLS-R25	ATM-R25 ou A6K-25R
5011	KTS-R30	5012406-032	KLS-R30	A6K-30R
5016	KTS-R40	5012406-040	KLS-R40	A6K-40R
5022	KTS-R50	5014006-050	KLS-R50	A6K-50R
5027	KTS-R60	5014006-063	KLS-R60	A6K-60R
5032	KTS-R80	2028220-100	KLS-R80	A6K-180R
5042	KTS-R100	2028220-125	KLS-R100	A6K-100R
5052	KTS-R125	2028220-125	KLS-R125	A6K-125R
5062	KTS-R150	2028220-160	KLS-R150	A6K-150R
5072	FWH-220	2028220-200	L50S-225	A50-P225
5102	FWH-250	2028220-250	L50S-250	A50-P250
5122*	FWH-300/170M3017	2028220-315	L50S-300	A50-P300
5152*	FWH-350/170M3018	2028220-315	L50S-350	A50-P350
5202*	FWH-400/170M4012	206xx32-400	L50S-400	A50-P400
5252*	FWH-500/170M4014	206xx32-500	L50S-500	A50-P500
5302*	FWH-600/170M4016	206xx32-600	L50S-600	A50-P600
5352	170M4017			
5452	170M6013			
5502	170M6013			
5552	170M6013			

* Disjuntores fabricados pela General Electric, Cat. Nº. SKHA36AT0800, com plugues limitantes listados a seguir, pode ser utilizado para atender os requisitos do UL.

5122	N°. do plugue	SRPK800 A 300
	limitante	
5152	Nº. do plugue	SRPK800 A 400
	limitante	
5202	Nº. do plugue	SRPK800 A 400
	limitante	
5252	Nº. do plugue	SRPK800 A 500
	limitante	
5302	N°. do plugue	SRPK800 A 600
	limitante	

525-600 V

	Bussmann	SIBA	Fusível Littel	Ferraz-Shawmut
5001	KTS-R3	5017906-004	KLS-R003	A6K-3R
5002	KTS-R4	5017906-004	KLS-R004	A6K-4R
5003	KT-R5	5017906-005	KLS-R005	A6K-5R
5004	KTS-R6	5017906-006	KLS-R006	A6K-6R
5005	KTS-R8	5017906-008	KLS-R008	A6K-8R
5006	KTS-R10	5017906-010	KLS-R010	A6K-10R
5008	KTS-R15	5017906-016	KLS-R015	A6K-15R
5011	KTS-R20	5017906-020	KLS-R020	A6K-20R
5016	KTS-R30	5017906-030	KLS-R030	A6K-30R
5022	KTS-R35	5014006-040	KLS-R035	A6K-35R
5027	KTS-R45	5014006-050	KLS-R045	A6K-45R
5032	KTS-R60	5014006-063	KLS-R060	A6K-60R
5042	KTS-R75	5014006-080	KLS-R075	A6K-80R
5052	KTS-R90	5014006-100	KLS-R090	A6K-90R
5062	KTS-R100	5014006-100	KLS-R100	A6K-100R

Drives 525-600 V (UL) e 525-690 V (CE)

	Bussmann	SIBA	FERRAZ-SHAWMUT	
5042	170M3013	2061032,125	6.6URD30D08A0125	
5052	170M3014	2061032,16	6.6URD30D08A0160	
5062	170M3015	2061032,2	6.6URD30D08A0200	
5072	170M3015	2061032,2	6.6URD30D08A0200	
5102	170M3016	2061032,25	6.6URD30D08A0250	
5122	170M3017	2061032,315	6.6URD30D08A0315	
5152	170M3018	2061032,35	6.6URD30D08A0350	
5202	170M4011	2061032,35	6.6URD30D08A0350	
5252	170M4012	2061032,4	6.6URD30D08A0400	
5302	170M4014	2061032,5	6.6URD30D08A0500	
5352	170M5011	2062032,55	6.6URD32D08A550	

Fusíveis KTS da Bussmann podem substituir o KTN para drives de 240 V. Fusíveis FWH da Bussmann podem substituir o FWX para drives de 240 V.

Fusíveis KLSR da LITTEL FUSE podem substituir o KLNR para drives de 240 V. Fusíveis L50S da LITTEL FUSE podem substituir os fusíveis L25S para drives de 240 V.

Fusíveis A6KR da FERRAZ SHAWMUT podem substituir o A2KR para drives de 240 V. Fusíveis A50X da FERRAZ SHAWMUT podem substituir o A25X para drives de 240 V.

Não-conformidade com o UL

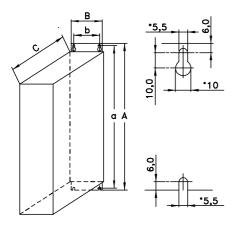
Se não houver necessidade de estar em conformidade com o UL/cUL, é recomendável usar os fusíveis mencionados acima ou:

VLT 5001-5027	200-240 V	tipo gG
VLT 5032-5052	200-240 V	tipo gR
VLT 5001-5062	380-500 V	tipo gG
VLT 5072-5102	380-500 V	tipo gR
VLT 5122-5302	380-500 V	tipo gG
VLT 5352-5552	380-500 V	tipo gR
VLT 5001-5062	525-600 V	tipo gG

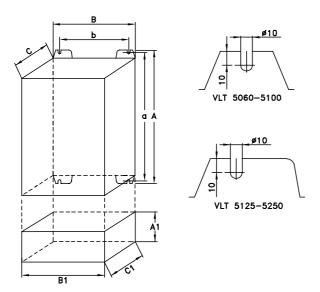
Se as recomendações não forem seguidas, isso poderá resultar em dano desnecessário do drive, em caso de mau funcionamento. Os fusíveis devem ser dimensionados para proteger um circuito capaz de fornecer um máximo 100.000 A_{rms} (simétrico), 500/600 V máximo.

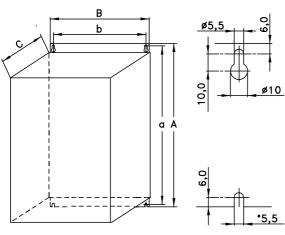
■ Dimensőes mecânicas

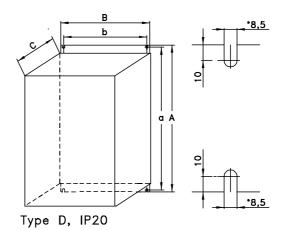
Todas as medidas listadas abaixo estão em m						1-	- l- //	T:
IP 20 Tipo Estante de Livros	A	В	С	D	а	b	ab/be	OqiT
5001 - 5003 200 - 240 V								
	395	90	260		384	70	100	Α
5001 - 5005 380 - 500 V								
5004 - 5006 200 - 240 V	395	130	260		384	70	100	Α
5006 - 5011 380 - 500 V								,,
IP 00 Compacto								
5032 - 5052 200 - 240 V	800	370	335		780	270	225	В
5122 - 5152 380 - 500 V	1046	408	3731)		1001	304	225	J
5202 - 5302 380 - 500 V	1327	408	373 ¹⁾		1282	304	225	J
5352 - 5552 380 - 500 V	1547	585	4941)		1502	304	225	
5042 - 5152 525 - 690 V	1046	408	3731)		1001	304	225	J
5202 - 5352 525 - 690 V	1327	408	3731)		1282	304	225	J
IP 20 Compacto								
5001 - 5003 200 - 240 V	395	220	160		384	200	100	С
5001 - 5005 380 - 500 V								
5004 - 5006 200 - 240 V								
5006 - 5011 380 - 500 V	395	220	200		384	200	100	С
5001 - 5011 525 - 600 V (IP 20 e Nema 1)								
5008 200 - 240 V								
5016 - 5022 380 - 500 V	560	242	260		540	200	200	D
5016 - 5022 525 - 600 V (Nema 1)								
5011 - 5016 200 - 240 V								
5027 - 5032 380 - 500 V	700	242	260		680	200	200	D
5027 - 5032 525 - 600 V (Nema 1)								
5022 - 5027 200 - 240 V								
5042 - 5062 380 - 500 V	800	308	296		780	270	200	D
5042 - 5062 525 - 600 V (Nema 1)								
5072 - 5102 380 - 500 V	800	370	335		780	330	225	D
Nema 1/IP20/IP21Compacto								
5032 - 5052 200 - 240 V	954	370	335		780	270	225	E
5122 - 5152 380 - 500 V	1208	420	373 ¹⁾		1154	304	225	J
5202 - 5302 380 - 500 V	1588	420	3731)		1535	304	225	J
5352 - 5552 380 - 500 V	2000	600	4941)		-		225	н
5042 - 5152 525 - 690 V	1208	420	373 ¹⁾		1154	304	225	J
5202 - 5352 525 - 690 V	1588	420	373 ¹⁾		1535	304	225	J
IP 54 Compacto /Nema 12								
5001 - 5003 200 - 240 V	460	282	195	85	260	258	100	F
5001 - 5005 380 - 500 V	400	202	100	00	200	200	100	'
5004 - 5006 200 - 240 V	500	000	405	0.5	000	050	400	_
5006 - 5011 380 - 500 V	530	282	195	85	330	258	100	F
5008 - 5011 200 - 240 V								
	810	350	280	70	560	326	200	F
5016 - 5027 380 - 500 V 5016 - 5027 200 - 240 V								
5032 - 5062 380 - 500 V	940	400	280	70	690	375	200	F
5032 - 5052 300 - 300 V	937	495	421	_	830	374	225	G
5072 - 5102 380 - 500 V	940	400	360	70	690	375	225	F
5122 - 5152 380 - 500 V	1208	420	373 ¹⁾	-	1154	304	225	J
5202 - 5302 380 - 500 V	1588	420	373 ²)		1535	304	225	J
5352 - 5552 380 - 500 V	2000	600	494 ¹⁾	_	-	-	225	H
5042 - 5152 525 - 690 V	1208	420	3731)	-	1154	304	225	J
5202 - 5352 525 - 690 V	1588	420	373 ¹⁾		1535	304	225	J

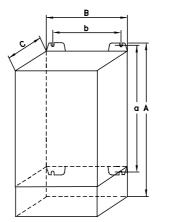

ab: Espaço mínimo acima do gabinete

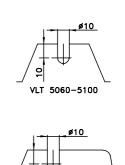
be: Espaço mínimo abaixo do gabinete


¹⁾ Com desconexão, acrescentar 44 mm.

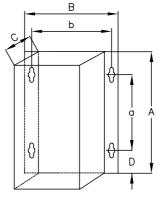

■ Dimensőes mecânicas,cont.

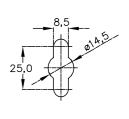

Type A, IP20

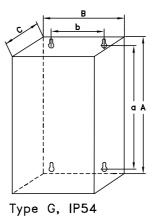



Type B, IP00 With option and enclosure IP20

Type C, IP20

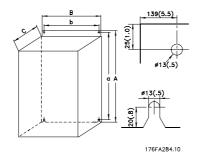




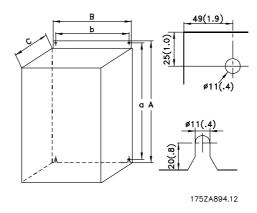

VLT 5125-5250

Type E, IP20/NEMA 1 with terminals

Type F, IP54



175ZA577.12


■ Dimensőes mecânicas (cont.)

Tipo H, IP 20, IP 54

Tipo I, IP 00

Tipo J, IP 00, IP 21, IP 54

■ Instalação mecânica

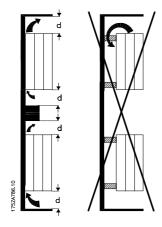
Esteja atento para os requisitos que se aplicam à integração e ao kit de montagem em campo. Veja a lista abaixo. As informações dadas na lista devem ser observadas para evitar sérios danos ou ferimentos, especialmente na instalação de unidades grandes.

O conversor de freqüência do *deve* ser instalado verticalmente.

O conversor de freqüência do é refrigerado pela circulação do ar. Para que a unidade possa liberar o ar de refrigeração, a distância *mínima* acima e abaixo da unidade deve ser conforme mostrado na ilustração abaixo.

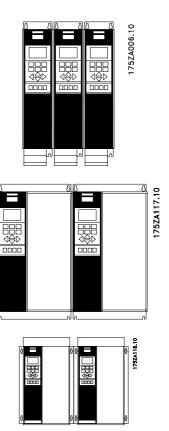
Para proteger a unidade contra o superaquecimento, é necessário garantir que a temperatura ambiente não ultrapasse a temperatura máxima do conversor de freqüência do e que a temperatura média em 24 horas não seja excedida. A temperatura máxima e a média em 24 horas podem ser obtidas na seção Dados técnicos gerais.

Ao instalar o conversor de freqüência do em uma superfície não plana, como uma estrutura, consulte a instrução MN.50.XX.YY.


Se a temperatura ambiente permanecer no intervalo entre 45° e 55 °C, deverá ser realizada uma redução de potência no conversor de freqüência do , de acordo com o diagrama do Guia de projeto. A durabilidade do conversor de freqüência do será reduzida, a menos que seja realizada uma redução para a temperatura ambiente.

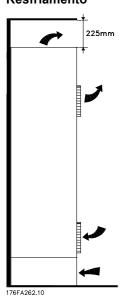
■ Instalação do VLT 5001-5552

Todos os conversores de freqüências devem ser instalados de forma a garantir o resfriamento adequado.


Resfriamento

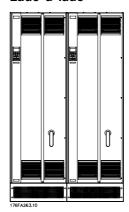
Todas as unidades Estilo Estante de Livros e Compacto exigem um espaço mínimo, acima e abaixo do gabinete.

Lado a lado/flange a flange


Todos os conversores de freqüências podem ser montados lado a lado/flange a flange.

	d [mm]	Comentários
Estilo Estante de Livros		
VLT 5001-5006, 200-240 V	100	lendalen an andre compatibility and a compatibility and a company of the company
VLT 5001-5011, 380-500 V	100	Instalação sobre uma superfície plana, vertical (sem espaçadores)
Compacto (todos os tipos de gabinetes)		
VLT 5001-5006, 200-240 V	100	
VLT 5001-5011, 380-500 V	100	Instalação sobre uma superfície plana, vertical (sem espaçadores)
VLT 5001-5011, 525-600 V	100	
VLT 5008-5027, 200-240 V	200	
VLT 5016-5062, 380-500 V	200	
VLT 5072-5102, 380-500 V	225	Instalação sobre uma superfície plana, vertical (sem espaçadores)
VLT 5016-5062, 525-600 V	200	
VLT 5032-5052, 200-240 V	225	Instalação sobre uma superfície plana, vertical (sem espaçadores)
VLT 5122-5302, 380-500 V	225	As telas do filtro do IP 54 devem ser substituídas quando estiverem
		·
VIII 5252 5552 200 500 V	225	Sujas.
VLT 5352-5552, 380-500 V	225	IP 00: acima e abaixo do gabinete
		IP 21/IP 54: apenas acima do gabinete
VLT 5042-5352, 525-690 V	225	Instalação sobre uma superfície plana, vertical (sem espaçadores)
		As telas do filtro do IP 54 devem ser substituídas quando estiverem
		sujas.

■ Instalação do VLT 5352-5552 380-500 V Nema 1 (IP 21) e IP 54 Compacto Resfriamento



Todas as unidades, na série mencionada acima, requerem um espaço mínimo de 225 mm, acima e abaixo do gabinete, e devem ser instaladas em uma superfície plana. Isso se aplica a unidades Nema 1 (IP 21) e unidades IP 54.

Para ter acesso ao VLT 5352-5552 é necessário um espaço livre mínimo de 579 mm na frente do conversor de freqüência.

As telas dos filtros nas unidades IP 54 devem ser substituídas regularmente, dependendo do ambiente operacional.

Lado a lado

Nema 1 (IP 21) e IP 54 Compactos

Todas as unidades Nema 1 (IP 21) e IP 54, na série mencionada acima, podem ser instaladas lado a lado sem nenhum espaço entre elas, pois essas unidades não requerem refrigeração lateral.

■ Instalação elétrica

A tensão do conversor de freqüência é perigosa, quando a unidade estiver conectada à rede elétrica. A instalação incorreta do motor ou do conversor de freqüência pode causar danos ao equipamento, ou ferimentos graves ou fatais. Portanto, as instruções deste manual, bem como as normas nacionais e locais e as normas de segurança, devem ser obedecidas.

Tocar as partes eletrificadas pode causar até a morte, mesmo depois de desligar a alimentação de rede elétrica.

Ao utilizar o VLT 5001-5006, 200-240 V e o 380-500 V: aguarde pelo menos 4 minutos. Ao utilizar o VLT 5008-5052, 200-240 V: aguarde pelo menos 15 minutos. Ao utilizar o VLT 5008-5062, 380-500 V: aguarde pelo menos 15 minutos. Ao utilizar o VLT 5072-5302, 380-500 V: aguarde pelo menos 20 minutos. Usando VLT 5352-5552, 380-500 V: aguarde pelo menos 40 minutos. Ao utilizar o VLT 5001-5005, 525-600 V: aguarde pelo menos 4 minutos. Ao utilizar o VLT 5006-5022, 525-600 V: aguarde pelo menos 15 minutos. Ao utilizar o VLT 5027-5062, 525-600 V: aguarde pelo menos 30 minutos. Ao utilizar o VLT 5042-5352, 525-690 V: aguarde pelo menos 20 minutos.

NOTA!:

É responsabilidade do usuário ou do eletricista qualificado garantir um correto aterramento e proteção, conforme as normas e padrões nacionais e locais aplicáveis.

■ Teste de alta tensão

É possível executar um teste de alta tensão colocando em curto-circuito os terminais U, V, W, L₁, L₂ e L₃ e energizando com 2,15 kV CC no máximo durante um segundo entre este curto-circuito e o chassi.

NOTA!:

O interruptor RFI deve estar fechado (posição ON) quando forem executados testes de alta tensão (veja a seção *Interruptor RFI*).

A conexão da rede elétrica e do motor deve ser interrompida no caso de testes de alta tensão da instalação total se as correntes de fuga forem altas demais.

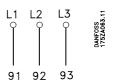
■ Aterramento de segurança

NOTA!:

O conversor de freqüência tem um valor elevado de corrente de fuga, devendo portanto

ser apropriadamente aterrado por razões de segurança. Use o terminal de aterramento (veja a seção *Instalação elétrica, cabos de energia*), que permite aterramento reforçado. Aplique as normas nacionais de segurança.

■ Proteção adicional (RCD)


Relés ELCB, ligação múltipla à terra de proteção e outros, podem ser utilizados como proteções suplementares. Verifique se essas práticas são permitidas pelas normas de segurança locais.

No caso de uma falha de aterramento, um conteúdo CC pode se desenvolver na corrente com defeito.

Se forem utilizados relés ELCB, as normas locais devem ser obedecidas. Os relés devem ser apropriados para a proteção de equipamento trifásico com um retificador e pequenas descargas quando da energização.

Consulte também a seção *Condições especiais*, no Guia de Design.

■ Instalação elétrica - alimentação de rede Ligue as três fases de alimentação aos terminais L₁ , L₂ e L₃.

■ Instalação elétrica - cabos do motor

E .

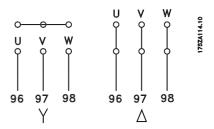
NOTA!:

Se for usado um cabo não-blindado, alguns requisitos de EMC não estarão em conformidade; consulte o Guia de Design.

Para estar em conformidade com as especificações EMC, com relação à emissão e imunidade, o cabo do motor deve ser blindado, exceto se indicado de modo diferente para o filtro de RFI em questão. É importante manter o cabo do motor tão curto quanto possível, de modo a reduzir o nível de ruído e as correntes de fuga a um mínimo.

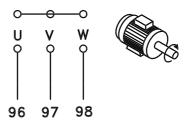
A blindagem do cabo do motor deve ser conectada ao gabinete do conversor de freqüência e à carcaça do motor. As conexões de blindagem devem ser efetuadas com a maior superfície de contacto possível (usar presilha para cabo). Isto é possível graças a diferentes dispositivos de instalação em diferentes conversores de fregüência.

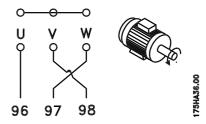
A instalação com as extremidades da malha de blindagem torcidas (rabicho) deve ser evitada, porque estas reduzirão muito o efeito da blindagem nas altas freqüências. Se for necessário interromper a blindagem para


Se for necessario interromper a blindagem para instalar um isolador de motor ou contactor de motor, a malha de blindagem deve ser continuada com a mínima impedância de HF possível.

O conversor de freqüência foi testado com um determinado comprimento de cabo e uma determinada seção transversal. Se a seção transversal for aumentada, a capacitância do cabo - e portanto a corrente de fuga - aumentará, e o comprimento do cabo deverá ser reduzido correspondentemente.

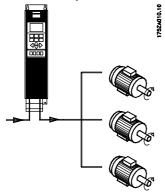
Quando conversores de freqüência forem utilizados com filtros LC, para reduzir o ruído acústico de um motor, a freqüência de chaveamento deverá ser programada de acordo com a instrução do filtro LC, no *Parâmetro 411*. Ao configurar a freqüência de chaveamento maior que 3 kHz, a corrente de saída será reduzida, no modo SFAVM. Alterando o *Parâmetro 446* para o modo 60° AVM, a freqüência em que a corrente sofre derate é movida para cima. Consulte o *Guia de Design*.


■Ligação do motor


Todos os tipos de motores padrão assíncrono trifásicos podem ser usados com a série 5000 VLT.

Normalmente, os motores menores são ligados em estrela (200/400 V, D/Y). Os motores maiores são ligados em delta (400/690 V, D/Y).

■ Sentido de rotação do motor


A programação de fábrica é para a rotação no sentido horário com a saída do conversor de freqüência ligado da seguinte maneira:

Terminal 96 ligado à fase U Terminal 97 ligado à fase V Terminal 98 ligado à fase W

O sentido de rotação pode ser trocado invertendo duas fases do cabo do motor.

■ Ligação de motores em paralelo

Conversor de freqüência é capaz de controlar diversos motores ligados em paralelo. Se for preciso que os motores tenham valores de rotação diferentes, os mesmos deverão possuir valores de rotação nominais diferentes. A rotação do motor é mudada simultaneamente, o que significa que a relação entre os valores da rotação nominal é mantido em toda a gama.

O consumo total de corrente dos motores não deve ultrapassar a corrente de saída nominal $I_{VLT,N}$ para o conversor de freqüência.

Podem ocorrer problemas na partida e com baixos valores de rotação se as potências dos motores forem muito diferentes. Isto por que a resistência ohmica relativamente alta dos motores pequenos necessita de uma tensão mais alta na partida e com baixos valores de rotação.

Nos sistemas com motores ligados em paralelo, o relé térmico eletrônico do conversor de freqüência (ETR) não pode ser utilizado como proteção do motor para cada motor porque a saída de corrente deve ser programada para a corrente total dos motores. Conseqüentemente, é necessária uma proteção adicional ao motor, tal como termistores em cada motor (ou relés térmicos individuais) adequados para uso com conversores de freqüência.

Observe que cada cabo do motor deve ser o mais curto possível e não deve ultrapassar o comprimento total permitido para o motor.

■ Proteção térmica do motor

O relé térmico eletrônico nos conversores de freqüência recebeu a aprovação UL para a proteção individual do motor quando o parâmetro 128 é programado para *trip ETR*" e o parâmetro 105 ajustado para a corrente nominal do motor (vide a placa de identificação do motor).

■ Instalação elétrica - cabo do freio

(Somente padrão com freio e estendido com freio.) Código do tipo: SB, EB, DE, PB).

N°. Função

81, 82 Terminais do resistor de freio

O cabo de conexão do resistor de freio deve ser blindado. Conecte a blindagem, por meio de braçadeiras, à placa condutora traseira, no conversor de freqüência, e ao gabinete metálico do resistor de freio.

Dimensione a seção transversal do cabo de freio de forma a corresponder ao torque do freio. Consulte também as instruções do Freio, MI.90.FX.YY e MI.50.SX.YY, para obter informações adicionais sobre a instalação segura.

NOTA!:

Note que tensões de até 1099 V CC, dependendo da fonte de alimentação, podem ocorrer nos terminais.

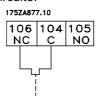
■ Instalação elétrica - chave de temperatura do resistor do freio

Torque: 0,5-0,6 Nm Tamanho de parafuso: M3

N°. Função

106, 104, 105 Chave de temperatura do resistor

de freio.



NOTA!:

Esta função está disponível somente no VLT 5032-5052 200-240 V VLT 5122-5552, 380-500 V; e VLT 5042-5352, 525-690 V.

Se a temperatura do resistor do freio estiver muito alta e a chave térmica desligar, o conversor de freqüência não acionará mais o freio. O motor iniciará a parada por inércia.

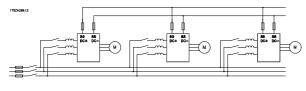
Deve-se instalar uma chave KLIXON que é 'normalmente fechada'. Se esta função não for utilizada, 106 e 104 deverão estar juntos em curto-circuito.

■ Instalação elétrica - Divisão da carga

(Estendido somente com códigos de tipo EB, EX, DE, DX).

N°.	Função
88, 89	Divisão de carga

Terminais para distribuição da carga


175ZA799.10 88 89 - +

O cabo de conexão deve ser blindado e o comprimento máximo, desde o conversor de freqüência até a barra CC, 25 metros. A distribuição da carga permite ligar os circuitos intermediários CC de vários conversores de freqüência.

NOTA!:

Note que podem ocorrer tensões de até 1099 V CC nos terminais.

A distribuição da carga necessita de equipamento extra. Para obter informações adicionais, consulte as Instruções sobre Divisão da Carga MI.50.NX.XX.

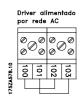
■ Torques de aperto e tamanhos de parafusos

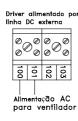
A tabela mostra o torque necessário para apertar os terminais do conversor de freqüência. Para o VLT 5001-5027 200-240 V, VLT 5001-5102 380-500 V e VLT 5001-5062 525-600 V, os cabos devem ser apertados com parafusos. Para o VLT 5032 - 5052 200-240 V, VLT 5122-5552 380-500 V, VLT 5042-5352 525-690 V, os cabos devem ser apertados com parafusos com porca.

Estes valores aplicam-se aos seguintes terminais:

Terminais da rede elétrica	N°.s	91, 92, 93 L1, L2, L3
Terminais do motor	Nº.s	96, 97, 98 U, V, W
Terminal de aterramento	Não	94, 95, 99
Terminais do resistor de freio		81, 82
Divisão de carga		88, 89

Tipo de VLT		Torque [Nm]	Parafuso/	Ferramenta
200-240 V			Tamanho do parafuso	
			com porca	
5001-5006		0,6	M3	Parafuso com fenda
5008	IP20	1,8	M4	Parafuso com fenda
5008-5011	IP54	1,8	M4	Parafuso com fenda
5011-5022	IP20	3	M5	Chave Allen de 4 mm
5016-5022 ³¹⁾	IP54	3	M5	Chave Allen de 4 mm
5027		6	M6	Chave Allen de 4 mm
5032-5052		11,3	M8 (parafuso com porca	
			e bucha)	
380-500 V			•	
5001-5011		0,6	M3	Parafuso com fenda
5016-5022	IP20	1,8	M4	Parafuso com fenda
5016-5027	IP54	1,8	M4	Parafuso com fenda
5027-5042	IP20	3	M5	Chave Allen de 4 mm
5032-5042 ³⁾	IP54	3	M5	Chave Allen de 4 mm
5052-5062		6	M6	Chave Allen de 5 mm
5072-5102	IP20	15	M6	Chave Allen de 6mm
	IP54 ²⁾	24	M8	Chave Allen de 8 mm
5122-5302 ⁴⁾		19	Parafuso com porca	Chave Hex de 16 mm
			M10	
5352-5552 ⁵⁾		19	Parafuso com porca	Chave Hex de 16 mm
			M10 (terminal com	
			orifício de fixação)	
5352-5552 ⁵⁾		9.5	Parafuso com porca M8	Chave Hex de 16 mm
			(bloco terminal)	
525-600 V			,	
5001-5011		0,6	M3	Parafuso com fenda
5016-5027		1,8	M4	Parafuso com fenda
5032-5042		3	M5	Chave Allen de 4 mm
5052-5062		6	M6	Chave Allen de 5 mm
525-690 V		-		
5042-5352 ⁴⁾		19	Parafuso com porca	Chave Hex de 16 mm
			M10	


1) Terminais para o freio: 3,0 Nm, Porca: M6 2) Freio e divisão da carga: 14 Nm, Parafuso Allen M6 3) IP54 com RFI - Terminais de linha 6Nm, Parafuso: M6 - Chave Allen de 5 mm 4) Divisão da carga e terminais para o freio: 9,5 Nm; Parafuso com porca M8 5) Terminais para o freio: 9,5 Nm; Parafuso com porca M8



■ Instalação elétrica - alimentação de ventilador externo

Torque 0,5-0,6Nm

Tamanho do parafuso: M3

Disponível no 5122-5552, 380-500 V; 5042-5352, 525-690 V, 5032-5052, 200-240 V em todos os tipos de gabinetes.

Somente para unidades IP54, nos intervalos de potência VLT 5016-5102, 380-500 V e VLT 5008-5027, 200-240 V CA. Se o drive for alimentado pelo barramento CC (divisão da carga), os ventiladores internos não receberão alimentação de CA. Neste caso, eles devem ser alimentados com uma fonte de CA externa.

■ Instalação elétrica - fonte de 24 Volts CC externa

(Somente para versões estendidas. Código de tipo: PS, PB, PD, PF, DE, DX, EB, EX).

Torque: 0,5 - 0,6 Nm Tamanho de parafuso: M3

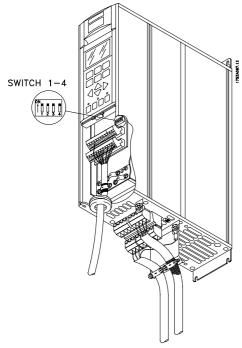
N°. Função

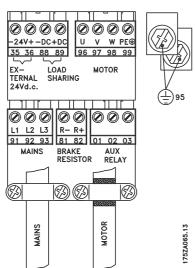
35, 36 Fonte de 24 V CC externa

A fonte de 24 V CC externa pode ser usada como fonte de alimentação de baixa tensão para o cartão de controle e quaisquer cartőes opcionais instalados. Isto permite a operação total do LCP (inclusive a programação de parâmetro) sem conexão à rede elétrica. Observe que será emitida uma advertência de baixa tensão quando a fonte de 24 V CC tiver sido conectada; contudo, não haverá desarme. Se for conectada uma fonte de 24 V CC externa ou se for ligada ao mesmo tempo que a alimentação de rede elétrica, um intervalo de tempo mínimo de 200 ms deve ser programado no parâmetro 120 Retardo da partida. Um pré-fusível de 6 A, no mínimo, de retardo, pode ser instalado para proteger a fonte de 24 V CC externa. O consumo de energia é de 15-50 W, dependendo da carga no cartão de controle.

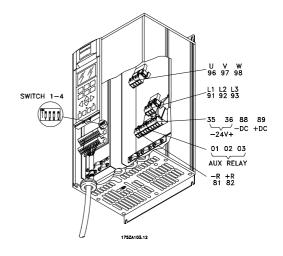
NOTA!:

Use fonte de 24 V CC do tipo PELV para assegurar q isolação galvânica correta (tipo PELV), nos terminais de controle do conversor de freqüência.

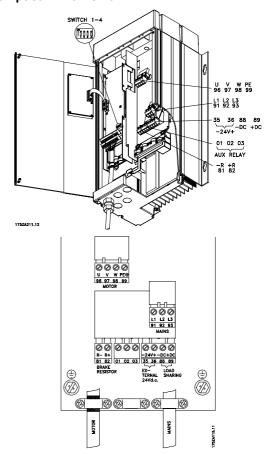

■ Instalação elétrica - saída do relé


Torque: 0,5 - 0,6 Nm Tamanho do parafuso: M3

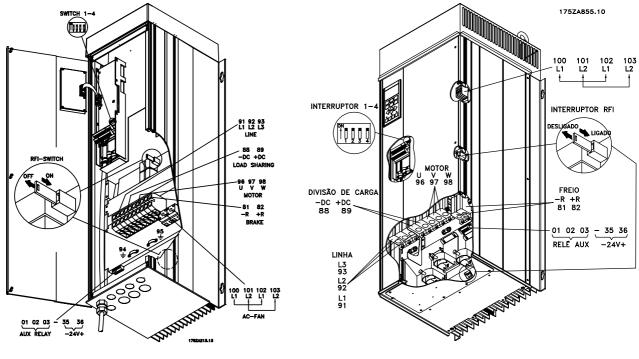
N°.	Função		
1-3	Saída do relé, 1+3 NF, 1+2 NA		
	Vide parâmetro 323 no Manual de		
	Operação. Vide também <i>Dados</i>		
	técnicos gerais.		
4, 5	Saída do relé, 4 + 5 NA Vide		
	parâmetro 326 no Manual de		
	Operação. Vide também <i>Dados</i>		
	técnicos gerais.		

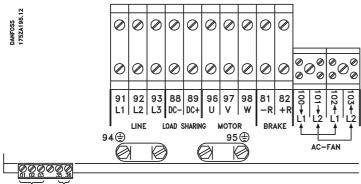


■ Instalação elétrica, cabos de controle



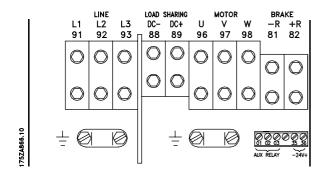
Bookstyle VLT 5001-5006 200-240 V VLT 5001-5011 380-500 V

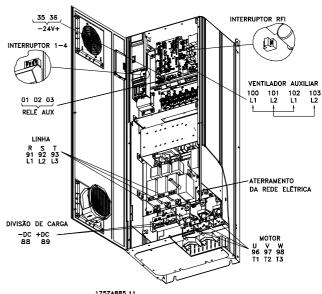

Compact IP 20/Nema 1



Compact IP 54 VLT 5001-5006 200-240 V VLT 5001-5011 380-500 V VLT 5001-5011 525-600 V

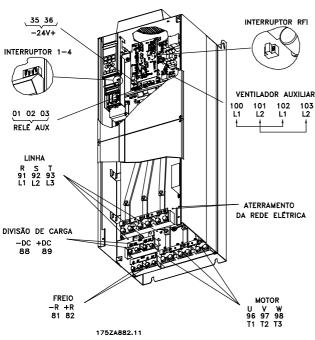
■ Instalação elétrica, cabos de controle - Fluxo 5000/5000



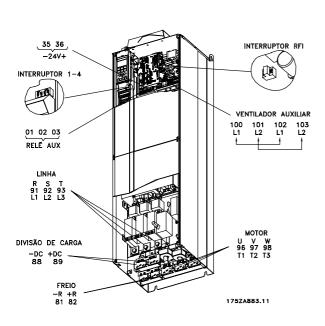

IP 54 Compacto

VLT 5008-5027 200-240 V

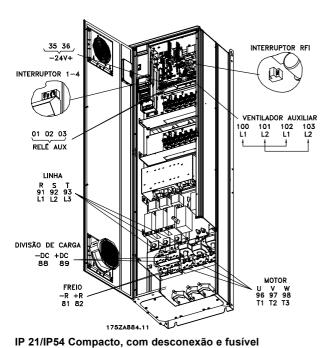
VLT 5016-5062 380-500 V



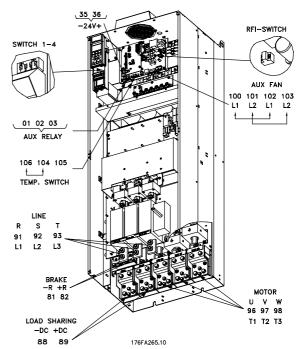
IP 54 Compacto VLT 5072-5102 380-500 V

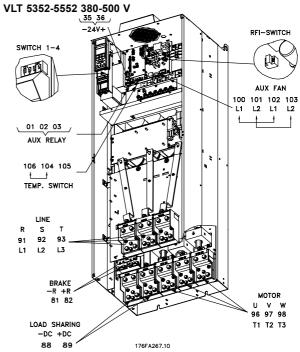

IP 21/IP54 Compacto, com desconexão e fusível VLT 5122-5152 380-500 V, VLT 5042-5152 525-690 V

Observação: A chave de RFI fica sem função nos drives 525-690 V.

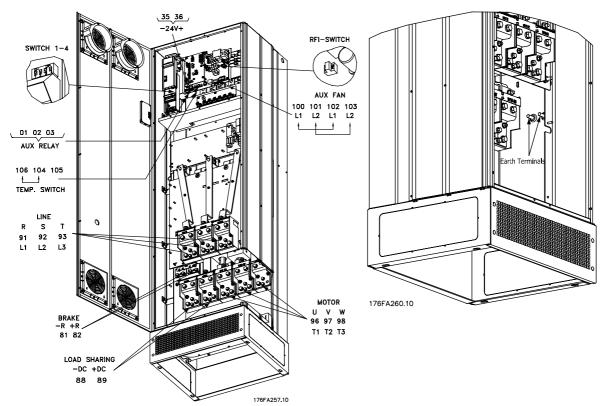


IP 00 Compacto, sem desconexão e fusível VLT 5122-5152 380-500 V, VLT 5042-5152 525-690 V

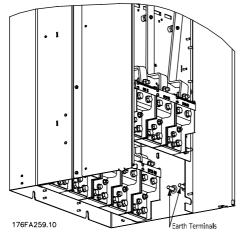



IP 00 Compacto, com desconexão e fusível
VLT 5202-5302 380-500 V, VLT 5202-5352 525-690 V

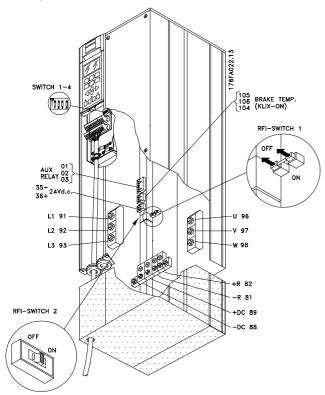
VLT 5202-5302 380-500 V, VLT 5202-5352 525-690 V Observação: A chave de RFI fica sem função nos drives 525-690 V.

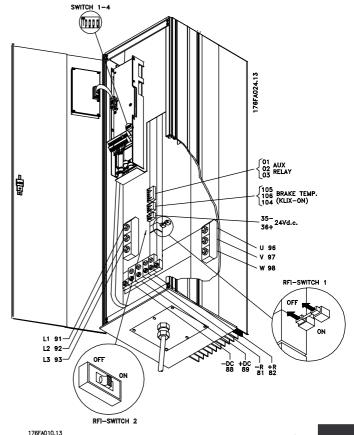


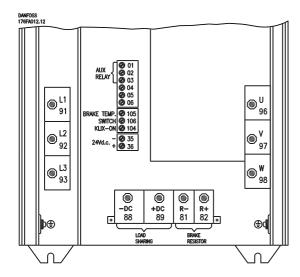
IP 00 Compacto, com desconexão e fusível


IP 00 Compacto, sem desconexão e fusível VLT 5352-5552 380-500 V

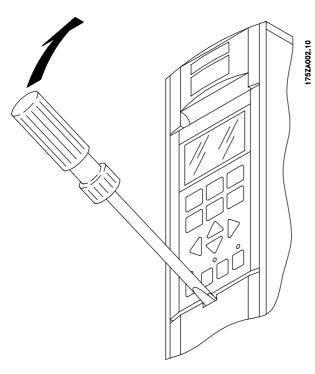
IP 21 / IP54 Compacto, sem desconexão e fusível VLT 5352-5552 380-500 V


Posição dos terminais terra, IP 21 / IP 54



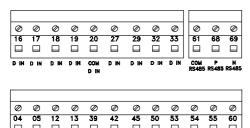

Posição dos terminais terra, IP 00

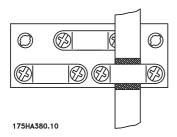
■ Instalação elétrica, cabos de controle


Compact IP 00/Nema 1 (IP 20) VLT 5032 -5052 200 -240 V VLT 5075 -5125 525 -600 V

Compact IP 54 VLT 5032 -5052 200 -240 V

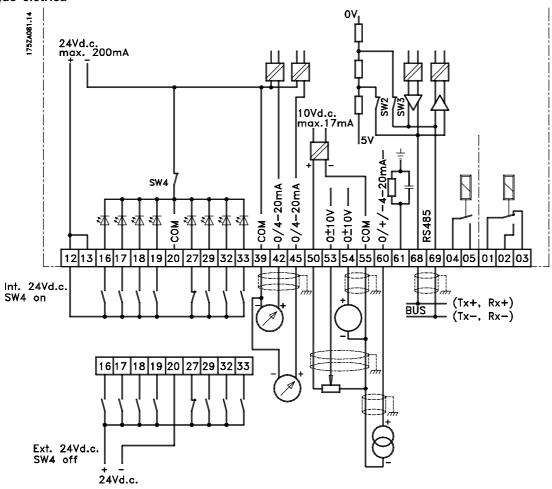
■ Instalação elétrica - cabos de controle


Todos os terminais para os cabos de controle estão localizados sob a tampa de proteção do conversor de freqüência. A tampa de proteção (veja o desenho) pode ser removida por meio de um objeto com ponta - uma chave de fenda ou algo similar.



Quando a tampa de proteção tiver sido removida, a instalação correta do EMC pode começar. Veja os desenhos na seção *Instalação correta de EMC*.

Torque de aperto 0,5-0,6 Nm Tamanho do parafuso: M3 Consulte a seção sobre aterramento dos cabos de controle reforçados/blindados.

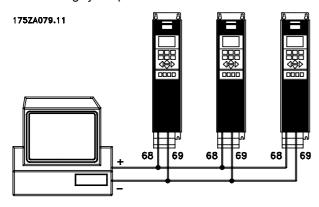


N°	Função
12, 13	Fornecimento de tensão a entradas
	digitais. Para que seja possível usar
	24 V CC para as entradas digitais, o
	interruptor 4 na placa de controle deve
	estar fechado, na posição "ON".
16-33	Entradas digitais/entradas do codificador
20	Terra para entradas digitais
39	Terra para saídas digitais/analógicas
42, 45	Saídas analógicas/digitais para indicar
	freqüência, referência, corrente e torque
50	Tensão de alimentação para
	potenciômetro e termistor de 10 V
	CC
53, 54	Entrada de referência analógica, tensão
	de 0 - ±10 V
55	Terra para entradas de referência
	analógicas
60	Entrada de referência analógica,
	corrente de 0/4 -20 mA
61	Terminação para comunicação serial.
	Consulte a seção intitulada Conexão
	do barramento. Normalmente, esse
	terminal não deve ser usado.
68, 69	Interface RS 485, comunicação serial.
	Onde o conversor de freqüência
	estiver conectado a um barramento, os
	interruptores 2 e 3 (interruptores 1-4)
	devem estar fechados no primeiro e no
	último conversor de freqüência. Nos
	demais conversores de freqüência, os
	interruptores 2 e 3 devem estar abertos.
	A programação de fábrica é fechada
	(posição "ON").

■ Instalação elétrica

Conversão das entradas analógicas

Sinal de entrada de corrente para a entrada de tensão


Cinal de cittada de corrente para a cittada de terr	540
0-20 mA	Conecte o resistor de 510 ohms entre os terminais
4-20 mA Â 2-10 V	de entrada 53 e 55 (terminais 54 e 55) e ajuste os
	valores mínimo e máximo nos parâmetros 309 e
	310 (parâmetros 312 e 313).

■ Instalação elétrica - ligação do bus

O bus serial conforme às normas RS 485 (2 condutores) é conectado aos bornes 68/69 do conversor de freqüência (sinal P e N). O sinal P tem um potencial positivo (TX+, RX+), enquanto o sinal N tem um potencial negativo (TX-, RX-).

Se mais de um conversor de frequência deve ser conectado à um determinado mestre, utilize as ligações paralelas.

Para evitar correntes de equalização de potencial no cabo blindado, a blindagem do cabo pode ser ligada à terra no borne 61, que é ligado ao chassi através de um circuito RC.

Terminação bus

O bus deve ser terminado por meio de resistências em ambas as extremidades. Para esta finalidade, coloque os interruptores 2 e 3 na placa de comando para "ON".

■ Interruptores DIP 1-4

O interruptor está localizado no cartão de controle. É utilizado junto com a comunicação serial, terminais 68 e 69.

A posição do interruptor mostrada em seguida é aquela da configuração de fábrica.

O interruptor 1 não tem função.

Os interruptores 2 e 3 são usados para conexão de uma interface RS 485 de comunicação serial.

O interruptor 4 é usado para separar o potencial comum (de referência) da fonte de alimentação interna de 24 V CC, da fonte externa de 24 V CC.

NOTA!:

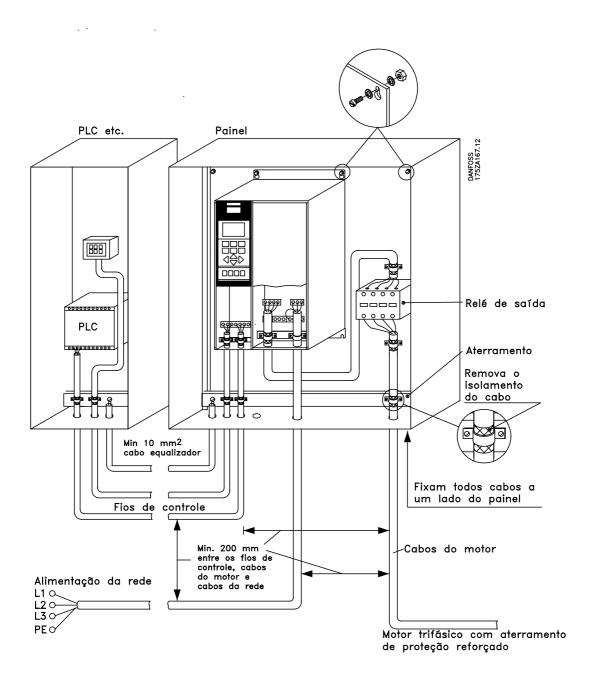
Por favor note que quando o Interruptor 4 está na posição desligado, a fonte externa de 24 V CC está galvanicamente isoladado conversor de freqüência.

■ Instalação elétrica - cuidados com EMC

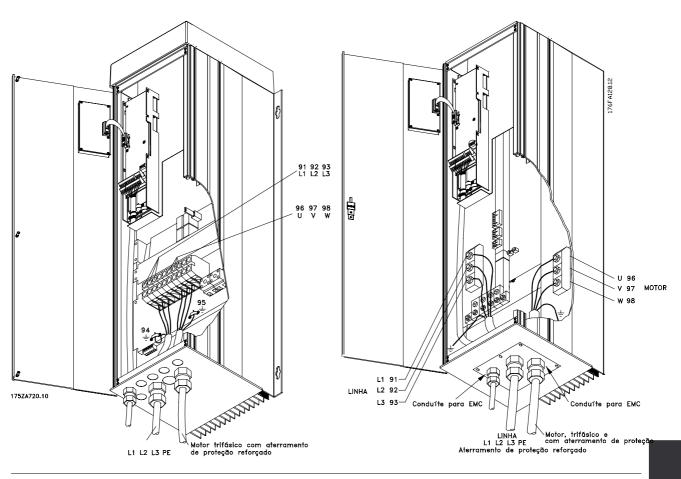
O conteúdo a seguir é uma guia de orientação de boas práticas de engenharia, ao instalar drives. Recomenda-se seguir este guia sempre que o atendimento às normas EN 61000-6-3, EN 61000-6-4, EN 55011 ou EN 61800-3 *Primeiro Ambiente* for requerido. Se a instalação se enquadrar na EN 61800-3 *Segundo Ambiente*, ou seja, redes de comunicação industriais ou em uma instalação com transformador próprio, é aceitável que ocorra desvio a essas orientações. Entretanto, não é recomendável. Consulte também *Certificação CE*, *Emissão* e *Resultados de testes de EMC* sob condições especiais, no Guia de Design para maiores detalhes.

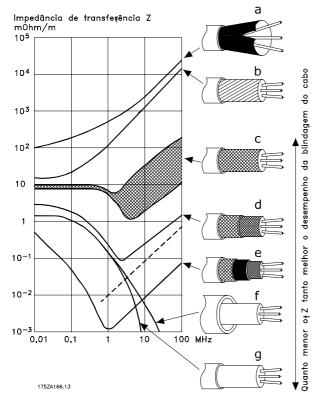
Boas práticas de engenharia para garantir a instalação elétrica em conformidade com a EMC.

- Utilize somente cabos de motor e cabos de controle que sejam blindados com malha trançada/encapados metalicamente. A malha deve ter cobertura de no mínimo 80%. O material da malha deve ser metálico, tipicamente de cobre, alumínio, aço ou chumbo, mas não limitado a estes materiais. Não há requisitos especiais para os cabos para rede elétrica.
- As instalações que utilizem conduítes rígidos de metal não requerem o uso de cabo blindado, mas o cabo do motor deve ser instalado em um conduíte separado dos cabos de controle e de rede elétrica. Exige-se que a conexão do conduíte, desde o drive até o motor, seja total. O desempenho dos conduítes flexíveis, com relação à EMC, varia muito e deve-se obter informações do fabricante a esse respeito.
- Conecte o conduíte com malha trançada/encapado metalicamente ao terra, nas duas extremidades, tanto no caso dos cabos de motor como dos cabos de controle. Em alguns casos, não é possível conectar a malha nas duas extremidades. Nestes casos, é importante conectar a malha no conversor de freqüência. Consulte também Aterramento de cabos de controle com malha trançada/blindados.
- Evite que a terminação das malhas/capas metálicas esteja com as extremidades torcidas (rabichos). Este tipo de terminação aumenta a impedância de alta freqüência da malha, o que reduz a sua eficácia nessas freqüências. Utilize braçadeiras de cabos de impedância baixa ou buchas de cabo EMC.
- É importante assegurar um bom contato elétrico, entre a chapa de montagem, na qual o conversor de freqüência está instalado, e o chassi metálico do conversor de freqüência. Entretanto, isto não


- se aplica às unidades IP54, uma vez que elas são projetadas para montagem em parede e para o VLT 5122-5552 380-500 V, 5042-5352 525-690 V e VLT 5032-5052 200-240 V em gabinete IP20/NEMA 1 e gabinete IP 54/NEMA 12.
- Use arruelas estrela e placas de instalação galvanicamente condutoras, para assegurar boas conexões elétricas para instalações do IP00 e IP20.
- Sempre que for possível, evite utilizar cabos de motor ou de controle sem malhas de blindagem/sem capas metálicas.
- Para as unidades IP54, é necessária uma conexão de alta freqüência ininterrupta entre o conversor de freqüência e as unidades dos motores.

A ilustração mostra um exemplo de uma instalação elétrica de um conversor de freqüência IP 20, em conformidade com a EMC; o conversor de freqüência foi instalado em uma cabine, com um contator de saída, e conectado a um PLC que, neste exemplo, está instalado em um gabinete separado. Nas unidades IP 54 e no VLT 5032-5052, 200-240 V em gabinetes IP20/IP21/NEMA 1, os cabos blindados são conectados utilizando conduítes EMC para garantir o desempenho apropriado com relação a EMC. Veja a ilustração. Outras maneiras de realizar a instalação podem ter um desempenho de EMC tão bom quanto este, desde que sejam seguidas as orientações das práticas de engenharia acima descritas.


Observe que, quando a instalação não é executada de acordo com a diretriz bem como quando são usados cabos e fios de controle não blindados, alguns requisitos de emissão não são atendidos, embora os requisitos de imunidade sejam atendidos. Consulte a seção *Resultados de teste de EMC* no Guia de projeto, para obter detalhes adicionais.



■ Utilização de cabos de emc corretos

Para otimizar a imunidade EMC dos cabos de controle e as emissões EMC dos cabos do motor, recomenda-se utilizar cabos blindados/encapados metalicamente.

A capacidade de um cabo em reduzir a radiação de entrada e de saída do ruído elétrico depende da impedância de transferência (Z_T). A malha de um cabo é normalmente concebida para reduzir a transferência de ruído elétrico; entretanto, uma malha com valor de impedância de transferência menor (Z_T), é mais eficaz que uma malha com impedância de transferência maior (Z_T).

A impedância de transferência (Z_T) raramente é informada pelos fabricantes de cabos, mas, normalmente, é possível estimá-la Z_T na avaliação do projeto físico do cabo.

A impedância de transferência (Z_T) pode ser avaliada com base nos seguintes fatores:

- A condutibilidade do material da malha.
- A resistência de contato entre os condutores individuais da malha.
- A abrangência da malha, ou seja, a área física do cabo coberta pela malha - geralmente informada como uma porcentagem.
- O tipo de malha, ou seja, padrão trançado ou entrelaçado.

Cobertura de alumínio com fio de cobre.

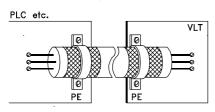
Fio de cobre entrelaçado ou cabo de fio de aço encapado metalicamente.

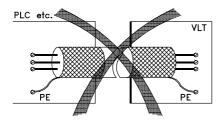
Fio de cobre trançado em camada única com cobertura de malha de porcentagem variável. Este é o cabo de referência típico da Danfoss.

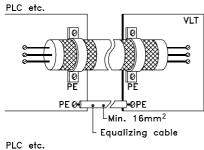
Fio de cobre trançado em camada dupla.

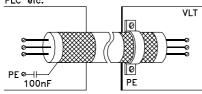
Camada dupla de fio de cobre trançado com camada intermediária magneticamente blindada/encapada metalicamente.

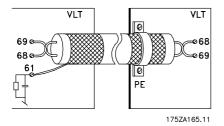
Cabo embutido em tubo de cobre ou aço.


Cabo de chumbo com espessura de parede de 1,1 mm.




■ Instalação elétrica - Aterramento dos cabos de controle


Em termos gerais, os cabos de controle devem ser blindados e a malha de proteção deve ser conectada com uma braçadeira em ambas as extremidades na carcaça da unidade.


O desenho abaixo indica como deve ser feito o aterramento correto e o que fazer no caso de dúvida.

Aterramento correto

Cabos de controle e cabos de comunicação serial devem ser fixados com braçadeiras em ambas as extremidades para garantir o melhor contato elétrico possível.

Aterramento incorreto

Não use cabos com extremidades torcidas, pois isto poderá aumentar a impedância da malha de proteção a altas freqüências.

Proteção com relação ao potencial de terra entre o PLC e o VLT

Se o potencial de terra entre o conversor de freqüência e o PLC (etc.) for diferente, poderá ocorrer ruído elétrico que perturbará todo o sistema. Este problema pode ser resolvido fixando-se um cabo equalizador, colocado próximo ao cabo de controle. Secção transversal mínima do cabo: 16 mm²

Para malhas de aterramento de 50/60 Hz

Se forem usados cabos de controle muito longos, poderão ocorrer malhas de aterramento de 50/60 Hz. Este problema pode ser resolvido conectando-se uma extremidade da tela de proteção à terra através de um capacitor de 100 nF (mantendo os terminais curtos).

Cabos para comunicação serial

As correntes de ruído de baixa freqüência entre dois conversores de freqüência podem ser eliminadas conectando-se uma extremidade da malha de proteção ao terminal 61. Este terminal está conectado à terra através de um link RC interno. É recomendado substituir cabos de par trançado para reduzir a interferência do modo diferencial entre os condutores.

■ Chave de RFI

Alimentação de rede elétrica isolada do terra: Se o conversor de freqüência for alimentado a partir de uma rede elétrica isolada (rede elétrica IT) ou rede elétrica TT/TN-S com uma perna aterrada, recomenda-se que a chave de RFI seja desligada (OFF)¹⁾. Para detalhes adicionais, consulte a IEC 364-3. Caso seja exigido um desempenho de EMC ótimo, e houver motores conectados em paralelo ou cabos de motor com comprimento acima de 25 m, recomenda-se que a chave esteja na posição ON (Ligada). Na posição OFF (Desligada), as capacitâncias de RFI internas (capacitores de filtro), entre o chassi e o circuito intermediário, são desconectadas

Consulte também a nota de aplicação *VLT em rede elétrica IT*, MN.90.CX.02. É importante utilizar monitores de isolação que possam ser usados em conjunto com os circuitos de potência (IEC 61557-8).

para evitar danos ao circuito intermediário e para reduzir as correntes de fuga de terra (de

acordo com a norma IEC 61800-3).

NOTA!:

A chave de RFI não deve ser acionada quando a unidade estiver conectada à rede elétrica.

Verifique se a alimentação de rede elétrica foi desligada, antes de acionar a chave de RFI.

NOTA!:

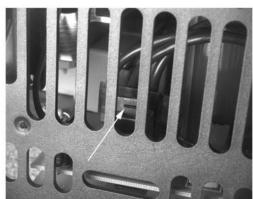
A abertura da chave de RFI somente é permitida na programação de fábrica das freqüências de chaveamento.

NOTA!:

A chave de RFI conecta os capacitores galvanicamente para o ponto de aterramento.

Os interruptores vermelhos são operados por meio de uma chave de fenda, por exemplo. Eles estão programados na posição OFF, quando são puxados para fora, e na posição ON, quando estão empurrados para dentro. A programação de fábrica é ON.

Alimentação de rede elétrica conectada ao ponto de aterramento:


A chave de RFI <u>deve</u> estar na posição ON (Ligado), para que o conversor de freqüência esteja em conformidade com a norma de EMC.

1) Não é possível com as unidades 5042-5352, 525-690 V.

Posição das chaves de RFI

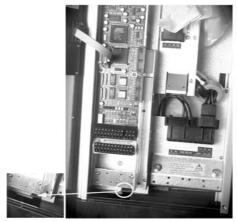
IP 20 Tipo Estante de Livros VLT 5001 - 5006 200 - 240 V VLT 5001 - 5011 380 - 500 V

175ZA650.10

IP 20/NEMA 1 Compacto

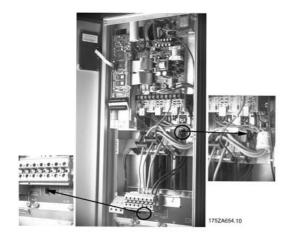
VLT 5001 - 5006 200 - 240 V

VLT 5001 - 5011 380 - 500 V VLT 5001 - 5011 525 - 600 V

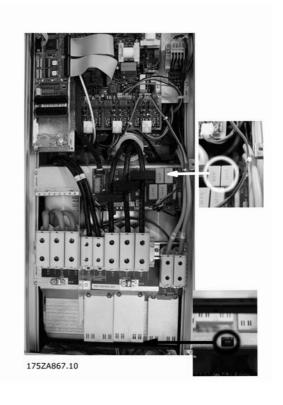

IP 20/NEMA 1 Compacto VLT 5008 200 - 240 V VLT 5016 - 5022 380 - 500 V VLT 5016 - 5022 525 - 600 V

IP 20/NEMA 1 Compacto
VLT 5011 - 5016 200 - 240 V
VLT 5027 - 5032 380 - 500 V
VLT 5027 - 5032 525 - 600 V

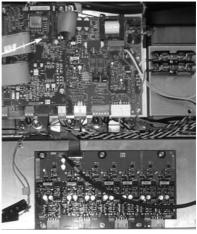
IP 20/NEMA 1 Compacto VLT 5022 - 5027 200 - 240 V VLT 5042 - 5102 380 - 500 V VLT 5042 - 5062 525 - 600 V


175ZA647.

IP 54 Compacto VLT 5001 - 5006 200 - 240 V VLT 5001 - 5011 380 - 500 V

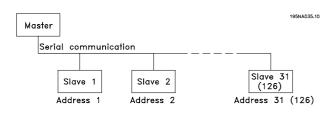


IP 54 Compacto VLT 5008 - 5011 200 - 240 V VLT 5016 - 5027 380 - 500 V



IP 54 Compacto VLT 5016 - 5027 200 - 240 V VLT 5032 - 5062 380 - 500 V

IP 54 Compacto VLT 5072 - 5102 380 - 500 V



Todos os tipos de gabinete VLT 5122-5552 380 - 500 V

■ Comunicação serial

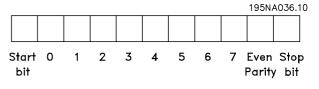
■ Protocolos

■ Transmissão de telegramas

Telegramas de controle e de resposta

A transmissão dos telegramas em um sistema mestre-escravo é controlada pelo mestre. Num único mestre podem ser conectados até 31 escravos, a menos que sejam utilizados repetidores. Se forem usados repetidores, um máximo de 126 escravos podem ser conectados a um mestre.

O mestre envia continuamente telegramas aos escravos e aguarda telegramas de resposta deles. O tempo de resposta do escravo é de 50 ms, no máximo.


Só um escravo que tenha recebido um telegrama sem erros é que pode enviar um telegrama de resposta.

"Broadcast"

Um mestre pode enviar um telegrama ao mesmo tempo a todos os escravos conectados ao bus. Durante a comunicação em "broadcast", o escravo não envia de volta ao mestre qualquer resposta aos telegramas indicando se telegrama foi corretamente recebido ou não. A comunicação em "broadcast" é configurada no formato de endereço (ADR), consulte Estrutura dos telegramas.

Conteúdo de um caractere (byte)

Cada caractere transferido começa com um bit de partida. Em seguida, são transmitidos 8 bits de dados, que correspondem a um byte. Cada caractere possui um bit de paridade programado em "1" quando existe paridade (ou seja, quando existe um número igual de 1s nos 8 bits de dados e no bit de paridade no total). Um caractere termina com um bit de parada e é portanto composto de 11 bits.

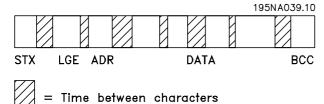
■ Estrutura dos telegramas

Cada telegrama começa com um caractere de partida (STX) = 02 Hex, seguido de um byte que indica o comprimento do telegrama (LGE) e um byte que indica o endereço do conversor de freqüência (ADR). Segue então um certo número de bytes de dados (variável, dependendo do tipo de telegrama). O telegrama termina com um byte de controle de dados (BCC).

Controle de tempo do telegrama

A velocidade de comunicação entre um mestre e um escravo depende da taxa baud. A taxa baud do conversor de freqüência deve ser a mesma que a taxa baud do mestre e pode ser selecionada no parâmetro 501 *Taxa baud*.

Após um telegrama de resposta do escravo, deve haver uma pausa de pelo menos 2 caracteres (22 bits) antes que o mestre possa enviar um novo telegrama. Com uma taxa baud de 9600 baud, a pausa deve ser de pelo menos 2,3 ms. Quando o mestre houver terminado o telegrama, o tempo de resposta do escravo de volta ao mestre será de no máximo 20 ms e haverá uma pausa de pelo menos 2 caracteres.


195NA038.10

Master telegram Pause Response Pause time time time

Tempo de pausa, mín: 2 caracteres Tempo de resposta mín: 2 caracteres Tempo de resposta, máx: 20 ms

O tempo entre os caracteres individuais de um telegrama não pode ultrapassar 2 caracteres e o telegrama deve estar terminado dentro de 1,5 vezes o tempo do telegrama nominal. Com uma taxa baud de 9600 e um comprimento do telegrama de 16 bytes o telegrama estará terminado após 27,5 mseg.

Comprimento do telegrama (LGE)

O comprimento do telegrama é o número de bytes de dados, mais o byte de endereço ADR, mais o dado de controle de dados BCC.

Os telegramas com 4 bytes de dados têm um comprimento de:

LGE = 4 + 1 + 1 = 6 bytes

Os telegramas com 12 bytes de dados têm um comprimento de:

LGE = 12 + 1 + 1 = 14 bytes

O comprimento dos telegramas que contêm textos é 10+n bytes. O valor 10 representa os caracteres fixos e 'n' é variável (depende do comprimento do texto).

Endereço do conversor de freqüência (ADR) São utilizados dois diferentes formatos de endereços, e a gama de endereços do conversor de freqüência é 1-31 ou 1-126.

1. Formato de endereço 1-31

O byte para a faixa de endereço 1-31 tem

o seguinte perfil: 7 6 5 4 3 2 1 0

195NA040.10

Bit 7 = 0 (formato de endereço 1-31 ativo)

Bit 6 não é utilizado

Bit 5 = 1: Broadcast. Os bits de endereço

(0-4) não são utilizados

Bit 5 = 0: Sem "Broadcast

Bit 0-4 = Endereço 1-31 do conversor

de freqüências

2. Formato de endereço 1-126

O byte de endereço da gama 1 - 126 tem

o seguinte perfil:

1			

195NA041.10

Bit 7 = 1 (formato de endereço 1-126 ativo)

Bit 0-6 = Endereço 1-126 do conversor

de freqüência 1-126

Bit 0-6 = 0 "Broadcast

O escravo envia o byte de endereço de volta, sem alteração, no telegrama de resposta ao mestre.

Exemplo:

escrevendo no endereço 22 (16H) do conversor de freqüências com o formato de endereço 1-31:

7	6	5	4	3	2	1	0
0	0	0	1	0	1	1	0

195NA042.10

Byte de controle de dados (BCC)

O byte de controle de dados é explicado neste exemplo:

Antes que o primeiro byte do telegrama seja recebido, o CheckSum Calculado (BCS) é 0.

/	6	5	4	3	2	1	U
0	0	0	0	0	0	0	0

195NA043.10

Quando o primeiro byte (02H) houver sido recebido: BCS = BCC EXOR "primeiro byte"

(EXOR = ou-exclusivo)

BCS = 0 0 0 0 0 0 0 0 (00 H)

EXOR

1. primeiro byte = 0 0 0 0 0 0 1 0 (02H) BCC = 0 0 0 0 0 1 0 (02H)

Cada byte subsequente é filtrado por BCS EXOR e produz um novo BCC, por exemplo.:

BCS = 0 0 0 0 0 0 1 0 (02H)

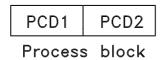
EXOR

 segundo byte
 = 1 1 0 1 0 1 1 0 (D6H)

 BCC
 = 1 1 0 1 0 1 0 0 (D4H)

■ Caractere de dados (byte)

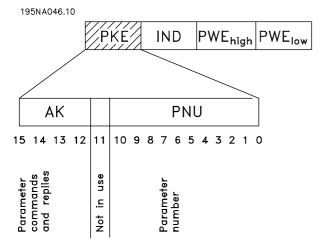
A estrutura dos blocos de dados depende do tipo de telegrama. Existem três tipos de telegramas e o tipo de telegrama aplica-se tanto aos telegramas de controle (mestre escravo) quanto aos telegramas de resposta (escravo mestre). Os três tipos de telegramas são:


 Bloco de parâmetros, usado para transmitir parâmetros entre mestre e escravo. O bloco de dados é composto de 12 bytes (6 palavras) e também contém o bloco de processo.

	19:	5NAU44.10
 DWE.	DCD1	DCD3

PKE IND PWE high PWE low PCD1 PCD2

Parameter block Process block


- O bloco de processo é composto de um bloco de dados de quatro bytes (2 palavras) e contém:
 - A palavra de controle e o valor de referência
 - A palavra de status e a freqüência de saída atual (do escravo para o mestre)

 Bloco de texto, usado para ler ou gravar textos via bloco de dados.

PKE	IND	Ch	1	Ch	2		Ch	n	PCD1	PCD2	
	Text block				Proce	ss blo	ck				

Comandos e respostas dos parâmetros (AK).

Os bits nos 12-15 são usados para transferir comandos de parâmetro do mestre ao escravo

e as respostas processadas enviadas de volta do escravo ao mestre.

Cor	Comandos do parâmetro mestre escravo								
Bit	no								
15	14	13	12	Comando do parâmetro					
0	0	0	0	Nenhum comando					
0	0	0	1	Ler valor do parâmetro					
0	0	1	0	Gravar o valor do parâmetro na					
				RAM					
				(palavra)					
0	0	1	1	Gravar o valor do parâmetro na					
				RAM					
				(palavra dupla)					
1	1	0	1	Gravar o valor do parâmetro na					
				RAM					
				e na EEprom (palavra dupla)					
1	1	1	0	Gravar o valor do parâmetro na					
				RAM					
				e na EEprom (palavra)					
1	1	1	1	Ler/gravar texto					

Me	stre	es	crav	o da resposta
Bit no				Resposta
15	14	13	12	
0	0	0	0	Nenhuma resposta
0	0	0	1	Valor de parâmetro transferido
				(palavra)
0	0	1	0	Valor de parâmetro transferido
				(palavra dupla)
0	1	1	1	O comando não pode ser
				executado
1	1	1	1	Texto transferido

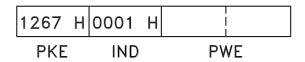
Se o comando não puder ser realizado, o escravo enviará esta resposta: 0111 *O comando não pode ser executado* e fornece o seguinte relatório de erro no valor do parâmetro (PWE):

Beenests	Relatório de erro
Resposta (0111)	Relatorio de erro
0	O número do parâmetro usado
U	não existe
1	Não há acesso de gravação ao
•	parâmetro definido
2	O valor dos dados excede
2	os limites do parâmetro
3	O sub-índice usado
Ū	não existe
4	O parâmetro não é do tipo "array"
5	O tipo de dados não corresponde
· ·	ao
	parâmetro definido
17	A alteração de dados no parâmetro
	definido não é possível no modo
	atual do conversor de frequência.
	Determinados parâmetros podem
	apenas ser alterados quando o
	motor está desligado
130	Não existe acesso de barramento
	ao
	parâmetro definido
131	Não é possível alterar dados
	porque
	a Configuração de fábrica está
	selecionada

Número de parâmetro (PNU)

Os bits nos 0-10 são utilizados para transferir números de parâmetro. A função de um determinado parâmetro é definida na descrição do parâmetro na seção intitulada *Programação*.

Índice



O índice é utilizado em conjunto com o número do parâmetro para acesso de escrita/gravação nos parâmetros que têm índice; por exemplo, parâmetro 615 *Código das falhas*. O índice é composto de 2 bytes, um byte inferior e um byte superior, mas somente o byte inferior é utilizado como índice.

Exemplo - Índice:

O primeiro código de erros (índice [1]) no parâmetro 615 *Código de erros (ERROR CODE)* deve ser lido. PKE = 1267 Hex (parâmetro de leitura 615 *Código das falhas.*)

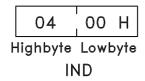
IND = 0001 Hex - Índice no.

O conversor de freqüência responderá no bloco do valor de parâmetros (PWE) com um valor de código de falha de 1 - 99. Consulte *Resumo de Advertências* e *Alarmes* para identificar o código da falha.

Valor do parâmetro (PWE)

O bloco de valor do parâmetro consiste de 2 "words" (4 bytes), e seu valor depende do comando dado (AK). Se o mestre solicitar um valor de parâmetro, o bloco PWE não contém um valor.

Se você desejar que o mestre altere um valor de parâmetro (gravar), o novo valor é gravado no bloco PWE e enviado ao escravo.


Se o escravo responder a uma solicitação de parâmetro (comando de leitura), o valor do parâmetro atual no bloco PWE é transferido e retornado ao mestre.

Se um parâmetro não contiver um valor numérico, mas várias opções de dados, por exemplo, parâmetro 001 *Idioma* onde [0] corresponde a *Inglês* e [3] corresponde ao *Dinamarquês*, o valor de dados é selecionado escrevendo-se o valor no bloco PWE. Vide *Exemplo - Selecionando um valor para os dados*.

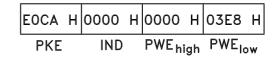
Via comunicação serial, só é possível ler os parâmetros que contenham o tipo de dados 9 (seqüência de texto). Parâmetro 621 - 635 Os dados da placa de identificação são do tipo de dados 9. Por exemplo, no parâmetro 621 Tipo de unidade é possível ler o tamanho da unidade e a gama de valores de tensão da rede. Quando uma seqüência de texto é transferida (lida), o comprimento do telegrama é variável, porque os textos têm comprimentos diferentes. O comprimento do telegrama é definido no segundo byte do telegrama, conhecido como LGE. Para conseguir ler um texto via bloco PWE, o comando do parâmetro (AK) deve ser definido para 'F' Hex.

O caractere de índice é usado para indicar se o comando é de leitura ou gravação. Em um comando de leitura, o índice deve ter o seguinte formato:

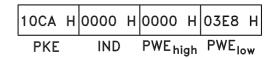
Alguns conversores de frequência têm parâmetros para os quais pode ser escrito um texto. Para conseguir gravar um texto com o bloco PWE, o comando de parâmetro (AK) deve ser definido para 'F' Hex.

Em um comando de gravação, o texto deve ter o seguinte formato:

Tipos de dados suportados pelo conversor de freqüência:


Tipos de	Descrição
dados	Docorição
uauus	
3	Número inteiro 16
4	Número inteiro 32
5	8 sem sinal
6	16 sem sinal
7	32 sem sinal
9	Seqüência de texto
10	Seqüência de byte
13	Diferença de tempo
33	Reservado
35	Seqüência de bit

Sem sinal significa que não há sinal operacional no telegrama.


Exemplo - Escrever um valor de parâmetro : Parâmetro 202 Limite superior da freqüência de saida, f_{MAX} a ser modificado para 100 Hz. O valor é gravado em EEPROM porque deve ser recuperado após falha na rede.

PKE = E0CA Hex - Escrita do parâmetro 202 Limite superior da freqüência de saída, f_{MÁX} IND = 0000 Hex $PWE_{HIGH} = 0000 Hex$

 $PWE_{LOW} = 03E8 \text{ Hex} - \text{Valor de dados } 1000,$ correspondendo a 100 Hz, consulte a conversão.

A resposta do escravo para o mestre será:

Exemplo - Seleção de um valor de dados: Para selecionar kg/hora [20] no parâmetro 416 Unidades de processo (PROCESS UNITS). O valor é gravado em EEPROM porque deve ser recuperado após falha na rede.

PKE = E19F Hex - Gravar no parâmetro 416 Unidades de processo (PROCESS UNITS) IND = 0000 Hex

 $PWE_{HIGH} = 0000 Hex$

PWE_{LOW} = 0014 Hex - Selecionar opção de dados kg/hora [20]

E1A0	Н	0000	Н	0000	Н	0014	Н
PKE		IND		PWE _{hi}	ah	PWElc	w

A resposta do escravo para o mestre será:

11AO	H	0000	Н	0000	Н	0014	Н
PKE		IND		PWE _{hi}	igh	PWElc	w

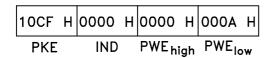
Exemplo - Leitura de um valor de parâmetro:

O valor do parâmetro 207 Tempo de aceleração 1 (RAMP UP TIME 1) é requerido.

O mestre envia a seguinte solicitação:

PKE = 10CF Hex - ler parâmetro 207 Tempo de aceleração 1 (RAMP UP TIME 1)

IND = 0000 Hex


 $PWE_{HIGH} = 0000 Hex$

 $PWE_{LOW} = 0000 Hex$

10CF	Н	0000	Н	0000	Н	0000	Н
PKE		IND		PWE _{hi}	gh	PWElo	w

Se o valor do parâmetro 207 Tempo de aceleração 1 for 10 seg., a resposta do escravo para o mestre será:

Conversão:

Na seção intitulada *Definições de fábrica*, são exibidos os diversos atributos de cada parâmetro. Como o valor do parâmetro só pode ser transferido na forma de um número inteiro, deve ser usado um fator de conversão para transmitir decimais.

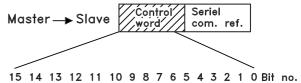
Exemplo:

Parâmetro 201 *Limite inferior da freqüência de saída, f_{MIN}* tem um fator de conversão de 0,1. Para predefinir a freqüência mínima para 10 Hz deve-se transferir o valor 100, pois um valor de conversão 0,1 significa que o valor transferido é multiplicado por 0,1. O valor 100, portanto, será recebido como 10,0.

Tabela de conversão	
Conversão	Conversão
índice	fator
74	0.1
2	100
1	10
0	1
-1	0.1
-2	0.01
-3	0.001
-4	0.0001
-5	0.00001

■ Palavras de Processo

O bloco de palavras de processo é dividido em dois blocos de 16 bits, que sempre ocorrem na següência definida.


	195NA066.10
PCD1	PCD2

	PCD 1	PCD 2		
Telegrama de	"Control	Valor de		
controle	word"	referência		
(mestre escravo)				
Telegrama de	"Status	Freq. de saída		
controle	word"	atual		
(es-				
cravo mestre)				

■ Palavra de estado de acordo com oPerfil FC

Para selecionar *Protocolo FC* na palavra de controle, o parâmetro 512 *Perfil do telegrama* deve ser programado para *Protocolo FC* [1].

A palavra de controle é usada para enviar comandos de um mestre (um PC, por exemplo) para um escravo (conversor de freqüência).

13	14 13 12 11 10 9 6 7	0 0 4 0 2 1 0 011 110.
Bit	Bit = 0	Bit = 1
00	Opção de referência	
	pré-ajustada, Isb	
01	Opção de referência	
	pré-ajustada, msb	
02	Freio CC	Aceleração
03	Parada por inércia	Ativar
04	Parada rápida	Aceleração
05	Congelar saída	Ativar aceleração
06	Parada da	Partida
	aceleração	
07	Sem função	Reiniciar
80	Sem função	Jog
09	Rampa 1	Rampa 2
10	Dados inválidos	Válidos
11	Sem função	Relé 01, ativado
12	Sem função	Relé 04, ativado
13	Seleção do Setup	
	(lsb)	
14	Seleção de Setup	
	(msb)	
15	Sem função	Inversão

Bit 00/01:

O bit 00/01 é utilizado para selecionar entre as duas referências pré-programadas (parâmetros 215-218 *Referência pré-ajustada*) de acordo com a seguinte tabela:

Ref. pre-	Parâmetro	Bit 01	Bit 00
definida			
1	215	0	0
2	216	0	1
3	217	1	0
4	218	1	1
•			

NOTA!:

No parâmetro 508 Seleção da referência pré-ajustada é feita uma seleção para definir como os Bits 00/01 são filtrados pela função correspondente nas entradas digitais.

Bit 02, freio CC:

Bit 02 = '0' conduz à frenagem e à parada de CC. Duração e corrente de frenagem são definidos nos parâmetros 125 e 126.

Bit 02 = '1' conduz à aceleração.

Bit 03, Parada por inércia:

Bit 03 = '0' habilita o conversor de freqüência a "liberar" o motor imediatamente (os transistores de saída são "desligados"), de modo que o motor gire até parar. Bit 03 = '1' habilita o conversor de freqüência a dar partida no motor se as outras condições de partida tiverem sido satisfeitas. Observação: No parâmetro 502 *Parada por inércia* é feita uma seleção para definir como é filtrado o Bit 03 com a função correspondente em uma entrada digital.

Bit 04, Parada rápida:

Bit 04 = '0' provoca uma parada na qual a velocidade do motor é reduzida até parar, através do parâmetro 212 Tempo de desaceleração de parada rápida (QUICK STOP RAMP-DOWN TIME).

Bit 05, Frequência de saída congelada:

Bit 05 = '0' congela a freqüência de saída atual (em Hz). A freqüência congelada de saída agora só pode ser modificada por intermédio das entradas digitais programadas com *Aceleração* e *Desaceleração*.

NOTA!:

Se Saída congelada o conversor de freqüência não pode ser parado através do Bit 06 Partida ou através de uma entrada digital. O conversor

de frequência só pode ser parado pelo seguinte:

- · Bit 03 Parada por inércia
- Bit 02 Frenagem de CC
- Entrada digital programada para Frenagem CC,
 Parada por inércia ou Reset e parada por inércia.

Bit 06, Partida/Parada da aceleração:

O bit 06 = '0' provoca uma parada, na qual a velocidade do motor é reduzida até parar através do parâmetro *desaceleração* selecionado.

Bit 06 = '1' habilita o conversor de freqüência a dar a partida no motor se outras condições de partida tiverem sido satisfeitas. Observação: No parâmetro 505 *Partida*, é feita uma seleção para definir como é filtrado o Bit 06 Parada/partida em rampa com a função correspondente em uma entrada digital.

Bit 07, Reiniciar:

Bit 07 = '0' não provoca um reset.

Bit 07 = '1' causa o reset de um desarme. A reinicialização é ativada no limite extremo do sinal, ou seja, na transição da lógica '0' para a lógica '1'.

Bit 08, Jog:

Bit 08 = '1' faz com que a freqüência de saída seja determinada pelo parâmetro 213 *Freqüência de jog*.

Bit 09, Seleção de rampa 1/2:

Bit 09 = "0†significa que aceleração 1 está ativa (parâmetros 207/208). Bit 09 = "1†significa que a rampa 2 (parâmetros 209/210) está ativa.

Bit 10, Dados não válidos/Dados válidos:

É usado para informar ao conversor de freqüência se a palavra de controle deve ser utilizada ou ignorada. Bit 10 = '0' faz ignorar a palavra de controle, Bit 10 = '1' faz utilizar a palavra de controle. Esta função é relevante porque a "control word" está sempre contida no telegrama, independente do tipo de telegrama utilizado, ou seja, é possível desativar a "control word" se você não deseja utilizá-la vinculada a parâmetros de atualização ou leitura.

Bit 11, Relé 01:

Bit 11 = "0" Relé não ativado.

Bit 11 = " 1" Relé 01 ativado, uma vez que *Bit da palavra de controle* foi escolhido no parâmetro 323.

Bit 12, Relé 04:

Bit 12 = "0" Relé 04 não foi ativado.

Bit 12 = "1" Relé 04 ativado, uma vez que *Bit da* palavra de controle foi escolhido no parâmetro 326.

Bit 13/14, Seleção de Setup:

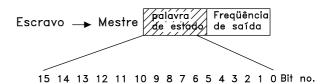
Bits 13 e 14 são usados para selecionar dos quatro Setups do menu, conforme a seguinte tabela:

Configuração	Bit 14	Bit 13
1	0	0
2	0	1
3	1	0
4	1	1

A função só é possível quando *Múltiplas* Configurações for selecionada no parâmetro 004 Configuração ativa.

Observação: No parâmetro 507 *Seleção de Configuração* é feita uma seleção para definir como são filtrados os Bits 13/14 com a função correspondente nas entradas digitais.

Bit 15 Reversão:


Bit 15 = '0' não provoca inversão.

Bit 15 = '1' provoca inversão.

Observação: Na programação de fábrica, a reversão

Status Word de acordo com o Perfil do FC é definida como digital no parâmetro 506 Reversão. O bit 15 só provoca a reversão quando *Comunicação* serial, Lógica or ou Lógica and for selecionada.

A status word é usada para informar o mestre (um PC, por exemplo) sobre o modo do escravo (conversor de freqüência). Escravo Mestre.

Bit	Bit = 0	Bit =1
00	Controle não preparado	Pronto
01	VLT não pronto	Pronto
02	Parada por inércia	Ativo
03	Sem falha	Desarme
04	Reservado	
05	Reservado	
06	Reservado	
07	Sem advertência.	Advertência
80	Velocidade ≠ ref.	Velocidade = ref.
09	Controle local	Controle do bus
10	Fora da faixa	Freqüência OK
11	Não funcionando	Em funcionamento
12	Teste de freio OK	Teste de freio falhou
13	Tensão OK	Acima do limite
14	Torque OK	Acima do limite
15		Advertência térmica

Bit 00, Controle não pronto/pronto:

Bit 00 = '0' significa que o conversor de freqüência desarmou.

Bit 00 = '1' significa que os controles do conversor de freqüência estão prontos, mas que o componente de potência não está necessariamente recebendo qualquer alimentação de energia (no caso de fornecimento externo de 24 V para os controles).

Bit 01, Drive pronto:

Bit 01 = '1'. O conversor de frequência está pronto para funcionar, mas existe um comando de parada por inércia ativo através de entradas digitais ou via comunicação serial.

Bit 02, Parada por inércia:

Bit 02 = '0'. O conversor de frequência liberou o motor. Bit 02 = '1'. O conversor de frequência pode dar partida no motor quando for dado um comando de partida.

Bit 03, Sem desarme/desarme:

Bit 03 = '0' significa que o conversor de frequência não está em modo de falha.

Bit 03 = '1' significa que o conversor de frequência está desarmado e que precisa de um sinal de reset para que seu funcionamento seja restabelecido.

Bit 04, Sem uso:

Bit 04 não é usado na status word.

Bit 05, Sem uso:

O bit 05 não é usado na status word.

Bit 06, Sem uso:

Bit 06 não é usado na status word.

Bit 07, Sem advertência/com advertência:

Bit 07 = '0' significa que não há advertências.

Bit 07 = '1' significa que ocorreu uma advertência.

Bit 08, Velocidade≠ ref/velocidade = ref.:

Bit 08 = '0' significa que o motor está funcionando, mas que a velocidade atual é diferente da referência de velocidade predefinida. Este pode ser o caso, por exemplo, da velocidade em aceleração/desaceleração, durante a partida/parada. Bit 08 = '1' significa que a velocidade atual do motor é a mesma que a referência de velocidade predefinida.

Bit 09, Controle da operação local/comunicação serial: Bit 09 = '0' significa que [STOP/RESET] está ativado, na unidade de controle, ou que o *Controle local* no parâmetro 002 *Operação local/remota* está selecionado. Não é possível controlar o conversor de freqüência via comunicação serial. Bit 09 = '1' significa que é possível controlar o

Bit 09 = '1' significa que é possível controlar o conversor de freqüência via comunicação serial.

Bit 10, Fora da faixa de freqüência:

Bit 10 = '0', se a freqüência de saída tiver alcançado o valor do parâmetro 201 *Freqüência máx. de saída* ou do parâmetro 202 *Freqüência mín. de saída*. Bit 10 = '1' significa que a freqüência de saída está dentro dos limites definidos.

Bit 11, Funcionando/não funcionando:

Bit 11 = '0' significa que o motor não está funcionando. Bit 11 = '1' significa que o conversor de freqüência tem um sinal de partida ou que a freqüência de saída é maior que 0 Hz.

Bit 12, Teste de freio:

Bit 12 = '0' teste de freio OK.

Bit 12 = '1' teste de freio falhou

Bit 13, Aviso de tensão alta/baixa:

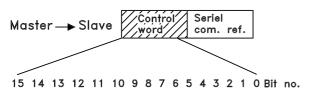
Bit 13 = '0' significa que não há avisos de tensão.

Bit 13 = '1' significa que a tensão CC no circuito intermediário do conversor de freqüência está muito baixa ou muito alta.

Bit 14, Torque OK/acima do limite:

Bit 14 = '0' significa que a corrente do motor está abaixo do limite de torque selecionado no parâmetro 221.

Bit 14 = '1' significa que o limite de torque no parâmetro 221 foi excedido.


Bit 15, Advertência térmica:

Bit 15 = '0' significa que não há advertência de temperatura.

Bit 15 = '1' significa que o limite de temperatura foi excedido no motor, no conversor de freqüência ou em um termistor conectado a uma entrada analógica.

■ Palavra de controle segundo oPerfil do barramento de campo

Para selecionar *Profidrive* na palavra de controle, o parâmetro 512 *Telegram Profile* deve ser configurado como *Profidrive* [0].

A palavra de controle é usada para enviar comandos de um mestre (um PC, por exemplo) para um escravo (conversor de fregüência). Mestre Escravo.

-	. ,	
Bit	Bit = 0	Bit =1
00	OFF 1	LIGADO 1
01	OFF 2	LIGADO 2
02	OFF 3	LIGADO 3
03	Parada por inércia	
04	Parada rápida	
05	Freqüência de saída congelada	
06	Parada da aceleração	Partida
07		Reiniciar
08		Barramento jog 1
09		Barramento jog 2
10	Dados inválidos	Dados inválidos
11		Reduzir a velocidade
12		Catch-up
13	Selecionar Configurar (Isb)	
14	Selecionar Configurar (msb)	
15		Inversão

Bit 00-01-02, OFF1-2-3/ON1-2-3:

Bit 00-01-02 = '0' causa parada da aceleração, que utiliza o tempo de aceleração nos parâmetros 207/208 ou 209/210.

Se o *Relê 123* estiver selecionado no parâmetro 323 *Saída do relê (RELAY OUTPUT)*, o relé de saída será ativado quando a freqüência de saída for 0 Hz.

Bit 00-01-02 = '1' significa que o conversor de freqüência pode dar partida no motor se forem satisfeitas outras condições de partida.

Bit 03, Parada por inércia:

Consulte a descrição em *Palavra de controle* segundo o protocolo FC.

Bit 04, Parada rápida:

Consulte a descrição em *Palavra de controle* segundo o protocolo FC.

Bit 05, Freqüência de saída congelada:

Consulte a descrição em *Palavra de controle* segundo o protocolo FC.

Bit 06, Partida/Parada da aceleração:

Consulte a descrição em *Palavra de controle* segundo o protocolo FC.

Bit 07, Reiniciar:

Consulte a descrição em *Palavra de controle* segundo o protocolo FC.

Bit 08, Jog 1:

Bit 08 = "1" significa que a freqüência de saída é determinada pelo parâmetro 09 *Bus jog 1*.

Bit 09, Jog 2:

Bit 09 = "1" significa que a freqüência de saída é determinada pelo parâmetro 510 *Bus jog 2*.

Bit 10, Dados não válidos/Dados válidos:

Consulte a descrição em Palavra de controle segundo o protocolo FC.

Bit 11, "Reduzir a velocidade":

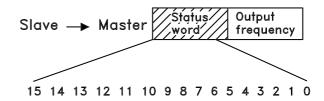
Usado para reduzir a referência de velocidade pelo valor no parâmetro 219 Referência catch-up/reduzir a velocidade (CATCH-UP/SLOW-DOWN REFERENCE).

Bit 11 = '0' causa nenhuma alteração na referência. Bit 11 = '1' significa que a referência é reduzida.

Bit 12, Catch-up:

Usado para aumentar a referência de velocidade pelo valor do parâmetro 219 *Referência* catch-up/diminuir a velocidade(CATCH-UP/SLOW DOWN REFERENCE).

Bit 12 = '0' causa nenhuma alteração na referência. Bit 12 = '1' significa que a referência é aumentada. Se tanto *Slow down* quanto *Catch-up* estiverem ativados (bits 11 e 12 = "1"), slow-down terá a maior prioridade, ou seja, a velocidade de referência será reduzida.


Bit 13/14, Seleção de Setup:

Consulte a descrição em *Palavra de controle* segundo o protocolo FC.

Bit 15 Reversão:

Consulte a descrição em *Palavra de controle* segundo o protocolo FC.

■ Palavra de estado de acordo com o Perfil do barramento de campo

A palavra de estado é usada para informar o mestre (um PC, por exemplo) sobre o modo do escravo (conversor de freqüência). Escravo Mestre.

Bit	Bit =0	Bit =1
00		Controle pronto
01		Unidade pronta
02	Parada por inércia	
03	Sem trip	Trip
04	LIGADO 2	OFF 2
05	LIGADO 3	OFF 3
06	Iniciar ativação	Iniciar desativação
07		Aviso
08	Velocidade ≠Ref.	Velocidade = ref.
09	Controle local	Comunicação serial
10	Fora da faixa de freqüência	Limite de freqüência OK
11		Motor em funcionamento
12		
13		Aviso de tensão
14		Current limit
15		Aviso de temperatura

Bit 00, Control not ready/ready:

Bit 00 = '0' significa que o Bit 00, 01 ou 02 na palavra de controle é '0' (OFF1, OFF2 ou OFF3) ou que o conversor de freqüência não está pronto para funcionar.

Bit 00 = '1' significa que o conversor de freqüência está pronto para funcionar.

Bit 01, Unidade pronta:

Consulte a descrição em *Palavra de estado* conforme o protocolo FC.

Bit 02, Coasting stop:

Bit 02 = '0' significa que Bits 00, 02 ou 03 na palavra de controle é "0" (DESLIGADO1, DESLIGADO3 ou Parada por inércia). Bit 02 = '1' significa que os Bits 00, 01, 02 e 03 na palavra de controle são "1" e que o conversor de freqüência não entrou em desarme.

Consulte a descrição em *Palavra de estado* conforme o protocolo FC.

Bit 03, No trip/trip:

Consulte a descrição em *Palavra de estado* conforme o protocolo FC.

Bit 04, LIGADO 2/DESLIGADO 2:

Bit 04 = '0' significa que Bit 01 na palavra de controle = '1'.

Bit 04 = '1' significa que o bit 01 na palavra de controle = '0'.

Bit 05, LIGADO 3/DESLIGADO 3:

Bit 05 = '0' significa que Bit 02 na palavra de controle = '1'.

Bit 05 = '1' significa que o bit 02 na palavra de controle = '0'.

Bit 06, Start enable/start disable:

Bit 06 = '1' após o reset de um trip, após a ativação de DESLIGADO2 ou DESLIGADO3 e após a ligação da tensão da rede. *Start disable* é reinicializado configurando-se o bit 00 na palavra de controle como '0' e os bits 01, 02 e 10 são definidos como '1'.

Bit 07, Warning:

Consulte a descriçã o em *Palavra de estado* conforme o protocolo FC.

Bit 08, Speed:

Consulte a descrição em *Palavra de estado* segundo o protocolo FC.

Bit 09, No warning/warning:

Consulte a descrição em *Palavra de estado* conforme o protocolo FC.

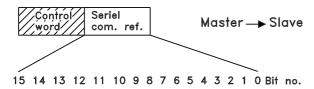
Bit 10, Velocidade ≠ref/velocidade = ref.:
Consulte a descrição em *Palavra de estado* conforme o protocolo FC.

Bit 11, Funcionando/não funcionando:

Consulte a descrição em *Palavra de estado* conforme o protocolo FC.

Bit 13, Aviso de tensão alta/baixa:

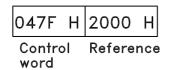
Consulte a descrição em *Palavra de estado* conforme o protocolo FC.


Bit 14, Limite de corrente:

Consulte a descrição em *Palavra de estado* conforme o protocolo FC.

Bit 15, Aviso de temperatura:

■ Referência da comunicação serial


A referência de comunicação serial é transmitida para o conversor de freqüência na forma de uma "word" de 16 bits. O valor é transferido em números inteiros de 0 - ±32767 (±200%). 16384 (4000 Hex) corresponde a 100%.

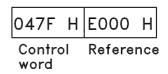
A referência da comunicação serial tem o seguinte formato: 0-16384 (4000 Hex) \cong 0-100% (Par. 204 *Ref. mínima* - Par. 205 *Ref. máxima*).

É possível modificar o sentido da rotação por intermédio da referência serial. Isto é feito convertendo-se o valor da referência binária para um complemento de 2. Vide exemplo.

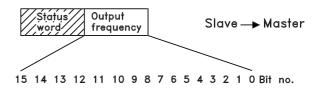
Exemplo - "Control word" e ref. da comunicação serial:
O conversor de freqüência deve receber um comando de partida e a referência deve ser configurada para 50% (2000 Hex) da gama de referência.

"Control word" = 047F Hex Comando de partida. Referência = 2000 Hex referência de 50%.

O conversor de freqüência deve receber um comando de partida e a referência deve ser configurada para -50% (-2000 Hex) da gama de referência.


O valor de referência é inicialmente convertido para complemento de 1 e, em seguida, adicionado em binário para obter-se o complemento de 2:

2000 Hex Complemento de 1 +


Complemento de 2

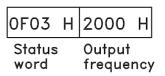
1110 0000 0000 0000 0000

"Control word" = 047F Hex Comando de partida. Referência = E000 Hex -50% de referência.

■ Freqüência de saída atual

O valor atual da freqüência de saída do conversor de freqüência é transmitido sob forma de uma "word" de 16 bits. O valor é transmitido como número inteiro de 0 - ±32767 (±200%). 16384 (4000 Hex) corresponde a 100%.

A freqüência de saída tem o seguinte formato: $0-16384 (4000 \text{ Hex}) \cong 0-100\% (\text{Par. } 201 \text{ Limite mínimo da freqüência de saída - Par. } 202 \text{ Limite máximo da freqüência de saída}).$


Exemplo - "Status word" e freqüência de saída atual:

O mestre recebe uma mensagem de status do conversor de freqüência indicando que a freqüência de saída atual é de 50% da gama de freqüência de saída.

Par. 201 Limite mínimo da freqüência de saída = 0 Hz Par. 202 Limite máximo da freqüência de saída = 50 Hz

"Status word" = 0F03 Hex.

Freqüência de saída= 2000 Hex 50% da gama da freqüência de saída, que corresponde a 25 Hz.

■ Exemplo de telegrama

Telegrama para o conversor de frequência:

■ Exemplo1: Para controlar os parâmetros de leitura e da unidade

Este telegrama lê o parâmetro 520, corrente do motor.

stx	lge	adr	pke		ind	ind		pot., alta pot., baixa		pcd 1		pcd 2		bcc	
02	0E	01	12	80	00	00	00	00	00	00	00	00	00	00	17

Todos os números são em formato hexadecimal.

A resposta do conversor de freqüência corresponderá ao comando acima, mas *pot.,alta* e *pot.,baixa* irão conter o valor real do parâmetro 520

multiplicado por 100. Isto significa que se a corrente de saída real for 5,24 A, o valor que virá do conversor de freqüência será 524.

Resposta do conversor de fregüência:

stx	lge	adr	pke		ind		pwe,	high	pwe,	low	pcd 1		pcd 2		bcc
02	0E	01	22	08	00	00	00	00	02	0C	06	07	00	00	28

Todos os números são em formato hexadecimal .

Pcd 1 e pcd 2 do exemplo 2 podem ser usados e adicionados ao exemplo, o que significa

que será possível controlar a unidade e ler a corrente ao mesmo tempo.

■ Exemplo 2: Somente para controlara unidade

Este telegrama define a palavra de controle para 047C Hex (comando Iniciar)) com uma velocidade de referência de 2000 Hex (50%).

NOTA!:

O parâmetro 512 é definido para Unidade FC.

Telegrama para o conversor de fregüência:

stx	lge	adr	pcd 1		pcd 2	bcc	
02	06	04	04	7C	20	00	58

Todos os números são em formato hexadecimal .

A resposta do conversor de freqüência dá informações sobre o status da unidade quando recebeu o comando. Ao enviar o comando novamente, o *pcd1* irá alterar para o novo status.

Resposta do conversor de frequência:

stx	lge	adr	pcd 1		pcd 2	bcc	
02	06	04	06	07	00	00	01

Todos os números são em formato hexadecimal .

■ Ler os elementos de descrição do parâmetro

Com Ler elementos de descrição do parâmetro, é possível ler as características de um parâmetro que poderiam ser, por exemplo, *Nome, Valor-padrão, conversão,* etc.

A tabela a seguir mostra os elementos de descrição de parâmetros disponíveis:

Índice	Descrição
1	Características básicas
2	Número de elementos (tipos de matrizes)
4	Unidade de medida
6	Nome
7	Limite inferior
8	Limite superior
20	Valor-padrão
21	Características adicionais

No exemplo a seguir, *Ler elementos de descrição do parâmetro* foi escolhido no parâmetro 001, *Idioma (LANGUAGE)* e o elemento solicitado é índice 1 *Características básicas*.

Características básicas (índice 1):

O comando Características básicas é dividido em duas partes, representando o comportamento básico e o tipo de dados. As Características básicas retornam um valor de 16 bits para o mestre em PWE_{LOW}.

O comportamento básico indica se, por exemplo, o texto está disponível ou se o parâmetro é uma matriz como informações de bit simples no byte alto de PWE_{LOW}.

A parte do tipo de dados indica se um parâmetro é 16 com sinal, 32 sem sinal no byte baixo de PWE_{LOW} .

Comportamento básico do PWE alto:

Bit	Descrição
15	Parâmetro ativo
14	Matriz
13	O valor do parâmetro só pode ser redefinido
12	Valor do parâmetro diferente da configuração
	de fábrica
11	Texto disponível
10	Texto adicional disponível
9	Apenas para leitura
8	Limite superior e inferior não relevante
0-7	Tipo de dados

Parâmetro ativo só está ativo ao comunicar-se pelo Profibus.

Matriz significa que o parâmetro é uma matriz. Se o bit 13 for verdadeiro, o parâmetro só poderá ser redefinido, não gravado.

Se o bit 12 for verdadeiro, o valor do parâmetro será diferente da configuração de fábrica.

O bit 11 indica que o texto está disponível.

O bit 10 indica que existe texto adicional disponível. Por exemplo, o parâmetro 001, *Idioma (LANGUAGE)*, contém texto para o campo de índice 0, *Inglês*,

e para o campo de índice 1, Alemão.

Se o bit 9 for verdadeiro, o valor do parâmetro será apenas para leitura e não poderá ser alterado. Se o bit 8 for verdadeiro, os limites superiores e inferiores do valor do parâmetro não serão relevantes.

PWELOW tipo de dados

Dec.	Tipo de dados
3	16 com sinal
4	32 com sinal
5	8 sem sinal
6	16 sem sinal
7	32 sem sinal
9	Seqüência visível
10	Seqüência de byte
13	Diferença de tempo
33	Reservado
35	Seqüência de bit

Exemplo

Neste exemplo, o mestre lê as Características básicas do parâmetro 001, *Idioma (LANGUAGE)*.

O telegrama a seguir deve ser enviado para o conversor de freqüência VLT:

STX	LGE	ADR	PKE	IND	PWE _{HIGH}	PWE _{LOW}	PCD1	PCD2	BCC
02	0E	01	40 01	00 01	00 00	00 00	XX XX	XX XX	XX

STX = 02 Byte de início

A resposta do conversor de freqüência VLT será:

LGE = 0E Tamanho do telegrama

restante

ADR = Envia o conversor de freqüência

VLT no Endereço 1, formato

Danfoss

PKE = 4001; 4 no campo PKE indica

Ler descrição do parâmetro e 01 indica o parâmetro número 001,

Idioma (LANGUAGE)

IND = 0001; 1 indica que as

Características básicas são

necessárias.

STX	LGE	ADR	PKE	IND	PWE HIGH	PWE LOW	PCD1	PCD2	BCC
02	0E	01	30 01	00 01	00 00	04 05	XX XX	XX XX	XX

PKE = 02 Byte de início IND = 0001;

1 indica que as Características

básicas foram enviadas

 $PWE_{LOW} = 0405$; 04 indica que

Comportamento básico como bit 10 corresponde a *Texto adicional*. 05 é o tipo de dados que corresponde a *8 sem sinal*.

Número de elementos (índice 2):

Esta função indica o Número de elementos (matriz) de um parâmetro. A resposta para o mestre será PWE_{LOW}.

Conversão e Unidade de medida (índice 4):

O comando Conversão e unidade de medida indica a conversão de um parâmetro e unidade de medida. A resposta para o mestre será PWE_{LOW}. O índice de conversão estará no byte alto de PWE_{LOW} e o índice da unidade estará no byte baixo de PWE_{LOW}. Observe que o índice de conversão é 8 com sinal e o índice de unidade é 8 sem sinal, consulte as tabelas a seguir.

O índice da unidade define a "Unidade de medida". O índice de conversão define como o valor deveria ser escalado para obter a representação básica da "Unidade de medida". A representação básica é onde o índice de conversão é igual a "0".

Exemplo:

Um parâmetro tem um "índice de unidade" 9 e um "índice de conversão" 2. O valor bruto (inteiro) é 23. Isso significa que temos um parâmetro da unidade "Potência" e o valor bruto deveria ser multiplicado por 10 para a potência 2 e a unidade é W. 23 x 10² = 2300 W

Tabela de conversão e unidade de medida

Índice da	Unidade de	Designação	Índice de
unidade	medida		conversão
0	Dimensão menos		0
4	Tempo	s	0
		h	74
8	Energia	j	0
		kWh	
9	Potência	W	0
		kW	3
11	Velocidade	1/s	0
		1/mín. (RPM)	67
16	Torque	Nm	0
17	Temperatura	К	0
		°C	100
21	Tensão	V	0
22	Corrente	Α	0
24	Proporção	%	0
27	Alteração relativa	%	0
28	Frequência	Hz	0

Índice de conversão	Fator de conversão
0	1
1	10
2	100
3	1000
-1	0.1
-2	0.01
-3	0.001
67	1/60
74	3600
75	3600000
100	1

Nome (índice 6):

O Nome retorna um valor de seqüência no formato ASCII, contendo o nome do parâmetro.

Neste exemplo, o mestre lê o nome do parâmetro 001, *Idioma (LANGUAGE)* .

A resposta do conversor de frequência VLT será:

Exemplo:

LGE =

O telegrama a seguir deve ser enviado para o conversor de freqüência VLT:

STX	LGE	ADR	PKE	IND	PWEHIGH	PWE LOW	PCD1	PCD2	BCC
02	0E	01	40 01	00 06	00 00	00 00	XX XX	XX XX	XX

STX = 02 Byte de início

0E Tamanho do telegrama

restante

ADR = Envia o conversor de freqüência

VLT no Endereço 1, formato

Danfoss

PKE = 4001; 4 no campo PKE indica

Ler descrição do parâmetro e 01 indica o parâmetro número 001,

Idioma (LANGUAGE)

IND = 0006; 6 indica que Nomes são

necessários.

STX	LGE	ADR	PKE	IND	PVA	PCD1	PCD2	BCC
02	12	01	30 01	00 06	4C41 4E47 5541	XXXX	XXXX	XX
					4745			

PKE = 3001; 3 é a resposta para Nome

e 01 indica o parâmetro número

001, Idioma (LANGUAGE)

IND = 00 06; 06 indica que *Nome* foi

enviado.

PVA = 4C 41 4E 47 55 41 47 45

LANGUAGE

O canal do valor do parâmetro agora está configurado para uma seqüência visível, que retorna um caractere ASCII para cada letra no nome do parâmetro.

Limite inferior (índice 7):

O Limite inferior retorna o valor mínimo permitido de um parâmetro. O tipo de dados do Limite inferior é igual para o próprio parâmetro.

Limite superior (índice 8):

O Limite superior retorna o valor máximo permitido de um parâmetro. O tipo de dados do Limite superior é igual ao do próprio parâmetro.

Valor padrão (índice 20):

O Valor-padrão retorna o valor-padrão de um parâmetro, que é a configuração de fábrica. O tipo de dados do Valor-padrão é igual para o próprio parâmetro.

Características adicionais (índice 21):

O comando pode ser utilizado para obter algumas informações adicionais sobre um parâmetro, por exemplo *Acesso sem barramento*, *Dependência da unidade de potência*, etc. . As Características adicionais retornam uma resposta em PWE_{LOW}. Se o bit 1 for '1' lógico, a condição será verdadeira de acordo com a tabela a seguir:

Bit	Descrição
0	Valor-padrão especial
1	Limite superior especial
2	Limite inferior especial
7	LSB Acesso LCP
8	MSB Acesso LCP
9	NoBusAccess
10	Barramento std apenas para
	leitura
11	Profibus apenas para leitura
13	ChangeRunning
15	PowerUnitDependency

Se um do bit 0 *Valor-padrão especial*, bit 1 *Limite superior especial* e bit 2 *Limite inferior especial* for verdadeiro, o parâmetro terá valores dependentes da unidade de potência.

Bits 7 e 8 indicam os atributos para o acesso LCP, consulte a tabela.

Bit 8	Bit 7	Descrição	
0	0	Sem acesso	
0	1	Apenas para leitura	
1	0	Leitura/gravação	
1	1	Gravar com bloqueio	

O bit 9 indica *Acesso sem barramento*. Os bits 10 e 11 indicam que este parâmetro pode apenas ser lido pelo barramento. Se o bit 13 for verdadeiro, o parâmetro não poderá ser alterado enquanto estiver em execução. Se o bit 15 for verdadeiro, o parâmetro dependerá da unidade de potência.

■ Texto adicional

Com este recurso, é possível ler texto adicional se o bit 10, *Texto adicional disponível*, for verdadeiro em Características básicas.

Para ler o texto adicional, o comando do parâmetro (PKE) deve ser definido como F hex, consulte *Bytes de dados* .

O campo de índice é utilizado para apontar qual elemento deve ser lido. Os índices válidos estão na faixa de 1 a 254. O índice deve ser calculado depois da seguinte equação:

Índice = Valor do parâmetro + 1 (consulte a tabela a seguir).

Valor	Índice	Texto
0	1	Inglês
1	2	Alemão
2	3	Francês
3	4	Dinamar-
		quês
4	5	Espanhol
5	6	Italiano

Exemplo:

Neste exemplo, o Mestre lê o texto adicional no parâmetro 001, *Idioma*. O telegrama é configurado

para ler o valor dos dados [0] que corresponde ao *Inglês*. O telegrama a seguir deve ser enviado para o conversor de freqüência VLT:

STX	LGE	ADR	PKE	IND	PWEHIGH	PWELOW	PCD1	PCD2	BCC
02	0E	01	F0 01	00 01	00 00	00 00	XX XX	XX XX	XX

STX = 02 Byte de início

LGE = 0E Tamanho do telegrama

restante

ADR = Enviar o conversor de freqüência

VLT no Endereço 1, formato

Danfoss

PKE = F001; F no campo PKE indica

Ler texto e 01 indica o parâmetro

número 001, Idioma.

IND = 0001; 1 indica que o texto para o

valor do parâmetro [0] é exigido

A resposta do conversor de frequência VLT será:	A resposta	do conversor	de freqüência	VLT será:
---	------------	--------------	---------------	-----------

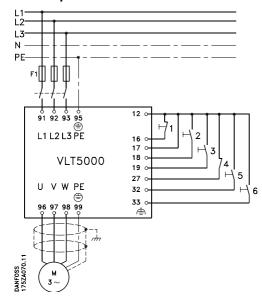
STX	LGE	ADR	PKE	IND	PVA	PCD1	PCD2	BCC
02	11	01	F0 01	00 01	454E 474C 4953 48	XX XX	XX XX	XX

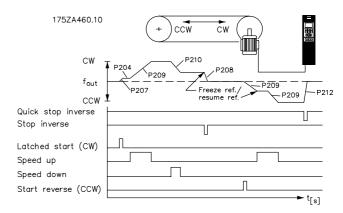
PKE = F001; F é a resposta para

Transferência de texto e 01 indica o parâmetro número 001, *Idioma*.

IND = 0001; 1 indica que o índice [1] é

enviado


PVA = 45 4E 47 4C 49 53 48

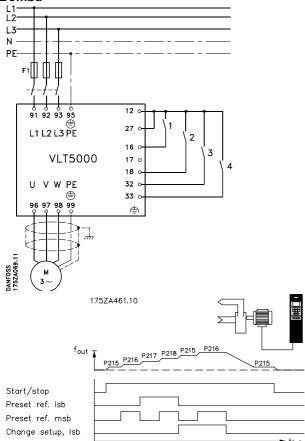

INGLÊSH

O canal do valor do parâmetro agora está configurado para uma seqüência visível, que retorna um caractere ASCII para cada letra no nome do índice.

■ Correia transportadora

Uma correia transportadora deve ser controlada usando-se as entradas digitais. Acione a correia transportadora movimentando-a para a direita (sentido horário) através do contato 2 e para a esquerda (sentido anti-horário) através do contato 3. A referência aumentará enquanto o contato 5 (aceleração) estiver ativado e será reduzida quando o contato 6 (desaceleração) estiver ativado. Uma parada através da elevação de velocidade pode ser ativada por meio do contato 1; uma parada rápida por meio do contato 4.

- 1. Parada por pulso (comando lógico em zero)
- 2. Partida por pulso para a direita
- 3. Partida por pulsos para a esquerda
- 4. Parada rápida
- 5. Aceleração
- 6. Desaceleração


A programação abaixo deve ser efetuada na sequência proposta:

Função:	Parâmetro:	Ajustes:	Valor do dado:
Rotação, freqüência / direção	200	Ambos sentidos, de 0 a 132	[1]
		Hz	
Referência mínima	204	3-10 (Hz)	
Tempo de rampa de aceleração	207	10-20 s	
_1			
Tempo de rampa de	208	10-20 s	
desaceleração 1			
Tempo de rampa de aceleração	209	10-20 s	
_2			
Tempo de rampa de	210	10-20 s	
desaceleração 2			
Entrada digital, borne 16	300	Parada (ativa c/NL)	[2]
Entrada digital, borne 17	301	Referência congelada	[7]
Entrada digital, borne 18	302	Partida com pulso	[2]
Entrada digital, borne 19	303	Partida com reversão	[2]
Entrada digital, borne 27	304	Parada rápida (ativa c/NL)	[2]

Todos os outros ajustes são baseados na programação de fábrica; Todavia, os dados do motor (dados de placa) devem sempre ser introduzidos nos parâmetros 102-106.

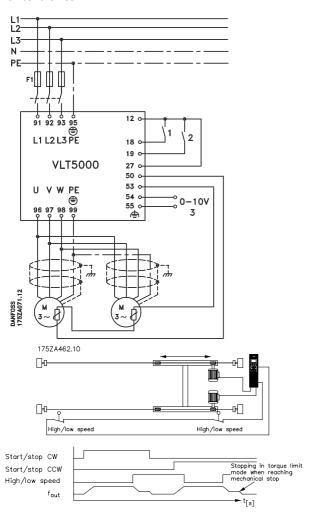
Uma bomba deve operar em seis velocidades diferentes, determinadas pela mudança entra as referências pré-configuradas.

Nº do contato:

	4	3	1
Referência pré-configurada 1	0	0	0
Referência pré-configurada 2	1	0	0
Referência pré-configurada 3	0	1	0
Referência pré-configurada 4	1	1	0
Referência pré-configurada 5	0	0	1
Referência pré-configurada 6	1	0	1

Quando o contato 1 está ativado, é feita uma mudança de "Setup" para o "Setup" 2. Início/parada através do contato 2.

- 1. Seleção do "Setup" Isb
- 2. Partida /parada
- 3. Referência pré-programada, Isb
- 4. Referência pré-programada, msb


A programação abaixo deve ser efetuada na seqüência proposta:

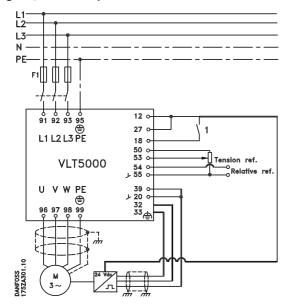
Função:	Parâmetro	Ajustes:	Valor do dado:
"Setup" ativado	004	Setup múltiplo	[5]
Entrada digital, borne 16	300	Seleção do Setup Isb	[10]
Entrada digital, borne 32	306	Referência pré-ajustada, Isb	[6]
Entrada digital, borne 33	307	Referência pré-ajustada, msb	[6]
Cópia do "Setup"	006	Cópia para Setup 2 de #	[2]
Ajustes do "Setup"	005	Setup 1	[1]
Referência máxima	205	60	
Referência pré-programada 1	215	10%	
Referência pré-programada 2	216	20%	
Referência pré-programada 3	217	30%	
Referência pré-programada 4	218	40%	
Ajustes do "Setup"	005	Setup 2	[2]
Referência máxima	205	60	
Referência pré-programada 5	215	70%	
Referência pré-programada 6	216	100%	

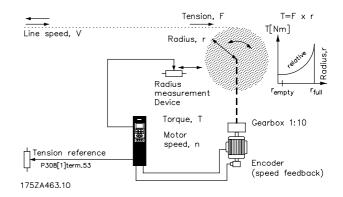
Todos os outros ajustes são baseados nas programações de fábrica. Todavia, os dados do motor (dados da placa) devem sempre ser introduzidos nos parâmetros 102-106.

■ Ponterolante

Um dispositivo de acionamento de portas com motores idênticos é controlado por um sinal externo de 0-10 Volt. A direção de rotação (direita ou esquerda) é controlada por meio do contato 2, enquanto o início/parada é feito através do contato 1.

- 1. Partida
- 2. Reversão
- 3. Sinal de referência de velocidade


A programação abaixo deve ser efetuada na seqüência proposta:


Função:	Parâmetro	Ajustes:	Valor do dado:
Características do torque	101	Característica de motor normal/especial	[15]
Rotação, reqüência/direção	200	"Both directions", 0-132 Hz	[1]
Entrada analógica, borne 53	308	Termistor	[4]
Proteção térmica do motor	128	Advertência do termistor/trip do	[1] ou [2]
		termistor	
Entrada analógica, borne 54	311	Referência	[1]
Borne 18, entrada digital	302	Partida	[1]
Borne 27, entrada digital	304	Parada por inércia, ativa c/NL	[0]
Borne 42, saída	319	Limite de torque e parada	[27]

Todos os outros ajustes são baseados na programação de fábrica. Todavia, os dados do motor (dados de placa) devem sempre ser introduzidos nos parâmetros 102-106.

■ Regulação de torque, feedback de velocidade

Um enrolador enrola ou desenrola material de um rolo a uma tensão constante. Um dispositivo mede o raio do rolo e ajusta o torque do motor para assegurar que a tensão seja constante. O dispositivo de medição deve ter um sinal de saída não linear.

Os itens a seguir devem ser programados, na ordem mostrada:

			Valor do
Função:	Parâmetro:	Programação:	dado:
Configuração	100	Regulação de torque, feedback de	
		velocidade	
Frequência/direção de rotação	200	Ambos sentidos, de 0 a 132 Hz	
Gama de referência/feedback	203	-Máx - +Máx	[1]
Referência mínima	204	Programada para torque mín. (Nm)	
Referência máxima	205	Programada para torque máx. (Nm)	
Função de referência	214	Relativo	[1]
Terminal 32, entrada do encoder	306	Feedback do encoder, entrada A	[25]
A			-
Terminal 33, entrada do encoder	307	Feedback do encoder, entrada B	[24]
В			-
Pulso/rpm de feedback do	329	Programado para pulsos do	
encoder		encoder/rev.	
Terminal 53, entrada analógica	308	Referência	[1]
Terminal 54, entrada analógica	311	Referência relativa	[4]
Velocidade PID filtro passa	421	10 mseg.	-
baixa			

■ Controladores VLT 5000

O VLT 5000 tem três controladores internos: um para controle de velocidade, um para controle de processo e um para controle de torque.
O controle de velocidade e o controle de processo são na forma de um controlador PID requerendo um retorno a uma entrada. O controle de torque é na forma de um controlador PI que não requer um retorno, pois o torque é calculado pelo conversor de freqüência VLT com base na corrente medida.

Definindo o controlador de velocidade e de processo Com respeito aos dois controladores PID, há várias definições que são feitas nos mesmos parâmetros; no entanto, a escolha do tipo de controlador irá afetar as opções a serem feitas nos parâmetros comuns. No parâmetro 100 Configuração, é feita a opção de controlador, Controle de velocidade, circuito fechado ou Controle de processo, circuito fechado.

Sinal de feedback

Uma faixa de retorno deve ser definida para os dois controladores. Essa faixa de retorno ao mesmo tempo limita a faixa de referência possível, o que significa que se a somatória de todas as referências estiver fora da faixa de retorno, a referência ficará limitada a permanecer dentro dessa faixa. A faixa de retorno é definida nas unidades que pertencem ao aplicação (Hz, RPM, bar, °C etc.). A configuração é afetada diretamente em um parâmetro para o terminal de entrada individual, decidindo desse modo se deve ser usado para retorno em conexão com um dos controladores. As entradas não utilizadas podem ser desativadas, o que garante que não perturbem o controle. Se o retorno foi selecionado em dois terminais ao mesmo tempo, esses dois sinais serão somados.

Referência:

Para os dois controladores, é possível definir quatro referências predefinidas. Estas podem ser definidas entre –100% e +100% da referência máxima ou a soma das referências externas. As referências externas podem ser sinais analógicos, sinais de pulso e/ou comunicação serial. Todas as referências serão adicionadas e a somatória será a referência para a regulagem subseqüente. É possível limitar a faixa de referência a uma faixa menor do que a faixa de retorno. Isto pode ser vantajoso se você quiser evitar que uma mudança inadvertida em uma referência externa faça que a soma das referências se afaste demais do valor de referência ideal. Do mesmo modo que na faixa de

retorno, a faixa de referência é definida nas unidades que pertencem aos aplicações em questão.

Controle de velocidade:

Este controle PID foi otimizado para ser utilizado em aplicações que precisem manter uma determinada velocidade do motor.

Os parâmetros específicos do regulador de velocidade são os parâmetros 417 a 421.

PID para controle de processo:

Este controle PID foi otimizado para o controle de processo. Este controlador não tem um recurso de avanço, mas vários recursos especiais que são relevantes ao controle de processo.

Existe uma opção entre ser requerido o controle normal, onde a velocidade é aumentada no caso de um erro entre a referência e o retorno, ou se o controle inverso, onde a velocidade é reduzida no caso de um erro.

Existe também a opção do integrador continuar integrando no caso de um erro, mesmo se o VLT 5000 estiver na freqüência mínima/máxima ou no limite de corrente. Se o VLT 5000 estiver em tal situação limite, qualquer tentativa de alterar a velocidade do motor será restringida por esse limite. O integrador vem de fábrica predefinido para interromper a integração. A integração será ajustada para um ganho que corresponda à freqüência de saída dada. Em determinadas aplicações, é difícil ou completamente impossível medir um fator tal como o nível. Nesses casos, poderá ser necessário permitir que o integrador continue a integrar na falha, mesmo se a velocidade do motor não puder ser alterada. Isso fará o integrador trabalhar como uma espécie de contador, ou seja, quando o retorno indicar que a velocidade deve ser alterada em uma direção contrária à situação limite, a integração provocará um retardamento nessa alteração que depende do tempo para o qual o integrador foi supercompensado no erro anterior.

Além disso, é possível programar uma freqüência de partida na qual o VLT 5000 irá aguardar sem ativar o controlador até essa freqüência ser atingida. Isso permite, por exemplo, acumular rapidamente a pressão estática necessária em um sistema de bombeamento.

Controle de processo PID , continuação:
O ganho Proporcional, o tempo de Integração
e o tempo de Diferenciação do controlador de

processo são definidos em parâmetros individuais e as faixas de configuração são adaptadas aos requisitos do controle de processo.

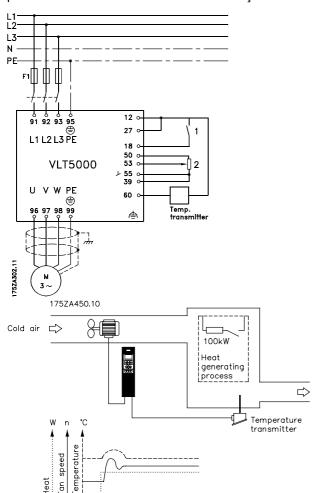
Como ocorre no controle de velocidade, é possível limitar a influência do diferenciador em relação a alterações rápidas no erro entre o sinal de referência e o de retorno.

Há também um filtro passa-baixo para o controlador de processo. Este pode ser definido para remover uma parte muito maior das oscilações do sinal de retorno do que o filtro passa-baixo do controlador de velocidade. Isto porque a maioria das aplicações de ventiladores e bombas reage relativamente devagar, o que torna uma vantagem alimentar um sinal o mais estável possível ao controlador de processo.

Os parâmetros específicos do regulador de processo são os parâmetros de 437 a 444.

Configuração do controlador de torque (circuito aberto):

Este controle é selecionado se o *Controle de torque*, *circuito aberto* tiver sido selecionado em 100 *Configuração*.


Quando este modo for selecionado, a referência usará a unidade Nm.

O controle está na forma de um PI que não requer retorno porque o torque é calculado com base na medição de corrente do 6VLT 5000. O ganho proporcional é definido como uma porcentagem no parâmetro 433. O ganho proporcional de torque e o tempo de integração são definidos no parâmetro 434 Tempo de integração de torque. Porém, ambos foram definidos na fábrica e normalmente não requerem modificação.

■ PID para controle de processo

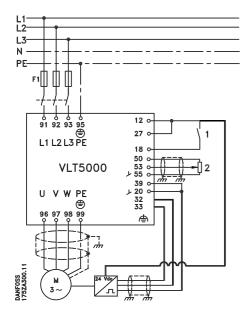
A seguir está um exemplo de um regulador de processo usado em um sistema de ventilação.

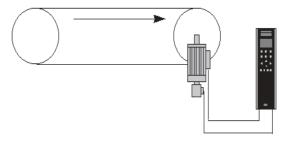
Em um sistema de ventilação, a temperatura deve ser regulável de - 5 - 35°C com um potenciômetro de 0-10 Volt. O regulador de processo integrado é usado para manter constante a temperatura definida. O controle é do tipo inverso, o que significa que quando a temperatura aumenta, a velocidade do ventilador também aumenta de modo a gerar mais ar. Quando a temperatura cai, a velocidade diminui. O transmissor usado é um sensor de temperatura com uma faixa de trabalho de –10 a 40°C, 4 a 20 mA. Velocidade mín./máx. 10/50 Hz.

NOTA!:

O exemplo mostra um transmissor de dois fios.

- 1. Partida/Parada
- Temperatura de referência de 5 a 35°C, 0 a 10 V (ponto de ajuste)
- 3. Transmissor de temperatura –10 a 40°C, 4 a 20 mA (retorno).


O seguinte deve ser programado o seguinte na ordem mostrada – consulte explicação das configurações nas Instruções operacionais:


Função:	Parâmetro no	Configuração	Valor de dados no
Ativação do regulador de processo	100	Controle de processo, circuito fechado	[3]
Sinal de retorno	314	Sinal de retorno	[2]
Terminal 60, escala mínima	315	4 mA	
Terminal 60, escala máxima	316	20 mA (configuração de fábrica)	
Retorno mínimo	414	-10°C	
Retorno máximo	415	40°C	
Unidades de processo	416	°C	[10]
Referência	308	Referência (configuração de fábrica)	[1]
Terminal 53, escala mínima	309	0 Volt (configuração de fábrica)	
Terminal 53, escala máxima	310	10 Volt (configuração de fábrica)	
Referência mínima:	204	-5°C	
Referência máxima	205	35°C	
Controle inverso	437	Inverso	[1]
Freqüência mínima	201	10 Hz	<u>-</u>
Freqüência máxima	202	50 Hz	
Ganho proporcional	440	Dependente da aplicação (por exemplo 1,0	0)
Tempo de integração	441	Dependente da aplicação (por exemplo, 5	
		seg.)	

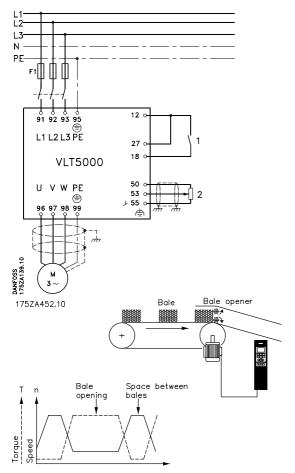
■ PID para regulação de velocidade

São fornecidos a seguir alguns exemplos de programação do PID para regulação de velocidade do VLT da Série 5000.

175ZA451.10

Uma correia transportadora que transporta peças pesadas deve manter uma velocidade constante, que é ajustada por intermédio de um potenciômetro na gama de 0-1500 rpm, 0-10 Volts. A velocidade selecionada deve ser mantida constante e deve ser aplicado o regulador de velocidade integrado PID. Este é o caso de uma regulação normal, o que significa que quando a carga aumenta, a potência fornecida ao motor da correia transportadora aumenta para manter a velocidade constante. Da mesma forma, quando a carga diminui, a potência é diminuída. O feedback utilizado é um encoder com uma resolução de 1024 pulsos/rpm, push-pull.

- 1. Partida/Parada
- 2. Referência de velocidade 0-1500 rpm, 0-10 V
- 3. Encoder de 1024 pulsos/rpm, push-pull.


A seguinte programação deve ser feita na ordem mostrada - vide explicação das configurações no Manual de Operação:

Mariaar ao operação.			
Função:	Parâmetro n.	Configuração	Valor dos dados n.
Ativação do regulador de	100	Regulação de velocidade, malha	[1]
processo		fechada	
Sinal de feedback	314	Sinal de feedback	[2]
Borne 32	306	Feedback do encoder, entrada B	[24]
Borne 33	307	Feedback do encoder, entrada A	[25]
Feedback mínimo	414	0 rpm	
Feedback máximo	415	1650 rpm (máx. ref. + 10%)	
Referência	308	Referência (programação de	[1]
		fábrica)	
Borne 53, escala mín.	309	0 Volts (programação de fábrica)	
Borne 53, escala máx.	310	10 Volts (programação de fábrica)	
Referência mínima	204	0 rpm	
Referência máxima	205	1500 rpm	
Velocidade mínima	201	0 Hz	
Velocidade máxima	202	75 Hz	
Ganho proporcional	417	Dependente da aplicação	
Tempo de integração	418	Dependente da aplicação	·
Tempo de diferenciação	419	Dependente da aplicação	
		<u>-</u>	-

■Pl para regulação de torque

É dado a seguir um exemplo de programação do regulador de torque VLT da Série 5000.

Uma esteira rolante é utilizada para transportar fardos para a frente, para uma retalhadora, com

uma força constante, independente da velocidade da esteira rolante. Se houver um espaço entre os fardos, a esteira deve mover o fardo para a retalhadora o mais rápido possível.

- 1. Partida/parada
- 2. Referência [Nm]

Otimização do regulador de torque

As configurações básicas agora estão feitas e a programação de fábrica foi otimizada para a maioria dos processos. Raramente é necessário otimizar o ganho proporcional do torque no parâmetro 433 e o tempo de integração do torque no parâmetro 434.

Nos casos onde a programação de fábrica foi modificada, recomenda-se alterar essa configuração por um fator máximo de +/- 2.

Feedback

O sinal de feedback representa um torque estimado, calculado pelo conversor de freqüência VLT com base nos valores medidos de corrente.

Referência

A referência é sempre dada em Nm. Podem ser configuradas as referências mínima e máxima (204 e 205), que limitam a soma de todas as referências.

A faixa de valores de referência não pode ultrapassar a faixa de valores de feedback.

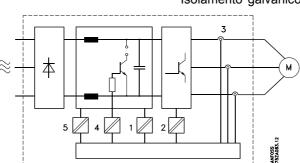
Os itens dados a seguir devem ser programados na ordem mostrada:

			Valores dos dados
Função:	Parâmetro n.	Configuração	n.
Ativação do regulador de	100	Regulação de torque, malha	[4]
processo		aberta	
Ganho proporcional de torque	433	100% (programação de fábrica)	_
Tempo de integração do	434	0,02 s (programação de fábrica)	
torque			
Referência	308	Referência (programação de	[1]
		fábrica)	
Terminal 53, escala mínima	309	0 V (programação de fábrica)	
Terminal 53, escala máxima	310	10 V (programação de fábrica)	
Velocidade mínima	201	0 Hz	
Velocidade máxima	202	50 Hz	

■ Isolamento galvânico (PELV)

PELV oferece uma proteção mediante baixíssima tensão. A proteção contra o choque elétrico é garantida se a alimentação elétrica é do tipo PELV e a instalação é efetuada como descrito nas normas locais relativas ao isolamento PELV.

Todos os terminais de controle e terminais de relés 01-03 estão em conformidade com a PELV (Protective Extra Low Voltage - Tensão Extra Baixa Protetiva) (Não se aplica às unidades 525-600 V).


O isolamento galvânico (garantido) é obtido satisfazendo-se as exigências relativas à alta isolação e favorecendo significativas distâncias de circulação. Estes requisitos encontram-se descritos na norma EN 50178.

Os componentes do isolamento elétrico, como descrito a seguir, também estão de acordo com os requisitos relacionados a isolamento elevado e com o teste relevante descrito na EN 50178.

O isolamento galvânico pode ser visto em cinco

O isolamento galvânico pode ser visto em cinco locais (ver desenho abaixo), assim chamados:

- Fonte de alimentação (SMPS) incl. Isolamento de sinal do U_{CC}, indicando a tensão referente à corrente intermediária.
- 2. A gate drive controla os IGBTs (transformadores/opto-acopladores).
- 3. Transdutores de corrente (corrente de efeito Hall transdutores).
- 4. Acoplador óptico, módulo de frenagem.
- 5. Acoplador óptico, fonte de 24 V externa.

Isolamento galvânico

■ Corrente de fuga à terra

A fuga de corrente é causada em primeiro lugar pela capacitância entre as fases do motor e a blindagem do cabo do motor. Um eventual filtro RFI contribui para o aumento de fuga de corrente porque o circuito do filtro é ligado ao terra mediante capacitores. O nível da fuga de corrente à terra depende dos seguintes fatores, em ordem de prioridade:

- 1. Comprimento do cabo do motor
- 2. Cabo do motor com ou sem blindagem
- 3. Freqüência de chaveamento
- 4. Eventual utilização do filtro RFI
- 5. Motor aterrado ou não no local

A fuga de corrente é importante para a segurança durante o manuseio / funcionamento do conversor de freqüência, se (por engano) o conversor de freqüência não tiver sido ligado à terra.

NOTA!:

Desde que a corrente de fuga é >3,5 mA, deve ser instalado um aterramento reforçado, para a conformidade com EN

50178. Nunca utilize o relé ELCB (tipo A), que não são adequados para correntes CC.

Para os conversores de freqüência trifásicos, devem ser usados apenas relés de corrente de falha, que são adequados para proteção contra correntes CC (DIN VDE 0664).

Os relés de corrente de falha RCD do tipo B são compatíveis com esses requisitos, conforme a norma IEC 755-2.

Deve haver compatibilidade com os seguintes requisitos.

- Ser adequado para a proteção de equipamentos com uma componente de corrente contínua (CC) na corrente de falha (retificador trifásico)
- Ser adequado para permitir uma breve descarga de corrente à terra quando da energização
- Ser adequado para elevadas fugas de corrente.

■ Condições de operação extremas

Curto-circuito

O conversor de freqüência é protegido contra curtos-circuitos por meio de medição de corrente em cada uma das três fases do motor. Um curto-circuito entre duas fases de saída causará uma sobrecorrente no inversor. No entanto, cada transistor do inversor será desligado individualmente quando a corrente em curto-circuito ultrapassar o valor permitido.

Após 5-10 μs o cartão do driver desliga o inversor e o conversor de freqüência mostrará um código de falha, embora dependendo da impedância e da freqüência do motor.

Falha de aterramento

O inversor desliga dentro de alguns μs no caso de falha de aterramento em uma fase do motor, embora dependendo da impedância e da fregüência do motor.

Ligando a saída

É inteiramente permitido ligar a saída entre o motor e o conversor de freqüência. Não é possível danificar o VLT série 500 de nenhuma maneira quando se liga a saída. No entanto, é possível que apareçam mensagens de falha.

Sobretensão gerada pelo motor

A tensão no circuito intermediário aumenta quando o motor atua como um gerador. Isto ocorre em dois casos:

 A carga impulsiona o motor (em freqüência de saída constante do conversor de freqüência), ou seja, a carga gera energia. Durante a desaceleração, se o momento de inércia for alto, a carga será baixa e o tempo de desaceleração será muito curto para que a energia seja dissipada como perda no conversor de freqüência, no motor e na instalação.

A unidade de controle tenta corrigir a aceleração se possível.

O inversor desliga para proteger os transistores e os capacitores do circuito intermediário quando um determinado nível de tensão é alcançado.

Queda de tensão na rede

Durante uma queda de tensão na rede, o conversor de freqüência continua até a tensão do circuito intermediário cair abaixo do nível de parada mínimo, que normalmente é 15% abaixo da tensão de alimentação nominal mais baixa do conversor de freqüência.

O tempo antes do inversor parar depende da tensão da rede antes da queda e na carga do motor.

Sobrecarga estática

Quando o conversor de freqüência estiver com sobrecarga (o limite de torque no parâmetro 221/222 foi atingido), os controles reduzirão a freqüência de saída numa tentativa de reduzir a carga. Se a sobrecarga for excessiva, poderá ocorrer uma corrente que faz o conversor de freqüência parar depois de aproximadamente 1,5 seg.

A operação dentro do limite de torque pode ser limitada no tempo (0-60 s) no parâmetro 409.

■ Tensão de pico no motor

Quando um transístor do inversor estiver aberto, a tensão do motor aumenta por uma taxa dU/dt que depende de:

- do cabo do motor (tipo, seção transversal, comprimento, blindado ou não blindado)
- indutância

A indução natural causa um pico transitório U_{PEAK} na tensão do motor, antes deste estabilizar em um nível que depende da tensão no circuito intermediário. O tempo de subida e a tensão de pico U_{PEAK} afetam a vida útil do motor. Se a tensão de pico for muito alta, os motores sem isolação da bobina de fase serão os primeiros a ser afetados. Se o cabo do motor for curto (alguns metros), o tempo de subida e a tensão de pico serão relativamente baixos. Se o cabo do motor for comprido (100 m), o tempo de subida e a tensão de pico aumentarão.

Se forem usados motores muito pequenos sem isolação da bobina de fase, recomenda-se instalar um filtro LC após o conversor de freqüência. Valores típicos para o tempo de subida e tensão de pico U_{PEAK}, medidos nos terminais do motor entre duas fases:

Para obter os valores aproximados para comprimentos de cabo e tensões não mencionados abaixo, utilize as seguintes regras práticas:

- 1. O tempo de subida aumenta/diminui proporcionalmente com o comprimento de cabo.
- U_{PEAK} = Tensão de encadeamento CC x 1,9 (Tensão de encadeamento CC = Tensão de rede elétrica x 1,35).

3.
$$dU/dt = \frac{0.8 \times U_{PEAK}}{Tempode \ subida}$$

Os dados são medidos utilizando-se a IEC 60034-17.

VLT 5001-50	11 / 380-5	00 V		
	Ten-			
Compri-	são de		Tensão	
mento do	rede	Tempo de	de	
cabo	elétrica	subida	pico	dU/dt
50 metros	500 V	0,5 µs	1230 V	1968 V/µs
150 metros	500 V	1 µs	1270 V	1270 V/μs
50 metros	380 V	0,6 µs	1000 V	1333 V/µs
150 metros	380 V	1,33 µs	1000 V	602 V/μs

VLT 5016-51	02 / 380-5	00 V		
	Ten-			
Compri-	são de		Tensão	
mento do	rede	Tempo de	de	
cabo	elétrica	subida	pico	dU/dt
cabo 32 metros	elétrica 380 V	subida 0,27 µs	pico 950 V	dU/dt 2794 V/μs
			•	

VLT 5122-5	5302 / 380)-500 V		
	Ten-			
Compri-	são de		Tensão	
mento do	rede	Tempo de	de	
cabo	elétrica	subida	pico	dU/dt
70 metros	400 V	0.34 us	1040 V	2447 V/us

	VLI 5352-0	0002 / 300	1-500 V			
		Ten-				
	Compri-	são de		Tensão		
	mento do	rede	Tempo de	de		
	cabo	elétrica	subida	pico	dU/dt	
٠	cabo 29 metros	elétrica 500 V	subida 0,71 µs	pico 1165 V	dU/dt 1389 V/µs	
				•		

VLI 5001-0	0011 / 525	-000 V		
	Ten-			
Compri-	são de		Tensão	
mento do	rede	Tempo de	de	
cabo	elétrica	subida	pico	dU/dt
35 metros	600 V	0,36 µs	1360 V	3022 V/µs

VI T 5004 5044 / 525 600 V

VI T 5046 5060 / 505 600 V

VLI 5016-5	062 / 525	9-600 V		
	Ten-			
	são			
Compri-	de		Tensão	
mento do	rede	Tempo de	de	
cabo	elétrica	subida	pico	dU/dt
35 metros	575 V	0,38 μs	1430 V	3011 V/µs

VLT 5042-5352 / 525	5-690 V			
Com-	Ten-			
pri-	são			
mento	de	Tempo	Ten-	
do	rede	de	são de	
cabo	elétrica	subida	pico	dU/dt
25	690 V	0,59 µs	1425	1983 V/µs
metros				
25	575 V	0,66 µs	1159	1428 V/µs
metros				
25	690	1,72 µs	1329	640 V/µs
metros	V1)			

¹⁾ Com o filtro dU/dt da Danfoss.

■ Chaveamento na entrada

O chaveamento na entrada depende da tensão de alimentação de rede elétrica em questão e se a descarga Rápida do capacitor intermediário tiver sido escolhida. A tabela a seguir apresenta o tempo de espera entre cortes.

Tensão	380 V	415 V	460 V	500 V	690 V
de rede					
elétrica					
Sem	48 s	65 s	89 s	117 s	120 s
descarga					
rápida					
Com	74 s	95 s	123 s	158 s	
descarga					
rápida					

VLT 5001-5011 / 525 - 600 V

Unidades IP 20/NEMA 1: 62 dB(A)

VLT 5016-5062 / 525 - 600 V

Unidades IP 20/NEMA 1: 66 dB(A)

VLT 5042-5352 / 525 - 690 V

Unidades IP 74 dB(A)

20/NEMA 1:

Unidades IP 54 74 dB(A)

Medido a 1 metro da unidade em carga total.

■ Ruído acústico

A interferência acústica do conversor de freqüência tem origem em duas fontes:

- 1. Bobinas do circuito intermediário CC.
- 2. Ventilador interno.

Em seguida, encontram-se os valores típicos medidos a uma distância de 1 m da unidade em carga máxima:

VLT 5001-5006 200 - 240 V, VLT 5001-5011 380 - 500 V

Unidades IP 20: 50 dB(A)
Unidades IP 54 62 dB(A)

VLT 5008-5027 200 - 240 V, VLT 5016-5102 380 - 500 V

Unidades IP 20: 61 dB(A)

Unidade IP 20 (VLT

5062-5102): 67 dB(A) Unidades IP 54 66 dB(A)

VLT 5032-5052 / 200 - 240 V

Unidades IP 20/NEMA 1: 70 dB(A) Unidades IP 54 65 dB(A)

VLT 5122-5302 / 380 - 500 V

Unidades IP 21/NEMA 1: 73 dB(A) Unidades IP 54 73 dB(A)

VLT 5352 / 380 - 500 V

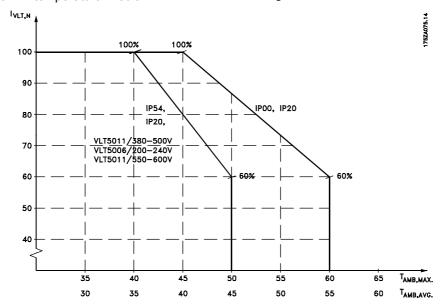
Unidades IP 00/ IP 21 /NEMA 80 dB(A)

1:

Unidades IP 54 80 dB(A)

VLT 5452-5552 / 380 - 500 V

Todos os tipos de gabinetes: 100 dB(A)


■ Redução

■ Derating para a temperatura ambiente

A temperatura ambiente (T_{AMB,MAX}) é a temperatura máxima permitida. A temperatura média

 $(T_{AMB,AVG})$, medida durante 24 horas, deve ser pelo menos 5 °C menor.

Se o conversor de freqüência for operado em temperaturas acima de 45 °C, será necessário um derating da corrente contínua de saída.

A corrente dos VLT 5122-5552, 380-500 V e VLT 5042-5352, 525-690 V, deve ser decrescida de 1%/ °C, acima do máximo de 45 °C (sobrecarga de 160%) e 40 °C (sobrecarga de 110%).

■ "Derating"para pressão atmosférica

"Derating" devido à pressão atmosférica Abaixo de 1000 m de altitude não é necessária nenhuma redução de potência.

Acima de 1000 m, a temperatura ambiente (T_{AMB}) ou a corrente de saída máxima ($I_{VLT,MAX}$) devem ser reduzidas de acordo com o diagrama a seguir:

- Redução da intensidade da corrente de saída em relação à altitude a T_{AMB} = máx. 45°C
- 2. Em função deT_{AMB}versus altitude a 100%

■ "Derating" para funcionamento em baixa velocidade

Quando um motor está conectado a um conversor de freqüência, é necessário verificar se a refrigeração do motor é apropriada. Em baixa rotação, o ventilador não consegue fornecer o volume necessário de ar para refrigeração. Este problema ocorre quando o torque de carga é constante (por exemplo, uma esteira) em toda a gama de regulação.

A reduzida ventilação disponível é quem decide o tamanho do torque que pode ser permitido sob carga contínua. Se o motor tiver que funcionar continuamente a uma rotação inferior à metade do valor nominal, o motor deve receber um suprimento adicional de ar para refrigeração. Ao invés dessa refrigeração adicional, o nível de carga do motor pode ser reduzido. Isto pode ser feito escolhendo um

motor maior. No entanto, o projeto do conversor de freqüência estabelece limites no que diz respeito ao tamanho do motor que pode ser conectado a ele.

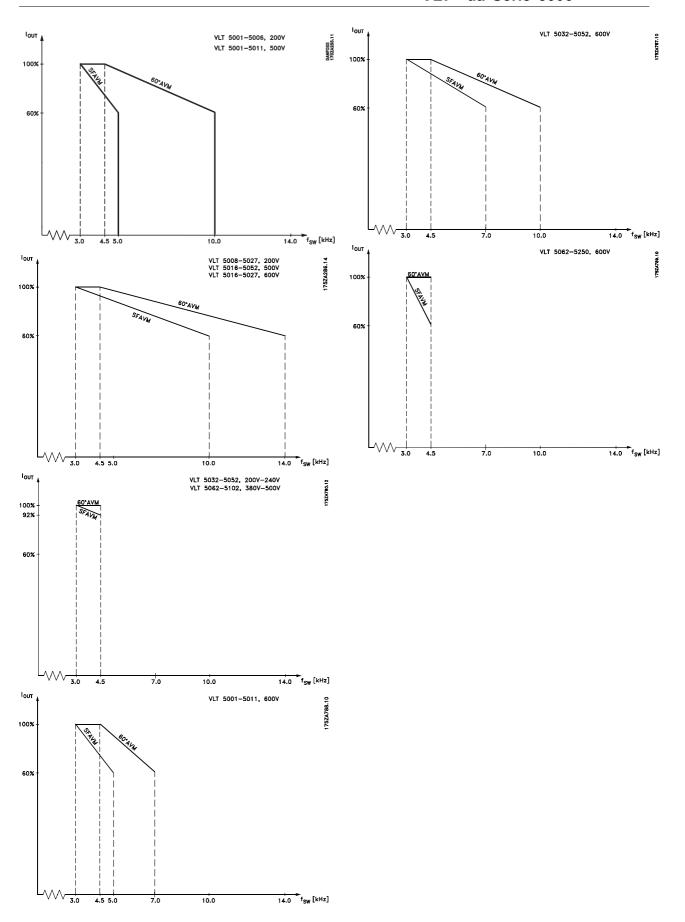
■ Reduzindo a capacidade para instalarcabos de motor longos ou cabos com seção transversalmaior.

O conversor de freqüência foi testado com 300 m de cabo não-blindado e 150 m de cabo blindado.

O conversor de freqüência foi projetado para trabalhar com um cabo de motor com uma seção transversal certificada. Se for usado um cabo com seção transversal maior, recomenda-se reduzir a tensão de saída em 5% para cada grau de aumento na seção transversal.

(Seção transversal maior leva a uma maior capacidade de aterramento, e por isso a uma corrente de fuga maior para a terra).

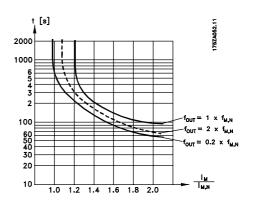
■ Derating para freqüência de chaveamento alta


Uma freqüência de chaveamento maior (a ser definida no parâmetro 411) ocasiona perdas maiores nos circuitos eletrônicos do conversor de freqüência.

Se *SFAVM* tiver sido selecionado, no parâmetro 446, o conversor de freqüência automaticamente reduzirá a corrente nominal de saída I_{VLT,N} quando a freqüência de chaveamento ultrapassar 3,0 kHz.

Se 60° AVM for selecionado, o conversor de freqüência irá automaticamente reduzir a corrente nominal quando a freqüência de chaveamento ultrapassar 4,5 kHz. Em ambos os casos, a redução é feita linearmente, até atingir 60% da I_{VLT,N}. A tabela fornece as freqüências de chaveamento mínima, máxima e a definida na fábrica, para o conversor de freqüência. O padrão de chaveamento pode ser alterado no parâmetro 446 e a freqüência de chaveamento no parâmetro 411.

		SFAVM			60 graus. AVM	I
	Min. [kHz]	Máx. [kHz]	Fáb. [kHz]	Min. [kHz]	Máx. [kHz]	Fáb. [kHz]
VLT 5001-5006, 200 V	3.0	5.0	3.0	3.0	10.0	4.5
VLT 5008-5027, 200 V	3.0	10.0	3.0	3.0	14.0	4.5
VLT 5032-5052, 200 V	3.0	4.5	3.0	3.0	4.5	4.5
VLT 5001-5011, 500 V	3.0	5.0	3.0	3.0	10.0	4.5
VLT 5016-5052, 500 V	3.0	10.0	3.0	3.0	14.0	4.5
VLT 5062-5102, 500 V	3.0	4.5	3.0	3.0	4.5	4.5
VLT 5122-5302, 500 V	3.0	3.0	3.0	3.0	4.5	4.5
VLT 5352-5552, 500 V	1.5	2.0	2.0	1.5	3.0	3.0
VLT 5001-5011, 600 V	3.0	5.0	3.0	4.5	7.0	4.5
VLT 5016-5027, 600 V	3.0	10.0	3.0	3.0	14.0	4.5
VLT 5032-5052, 600 V	3.0	7.0	3.0	3.0	10.0	4.5
VLT 5062, 600 V	3.0	4.5	3.0	3.0	4.5	4.5
VLT 5042-5302, 690 V	1.5	2.0	2.0	1.5	3.0	3.0
VLT 5352, 690 V	1.5	1.5	1.5	1.5	2.0	2.0



■ Proteção térmica do motor

A temperatura do motor é calculada com base na corrente, tempo e freqüência de saída do motor. Veja o parâmetro 128 no Manual de Operação.

■ Vibração e choque

O conversor de freqüência foi testado de acordo com um procedimento baseado nos seguintes padrões:

IEC 68-2-6: Vibração (senoidal) - 1970.

IEC 68-2-34: Vibração aleatória de banda

larga

IEC 68-2-35: Visiquiaitoaleatolia de banda

larga

- alta capacidade de reprodução

IEC 68-2-36: Vibração aleatória de banda

larga

- média capacidade de

reprodução

O conversor de freqüência está em conformidade com os requisitos que correspondem às condições quando a unidade é montada nas paredes e pisos de estabelecimentos de produção, como também em painéis fixados na parede ou no piso.

■ Umidade do ar

O conversor de freqüência foi projetado para atender à norma IEC 68-2-3, EN 50178 pkt. 9.4.2.2/DIN 40040, classe E, a 40°C.

■ Ambientes agressivos

Do mesmo modo que todos os equipamentos eletrônicos, um conversor de freqüência contém um grande número de componentes eletrônicos e mecânicos que são vulneráveis, em certa medida, às condições ambientais.

O conversor de freqüência, portanto, não deve ser instalado em ambientes onde haja líquidos, partículas ou

gases em suspensão no ar capazes de afetar e danificar os componentes eletrônicos. Não tomar as medidas de proteção necessárias aumenta o risco de paradas, reduzindo assim a vida útil do conversor de fregüência.

Líquidos podem ser transportados pelo ar e condensar no conversor de freqüência. Além disso, os líquidos podem corroer os componentes e as peças metálicas. Vapor, óleo e maresia podem causar corrosão nos componentes e peças metálicas. Nesses ambientes, recomenda-se envolver o equipamento com invólucro de classificação IP 54. Como proteção adicional, placas de circuito impresso podem ser adquiridas com revestimento como opção.

Partículas em suspensão no ar, como partículas de poeira, podem causar falhas mecânicas, elétricas ou de temperatura no conversor de freqüência. Uma indicação típica dos níveis excessivos de partículas no ar são partículas de poeira em volta do ventilador do conversor de freqüência. Em ambientes com muita poeira, recomenda-se envolver o equipamento com proteção de classificação IP 54 ou uma cabine para equipamento IP 00/20/Nema 1.

Em ambientes com altas temperaturas e muita umidade, haverá reação química de gases corrosivos como compostos de enxôfre, nitrogênio e cloro nos componentes do conversor de freqüência.

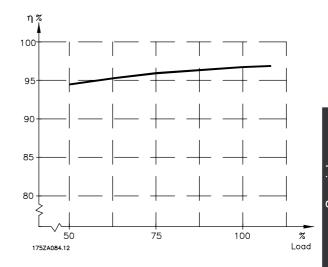
Essas reações químicas irão rapidamente afetar e danificar os componentes eletrônicos. Nesses ambientes, recomenda-se que o equipamento seja montado em uma cabine ventilada, impedindo o contado de gases agressivos com o conversor de freqüência.

Pode ser adquirido como opção de proteção adicional um revestimento externo das placas de circuito impresso.

NOTA!:

Colocar os conversores de freqüência em ambientes agressivos irá aumentar o risco de paradas e também reduzir consideravelmente a vida útil do conversor.

Antes de instalar o conversor de freqüência, deve ser verificada a presença de líquidos, partículas e gases no ar ambiente. Isto pode ser feito observando-se as instalações existentes nesse ambiente. Indicadores típicos de líquidos prejudiciais no ar são água, óleo ou corrosão em peças metálicas.


Níveis excessivos de partículas de poeira geralmente são encontrados em cabines de instalação e instalações elétricas existentes. Um indicador de gases agressivos no ar é o enegrecimento de barras e extremidades de fios de cobre em instalações existentes.

Consultar também a Instrução MN.90.IX.YY

■ Eficiência

Para reduzir o consumo de energia é importantíssimo otimizar a eficiência dos sistemas. A eficiência de cada elemento do sistema deve ser a mais alta possível.

Eficiência do VLT da Série 5000 (η_{VLT})

A carga do conversor de freqüência não influi muito sobre a sua eficiência. Em geral, a eficiência, quando o motor fornece 100% ou 75% de torque no eixo, é a mesma obtida na freqüência nominal do motor $f_{M,N}$ por ex: com carga parcial ou bombas muito grandes.

Isto também significa que a eficiência do conversor não se altera mediante a escolha de diferentes carac-terísticas U/f.

Todavia as características U/f influenciam no rendi-mento do motor.

A eficiência é um pouco reduzida se a freqüência de chaveamento se fixa num valor superior a 4 kHz (3 kHz para VLT da Série 5005) (parâmetro 411). A taxa de eficiência também será ligeiramente reduzida se a tensão da rede for de 500 V ou se o cabo do motor for mais longo do que 30 m.

Eficiência do motor (η_{MOTOR})

A eficiência de um motor ligado ao conversor de fre-qüência depende da forma senoidal da corrente. Em geral, pode-se dizer que a eficiência é a mesma do funcionamento na rede. A eficiência do motor depende do tipo do motor.

Numa faixa de 75-100% do torque nominal, a eficiên-cia do motor é quase constante, tanto quando fun-ciona com o conversor de freqüência como quando funciona diretamente com tensão de rede.

Nos motores pequenos, a característica U/f influi muito pouco sobre a eficiência, mas nos motores a partir de 11 kW conseguem-se vantagens consideráveis.

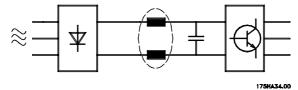
Em geral, a freqüência de chaveamento não influi no rendimento dos motores de pequenas dimensões. Os motores de 11 kW e superiores obtêm maior eficiência (1-2%). A eficiência melhora uma vez que a forma senoidal da corrente do motor é quase perfeita à uma freqüência de chaveamento alta.

Eficiência do sistema (η SYSTEM)

Para calcular a eficiência do sistema, a eficiência do VLT da Série 5000 (η_{VLT}) é multiplicada pela eficiência do motor (η_{MOTOR}):

 η SISTEMA) = $\eta_{VLT} \times \eta_{MOTOR}$

Com base no gráfico desta página, é possível calcular a eficiência do sistema, com cargas diferentes.


■ Interferência/Harmônicos da alimentaçãode rede

Um conversor de freqüência absorve uma corrente não-senoidal da rede, o que aumenta a tensão de entrada I_{RMS}. Uma corrente não-senoidal pode ser transformada através de uma análise de Fourier e dividida em correntes senoidais com freqüências diferentes, ou seja, tensões harmônicas I diferentes N com 50 Hz como a freqüência básica:

Correntes	I ₁	l ₅	l ₇
harmônicas			
Hz	50 Hz	250 Hz	350 Hz

As correntes harmônicas não afetam diretamente o consumo de energia, porém aumentam as perdas de calor na instalação (transformador, cabos). Conseqüentemente, em instalações com alta porcentagem de carga retificadora, é importante manter as correntes harmônicas em um nível baixo para não sobrecarregar o transformador e não superaquecer os cabos.

Algumas das correntes harmônicas podem interferir no equipamento de comunicação ligado ao mesmo transformador ou causar ressonância em conexão com baterias de correção do fator de potência.

Correntes harmônicas comparadas com a corrente de entrada RMS:

	Corrente de entrada
I _{RMS}	1.0
I ₁	0.9
l ₅	0.4
l ₇	0.2
11-49	< 0.1

Para obter correntes harmônicas baixas, o conversor de freqüência tem bobinas de circuito intermediário como padrão. Isso normalmente reduz a corrente de entrada I _{RMS} em 40%.

A distorção de tensão na alimentação de rede depende do tamanho das correntes harmônicas multiplicado pela impedância de rede para a freqüência em questão. A distorção de tensão total THD é calculada com base nos harmônicos de tensão individual com a seguinte fórmula:

$$THD\% = \sqrt{U \, \frac{2}{5} + U \, \frac{2}{7} + \ldots + U \, \frac{2}{N}} \quad \left(U \, \underset{N}{\%} de \ U \right)$$

Consulte também Application Note MN.90.FX.02.

■ Fator de potência

O fator de potência é a relação entre I 1 e I_{RMS}.

O fator de potência para controle trifásico:

$$\mbox{Pot} \boldsymbol{\hat{\textbf{e}}} \mbox{ncia factor} = \ \frac{\sqrt{3} \ \mbox{x} \ \mbox{U} \mbox{x} \ \mbox{I}_{\mbox{1xcos}\,\varphi} \, \mbox{\tiny 1}}{\sqrt{3} \mbox{x} \mbox{U} \mbox{x} \mbox{I}_{\mbox{RMS}}}$$

$$=\,\frac{\rm I_{1\,x\,cos\,}\varphi_{1}}{\rm I_{RMS}}\,=\,\frac{\rm I_{1}}{\rm I_{RMS}}\,{\rm desde\,cos}\varphi_{\,1}\,=\,1$$

O fator de potência indica a extensão em que o conversor de freqüência impõe uma carga na alimentação de rede. Quanto mais baixo for o fator de potência, mais alto será o I_{RMS} para o mesmo desempenho em kW.

Além disso, um fator de potência alto indica que as diferentes correntes harmônicas são baixas.

$$I_{RMS} = \sqrt{I_{1}^{2} + I_{5}^{2} + I_{7}^{2} + ... + I_{n}^{2}}$$

■ Etiqueta CE

O que é etiqueta CE?

O propósito da etiqueta CE é evitar obstáculos técnicos no comércio dentro da Área de Livre Comércio Europeu e da União Européia. A União Européia introduziu a etiqueta CE como uma maneira simples de mostrar se um produto atende às diretrizes relevantes da União Européia. A etiqueta CE não informa sobre as especificações ou a qualidade do produto. Os conversores de freqüência são controlados por três diretrizes da União Européia:

A diretriz de maquinário (98/37/EEC)

Todas as máquinas com partes móveis críticas estão cobertas pela diretriz de maquinário, que entrou em vigor em 1o de janeiro de 1995. Como o conversor de freqüência é em grande parte elétrico, não se enquadra na diretriz de maquinário. No entanto, se um conversor de freqüência for destinado a uso em uma máquina, são fornecidas informações sobre os aspectos de segurança relativos ao conversor de freqüência. Isto é feito por meio de uma declaração de fabricante.

A diretriz de baixa tensão (73/23/EEC)

Os conversores de freqüência devem ter a etiqueta CE em conformidade com a diretriz de baixa tensão, que entrou em vigor em 1º de janeiro de 1997. Essa diretriz aplica-se a todo equipamento e aparelho elétrico usado nas faixas de tensão de 50 a 1.000 Volts CA e de 75 a 1.500 Volts CC. A Danfoss coloca as etiquetas CE em conformidade com a diretriz e emite uma declaração de conformidade mediante solicitação.

A diretriz EMC (89/336/EEC)

EMC é a sigla de compatibilidade eletromagnética. A compatibilidade eletromagnética significa que a interferência mútua entre os diferentes componentes/aparelhos é tão pequena que não chega a afetar o funcionamento dos mesmos. A diretriz EMC entrou em vigor no dia 1º de janeiro de 1996. A Danfoss coloca as etiquetas CE de acordo com a diretriz e emite uma declaração de conformidade mediante solicitação. Este manual fornece instruções detalhadas para fazer a instalação correta de EMC. Além disso, especificamos as normas seguidas pelos nossos diferentes produtos. Oferecemos os filtros que constam nas especificações e fornecemos outros tipos de assistência para garantir um resultados otimizados de EMC.

Na grande maioria dos casos, o conversor de freqüência é usado por profissionais da área, como um componente complexo que faz parte de uma instalação, sistema ou equipamento maiores. Deve-se observar que a responsabilidade pelas

propriedades finais de EMC do aparelho, sistema ou instalação repousa sobre o instalador.

■ O que está abrangido

As "Normas relativas à Aplicação da Diretiva do Conselho (89/336/CEE)" da U.E. destacam três situações típicas da utilização de um conversor de freqüência. Para cada uma destas situações é explicado se a questão está abrangida pela diretiva de CEM e se tem que possuir a marca CE.

- 1. O conversor de freqüência é vendido diretamente ao consumidor final, isto aplica-se por exemplo se o conversor de freqüência for vendido para uso doméstico. O consumidor final não é um especialista. A instalação do conversor é feita por ele próprio para uso numa máquina que é um dos seus passatempos ou então num eletrodoméstico etc. Para estas aplicações o conversor de freqüência VLT deverá ter a marca CE em conformidade com a diretiva CEM.
- 2. O conversor de freqüência é vendido para ser instalado no local onde é utilizado por um técnico profissional de instalações. Pode ser uma instalação fabril ou de aquecimento/ventilação, que foi projetada e instalada por profissionais do ramo. Nem o conversor de freqüência nem a instalação completa necessitam de marca CE, de acordo com a diretiva CEM. Todavia o aparelho deve ser conforme aos requisitos CEM fundamentais da diretiva. O técnico pode assegurar-se disto usando componentes, aparelhos e sistemas que têm a marca CE em conformidade com a diretiva CEM.
- 3. O conversor de freqüência é vendido como parte de um sistema completo. O sistema é comercializado completo. Pode ser um sistema de ar condicionado. Todo o sistema deverá ter a marca CE em conformidade com a diretiva CEM. O fabricante que fornecer o sistema pode garantir a marca CE conforme a diretiva CE seja usando componentes com marca CE ou testando a CEM do sistema. Se escolher utilizar somente componentes com marca CE, não será preciso testar o sistema inteiro.

■ O conversor de freqüência VLT Danfoss e as marcas CE

As marcas CE constituem uma característica positiva quando utilizadas para os fins às quais foram

criadas, isto é, facilitar as transações comerciais no âmbito dos países da U.E. e da EFTA.

No entanto, as marcas CE poderão cobrir muitas e diversas especificações. Este é o motivo pelo qual a marca CE pode difundir nos instaladores uma falsa sensação de segurança quando o conversor de freqüência é utilizado como componente num sistema.

As especificações abrangidas podem, com efeito, ser bastante diferentes. Esta é a razão pela qual a marca CE pode dar uma falsa impressão de segurança aos instaladores quando utilizarem um conversor de freqüência como um componente num sistema ou num aparelho.

Nós colocamos marcas CE nos nossos conversores de freqüência VLT em conformidade com a diretiva de baixa tensão. Sobre esta base é concedida uma declaração de conformidade com a diretiva CEM. Damos uma declaração de conformidade para confirmar o fato de que a nossa marca CE está conforme a diretiva sobre a baixa tensão A marca CE aplica-se igualmente à diretiva CEM, no Manual de Operação para uma instalação conforme os requisitos CEM e a filtragem de acordo com a CEM. Sobre esta base é concedida uma declaração de conformidade com a diretiva CEM.

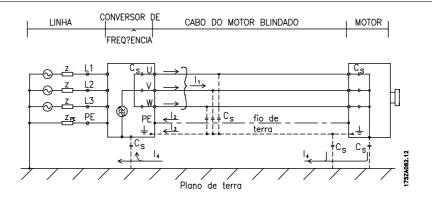
O Manual de Operação fornece instruções de instalação detalhadas para garantir a conformidade aos requisitos CEM. Além disso, especificamos quais as normas e quais dos diferentes produtos se encontram em conformidade com as mesmas.

Oferecemos os filtros indicados nas especificações e além disso estamos à sua disposição para outros tipos de assistência que contribuam obter os melhores resultados em termos de CEM.

■ Conformidade com a diretiva CEM 89/336/CE

Na grande maioria dos casos, o conversor de freqüência VLT é utilizado pelos profissionais deste ramo, como um componente complexo, fazendo parte de um aparelho, sistema ou instalação maiores. Chamamos a atenção para o fato que as responsabilidades finais sobre a CEM no aparelho, sistema ou instalação serão do técnico instalador. Para ajudar o técnico, a Danfoss preparou normas para a instalação com a CEM para o Sistema de Acionamento Elétrico. As normas e níveis de teste determinados para Sistemas de Transmissão de Potência são compatíveis desde que sejam seguidas

as instruções para instalação correta de CEM. Veja a Secção sobre instalação elétrica.



■ Aspectos gerais de emissões EMC

Geralmente é conduzida a interferência elétrica em freqüências na faixa de 150 kHz a 30 MHz. A interferência aérea proveniente do sistema da unidade na faixa de 30 MHz a 1 GHz é gerada pelo inversor, cabo do motor e motor.

Como mostra o desenho abaixo, as correntes de capacitância do cabo do motor junto com um alto dV/dt da tensão do motor geram fuga de corrente. O uso de um cabo blindado de motor aumenta a fuga de corrente (consulte a figura abaixo). Isto é porque os cabos blindados têm maior capacitância à terra do que os cabos não-blindados. Se a fuga de corrente não for filtrada, ela causará maior interferência na rede elétrica na faixa de freqüência de rádio aproximadamente abaixo de 5 MHz. Uma vez que a fuga de corrente(I1) é conduzida de volta à unidade através da malha de blindagem (I3), haverá, em princípio, somente um pequeno campo eletro-magnético (I4) derivado do cabo blindado do motor, de acordo com a figura abaixo.

A malha reduz a interferência irradiada mas aumenta a interferência de baixa freqüência na rede. O cabo blindado do motor deve ser conectado aos invólucros do VLT e do motor. A melhor maneira de fazer isso é usando braçadeiras de malha integradas para evitar extremidades de malha torcidas (rabichos). Estas últimas aumentam a impedância da malha em freqüências mais altas, o que reduz o efeito da blindagem e aumenta a fuga de corrente (I₄). Se um cabo blindado for usado para Profibus, barramento padrão, relê, cabo de controle, interface de sinal e freio, a blindagem deve ser montada no invólucro em ambas as extremidades. Em algumas situações, no entanto, será necessário quebrar a blindagem para evitar loops de corrente.

Nos casos onde a blindagem deve ser colocada em uma placa de suporte do conversor de freqüência VLT, a placa de suporte deve ser de metal porque as correntes da blindagem deverão ser conduzidas de volta à unidade. Também é importante garantir um bom contato elétrico da placa de suporte por meio dos parafusos de montagem com o chassi do conversor de freqüência VLT.

Com relação à instalação, geralmente é menos complicado usar cabos não-blindados do que blindados.

NOTA!:

Observe, no entanto, que quando se usam cabos não-blindados alguns requisitos de emissão não são cumpridos, embora os requisitos de imunidade o sejam.

Para reduzir o nível de interferência de todo o sistema (unidade + instalação) o máximo possível, é importante usar cabos de motor e de freio o mais curtos possível. Os cabos com nível de sinal sensitivo não devem ficar ao lado dos cabos do motor e do freio. É gerada interferência de rádio superior a 50 MHz (aérea), particularmente pelo sistema eletrônico de controle.

Resultados do Teste de EMC (Emissão, Imunidade)

Os resultados de testes a seguir foram obtidos usando um sistema com um conversor de freqüência VLT (com opcionais, se relevantes), um cabo de controle blindado, uma caixa de controle com

potenciômetro, além de um motor e cabo de motor.

VLT 5001-5011/380-500 V	Emissão	0			
VLT 5001-5006/200-240 V	Ambiente	Ambiente industrial	ndustrial	Residências, comér	Residências, comércio e indústrias leves
	Norma básica	EN 55011 Classe A1	Slasse A1	EN 55011	EN 55011 Classe B1
Setup	Cabo do motor	Conduzido	Irradiado	Conduzido	Irradiado
		150 kHz-30 MHz	30 MHz-1 GHz	150 kHz-30 MHz	30 MHz-1 GHz
	300 m não-blindado/não-encapado metalicamente	Sim 3)	Não	Não	Não
11 T FOOD one production DEI	50 m trançado blindado/encapado metalicamente				
VEI 3000 COIII OPÇÃO DE IIILO REI	(Estilo Estante de Livros 20 m)	Sim	Sim	Sim ²⁾	Não
	150 m trançado blindado/encapado metalicamente	Sim 1)	Sim 1)	Não	Não
I TO contill of change more OOO TIV	300 m não-blindado/não-encapado metalicamente	Sim	Não	Não	Não
VEI SOUD COITI OPÇÃO DE IIITO REI	50 m trançado blindado/encapado metalicamente	Sim	Sim	Sim ²⁾	Não
	150 m trançado blindado/encapado metalicamente	Sim	Sim	Não	Não

1) Para os VLT 5011/380-500 V e VLT 5006/200-240 V somente estará em conformidade se for usado cabo trançado blindado/encapado metalicamente de 100 m no máximo.

2) Não se aplica a 5011/380-500 V e 5006/200-240 V

3) Dependendo das condicões de instalação

o) Dependendo das condições de Instalação					
VLT 5016-5552/380-500 V	Emissão				
VLT 5008-5052/200-240 V	Ambiente	Ambiente industrial	ndustrial	Residências, comér	Residências, comércio e indústrias leves
VLT 5042-5352/525-690 V	Norma básica	EN 55011 Classe A1	lasse A1	EN 5501	EN 55011 Classe B
Setup	Cabo do motor	Conduzido	Irradiado	Conduzido	Irradiado
		150 kHz-30 MHz	30 MHz-1 GHz	150 kHz-30 MHz	30 MHz-1 GHz
VLT 5000 sem o	300 não-blindado/não-encapado metalicamente	Não	Não	Não	Não
opcional de filtro de RFI ^{4) 5)}	150 m trançado blindado/encapado metalicamente	Não	Sim ⁶⁾	Não	Não
COCC H	300 m não-blindado/não-encapado metalicamente	Sim ^{2) 6)}	Não	Não	Não
VEI 3000	50 m trançado blindado/encapado metalicamente	Sim	Sim ⁶⁾	Sim 1)3) 6)	Não
com opcional de filito de KFI	150 m trançado blindado/encapado metalicamente	Sim ⁶⁾	Sim ⁶⁾	Não	Não

1) Não se aplicam ao VLT 5122-5552 / 380-500 V.

2) Dependendo das condições de instalação.

3) VLT 5032-5052 / 200-240 V com filtro externo.

4) VLT 5122-5552, 380-500 V, atende a classe A-2 com 50 m de cabo blindado sem o filtro de RFI (código tipo RO).

5) VLT 5042-5352, 525-690 V, atende a classe A2 com 150 m de cabo blindado sem filtro de RFI (R0) e a classe A1 com 30 m de cabo blindado com filtro de RFI (R1).

6) Não se aplica a VLT 5042-5352, 525-690 V.

Para minimizar o ruído da rede elétrica e o ruído irradiado do sistema do conversor de freqüência, os cabos do motor devem ter o menor comprimento possível e as extremidades da olindagem devem ser feitas de acordo com a seção de instalação elétrica

■ Níveis de compatibilidade requeridos

Padrão / ambiente	Primeiro ambie		Segundo ambie Ambiente indus	
	indústrias leve		Ambiente maus	ulai
	Conduzido	Irradiado	Conduzido	Irradiado
EN 61000-6-3	Classe B	Classe B		
EN 61000-6-4			Classe A-1	Classe A-1
EN 61800-3 (restrito)	Classe A-1	Classe A-1	Classe A-2	Classe A-2
EN 61800-3 (não-restrito)	Classe B	Classe B	Classe A-1	Classe A-1

EN 55011: Valores-limite e métodos de

medição da interferência de rádio de equipamentos industriais, científicos e médicos (ISM) de alta freqüência.

Classe Equipamento usado em um A-1: ambiente industrial. Distribuição

irrestrita.

Classe Equipamento usado em ambiente A-2: industrial. Distribuição restrita. Classe B: Equipamento usado em áreas

com rede de alimentação pública (residências, comércio e indústrias leves). Distribuição irrestrita.

■ Imunidade a EMC

Para documentar a imunidade contra a interferência de fenômenos elétricos, os testes de imunidade a seguir foram realizados em um sistema consistindo de um conversor de freqüência (com opcionais, se relevantes), um cabo de controle blindado e uma caixa de controle com potenciômetro, cabo de motor e motor.

Os testes foram executados de acordo com as seguintes normas básicas:

- EN 61000-4-2 (IEC 61000-4-2):
 Descargas eletrostáticas (ESD)
 Simulação de descargas eletrostáticas de seres humanos.
- EN 61000-4-3 (IEC 61000-4-3): Radiação de campo eletromagnético de entrada, modulada em amplitude
 Simulação dos efeitos de radar e de equipamento de radiocomunicação, bem como equipamento de comunicações móvel.
- EN 61000-4-4 (IEC 61000-4-4):
 Transitórios eruptivo
 Simulação da interferência originada pelo chaveamento de um contactor, de relés ou de outros dispositivos similares.

- EN 61000-4-5 (IEC 61000-4 5): Transitórios repentinos
 Simulação de transitórios originados, por exemplo, por relâmpagos nas proximidades das instalações.
- Pulso de teste VDE 0160 classe
 W2: Transitórios da rede elétrica
 Simulação de transitórios de alta energia, produzidos pela ruptura do fusível principal, chaveamento dos capacitores de correção do fator de potência, etc.
- EN 61000-4-6 (IEC 61000-4-6): Modo RF comum.
 Simulação do efeito de equipamento rádiotransmissor ligado aos cabos de conexão.

Consulte o seguinte formulário sobre imunidade a EMC.

0
ĭŒ
ũ
<u> </u>
2
.⊑
Ħ
ក
×
-:
e,
de,
ade,
dade,
nidade,
unidade,
nunidade,
munidade,
Imunidade,

Norma básica	Erupção	Pico de energia	ESD	Campo eletromagnético irradiado	Distorção na	Tensão de RF
	IEC 61000-4-4	IEC 61000-4-5	IEC 61000-4-2	IEC 61000-4-3	rede elétrica	modo comum
					VDE 0160	IEC 61000-4-6
Critério de aceitação	В	В	В	A		A
Conexão da porta	CM	MD MD		_	CM	CM
Linha	OK	— уо	1	_	OK	OK
Motor	OK		1		1	OK
Linhas de controle	OK	УО —	1		1	OK
Aplicação e opcionais de Fieldbus	OK	жо —	1		1	OK
Interface de sinal<3 m	OK		1		1	1
Gabinete	-		OK	OK	1	OK
Distribuição da carga	OK	-	ı		1	OK
Bus standard	OK	- OK	ı		1	OK
Freio	OK		1		1	OK
24 V CC externa	OK	_ OK	1		1	OK
DM: Modo diferencial						

CM: Modo comum

CCC: Acoplamento capacitivo com braçadeira

DCN: Rede com acoplamento direto

0
ĭŒ
ΰ
ā
3
⊂
≔
Ξ
ᅐ
×
O
0
e,
de, c
ade, c
dade, c
nidade, c
ınidade, c
nunidade, c
munidade, c

Especificações básicas	Erupção	Pico de energia	ESD	Campo eletromagnético irradiado	Distorção na	Tensão de RF
	IEC 61000-4-4	IEC 61000-4-5	IEC 61000-4-2	IEC 61000-4-3	rede elétrica	modo comum
					VDE 0160	IEC 61000-4-6
Linha	4 kV/5 kHz/DCN	2 kV/2Ω 4 kV/12Ω	1	_	$2,3 \times U_{N^2}$	10 VRMS
Motor	4 kV/5 kHz/CCC		1	_	1	10 VRMS
Linhas de controle	2 kV/5 kHz/CCC	— 2 kV/2Ω¹)	1	_	1	10 VRMS
Aplicação e opcionais de Fieldbus	2 kV/5 kHz/CCC	— 2 kV/2Ω¹)	1	_	1	10 VRMS
Interface de sinal	1 kV/5 kHz/CCC	——	I	I	I	10 VRMS
<3 m						
Gabinete	ı		8 kV AD	10 V/m	Ī	I
			6 kV CD			
Distribuição da carga	4 kV/5 kHz/CCC	1	1		I	10 VRMS
Bus standard	2 kV/5 kHz/CCC	− 4 kV/2Ω¹)	1		I	10 VRMS
Freio	4 kV/5 kHz/CCC	-	I		I	10 VRMS
24 V CC externa	2 kV/5 kHz/CCC	– 4 kV/2Ω¹)	I		I	10 VRMS

DM: Modo diferencial

CM: Modo comum

CCC: Acoplamento capacitivo com braçadeira

DCN: Rede com acoplamento direto

1. Injeção na blindagem do cabo

2. 2,3 x U_N: pulso de teste máx. 380 V_{CA}: Classe 2/1250 V_{PEAK}, 415 V_{CA}: Classe 1/1350 V_{PEAK}

Grupo 2

VLT® da Série 5000

■ Definições

VLT:

IVLT,MAX

Corrente de saída máxima

 $I_{VLT,N}$

A corrente de saída nominal fornecida pelo conversor de freqüência VLT.

U_{VLT MAX}

A máxima tensão de saída.

Saída:

 I_{M}

A corrente transmitida ao motor.

 U_{M}

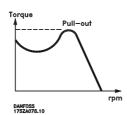
A tensão transmitida ao motor.

 f_M

A freqüência transmitida ao motor.

fJOG

A freqüência transmitida ao motor quando a função jog estiver ativada (via terminais digitais ou teclado).


fMIN

A frequência mínima transmitida ao motor.

 f_{MAX}

A frequência máxima transmitida ao motor.

Torque de Segurança:

η_{VLT}

A eficiência do conversor de freqüência é definida como a relação entre a saída de potência e o ingresso de potência.

Entrada:

Comando do controle:

Mediante o display e as entradas digitais, é possível dar a partida e parar o motor conectado.

As funções são divididas em dois grupos, com as seguintes prioridades:

Grupo 1 Reset, Parada por inércia,

Reset e parada por inércia, Parada rápida, frenagem CC, Parada e a tecla "Stop".

Partida, partida com pulso,

Reversão, Partida com reversão, Jogging e Saída

congelada.

Grupo 1, são os chamados comandos inibidores da partida. A diferença entre o grupo 1 e o grupo 2 é que no grupo 1 todos os sinais de parada devem ser anulados para o motor partir. O motor pode então partir com um único sinal de partida no grupo 2. Um comando de parada dado com um comando do grupo 1 é indicado no display como STOP. Um comando de parada não efetuada dado com um comando do grupo 2 é indicado no display como STAND BY.

Comando inibidor da partida:

É um comando de parada que pertence ao grupo 1 dos comandos de controle - vide este grupo.

Comando de parada:

Comando de parada:

Motor:

 $I_{M,N}$

A corrente nominal do motor (dados da placa de identificação).

 $f_{M,N}$

A freqüência nominal do motor (dados da placa de identificação).

 $U_{M,N}$

A tensão nominal do motor (dados da placa de identificação).

Рмк

A potência nominal fornecida pelo motor (dados da placa de identificação).

 $n_{M,N}$

A velocidade nominal do motor (dados da placa de identificação).

 $T_{M,N}$

O torque nominal (motor).

Referências:

Ref. preset

Uma referência definida com firmeza que pode ser programada de -100% a +100% da faixa de referência.

Há quatro referências pré-configuradas, que podem ser selecionadas através dos terminais digitais.

Ref. analógica

É um sinal transmitido à entrada 53, 54 ou 60. Pode ser tensão ou corrente.

Ref. de pulso

É um sinal transmitido às entradas digitais (terminal 17 ou 29).

Ref. binária

É um sinal transmitido à porta de comunicação serial.

Ref_{MIN}

É o menor valor que o sinal de referência pode ter. Regulado no parâmetro 204.

Ref_{MAX}

É o maior valor que o sinal de referência pode ter. Regulado no parâmetro 205.

Diversos:

ELCB:

Earth Leakage Circuit Breaker (disjuntor para a corrente de fuga à terra).

lsb:

É o bit menos significativo. Usado na comunicação serial.

msb

É o bit mais significativo.
Usado na comunicação serial.

PID:

O regulador PID mantém a saída do processo desejada (pressão, temperatura etc.) regulando a freqüência de saída para coincidir com a variação da carga.

Trip:

É um estado que ocorre em situações anormais, por ex. se o conversor de freqüência for sujeito a um superaquecimento. Um 'trip' pode ser anulado apertando 'reset' ou, em alguns casos, automaticamente.

Trip bloqueado:

É um estado que ocorre em situações anormais, por ex.: se o conversor de freqüência for sujeito a um superaquecimento. Um 'trip' bloqueado pode ser anulado interrompendo a alimentação e dando uma nova partida no conversor de freqüência.

Iniciação:

Se for efetuada a iniciação, o conversor de frequência retorna à programação da fábrica.

Setup:

Há quatro setups, nos quais é possível gravar os valores dos parâmetros. É possível mudar de um para outro destes quatro setups de parâmetros e alterar um Setup, enquanto outro Setup estiver ativado.

LCP:

O painel de controle , que consiste de uma interface completa para o controle e a programação do conversor de freqüência da série 5000.

O painel de controle é extraível e pode alternativamente ser instalado até a 3 metros de distância do conversor de freqüência, por ex.: no frontal de um painel de distribuição, com o kit fornecido para a instalação.

VVCplus

Se comparado com um controle da tensão/freqüência padrão, o VVC^{plus} melhora a dinâmica e a estabilidade, quer quando a referência de velocidade for mudada quer em relação ao torque da carga.

Compensação de escorregamento:

Normalmente a velocidade do motor será influenciada pela carga, mas esta dependência da carga não é desejada. O conversor de freqüência compensa o escorregamento fornecendo para a freqüência um incremento que segue a corrente efetivamente medida.

Termistor:

Uma resistência variável com a temperatura localizada onde a temperatura deve ser monitorada (conversor de freqüência ou motor).

Entradas analógicas:

As entradas analógicas podem ser utilizadas para a programação/controle de várias funções do conversor de freqüência.

Há dois tipos de entradas analógicas:
Entrada de corrente, 0-20 mA.
Entrada de tensão, 0-10 V CC.

Saídas analógicas:

Há 2 saídas analógicas, que são capazes de fornecer um sinal de 0-20 mA, 4-20 mA ou um sinal digital.

Entradas digitais:

As entradas digitais pode ser utilizadas para a programação/controle de várias funções do conversor de fregüência.

Saídas digitais:

Há quatro saídas digitais, duas delas ativam um relé. As saídas são capazes de fornecer um sinal de 24 V CC (máx. 40 mA).

Resistência elétrica do freio:

A resistência elétrica de freio é um módulo capaz de absorver a potência que é gerada na frenagem regenerativa. Esta potência de frenagem regenerativa aumenta a tensão do circuito intermediário e um "chopper" garante que a potência é transmitida para a resistência do freio.

Encoder de pulso:

É um transmissor de pulso digital externo utilizado para informar por ex. a velocidade do motor. O encoder é utilizado em aplicações nas quais for necessária uma grande precisão no controle da velocidade.

AWG:

Significa "American Wire Gauge", ou seja, a unidade de medida americana para secção transversal de cabos.

Iniciação manual:

Para realizar a iniciação manual, pressione simultaneamente as [CHANGE DATA] + [Menu] + [OK].

60° AVM

Padrão de chaveamento conhecido como 60° \underline{A} synchronous \underline{V} ector \underline{M} odulation (Modulação Vetorial Assíncrona).

SFAVM

Padrão de chaveamento conhecido como <u>S</u> tator <u>F</u> lux oriented <u>A</u> synchronous <u>V</u> ector <u>M</u> odulation (Modulação Vetorial Assíncrona orientada pelo Fluxo do Estator).

Ajuste automático do motor, AMA:

Algoritmo de ajuste do motor, que determina os parâmetros elétricos do motor conectado, em descanso.

Parâmetros on-line/off-line:

Parâmetros on-line são ativados imediatamente após a mudança no valor dos dados. Parâmetros

off-line não são ativados até que OK tenha sido digitado na unidade de comando.

Características de torque variável, usado para bombas e ventiladores.

Características CT:

Características de torque constante, utilizadas por todas as aplicações, como correias transportadoras e guindastes. As características de TC não são utilizadas para bombas e ventiladores.

MCM:

Padrões para Mille Circular Mil, uma unidade norte- americana de medida para medição de secção transversal de cabos.

 $1 \text{ MCM} \equiv 0.5067 \text{ mm}^2$.

■ Programação de fábrica

					4-configu-		
PNU	Parâmetro	Configuração de fábrica	Variação	Alterações	raçőes	Conversão	Dados
#	descrição			durante a ope	ração	índice	tipo
001	Idioma	Inglês		Sim	Não	0	5
002	Controle local/remoto	Controle remoto		Sim	Sim	0	5
003	Local reference	000.000		Sim	Sim	-3	4
004	Active setup	Configuração 1		Sim	Não	0	5
005	Configuração de programação	Active setup		Sim	Não	0	5
006	Cópia de configurações	Nenhuma cópia		Não	Não	0	5
007	LCP copy	Nenhuma cópia		Não	Não	0	5
800	Escala da freqüência do motor	1	0.01 - 500.00	Sim	Sim	-2	6
	no display						
009	Linha de display 2	Freqüência [Hz]		Sim	Sim	0	5
010	Linha de display 1.1	Referência [%]		Sim	Sim	0	5
011	Linha de display 1.2	Motor current [A]		Sim	Sim	0	5
012	Linha de display 1.3	Power [kW]		Sim	Sim	0	5
013	Controle local/configura	LCP digital control/as		Sim	Sim	0	5
		par.100					
014	Parada local	Possível		Sim	Sim	0	5
015	Jog local	Não é possível		Sim	Sim	0	5
016	Local reversing	Não é possível		Sim	Sim	0	5
017	Local reset of trip	Possível		Sim	Sim	0	5
018	Travar contra alteração dos	Não bloqueado		Sim	Sim	0	5
	dados						
019	Estado de operação ao ligar,	Parada forçada, ref.		Sim	Sim	0	5
	controle local	memorizada					
027	Leitura de advertência	Advertência na linha		Sim	Não	0	5
		1/2					

Alterações durante a operação:

"Sim" significa que o parâmetro pode ser alterado, enquanto o conversor de freqüência está em operação. "Não" significa que o conversor de freqüência deve estar parado para que se possa fazer uma alteração.

4-Setup:

"Sim" significa que o parâmetro pode ser programado individualmente em cada um dos quatro setups, ou seja, o mesmo parâmetro poderá ter quatro valores de dados diferentes. "Não" significa que o valor de dados será o mesmo em todos os quatro setups.

Índice de conversão:

Esse número refere-se a um valor de conversão a ser usado durante a gravação ou leitura por meio de um conversor de freqüência.

Índice de conversão	Fator de conversão
74	0.1
2	100
1	10
0	1
	0.1
2	0.01
-3	0.001
	0.0001

Tipo de dados:

O tipo de dados mostra o	tipo e o comprimento do telegrama.
Tipo de	Descrição
3	Número inteiro 16
4	Número inteiro 32
5	8 sem sinal
6	16 sem sinal
7	32 sem sinal
9	Seqüência de texto

					4-configu-		
PNU	Parâmetro	Configuração de fábrica	Variação	Alterações	rações	Conversão	Dados
#	descrição	,	•	durante a o		índice	tipo
100	Configuração	Controle de velocidade, malha aberta		Não	Sim	0	5
101	Características do torque	Torque alto constante		Sim	Sim	0	5
102	Potência do motor	depende da unidade	0,18-600 kW	Não	Sim	1	6
103	Tensão do motor	depende da unidade	200 -600 V	Não	Sim	0	6
104	Freqüência do motor	50 Hz / 60 Hz		Não	Sim	0	6
105	Corrente do motor	depende da unidade	0.01 - I _{VLT,MAX}	Não	Sim	-2	7
106	Velocidade nominal do motor	depende da unidade	100 -60000 rpm	Não	Sim	0	6
107	Adaptação automática do motor, AMA	Adaptação desligada		Não	Não	0	5
108	Resistência estator	depende da unidade		Não	Sim	-4	7
109	Reatância do estator	depende da unidade		Não	Sim	-2	7
110	Magnetização do motor, 0 rpm	100 %	0 - 300 %	Sim	Sim	0	6
111	Magnetização normal de freqüência mínima	1,0 Hz	0,1 - 10,0 Hz	Sim	Sim	-1	6
112							
113	Compensação de carga com baixa	100 %	0 - 300 %	Sim	Sim	0	6
114	Compensação de carga com alta velocidade	100 %	0 - 300 %	Sim	Sim	0	6
115	Compensação de escorrega- mento	100 %	-500 - 500 %	Sim	Sim	0	3
116	Constante de tempo da compensação de escorregamento	0,50 s	0,05 -1,00 s	Sim	Sim	-2	6
117	Atenuação da ressonância	100 %	0 - 500 %	Sim	Sim	0	6
118	Constante de tempo da do amortecimento da ressonância	5 ms	de 5 a 50 ms.	Sim	Sim	-3	6
119	Torque de partida alto	0,0 seg.	0,0 -0,5 s	Sim	Sim	-1	5
120	Atraso na partida	0,0 seg.	0,0 -10,0 s	Sim	Sim	-1	5
121	Função da partida	Movimento por inércia no tempo de retardo da	•	Sim	Sim	0	5
122	Função na parada	Parada por inércia		Sim	Sim	0	5
123	Freqüência mínima para ativar a função na parada	0,0 Hz	de 0,0 a 10,0 Hz	Sim	Sim	-1	5
124	Corrente de frenagem CC	50 %	0 - 100 %	Sim	Sim	0	6
125	Corrente DC de frenagem	50 %	0 - 100 %	Sim	Sim	0	6
126	Tempo de frenagem DC	10,0 seg.	0,0-60,0 s	Sim	Sim	-1	6
127	Freqüência de corte de frenagem DC		0,0 - par. 202	Sim	Sim	-1	6
128	Proteção térmica do motor	Sem proteção		Sim	Sim	0	5
129	Ventilador externo do motor	Não		Sim	Sim	0	5
130	Freqüência ao iniciar	0,0 Hz	0,0 -10,0 Hz	Sim	Sim	-1	5
131	Tensão de partida	0,0 V	0,0 - par. 103	Sim	Sim	-1	6
145	Tempo mínimo do freio CC	0 seg.	de 0 a 10 seg.	Sim	Sim	-1	6

					4-configu-	Indice	
PNU	Parametro	Configuração de fábrica	Faixa	Alterações	raçoes	de	Tipo de
#	descrição			durante a ope	eração	conver-	datos
						são	
200	Output frequency	Only clockwise, 0-132 Hz		No	Yes	0	5
	range/direction						
201	Output frequency low limit	0.0 Hz	0.0 - f _{MAX}	Yes	Yes	-1	6
202	Output frequency high	66 / 132 Hz	f _{MIN} - par. 200	Yes	Yes	-1	6
	limit						
203	Reference/feedback area	Min - max		Yes	Yes	0	5
204	Minimum reference	0.000	-100,000.000-Ref _{MAX}	Yes	Yes	-3	4
205	Maximum reference	50.000	Ref _{MIN} -100,000.000	Yes	Yes	-3	4
206	Ramp type	Linear		Yes	Yes	0	5
207	Ramp-up time 1	Depends on unit	0.05 - 3600	Yes	Yes	-2	7
208	Ramp-down time 1	Depends on unit	0.05 - 3600	Yes	Yes	-2	7
209	Ramp-up time 2	Depends on unit	0.05 - 3600	Yes	Yes	-2	7
210	Ramp-down time 2	Depends on unit	0.05 - 3600	Yes	Yes	-2	7
211	Jog ramp time	Depends on unit	0.05 - 3600	Yes	Yes	-2	7
212	Quick stop ramp-down	Depends on unit	0.05 - 3600	Yes	Yes	-2	7
	time						
213	Jog frequency	10.0 Hz	0.0 - par. 202	Yes	Yes	-1	6
214	Reference function	Sum		Yes	Yes	0	5
215	Preset reference 1	0.00 %	- 100.00 - 100.00 %	Yes	Yes	-2	3
216	Preset reference 2	0.00 %	- 100.00 - 100.00 %	Yes	Yes	-2	3
217	Preset reference 3	0.00 %	- 100.00 - 100.00 %	Yes	Yes	-2	3
218	Preset reference 4	0.00 %	- 100.00 - 100.00 %	Yes	Yes	-2	3
219	Catch up/slow down value	0.00 %	0.00 - 100 %	Yes	Yes	-2	6
220							
221	Torque limit for motor	160 %	0.0 % - xxx %	Yes	Yes	-1	6
	mode						
222	Torque limit for	160 %	0.0 % - xxx %	Yes	Yes	-1	6
	regenerative operation						
223	Warning: Low current	0.0 A	0.0 - par. 224	Yes	Yes	-1	6
224	Warning: High current	I _{VLT,MAX}	Par. 223 - I _{VLT,MAX}	Yes	Yes	-1	6
225	Warning: Low frequency	0.0 Hz	0.0 - par. 226	Yes	Yes	-1	6
226	Warning: High frequency	132.0 Hz	Par. 225 - par. 202	Yes	Yes	-1	6
227	Warning: Low feedback	-4000.000	-100,000.000 - par. 228	Yes		-3	4
228	Warning: High feedback	4000.000	Par. 227 - 100,000.000	Yes		-3	4
229	Frequency bypass,	OFF	0 - 100 %	Yes	Yes	0	6
	bandwidth						
230	Frequency bypass 1	0.0 Hz	0.0 - par. 200	Yes	Yes	-1	6
231	Frequency bypass 2	0.0 Hz	0.0 - par. 200	Yes	Yes	-1	6
232	Frequency bypass 3	0.0 Hz	0.0 - par. 200	Yes	Yes	-1	6
233	Frequency bypass 4	0.0 Hz	0.0 - par. 200	Yes	Yes	-1	6
234	Motor phase monitor	Enable		Yes	Yes	0	5

			Al-	4-configu-		
PNU Parâmetro	Configuração de fábrica	Faixa	terações	rações	Conversão	Tipo de
# descrição			durante a	operação	índice	dados
300 Terminal 16, entrada	Reinicializar		Sim	Sim	0	5
301 Terminal 17, entrada	Congelar referência		Sim	Sim	0	5
302 Entrada digital, Terminal	Partida		Sim	Sim	0	5
303 Terminal 19, entrada	Inversão		Sim	Sim	0	5
304 Terminal 27, entrada	Parada por inércia, ativa c/ NL C)	Sim	Sim	0	5
305 Terminal 29, entrada	Jog		Sim	Sim	0	5
306 Terminal 32, entrada	Escolha de configuração,		Sim	Sim	0	5
	msb/aceleração					
307 Entrada digital, Terminal	Escolha de configuração,		Sim	Sim	0	5
	lsb/desaceleração					
308 Terminal 53, tensão de entrada	Referência		Sim	Sim	0	5
analógica						
309 Terminal 53, escala mínima	0,0 V	0,0 - 10,0 V	Sim	Sim	-1	5
310 Terminal 53, escala máx	10,0 V	0,0 - 10,0 V	Sim	Sim	-1	5
311 Terminal 54, entrada analógica de	Não operacional		Sim	Sim	0	5
tensão						
312 Terminal 54, escala mínima	0,0 V	0,0 - 10,0 V	Sim	Sim	-1	5
313 Terminal 54, escala máx	10,0 V	0,0 - 10,0 V	Sim	Sim	-1	5
314 Terminal 60, corrente de entrada	Referência		Sim	Sim	0	5
analógica						
315 Terminal 60, escala mínima	0,0 mA	0,0 - 20,0 mA	Sim	Sim	-4	5
316 Terminal 60, escala máx	20,0 mA	0,0 - 20,0 mA	Sim	Sim	-4	5
317 Tempo esgotado	10 seg.	1 - 99 De 1 a 99	Sim	Sim	0	5
		seg.				
318 Função após o time-out	Desligado		Sim	Sim	0	5
319 Borne 42, saída	0 - I _{MAX} Þ 0-20 mA		Sim	Sim	0	5
320 Terminal 42, saída, valor de escala		1 - 32000 Hz	Sim	Sim	0	6
pulso						
321 Terminal 45, saída	0 - f _{MAX} Þ 0-20 mA		Sim	Sim	0	5
322 Terminal 45, saída, escala de pulso		1 - 32000 Hz	Sim	Sim	0	6
323 Relé 01, saída	Pronto - nenhuma advertência		Sim	Sim	0	5
•	térmica					
324 Relé 01, Temporização na	0,00 seg.	0,00 - 600 seg.	Sim	Sim	-2	6
energização	0,00 00g.	o,oo oog.		· · · · ·	_	Ū
325 Relé 01, retardo OFF	0,00 seg.	0,00 - 600 seg.	Sim	Sim	-2	6
326 Relé 04, saída	Pronto - controle remoto		Sim	Sim	0	5
327 Referência por pulso, frequência	5000 Hz		Sim	Sim	0	6
máx			J	J	-	•
328 Feedback de pulso, freqüência	25000 Hz		Sim	Sim	0	6
máx	20000 112		Oiiii	51111	J	J
329 Feedback do codificador,	1024 pulsos/rev.	1 - 4096	Sim	Sim	0	6
·	1027 pui303/16V.		Oiiii	JIIII	U	J
pulso/rev. 330 Função congelar referência/saída	Não operacional	pulsos/rev.	Sim	No	0	5
		0 - 60 sog				6
345 Timeout de perda do codificador	1 seg. OFF	0 - 60 seg	Sim	Sim	-1 0	5
346 Função de perda do codificador 357 Terminal 42, escala mínima de	0 %	000 - 100%	Sim Sim	Sim Sim	0	6
	U /U	000 - 100 %	JIII	JIIII	U	J
saída	100%	000 5000/	Qim.	Qim	0	6
358 Terminal 42, escala máxima de	100%	000 - 500%	Sim	Sim	U	6
saída	0.0/	000 1000	0:	0:		
359 Terminal 45, escala mínima de	0 %	000 - 100%	Sim	Sim	0	6
saída	4000/	000 -000	0:	0:		
360 Terminal 45, escala máxima de	100%	000 - 500%	Sim	Sim	0	6
saída						
361 Limite de perda do codificador	300%	000 - 600 %	Sim	Sim	0	6

						Conver-	
PNU	Parâmetro	Programação de fábrica	Variação	Alterações	4-Setup	são	Dados
#	descrição			durante a c		índice	tipo
400	Brake function/overvoltage control	Off		Yes	No	0	5
	Brake resistor, ohm	Depends on the unit		Yes	No	-1	6
402	Brake power limit, kW	Depends on the unit		Yes	No	2	6
403	Power monitoring	On		Yes	No	0	5
404	Brake check	Off		Yes	No	0	5
405	Reset function	Manual reset		Yes	Yes	0	5
406	Automatic restart time	5 sec.	0 - 10 sec.	Yes	Yes	0	5
407	Mains Failure	No function		Yes	Yes	0	5
408	Quick discharge	Not possible		Yes	Yes	0	5
409	Trip delay torque	Off	0 - 60 sec.	Yes	Yes	0	5
410	Trip delay-inverter	Depends on type of unit	0 - 35 sec.	Yes	Yes	0	5
411	Switching frequency	Depends on type of unit	3 - 14 kHz	Yes	Yes	2	6
412	Output frequency dependent switching	Not possible		Yes	Yes	0	5
	frequency						
413	Overmodulation function	On		Yes	Yes	-1	5
414	Minimum feedback	0.000	-100,000.000 - FB _{HIGH}	Yes	Yes	-3	4
415	Maximum feedback	1500.000	FB _{LOW} - 100,000.000	Yes	Yes	-3	4
416	Process unit	%		Yes	Yes	0	5
417	Speed PID proportional gain	0.015	0.000 - 0.150	Yes	Yes	-3	6
418	Speed PID integration time	8 ms	2.00 - 999.99 ms	Yes	Yes	-4	7
419	Speed PID differentiation time	30 ms	0.00 - 200.00 ms	Yes	Yes	-4	6
420	Speed PID diff. gain ratio	5.0	5.0 - 50.0	Yes	Yes	-1	6
421	Speed PID low-pass filter	10 ms	5 - 200 ms	Yes	Yes	-4	6
422	U 0 voltage at 0 Hz	20.0 V	0.0 - parameter 103	Yes	Yes	-1	6
423	U 1 voltage	parameter 103	0.0 - U _{VLT, MAX}	Yes	Yes	-1	6
424	F 1 frequency	parameter 104	0.0 - parameter 426	Yes	Yes	-1	6
425	U 2 voltage	parameter 103	0.0 - U _{VLT, MAX}	Yes	Yes	-1	6
426	F 2 frequency	parameter 104	par.424-par.428	Yes	Yes	-1	6
427	U 3 voltage	parameter 103	0.0 - U _{VLT, MAX}	Yes	Yes	-1	6
428	F 3 frequency	parameter 104	par.426 -par.430	Yes	Yes	-1	6
429	U 4 voltage	parameter 103	0.0 - U _{VLT, MAX}	Yes	Yes	-1	6

				4-configu		
PNU Parâmetro	Configuração de fábrica	Variação	Alterações	•	Conversão	Dados
# descrição	3 3		durante a d	•	índice	tipo
430 Freqüência F 4	parâmetro 104	par.426-par.432	Sim	Sim	-1	6
431 Tensão U 5	parâmetro 103	.0 - U _{VLT, MAX}	Sim	Sim	-1	6
432 Freqüência F 5	parâmetro 104	par.426 - 1000 Hz	Sim	Sim	-1	6
433 Ganho proporcional no torque	100%	0 (Desligado) - 500%	Sim	Sim	0	6
434 Tempo integral do torque	0,02 seg.	0,002 a 2,000 s.	Sim	Sim	-3	7
437 Controle normal/inverso de PID de	Normal		Sim	Sim	0	5
processo						
438 Anti conflito no PID de processo	Ligado		Sim	Sim	0	5
439 Freqüência de partida no PID de	parâmetro 201	f _{mín - fmáx}	Sim	Sim	-1	6
processo						
440 Ganho proporcional no PID de	0.01	0.00 - 10.00	Sim	Sim	-2	6
processo						
441 Tempo integral do PID de processo	9999,99 s. (OFF)	0,01 a 9999,99 s.	Sim	Sim	-2	7
442 Tempo de diferenciação do PID de	0,00 s. (OFF)	0,00-10,00 s	Sim	Sim	-2	6
processo						
443 Limite de ganho diferencial no	5.0	5.0 - 50.0	Sim	Sim	-1	6
processo PID						
444 Período do filtro passa baixa do PID	0.01	0.01 - 10.00	Sim	Sim	-2	6
de processo						
445 Início em andamento	Inativo		Sim	Sim	0	5
446 Padrão de chaveamento	SFAVM		Sim	Sim	0	5
447 Compensação de torque	100%	-100 - +100%	Sim	Sim	0	3
448 Relação de marcha	1	0.001 - 100.000	Não	Sim	-2	4
449 Perda por fricção	0%	0 - 50%	Não	Sim	-2	6
450 Falha na tensão da rede de	Depende da unidade	Depende da unidade	Sim	Sim	0	6
alimentação						
453 Relação de marcha de velocidade,	1	0.01-100	Não	Sim	0	4
malha fechada						
454 Compensação de tempo inativo	Ligado		Não	Não	0	5
455 Monitor de faixa de freqüência	Ativar				0	5
				۰.	_	
457 Função de perda de fase	Trip		Sim	Sim	0	5

		Configuração de			4-configu-		
					•		
PNU	Parâmetro	fábrica	Variação	Alterações	raçőes	Conversão	Dados
#	descrição		0 400	durante a o		índice	tipo
500	Endereço	1	0 - 126	Sim	Não Não	0	6
501	Taxa de velocidade	9600 Baud		Sim	Não	0	5
502	Parada por inércia	Lógica ou		Sim	Sim	0	5
503	Parada rápida	Lógica ou		Sim	Sim	0	5
504	Freio CC	Lógica ou		Sim	Sim	0	5
505	Partida	Lógica ou		Sim	Sim	0	5
506	Inversão	Lógica ou		Sim	Sim	0	5
507	Seleção de configuração	Lógica ou		Sim	Sim	0	5
508	Seleção de velocidade	Lógica ou	D- 00	Sim	Sim	0	5
509	Barramento jog 1	10.0 Hz	De 0,0 ao	Sim	Sim	-1	6
			parâmetro 202				
510	Barramento jog 2	10.0 Hz	De 0,0 ao	Sim	Sim	-1	6
			parâmetro 202				
511			· · · · · · · · · · · · · · · · · · ·				
512	Perfil do telegrama	Unidade FC		Não	Sim	0	5
513	Intervalo de tempo do barramento	1 seg.	1 - 99 s	Sim	Sim	0	5
514	Função de intervalo de tempo do barramento	Desligado		Sim	Sim	0	5
515	Leitura de dados: Reference %			Não	Não	-1	3
516	Leitura de dados: Unidade de referência			Não	Não	-3	4
517	Leitura de dados: Feedback			Não	Não	-3	4
518	Leitura de dados: Fregüência			Não	Não	-1	6
519	Leitura de dados: Freqüência x Escala			Não	Não	-2	7
520	Leitura de dados: Current			Não	Não	-2	7
521	Leitura de dados: Torque			Não	Não	- <u></u>	3
522	Leitura de dados: Power, kW			Não	Não	1	7
523	Leitura de dados: Power, RW			Não	Não	-2	7
524	Leitura de dados: Tensão do motor			Não	Não	<u>-2</u> -1	6
525	Leitura de dados: Tensão do motor Leitura de dados: Tensão da barra CC			Não	Não	0	6
526	Leitura de dados: Tensão da barra CC Leitura de dados: Temp. do motor			Não	Não	0	5
527	Leitura de dados: Temp. VLT			Não	Não	0	5
528	Leitura de dados: Temp. VEI Leitura de dados: Entrada digital			Não	Não	0	5
						-2	
529	Leitura de dados: Terminal 53,entrada analógica			Não Não	Não Não		3
530	Leitura de dados: Terminal 54,entrada analógica			Não	Não Não	-2	3
531	Leitura de dados: Terminal 60,entrada analógica			Não Não	Não Não	-5	3
532	Leitura de dados: Referência de pulso			Não Não	Não	<u>-1</u> -1	7
533	Leitura de dados: Referência externa %			Não Não	Não		3
534	Leitura de dados: Palavra de estado, binário			Não	Não	0	6
535	Leitura de dados: Potência do freio/2 min.			Não Não	Não Não	2	6
536	Leitura de dados: Potência do freio/s.			Não	Não	2	6
537	Leitura de dados: Temperatura no dissipador de			Não	Não	0	5
	calor						
538	Leitura de dados: Palavra de alarme, binário			Não	Não	0	7
539	Leitura de dados: Palavra de controle VLT, binário			Não	Não	0	6
540	Leitura de dados: Palavra de advertência, 1			Não	Não	0	7
541	Leitura de dados: Palavra de estado estendida			Não	Não	0	7
553	Texto do visor 1			Não	Não	0	9
554	Texto do visor 2			Não	Não	0	9
557	Leitura de dados: Motor RPM			Não	Não	0	4
558	Leitura de dados: RPM do motor x escala			Não	Não	-2	4
580	Parâmetro definido			Não	Não	0	6
581	Parâmetro definido			Não	Não	0	6
582	Parâmetro definido			Não	Não	0	6
<u> </u>				1140	1140		

		Configuração de			4-configu-		
PNU	Parametro	fábrica	Faixa	Alterações	raçoes	Indice de	Tipo de
#	descrição	labilea	i dixa	durante a op	*	conversão	datos
600	Operating data: Operating hours			No	No	74	7
601	Operating data: Hours run			No	No	74	7
602	Operating data: kWh counter			No	No	1	7
603	Operating data: Number of			No	No	0	6
	power-up's						
604	Operating data: Number of			No	No	0	6
	overtemperatures						
605	Operating data: Number of			No	No	0	6
	overvoltages						
606	Data log: Digital input			No	No	0	5
607	Data log: Bus commands			No	No	0	6
608	Data log: Bus status word			No	No	0	6
609	Data log: Reference			No	No	-1	3
610	Data log: Feedback			No	No	-3	4
611	Data log: Motor frequency			No	No	-1	3
612	Data log: Motor voltage			No	No	-1	6
613	Data log: Motor current			No	No	-2	3
614	Data log: DC link voltage			No	No	0	6
615	Fault log: Error code			No	No	0	5
616	Fault log: Time			No	No	-1	7
617	Fault log: Value			No	No	0	3
618	Reset of kWh counter	No reset		Yes	No	0	5
619	Reset of hours-run counter	No reset		Yes	No	0	5
620	Operating mode Normal function	Normal function		No	No	0	5
621	Nameplate: VLT type			No	No	0	9
622	Nameplate: Power section			No	No	0	9
623	Nameplate: VLT ordering number			No	No	0	9
624	Nameplate: Software version no.			No	No	0	9
625	Nameplate: LCP identification no.			No	No	0	9
626	Nameplate: Database identification			No	No	-2	9
	no.						
627	Nameplate: Power section			No	No	0	9
	identification no.						
628	Nameplate: Application option type			No	No	0	9
629	Nameplate: Application option			No	No	0	9
	ordering no.						
630	Nameplate: Communication option			No	No	0	9
	type						
631	Nameplate: Communication option			No	No	0	9
	ordering no.						

				4-configu-			Tipo de
PNU	Parametro	Configuração de fábrica	Faixa	Alterações	raçoes	Indice de	ripo de
#	descrição			durante a o	durante a operação		datos
700	Relay 6, function	Ready signal		Yes	Yes	0	5
701	Relay 6, ON delay	0 sec.	0.00-600 sec.	Yes	Yes	-2	6
702	Relay 6, OFF delay	0 sec.	0.00-600 sec.	Yes	Yes	-2	6
703	Relay 7, function	Motor running		Yes	Yes	0	5
704	Relay 7, ON delay	0 sec.	0.00-600 sec.	Yes	Yes	-2	6
705	Relay 7, OFF delay	0 sec.	0.00-600 sec.	Yes	Yes	-2	6
706	Relay 8, function	Mains ON		Yes	Yes	0	5
707	Relay 8, ON delay	0 sec.	0.00-600 sec.	Yes	Yes	-2	6
708	Relay 8, OFF delay	0 sec.	0.00-600 sec.	Yes	Yes	-2	6
709	Relay 9, function	Fault		Yes	Yes	0	5
710	Relay 9, ON delay	0 sec.	0.00-600 sec.	Yes	Yes	-2	6
711	Relay 9, OFF delay	0 sec.	0.00-600 sec.	Yes	Yes	-2	6

∎Índice

A	
A	_
A fonte de 24 V CC externa	
Advertência contra	
Advertência geral	
Alimentação de rede elétrica (L1, L2, L3):	
Alimentação externa de 24 V CC	
Ambientes agressivos	
Aterramento de segurança	
Alerramento de Segurança	00
В	
braçadeiras de cabos	8 ⁻
C	
comunicação serial	8
conexão da rede elétrica e do motor	66
Código de tipos	
Cabo equalizador	
Cabos de controle	
Cabos de motor	8
característica de torque alto	
característica de torque normal	
Características adicionais	
Características básicas	
Características de controle	
Características de torque	
Caractere de dados (byte)	
Cartão de controle, alimentação de 24 V CC	
Cartão de controle, comunicação serial RS 485	
Cartão de controle, entradas analógicas	
Cartão de controle, entradas de pulso/encoder	
Cartão de controle, entradas digitais:	
Cartão de controle, saídas digital/pulso e analógica:	
Chave de RFI	
Comprimentos de cabo	
Conversão e unidade de medida	
Corrente de luga a terra	110
D	
Dados de saída	33
Dados de saída do vlt (u, v, w):	
Dados técnicos gerais	
Definições	
Derating para a temperatura ambiente	
Derating para freqüência de chaveamento alta	
Derating" para funcionamento em baixa velocidade	
Derating"para pressão atmosférica	
DeviceNet	24

Dispusses Data six al	40
Diagrama Principal	
Digite a sequência de números do código para pedido	
Dimensőes mecânicas	
Divisão da carga	68
_	
E	
Estrutura dos telegramas	
Etiqueta CE	130
Externos	37
_	
F	
Factory Settings	
Fator de potência	128
Ferramentas de Software de PC	20
Filtro de harmônicas	19
Filtro LC	19, 26
Filtros de harmônicas	31
Fusíveis	56
G	
Galvanicamente isolada	80
Instalação elétrica - alimentação de rede	66
Instalação elétrica	66, 79
Instalação elétrica - alimentação de ventilador externo	71
Instalação elétrica - Aterramento dos cabos de controle	85
Instalação elétrica - cabo do freio	68
Instalação elétrica - cabos de controle	
Instalação elétrica - cabos do motor	
Instalação elétrica - chave de temperatura do resistor do	
freio	
Instalação elétrica - cuidados com EMC	
Instalação elétrica - fonte de 24 Volts CC externa	
Instalação elétrica - ligação do bus	
Instalação elétrica - saída do relé	
Instalação elétrica, cabos de controle	
Instalação mecânica	
Interbus	
Interferência/Harmônicos da alimentaçãode rede	
Interruptores DIP 1-4	
Introdução	
Isolamento galvânico (PELV)	118
L	
Ler os elementos de descrição do parâmetro	102
Ligação de motores em paralelo	
Ligação do motor	67

Limite inferior107
Limite superior107
Literatura7
LonWorks
M
MCT 10
Modbus24
N
Número de elementos105
Nome106
Normas de segurança4
0
Opção de aplicativo
D
P
Profibus DP-V1
Palavra de controle
Palavra de estado
Perfil do barramento de campo
Perfil FC94
PLC85
Precisão da leitura do visor (parâmetros 009-012) 36
Profibus
Proteção da Série VLT 5000:
Proteção individual do motor
Proteção térmica do motor
Protocolo FC
Protocolos
R
rede elétrica IT 86
RS 485 80
Reatores de linha21
Rede elétrica
Resfriamento
Resistor do freio
Resistores de freio
Resultados do Teste de EMC
Ruído acústico
S
Saídas de relé:
Saídas do relé:
Sentido de rotação do motor
•

T	
Tampa de terminal	19
Tempo de subida	120
Tensão de pico	120
Teste de alta tensão	66
Texto adicional	108
Torques de aperto e tamanhos de parafusos	69
Transmissão de telegramas	89
U	
Umidade do ar	
Utilização de cabos de emc corretos	84
V	
Vibração e choque	125
Valor-padrão	107