

Contents

1	How to Read this Design Guide	5
	How to Read this Design Guide	5
	Symbols	5
	Abbreviations	6
	Definitions	6
2	Safety and Conformity	11
	Safety Precautions	11
3	Introduction to FC 300	17
	Product Overview	17
	Control Principle	19
	FC 300 Controls	19
	FC 301 vs. FC 302 Control Principle	19
	Control Structure in VVC ^{plus}	20
	Control Structure in Flux Sensorless (FC 302 only)	20
	Control Structure in Flux with Motor Feedback	21
	Internal Current Control in VVC ^{plus} Mode	22
	Local (Hand On) and Remote (Auto On) Control	22
	Reference Limits	25
	Scaling of Preset References and Bus References	25
	Scaling of Analog and Pulse References and Feedback	26
	Dead Band Around Zero	26
	Speed PID Control	29
	Process PID Control	32
	Ziegler Nichols Tuning Method	36
	EMC test results	38
	PELV - Protective Extra Low Voltage	39
	Earth Leakage Current	40
	Brake functions in FC 300	41
	Mechanical Holding Brake	41
	Dynamic Braking	41
	Selection of Brake Resistor	41
	Mechanical Brake Control	44
	Hoist Mechanical Brake	45
	Safe Stop Installation - FC 302 only (and FC 301 in frame size A1)	50
	Safe Stop Commissioning Test	52
4	FC 300 Selection	53
	Electrical Data - 200-240 V	53
	Electrical Data - 380-500 V	55

	Electrical Data - 525-600 V	61
	Electrical Data - 525-690 V	64
	General Specifications	69
	Efficiency	74
	Acoustic Noise	74
	du/dt conditions	75
	Automatic adaptations to ensure performance	86
5	How to Order	87
	Drive Configurator	87
	Ordering Form Type Code	88
	Ordering Numbers: Accessory Bags	92
6	Mechanical Installation - Frame Size A, B and C	101
	Mechanical Installation	101
7	Mechanical Installation - Frame Size D, E and F	105
	Pre-installation	105
	Planning the Installation Site	105
	Receiving the Frequency Converter	105
	Transportation and Unpacking	105
	Lifting	106
	Mechanical Dimensions	108
	Mechanical Installation	115
	Terminal locations - frame size D	117
	Terminal Locations - frame size E	119
	Terminal Locations - frame size F	123
	Cooling and Airflow	125
8	Electrical Installation	131
	Connections- Frame sizes A, B and C	131
	Connection to Mains and Earthing	132
	Motor Connection	135
	Relay Connection	138
	Connections - Frame sizes D, E and F	140
	Power Connections	140
	Fuses	153
	Disconnectors, circuit breakers and contactors	159
	Motor Thermal Protection	161
	Parallel Connection of Motors	161
	Motor Insulation	163
	Motor Bearing Currents	163

Control cables and terminals	164
Control cable routing	164
Control Terminals	165
Switches S201, S202, and S801	166
Electrical Installation, Control Terminals	167
Basic Wiring Example	168
Electrical Installation, Control Cables	169
Relay Output	171
Additional Connections	171
How to Connect a PC to the frequency converter	173
The FC 300 PC Software	174
Residual Current Device	179
Final Setup and Test	180
9 Application Examples	183
Encoder Connection	184
Encoder Direction	184
Closed Loop Drive System	185
Programming of Torque Limit and Stop	185
Advanced Mechanical Brake Control for Hoisting Applications	186
Automatic Motor Adaptation (AMA)	187
Smart Logic Control Programming	187
SLC Application Example	188
MCB 112 PTC Termistor Card	189
10 Options and Accessories	193
Mounting of Option Modules in Slot A	193
Mounting of Option Modules in Slot B	193
Mounting of Options in Slot C	194
General Purpose Input Output Module MCB 101	195
Encoder Option MCB 102	198
Resolver Option MCB 103	200
Relay Option MCB 105	201
24 V Back-Up Option MCB 107	203
MCB 112 VLT [®] PTC Thermistor Card	204
MCB 113 Extended Relay Card	206
Brake Resistors	207
Remote Mounting Kit for LCP	207
IP21/IP 4X/ TYPE 1 Enclosure Kit	208
Sine-wave Filters	209
High Power Options	211
Installation of Duct Cooling Kit in Rittal Enclosures	211

Contents

Outside installation/ NEMA 3R kit for Rittal enclosures	214
Installation on pedestal	215
Input plate option	217
Installation of Mains Shield for frequency converters	218
Frame size F Panel Options	218
11 RS-485 Installation and Set-up	221
RS-485 Installation and Set-up	221
Network Configuration	223
FC Protocol Message Framing Structure - FC 300	223
Examples	228
Modbus RTU Overview	229
Modbus RTU Message Framing Structure	230
How to Access Parameters	234
Danfoss FC Control Profile	235
Index	246

1 How to Read this Design Guide

1.1.1 How to Read this Design Guide

This Design Guide will introduce all aspects of your FC 300.

Available literature for FC 300

- The VLT AutomationDrive Operating Instructions MG.33.AX.YY provide the neccessary information for getting the drive up and running.
- The VLT AutomationDrive High Power Operating Instructions MG.33.UX.YY
- The VLT AutomationDrive Design Guide MG.33.BX.YY entails all technical information about the drive and customer design and applications.
- The VLT AutomationDrive Programming Guide MG.33.MX.YY provides information on how to programme and includes complete parameter descriptions.
- The VLT AutomationDrive Profibus Operating Instructions MG.33.CX.YY provide the information required for controlling, monitoring and programming the drive via a Profibus fieldbus.
- The VLT AutomationDrive DeviceNet Operating Instructions MG.33.DX.YY provide the information required for controlling, monitoring and programming the drive via a DeviceNet fieldbus.

X = Revision number

YY = Language code

Danfoss Drives technical literature is also available online at www.danfoss.com/BusinessAreas/DrivesSolutions/Documentations/Technical+Documentation.

1.1.2 Symbols

Symbols used in this guide.

NB! Indicates something to be noted by the reader.

Indicates a general warning.

*

Indicates a high-voltage warning.

Indicates default setting

1.1.3 Abbreviations

Alternating current	AC
American wire gauge	AWG
Ampere/AMP	Α
Automatic Motor Adaptation	AMA
Current limit	ILIM
Degrees Celsius	°C
Direct current	DC
Drive Dependent	D-TYPE
Electro Magnetic Compatibility	EMC
Electronic Thermal Relay	ETR
Drive	FC
Gram	g
Hertz	Hz
Kilohertz	kHz
Local Control Panel	LCP
Meter	m
Millihenry Inductance	mH
Milliampere	mA
Millisecond	ms
Minute	min
Motion Control Tool	MCT
Nanofarad	nF
Newton Meters	Nm
Nominal motor current	I _{M,N}
Nominal motor frequency	fм,N
Nominal motor power	P _{M,N}
Nominal motor voltage	U _{M,N}
Parameter	par.
Protective Extra Low Voltage	PELV
Printed Circuit Board	PCB
Rated Inverter Output Current	IINV
Revolutions Per Minute	RPM
Regenerative terminals	Regen
Second	S
Synchronous Motor Speed	n _s
Torque limit	T _{LIM}
Volts	V

1.1.4 Definitions

Frequency converter:

<u>D-TYPE</u>

Size and type of the connected frequency converter (dependencies).

$I_{\text{VLT,MAX}}$

The maximum output current.

IVLT,N

The rated output current supplied by the frequency converter.

UVLT, MAX

The maximum output voltage.

Input:

Control command

You can start and stop the connected motor by means of LCP and the digital inputs.

Functions are divided into two groups.

Functions in group 1 have higher priority than functions in group 2.

Motor:

fjog

The motor frequency when the jog function is activated (via digital terminals).

fM

The motor frequency.

fMAX

The maximum motor frequency.

Group 1	Reset, Coasting stop, Reset and Coasting stop, Quick-stop, DC braking, Stop and the "Off" key.
Group 2	Start, Pulse start, Reversing, Start reversing, Jog and Freeze output

FC 300 Design Guide

<u>Danfoss</u>

fmin

The minimum motor frequency.

f_{M,N}

The rated motor frequency (nameplate data).

 $\frac{I_{M}}{}$ The motor current.

 $\underline{I_{\text{M,N}}}$ The rated motor current (nameplate data).

<u>M-TYPE</u> Size and type of the connected motor (dependencies).

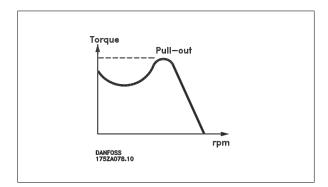
 $\underline{n_{M,N}}$ The rated motor speed (nameplate data).

 $\frac{n_s}{s}$ Synchronous motor speed

 $n_{\rm s} = \frac{2 \times par. \ 1 - 23 \times 60 \ s}{par. \ 1 - 39}$

 $\frac{P_{M,N}}{The \ rated \ motor \ power \ (nameplate \ data).}$

 $\frac{T_{M,N}}{The rated torque (motor).}$


UM

The instantaneous motor voltage.

U_{M,N}

The rated motor voltage (nameplate data).

Break-away torque

 η_{VLT}

The efficiency of the frequency converter is defined as the ratio between the power output and the power input.

Start-disable command

A stop command belonging to the group 1 control commands - see this group.

<u>Stop command</u> See Control commands.

MG.33.BB.02 - VLT[®] is a registered Danfoss trademark

7

1 How to Read this Design Guide

References:

Analog Reference

A signal transmitted to the analog inputs 53 or 54, can be voltage or current.

Binary Reference

A signal transmitted to the serial communication port.

Preset Reference

A defined preset reference to be set from -100% to +100% of the reference range. Selection of eight preset references via the digital terminals.

Pulse Reference

A pulse frequency signal transmitted to the digital inputs (terminal 29 or 33).

Ref_{MAX}

Determines the relationship between the reference input at 100% full scale value (typically 10 V, 20mA) and the resulting reference. The maximum reference value set in par. 3-03 *Maximum Reference*.

Ref_{MIN}

Determines the relationship between the reference input at 0% value (typically 0V, 0mA, 4mA) and the resulting reference. The minimum reference value set in par. 3-02 *Minimum Reference*.

Miscellaneous:

Analog Inputs

The analog inputs are used for controlling various functions of the frequency converter.

There are two types of analog inputs:

Current input, 0-20 mA and 4-20 mA

Voltage input, 0-10 V DC (FC 301)

Voltage input, -10 - +10 V DC (FC 302).

Analog Outputs

The analog outputs can supply a signal of 0-20 mA, 4-20 mA.

Automatic Motor Adaptation, AMA

AMA algorithm determines the electrical parameters for the connected motor at standstill.

Brake Resistor

The brake resistor is a module capable of absorbing the brake power generated in regenerative braking. This regenerative braking power increases the intermediate circuit voltage and a brake chopper ensures that the power is transmitted to the brake resistor.

CT Characteristics

Constant torque characteristics used for all applications such as conveyor belts, displacement pumps and cranes.

Digital Inputs

The digital inputs can be used for controlling various functions of the frequency converter.

Digital Outputs

The frequency converter features two Solid State outputs that can supply a 24 V DC (max. 40 mA) signal.

DSP

Digital Signal Processor.

<u>ETR</u>

Electronic Thermal Relay is a thermal load calculation based on present load and time. Its purpose is to estimate the motor temperature.

Hiperface[®]

Hiperface[®] is a registered trademark by Stegmann.

Initialising

If initialising is carried out (par. 14-22 Operation Mode), the frequency converter returns to the default setting.

Intermittent Duty Cycle

An intermittent duty rating refers to a sequence of duty cycles. Each cycle consists of an on-load and an off-load period. The operation can be either periodic duty or non-periodic duty.

<u>LCP</u>

The Local Control Panel (LCP) makes up a complete interface for control and programming of the frequency converter. The control panel is detachable and can be installed up to 3 metres from the frequency converter, i.e. in a front panel by means of the installation kit option.

lsb

Least significant bit.

<u>msb</u>

Most significant bit.

MCM

Short for Mille Circular Mil, an American measuring unit for cable cross-section. 1 MCM = 0.5067 mm^2 .

On-line/Off-line Parameters

Changes to on-line parameters are activated immediately after the data value is changed. Changes to off-line parameters are not activated until you enter [OK] on the LCP.

Process PID

The PID regulator maintains the desired speed, pressure, temperature, etc. by adjusting the output frequency to match the varying load.

Pulse Input/Incremental Encoder

An external, digital pulse transmitter used for feeding back information on motor speed. The encoder is used in applications where great accuracy in speed control is required.

<u>RCD</u>

Residual Current Device.

Set-up

You can save parameter settings in four Set-ups. Change between the four parameter Set-ups and edit one Set-up, while another Set-up is active.

<u>SFAVM</u>

Switching pattern called Stator _Flux oriented Asynchronous Vector Modulation (par. 14-00 Switching Pattern).

Slip Compensation

The frequency converter compensates for the motor slip by giving the frequency a supplement that follows the measured motor load keeping the motor speed almost constant..

Smart Logic Control (SLC)

The SLC is a sequence of user defined actions executed when the associated user defined events are evaluated as true by the SLC. (Parameter group 13-xx).

FC Standard Bus

Includes RS 485 bus with FC protocol or MC protocol. See par. 8-30 Protocol.

Thermistor:

A temperature-dependent resistor placed where the temperature is to be monitored (frequency converter or motor).

<u>Trip</u>

A state entered in fault situations, e.g. if the frequency converter is subject to an over-temperature or when the frequency converter is protecting the motor, process or mechanism. Restart is prevented until the cause of the fault has disappeared and the trip state is cancelled by activating reset or, in some cases, by being programmed to reset automatically. Trip may not be used for personal safety.

Trip Locked

A state entered in fault situations when the frequency converter is protecting itself and requiring physical intervention, e.g. if the frequency converter is subject to a short circuit on the output. A locked trip can only be cancelled by cutting off mains, removing the cause of the fault, and reconnecting the frequency converter. Restart is prevented until the trip state is cancelled by activating reset or, in some cases, by being programmed to reset automatically. Trip may not be used for personal safety.

VT Characteristics

Variable torque characteristics used for pumps and fans.

<u>VVC^{plus}</u>

If compared with standard voltage/frequency ratio control, Voltage Vector Control (VVC^{plus}) improves the dynamics and the stability, both when the speed reference is changed and in relation to the load torque.

<u>60° AVM</u>

Switching pattern called 60°Asynchronous Vector Modulation (par. 14-00 Switching Pattern).

Power factor = $\frac{\sqrt{3} \times U \times I_1 \cos \varphi}{\sqrt{3} \times U \times I_{RMS}}$

 $= \frac{1}{I_{RMS}} \times \frac{1}{I_{RMS}} = \frac{1}{I_{RMS}} \text{ since } \cos\varphi 1 = 1$

 $I_{RMS} = \sqrt{I_1^2 + I_5^2 + I_7^2} + \dots + I_n^2$

Power Factor

The power factor is the relation between $I_1 \mbox{ and } I_{\mbox{\scriptsize RMS}}.$

The power factor for 3-phase control:

The power factor indicates to which extent the frequency converter imposes a load on the mains supply. The lower the power factor, the higher the I_{RMS} for the same kW per-

formance.

In addition, a high power factor indicates that the different harmonic currents are low.

The frequency converters' built-in DC coils produce a high power factor, which minimizes the imposed load on the mains supply.

2 Safety and Conformity

2.1 Safety Precautions

2.1.1 Safety Precautions

The voltage of the frequency converter is dangerous whenever connected to mains. Incorrect installation of the motor, frequency converter or fieldbus may cause damage to the equipment, serious personal injury or death. Consequently, the instructions in this manual, as well as national and local rules and safety regulations, must be complied with.

Safety Regulations

- 1. The mains supply to the frequency converter must be disconnected whenever repair work is to be carried out. Check that the mains supply has been disconnected and that the necessary time has elapsed before removing motor and mains supply plugs.
- 2. The [OFF] button on the control panel of the frequency converter does not disconnect the mains supply and consequently it must not be used as a safety switch.
- 3. The equipment must be properly earthed, the user must be protected against supply voltage and the motor must be protected against overload in accordance with applicable national and local regulations.
- 4. The earth leakage current exceeds 3.5 mA.
- 5. Protection against motor overload is not included in the factory setting. If this function is desired, set par. 1-90 *Motor Thermal Protection* to data value ETR trip 1 [4] or data value ETR warning 1 [3].
- 6. Do not remove the plugs for the motor and mains supply while the frequency converter is connected to mains. Check that the mains supply has been disconnected and that the necessary time has elapsed before removing motor and mains plugs.
- Please note that the frequency converter has more voltage sources than L1, L2 and L3, when load sharing (linking of DC intermediate circuit) or external 24 V DC are installed. Check that all voltage sources have been disconnected and that the necessary time has elapsed before commencing repair work.

Warning against unintended start

- 1. The motor can be brought to a stop by means of digital commands, bus commands, references or a local stop, while the frequency converter is connected to mains. If personal safety considerations (e.g. risk of personal injury caused by contact with moving machine parts following an unintentional start) make it necessary to ensure that no unintended start occurs, these stop functions are not sufficient. In such cases the mains supply must be disconnected or the *Safe Stop* function must be activated.
- The motor may start while setting the parameters. If this means that personal safety may be compromised (e.g. personal injury caused by contact with moving machine parts), motor starting must be prevented, for instance by use of the *Safe Stop* function or secure disconnection of the motor connection.
- 3. A motor that has been stopped with the mains supply connected, may start if faults occur in the electronics of the frequency converter, through temporary overload or if a fault in the power supply grid or motor connection is remedied. If unintended start must be prevented for personal safety reasons (e.g. risk of injury caused by contact with moving machine parts), the normal stop functions of the frequency converter are not sufficient. In such cases the mains supply must be disconnected or the *Safe Stop* function must be activated.

When using the Safe Stop function, always follow the instructions in the Safe Stop section.

4. Control signals from, or internally within, the frequency converter may in rare cases be activated in error, be delayed or fail to occur entirely. When used in situations where safety is critical, e.g. when controlling the electromagnetic brake function of a hoist application, these control signals must not be relied on exclusively.

Touching the electrical parts may be fatal - even after the equipment has been disconnected from mains.

Also make sure that other voltage inputs have been disconnected, such as external 24 V DC, load sharing (linkage of DC intermediate circuit), as well as the motor connection for kinetic back up.

Systems where frequency converters are installed must, if necessary, be equipped with additional monitoring and protective devices according to the valid safety regulations, e.g law on mechanical tools, regulations for the prevention of accidents etc. Modifications on the frequency converters by means of the operating software are allowed.

Hoisting applications:

2

The frequency converter functions for controlling mechanical brakes cannot be considered as a primary safety circuit. There must always be a redundancy for controlling external brakes.

Protection Mode

Once a hardware limit on motor current or dc-link voltage is exceeded the drive will enter "Protection mode". "Protection mode" means a change of the PWM modulation strategy and a low switching frequency to minimize losses. This continues 10 sec after the last fault and increases the reliability and the robustness of the drive while re-establishing full control of the motor.

In hoist applications "Protection mode" is not usable because the drive will usually not be able to leave this mode again and therefore it will extend the time before activating the brake – which is not recommendable.

The "Protection mode" can be disabled by setting par. 14-26 *Trip Delay at Inverter Fault* to zero which means that the drive will trip immediately if one of the hardware limits is exceeded.

NB!

It is recommended to disable protection mode in hoisting applications (par. 14-26 Trip Delay at Inverter Fault = 0)



The DC link capacitors remain charged after power has been disconnected. To avoid electrical shock hazard, disconnect the frequency converter from mains before carrying out maintenance. When using a PM-motor, make sure it is disconnected. Before doing service on the frequency converter wait at least the amount of time indicated below:

Voltage	Power	Waiting Time
380 - 500 V	0.25 - 7.5 kW	4 minutes
	11 - 75 kW	15 minutes
	90 - 200 kW	20 minutes
	250 - 800 kW	40 minutes
525 - 690 V	37 - 315 kW	20 minutes
	355 - 1000 kW	30 minutes

2.2.1 Disposal Instruction

2.4.1 CE Conformity and Labelling

What is CE Conformity and Labelling?

The purpose of CE labelling is to avoid technical trade obstacles within EFTA and the EU. The EU has introduced the CE label as a simple way of showing whether a product complies with the relevant EU directives. The CE label says nothing about the specifications or quality of the product. Frequency converters are regulated by three EU directives:

The machinery directive (98/37/EEC)

All machines with critical moving parts are covered by the machinery directive of January 1, 1995. Since a frequency converter is largely electrical, it does not fall under the machinery directive. However, if a frequency converter is supplied for use in a machine, we provide information on safety aspects relating to the frequency converter. We do this by means of a manufacturer's declaration.

The low-voltage directive (73/23/EEC)

Frequency converters must be CE labelled in accordance with the low-voltage directive of January 1, 1997. The directive applies to all electrical equipment and appliances used in the 50 - 1000 V AC and the 75 - 1500 V DC voltage ranges. Danfoss CE-labels in accordance with the directive and issues a declaration of conformity upon request.

The EMC directive (89/336/EEC)

EMC is short for electromagnetic compatibility. The presence of electromagnetic compatibility means that the mutual interference between different components/appliances does not affect the way the appliances work.

The EMC directive came into effect January 1, 1996. Danfoss CE-labels in accordance with the directive and issues a declaration of conformity upon request. To carry out EMC-correct installation, see the instructions in this Design Guide. In addition, we specify which standards our products comply with. We offer the filters presented in the specifications and provide other types of assistance to ensure the optimum EMC result.

The frequency converter is most often used by professionals of the trade as a complex component forming part of a larger appliance, system or installation. It must be noted that the responsibility for the final EMC properties of the appliance, system or installation rests with the installer.

2.4.2 What Is Covered

The EU "*Guidelines on the Application of Council Directive 89/336/EEC*" outline three typical situations of using a frequency converter. See below for EMC coverage and CE labelling.

2

- 1. The frequency converter is sold directly to the end-consumer. The frequency converter is for example sold to a DIY market. The end-consumer is a layman. He installs the frequency converter himself for use with a hobby machine, a kitchen appliance, etc. For such applications, the frequency converter must be CE labelled in accordance with the EMC directive.
- 2. The frequency converter is sold for installation in a plant. The plant is built up by professionals of the trade. It could be a production plant or a heating/ventilation plant designed and installed by professionals of the trade. Neither the frequency converter nor the finished plant has to be CE labelled under the EMC directive. However, the unit must comply with the basic EMC requirements of the directive. This is ensured by using components, appliances, and systems that are CE labelled under the EMC directive.
- 3. The frequency converter is sold as part of a complete system. The system is being marketed as complete and could e.g. be an air-conditioning system. The complete system must be CE labelled in accordance with the EMC directive. The manufacturer can ensure CE labelling under the EMC directive either by using CE labelled components or by testing the EMC of the system. If he chooses to use only CE labelled components, he does not have to test the entire system.

2.4.3 Danfoss Frequency Converter and CE Labelling

CE labelling is a positive feature when used for its original purpose, i.e. to facilitate trade within the EU and EFTA.

However, CE labelling may cover many different specifications. Thus, you have to check what a given CE label specifically covers.

The covered specifications can be very different and a CE label may therefore give the installer a false feeling of security when using a frequency converter as a component in a system or an appliance.

Danfoss CE labels the frequency converters in accordance with the low-voltage directive. This means that if the frequency converter is installed correctly, we guarantee compliance with the low-voltage directive. Danfoss issues a declaration of conformity that confirms our CE labelling in accordance with the low-voltage directive.

The CE label also applies to the EMC directive provided that the instructions for EMC-correct installation and filtering are followed. On this basis, a declaration of conformity in accordance with the EMC directive is issued.

The Design Guide offers detailed instructions for installation to ensure EMC-correct installation. Furthermore, Danfoss specifies which our different products comply with.

Danfoss gladly provides other types of assistance that can help you obtain the best EMC result.

2.4.4 Compliance with EMC Directive 89/336/EEC

As mentioned, the frequency converter is mostly used by professionals of the trade as a complex component forming part of a larger appliance, system, or installation. It must be noted that the responsibility for the final EMC properties of the appliance, system or installation rests with the installer. As an aid to the installer, Danfoss has prepared EMC installation guidelines for the Power Drive system. The standards and test levels stated for Power Drive systems are complied with, provided that the EMC-correct instructions for installation are followed, see the section *EMC Immunity*.

2.5.1 Air Humidity

The frequency converter has been designed to meet the IEC/EN 60068-2-3 standard, EN 50178 pkt. 9.4.2.2 at 50°C.

2.5.2 Aggressive Environments

A frequency converter contains a large number of mechanical and electronic components. All are to some extent vulnerable to environmental effects.

FC 300 Design Guide

Danfoss

2

The frequency converter should not be installed in environments with airborne liquids, particles, or gases capable of affecting and damaging the electronic components. Failure to take the necessary protective measures increases the risk of stoppages, thus reducing the life of the frequency converter.

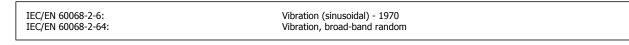
Liquids can be carried through the air and condense in the frequency converter and may cause corrosion of components and metal parts. Steam, oil, and salt water may cause corrosion of components and metal parts. In such environments, use equipment with enclosure rating IP 54/55. As an extra protection, coated printet circuit boards can be orded as an option.

Airborne <u>Particles</u> such as dust may cause mechanical, electrical, or thermal failure in the frequency converter. A typical indicator of excessive levels of airborne particles is dust particles around the frequency converter fan. In very dusty environments, use equipment with enclosure rating IP 54/55 or a cabinet for IP 00/IP 20/TYPE 1 equipment.

In environments with high temperatures and humidity, <u>corrosive gases</u> such as sulphur, nitrogen, and chlorine compounds will cause chemical processes on the frequency converter components.

Such chemical reactions will rapidly affect and damage the electronic components. In such environments, mount the equipment in a cabinet with fresh air ventilation, keeping aggressive gases away from the frequency converter. An extra protection in such areas is a coating of the printed circuit boards, which can be ordered as an option.

NB!


Mounting frequency converters in aggressive environments increases the risk of stoppages and considerably reduces the life of the converter.

Before installing the frequency converter, check the ambient air for liquids, particles, and gases. This is done by observing existing installations in this environment. Typical indicators of harmful airborne liquids are water or oil on metal parts, or corrosion of metal parts.

Excessive dust particle levels are often found on installation cabinets and existing electrical installations. One indicator of aggressive airborne gases is blackening of copper rails and cable ends on existing installations.

The frequency converter has been tested according to the procedure based on the shown standards:

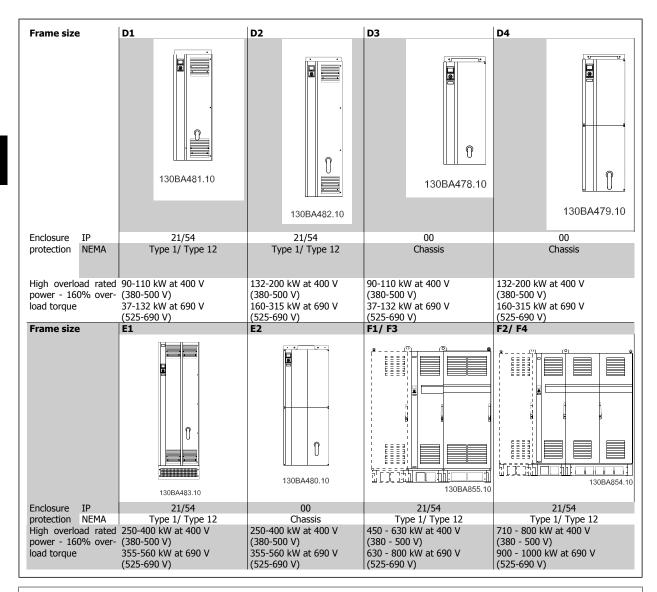
The frequency converter complies with requirements that exist for units mounted on the walls and floors of production premises, as well as in panels bolted to walls or floors.

NB!

D and E frames have a stainless steel backchannel option to provide additional protection in aggressive environments. Proper ventilation is still required for the internal components of the drive. Contact factory for additional information.

3 Introduction to FC 300

Danfoss


3

3 Introduction to FC 300

3.1 Product Overview

NB!

The F frames have four different sizes, F1, F2, F3 and F4 The F1 and F2 consist of an inverter cabinet on the right and rectifier cabinet on the left. The F3 and F4 have an additional options cabinet left of the rectifier cabinet. The F3 is an F1 with an additional options cabinet. The F4 is an F2 with an additional options cabinet.

3.2.1 Control Principle

A frequency converter rectifies AC voltage from mains into DC voltage, after which this DC voltage is converted into a AC current with a variable amplitude and frequency.

The motor is supplied with variable voltage / current and frequency, which enables infinitely variable speed control of three-phased, standard AC motors and permanent magnet synchronous motors.

3.2.2 FC 300 Controls

The frequency converter is capable of controlling either the speed or the torque on the motor shaft. Setting par. 1-00 *Configuration Mode* determines the type of control.

Speed control:

There are two types of speed control:

- Speed open loop control which does not require any feedback from motor (sensorless).
- Speed closed loop control in the form of a PID control that requires a speed feedback to an input. A properly optimised speed closed loop control will have higher accuracy than a speed open loop control.

Selects which input to use as speed PID feedback in par. 7-00 Speed PID Feedback Source.

Torque control (FC 302 only):

Torque control is t of the motor control and correct settings of motor parameters are very important. The accuracy and settling time of the torque control are determined from *Flux with motor feedback* (par. 1-01 *Motor Control Principle*).

• Flux with encoder feedback offers superior performance in all four quadrants and at all motor speeds.

Speed / torque reference:

The reference to these controls can either be a single refrence or be the sum of various references including relatively scaled references. The handling of references is explained in detail later in this section.

3.2.3 FC 301 vs. FC 302 Control Principle

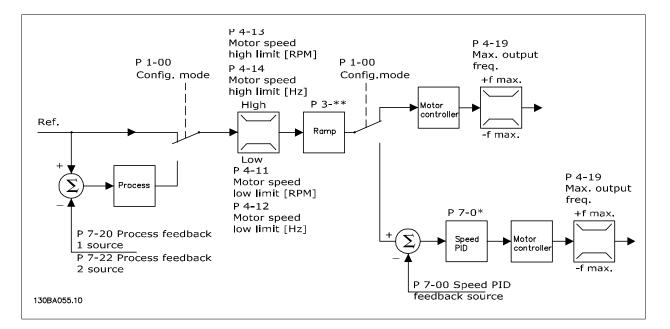
FC 301 is a general purpose frequency converter for variable speed applications. The control principle is based on Voltage Vector Control (VVC^{plus}). FC 301 can handle asynchronous motors only.

The current sensing principle in FC 301 is based on current measurement in the DC link or motor phase. The ground fault protection on the motor side is solved by a de-saturation circuit in the IGBTs connected to the control board.

Short circuit behaviour on FC 301 depends on the current transducer in the positive DC link and the desaturation protection with feedback from the 3 lower IGBT's and the brake.

FC 302 is a high performance frequency converter for demanding applications. The frequency converter can handle various kinds of motor control principles such as U/f special motor mode, VVC^{plus} or Flux Vector motor control.

FC 302 is able to handle Permanent Magnet Synchronous Motors (Brushless servo motors) as well as normal squirrel cage asynchronous motors. Short circuit behaviour on FC 302 depends on the 3 current transducers in the motor phases and the desaturation protection with feedback from the brake.



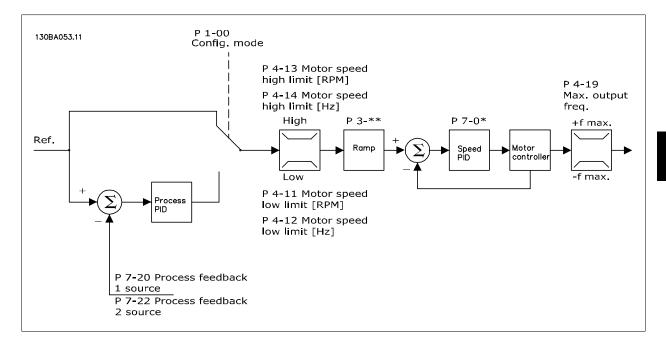
3.2.4 Control Structure in VVC^{plus}

3

Control structure in VVC^{plus} open loop and closed loop configurations:

In the configuration shown in the illustration above, par. 1-01 *Motor Control Principle* is set to "VVC^{plus} [1]" and par. 1-00 *Configuration Mode* is set to "Speed open loop [0]". The resulting reference from the reference handling system is received and fed through the ramp limitation and speed limitation before being sent to the motor control. The output of the motor control is then limited by the maximum frequency limit.

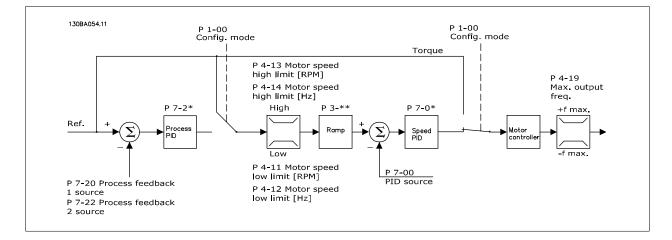
If par. 1-00 *Configuration Mode* is set to "Speed closed loop [1]" the resulting reference will be passed from the ramp limitation and speed limitation into a speed PID control. The Speed PID control parameters are located in the par. group 7-0*. The resulting reference from the Speed PID control is sent to the motor control limited by the frequency limit.


Select "Process [3]" in par. 1-00 *Configuration Mode* to use the process PID control for closed loop control of e.g. speed or pressure in the controlled application. The Process PID parameters are located in par. group 7-2* and 7-3*.

3.2.5 Control Structure in Flux Sensorless (FC 302 only)

Control structure in Flux sensorless open loop and closed loop configurations.

3


In the shown configuration, par. 1-01 *Motor Control Principle* is set to "Flux sensorless [2]" and par. 1-00 *Configuration Mode* is set to "Speed open loop [0]". The resulting reference from the reference handling system is fed through the ramp and speed limitations as determined by the parameter settings indicated.

An estimated speed feedback is generated to the Speed PID to control the output frequency. The Speed PID must be set with its P,I, and D parameters (par. group $7-0^*$).

Select "Process [3]" in par. 1-00 *Configuration Mode* to use the process PID control for closed loop control of i.e. speed or pressure in the controlled application. The Process PID parameters are found in par. group 7-2* and 7-3*.

3.2.6 Control Structure in Flux with Motor Feedback

Control structure in Flux with motor feedback configuration (only available in FC 302):

In the shown configuration, par. 1-01 *Motor Control Principle* is set to "Flux w motor feedb [3]" and par. 1-00 *Configuration Mode* is set to "Speed closed loop [1]".

The motor control in this configuration relies on a feedback signal from an encoder mounted directly on the motor (set in par. 1-02 *Flux Motor Feedback Source*).

Select "Speed closed loop [1]" in par. 1-00 *Configuration Mode* to use the resulting reference as an input for the Speed PID control. The Speed PID control parameters are located in . group 7-0*.

Select "Torque [2]" in par. 1-00 *Configuration Mode* to use the resulting reference directly as a torque reference. Torque control can only be selected in the *Flux with motor feedback* (par. 1-01 *Motor Control Principle*) configuration. When this mode has been selected, the reference will use the Nm unit. It requires no torque feedback, since the actual torque is calculated on the basis of the current measurement of the frequency converter.

Select "Process [3]" in par. 1-00 Configuration Mode to use the process PID control for closed loop control of e.g. speed or a process variable in the controlled application.

3.2.7 Internal Current Control in VVC^{plus} Mode

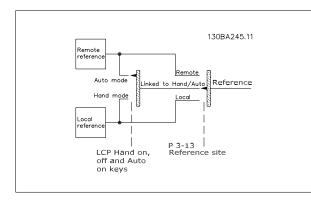
The frequency converter features an integral current limit control which is activated when the motor current, and thus the torque, is higher than the torque limits set in par. 4-16 *Torque Limit Motor Mode*, par. 4-17 *Torque Limit Generator Mode* and par. 4-18 *Current Limit*. When the frequency converter is at the current limit during motor operation or regenerative operation, the frequency converter will try to get below the preset torque limits as quickly as possible without losing control of the motor.

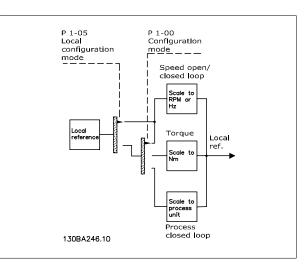
3.2.8 Local (Hand On) and Remote (Auto On) Control

The frequency converter can be operated manually via the local control panel (LCP) or remotely via analog and digital inputs and serial bus. If allowed in par. 0-40 *[Hand on] Key on LCP*, par. 0-41 *[Off] Key on LCP*, par. 0-42 *[Auto on] Key on LCP*, and par. 0-43 *[Reset] Key on LCP*, it is possible to start and stop the frequency converter via the LCP using the [Hand ON] and [Off] keys. Alarms can be reset via the [RESET] key. After pressing the [Hand ON] key, the frequency converter goes into Hand mode and follows (as default) the Local reference that can be set using arrow key on the LCP.

After pressing the [Auto On] key, the frequency converter goes into Auto mode and follows (as default) the Remote reference. In this mode, it is possible to control the frequency converter via the digital inputs and various serial interfaces (RS-485, USB, or an optional fieldbus). See more about starting, stopping, changing ramps and parameter set-ups etc. in par. group 5-1* (digital inputs) or par. group 8-5* (serial communication).

FC 300 Design Guide


3


Active Reference and Configuration Mode

The active reference can be either the local reference or the remote reference.

In par. 3-13 Reference Site the local reference can be permanently selected by selecting Loca/[2].

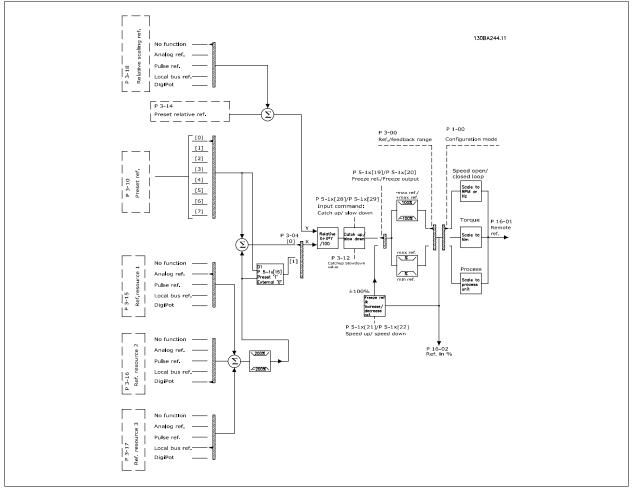
To permanently select the remote reference select *Remote* [1]. By selecting *Linked to Hand/Auto* [0] (default) the reference site will depend on which mode is active. (Hand Mode or Auto Mode).

Hand On	par. 3-13 Reference Site	Active Reference	
Auto			
LCP Keys			
Hand	Linked to Hand / Auto	Local	
Hand -> Off	Linked to Hand / Auto	Local	
Auto	Linked to Hand / Auto	Remote	
Auto -> Off	Linked to Hand / Auto	Remote	
All keys	Local	Local	
All keys	Remote	Remote	

The table shows under which conditions either the Local reference or the Remote reference is active. One of them is always active, but both can not be active at the same time.

par. 1-00 *Configuration Mode* determines what kind of application control principle (i.e. Speed, Torque or Process Control) is used when the Remote reference is active (see table above for the conditions).

par. 1-05 Local Mode Configuration determines the kind of application control principle that is used when the Local reference is made active.



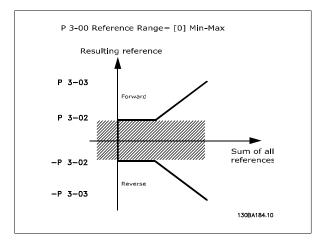
3.3 Reference Handling

Local Reference

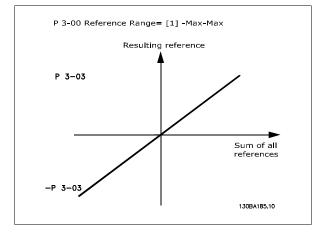
Remote Reference

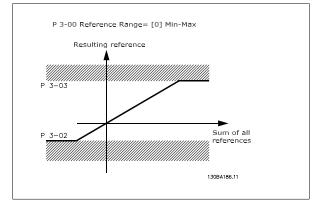
The reference handling system for calculating the Remote reference is shown in the illustration below.

The Remote reference is calculated once every scan interval and initially consists of two ts:


- X (the external reference): A sum (see par. 3-04 *Reference Function*) of up to four externally selected references, comprising any combination (determined by the setting of par. 3-15 *Reference Resource 1*, par. 3-16 *Reference Resource 2* and par. 3-17 *Reference Resource 3*) of a fixed preset reference (par. 3-10 *Preset Reference*), variable analog references, variable digital pulse references, and various serial bus references in whatever unit the frequency converter is controlled ([Hz], [RPM], [Nm] etc.).
- Y- (the relative reference): A sum of one fixed preset reference (par. 3-14 *Preset Relative Reference*) and one variable analog reference (par. 3-18 *Relative Scaling Reference Resource*) in [%].

The two ts are combined in the following calculation: Remote reference = X + X * Y / 100%. The *catch up / slow down* function and the *freeze reference* function can both be activated by digital inputs on the frequency converter. They are described in par. group 5-1*.


The scaling of analog references are described in par. groups 6-1* and 6-2*, and the scaling of digital pulse references are described in par. group 5-5*. Reference limits and ranges are set in par. group 3-0*.


3.3.1 Reference Limits

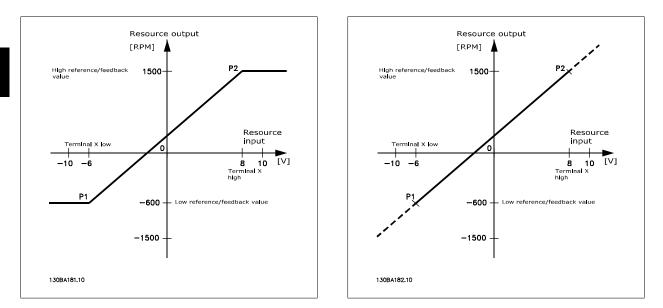
par. 3-00 *Reference Range*, par. 3-02 *Minimum Reference* and par. together define the allowed range of the sum of all references. The sum of all references are clamped when necessary. The relation between the resulting reference (after clamping) and the sum of all references is shown below.

The value of par. 3-02 *Minimum Reference* can not be set to less than 0, unless the par. 1-00 *Configuration Mode* is set to [3] Process. In that case the following relations between the resulting reference (after clamping) and the sum of all references is as shown to the right.

3.3.2 Scaling of Preset References and Bus References

Preset references are scaled according to the following rules:

- When par. 3-00 *Reference Range*: [0] Min Max 0% reference equals 0 [unit] where unit can be any unit e.g. rpm, m/s, bar etc. 100% reference equals the Max (abs (par. 3-03 *Maximum Reference*), abs (par. 3-02 *Minimum Reference*)).
- When par. 3-00 *Reference Range* : [1] -Max +Max 0% reference equals 0 [unit] -100% reference equals -Max Reference 100% reference equals Max Reference.


Bus references are scaled according to the following rules:

- When par. 3-00 *Reference Range*: [0] Min Max. To obtain max resolution on the bus reference the scaling on the bus is: 0% reference equals Min Reference and 100% reference equals Max reference.
- When par. 3-00 Reference Range: [1] -Max +Max -100% reference equals -Max Reference 100% reference equals Max Reference.

3.3.3 Scaling of Analog and Pulse References and Feedback

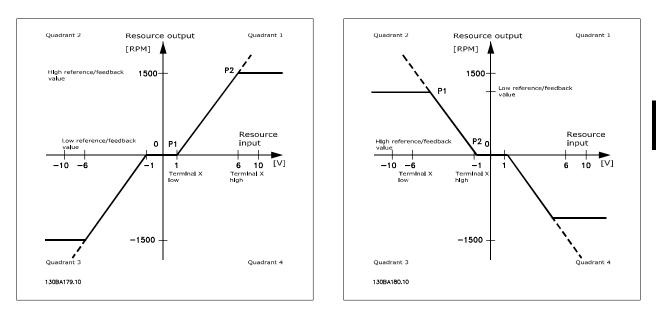
References and feedback are scaled from analog and pulse inputs in the same way. The only difference is that a reference above or below the specified minimum and maximum "endpoints" (P1 and P2 in the graph below) are clamped whereas a feedback above or below is not.

The endpoints P1 and P2 are defined by the following parameters depending on which analog or pulse input is used

	Analog 53 S201=OFF	Analog 53 S201=ON	Analog 54 S202=OFF	Analog 54 S202=ON	Pulse Input 29	Pulse Input 33
P1 = (Minimum input value, M	linimum reference	value)				
Minimum reference value	par. 6-14 Ter-	par. 6-14 Termi-	par. 6-24 Ter-	par. 6-24 Termi-	par. 5-52 Term.	par. 5-57 Term. 33
	minal 53 Low	nal 53 Low Ref./	minal 54 Low	nal 54 Low Ref./	29 Low Ref./	Low Ref./Feedb. Value
	Ref./Feedb.	Feedb. Value	Ref./Feedb.	Feedb. Value	Feedb. Value	
	Value		Value			
Minimum input value	par. 6-10 Ter-	par. 6-12 Termi-	par. 6-20 Ter-	par. 6-22 Termi-	par. 5-50 Term.	par. 5-55 <i>Term. 33</i>
	minal 53 Low	nal 53 Low Cur-	minal 54 Low	nal 54 Low Cur-	29 Low Frequen-	Low Frequency [Hz]
	Voltage [V]	rent [mA]	Voltage [V]	rent [mA]	<i>cy</i> [Hz]	
P2 = (Maximum input value,	Maximum reference	e value)				
Maximum reference value	par. 6-15 Ter-	par. 6-15 Termi-	par. 6-25 Ter-	par. 6-25 <i>Termi-</i>	par. 5-53 Term.	par. 5-58 Term. 33
	minal 53 High	nal 53 High Ref./	minal 54 High	nal 54 High Ref./	29 High Ref./	High Ref./Feedb. Val-
	Ref./Feedb.	Feedb. Value	Ref./Feedb.	Feedb. Value	Feedb. Value	ue
	Value		Value			
Maximum input value	par. 6-11 Ter-	par. 6-13 Termi-	par. 6-21 Ter-	par. 6-23 Termi-	par. 5-51 Term.	par. 5-56 Term. 33
	minal 53 High	nal 53 High Cur-	minal 54 High	nal 54 High Cur-	29 High Fre-	High Frequency [Hz]
	Voltage [V]	rent [mA]	Voltage[V]	<i>rent</i> [mA]	quency [Hz]	

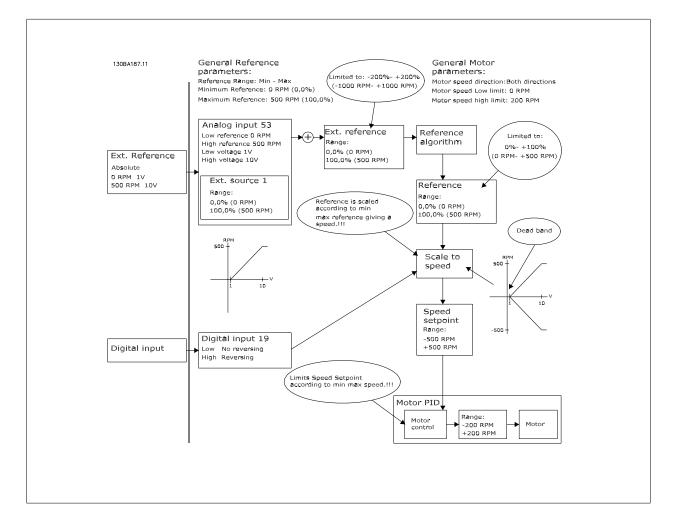
3.3.4 Dead Band Around Zero

In some cases the reference (in rare cases also the feedback) should have a Dead Band around zero (i.e. to make sure the machine is stopped when the reference is "near zero").


To make the dead band active and to set the amount of dead band, the following settings must be done:

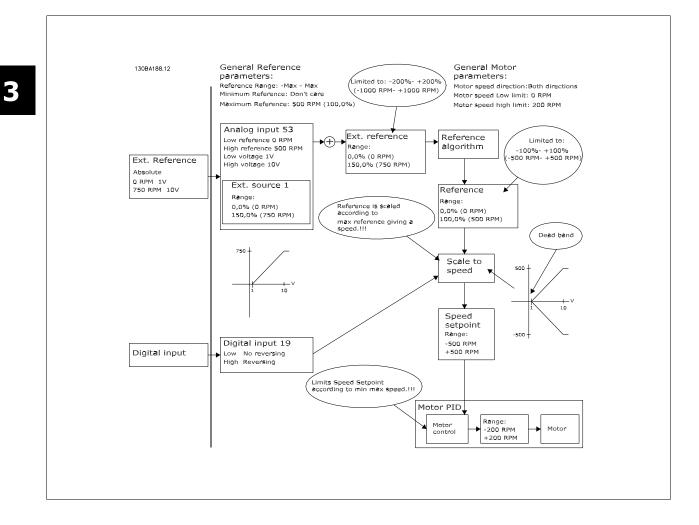
- Either Minimum Reference Value (see table above for relevant parameter) or Maximum Reference Value must be zero. In other words; Either P1 or P2 must be on the X-axis in the graph below.
- And both points defining the scaling graph are in the same quadrant.

3

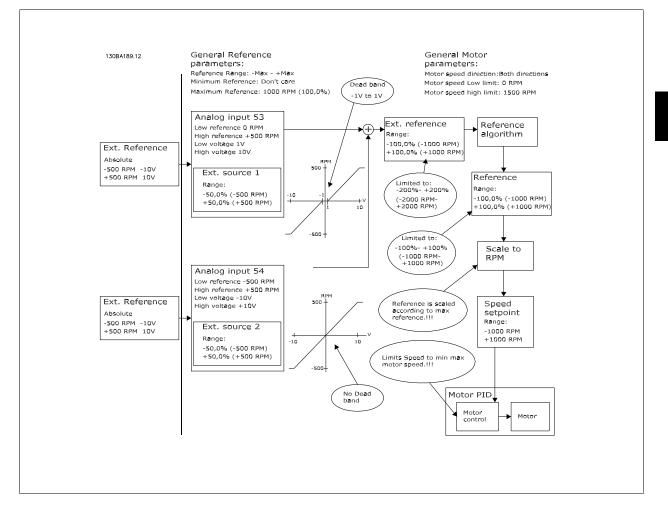

The size of the Dead Band is defined by either P1 or P2 as shown in the graph below.

Thus a reference endpoint of P1 = (0 V, 0 RPM) will not result in any dead band, but a reference endpoint of e.g. P1 = (1V, 0 RPM) will result in a -1V to +1V dead band in this case provided that the end point P2 is placed in either Quadrant 1 or Quadrant 4.

Case 1: Positive Reference with Dead band, Digital input to trigger reverse


This Case shows how Reference input with limits inside Min - Max limits clamps.

Case 2: Positive Reference with Dead band, Digital input to trigger reverse. Clamping rules.


This Case shows how Reference input with limits outside -Max - +Max limits clamps to the inputs low and high limits before addition to External reference. And how the External reference is clamped to -Max - +Max by the Reference algorithm.

3

Case 3: Negative to positive reference with dead band, Sign determines the direction, -Max - +Max

3.4 PID Control

3.4.1 Speed PID Control

The table shows the control configurations where the Speed Control is active.

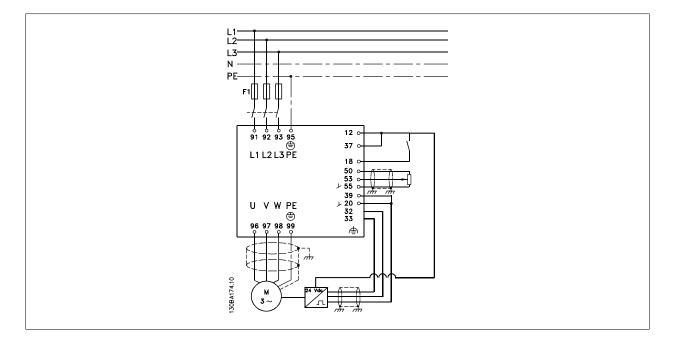
par. 1-00 <i>Configuration</i> par. 1-01 <i>Motor Control Principle</i> Motor Control Principle				
Mode	U/f	VVC ^{plus}	Flux Sensorless	Flux w/ enc. feedb
[0] Speed open loop	Not Active	Not Active	ACTIVE	N.A.
[1] Speed closed loop	N.A.	ACTIVE	N.A.	ACTIVE
[2] Torque	N.A.	N.A.	N.A.	Not Active
[3] Process		Not Active	ACTIVE	ACTIVE

Note: "N.A." means that the specific mode is not available at all. "Not Active" means that the specific mode is available but the Speed Control is not active in that mode.

Note: The Speed Control PID will work under the default parameter setting, but tuning the parameters is highly recommended to optimize the motor control performance. The two Flux motor control principles are specially dependent on proper tuning to yield their full potential.

The following parameters are relevant for the Speed Control:

Parameter	Description of function				
par. 7-00 <i>Speed PID Feedback</i> <i>Source</i>	Select from which input the Speed PID should get its feedback.				
par. 7-02 <i>Speed PID Proportional Gain</i>	The higher the value - the quicker the control. However, too high value may lead to oscillations.				
par. 7-03 Speed PID Integral Time	Eliminates steady state speed error. oscillations.	Eliminates steady state speed error. Lower value means quick reaction. However, too low value may lead to oscillations.			
par. 7-04 <i>Speed PID Differentiation</i> <i>Time</i>	Provides a gain proportional to the r	ate of change of the feedback. A setti	ng of zero disables the differentiator.		
par. 7-05 <i>Speed PID Diff. Gain Limit</i>	Gain Limit If there are quick changes in reference or feedback in a given application - which means that swiftly - the differentiator may soon become too dominant. This is because it reacts to cha The quicker the error changes, the stronger the differentiator gain is. The differentiator gain to allow setting of the reasonable differentiation time for slow changes and a suitably quichanges.				
par. 7-06 <i>Speed PID Lowpass Filter</i> <i>Time</i>		illations on the feedback signal and teriorate the dynamic performance of the number of pulses per revolution par. 7-06 Speed PID Lowpass Filter Time	of the Speed PID control. on from encoder (PPR):		
	512	10 ms			
	1024	5 ms			
	2048	2 ms			
	4096	1 ms			


Below is given an example of how to programme the Speed Control:

In this case the Speed PID Control is used to maintain a constant motor speed regardless of the changing load on the motor.

The required motor speed is set via a potentiometer connected to terminal 53. The speed range is 0 - 1500 RPM corresponding to 0 - 10V over the potentiometer.

Starting and stopping is controlled by a switch connected to terminal 18.

The Speed PID monitors the actual RPM of the motor by using a 24V (HTL) incremental encoder as feedback. The feedback sensor is an encoder (1024 pulses per. revolution) connected to terminals 32 and 33.

In the parameter list below it is assumed that all other parameters and switches remain at their default setting.

The following must be programmed in order shown - see explanation of settings in the Programming Guide.

Function	Par. no.	Setting
1) Make sure the motor runs properly. Do the following:		
Set the motor parameters using name plate data	1-2*	As specified by motor name plate
Have the frequency converter makes an Automatic Motor Adaptation	Motor Adaptation (AMA)	
2) Check the motor is running and the encoder is attached pr	operly. Do the followi	
Press the "Hand On" LCP key. Check that the motor is running and note in which direction it is turning (henceforth referred to as the "positive direction").		Set a positive reference.
positive direction. It must be turned so slowly (only a few RPM) that it can be determined if the value in par. 16-20 <i>Motor Angle</i> is increasing or decreasing.	gle	N.A. (read-only parameter) Note: An increasing value overflows at 65535 and starts again at 0.
If par. 16-20 <i>Motor Angle</i> is decreasing then change the encoder direction in par. 5-71 <i>Term 32/33 Encoder Direction</i> .	par. 5-71 <i>Term</i> 32/33 Encoder Di- rection	[1] Counter clockwise (if par. 16-20 <i>Motor Angle</i> is decreasing)
3) Make sure the drive limits are set to safe values		
Set acceptable limits for the references.	par. 3-02 <i>Minimum</i> <i>Reference</i> par. 3-03 <i>Maximum</i> <i>Reference</i>	0 RPM (default) 1500 RPM (default)
Check that the ramp settings are within drive capabilities and allowed application operating specifications.	par. 3-41 <i>Ramp 1</i> <i>Ramp up Time</i> par. 3-42 <i>Ramp 1</i> <i>Ramp Down Time</i>	default setting default setting
Set acceptable limits for the motor speed and frequency.	par. 4-11 <i>Motor</i> Speed Low Limit [RPM] par. 4-13 <i>Motor</i> Speed High Limit [RPM] par. 4-19 Max Out- put Frequency	0 RPM (default) 1500 RPM (default) 60 Hz (default 132 Hz)
 Configure the Speed Control and select the Motor Control 		
Activation of Speed Control	par. 1-00 <i>Configura-</i> tion Mode	[1] Speed closed loop
Selection of Motor Control Principle		[3] Flux w motor feedb
5) Configure and scale the reference to the Speed Control		
Set up Analog Input 53 as a reference Source	par. 3-15 <i>Reference</i> <i>Resource 1</i>	Not necessary (default)
Scale Analog Input 53 0 RPM (0 V) to 1500 RPM (10V)	6-1*	Not necessary (default)
6) Configure the 24V HTL encoder signal as feedback for the		
Set up digital input 32 and 33 as encoder inputs	par. 5-14 <i>Terminal</i> <i>32 Digital Input</i> par. 5-15 <i>Terminal</i> <i>33 Digital Input</i>	[0] No operation (default)
Choose terminal 32/33 as motor feedback		Not necessary (default)
Choose terminal 32/33 as Speed PID feedback		Not necessary (default)
7) Tune the Speed Control PID parameters		
Use the tuning guidelines when relevant or tune manually 8) Finished!	7-0*	See the guidelines below
		[1] All to LCP

3.4.2 Tuning PID Speed Control

The following tuning guidelines are relevant when using one of the Flux motor control principles in applications where the load is mainly inertial (with a low amount of friction).

The value of par. 7-02 *Speed PID Proportional Gain* is dependent on the combined inertia of the motor and load, and the selected bandwidth can be calculated using the following formula:

$$Par. 7 - 02 = \frac{Total inertia [kgm^2] x par. 1 - 25}{Par. 1 - 20 x 9550} x Bandwidth [rad / s]$$

Note: par. 1-20 *Motor Power [kW]* is the motor power in [kW] (i.e. enter '4' kW instead of '4000' W in the formula). A practical value for the Bandwith is 20 rad/s. Check the result of the par. 7-02 *Speed PID Proportional Gain* calculation against the following formula (not required if you are using a high resolution feedback such as a SinCos feedback):

$$Par. 7 - 02_{MAXIMUM} = \frac{0.01 \times 4 \times Encoder Resolution \times Par. 7 - 06}{2 \times \pi} \times Max \text{ torque ripple}[\%]$$

A good start value for par. 7-06 *Speed PID Lowpass Filter Time* is 5 ms (lower encoder resolution calls for a higher filter value). Typically a Max Torque Ripple of 3 % is acceptable. For incremental encoders the Encoder Resolution is found in either par. 5-70 *Term 32/33 Pulses per Revolution* (24V HTL on standard drive) or par. 17-11 *Resolution (PPR)* (5V TTL on MCB102 Option).

Generally the practical maximum limit of par. 7-02 *Speed PID Proportional Gain* is determined by the encoder resolution and the feedback filter time but other factors in the application might limit the par. 7-02 *Speed PID Proportional Gain* to a lower value.

To minimize the overshoot, par. 7-03 Speed PID Integral Time could be set to approx. 2.5 s (varies with the application).

par. 7-04 *Speed PID Differentiation Time* should be set to 0 until everything else is tuned. If necessary finish the tuning by experimenting with small increments of this setting.

3.4.3 Process PID Control

The Process PID Control can be used to control application parameters that can be measured by a sensor (i.e. pressure, temperature, flow) and be affected by the connected motor through a pump, fan or otherwise.

The table shows the control configurations where the Process Control is possible. When a Flux Vector motor control principle is used, take care also to tune the Speed Control PID parameters. Refer to the section about the Control Structure to see where the Speed Control is active.

par. 1-00 Configuration	par. 1-01 Motor Control Prin	par. 1-01 Motor Control Principle			
Mode	U/f	VVC ^{plus}	Flux Sensorless	Flux w/ enc. feedb	
[3] Process	N.A.	Process	Process & Speed	Process & Speed	

Note: The Process Control PID will work under the default parameter setting, but tuning the parameters is highly recommended to optimise the application control performance. The two Flux motor control principles are specially dependent on proper Speed Control PID tuning (prior to tuning the Process Control PID) to yield their full potential.

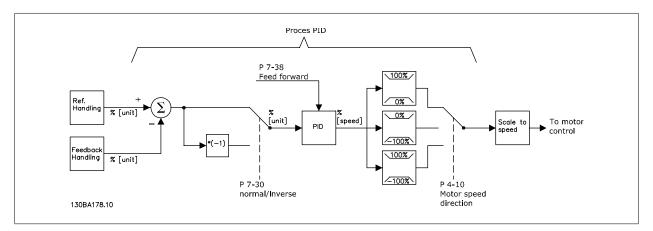
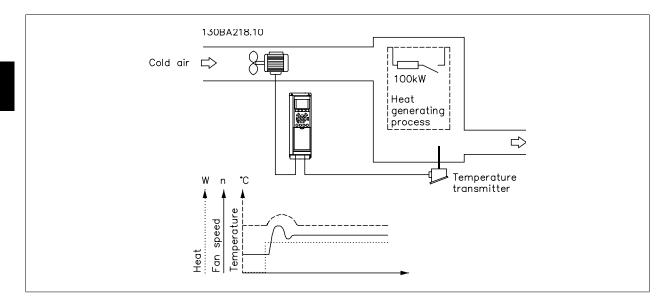


Illustration 3.1: Process PID Control diagram

6

3

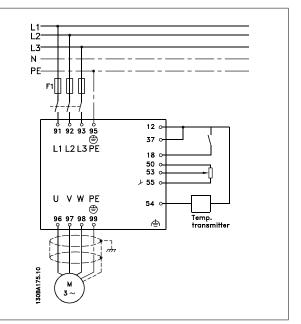
The following parameters are relevant for the Process Control


Parameter	Description of function
par. 7-20 Process CL Feedback 1 Resource	Select from which Source (i.e. analog or pulse input) the Process PID should get its feedback
par. 7-22 Process CL Feedback 2 Resource	Optional: Determine if (and from where) the Process PID should get an additional feedback signal. If an additional feedback source is selected the two feedback signals will be added together before being used in the Process PID Control.
par. 7-30 Process PID Normal/ Inverse Control	Under [0] Normal operation the Process Control will respond with an increase of the motor speed if the feedback is getting lower than the reference. In the same situation, but under [1] Inverse operation, the Process Control will respond with a decreasing motor speed instead.
par. 7-31 Process PID Anti Windup	The anti windup function ensures that when either a frequency limit or a torque limit is reached, the integrator will be set to a gain that corresponds to the actual frequency. This avoids integrating on an error that cannot in any case be compensated for by means of a speed change. This function can be disabled by selecting [0] "Off".
par. 7-32 Process PID Start Speed	In some applications, reaching the required speed/set point can take a very long time. In such applications it might be an advantage to set a fixed motor speed from the frequency converter before the process control is activated. This is done by setting a Process PID Start Value (speed) in par. 7-32 <i>Process PID Start Speed</i> .
par. 7-33 Process PID Proportional Gain	The higher the value - the quicker the control. However, too large value may lead to oscillations.
par. 7-34 Process PID Integral Time	Eliminates steady state speed error. Lower value means quick reaction. However, too small value may lead to oscillations.
par. 7-35 Process PID Differentiation Time	Provides a gain proportional to the rate of change of the feedback. A setting of zero disables the differentiator.
par. 7-36 Process PID Diff. Gain Limit	If there are quick changes in reference or feedback in a given application - which means that the error changes swiftly - the differentiator may soon become too dominant. This is because it reacts to changes in the error. The quicker the error changes, the stronger the differentiator gain is. The differentiator gain can thus be limited to allow setting of the reasonable differentiation time for slow changes.
par. 7-38 Process PID Feed Forward Factor	In application where there is a good (and approximately linear) correlation between the process reference and the motor speed necessary for obtaining that reference, the Feed Forward Factor can be used to achieve better dynamic performance of the Process PID Control.

ß

3.4.4 Example of Process PID Control

The following is an example of a Process PID Control used in a ventilation system:



In a ventilation system, the temperature is to be settable from - 5 - 35°C with a potentiometer of 0-10 Volt. The set temperature must be kept constant, for which purpose the Process Control is to be used.

The control is of the inverse type, which means that when the temperature increases, the ventilation speed is increased as well, so as to generate more air. When the temperature drops, the speed is reduced. The transmitter used is a temperature sensor with a working range of $-10-40^{\circ}$ C, 4-20 mA. Min. / Max. speed 300 / 1500 RPM.

The example shows a two-wire transmitter.

- 1. Start/Stop via switch connected to terminal 18.
- 2. Temperature reference via potentiometer (-5-35°C, 0-10 VDC) connected to terminal 53.
- 3. Temperature feedback via transmitter (-10-40°C, 4-20 mA) connected to terminal 54. Switch S202 set to ON (current input).

Example of Process PID Control set-up

Function	Par. no.	Setting
Initialize the frequency converter	14-22	[2] Initialization - make a power cycling - press reset
1) Set motor parameters:		
Set the motor parameters according to name plate data	1-2*	As stated on motor name plate
Perform a full Automation Motor Adaptation	1-29	[1] Enable complete AMA
2) Check that motor is running in the right direction.		
	straight fo	rward phase order as U - U; V- V; W - W motor shaft usually turns clockwise seen
into shaft end.		······································
Press "Hand On" LCP key. Check shaft direction by ap-		
plying a manual reference.		
If motor turns opposite of required direction:	4-10	Select correct motor shaft direction
1. Change motor direction in par. 4-10 Motor Speed	,	
Direction		
2. Turn off mains - wait for DC link to discharge -		
•		
switch two of the motor phases		
Set configuration mode	1-00	[3] Process
Set Local Mode Configuration	1-05	[0] Speed Open Loop
3) Set reference configuration, ie. the range for refere	nce handli	
Set reference/feedback units	3-01	[60] ° C Unit shown on display
Set min. reference (10° C)	3-02	-5° C
Set max. reference (80° C)	3-03	35° C
If set value is determined from a preset value (array	3-10	[0] 35%
parameter), set other reference sources to No Function		$Par. 3 - 10_{(0)}$
		$Ref = \frac{Par. 3 - 10_{(0)}}{100} \times ((Par. 3 - 03) - (par. 3 - 02)) = 24, 5^{\circ} C$
		par. 3-14 Preset Relative Reference to par. 3-18 Relative Scaling Reference Re-
		source [0] = No Function
4) Adjust limits for the frequency converter:		
Set ramp times to an appropriate value as 20 sec.	3-41	20 sec.
The second se	3-42	20 sec.
Set min. speed limits		300 RPM
Set motor speed max. limit		1500 RPM
Set max. output frequency		60 Hz
Set S201 or S202 to wanted analog input function (Vo	ltage (V) o	r milli-Amps (I))
NOTE! Switches are sensitive - Make a power cycling k		fault setting of V
5) Scale analog inputs used for reference and feedbac	k	
Set terminal 53 low voltage	6-10	0 V
Set terminal 53 high voltage	6-11	10 V
Set terminal 54 low feedback value	6-24	-5° C
Set terminal 54 high feedback value	6-25 7-20	35° C
		[2] Analog input 54
6) Basic PID settings		
Process PID Normal/Inverse	7-30	[0] Normal
Process PID Anti Wind-up	7-31	[1] On
Process PID start speed	7-37	300 rpm
Save parameters to LCP	0-50	[1] All to LCP

Optimisation of the process regulator

The basic settings have now been made; all that needs to be done is to optimise the proportional gain, the integration time and the differentiation time (par. 7-33 *Process PID Proportional Gain*, par. 7-34 *Process PID Integral Time*, par. 7-35 *Process PID Differentiation Time*). In most processes, this can be done by following the guidelines given below.

- 1. Start the motor
- 2. Set par. 7-33 *Process PID Proportional Gain* to 0.3 and increase it until the feedback signal again begins to vary continuously. Then reduce the value until the feedback signal has stabilised. Now lower the proportional gain by 40-60%.
- 3. Set par. 7-34 *Process PID Integral Time* to 20 sec. and reduce the value until the feedback signal again begins to vary continuously. Increase the integration time until the feedback signal stabilises, followed by an increase of 15-50%.
- 4. Only use par. 7-35 *Process PID Differentiation Time* for very fast-acting systems only (differentiation time). The typical value is four times the set integration time. The differentiator should only be used when the setting of the proportional gain and the integration time has been fully optimised. Make sure that oscillations on the feedback signal is sufficiently dampened by the lowpass filter on the feedback signal.

NB!

If necessary, start/stop can be activated a number of times in order to provoke a variation of the feedback signal.

3.4.5 Ziegler Nichols Tuning Method

In order to tune the PID controls of the frequency converter, several tuning methods can be used. One approach is to use a technique which was developed in the 1950s but which has stood the test of time and is still used today. This method is known as the Ziegler Nichols tuning method.

NB!

The method described must not be used on applications that could be damaged by the oscillations created by marginally stable control settings.

The criteria for adjusting the parameters are based on evaluating the system at the limit of stability rather than on taking a step response. We increase the proportional gain until we observe continuous oscillations (as measured on the feedback), that is, until the system becomes marginally stable. The corresponding gain (K_{u}) is called the ultimate gain. The period of the oscillation (P_u) (called the ultimate period) is determined as shown in Figure 1.

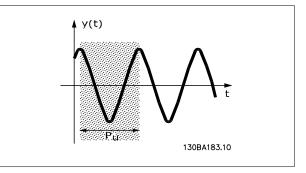


Illustration 3.2: Figure 1: Marginally stable system

Pu should be measured when the amplitude of oscillation is quite small. Then we "back off" from this gain again, as shown in Table 1.

 K_{u} is the gain at which the oscillation is obtained.

Type of Control	Proportional Gain	Integral Time	Differentiation Time
PI-control	0.45 * <i>K</i> _u	0.833 * <i>P</i> _u	-
PID tight control	$0.6 * K_{\mu}$	$0.5 * P_{u}$	$0.125 * P_u$
PID some overshoot	0.33 * <i>Ku</i>	$0.5 * P_u$	0.33 * <i>Pu</i>

Table 1: Ziegler Nichols tuning for regulator, based on a stability boundary.

Experience has shown that the control setting according to Ziegler Nichols rule provides a good closed loop response for many systems. The process operator can do the final tuning of the control iteratively to yield satisfactory control.

Step-by-step Description:

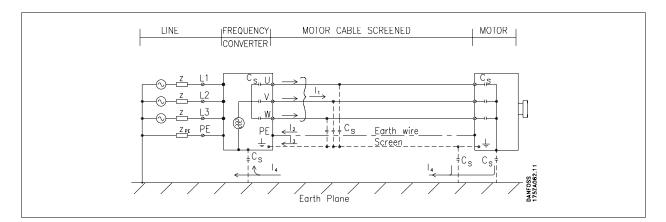
Step 1: Select only Proportional Control, meaning that the Integral time is selected to the maximum value, while the differentiation time is selected to zero.

Step 2: Increase the value of the proportional gain until the point of instability is reached (sustained oscillations) and the critical value of gain, K_u , is reached.

Step 3: Measure the period of oscillation to obtain the critical time constant, P_u .

Step 4: Use the table above to calculate the necessary PID control parameters.

<u>Danfoss</u>


3.5 General aspects of EMC

3.5.1 General Aspects of EMC Emissions

Electrical interference is usually conducted at frequences in the range 150 kHz to 30 MHz. Airborne interference from the drive system in the range 30 MHz to 1 GHz is generated from the inverter, motor cable, and the motor.

As shown in the illustration below, capacitive currents in the motor cable coupled with a high dV/dt from the motor voltage generate leakage currents. The use of a screened motor cable increases the leakage current (see illustration below) because screened cables have higher capacitance to earth than unscreened cables. If the leakage current is not filtered, it will cause greater interference on the mains in the radio frequency range below approx. 5 MHz. Since the leakage current (I_1) is carried back to the unit through the screen (I_3), there will in principle only be a small electro-magnetic field (I_4) from the screened motor cable according to the below figure.

The screen reduces the radiated interference but increases the low-frequency interference on the mains. The motor cable screen must be connected to the frequency converter enclosure as well as on the motor enclosure. This is best done by using integrated screen clamps so as to avoid twisted screen ends (pigtails). These increase the screen impedance at higher frequencies, which reduces the screen effect and increases the leakage current (I₄). If a screened cable is used for Fieldbus, relay, control cable, signal interface and brake, the screen must be mounted on the enclosure at both ends. In some situations, however, it will be necessary to break the screen to avoid current loops.

If the screen is to be placed on a mounting plate for the frequency converter, the mounting plate must be made of metal, because the screen currents have to be conveyed back to the unit. Moreover, ensure good electrical contact from the mounting plate through the mounting screws to the frequency converter chassis.

NB!

When unscreened cables are used, some emission requirements are not complied with, although the immunity requirements are observed.

In order to reduce the interference level from the entire system (unit + installation), make motor and brake cables as short as possible. Avoid placing cables with a sensitive signal level alongside motor and brake cables. Radio interference higher than 50 MHz (airborne) is especially generated by the control electronics.

3.5.2 EMC test results

The following test results have been obtained using a system with a frequency converter (with options if relevant), a screened control cable, a control box with potentiometer, as well as a motor and motor screened cable.

RFI filter type		Co	nducted emis	sion	Radiate	ed emission
		Industrial e	nvironment	Housing,	Industrial envi-	Housing, trades and
				trades and	ronment	light industries
				light industries		
Setup		EN 55011	EN 55011	EN 55011 Class	EN 55011 Class	EN 55011 Class B
		Class A2	Class A1	В	A1	
H1						
FC 301:	0-37 kW 200-240 V	75 m	50 m	10 m	Yes	No
	0-22 kW 380-480 V	75 m	50 m	10 m	Yes	No
FC 302:	0-37 kW 200-240 V	150 m	150 m	50 m	Yes	No
	0-75 kW 380-480 V	150 m	150 m	50 m	Yes	No
H2						
FC 301/ FC 302:	0-3.7 kW 200-240 V	5 m	No	No	No	No
	5.5-37 kW 200-240 V	25 m	No	No	No	No
	0-7.5 kW 380-480 V	5 m	No	No	No	No
	11-75 kW 380-480 V	25 m	No	No	No	No
	90-800 kW 380-480 V	50 m	No	No	No	No
	37-1000 kW 525-690 V	150 m	No	No	No	No
H3						
FC 301:	0-1.5 kW 200-240 V	50 m	25 m	2.5 m	Yes	No
	0-1.5 kW 380-480 V	50 m	25 m	2.5 m	Yes	No
H4						
FC 302	90-800 kW 380-480 V	150 m	150 m	No	Yes	No
	37-315 kW 525-690 V	150 m	30 m	No	No	No
Hx						
FC 302	0.75-7.5 kW 525-600 V	-	-	-	-	-

Table 3.1: EMC Test Results (Emission, Immunity)

HX, H1, H2 or H3 is defined in the type code pos. 16 - 17 for EMC filters

 ${\rm HX}$ - No EMC filters build in the frequency converter (600 V units only)

 ${\rm H1}$ - Integrated EMC filter. Fulfil Class ${\rm A1/B}$

H2 - No additional EMC filter. Fulfil Class A2

H3 - Integrated EMC filter. Fulfil class A1/B (Frame size A1 only)

H4 - Integrated EMC filter. Fulfil class A1

3.5.3 Emission Requirements

According to the EMC product standard for adjustable speed frequency converters EN/IEC61800-3:2004 the EMC requirements depend on the intended use of the frequency converter. Four categories are defined in the EMC product standard. The definitions of the four categories together with the requirements for mains line conducted emissions are given in the table below:

Category	Definition	Conducted emission requirement according to the limits given in EN55011
C1	frequency converters installed in the first environment (home and office) with a supply voltage less than 1000 V.	Class B
C2	frequency converters installed in the first environment (home and office) with a supply voltage less than 1000 V which are neither plug-in nor movable and are intended to be installed and commissioned by a professional.	Class A Group 1
C3	frequency converters installed in the second environment (industrial) with a supply volt- age lower than 1000 V.	Class A Group 2
C4	frequency converters installed in the second environment with a supply voltage above 1000 V and rated current above 400 A or intended for use in complex systems.	No limit line. An EMC plan should be made.

When the generic emission standards are used the frequency converters are required to comply with the following limits:

Environment	Generic standard	Conducted emission requirement ac- cording to the limits given in EN55011
First environment	EN/IEC61000-6-3 Emission standard for residential, commercial and	Class B
(home and office)	light industrial environments.	
Second environment (industrial environment)	EN/IEC61000-6-4 Emission standard for industrial environments.	Class A Group 1

3.5.4 Immunity Requirements

The immunity requirements for frequency converters depend on the environment where they are installed. The requirements for the industrial environment are higher than the requirements for the home and office environment. All Danfoss frequency converters comply with the requirements for the industrial environment and consequently comply also with the lower requirements for home and office environment with a large safety margin.

In order to document immunity against electrical interference from electrical phenomena, the following immunity tests have been made on a system consisting of a frequency converter (with options if relevant), a screened control cable and a control box with potentiometer, motor cable and motor. The tests were performed in accordance with the following basic standards:

- EN 61000-4-2 (IEC 61000-4-2): Electrostatic discharges (ESD): Simulation of electrostatic discharges from human beings.
- EN 61000-4-3 (IEC 61000-4-3): Incoming electromagnetic field radiation, amplitude modulated simulation of the effects of radar and radio communication equipment as well as mobile communications equipment.
- EN 61000-4-4 (IEC 61000-4-4): Burst transients: Simulation of interference brought about by switching a contactor, relay or similar devices.
- EN 61000-4-5 (IEC 61000-4-5): Surge transients: Simulation of transients brought about e.g. by lightning that strikes near installations.
- EN 61000-4-6 (IEC 61000-4-6): RF Common mode: Simulation of the effect from radio-transmission equipment joined by connection cables.

Basic standard	Burst IEC 61000-4-4	Surge IEC 61000-4-5	ESD IEC 61000-4-2	Radiated electromagnetic field IEC 61000-4-3	RF common mode voltage IEC 61000-4-6
Acceptance criterion	В	В	B	A	A
Line	4 kV CM	2 kV/2 Ω DM 4 kV/12 Ω CM	-	-	10 V _{RMS}
Motor	4 kV CM	4 kV/2 Ω ¹⁾	_	—	10 V _{RMS}
Brake	4 kV CM	4 kV/2 Ω ¹⁾	_	-	10 V _{RMS}
Load sharing	4 kV CM	4 kV/2 Ω ¹⁾	—	—	10 V _{RMS}
Control wires	2 kV CM	2 kV/2 Ω ¹⁾	-	—	10 Vrms
Standard bus	2 kV CM	2 kV/2 Ω ¹⁾	—	_	10 V _{RMS}
Relay wires	2 kV CM	2 kV/2 Ω ¹⁾	_	—	10 V _{RMS}
Application and Fieldbus op- tions	2 kV CM	2 kV/2 Ω ¹⁾	-	-	$10 \; V_{\text{RMS}}$
LCP cable	2 kV CM	2 kV/2 Ω ¹⁾	_	-	10 V _{RMS}
External 24 V DC	2 kV CM	0.5 kV/2 Ω DM 1 kV/12 Ω CM	-	-	10 V _{RMS}
Enclosure	-	-	8 kV AD 6 kV CD	10 V/m	—
 AD: Air Discharge CD: Contact Discharge CM: Common mode DM: Differential mode 1. Injection on cable shield. 					

See following EMC immunity form.

Table 3.2: Immunity

3.6.1 PELV - Protective Extra Low Voltage

PELV offers protection by way of extra low voltage. Protection against electric shock is ensured when the electrical supply is of the PELV type and the installation is made as described in local/national regulations on PELV supplies.

All control terminals and relay terminals 01-03/04-06 comply with PELV (Protective Extra Low Voltage) (Does not apply to 525-600 V units and at grounded Delta leg above 300 V).

Galvanic (ensured) isolation is obtained by fulfilling requirements for higher isolation and by providing the relevant creapage/clearance distances. These requirements are described in the EN 61800-5-1 standard.

The components that make up the electrical isolation, as described below, also comply with the requirements for higher isolation and the relevant test as described in EN 61800-5-1.

The PELV galvanic isolation can be shown in six locations (see illustration):

In order to maintain PELV all connections made to the control terminals must be PELV, e.g. thermistor must be reinforced/double insulated.

- Power supply (SMPS) incl. signal isolation of U_{DC}, indicating the intermediate current voltage.
- Gate drive that runs the IGBTs (trigger transformers/opto-couplers).
- 3. Current transducers.
- 4. Opto-coupler, brake module.
- 5. Internal inrush, RFI, and temperature measurement circuits.
- 6. Custom relays.

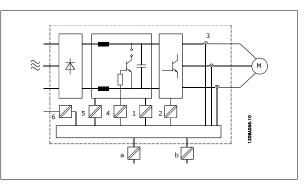


Illustration 3.3: Galvanic isolation

The functional galvanic isolation (a and b on drawing) is for the 24 V back-up option and for the RS 485 standard bus interface.

Installation at high altitude

380 - 500 V, frame size A, B and C: At altitudes above 2 km, please contact Danfoss regarding PELV.

380 - 500 V, frame size D, E and F: At altitudes above 3 km, please contact Danfoss regarding PELV.

525 - 690 V: At altitudes above 2 km, please contact Danfoss regarding PELV.

3.7.1 Earth Leakage Current

Warning:

Touching the electrical ts may be fatal - even after the equipment has been disconnected from mains. Also make sure that other voltage inputs have been disconnected, such as load sharing (linkage of DC intermediate circuit), as well as the motor connection for kinetic back-up.

Using VLT AutomationDrive: wait at least the amount of time indicated in the *Safety Precautions* section. Shorter time is allowed only if indicated on the nameplate for the specific unit.

Leakage Current

The earth leakage current from the frequency converter exceeds 3.5 mA. To ensure that the earth cable has a good mechanical connection to the earth connection (terminal 95), the cable cross section must be at least 10 mm² or 2 rated earth wires terminated seately.

Residual Current Device

This product can cause a d.c. current in the protective conductor. Where a residual current device (RCD) is used for extra protection, only an RCD of Type B (time delayed) shall be used on the supply side of this product. See also RCD Application Note MN.90.GX.02. Protective earthing of the frequency converter and the use of RCD's must always follow national and local regulations.

3.8 Brake functions in FC 300

Braking function is applied for braking the load on the motor shaft, either as dynamic braking or static braking.

3.8.1 Mechanical Holding Brake

A mechanical holding brake mounted directly on the motor shaft normally performs static braking. In some applications the static holding torque is working as static holding of the motor shaft (usually synchronous permanent motors). A holding brake is either controlled by a PLC or directly by a digital output from the frequency converter (relay or solid state).

When the holding brake is included in a safety chain:

A frequency converter cannot provide a safe control of a mechanical brake. A redundancy circuitry for the brake control must be included in the total installation.

3.8.2 Dynamic Braking

NB!

Dynamic Brake established by:

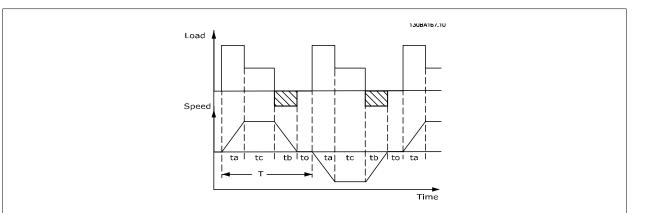
- Resistor brake: A brake IGBT keep the overvoltage under a certain threshold by directing the brake energy from the motor to the connected brake resistor (. 2-10 = [1]).
- AC brake: The brake energy is distributed in the motor by changing the loss conditions in the motor. The AC brake function cannot be used in applications with high cycling frequency since this will overheat the motor (. 2-10 = [2]).
- DC brake: An over-modulated DC current added to the AC current works as an eddy current brake (. 2-02 ≠ 0 s).

3.8.3 Selection of Brake Resistor

To handle higher demands by generatoric braking a brake resistor is necessary. Using a brake resistor ensures that the energy is absorbed in the brake resistor and not in the frequency converter.

If the amount of kinetic energy transferred to the resistor in each braking period is not known, the average power can be calculated on the basis of the cycle time and braking time also called intermitted duty cycle. The resistor intermittent duty cycle is an indication of the duty cycle at which the resistor is active. The below figure shows a typical braking cycle.

NB!


Motor suppliers often use S5 when stating the permissible load which is an expression of intermittent duty cycle.

The intermittent duty cycle for the resistor is calculated as follows:

Duty cycle = t_b/T

$$\label{eq:theta} \begin{split} T &= \mbox{cycle time in seconds} \\ t_b \mbox{ is the braking time in seconds (of the cycle time)} \end{split}$$

Danfoss

	Cycle time (s)	Braking duty cycle	at 100% Braking duty cycle at over torque
	Cycle time (S)	torque	(150/160%)
200-240 V			
PK25-P11K	120	Continuous	40%
P15K-P37K	300	10%	10%
380-500 V			
PK37-P75K	120	Continuous	40%
P90K-P160	600	Continuous	10%
P200	600	40%	10%
P250-P800	600	40%1)	10%2)
525-600 V			
PK75-P75K	120	Continuous	40%
525-690 V			
P37K-P315	600	40%	10%
P355-P51M0	600	40% ³⁾	10%4)

Table 3.3: Braking at high overload torque level

1) 355 kW at 90% torque. At 100% torque the braking duty cycle is 13%. At mains rating 441-500 V 100% torque the braking duty cycle is 17%. 400 kW at 80% torque. At 100% torque the braking duty cycle is 8%.

450-800 kW: the braking power is equivalent to the 400 kW braking power.

2) Based on 300 second cycle:

For 355 kW the torque is 145%

For 400 kW the torque is 130%

450-800 kW: the braking power is equivalent to the 400 kW braking power.

3) 500 kW at 80% torque

560 kW at 71% torque

630 - 1000 kW: the braking power is equivalent to the 560 kW braking power.

4) Based on 300 second cycle:

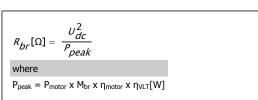
For 500 kW the torque is 128%

For 560 kW the torque is 114%

NB!

630 - 1000 kW: the braking power is equivalent to the 560 kW braking power.

Danfoss offers brake resistors with duty cycle of 5%, 10% and 40%. If a 10% duty cycle is applied, the brake resistors are able to absorb brake power for 10% of the cycle time. The remaining 90% of the cycle time will be used on dissipating excess heat.



Make sure the resistor is designed to handle the required braking time

The max. permissible load on the brake resistor is stated as a peak power at a given intermittent duty cycle and can be calculated as:

The brake resistance is calculated as shown:

As can be seen, the brake resistance depends on the intermediate circuit voltage (U_{dc}). The FC 301 and FC 302 brake function is settled in 4 areas of mains:

Size	Brake active	Warning before cut out	Cut out (trip)
FC 301 / FC 302 3 x 200-240 V	390 V (UDC)	405 V	410 V
FC 301 3 x 380-480 V	778 V	810 V	820 V
FC 302 3 x 380-500 V*	810 V/ 795 V	840 V/ 828 V	850 V/ 855 V
FC 302 3 x 525-600 V	943 V	965 V	975 V
FC 302 3 x 525-690 V	1084 V	1109 V	1130 V
* Power size dependent			

NB!

Check that the brake resistor can cope with a voltage of 410 V, 820 V, 850 V, 975 V or 1130 V - unless Danfoss brake resistors are used.

Danfoss recommends the brake resistance $R_{rec_{r}}$ i.e. one that guarantees that the frequency converter is able to brake at the highest braking torque $(M_{br(\%)})$ of 160%. The formula can be written as:

$$R_{rec}[\Omega] = \frac{U_{dc}^2 \times 100}{P_{motor} \times M_{br}(\%) \times VLT \times motor}$$

 η_{motor} is typically at 0.90

 η_{VLT} is typically at 0.98

For 200 V, 480 V, 500 V and 600 V frequency converters, R_{rec} at 160% braking torque is written as:

$$200V : R_{rec} = \frac{107780}{P_{motor}} [\Omega]$$

$$480V : R_{rec} = \frac{375300}{P_{motor}} [\Omega] 1)$$

$$500V : R_{rec} = \frac{464923}{P_{motor}} [\Omega]$$

$$600V : R_{rec} = \frac{630137}{P_{motor}} [\Omega]$$

$$690V : R_{rec} = \frac{832664}{P_{motor}} [\Omega]$$

480 V :
$$R_{rec} = \frac{428914}{P_{motor}} [\Omega]^{2}$$

] NB!

For frequency converters ≤ 7.5 kW shaft output
 For frequency converters 11 - 75 kW shaft output

The resistor brake circuit resistance selected should not be higher than that recommended by Danfoss. If a brake resistor with a higher ohmic value is selected, the 160% braking torque may not be achieved because there is a risk that the frequency converter cuts out for safety reasons.

NB!

If a short circuit in the brake transistor occurs, power dissipation in the brake resistor is only prevented by using a mains switch or contactor to disconnect the mains for the frequency converter. (The contactor can be controlled by the frequency converter).

Do not touch the brake resistor as it can get very hot while/after braking. The brake resistor must be placed in a secure environment to avoid fire risk

3.8.4 Control with Brake Function

The brake is to limit the voltage in the intermediate circuit when the motor acts as a generator. This occurs, for example, when the load drives the motor and the power accumulates on the DC link. The brake is built up as a chopper circuit with the connection of an external brake resistor.

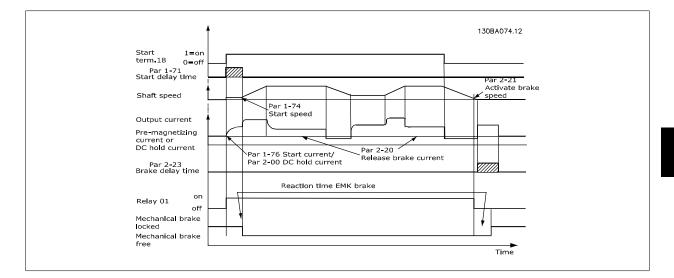
Placing the brake resistor externally offers the following advantages:

- The brake resistor can be selected on the basis of the application in question.
- The brake energy can be dissipated outside the control panel, i.e. where the energy can be utilized.
- The electronics of the frequency converter will not be overheated if the brake resistor is overloaded.

The brake is protected against short-circuiting of the brake resistor, and the brake transistor is monitored to ensure that short-circuiting of the transistor is detected. A relay/digital output can be used for protecting the brake resistor against overloading in connection with a fault in the frequency converter. In addition, the brake makes it possible to read out the momentary power and the mean power for the latest 120 seconds. The brake can also monitor the power energizing and make sure it does not exceed a limit selected in par. 2-12 *Brake Power Limit (kW)*. In par. 2-13 *Brake Power Monitoring*, select the function to carry out when the power transmitted to the brake resistor exceeds the limit set in par. 2-12 *Brake Power Limit (kW)*.

NB!

Monitoring the brake power is not a safety function; a thermal switch is required for that purpose. The brake resistor circuit is not earth leakage protected.


Over voltage control (OVC) (exclusive brake resistor) can be selected as an alternative brake function in par. 2-17 *Over-voltage Control*. This function is active for all units. The function ensures that a trip can be avoided if the DC link voltage increases. This is done by increasing the output frequency to limit the voltage from the DC link. It is a very useful function, e.g. if the ramp-down time is too short since tripping of the frequency converter is avoided. In this situation the ramp-down time is extended.

3.9.1 Mechanical Brake Control

For hoisting applications, it is necessary to be able to control an electro-magnetic brake. For controlling the brake, a relay output (relay1 or relay2) or a programmed digital output (terminal 27 or 29) is required. Normally, this output must be closed for as long as the frequency converter is unable to 'hold' the motor, e.g. because of too big load. In par. 5-40 *Function Relay* (Array parameter), par. 5-30 *Terminal 27 Digital Output*, or par. 5-31 *Terminal 29 Digital Output*, select *mechanical brake control* [32] for applications with an electro-magnetic brake.

When *mechanical brake control* [32] is selected, the mechanical brake relay stays closed during start until the output current is above the level selected in par. 2-20 *Release Brake Current*. During stop, the mechanical brake will close when the speed is below the level selected in . 2-21 *Activate Brake Speed* [*RPM*]. If the frequency converter is brought into an alarm condition, i.e. over-voltage situation, the mechanical brake immediately cuts in. This is also the case during safe stop.

In hoisting/lowering applications, it must be possible to control an electro-mehanical brake.

Step-by-step Description

- To control the mechanical brake any relay output or digital output (terminal 27 or 29) can be used. If necessary use a suitable contactor.
- Ensure that the output is switched off as long as the frequency converter is unable to drive the motor, for example due to the load being too heavy or due to the fact that the motor has not been mounted yet.
- Select Mechanical brake control [32] in . 5-4* (or in par. 5-3*) before connecting the mechanical brake.
- The brake is released when the motor current exceeds the preset value in par. 2-20 Release Brake Current.
- The brake is engaged when the output frequency is less than the frequency set in par. 2-21 Activate Brake Speed [RPM] or par. 2-22 Activate Brake Speed [Hz] and only if the frequency converter carries out a stop command.

NB!

For vertical lifting or hoisting applications it is strongly recommended to ensure that the load can be stopped in case of an emergency or a malfunction of a single t such as a contactor, etc.

If the frequency converter is in alarm mode or in an over voltage situation, the mechanical brake cuts in.

For hoisting applications make sure that the torque limits in par. 4-16 *Torque Limit Motor Mode* and par. 4-17 *Torque Limit Generator Mode* are set lower than the current limit in par. 4-18 *Current Limit*. Also it is recommendable to set par. 14-25 *Trip Delay at Torque Limit* to "0", par. 14-26 *Trip Delay at Inverter Fault* to "0" and par. 14-10 *Mains Failure* to "[3], *Coasting*".

3.9.2 Hoist Mechanical Brake

The VLT AutomationDrive features a mechanical brake control specifically designed for hoisting applications. The hoist mechanical brake is activated by choice [6] in par. 1-72 *Start Function*. The main difference comed to the regular mechanical brake control, where a relay function monitoring the output current is used, is that the hoist mechanical brake function has direct control over the brake relay. This means that instead of setting a current for release of the brake, the torque applied against the closed brake before release is defined. Because the torque is defined directly the setup is more straightforward for hoisting applications.

By using par. 2-28 *Gain Boost Factor* a quicker control when releasing the brake can be obtained. The hoist mechanical brake strategy is based on a 3step sequence, where motor control and brake release are synchronized in order to obtain the smoothest possible brake release.

3-step sequence

1. Pre-magnetize the motor

In order to ensure that there is a hold on the motor and to verify that it is mounted correctly, the motor is first pre-magnetized.

2. Apply torque against the closed brake

When the load is held by the mechanical brake, its size cannot be determined, only its direction. The moment the brake opens, the load must be taken over by the motor. To facilitate the takeover, a user defined torque, set in par. 2-26 *Torque Ref*, is applied in hoisting direction. This will be used to initialize the speed controller that will finally take over the load. In order to reduce wear on the gearbox due to backlash, the torque is ramped up.

3. Release brake

When the torque reaches the value set in par. 2-26 *Torque Ref* the brake is released. The value set in par. 2-25 *Brake Release Time* determines the delay before the load is released. In order to react as quickly as possible on the load-step that follows upon brake release, the speed-PID control can be boosted by increasing the proportional gain.

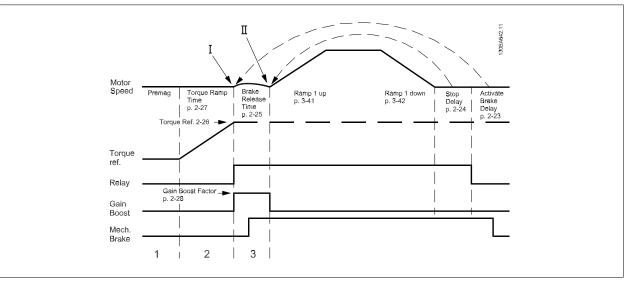


Illustration 3.4: Brake release sequence for hoist mechanical brake control

I) Activate brake delay: The frequency converter starts again from the mechanical brake engaged position.

II) *Stop delay:* When the time between successive starts is shorter than the setting in par. 2-24 *Stop delay,* the frequency converter starts without applying the mechanical brake (e.g. reversing).

NB!

For an example of advanced mechanical brake control for hoisting applications, see section Application Examples

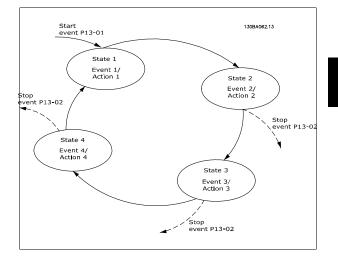
3.9.3 Brake Resistor Cabling

EMC (twisted cables/shielding)

To reduce the electrical noise from the wires between the brake resistor and the frequency converter, the wires must be twisted.

For enhanced EMC performance a metal screen can be used.

3.10 Smart Logic Controller - FC 300


The Smart Logic Control (SLC) is essentially a sequence of user defined actions (see par. 13-52 *SL Controller Action*) executed by the SLC when the associated user defined *event* (see par. 13-51 *SL Controller Event*) is evaluated as TRUE by the SLC.

Events and *actions* are each numbered and are linked in pairs called states. This means that when *event [1]* is fulfilled (attains the value TRUE), *action [1]* is executed. After this, the conditions of *event [2]* will be evaluated and if evaluated TRUE, *action [2]* will be executed and so on. Events and actions are placed in array parameters.

Danfoss

Only one *event* will be evaluated at any time. If an *event* is evaluated as FALSE, nothing happens (in the SLC) during the present scan interval and no other *events* will be evaluated. This means that when the SLC starts, it evaluates *event [1]* (and only *event [1]*) each scan interval. Only when *event [1]* is evaluated TRUE, the SLC executes *action [1]* and starts evaluating *event [2]*.

It is possible to program from 0 to 20 *events* and *actions*. When the last *event / action* has been executed, the sequence starts over again from *event [1] / action [1]*. The illustration shows an example with three *events / actions*:

3.11 Extreme running conditions

Short Circuit (Motor Phase – Phase)

The frequency converter is protected against short circuits by means of current measurement in each of the three motor phases or in the DC link. A short circuit between two output phases will cause an overcurrent in the inverter. The inverter will be turned off individually when the short circuit current exceeds the permitted value (Alarm 16 Trip Lock).

To protect the frequency converter against a short circuit at the load sharing and brake outputs please see the design guidelines.

Switching on the Output

Switching on the output between the motor and the frequency converter is fully permitted. You cannot damage the frequency converter in any way by switching on the output. However, fault messages may appear.

Motor-generated Over-voltage

The voltage in the intermediate circuit is increased when the motor acts as a generator. This occurs in following cases:

- 1. The load drives the motor (at constant output frequency from the frequency converter), ie. the load generates energy.
- 2. During deceleration ("ramp-down") if the moment of inertia is high, the friction is low and the ramp-down time is too short for the energy to be dissipated as a loss in the frequency converter, the motor and the installation.
- 3. Incorrect slip compensation setting may cause higher DC link voltage.

The control unit may attempt to correct the ramp if possible (par. 2-17 Over-voltage Control.

The inverter turns off to protect the transistors and the intermediate circuit capacitors when a certain voltage level is reached.

See par. 2-10 Brake Function and par. 2-17 Over-voltage Control to select the method used for controlling the intermediate circuit voltage level.

Mains Drop-out

During a mains drop-out, the frequency converter keeps running until the intermediate circuit voltage drops below the minimum stop level, which is typically 15% below the frequency converter's lowest rated supply voltage. The mains voltage before the drop-out and the motor load determines how long it takes for the inverter to coast.

Static Overload in VVC^{plus} mode

When the frequency converter is overloaded (the torque limit in par. 4-16 *Torque Limit Motor Mode*/par. 4-17 *Torque Limit Generator Mode* is reached), the controls reduces the output frequency to reduce the load.

If the overload is excessive, a current may occur that makes the frequency converter cut out after approx. 5-10 s.

Operation within the torque limit is limited in time (0-60 s) in par. 14-25 Trip Delay at Torque Limit.

3.11.1 Motor Thermal Protection

To protect the application from serious damages VLT AutomationDrive FC 300 offers several dedicated features

Torque Limit: The Torque limit feature the motor is protected for being overloaded independent of the speed. Torque limit is controlled in par 4-16 (Motoric torque) and or par. 4-17 (Generatoric torque) and the time before the torque limit warning shall trip is controlled in par 14-25.

Current Limit: The current limit is controlled in par 4-18 and the time before the current limit warning shall trip is controlled in par 14-24.

Min Speed Limit: (Par 4-11 or par 4-12) limit the operating speed range to for instance between 30 and 50/60Hz. Max Speed Limit: (Par 4-13 or 4-19) limit the max output speed the drive can provide

ETR (Electronic Thermal relay): The frequency converter ETR function measures actual current, speed and time to calculate motor temperature and protect the motor from being overheated (Warning or trip). An external thermistor input is also available. ETR is an electronic feature that simulates a bimetal relay based on internal measurements. The characteristic is shown in the following figure:

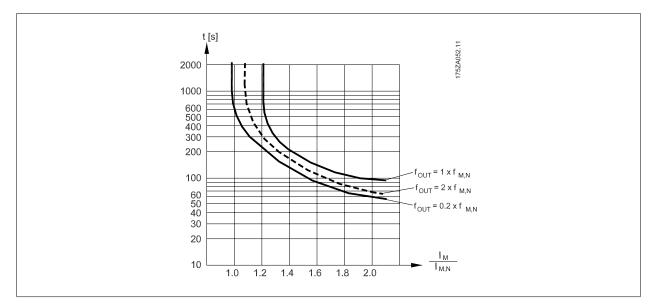


Illustration 3.5: Figure ETR: The X-axis shows the ratio between I_{motor} and I_{motor} nominal. The Y- axis shows the time in seconds before the ETR cut of and trips the drive. The curves show the characteristic nominal speed, at twice the nominal speed and at 0,2 x the nominal speed. At lower speed the ETR cuts of at lower heat due to less cooling of the motor. In that way the motor are protected from being over heated even at low speed. The ETR feature is calculating the motor temperature based on actual current and speed. The calculated temperature is visible as a read out parameter in par. 16-18 in the FC 300.

3.12 Safe Stop of FC 300

The FC 302, and also the FC 301 in frame size A1, can perform the safety function *Safe Torque Off* (As defined by IEC 61800-5-2) or *Stop Category 0* (as defined in EN 60204-1).

FC 301 frame size A1: When Safe Stop is included in the drive, position 18 of Type Code must be either T or U. If position 18 is B or X, Safe Stop Terminal 37 is not included!

Example:

Type Code for FC 301 A1 with Safe Stop: FC-301PK75T4**Z20**H4TGCXXXSXXXA0BXCXXXXD0

It is designed and approved suitable for the requirements of Safety Category 3 in EN 954-1. This functionality is called Safe Stop. Prior to integration and use of Safe Stop in an installation, a thorough risk analysis on the installation must be carried out in order to determine whether the Safe Stop functionality and safety category are appropriate and sufficient.

Activation and Termination of Safe Stop

The Safe Stop function is activated by switching off the 24Vdcv supply to the Terminal 37. By default the Safe Stop functions is set to an Unintended Restart Prevention behaviour. This means, in order to terminate Safe Stop and resume normal operation, first the 24Vdc must be reapplied to Terminal 37. Subsequently, a reset signal must be given (via Bus, Digital I/O, or [Reset] key).

The Safe Stop function can be set to an Automatic Restart behaviour by setting the value of par. 5-19 *Terminal 37 Safe Stop* from default value [1] to value [3]. If a MCB112 Option is connected to the drive, then Automatic Restart Behaviour is set by values [7] and [8].

Automatic Restart means that Safe Stop is terminated, and normal operation is resumed, as soon as the 24 V DC are applied to Terminal 37, no Reset signal is required.

IMPORTANT! Automatic Restart Behaviour is only allowed in one of the two situations:

- 1. The Unintended Restart Prevention is implemented by other parts of the Safe Stop installation.
- A presence in the dangerous zone can be physically excluded when Safe Stop is not activated. In particular, the following paragraphs of standards under the EU Machinery Directive must be observed: 5.2.1, 5.2.2, and 5.2.3. of EN954-1:1996 (or ISO 13849-1:2006), 4.11.3 and 4.11.4 of EN292-2 (ISO 12100-2:2003).

im BG-PRÜFZERT		Institut für Arbeitsschutz Hauptverband der gewerblichen Berufsgenossenschaften	30BA373.10
<u>Translation</u> in any case, the German original shall prevail.	Type Test Certificate	05 06004	306
Name and address of the holder of the certificate: (customer)	Danfoss Drives A/S, Ulnaes 1 DK-6300 Graasten, Dänemark	No. of certificate	-
Name and address of the manufacturer:	Danfoss Drives A/S, Ulnaes 1 DK-6300 Graasten, Dänemark		
Ref. of customer:	Ref. of Test and Certification Body: Apf/Köh VE-Nr. 2003 23220	Date of Issue: 13.04.2005	
Product designation:	Frequency converter with integrated safety functions	i -	
Туре:	VLT® Automation Drive FC 302		
Intended purpose:	Implementation of safety function "Safe Stop"		
Testing based on:	EN 954-1, 1997-03, DKE AK 226.03, 1998-06, EN ISO 13849-2; 2003-12, EN 61800-3, 2001-02, EN 61800-5-1, 2003-09,	17	
Test certificate:	No.: 2003 23220 from 13.04.2005		
Remorks:	The presented types of the frequency converter FC down in the test bases. With correct wiring a category 3 according to DIN B function.	And a second	
The type tested complies w	th the provisions laid down in the directive 98/37/EC (Machinery)		
Further conditions are laid	down in the Rules of Procedure for Testing and Certification of Ap	ril 2004.	
Prof. Dr. rer. not. Diefmo	Reinert) Certification c (Dipl.ing. R Totals adress: Office: 33754 Sankt Augustin S3754 Sankt Augustin	2 feld	

3.12.1 Safe Stop Installation - FC 302 only (and FC 301 in frame size A1)

To carry out an installation of a Category 0 Stop (EN60204) in conformance with Safety Category 3 (EN954-1), follow these instructions:

- The bridge (jumper) between Terminal 37 and 24 V DC must be removed. Cutting or breaking the jumper is not sufficient. Remove it entirely to avoid short-circuiting. See jumper on illustration.
- Connect terminal 37 to 24 V DC by a short-circuit protected cable. The 24 V DC voltage supply must be interruptible by an EN954-1 Category 3 circuit interrupt device. If the interrupt device and the frequency converter are placed in the same installation panel, you can use a regular cable instead of a protected one.
- 3. The Safe Stop function only fulfills EN 954-1 Category 3 if it is protected by an enclosure with protection class IP 54 or higher. Therefore, FC 302s, with a protection class lower than IP54, must be mounted inside a housing (cabinet) that provides IP54 protection. FC 302s with protection class IP54 or higher need no further protection. FC 302 A1 is only delivered with an IP21 enclosure and must therefore always be mounted in a cabinet.

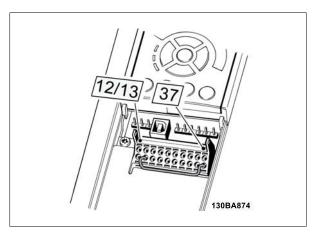


Illustration 3.6: Bridge jumper between terminal 37 and 24 VDC

The illustration below shows a Stopping Category 0 (EN 60204-1) with safety Category 3 (EN 954-1). The circuit interrupt is caused by an opening door contact. The illustration also shows how to connect a non-safety related hardware coast.

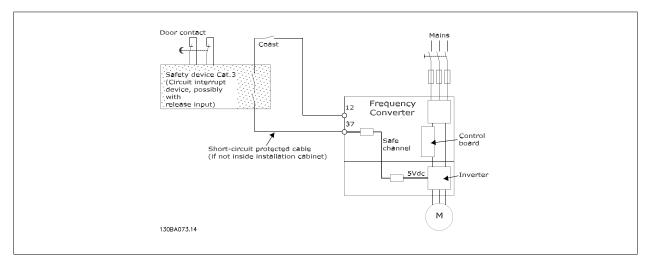


Illustration 3.7: Illustration of the essential aspects of an installation to achieve a Stopping Category 0 (EN 60204-1) with safety Category 3 (EN 954-1).

3.12.2 Installation of external safety device in combination with MCB112

If the Ex-certified thermistor module MCB112, which uses Terminal 37 as its safety-related switch-off channel, is connected, then the output X44/11 of MCB112 must be AND-ed with the safety-related sensor (such as emergency stop button, safety-guard switch, etc.) that activates Safe Stop. The AND logic itself must conform to EN 954-1, Safety Category 3. The connection from the output of the safe AND logic to Safe Stop terminal 37 must be short-circuit protected. See figure below:

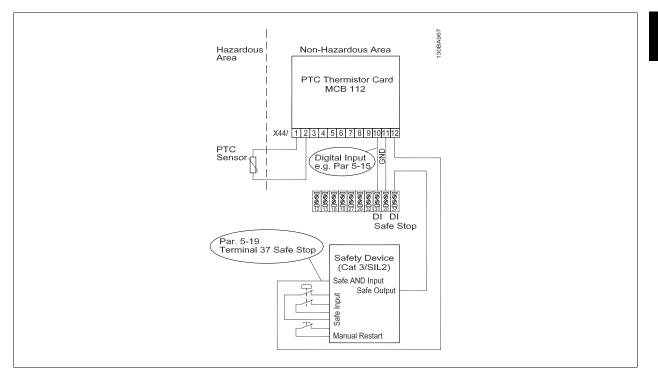


Illustration 3.8: Illustration of the essential aspects for installing a combination of a Safe Stop application and a MCB112 application. The diagram shows a Restart input for the external Safety Device. This means that in this installation par. 5-19 *Terminal 37 Safe Stop* might be set to value [7] or [8].

Parameter settings for external safety device in combination with MCB112

If MCB 112 is connected, then additional selections ([4] – [9]) become possible for par. 5-19 (Terminal 37 Safe Stop). Selection [1]* and [3] are still available but are not to be used as those are for installations without MCB 112 or any external safety devices. If [1]* or [3] should be chosen by mistake and MCB 112 is triggered, then the frequency converter will react with an alarm "Dangerous Failure [A72]" and coast the drive safely, without Automatic Restart. Selections [4] and [5] are not to be selected when an external safety device is used. Those selections are for when only MCB 112 uses the Safe Stop. If selections [4] or [5] are chosen by mistake and the external safety device triggers Safe Stop then the frequency converter will react with an alarm "Dangerous Failure [A72]" and coast the drive safely, without Automatic Restart.

Selections [6] – [9] must be chosen for the combination of external safety device and MCB 112.

Note that selection [7] and [8] opens up for Automatic restart when the external safety device is de-activated again.

This is only allowed in the following cases:

NR

- 1. The Unintended Restart Prevention is implemented by other parts of the Safe Stop installation.
- A presence in the dangerous zone can be physically excluded when Safe Stop is not activated. In particular, the following paragraphs of standards under the EU Machinery Directive must be observed: 5.2.1, 5.2.2, and 5.2.3. of EN954-1:1996 (or ISO 13849-1:2006), 4.11.3 and 4.11.4 of EN292-2 (ISO 12100-2:2003).

See section Application Examples for further information.

3.12.3 Safe Stop Commissioning Test

After installation and before first operation, perform a commissioning test of an installation or application making use of FC 300 Safe Stop. Moreover, perform the test after each modification of the installation or application, which the FC 300 Safe Stop is part of.

NB!

A passed commissioning test is mandatory for fulfilment of Safety Category 3 by such an installation or application.

The commissioning test (select one of cases 1 or 2 as applicable):

Case 1: restart prevention for Safe Stop is required (i.e. Safe Stop only where par. 5-19 *Terminal 37 Safe Stop* is set to default value [1], or combined Safe Stop and MCB112 where par. 5-19 *Terminal 37 Safe Stop* is set to [6] or [9]):

- Remove the 24 V DC voltage supply to terminal 37 by the interrupt device while the motor is driven by the FC 302 (i.e. mains supply is not interrupted). The test step is passed if the motor reacts with a coast and the mechanical brake (if connected) is activated, and if an LCP is mounted, the alarm "Safe Stop [A68]" is displayed.
- 2. Send Reset signal (via Bus, Digital I/O, or [Reset] key). The test step is passed if the motor remains in the Safe Stop state, and the mechanical brake (if connected) remains activated.
- 3. Reapply 24 V DC to terminal 37. The test step is passed if the motor remains in the coasted state, and the mechanical brake (if connected) remains activated. Step 1.4: Send Reset signal (via Bus, Digital I/O, or [Reset] key). The test step is passed if the motor becomes operational again.

The commissioning test is passed if all four test steps 1.1, 1.2, 1.3 and 1.4 are passed.

Case 2: Automatic Restart of Safe Stop is wanted and allowed (i.e. Safe Stop only where par. 5-19 *Terminal 37 Safe Stop* is set to [3], or combined Safe Stop and MCB112 where par. 5-19 *Terminal 37 Safe Stop* is set to [7] or [8]):

- Remove the 24 V DC voltage supply to terminal 37 by the interrupt device while the motor is driven by the FC 302 (i.e. mains supply is not interrupted). The test step is passed if the motor reacts with a coast and the mechanical brake (if connected) is activated, and if an LCP is mounted, the warning "Safe Stop [W68]" is displayed.
- 2. Send Reset signal (via Bus, Digital I/O, or [Reset] key). The test step is passed if the motor remains in the Safe Stop state, and the mechanical brake (if connected) remains activated.
- 3. Reapply 24 V DC to terminal 37.

NB!

The test step is passed if the motor becomes operational again. The commissioning test is passed if all three test steps 2.1, 2.2, and 2.3 are passed.

The Safe Stop function of FC 302 can be used for asynchronous and synchronous motors. It may happen that two faults occur in the frequency converter's power semiconductor. When using synchronous motors this may cause a residual rotation. The rotation can be calculated to Angle=360/(Number of Poles). The application using synchronous motors must take this into consideration and ensure

that this is not a safety critical issue. This situation is not relevant for asynchronous motors.

In order to use the Safe Stop functionality in conformance with the requirements of EN-954-1 Category 3, a number of conditions must be fulfilled by the installation of Safe Stop. Please see section *Safe Stop Installation* for further information.

NB!

NB!

The frequency converter does not provide a safety-related protection against unintended or malicious voltage supply to terminal 37 and subsequent reset. Provide this protection via the interrupt device, at the application level, or organisational level. For more information - see section *Safe Stop Installation*.

4 FC 300 Selection

4.1 Electrical Data - 200-240 V

C 301/FC 302	y 3 x 200 - 240 VAC	PK25	PK37	PK55	PK75	P1K1	P1K5	P2K2	P3K0	P3K7
501/10 502	Typical Shaft Output [kW]	0.25	0.37	0.55	0.75	1.1	1.5	2.2	3	3.7
	Enclosure IP 20/IP 21	A2	A2	A2	A2	A2	A2	A2	A3	A3
	Enclosure IP 20 (FC 301 only)	A1	A1	A1	A1	A1	A1	-	-	-
	Enclosure IP 55, 66	A5	A5	A5	A5	A5	A5	A5	A5	A5
utput curre										
	Continuous									
	(3 x 200-240 V) [A]	1.8	2.4	3.5	4.6	6.6	7.5	10.6	12.5	16.7
	Intermittent	2.0	2.0	F (7.4	10.6	10.0	47.0	20.0	26.7
80°	(3 x 200-240 V) [A]	2.9	3.8	5.6	7.4	10.6	12.0	17.0	20.0	26.7
	Continuous								. = .	
	KVA (208 V AC) [KVA]	0.65	0.86	1.26	1.66	2.38	2.70	3.82	4.50	6.00
	Max. cable size (mains, motor,						•			
	brake) [mm ² (AWG ²⁾)]				0.2	4 (24 - 1	0)			
ax. input cu										
A	Continuous									
	(3 x 200-240 V) [A]	1.6	2.2	3.2	4.1	5.9	6.8	9.5	11.3	15.0
	Intermittent									
(jāņ	(3 x 200-240 V) [A]	2.6	3.5	5.1	6.6	9.4	10.9	15.2	18.1	24.0
0000	Max. pre-fuses ¹ [A]	10	10	10	10	20	20	20	32	32
	Environment	10		-0	10				52	52
	Estimated power loss	_	_				_			
	at rated max. load [W] ⁴⁾	21	29	42	54	63	82	116	155	185
	Weight, enclosure IP20 [kg]	4.7	4.7	4.8	4.8	4.9	4.9	4.9	6.6	6.6
	A1 (IP20)	2.7	2.7	2.7	2.7	2.7	2.7	-	-	-
	A5 (IP55, 66)	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5
	Efficiency ⁴⁾	0.94	0.94	0.95	0.95	0.96	0.96	0.96	0.96	0.96
	only available as 160% high overload			0.00			0.50	0.90		
ains Supply	only available as 160% high overload							0.50		
ains Supply 301/FC 302	only available as 160% high overload 7 3 x 200- 240 VAC			P5K5		P7	'K5		P11K	
ains Supply 301/FC 302	only available as 160% high overload 7 3 x 200- 240 VAC Load*	1.	НО		NO	<u>Р7</u> НО	7 <u>K5</u> NO	H	P11K)	NO
ains Supply 301/FC 302	only available as 160% high overload 7 3 x 200- 240 VAC	1.				P7	'K5		P11K)	
ains Supply 301/FC 302	only available as 160% high overload 7 3 x 200- 240 VAC -oad* Typical Shaft Output [1.	НО	P5K5	NO	P7 HO 7.5	7K5 NO 11	H	P11K D	NO
ains Supply C 301/FC 302	only available as 160% high overload 7 3 x 200- 240 VAC Load* Typical Shaft Output [Enclosure IP20	1.	НО	P5K5 B3	NO	Р7 НО 7.5 Е	K5 NO 11	H	P11K D L B4	NO
ains Supply 301/FC 302	only available as 160% high overload 7 3 x 200- 240 VAC Load* Typical Shaft Output [Enclosure IP20 Enclosure IP21	1.	НО	P5K5 B3 B1	NO	Р7 НО 7.5 Е Е	K5 NO 11 33	H	P11K D I B4 B2	NO
ains Supply 2 301/FC 302 gh/ Normal I	only available as 160% high overload 7 3 x 200- 240 VAC 	1.	НО	P5K5 B3	NO	Р7 НО 7.5 Е Е	K5 NO 11	H	P11K D L B4	NO
ains Supply 2 301/FC 302 gh/ Normal I	only available as 160% high overload 7 3 x 200- 240 VAC 	1.	HO 5.5	P5K5 B3 B1 B1	NO 7.5	P7 HO 7.5 E E E	K5 NO 11 33 31 31		P11K D L B4 B2 B2	NO 15
ains Supply 2 301/FC 302 gh/ Normal I	only available as 160% high overload 7 3 x 200- 240 VAC Load* Typical Shaft Output [Enclosure IP20 Enclosure IP21 Enclosure IP55, 66 nt	1.	НО	P5K5 B3 B1 B1	NO	Р7 НО 7.5 Е Е	K5 NO 11 33	H	P11K D L B4 B2 B2	NO
ains Supply 2 301/FC 302 gh/ Normal I	only available as 160% high overload 7 3 x 200- 240 VAC Load* Typical Shaft Output [Enclosure IP20 Enclosure IP21 Enclosure IP55, 66 nt Continuous	1.	HO 5.5	P5K5 B3 B1 B1	NO 7.5	P7 HO 7.5 E E E	K5 NO 11 33 31 31		P11K D L B4 B2 B2	NO 15
ains Supply 2 301/FC 302 gh/ Normal I	only available as 160% high overload (3 x 200- 240 VAC Load* Typical Shaft Output [Enclosure IP20 Enclosure IP21 Enclosure IP55, 66 nt Continuous (3 x 200-240 V) [A]	1.	HO 5.5	P5K5 B3 B1 B1	NO 7.5	P7 HO 7.5 E E E	K5 NO 11 33 31 31		P11K D B4 B2 B2 2	NO 15
ains Supply 2 301/FC 302 gh/ Normal I	only available as 160% high overload (3 x 200- 240 VAC Load* Typical Shaft Output [Enclosure IP20 Enclosure IP21 Enclosure IP55, 66 nt Continuous (3 x 200-240 V) [A] Intermittent	1.	HO 5.5	P5K5 B3 B1 B1	NO 7.5	P7 HO 7.5 E E E 30.8	K5 NO 11 N3 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1	H0 1:	P11K D B4 B2 B2 2	NO 15 59.4
ains Supply 2 301/FC 302 gh/ Normal I	only available as 160% high overload 7 3 x 200- 240 VAC Load* Typical Shaft Output [Enclosure IP20 Enclosure IP21 Enclosure IP55, 66 nt Continuous (3 x 200-240 V) [A] Intermittent (60 sec overload)	1.	HO 5.5 24.2 38.7	P5K5 B3 B1 B1	NO 7.5 30.8 33.9	P7 HO 7.5 E E E 30.8 49.3	K5 NO 11 N3 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N0 N0 N0 N0 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1	H(1: 46 73	P11K D B4 B2 B2 2 9	NO 15 59.4 65.3
ains Supply 2 301/FC 302 gh/ Normal I	only available as 160% high overload 7 3 x 200- 240 VAC coad* Typical Shaft Output [Enclosure IP20 Enclosure IP21 Enclosure IP55, 66 nt Continuous (3 x 200-240 V) [A] Intermittent (60 sec overload) (3 x 200-240 V) [A]	1. <w]< td=""><td>HO 5.5</td><td>P5K5 B3 B1 B1</td><td>NO 7.5</td><td>P7 HO 7.5 E E E 30.8</td><td>K5 NO 11 N3 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1</td><td>H0 1:</td><td>P11K D B4 B2 B2 2 9</td><td>NO 15 59.4</td></w]<>	HO 5.5	P5K5 B3 B1 B1	NO 7.5	P7 HO 7.5 E E E 30.8	K5 NO 11 N3 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1	H0 1:	P11K D B4 B2 B2 2 9	NO 15 59.4
ains Supply 2 301/FC 302 gh/ Normal I	only available as 160% high overload (3 x 200- 240 VAC Load* Typical Shaft Output [Enclosure IP20 Enclosure IP21 Enclosure IP55, 66 nt Continuous (3 x 200-240 V) [A] Intermittent (60 sec overload) (3 x 200-240 V) [A] Continuous KVA (208 V AC) [KVA]	1. <w]< td=""><td>HO 5.5 24.2 38.7</td><td>P5K5 B3 B1 B1</td><td>NO 7.5 30.8 33.9</td><td>P7 HO 7.5 E E E 30.8 49.3</td><td>K5 NO 11 N3 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N0 N0 N0 N0 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1</td><td>H(1: 46 73</td><td>P11K D B4 B2 B2 2 9</td><td>NO 15 59.4 65.3</td></w]<>	HO 5.5 24.2 38.7	P5K5 B3 B1 B1	NO 7.5 30.8 33.9	P7 HO 7.5 E E E 30.8 49.3	K5 NO 11 N3 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N0 N0 N0 N0 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1	H(1: 46 73	P11K D B4 B2 B2 2 9	NO 15 59.4 65.3
ains Supply 2 301/FC 302 gh/ Normal I	only available as 160% high overload (3 x 200- 240 VAC Load* Typical Shaft Output [Enclosure IP20 Enclosure IP21 Enclosure IP55, 66 nt Continuous (3 x 200-240 V) [A] Intermittent (60 sec overload) (3 x 200-240 V) [A] Continuous KVA (208 V AC) [KVA]	1. <w]< td=""><td>HO 5.5 24.2 38.7 8.7</td><td>P5K5 B3 B1 B1</td><td>NO 7.5 30.8 33.9 11.1</td><td>P7 HO 7.5 E E B 30.8 49.3 11.1</td><td>K5 NO 11 33 31 31 46.2 50.8 16.6</td><td>H(1: 46 73 16</td><td>P11K D L B4 B2 B2 2 2 9 6</td><td>NO 15 59.4 65.3 21.4</td></w]<>	HO 5.5 24.2 38.7 8.7	P5K5 B3 B1 B1	NO 7.5 30.8 33.9 11.1	P7 HO 7.5 E E B 30.8 49.3 11.1	K5 NO 11 33 31 31 46.2 50.8 16.6	H(1: 46 73 16	P11K D L B4 B2 B2 2 2 9 6	NO 15 59.4 65.3 21.4
ains Supply 2 301/FC 302 gh/ Normal I utput curre	only available as 160% high overload (3 x 200- 240 VAC Load* Typical Shaft Output [Enclosure IP20 Enclosure IP21 Enclosure IP55, 66 nt Continuous (3 x 200-240 V) [A] Intermittent (60 sec overload) (3 x 200-240 V) [A] Intermittent (50 sec overload) (50 sec overlo	1. <w]< td=""><td>HO 5.5 24.2 38.7</td><td>P5K5 B3 B1 B1</td><td>NO 7.5 30.8 33.9</td><td>P7 HO 7.5 E E E 30.8 49.3</td><td>K5 NO 11 N3 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N0 N0 N0 N0 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1</td><td>H(1: 46 73</td><td>P11K D L B4 B2 B2 2 2 9 6</td><td>NO 15 59.4 65.3</td></w]<>	HO 5.5 24.2 38.7	P5K5 B3 B1 B1	NO 7.5 30.8 33.9	P7 HO 7.5 E E E 30.8 49.3	K5 NO 11 N3 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N0 N0 N0 N0 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1	H(1: 46 73	P11K D L B4 B2 B2 2 2 9 6	NO 15 59.4 65.3
ains Supply 2 301/FC 302 gh/ Normal I utput curre	only available as 160% high overload (3 x 200- 240 VAC coad* Typical Shaft Output [Enclosure IP20 Enclosure IP21 Enclosure IP55, 66 nt Continuous (3 x 200-240 V) [A] Intermittent (60 sec overload) (3 x 200-240 V) [A] Continuous KVA (208 V AC) [KVA] urrent Continuous	1. <w]< td=""><td>HO 5.5 24.2 38.7 8.7</td><td>P5K5 B3 B1 B1</td><td>NO 7.5 30.8 33.9 11.1</td><td>P7 HO 7.5 E E B 30.8 49.3 11.1</td><td>K5 NO 11 33 31 31 46.2 50.8 16.6</td><td>H(1: 46 73 16</td><td>P11K D L B4 B2 B2 2 2 9 6</td><td>NO 15 59.4 65.3 21.4</td></w]<>	HO 5.5 24.2 38.7 8.7	P5K5 B3 B1 B1	NO 7.5 30.8 33.9 11.1	P7 HO 7.5 E E B 30.8 49.3 11.1	K5 NO 11 33 31 31 46.2 50.8 16.6	H(1: 46 73 16	P11K D L B4 B2 B2 2 2 9 6	NO 15 59.4 65.3 21.4
ains Supply 2 301/FC 302 gh/ Normal I utput curre	only available as 160% high overload (3 x 200- 240 VAC Load* Typical Shaft Output [Enclosure IP20 Enclosure IP21 Enclosure IP55, 66 nt Continuous (3 x 200-240 V) [A] Intermittent (60 sec overload) (3 x 200-240 V) [A] Continuous KVA (208 V AC) [KVA] Urrent Continuous (3 x 200-240 V) [A] Intermittent (60 sec overload)	1. <w]< td=""><td>HO 5.5 24.2 38.7 8.7</td><td>P5K5 B3 B1 B1</td><td>NO 7.5 30.8 33.9 11.1</td><td>P7 HO 7.5 E E B 30.8 49.3 11.1</td><td>K5 NO 11 33 31 31 46.2 50.8 16.6</td><td>H(1: 46 73 16</td><td>P11K D B4 B2 B2 2 9 6</td><td>NO 15 59.4 65.3 21.4</td></w]<>	HO 5.5 24.2 38.7 8.7	P5K5 B3 B1 B1	NO 7.5 30.8 33.9 11.1	P7 HO 7.5 E E B 30.8 49.3 11.1	K5 NO 11 33 31 31 46.2 50.8 16.6	H(1: 46 73 16	P11K D B4 B2 B2 2 9 6	NO 15 59.4 65.3 21.4
ains Supply 2 301/FC 302 gh/ Normal I utput curre	only available as 160% high overload (3 x 200- 240 VAC coad* Typical Shaft Output [Enclosure IP20 Enclosure IP21 Enclosure IP55, 66 nt Continuous (3 x 200-240 V) [A] Intermittent (60 sec overload) (3 x 200-240 V) [A] Continuous KVA (208 V AC) [KVA] urrent Continuous (3 x 200-240 V) [A] Intermittent	1. <w]< td=""><td>HO 5.5 24.2 38.7 8.7 22</td><td>P5K5 B3 B1 B1</td><td>NO 7.5 30.8 33.9 11.1 28 28</td><td>P7 HO 7.5 E E E 30.8 49.3 11.1 28</td><td>K5 NO 11 33 31 31 31 31 46.2 50.8 16.6 42</td><td>H0 1: 46 73 16 4,</td><td>P11K D B4 B2 B2 2 9 6 2 2</td><td>NO 15 59.4 65.3 21.4 54 59.4</td></w]<>	HO 5.5 24.2 38.7 8.7 22	P5K5 B3 B1 B1	NO 7.5 30.8 33.9 11.1 28 28	P7 HO 7.5 E E E 30.8 49.3 11.1 28	K5 NO 11 33 31 31 31 31 46.2 50.8 16.6 42	H0 1: 46 73 16 4,	P11K D B4 B2 B2 2 9 6 2 2	NO 15 59.4 65.3 21.4 54 59.4
ains Supply 2 301/FC 302 gh/ Normal I utput curre	only available as 160% high overload (3 x 200- 240 VAC Load* Typical Shaft Output [Enclosure IP20 Enclosure IP21 Enclosure IP55, 66 nt Continuous (3 x 200-240 V) [A] Intermittent (60 sec overload) (3 x 200-240 V) [A] Continuous KVA (208 V AC) [KVA] Urrent Continuous (3 x 200-240 V) [A] Intermittent (60 sec overload)	1. <\[\]	HO 5.5 24.2 38.7 8.7 22	P5K5 B3 B1 B1	NO 7.5 30.8 33.9 11.1 28 28	HO 7.5 BE EE 30.8 49.3 111.1 28 44.8	K5 NO 11 33 31 31 31 31 46.2 50.8 16.6 42	H0 1: 46 73 16 4,	P11K D B4 B2 B2 2 9 6	NO 15 59.4 65.3 21.4 54 59.4
ains Supply 2 301/FC 302 gh/ Normal I utput curre	only available as 160% high overload (3 x 200- 240 VAC Load* Typical Shaft Output [Enclosure IP20 Enclosure IP21 Enclosure IP55, 66 nt Continuous (3 x 200-240 V) [A] Intermittent (60 sec overload) (3 x 200-240 V) [A] Continuous KVA (208 V AC) [KVA] Urrent Continuous (3 x 200-240 V) [A] Intermittent (60 sec overload) (3 x 200-240 V) [A] Intermittent (60 sec overload) (3 x 200-240 V) [A] Intermittent (60 sec overload) (3 x 200-240 V) [A]	1. <\[\]	HO 5.5 24.2 38.7 8.7 22	P5K5 B3 B1 B1	NO 7.5 30.8 33.9 11.1 28 28	HO 7.5 E E 30.8 49.3 111.1 28 44.8 16	K5 NO 11 N3 11 46.2 50.8 16.6 42 46.2	H0 1: 46 73 16 4,	P11K D B4 B2 B2 2 9 6 2 2	NO 15 59.4 65.3 21.4 54 59.4
ains Supply 2 301/FC 302 gh/ Normal I utput curre	only available as 160% high overload (3 x 200- 240 VAC Load* Typical Shaft Output [Enclosure IP20 Enclosure IP21 Enclosure IP55, 66 nt Continuous (3 x 200-240 V) [A] Intermittent (60 sec overload) (3 x 200-240 V) [A] Continuous KVA (208 V AC) [KVA] Urrent Continuous (3 x 200-240 V) [A] Intermittent (60 sec overload) (3 x 200-240 V) [A] Intermittent (60 sec overload) (3 x 200-240 V) [A] Intermittent (60 sec overload) (3 x 200-240 V) [A] Max. cable size [mm ²	1. <\[\]	HO 5.5 24.2 38.7 8.7 22 35.2	P5K5 B3 B1 B1 B1 	NO 7.5 30.8 33.9 11.1 28 30.8	HO 7.5 E E 30.8 49.3 11.1 28 44.8 16 6	K5 NO 11 33 11 46.2 50.8 16.6 42 46.2 46.2 (6) 3	H(1) 46 73 16 42 67	P11K D B4 B2 2 2 9 6 6 2 2 2 35 (2) 80	NO 15 59.4 65.3 21.4 54 59.4
ains Supply 2 301/FC 302 gh/ Normal I utput curre	only available as 160% high overload (3 x 200- 240 VAC Load* Typical Shaft Output [Enclosure IP20 Enclosure IP21 Enclosure IP25, 66 nt Continuous (3 x 200-240 V) [A] Intermittent (60 sec overload) (3 x 200-240 V) [A] Continuous KVA (208 V AC) [KVA] urrent Continuous (3 x 200-240 V) [A] Continuous (3 x 200-240 V) [A] Intermittent (60 sec overload) (3 x 200-240 V) [A] Intermittent (60 sec overload) (3 x 200-240 V) [A] Max. cable size [mm ² Max. pre-fuses [A] ¹	1. <w] (AWG)] ²⁾</w] 	HO 5.5 24.2 38.7 8.7 22	P5K5 B3 B1 B1 B1 	NO 7.5 30.8 33.9 11.1 28 28	HO 7.5 E E 30.8 49.3 111.1 28 44.8 16	K5 NO 11 N3 N1 N1 N1 N1 N1 N0 NO N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N0	H0 1: 46 73 16 4,	P11K D B4 B2 2 2 9 6 6 2 2 2 35 (2) 80	NO 15 59.4 65.3 21.4 54 59.4
ains Supply 2 301/FC 302 gh/ Normal I utput curre	only available as 160% high overload (3 x 200- 240 VAC Load* Typical Shaft Output [Enclosure IP20 Enclosure IP21 Enclosure IP25, 66 nt Continuous (3 x 200-240 V) [A] Intermittent (60 sec overload) (3 x 200-240 V) [A] Continuous KVA (208 V AC) [KVA] Urrent Continuous (3 x 200-240 V) [A] Continuous (3 x 200-240 V) [A] Intermittent (60 sec overload) (3 x 200-240 V) [A] Intermittent (60 sec overload) (3 x 200-240 V) [A] Max. cable size [mm ² Max. pre-fuses [A] ¹ Estimated power loss	1. <w] (AWG)] ²⁾</w] 	HO 5.5 24.2 38.7 8.7 22 35.2	P5K5 B3 B1 B1 B1	NO 7.5 30.8 33.9 11.1 28 30.8	HO 7.5 E E B 30.8 49.3 111.1 28 44.8 44.8 16 6 371	K5 NO 11 NO 11 33 51 46.2 50.8 16.6 42 46.2 46.2 (6) 3 514	H(1) 46 73 16 42 67	P11K D B4 B2 B2 2 9 6 2 2 35 (2) 80 3	NO 15 59.4 65.3 21.4 54 59.4
	A standard s	1. (AWG)] ²⁾] ⁴⁾	HO 5.5 24.2 38.7 8.7 22 35.2	P5K5 B3 B1 B1 B1 	NO 7.5 30.8 33.9 11.1 28 30.8	HO 7.5 E E B 30.8 49.3 111.1 28 44.8 44.8 16 6 371	K5 NO 11 33 11 46.2 50.8 16.6 42 46.2 46.2 (6) 3	H(1) 46 73 16 42 67	P11K D B4 B2 2 2 9 6 6 2 2 2 35 (2) 80	NO 15 59.4 65.3 21.4 54 59.4

* High overload = 160% torque during 60 s, Normal overload = 110% torque during 60 s

Mains Supply 3 x	200- 240 VAC										
FC 301/FC 302		P1	L5K	P18	3K5	P2	2K	P3	0K	P3	7K
High/ Normal Load	*	HO	NO	HO	NO	HO	NO	HO	NO	HO	NO
	Typical Shaft Output [kW]	15	18.5	18.5	22	22	30	30	37	37	45
										50	
	Enclosure IP20	E	B4		3	C	3	C	4	C	4
	Enclosure IP21		21	C		C			2		2
	Enclosure IP55, 66	(21	C	1	C	1	C	2	C	2
Output current											
	Continuous (3 x 200-240 V) [A]	59.4	74.8	74.8	88	88	115	115	143	143	170
	Intermittent (60 sec overload) (3 x 200-240 V) [A]	89.1	82.3	112	96.8	132	127	173	157	215	187
	Continuous KVA (208 V AC) [KVA]	21.4	26.9	26.9	31.7	31.7	41.4	41.4	51.5	51.5	61.2
Max. input curre											
	Continuous (3 x 200-240 V) [A]	54	68	68	80	80	104	104	130	130	154
	Intermittent (60 sec overload) (3 x 200-240 V) [A]	81	74.8	102	88	120	114	156	143	195	169
	Max. cable size, IP20 [mm ² (AWG)] ²⁾	35	(2)	90 (3/0)	90 (3/0)	120	(4/0)	120	(4/0)
	Max. cable size, IP 21/55/66 [mm ² (AWG)]		(3/0)	90 (3/0)	90 (90 (3/0)		(4/0)	120	(4/0)
	Max. pre-fuses [A] ¹	1	25	12	25	10	50	20	00	25	50
	Estimated power loss at rated max. load [W] ⁴⁾	624	737	740	845	874	1140	1143	1353	1400	1636
	Weight, enclosure IP21, IP 55, 66 [kg]	2	15	4	5	4	5	6	5	6	5
	Efficiency ⁴⁾	0.	.96	0.	97	0.	97	0.97		0.	97
* High overload =	160% torque during 60 s, N	lormal ov	erload = 1	10% torqu	ue during	60 s					

4.2 Electrical Data - 380-500 V

		PK 37	PK 55	PK75	P1K1	P1K5	P2K2	P3K0	P4K0	P5K5	P7K5
C 301/FC 302		0.37	0.55	0.75	1.1	1.5	2.2	3	4	5.5	7.5
ypical Shaft Output								-	-		-
nclosure IP20/IP21		A2	A2	A2	A2	A2	A2	A2	A2	A3	A3
nclosure IP20 (FO	Ú.	A1	A1	A1	A1	A1					
01 only) nclosure IP55, 66		A5	A5	A5	A5	A5	A5	A5	A5	A5	A5
utput current		AS	AS	AS	AS	AS	AS	AS	AS	AS	AS
	0% for 1 minute										
igii overioad 100	Shaft output [kW]	0.37	0.55	0.75	1.1	1.5	2.2	3	4	5.5	7.5
	Continuous										
	(3 x 380-440 V) [A]	1.3	1.8	2.4	3	4.1	5.6	7.2	10	13	16
	Intermittent				4.0				4.6	22.0	25.4
	(3 x 380-440 V) [A]	2.1	2.9	3.8	4.8	6.6	9.0	11.5	16	20.8	25.6
	Continuous	1.2	1.6	2.1	2.7	3.4	4.8	6.3	8.2	11	14.5
	(3 x 441-500 V) [A]	1.2	1.0	2.1	2.7	5.4	4.0	0.5	0.2	11	14.3
(i)) (i))	Intermittent	1.9	2.6	3.4	4.3	5.4	7.7	10.1	13.1	17.6	23.2
	(3 x 441-500 V) [A]	1.5	2.0	5.1	11.5	5.1	,.,	10.1	13.1	17.10	2511
	Continuous KVA	0.9	1.3	1.7	2.1	2.8	3.9	5.0	6.9	9.0	11.0
=	(400 V AC) [KVA]										
	Continuous KVA (460 V AC) [KVA]	0.9	1.3	1.7	2.4	2.7	3.8	5.0	6.5	8.8	11.6
	Max. cable size										
	(mains, motor, brake)				24 - 10 AV					4 - 10 AW	
	[AWG] ²⁾ [mm ²]			().2 - 4 mi	m ²			0	.2 - 4 mm	1 ²
ax. input curren											
	Continuous	1.2	1.0	2.2	2.7	2.7	F 0	6.5	0.0	44.7	14
	(3 x 380-440 V) [A]	1.2	1.6	2.2	2.7	3.7	5.0	6.5	9.0	11.7	14.4
	Intermittent	1.9	2.6	3.5	4.3	5.9	8.0	10.4	14.4	18.7	23.0
	(3 x 380-440 V) [A]	1.9	2.0	5.5	т.5	J.9	0.0	10.4	17.7	10.7	25.
1 million	Continuous	1.0	1.4	1.9	2.7	3.1	4.3	5.7	7.4	9.9	13.0
	(3 x 441-500 V) [A]	1.0			,	0.1		0.7		5.5	101
(180)	Intermittent	1.6	2.2	3.0	4.3	5.0	6.9	9.1	11.8	15.8	20.8
0000	(3 x 441-500 V) [A]	10	10	10	10	10	20	20	20	32	32
	Max. pre-fuses ¹⁾ [A] Environment	10	10	10	10	10	20	20	20	32	32
	Estimated power loss										
	at rated max. load [W] 4)	35	42	46	58	62	88	116	124	187	255
·	Weight,										
	enclosure IP20	4.7	4.7	4.8	4.8	4.9	4.9	4.9	4.9	6.6	6.6
	Enclosure IP55, 66	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	14.2	14.2
	Efficiency ⁴⁾	0.93	0.95	0.96	0.96	0.97	0.97	0.97	0.97	0.97	0.97

FC 301/FC 302			1K	P1.		1	.8K		2K
High/ Normal Load*		HO	NO	HO	NO	HO	NO	HO	NO
	Typical Shaft output [kW]	11	15	15	18.5	18.5	22.0	22.0	30.0
	Enclosure IP20	B	3	B	2		34	P	А
	Enclosure IP20		5 51	B3 B1		B4 B2		B4 B2	
	Enclosure IP55, 66	B1		B			32		2
Output current		DI DI		1	ļ E			12	
	Continuous (3 x 380-440 V) [A] Intermittent (60 sec over-	24	32	32	37.5	37.5	44	44	61
	load) (3 x 380-440 V) [A]	38.4	35.2	51.2	41.3	60	48.4	70.4	67.1
	Continuous (3 x 441-500 V) [A] Intermittent (60 sec over-	21	27	27	34	34	40	40	52
	load) (3 x 441-500 V) [A]	33.6	29.7	43.2	37.4	54.4	44	64	57.2
	Continuous KVA (400 V AC) [KVA]	16.6	22.2	22.2	26	26	30.5	30.5	42.3
	Continuous KVA (460 V AC) [KVA]		21.5		27.1		31.9		41.4
Aax. input current	Continuous			1		1		1	
	(3 x 380-440 V) [A]	22	29	29	34	34	40	40	55
	Intermittent (60 sec over- load) (3 x 380-440 V) [A]	35.2	31.9	46.4	37.4	54.4	44	64	60.5
	Continuous (3 x 441-500 V) [A]	19	25	25	31	31	36	36	47
	Intermittent (60 sec over- load) (3 x 441-500 V) [A]	30.4	27.5	40	34.1	49.6	39.6	57.6	51.7
	Max. cable size [mm ² / AWG] ²⁾	16	6/6	16	/6		5/2	35	5/2
	Max. pre-fuses [A] 1	6	3	6	3	6	3	8	0
	Estimated power loss at rated max. load [W] ⁴⁾	291	392	379	465	444	525	547	739
	Weight, enclosure IP20 Weight,	1	.2	1	2	23	3.5	23	8.5
	enclosure IP21, IP 55, 66 [kg]		3	2		27		27	
	Efficiency ⁴⁾	0.	98	0.9	98	0.	98	0.	98

C 301/FC 302 igh/ Normal Load*		HO	OK NO	HO	7K NO	HO	5K NO	HO	5K NO	HO	'5K NO
	Typical Shaft output	-	-							-	
	[kW]	30	37	37	45	45	55	55	75	75	90
	Enclosure IP20	В	4	C	3		3	C	4		24
	Enclosure IP21	C	1	C	1	0	1	C	2	0	2
	Enclosure IP55, 66	C1		C	1	0	1	C	2	0	2
utput current											
	Continuous (3 x 380-440 V) [A]	61	73	73	90	90	106	106	147	147	177
∃ 1	Intermittent (60 sec overload) (3 x 380-440 V) [A]	91.5	80.3	110	99	135	117	159	162	221	195
	Continuous (3 x 441-500 V) [A]	52	65	65	80	80	105	105	130	130	160
│ │ → ■ [□]	Intermittent (60 sec overload) (3 x 441-500 V) [A]	78	71.5	97.5	88	120	116	158	143	195	176
	Continuous KVA (400 V AC) [KVA]	42.3	50.6	50.6	62.4	62.4	73.4	73.4	102	102	123
	Continuous KVA (460 V AC) [KVA]		51.8		63.7		83.7		104		128
ax. input current	: Continuous					1		1			
	(3 x 380-440 V) [A] Intermittent (60 sec	55	66	66	82	82	96	96	133	133	161
	overload) (3 x 380-440 V) [A]	82.5	72.6	99	90.2	123	106	144	146	200	177
	Continuous (3 x 441-500 V) [A]	47	59	59	73	73	95	95	118	118	145
	Intermittent (60 sec overload) (3 x 441-500 V) [A]	70.5	64.9	88.5	80.3	110	105	143	130	177	160
	Max. cable size IP20, mains and motor [mm ² (AWG ²⁾)]	35	(2)	50	(1)	50	(1)	95 (4/0)	150 (30	00mcm
	Max. cable size IP20, load share and brake [mm ² (AWG ²⁾)]	35 (2)		50	(1)	50	(1)	95 (4/0)	95 ((4/0)
	Max. cable size, IP21/55/66 [mm ² (AWG ²⁾)]	90 (3/0)		90 (3/0)	90 ((3/0)	120	(4/0)	120	(4/0)
	Max. pre-fuses [A] 1	10	00	12	25	1	60	25	50	2	50
	Estimated power loss at rated max. load [W] 4)	570	698	697	843	891	1083	1022	1384	1232	147
	Weight, enclosure IP21, IP 55, 66 [kg]	4	5	4	5	4	15	6	5	6	5
	Efficiencv ⁴)	0.	98	0.	98	0	98	0	98	0	99

FC 302	80 - 500 VAC	PQ	0K	P1	10	P1	32	P1	160	P2	00
High/ Normal Load*		HO	NO	HO	NO	HO	NO	HO	NO	HO	NO
	Typical Shaft output at 400 V [kW]	90	110	110	132	132	160	160	200	200	250
	Typical Shaft output at 460 V [HP]	125	150	150	200	200	250	250	300	300	350
	Typical Shaft output at 500 V [kW]	110	132	132	160	160	200	200	250	250	315
	EnclosureIP21	D	1	C	01	D	2	0	02	D	2
	EnclosureIP54	D	1	C	01	D	2	C	02	D	2
	Enclosure IP00	D	3	C)3	D	4	0	04	D	4
	Output current										
	Continuous	1 7 7	212	212	200	200	215	215	205	205	400
	(at 400 V) [A] Intermittent (60 sec	177	212	212	260	260	315	315	395	395	480
	overload) (at 400 V) [A]	266	233	318	286	390	347	473	435	593	528
│ → ■	Continuous (at 460/ 500 V) [A] Intermittent (60 sec	160	190	190	240	240	302	302	361	361	443
	overload) (at 460/ 500 V) [A]	240	209	285	264	360	332	453	397	542	487
	Continuous KVA (at 400 V) [KVA]	123	147	147	180	180	218	218	274	274	333
	Continuous KVA (at 460 V) [KVA]	127	151	151	191	191	241	241	288	288	353
lax. input current	Continuous KVA (at 500 V) [KVA]	139	165	165	208	208	262	262	313	313	384
	Continuous (at 400 V) [A]	171	204	204	251	251	304	304	381	381	463
	Continuous (at 460/ 500 V) [A]	154	183	183	231	231	291	291	348	348	427
	Max. cable size, mains motor, brake and load share [mm ² (AWG ²⁾)]		70 2/0)		c 70 2/0)	2 x (2 x 35)			185 50 mcm)	2 x (2 x 35	
	Max. external pre- fuses [A] ¹	30	00	3	50	40	00	5	00	60	00
	Estimated power loss at rated max. load [W] 4)	2641	3234	2995	3782	3425	4213	3910	5119	4625	5893
	Weight, enclosure IP21, IP 54 [kg]	9	6	1	04	12	25	1	36	15	51
	Weight, enclosure IP00 [kg]	8	2	9	91		12	1	23	13	38
	Efficiency ⁴⁾					0.98					
	Output frequency Heatsink overtemp.	85	°C	90	°C	0 - 800 105	Hz ℃	10'	5 °C	115	°C
	trip Power card ambient					60 °C		100			
	trip		rload = 11				~				

ains Supply 3 x 380 C 302		P2	50	P3	15	P3	55	P4	00
gh/ Normal Load*		HO	NO	HO	NO	HO	NO	HO	NO
	Typical Shaft output at 400 V [kW]	250	315	315	355	355	400	400	450
	Typical Shaft output at 460 V [HP]	350	450	450	500	500	600	550	600
	Typical Shaft output at 500 V [kW]	315	355	355	400	400	500	500	530
	Enclosure IP21	E	1	E	1	E	1	E	1
	Enclosure IP54	E	1	E	1	E	1	E	1
	Enclosure IP00	E	2	E	2	E	2	E	2
	Output current								
	Continuous	480	600	600	658	658	745	695	800
	(at 400 V) [A] Intermittent (60 sec over-	400	000	000	038	038	745	093	000
	load) (at 400 V) [A]	720	660	900	724	987	820	1043	880
	Continuous (at 460/ 500 V) [A]	443	540	540	590	590	678	678	730
	Intermittent (60 sec over- load)	665	594	810	649	885	746	1017	803
	(at 460/ 500 V) [A] Continuous KVA (at 400 V) [KVA]	333	416	416	456	456	516	482	554
	Continuous KVA (at 460 V) [KVA]	353	430	430	470	470	540	540	582
	Continuous KVA (at 500 V) [KVA]	384	468	468	511	511	587	587	632
ax. input current									
	Continuous (at 400 V) [A]	472	590	590	647	647	733	684	787
	Continuous (at 460/ 500 V) [A]	436	531	531	580	580	667	667	718
	Max. cable size, mains, motor and load share [mm ² (AWG ²⁾)]		240) mcm)	4x2 (4x500		4x2 (4x500	240 mcm)	4x2 (4x500	
	Max. cable size, brake [mm² (AWG²))		185 0 mcm)	2 x (2 x 350		2 x (2 x 350		2 x (2 x 350	
	Max. external pre-fuses [A]	70	00	90	0	90	00	90	00
	Estimated power loss at rated max. load [W] ⁴⁾	6005	7630	6960	7701	7691	8879	7964	942
	Weight, enclosure IP21, IP 54 [kg]	26	63	27	'0	27	72	31	.3
	Weight, enclosure IP00 [kg]	22	21	23			36	27	7
	Efficiency ⁴⁾ Output frequency				0.98 0 - 600				
	Heatsink overtemp. trip				95 °(C			
	Power card ambient trip				68 °(C			

C 302			50		00		60	P6			/10		00
igh/ Normal Load*		HO	NO	HO	NO	HO	NO	НО	NO	HO	NO	HO	NO
	Typical Shaft output at 400 V [kW]	450	500	500	560	560	630	630	710	710	800	800	1000
	Typical Shaft output at 460 V [HP]	600	650	650	750	750	900	900	1000	1000	1200	1200	1350
	Typical Shaft output at 500 V [kW]	530	560	560	630	630	710	710	800	800	1000	1000	110
	EnclosureIP21, 54 without/ with op-	F1/	F3	F1/	F3	F1/	F3	F1/	F3	F2/	′ F4	F2/	′ F4
	tions cabinet Output current												
	Continuous (at 400 V) [A]	800	880	880	990	990	1120	1120	1260	1260	1460	1460	172
	Intermittent (60 sec overload) (at 400 V) [A]	1200	968	1320	1089	1485	1232	1680	1386	1890	1606	2190	189
→ ■	Continuous (at 460/ 500 V) [A] Intermittent (60 sec	730	780	780	890	890	1050	1050	1160	1160	1380	1380	153
<u></u>	overload) (at 460/ 500 V) [A]	1095	858	1170	979	1335	1155	1575	1276	1740	1518	2070	168
	Continuous KVA (at 400 V) [KVA]	554	610	610	686	686	776	776	873	873	1012	1012	119
	Continuous KVA (at 460 V) [KVA]	582	621	621	709	709	837	837	924	924	1100	1100	121
	Continuous KVA (at 500 V) [KVA]	632	675	675	771	771	909	909	1005	1005	1195	1195	132
ax. input curren	Continuous				-								_
	(at 400 V) [A]	779	857	857	964	964	1090	1090	1227	1227	1422	1422	167
	Continuous (at 460/ 500 V) [A]	711	759	759	867	867	1022	1022	1129	1129	1344	1344	149
	Max. cable size,mo- tor [mm ² (AWG ²⁾)]				8x15 (8x300)						12x (12x30)		
	Max. cable size,mains [mm ² (AWG ²⁾)]						8x24 (8x500)						
	Max. cable size, loadsharing [mm ² (AWG ²)]						4x12 (4x250)						
	Max. cable size,				4x18						6x1		
	brake [mm ² (AWG ²)) Max. external pre-				(4x350 i	mcm)					(6x350		
	fuses [A] ¹ Estimated power		16	00			20	00			25	00	
	loss at rated max. load [W] ⁴⁾												
	Weight, enclosure IP21, IP 54 [kg]	1004/	1299	1004/	1299	1004/	1299	1004/	1299	1246/	/ 1541	1246/	154
	Weight Rectifier Module [kg]	10)2	10)2	10)2	10)2	13	36	13	36
	Weight Inverter Module [kg]	10)2	1()2	10)2		36	1	02	10)2
	Efficiency ⁴⁾ Output frequency						0.98 0-600						
	Heatsink overtemp.												
	trip						95 °	C					
	Power card ambient						68 °	C					

4.3 Electrical Data - 525-600 V

C 302		PK75	P1K1	P1K5	P2K2	P3K0	P4K0	P5K5	P7K5
	Typical Shaft Output [kW] Enclosure IP20, 21	0.75 A2	1.1 A2	1.5 A2	2.2 A2	3 A2	4 A2	5.5 A3	7.5 A3
	Enclosure IP55	A5	A5	A5	A5	A5	A5	A5	A5
Dutput current									
	Continuous (3 x 525-550 V) [A]	1.8	2.6	2.9	4.1	5.2	6.4	9.5	11.5
	Intermittent (3 x 525-550 V) [A]	2.9	4.2	4.6	6.6	8.3	10.2	15.2	18.4
 	Continuous (3 x 551-600 V) [A]	1.7	2.4	2.7	3.9	4.9	6.1	9.0	11.0
	Intermittent (3 x 551-600 V) [A]	2.7	3.8	4.3	6.2	7.8	9.8	14.4	17.6
	Continuous kVA (525 V AC) [kVA]	1.7	2.5	2.8	3.9	5.0	6.1	9.0	11.0
P	Continuous kVA (575 V AC) [kVA]	1.7	2.4	2.7	3.9	4.9	6.1	9.0	11.0
	Max. cable size (mains, motor, brake) [AWG] ²⁾ [mm ²]			24 - 10 AWC 0.2 - 4 mm ²	-		-	24 - 10 AW 0.2 - 4 mm	-
lax. input curr	ent								
	Continuous (3 x 525-600 V) [A]	1.7	2.4	2.7	4.1	5.2	5.8	8.6	10.4
	Intermittent (3 x 525-600 V) [A]	2.7	3.8	4.3	6.6	8.3	9.3	13.8	16.6
	Max. pre-fuses ¹⁾ [A]	10	10	10	20	20	20	32	32
	Environment Estimated power loss at rated max. load [W] ⁴⁾	35	50	65	92	122	145	195	261
	Weight, Enclosure IP20 [kg]	6.5	6.5	6.5	6.5	6.5	6.5	6.6	6.6
¥	Weight, enclosure IP55 [kg]	13.5	13.5	13.5	13.5	13.5	13.5	14.2	14.2
	Efficiency ⁴)	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97

	3 x 525 - 600 VAC										
FC 302			P11K		15K		P18K5		22K		30K
High/ Normal Lo		HO	NO	HO	NO	HO	NO	HO	NO	HO	NO
	Typical Shaft Output [kW]	11	15	15	18.5	18.5	22	22	30	30	37
	Enclosure IP 21, 55, 66		B1		B1		B2		B2		C1
• • • • •	Enclosure IP20		B3		B3	1	B4		B4	1	B4
Output curren											
	Continuous (3 x 525-550 V) [A]	19	23	23	28	28	36	36	43	43	54
	Intermittent (3 x 525-550 V) [A]	30	25	37	31	45	40	58	47	65	59
ñ===1	Continuous (3 x 525-600 V) [A]	18	22	22	27	27	34	34	41	41	52
	Intermittent (3 x 525-600 V) [A]	29	24	35	30	43	37	54	45	62	57
▁ <mark>゙</mark> ⋺ _ॖ	Continuous kVA (550 V AC) [kVA]	18.1	21.9	21.9	26.7	26.7	34.3	34.3	41.0	41.0	51.4
	Continuous kVA (575 V AC) [kVA]	17.9	21.9	21.9	26.9	26.9	33.9	33.9	40.8	40.8	51.8
	Max. cable size IP20 (mains, motor, load share and brake) [AWG] ²] [mm ²]		16	(6)				35(2)		
	Max. cable size IP21, 55, 66 (mains, motor, load share and brake) [AWG] ² [mm ²]		16	(6)			35(2)		90	(3/0)
Max. input cu	rrent										
	Continuous at 550 V [A]	17.2	20.9	20.9	25.4	25.4	32.7	32.7	39	39	49
	Intermittent at 550 V [A]	28	23	33	28	41	36	52	43	59	54
	Continuous at 575 V [A]	16	20	20	24	24	31	31	37	37	47
	Intermittent at 575 V [A]	26	22	32	27	39	34	50	41	56	52
0000	Max. pre-fuses ¹⁾ [A]		63		63		63		80		100
	Environment										
	Estimated power loss at rated max. load [W] ⁴⁾		225		285		329		700		700
·W	Weight, enclosure IP21, 55 [kg]		23		23		27		27		27
	Weight, enclosure IP20 [kg]		12		12		23.5	2	3.5	2	23.5
	Efficiency ⁴)		0.98	C	.98		0.98	0	.98	().98

Mains Supp FC 302	ly 3 x 525 - 600 VAC	D3	7K	D	45K	DS	5K	D7	5K
High/ Norma	al	-			-		-		
Load*		HO	NO	HO	NO	HO	NO	HO	NO
	Typical Shaft Output [kW]	37	45	45	55	55	75	75	90
	Enclosure IP21, 55, 66	C1	C1		C1		2		2
	Enclosure IP20	C3	C3		C3	C	.4	C	.4
Output curr									
	Continuous (3 x 525-550 V) [A]	54	65	65	87	87	105	105	137
	Intermittent (3 x 525-550 V) [A]	81	72	98	96	131	116	158	151
ñ===	Continuous (3 x 525-600 V) [A]	52	62	62	83	83	100	100	131
	Intermittent (3 x 525-600 V) [A]	78	68	93	91	125	110	150	144
<u></u> _ ₽ ₽	Continuous kVA (550 V AC) [kVA]	51.4	61.9	61.9	82.9	82.9	100.0	100.0	130.5
	Continuous kVA (575 V AC) [kVA]	51.8	61.7	61.7	82.7	82.7	99.6	99.6	130.5
	Max. cable size IP20 (mains, motor) [AWG] ²⁾ [mm ²]		50 (1)		95 (4/0)	150 (30	00mcm)
	Max. cable size IP20 (load share, brake) [AWG] ²) [mm ²]		50 (1)			95 (4/0)	
	Max. cable size IP21, 55, 66 (mains, motor, load share and brake) [AWG] ²⁾ [mm ²]		90 (3/	0)			120	(4/0)	
Max. input									
	Continuous at 550 V [A]	49	59	59	78.9	78.9	95.3	95.3	124.3
	Intermittent at 550 V [A]	74	65	89	87	118	105	143	137
<u>م</u>	Continuous at 575 V [A]	47	56	56	75	75	91	91	119
4000	Intermittent at 575 V [A]	70	62	85	83	113	100	137	131
	Max. pre-fuses ¹⁾ [A] Environment	1	25	1	160	25	50	2!	50
	Estimated power loss at rated max. load [W] ⁴⁾		850		1100		1400		1500
	Weight, enclosure IP20 [kg]	3	5		35	5	0	5	0
	Weight, enclosure IP21, 55 [kg]		5		45	6	5		5
	Efficiency ⁴⁾	0.	98	0	.98	0.	98	0.	98

4.4 Electrical Data - 525-690 V

C 302			37K		5K		5K		5K	1	0K
igh/ Normal Load*		HO	NO	HO	NO	HO	NO	HO	NO	HO	NO
	Typical Shaft output at 550 V [kW]	30	37	37	45	45	55	55	75	75	90
	Typical Shaft output at 575 V [HP]	40	50	50	60	60	75	75	100	100	125
	Typical Shaft output at 690 V [kW]	37	45	45	55	55	75	75	90	90	110
	Enclosure IP21		01	D			01	D)1
	Enclosure IP54		01	-	1	_	01	_	1	-	91
	Enclosure IP00		02	D	2	[02		2		2
utput current	Continuous					1				1	
	Continuous (at 550 V) [A]	48	56	56	76	76	90	90	113	113	137
	Intermittent (60 sec overload) (at 550 V) [A]	77	62	90	84	122	99	135	124	170	151
	Continuous (at 575/ 690 V) [A]	46	54	54	73	73	86	86	108	108	131
ĨŢ → ⊜-	Intermittent (60 sec overload) (at 575/ 690 V) [A]	74	59	86	80	117	95	129	119	162	144
	Continuous KVA (at 550 V) [KVA]	46	53	53	72	72	86	86	108	108	131
	Continuous KVA (at 575 V) [KVA]	46	54	54	73	73	86	86	108	108	130
	Continuous KVA (at 690 V) [KVA]	55	65	65	87	87	103	103	129	129	157
ax. input current				1		1		[1	
	Continuous (at 550 V) [A] Continuous	53	60	60	77	77	89	89	110	110	130
	(at 575 V) [A]	51	58	58	74	74	85	85	106	106	124
	Continuous (at 690 V) [A]	50	58	58	77	77	87	87	109	109	128
	Max. cable size, mains, motor, load share and brake [mm ² (AWG)]					2x70 (2	x2/0)				
	Max. external pre- fuses [A] ¹	1	25	16	50	2	00	20	00	2	50
	Estimated power loss at rated max. load [W] 4)	1355	1458	1459	1717	1721	1913	1913	2262	2264	2662
	Weight, enclosure IP21, IP 54 [kg]					96					
	Weight, enclosure IP00 [kg]					82					
	Efficiency ⁴⁾	0.	97	0.	97		98	0.	98	0.	98
	Output frequency Heatsink overtemp.					0 - 600 85 °					
	trip Power card ambient trip					60 °					

C 302			10	P1			.60		00
ligh/ Normal Load*		HO	NO	HO	NO	HO	NO	HO	NO
	Typical Shaft output at 550 V [kW]	90	110	110	132	132	160	160	200
	Typical Shaft output at 575 V [HP]	125	150	150	200	200	250	250	300
	Typical Shaft output at 690 V [kW]	110	132	132	160	160	200	200	250
	Enclosure IP21 Enclosure IP54		1	D	1	C)2)2	D)2)2
	Enclosure IP00 Output current	D	3	D	3	[)4	D)4
	Continuous			1					
	(at 550 V) [A] Intermittent (60 sec over-	137	162	162	201	201	253	253	303
	load) (at 550 V) [A]	206	178	243	221	302	278	380	333
	Continuous (at 575/ 690 V) [A]	131	155	155	192	192	242	242	290
	Intermittent (60 sec over- load) (at 575/ 690 V) [A]	197	171	233	211	288	266	363	319
	Continuous KVA (at 550 V) [KVA]	131	154	154	191	191	241	241	289
	Continuous KVA (at 575 V) [KVA]	130	154	154	191	191	241	241	289
••	Continuous KVA (at 690 V) [KVA]	157	185	185	229	229	289	289	347
ax. input current	Continuous							1	
	(at 550 V) [A]	130	158	158	198	198	245	245	299
	Continuous (at 575 V) [A]	124	151	151	189	189	234	234	286
	Continuous (at 690 V) [A]	128	155	155	197	197	240	240	296
	Max. cable size, mains mo- tor, load share and brake [mm ² (AWG)]	2 x 70 (2 x 2/0)	2 x 70 (2 x 2/0)		(2 x 350 cm)	2 x 185 mc	(2 x 350 cm)
	Max. external pre-fuses [A]	31	15	35	50	3	50	40	00
	Estimated power loss at rated max. load [W] ⁴)	2664	3114	2953	3612	3451	4292	4275	5156
	Weight, Enclosure IP21, IP 54 [kg] Weight,	9	6	10)4	13	25	13	36
	Enclosure IP00 [kg] Efficiency ⁴⁾	8	2	9	1 0.98		12	12	23
	Output frequency				0.90				
	Heatsink overtemp. trip Power card ambient trip	85	°C	90		110) °C	110) °C

Mains Supply 3 x 525- 6	590 VAC		250	52			
FC 302			250	P3:		P3	
High/ Normal Load*	Typical Shaft output at 550 V	HO	NO	HO	NO	HO	NO
	[kW]	200	250	250	315	315	355
	Typical Shaft output at 575 V [HP]	300	350	350	400	400	450
	Typical Shaft output at 690 V [kW]	250	315	315	400	355	450
	Enclosure IP21	[02	D	2	E	1
	Enclosure IP54	[02	D	2		1
	Enclosure IP00	[04	D.	4	E	2
	Output current			1		T	
	Continuous	303	360	360	418	395	470
	(at 550 V) [A] Intermittent (60 sec overload)						
	(at 550 V) [A]	455	396	540	460	593	517
	Continuous (at 575/ 690 V) [A]	290	344	344	400	380	450
	Intermittent (60 sec overload)	435	378	516	440	570	495
	(at 575/ 690 V) [A]	JJ	570	510	077	570	755
	Continuous KVA (at 550 V) [KVA]	289	343	343	398	376	448
	Continuous KVA (at 575 V) [KVA]	289	343	343	398	378	448
	Continuous KVA	2.47			170	45.4	520
	(at 690 V) [KVA]	347	411	411	478	454	538
Max. input current				1		-	
	Continuous (at 550 V) [A]	299	355	355	408	381	453
	Continuous (at 575 V) [A]	286	339	339	390	366	434
	Continuous (at 690 V) [A]	296	352	352	400	366	434
	Max. cable size, mains, motor		185	2 x 3			240
	and load share [mm ² (AWG)]	(2 x 35	50 mcm)	(2 x 350) mcm)	(4 x 50	0 mcm)
	Max. cable size, brake [mm² (AWG)]		: 185 50 mcm)	2 x 1 (2 x 350			185 0 mcm)
	Max. external pre-fuses [A] ¹	5	00	55	0	70	00
	Estimated power loss at rated max. load [W] ⁴⁾	4875	5821	5185	6149	5383	6449
	Weight, enclosure IP21, IP 54 [kg]	1	51	16	i5	20	53
	Weight,	1	38	15	:1		21
	enclosure IP00 [kg] Efficiencv ⁴⁾	1		0.98		24	
	Output frequency	0 - 6	600 Hz	0 - 50		0 - 50	00 Hz
	Heatsink overtemp. trip	11	0 °C	110		85	°C
	Power card ambient trip		0°C	60	°C	68	°C
* High overload = 160% to	orque during 60 s, Normal overload =	110% torque	e during 60 s				

C 302		P4	100	P5	00	P5	60
ligh/ Normal Load*		HO	NO	HO	NO	HO	NO
	Typical Shaft output at 550 V [kW]	315	400	400	450	450	500
	Typical Shaft output at 575 V [HP]	400	500	500	600	600	650
	Typical Shaft output at 690 V [kW]	400	500	500	560	560	630
	Enclosure IP21	E	1	E	1	E	1
	Enclosure IP54	E	1	E	1	E	1
	Enclosure IP00	E	2	E	2	E	2
	Output current						
	Continuous (at 550 V) [A]	429	523	523	596	596	630
	Intermittent (60 sec overload) (at 550 V) [A]	644	575	785	656	894	693
	Continuous (at 575/ 690 V) [A]	410	500	500	570	570	630
	Intermittent (60 sec overload) (at 575/ 690 V) [A]	615	550	750	627	855	693
	Continuous KVA (at 550 V) [KVA]	409	498	498	568	568	600
	Continuous KVA (at 575 V) [KVA]	408	498	498	568	568	627
-	Continuous KVA (at 690 V) [KVA]	490	598	598	681	681	753
lax. input current						1	
	Continuous (at 550 V) [A]	413	504	504	574	574	607
	Continuous (at 575 V) [A]	395	482	482	549	549	607
	Continuous (at 690 V) [A]	395	482	482	549	549	607
	Max. cable size, mains, motor and load share [mm ² (AWG)]	4x240 (4x	500 mcm)	4x240 (4x	500 mcm)	4x240 (4x	500 mcm
	Max. cable size, brake [mm² (AWG)]		185 0 mcm)	2 x (2 x 350			185 0 mcm)
	Max. external pre-fuses [A] ¹	7	00	90	00	90	00
	Estimated power loss at rated max. load [W] ⁴⁾	5818	7249	7671	8727	8715	9673
	Weight, enclosure IP21, IP 54 [kg]	20	63	27	2	3:	13
	Weight, enclosure IP00 [kg]	2:	21	23		27	77
	Efficiency ⁴⁾			0.98	•		
	Output frequency			0 - 500			
	Heatsink overtemp. trip			85 °			
	Power card ambient trip			68 °	C		

Mains Supply 3 x 5	25- 690 VAC										
FC 302		P6	30	P7	10	P8	800	P9	00	P1	M0
High/ Normal Load*		HO	NO	HO	NO	HO	NO	HO	NO	HO	NO
	Typical Shaft output at 550 V [kW]	500	560	560	670	670	750	750	850	850	1000
	Typical Shaft output at 575 V [HP]	650	750	750	950	950	1050	1050	1150	1150	1350
	Typical Shaft output at 690 V [kW]	630	710	710	800	800	900	900	1000	1000	1200
	Enclosure IP21, 54 without/ with options cabinet	F1/	′ F3	F1/	' F3	F1/	′ F3	F2/	/ F4	F2/	' F4
	Output current			1		1					
	Continuous (at 550 V) [A]	659	763	763	889	889	988	988	1108	1108	1317
	Intermittent (60 sec overload) (at 550 V) [A]	989	839	1145	978	1334	1087	1482	1219	1662	1449
	Continuous (at 575/ 690 V) [A]	630	730	730	850	850	945	945	1060	1060	1260
	Intermittent (60 sec overload) (at 575/ 690 V) [A]	945	803	1095	935	1275	1040	1418	1166	1590	1386
	Continuous KVA (at 550 V) [KVA]	628	727	727	847	847	941	941	1056	1056	1255
	Continuous KVA (at 575 V) [KVA]	627	727	727	847	847	941	941	1056	1056	1255
	Continuous KVA (at 690 V) [KVA]	753	872	872	1016	1016	1129	1129	1267	1267	1506
Max. input current				1		-					
	Continuous (at 550 V) [A]	642	743	743	866	866	962	962	1079	1079	1282
	Continuous (at 575 V) [A]	613	711	711	828	828	920	920	1032	1032	1227
→	Continuous (at 690 V) [A]	613	711	711	828	828	920	920	1032	1032	1227
	Max. cable size, motor [mm ² (AWG ²⁾)]			8x1 (8x300					12x (12x30		
	Max. cable size, mains					8x24					
	[mm ² (AWG ²⁾)]					(8x500 i					
	Max. cable size, load-					4x12					
	sharing [mm ² (AWG ²⁾)] Max. cable size, brake			4x1		(4x250 ı	ncm)			185	
	[mm ² (AWG ²⁾) Max. external pre-fuses			(4x350	mcm)				(6x350	(mcm)	
	[A] ¹				160	0				20	00
	Estimated power loss at rated max. load [W] ⁴⁾										
	Weight, enclosure IP21, IP 54 [kg]	1004/	1299	1004/	1299	1004/	/ 1299	1246/	/ 1541	1246/	1541
	Weight, Rectifier Mod- ule [kg]	10	02	10	02	1	02	13	36	13	36
	Weight, Inverter Mod- ule [kg]	10	02	10	02	1	36	10	02	10)2
	Efficiency ⁴⁾					0.98					
	Output frequency					0-500					
	Heatsink overtemp. trip					85 °	С				
	Power card ambient trip					68 °	С				
* High overload = 160	0% torque during 60 s, No	ormal over	load = 110)% torque	during 60	S					

1) For type of fuse see section Fuses.

2) American Wire Gauge.

3) Measured using 5 m screened motor cables at rated load and rated frequency.

4) The typical power loss is at nominal load conditions and expected to be within +/-15% (tolerence relates to variety in voltage and cable conditions).

Values are based on a typical motor efficiency (eff2/eff3 border line). Motors with lower efficiency will also add to the power loss in the frequency converter and opposite.

If the switching frequency is increased compared to the default setting, the power losses may rise significantly.

LCP and typical control card power consumptions are included. Further options and customer load may add up to 30W to the losses. (Though typical only 4W extra for a fully loaded control card, or options for slot A or slot B, each).

Although measurements are made with state of the art equipment, some measurement inaccuracy must be allowed for (+/-5%).

4.5 General Specifications

Supply voltage	200-240 V ±10%
Supply voltage	FC 301: 380-480 V / FC 302: 380-500 V ±10%
Supply voltage	FC 302: 525-690 V ±10%
Supply frequency	50/60 Hz
Max. imbalance temporary between mains phases	3.0 % of rated supply voltage
True Power Factor (λ)	≥ 0.9 nominal at rated load
Displacement Power Factor (cos φ)	near unity (> 0.98)
Switching on input supply L1, L2, L3 (power-ups) \leq 7.5 kW	maximum 2 times/min.
Switching on input supply L1, L2, L3 (power-ups) 11-75 kW	maximum 1 time/min.
Switching on input supply L1, L2, L3 (power-ups) \geq 90 kW	maximum 1 time/2 min.
Environment according to EN60664-1	overvoltage category III/pollution degree 2
Motor output (U, V, W): Output voltage	0 - 100% of supply voltage
	0 - 100% of supply voltage
Output frequency (0.25-75 kW)	FC 301: 0.2 - 1000 Hz / FC 302: 0 - 1000 Hz
Output frequency (90-1000 kW)	0 - 800* Hz
Output frequency in Flux Mode (FC 302 only)	0 - 300 Hz
Switching on output	Unlimited
Ramp times	0.01 - 3600 sec
* Voltage and power dependent	
· · · · ·	
* Voltage and power dependent	maximum 160% for 60 sec."
* <i>Voltage and power dependent</i> Torque characteristics:	
* <i>Voltage and power dependent</i> Torque characteristics: Starting torque (Constant torque)	
* <i>Voltage and power dependent</i> Torque characteristics: Starting torque (Constant torque) Starting torque	maximum 180% up to 0.5 sec.*
* Voltage and power dependent Torque characteristics: Starting torque (Constant torque) Starting torque Overload torque (Constant torque)	maximum 180% up to 0.5 sec." maximum 160% for 60 sec."
* Voltage and power dependent Torque characteristics: Starting torque (Constant torque) Starting torque Overload torque (Constant torque) Starting torque (Variable torque)	maximum 180% up to 0.5 sec. maximum 160% for 60 sec. maximum 110% for 60 sec.
* Voltage and power dependent Torque characteristics: Starting torque (Constant torque) Starting torque Overload torque (Constant torque) Starting torque (Variable torque) Overload torque (Variable torque)	maximum 180% up to 0.5 sec. maximum 160% for 60 sec. maximum 110% for 60 sec.
* Voltage and power dependent Torque characteristics: Starting torque (Constant torque) Starting torque Overload torque (Constant torque) Starting torque (Variable torque) Overload torque (Variable torque) *Percentage relates to the nominal torque.	maximum 180% up to 0.5 sec. maximum 160% for 60 sec. maximum 110% for 60 sec. maximum 110% for 60 sec
* Voltage and power dependent Torque characteristics: Starting torque (Constant torque) Starting torque Overload torque (Constant torque) Starting torque (Variable torque) Overload torque (Variable torque) *Percentage relates to the nominal torque. Cable lengths and cross sections for control cables*:	maximum 180% up to 0.5 sec. maximum 160% for 60 sec. maximum 110% for 60 sec. maximum 110% for 60 sec maximum 110% for 60 sec FC 301: 50 m / FC 301 (A1): 25 m/ FC 302: 150 m
* Voltage and power dependent Torque characteristics: Starting torque (Constant torque) Starting torque Overload torque (Constant torque) Starting torque (Variable torque) Overload torque (Variable torque) <i>*Percentage relates to the nominal torque.</i> Cable lengths and cross sections for control cables*: Max. motor cable length, screened	maximum 180% up to 0.5 sec. maximum 160% for 60 sec. maximum 110% for 60 sec. maximum 110% for 60 sec. maximum 110% for 60 sec FC 301: 50 m / FC 301 (A1): 25 m/ FC 302: 150 n FC 301: 75 m / FC 301 (A1): 50 m/ FC 302: 300 n
* Voltage and power dependent Torque characteristics: Starting torque (Constant torque) Starting torque Overload torque (Constant torque) Starting torque (Variable torque) Overload torque (Variable torque) *Percentage relates to the nominal torque. Cable lengths and cross sections for control cables*: Max. motor cable length, screened Max. motor cable length, unscreened	maximum 180% up to 0.5 sec. maximum 160% for 60 sec. maximum 110% for 60 sec. maximum 110% for 60 sec. maximum 110% for 60 sec FC 301: 50 m / FC 301 (A1): 25 m/ FC 302: 150 n FC 301: 75 m / FC 301 (A1): 50 m/ FC 302: 300 n 1.5 mm ² /16 AWC
* Voltage and power dependent Torque characteristics: Starting torque (Constant torque) Starting torque Overload torque (Constant torque) Starting torque (Variable torque) Overload torque (Variable torque) *Percentage relates to the nominal torque. Cable lengths and cross sections for control cables*: Max. motor cable length, screened Max. motor cable length, unscreened Maximum cross section to control terminals, flexible/ rigid wire without cable end sleeves	maximum 180% up to 0.5 sec. maximum 160% for 60 sec. maximum 110% for 60 sec.

* Power cables, see tables in section "Electrical Data" of the Design Guide

Protection and Features:

- Electronic thermal motor protection against overload.
- Temperature monitoring of the heatsink ensures that the frequency converter trips if the temperature reaches a predefined level. An overload temperature cannot be reset until the temperature of the heatsink is below the values stated in the tables on the following pages (Guideline these temperatures may vary for different power sizes, frame sizes, enclosure ratings etc.).
- The frequency converter is protected against short-circuits on motor terminals U, V, W.
- If a mains phase is missing, the frequency converter trips or issues a warning (depending on the load).
- Monitoring of the intermediate circuit voltage ensures that the frequency converter trips if the intermediate circuit voltage is too low or too high.
- The frequency converter constantly checks for critical levels of internal temperature, load current, high voltage on the intermediate circuit and low motor speeds. As a response to a critical level, the frequency converter can adjust the switching frequency and/ or change the switching pattern in order to ensure the performance of the drive.

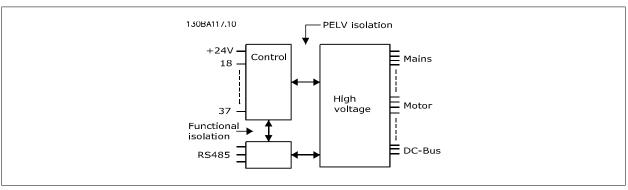
Digital inputs:

Programmable digital inputs	FC 301: 4 (5) / FC 302: 4 (6)
Terminal number	18, 19, 27 ¹⁾ , 29 ¹⁾ , 32, 33,
Logic	PNP or NPN
Voltage level	0 - 24 V DC
Voltage level, logic'0' PNP	< 5 V DC
Voltage level, logic'1' PNP	> 10 V DC
Voltage level, logic '0' NPN ²⁾	> 19 V DC
Voltage level, logic '1' NPN ²⁾	< 14 V DC
Maximum voltage on input	28 V DC
Pulse frequency range	0 - 110 kHz
(Duty cycle) Min. pulse width	4.5 ms
Input resistance, Ri	approx. 4 kΩ

Safe stop Terminal 37³) (Terminal 37 is fixed PNP logic):

Voltage level	0 - 24 V DC
Voltage level, logic'0' PNP	< 4 V DC
Voltage level, logic'1' PNP	>20 V DC
Nominal input current at 24 V	50 mA rms
Nominal input current at 20 V	60 mA rms
Input capacitance	400 nF

All digital inputs are galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.


1) Terminals 27 and 29 can also be programmed as output.

2) Except safe stop input Terminal 37.

3) Terminal 37 is only available in FC 302 and FC 301 A1 with Safe Stop. It can only be used as safe stop input. Terminal 37 is suitable for category 3 installations according to EN 954-1 (safe stop according to category 0 EN 60204-1) as required by the EU Machinery Directive 98/37/EC. Terminal 37 and the Safe Stop function are designed in conformance with EN 60204-1, EN 50178, EN 61800-2, EN 61800-3, and EN 954-1. For correct and safe use of the Safe Stop function follow the related information and instructions in the Design Guide.
4) FC 302 only.

Analog inputs:	
Number of analog inputs	2
Terminal number	53, 54
Modes	Voltage or current
Mode select	Switch S201 and switch S202
Voltage mode	Switch S201/switch S202 = OFF (U)
Voltage level	FC 301: 0 to + 10/ FC 302: -10 to +10 V (scaleable)
Input resistance, R _i	approx. 10 kΩ
Max. voltage	± 20 V
Current mode	Switch S201/switch S202 = ON (I)
Current level	0/4 to 20 mA (scaleable)
Input resistance, R _i	approx. 200 Ω
Max. current	30 mA
Resolution for analog inputs	10 bit (+ sign)
Accuracy of analog inputs	Max. error 0.5% of full scale
Bandwidth	FC 301: 20 Hz/ FC 302: 100 Hz

The analog inputs are galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

Pulse/encoder inputs:

Pulse/encoder inputs:	
Programmable pulse/encoder inputs	2/1
Terminal number pulse/encoder	29 ¹⁾ , 33 ²⁾ / 32 ³⁾ , 33 ³⁾
Max. frequency at terminal 29, 32, 33	110 kHz (Push-pull driven)
Max. frequency at terminal 29, 32, 33	5 kHz (open collector)
Min. frequency at terminal 29, 32, 33	4 Hz
Voltage level	see section on Digital input
Maximum voltage on input	28 V DC
Input resistance, R _i	approx. 4 kΩ
Pulse input accuracy (0.1 - 1 kHz)	Max. error: 0.1% of full scale
Encoder input accuracy (1 - 110 kHz)	Max. error: 0.05 % of full scale
 FC 302 only Pulse inputs are 29 and 33 Encoder inputs: 32 = A, and 33 = B Analog output: 	
Number of programmable analog outputs	1
Terminal number	42
Current range at analog output	0/4 - 20 mA
Max. load GND - analog output	500 Ω
Accuracy on analog output	Max. error: 0.5 % of full scale
Resolution on analog output	12 bit
The analogue output is galvanically isolated from the supply voltage (PELV) a Control card, RS 485 serial communication:	and other high-voltage terminals.
Terminal number	68 (P,TX+, RX+), 69 (N,TX-, RX-)
Terminal number 61	Common for terminals 68 and 69
The RS 485 serial communication circuit is functionally separated from other	central circuits and galvanically isolated from the supply voltage (PELV).
Digital output:	
Programmable digital/pulse outputs	2
Terminal number	27, 29 ¹)
Voltage level at digital/frequency output	0 - 24 V

lerminal number	27, 29 ¹)
Voltage level at digital/frequency output	0 - 24 V
Max. output current (sink or source)	40 mA
Max. load at frequency output	1 kΩ
Max. capacitive load at frequency output	10 nF
Minimum output frequency at frequency output	0 Hz
Maximum output frequency at frequency output	32 kHz
Accuracy of frequency output	Max. error: 0.1 % of full scale
Resolution of frequency outputs	12 bit

1) Terminal 27 and 29 can also be programmed as input.

The digital output is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

Control card, 24 V DC output:	
Terminal number	12, 13
Output voltage	24 V +1, -3 V
Max. load	FC 301: 130 mA/ FC 302: 200 mA

The 24 V DC supply is galvanically isolated from the supply voltage (PELV), but has the same potential as the analog and digital inputs and outputs.

Programmable relay outputs	FC 301 ≤ 7.5 kW: 1 / FC 302 all kW: 2
Relay 01 Terminal number	1-3 (break), 1-2 (make)
Max. terminal load (AC-1) ¹⁾ on 1-3 (NC), 1-2 (NO) (Resistive load)	240 V AC, 2 A
Max. terminal load (AC-15) ¹⁾ (Inductive load @ cosφ 0.4)	240 V AC, 0.2 A
Max. terminal load (DC-1) ¹⁾ on 1-2 (NO), 1-3 (NC) (Resistive load)	60 V DC, 1A
Max. terminal load (DC-13) ¹⁾ (Inductive load)	24 V DC, 0.1A
Relay 02 (FC 302 only) Terminal number	4-6 (break), 4-5 (make)
Max. terminal load (AC-1) ¹⁾ on 4-5 (NO) (Resistive load) ²⁾³⁾ Overvoltage cat. II	400 V AC, 2 A

Max. terminal load (AC-15) ¹⁾ on 4-5 (NO) (Inductive load @ $\cos \varphi$ 0.4)	240 V AC, 0.2 A
Max. terminal load (DC-1) ¹⁾ on 4-5 (NO) (Resistive load)	80 V DC, 2 A
Max. terminal load (DC-13) ¹⁾ on 4-5 (NO) (Inductive load)	24 V DC, 0.1A
Max. terminal load (AC-1) ¹⁾ on 4-6 (NC) (Resistive load)	240 V AC, 2 A
Max. terminal load (AC-15) ¹⁾ on 4-6 (NC) (Inductive load @ cos\ 0.4)	240 V AC, 0.2A
Max. terminal load (DC-1) ¹⁾ on 4-6 (NC) (Resistive load)	50 V DC, 2 A
Max. terminal load (DC-13) ¹⁾ on 4-6 (NC) (Inductive load)	24 V DC, 0.1 A
Min. terminal load on 1-3 (NC), 1-2 (NO), 4-6 (NC), 4-5 (NO)	24 V DC, 10 mA, 24 V AC 20 mA
Environment according to EN 60664-1	overvoltage category III/pollution degree 2
1) IEC 60947 part 4 and 5	
The relay contacts are galvanically isolated from the rest of the circuit by	reinforced isolation (PELV).
2) Overvoltage Category II	
3) UL applications 300 V AC 2A	
Control card, 10 V DC output:	
Terminal number	50
Output voltage	10.5 V ±0.5 V
Max. load	15 mA
The 10 V DC supply is galvanically isolated from the supply voltage (PELV,) and other high-voltage terminals.
Control characteristics:	
Resolution of output frequency at 0 - 1000 Hz	+/- 0.003 Hz
Repeat accuracy of <i>Precise start/stop</i> (terminals 18, 19)	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>
System response time (terminals 18, 19, 27, 29, 32, 33)	≤ 2 ms
Speed control range (open loop)	1:100 of synchronous speed
Speed control range (closed loop)	1:1000 of synchronous speed
Speed accuracy (open loop)	30 - 4000 rpm: error ±8 rpm
Speed accuracy (closed loop), depending on resolution of feedback device	0 - 6000 rpm: error ±0.15 rpm
All control characteristics are based on a 4-pole asynchronous motor	
Control card performance:	
Scan interval	FC 301: 5 ms / FC 302: 1 ms
Surroundings:	
Frame size A1, A2, A3 and A5 (see <i>3.1 Product Overview</i> for power ratings)	
Frame size B1, B2, C1 and C2	IP 21, IP 55, IP 66
Frame size B3, B4, C3 and C4	IP 20
Frame size D1, D2, E1, F1, F2, F3 and F4	IP 21, IP 54
Frame size D3, D4 and E2	IP 00
Enclosure kit available \leq 7.5 kW	IP21/TYPE 1/IP 4X top
Vibration test, frame size A, B and C	1.0 g RMS
Vibration test, frame size D, E and F	0.7 g
Max. relative humidity	5% - 93%(IEC 60 721-3-3; Class 3K3 (non-condensing) during operation
Aggressive environment (IEC 60068-2-43) H ₂ S test	class Kd
Test method according to IEC 60068-2-43 H2S (10 days)	
Ambient temperature, frame size A, B and C	
	Max. 50 °C (24-hour average maximum 45 °C)
Ambient temperature, frame size D, E and F	Max. 50 °C (24-hour average maximum 45 °C) Max. 45 °C (24-hour average maximum 40 °C)
Ambient temperature, frame size D, E and F	
Ambient temperature, frame size D, E and F Derating for high ambient temperature, see section on special conditions	Max. 45 °C (24-hour average maximum 40 °C)
Ambient temperature, frame size D, E and F Derating for high ambient temperature, see section on special conditions Minimum ambient temperature during full-scale operation Minimum ambient temperature at reduced performance	Max. 45 °C (24-hour average maximum 40 °C) 0 °C - 10 °C
Ambient temperature, frame size D, E and F Derating for high ambient temperature, see section on special conditions Minimum ambient temperature during full-scale operation Minimum ambient temperature at reduced performance Temperature during storage/transport	Max. 45 °C (24-hour average maximum 40 °C) 0 °C - 10 °C -25 - +65/70 °C
Ambient temperature, frame size D, E and F Derating for high ambient temperature, see section on special conditions Minimum ambient temperature during full-scale operation Minimum ambient temperature at reduced performance Temperature during storage/transport Maximum altitude above sea level	Max. 45 °C (24-hour average maximum 40 °C) 0 °C - 10 °C -25 - +65/70 °C
Ambient temperature, frame size D, E and F Derating for high ambient temperature, see section on special conditions Minimum ambient temperature during full-scale operation Minimum ambient temperature at reduced performance Temperature during storage/transport Maximum altitude above sea level Derating for high altitude, see section on special conditions	Max. 45 °C (24-hour average maximum 40 °C) 0 °C - 10 °C -25 - +65/70 °C 1000 m
Ambient temperature, frame size D, E and F Derating for high ambient temperature, see section on special conditions Minimum ambient temperature during full-scale operation Minimum ambient temperature at reduced performance Temperature during storage/transport Maximum altitude above sea level	Max. 45 °C (24-hour average maximum 40 °C) 0 °C - 10 °C -25 - +65/70 °C 1000 m EN 61800-3, EN 61000-6-3/4, EN 55011
Ambient temperature, frame size D, E and F Derating for high ambient temperature, see section on special conditions Minimum ambient temperature during full-scale operation Minimum ambient temperature at reduced performance Temperature during storage/transport Maximum altitude above sea level Derating for high altitude, see section on special conditions	Max. 45 °C (24-hour average maximum 40 °C) 0 °C - 10 °C -25 - +65/70 °C 1000 m

See section on special conditions

Control card, USB serial communication:

USB standard	1.1 (Full speed)
USB plug	USB type B "device" plug

Connection to PC is carried out via a standard host/device USB cable.

The USB connection is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

The USB ground connection is <u>not</u> galvanically isolated from protection earth. Use only an isolated laptop as PC connection to the USB connector on the frequency converter.

4.6.1 Efficiency

Efficiency of the frequency converter (η_{VLT})

The load on the frequency converter has little effect on its efficiency. In general, the efficiency is the same at the rated motor frequency $f_{M,N}$, even if the motor supplies 100% of the rated shaft torque or only 75%, i.e. in case of part loads.

This also means that the efficiency of the frequency converter does not change even if other U/f characteristics are chosen. However, the U/f characteristics influence the efficiency of the motor.

The efficiency declines a little when the switching frequency is set to a value of above 5 kHz. The efficiency will also be slightly reduced if the mains voltage is 500 V, or if the motor cable is longer than 30 m.

Efficiency of the motor (η_{MOTOR})

The efficiency of a motor connected to the frequency converter depends on magnetising level. In general, the efficiency is just as good as with mains operation. The efficiency of the motor depends on the type of motor.

In the range of 75-100% of the rated torque, the efficiency of the motor is practically constant, both when it is controlled by the frequency converter and when it runs directly on mains.

In small motors, the influence from the U/f characteristic on efficiency is marginal. However, in motors from 11 kW and up, the advantages are significant.

In general, the switching frequency does not affect the efficiency of small motors. Motors from 11 kW and up have their efficiency improved (1-2%). This is because the sine shape of the motor current is almost perfect at high switching frequency.

Efficiency of the system (η_{SYSTEM})

To calculate the system efficiency, the efficiency of the frequency converter (η_{VLT}) is multiplied by the efficiency of the motor (η_{MOTOR}):

 $\eta_{\text{SYSTEM}} = \eta_{\text{VLT}} \times \eta_{\text{MOTOR}}$

4.7.1 Acoustic Noise

The acoustic noise from the frequency converter comes from three sources:

- 1. DC intermediate circuit coils.
- 2. Integral fan.
- 3. RFI filter choke.

The typical values measured at a distance of 1 m from the unit:

Frame size	At reduced fan speed (50%) [dBA] ***	Full fan speed [dBA]
A1	51	60
A2	51	60
A3	51	60
A5	54	63
B1	61	67
B2	58	70
C1 C2	52	62
C2	55	65
D1+D3	74	76
D2+D4	73	74
E1/E2 *	73	74
E1/E2 **	82	83
F1/F2/F3/F4	78	80
* 250 kW, 380-500 VAC and 355-400 kW, 525-690 VA ** Remaining E1+E2 power sizes.	AC only	

MG.33.BB.02 - VLT[®] is a registered Danfoss trademark

*** For D and E sizes, reduced fan speed is at 87%.

4.8.1 du/dt conditions

When a transistor in the inverter bridge switches, the voltage across the motor increases by a du/dt ratio depending on:

- the motor cable (type, cross-section, length screened or unscreened)
- inductance

The natural induction causes an overshoot U_{PEAK} in the motor voltage before it stabilises itself at a level depending on the voltage in the intermediate circuit. The rise time and the peak voltage U_{PEAK} affect the service life of the motor. If the peak voltage is too high, especially motors without phase coil insulation are affected. If the motor cable is short (a few metres), the rise time and peak voltage are lower. If the motor cable is long (100 m), the rise time and peak voltage are higher.

In motors without phase insulation paper or other insulation reinforcement suitable for operation with voltage supply (such as a frequency converter), fit a du/dt filter or a sine-wave filter on the output of the frequency converter.

Peak voltage on the motor terminals is caused by the switching of the IGBTs. The FC 300 complies with the demands of IEC 60034-25 regarding motors designed to be controlled by frequency converters. The FC 300 also complies with IEC 60034-17 regarding Norm motors controlled by frequency converters Measured values from lab tests:

FC 300, P5K5T2					
Cable	Mains	Rise time	Vpeak	dU/dt	
length [m]	voltage [V]	[µsec]	[kV]	[kV/µsec]	
5	230	0.13	0.510	3.090	
50	230	0.23		2.034	
100	230	0.54	0.580	0.865	
150	230	0.66	0.560	0.674	

FC 300, P7K5T2				
Cable	Mains		Vpeak	
length [m]	voltage [V]	Rise time [µsec]	[kV]	dU/dt [kV/µsec]
36	240	0.264	0.624	1.890
136	240	0.536	0.596	0.889
150	240	0.568	0.568	0.800

Mains	Rise time	Vpeak	dU/dt	
voltage [V]	[µsec]	[kV]	[kV/µsec]	
240	0.556	0.650	0.935	
240	0.592	0.594	0.802	
240	0.708	0.587	0.663	
	voltage [V] 240 240	voltage [V] [μsec] 240 0.556 240 0.592	voltage [V] [μsec] [kV] 240 0.556 0.650 240 0.592 0.594	voltage [V] [µsec] [kV] [kV/µsec] 240 0.556 0.650 0.935 240 0.592 0.594 0.802

FC 300, P15KT2					
Cable	Mains	Rise time	Vpeak	dU/dt	
length [m]	voltage [V]	[µsec]	[kV]	[kV/µsec]	
36	240	0.244	0.608	1.993	
136	240	0.568	0.580	0.816	
150	240	0.720	0.574	0.637	

4 FC 300 Selection

4

C 300, P18KT2	No.:	Dier time	\/	
Cable	Mains	Rise time	Vpeak	dU/dt
length [m]	voltage [V]	[µsec]	[kV]	[kV/µsec]
36	240	0.244	0.608	1.993
136	240	0.568	0.580	0.816
150	240	0.720	0.574	0.637
FC 300, P22KT2				
Cable	Mains	Rise time	Vpeak	dU/dt
length [m]	voltage [V]	[µsec]	[kV]	[kV/µsec]
15	240	0.194	0.626	2.581
50	240	0.252	0.574	1.822
150	240	0.488	0.538	0.882
FC 300, P30KT2				
Cable	Mains	Rise time	Vpeak	dU/dt
length [m]	voltage [V]	[µsec]	[kV]	[kV/µsec]
30	240	0.300	0.598	1.594
100	240	0.536	0.566	0.844
150	240	0.336	0.546	0.562
150	270	0.770	0.540	0.302
FC 300, P37KT2				
Cable	Mains	Rise time	Vpeak	dU/dt
length [m]	voltage [V]	[µsec]	[kV]	[kV/µsec]
30	240	0.300	0.598	1.594
100	240	0.536	0.566	0.844
150	240	0.776	0.546	0.562
FC 300, P1K5T4				
Cable	Mains	Rise time	Vpeak	dU/dt
length [m]	voltage [V]	[µsec]	[kV]	[kV/µsec]
5	690	0.640	0.690	0.862
50	985	0.470	0.050	0.985
150	1045	0.760	1.045	0.985
150	1040	0.700	1.073	דינ.ט/
FC 300, P4K0T4				
Cable	Mains	Rise time	Vpeak	dU/dt
length [m]	voltage [V]	[µsec]	[kV]	[kV/µsec]
5	400	0.172	0.890	4.156
50	400	0.310		2.564
150	400	0.370	1.190	1.770
FC 300, P7K5T4	Maina	Dies time)/!-	di i / de
Cable	Mains	Rise time	Vpeak	dU/dt
length [m]	voltage [V]	[µsec]	[kV]	[kV/µsec]
5	500	0.04755	0.739	8.035
50	500	0.207		4.548
150	500	0.6742	1.030	2.828

FC 300, P11KT4					
Cable	Mains	Rise time	Vpeak	dU/dt	
length [m]	voltage [V]	[µsec]	[kV]	[kV/µsec]	
36	480	0.396	1.210	2.444	
100	480	0.844	1.230	1.165	
150	480	0.696	1.160	1.333	
FC 300, P15KT4					
Cable	Mains	Rise time	Vpeak	dU/dt	
length [m]	voltage [V]	[µsec]	[kV]	[kV/µsec]	
36	480	0.396	1.210	2.444	
100	480	0.844	1.230	1.165	
150	480	0.696	1.160	1.333	
FC 300, P18KT4					
Cable	Mains	Rise time	Vpeak	dU/dt	
length [m]	voltage [V]	[µsec]	[kV]	[kV/µsec]	
36	480	0.312		2.846	
100	480	0.556	1.250	1.798	
150	480	0.608	1.230	1.618	
FC 300, P22KT4					
Cable	Mains	Rise time	Vpeak	dU/dt	
length [m]	voltage [V]	[µsec]	[kV]	[kV/µsec]	
15	480	0.288	4 220	3.083	
100	480	0.492	1.230	2.000	
150	480	0.468	1.190	2.034	
FC 300, P30KT4					
Cable	Mains	Rise time	Vpeak	dU/dt	
length [m]	voltage	[µsec]	[kV]	[kV/µsec]	
5	480	0.368	1.270	2.853	
50	480	0.536	1.260	1.978	
100	480	0.680	1.240	1.426	
150	480	0.712	1.200	1.334	
FC 300, P37KT4					
Cable	Mains	Rise time	Vpeak	dU/dt	
length [m]	voltage [V]	[µsec]	[kV]	[kV/µsec]	
5	480	0.368	1.270	2.853	
50	480	0.536	1.260	1.978	
100	480	0.680	1.240	1.426	
150	480	0.712	1.200	1.334	
FC 300, P45KT4					
Cable	Mains	Rise time	Vpeak	dU/dt	
length [m]	voltage [V]	[µsec]	[kV]	[kV/µsec]	
15	480	0.256	1.230	3.847	
50	480	0.328	1.200	2.957	
50					
100	480	0.456	1.200	2.127	

voltage [V]

480

[kV]

1.170

[kV/µsec]

2.523

FC 300, P55KT5					
Cable	Mains	Rise time	Vpeak	dU/dt	
length [m]	voltage [V]	[µsec]	[kV]	[kV/µsec]	
5	480	0.371	1.170	2.523	
FC 300, P75KT5					
Cable	Mains	Rise time	Vpeak	dU/dt	

[µsec]

0.371

High Power range:

length [m]

5

The power sizes below at the appropriate mains voltages comply with the requirements of IEC 60034-17 regarding normal motors controlled by frequency converters, IEC 60034-25 regarding motors designed to be controlled by frequency converters, and NEMA MG 1-1998 Part 31.4.4.2 for inverter fed motors. The power sizes below do not comply with NEMA MG 1-1998 Part 30.2.2.8 for general purpose motors.

Cable	Mains		Peak		
length	voltage	Rise time	voltage	dU/dt	
30 metres	400 V	0.34 µsec.	1040 V	2447 V/µsec.	
250 - 800 kW / 380- Cable	Mains		Peak		
Cable		Rise time	Peak voltage	dU/dt	
	Mains	Rise time 0.71 µsec.		dU/dt 1389 V/µsec.	
Cable length	Mains voltage		voltage		
Cable length 30 metres	Mains voltage 500 V	0.71 µsec.	voltage 1165 V	1389 V/µsec.	

90 - 315 kW/ 525-690	V			
Cable	Mains		Peak	
length	voltage	Rise time	voltage	dU/dt
30 metres	690 V	0.38µsec.	1573	3309 V/µsec.
30 metres	690 V ¹⁾	1.72 µsec.	1329	640 V/µsec.
30 metres	575 V	0.23 µsec.	1314	2750 V/µsec.
30 metres	575 V ²⁾	0.72 µsec.	1061	857 V/µsec.
 With Danfoss dU/dt With dU/dt filter 	t filter			

355 - 1000 kW / 525				
Cable	Mains		Peak	
length	voltage	Rise time	voltage	dU/dt
30 metres	690 V	0.57 µsec.	1611	2261 V/µsec.
30 metres	575 V	0.25 µsec.		2510 V/µsec.
30 metres	690 V ¹⁾	1.13 µsec.	1629	1150 V/µsec.
1) With Danfoss dU/	dt filter.			

<u>Danfoss</u>

4.9 Special Conditions

4.9.1 Purpose of derating

Derating must be taken into account when using the frequency converter at low air pressure (heights), at low speeds, with long motor cables, cables with a large cross section or at high ambient temperature. The required action is described in this section.

4.9.2 Derating for Ambient Temperature and IGBT switching frequency

The average temperature ($T_{AMB, AVG}$) measured over 24 hours must be at least 5 °C lower than the maximum allowed ambient temperature ($T_{AMB,MAX}$).

If the frequency converter is operated at high ambient temperatures, the continuous output current should be decreased.

The derating depends on the switching pattern, which can be set to 60 PWM or SFAVM in par. 14-00 Switching Pattern.

Frame size A

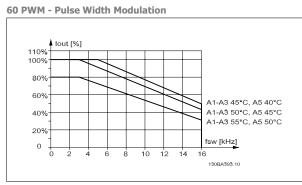


Illustration 4.1: Derating of I_{out} for different $T_{\text{AMB, MAX}}$ for frame size A, using 60 PWM

SFAVM - Stator Frequency Asyncron Vector Modulation

Illustration 4.2: Derating of I_{out} for different $T_{\text{AMB},\,\text{MAX}}$ for frame size A, using SFAVM

When using only 10 m motor cable or less in frame size A, less derating is necessary. This is due to the fact that the length of the motor cable has a relatively high impact on the recommended derating.

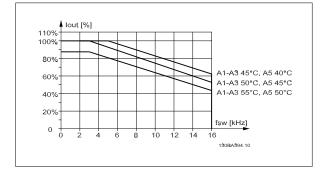


Illustration 4.3: Derating of I_{out} for different $T_{AMB,\;MAX}$ for frame size A, using 60 PWM and maximum 10 m motor cable

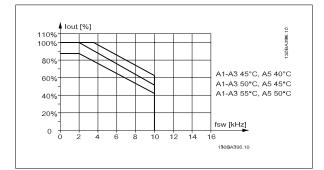


Illustration 4.4: Derating of I_{out} for different $T_{AMB, MAX}$ for frame size A, using SFAVM and maximum 10 m motor cable

Frame size B

For the B and C frames the derating also depends on the overload mode selected in par. 1-04 Overload Mode

60 PWM - Pulse Width Modulation

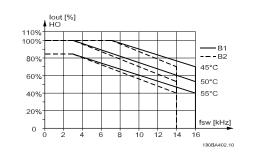


Illustration 4.5: Derating of I_{out} for different $T_{AMB, MAX}$ for frame size B, using 60 PWM in High torque mode (160% over torque)

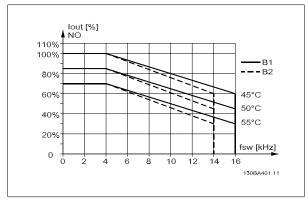


Illustration 4.7: Derating of I_{out} for different $T_{AMB, MAX}$ for frame size B, using 60 PWM in Normal torque mode (110% over torque)

Frame size C

60 PWM - Pulse Width Modulation

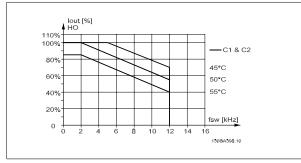


Illustration 4.9: Derating of I_{out} for different $T_{\text{AMB, MAX}}$ for frame size C, using 60 PWM in High torque mode (160% over torque)

SFAVM - Stator Frequency Asyncron Vector Modulation

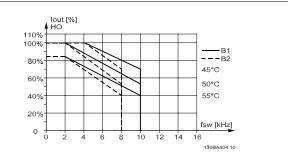


Illustration 4.6: Derating of I_{out} for different $T_{AMB, MAX}$ for frame size B, using SFAVM in High torque mode (160% over torque)

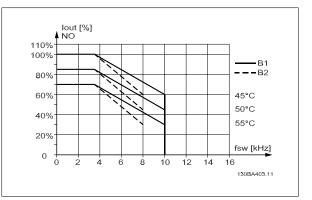


Illustration 4.8: Derating of I_{out} for different $T_{AMB, MAX}$ for frame size B, using SFAVM in Normal torque mode (110% over torque)

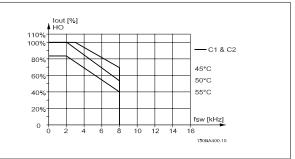


Illustration 4.10: Derating of I_{out} for different $T_{\text{AMB, MAX}}$ for frame size C, using SFAVM in High torque mode (160% over torque)

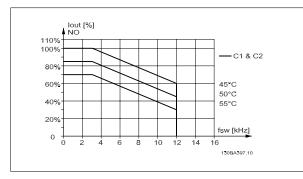


Illustration 4.11: Derating of I_{out} for different $T_{AMB, MAX}$ for frame size C, using 60 PWM in Normal torque mode (110% over torque)

Frame size D

60 PWM - Pulse Width Modulation, 380 - 500 V



Illustration 4.13: Derating of I_{out} for different $T_{AMB, MAX}$ for frame size D at 500 V, using 60 PWM in High torque mode (160% over torque)

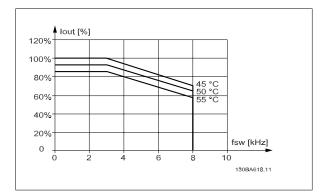


Illustration 4.15: Derating of I_{out} for different $T_{AMB, MAX}$ for frame size D at 500 V, using 60 PWM in Normal torque mode (110% over torque)

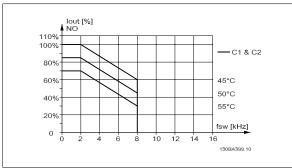


Illustration 4.12: Derating of I_{out} for different $T_{AMB, MAX}$ for frame size C, using SFAVM in Normal torque mode (110% over torque)

SFAVM - Stator Frequency Asyncron Vector Modulation, 380 - 500 V

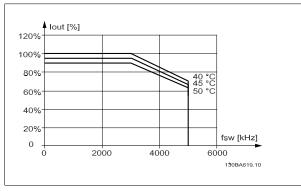


Illustration 4.14: Derating of I_{out} for different $T_{AMB,\;MAX}$ for frame size D at 500 V, using SFAVM in High torque mode (160% over torque)

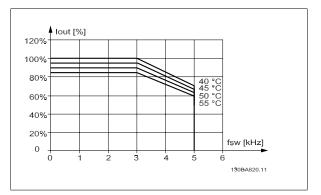


Illustration 4.16: Derating of I_{out} for different $T_{AMB, MAX}$ for frame size D at 500 V, using SFAVM in Normal torque mode (110% over torque)

60 PWM - Pulse Width Modulation, 525 - 690 V (except P315)

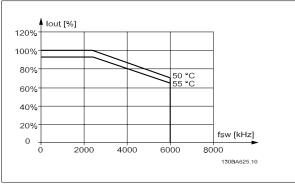


Illustration 4.17: Derating of Iout for different TAMB, MAX for frame size D at 690 V, using 60 PWM in High torque mode (160% over torque). Note: not valid for P315.

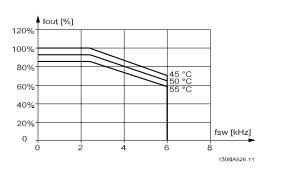


Illustration 4.19: Derating of I_{out} for different $T_{AMB, MAX}$ for frame size D at 690 V, using 60 PWM in Normal torque mode (110% over torque). Note: not valid for P315.

60 PWM - Pulse Width Modulation, 525 - 690 V, P315

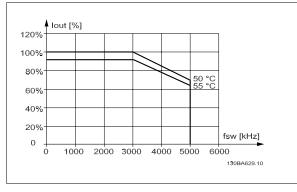


Illustration 4.21: Derating of Iout for different TAMB, MAX for frame size D at 690 V, using 60 PWM in High torque mode (160% over torque). Note: P315 only.

SFAVM - Stator Frequency Asyncron Vector Modulation, 525 -690 V (except P315)

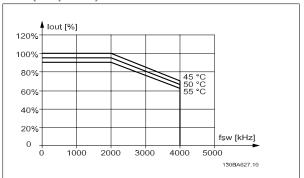


Illustration 4.18: Derating of I_{out} for different $T_{\text{AMB, MAX}}$ for frame size D at 690 V, using SFAVM in High torque mode (160% over torque). Note: not valid for P315.

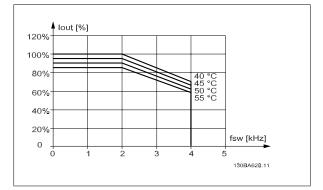


Illustration 4.20: Derating of I_{out} for different $T_{AMB, MAX}$ for frame size D at 690 V, using SFAVM in Normal torque mode (110% over torque). Note: not valid for P315.

SFAVM - Stator Frequency Asyncron Vector Modulation, 525 -690 V, P315

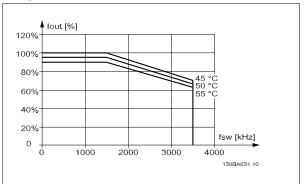


Illustration 4.22: Derating of Iout for different TAMB, MAX for frame size D at 690 V, using SFAVM in High torque mode (160% over torque). Note: P315 only.

Danfoss

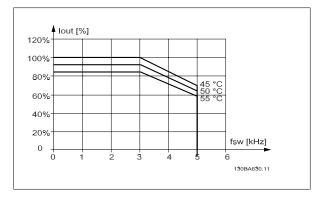


Illustration 4.23: Derating of I_{out} for different $T_{AMB, MAX}$ for frame size D at 690 V, using 60 PWM in Normal torque mode (110% over torque). Note: P315 *only*.

Frame sizes E and F

60 PWM - Pulse Width Modulation, 380 - 500 V

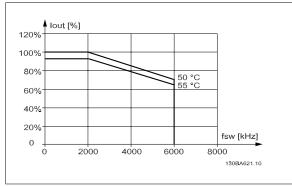


Illustration 4.25: Derating of I_{out} for different $T_{AMB,\;MAX}$ for frame sizes E and F at 500 V, using 60 PWM in High torque mode (160% over torque)

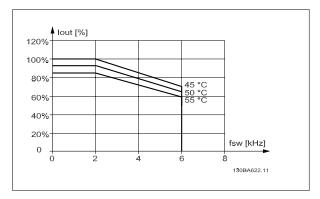


Illustration 4.27: Derating of I_{out} for different $T_{AMB,\ MAX}$ for frame sizes E and Fat 500 V, using 60 PWM in Normal torque mode (110% over torque)

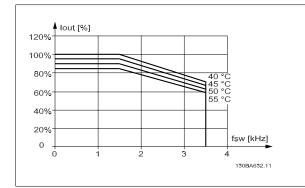


Illustration 4.24: Derating of I_{out} for different $T_{AMB, MAX}$ for frame size D at 690 V, using SFAVM in Normal torque mode (110% over torque). Note: P315 *only*.

SFAVM - Stator Frequency Asyncron Vector Modulation, 380 - 500 V

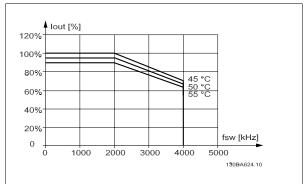


Illustration 4.26: Derating of I_{out} for different $T_{AMB, MAX}$ for frame sizes E and F at 500 V, using SFAVM in High torque mode (160% over torque).

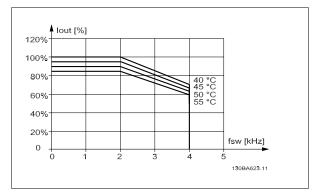


Illustration 4.28: Derating of I_{out} for different $T_{\text{AMB},\ \text{MAX}}$ for frame sizes E and F at 500 V, using SFAVM in Normal torque mode (110% over torque)

60 PWM - Pulse Width Modulation, 525 - 690 V

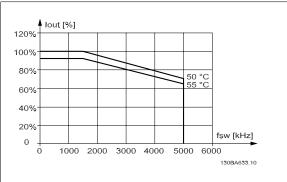


Illustration 4.29: Derating of I_{out} for different $T_{AMB, MAX}$ for frame sizes E and F at 690 V, using 60 PWM in High torque mode (160% over torque).

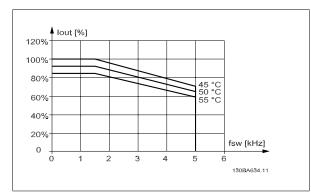


Illustration 4.31: Derating of I_{out} for different $T_{AMB,\ MAX}$ for frame sizes E and F at 690 V, using 60 PWM in Normal torque mode (110% over torque).

4.9.3 Derating for Low Air Pressure

The cooling capability of air is decreased at lower air pressure.

Below 1000 m altitude no derating is necessary but above 1000 m the ambient temperature (T_{AMB}) or max. output current (I_{out}) should be derated in accordance with the shown diagram.

SFAVM - Stator Frequency Asyncron Vector Modulation, 525 - 690 V

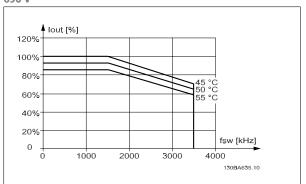


Illustration 4.30: Derating of I_{out} for different $T_{AMB, MAX}$ for frame sizes E and F at 690 V, using SFAVM in High torque mode (160% over torque).

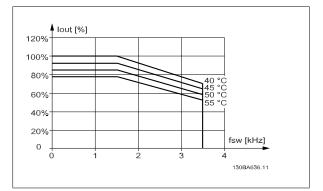


Illustration 4.32: Derating of I_{out} for different $T_{AMB,\ MAX}$ for frame sizes E and F at 690 V, using SFAVM in Normal torque mode (110% over torque).

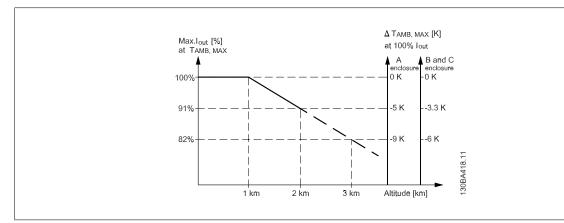
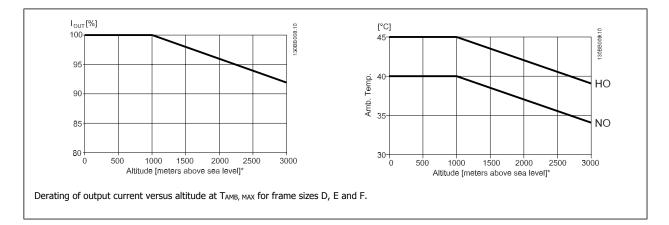



Illustration 4.33: Derating of output current versus altitude at T_{AMB, MAX} for frame sizes A, B and C. At altitudes above 2 km, please contact Danfoss Drives regarding PELV.

An alternative is to lower the ambient temperature at high altitudes and thereby ensure 100% output current at high altitudes. As an example of how to read the graph, the situation at 2 km is elaborated. At a temperature of 45° C ($T_{AMB, MAX}$ - 3.3 K), 91% of the rated output current is available. At a temperature of 41.7° C, 100% of the rated output current is available.

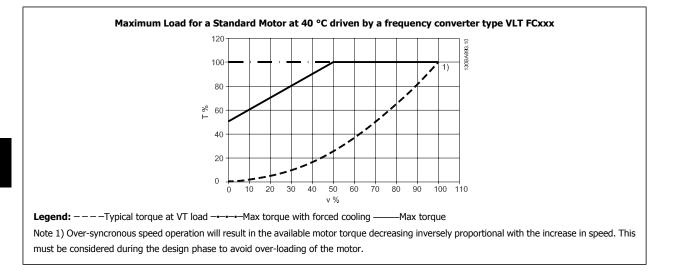
4.9.4 Derating for Running at Low Speed

When a motor is connected to a frequency converter, it is necessary to check that the cooling of the motor is adequate. The level of heating depends on the load on the motor, as well as the operating speed and time.

Constant torque applications (CT mode)

A problem may occur at low RPM values in constant torque applications. In a constant torque application s a motor may over-heat at low speeds due to less cooling air from the motor integral fan.

Therefore, if the motor is to be run continuously at an RPM value lower than half of the rated value, the motor must be supplied with additional air-cooling (or a motor designed for this type of operation may be used).


An alternative is to reduce the load level of the motor by choosing a larger motor. However, the design of the frequency converter puts a limit to the motor size.

Variable (Quadratic) torque applications (VT)

In VT applications such as centrifugal pumps and fans, where the torque is proportional to the square of the speed and the power is proportional to the cube of the speed, there is no need for additional cooling or de-rating of the motor.

In the graphs shown below, the typical VT curve is below the maximum torque with de-rating and maximum torque with forced cooling at all speeds.

4.9.5 Automatic adaptations to ensure performance

The frequency converter constantly checks for critical levels of internal temperature, load current, high voltage on the intermediate circuit and low motor speeds. As a response to a critical level, the frequency converter can adjust the switching frequency and/ or change the switching pattern in order to ensure the performance of the drive.

5 How to Order

5.1.1 Drive Configurator

It is possible to design an FC 300 frequency converter according to the application requirements by using the ordering number system.

For the FC 300 Series, you can order standard drives and drives with integral options by sending a type code string describing the product to the local Danfoss sales office, i.e.:

FC-302PK75T5E20H1BGCXXXSXXXA0BXCXXXXD0

The meaning of the characters in the string can be located in the pages containing the ordering numbers in the chapter *How to Select Your VLT*. In the example above, a Profibus DP V1 and a 24 V back-up option is included in the drive.

Ordering numbers for FC 300 standard variants can also be located in the chapter FC 300 Selection.

From the Internet based Drive Configurator, you can configure the right drive for the right application and generate the type code string. The Drive Configurator will automatically generate an eight-digit sales number to be delivered to your local sales office. Furthermore, you can establish a project list with several products and send it to a Danfoss sales representative.

The Drive Configurator can be found on the global Internet site: www.danfoss.com/drives.

Drives will automatically be delivered with a language package relevant to the region from which it is ordered. Four regional language packages cover the following languages:

Language package 1

English, German, French, Danish, Dutch, Spanish, Swedish, Italian and Finnish.

Language package 2

English, German, Chinese, Korean, Japanese, Thai, Traditional Chinese and Bahasa Indonesian.

Language package 3

English, German, Slovenian, Bulgarian, Serbian, Romanian, Hungarian, Czech and Russian.

Language package 4

English, German, Spanish, English US, Greek, Brazilian Portuguese, Turkish and Polish.

To order drives with a different language package, please contact your local sales office.

5.1.2 Ordering Form Type Code

1 2 3	45	6	7	8	9	10	111	2 1	31	41	5 16	5 17	18	19	20	21	22	23	24	25	26 2	27	28 2	29 3	0 31	. 32	33	34	35	36	37	38	39	
FC-	0)	Ρ			•	Т				┠	1					Х	Х	S	X	X	X	X	4	B	8	С					D		
L		-		_	-		_	-	-	_		-	-	-						-		-	_		_	-		-		13	OB,	A052	2.14	1

Product groups	1-3	8
Frequency converter series	4-6	
Power rating	8-10	
Phases	11	8
Mains Voltage	12	8
Enclosure	13-15	
Enclosure type		8
Enclosure class		8
Control supply volt- age		H
Hardware configu- ration		E
RFI filter	16-17	
Brake	18	
Display (LCP)	19	
Coating PCB	20	
Mains option	21	
Adaptation A	22	
Adaptation B	23	8
Software release	24-27	
Software language	28	8
A options	29-30	
B options	31-32	8
C0 options, MCO	33-34	8
C1 options	35	B
C option software	36-37	8
D options	38-39	9

Not all choices/options are available for each FC 301/FC 302 variant. To verify if the appropriate version is available, please consult the Drive Configurator on the Internet.

<u>Danfoss</u>

Description	Pos	Possible choice
Product group	1-3	FC 30x
Drive series	4-6	FC 301
		FC 302
Power rating	8-10	0.25-75 kW
Phases	11	Three phases (T)
Mains voltage	11-	T 2: 200-240 V AC
	12	T 4: 380-480 V AC T 5: 380-500 V AC
		T 6: 525-600 V AC
		T 7: 525-690 V AC
Enclosure	13-	E20: IP20
	15	E55: IP 55/NEMA Type 12
		P20: IP20 (with back plate)
		P21: IP21/ NEMA Type 1 (with back
		plate)
		P55: IP55/ NEMA Type 12 (with back plate)
		Z20: IP 20 ¹⁾
		E66: IP 66
RFI filter	16-	H1: RFI filter class A1/B1
	17	H2: No RFI filter, observes class A2
		H3: RFI filter class A1/B1 ¹⁾
		H6: RFI filter Maritime use ¹⁾
		HX: No filter (600 V only)
Brake	18	B: Brake chopper included
		X: No brake chopper included
		T: Safe Stop No brake ¹⁾
Display	19	U: Safe stop brake chopper ¹⁾ G: Graphical Local Control Panel (LCP)
Display	15	N: Numerical Local Control Panel (LCP)
		X: No Local Control Panel
Coating PCB	20	C: Coated PCB
		X. No coated PCB
Mains option	21	X: No mains option
		1: Mains disconnect
		3: Mains disconnect and Fuse ²⁾ 5: Mains disconnect, Fuse and Load
		sharing ^{2, 3)}
		7: Fuse ²⁾
		8: Mains disconnect and Load sharing ³⁾
		A: Fuse and Load sharing $^{2, 3)}$
		D: Load sharing ³⁾
Adaptation	22	Reserved
Adaptation	23	Reserved
Software release	27	Actual software
Software lan- guage	28	
 FC 301/ frame US Market onl Power sizes ≥ 	y	

Description	Pos	Possible choice
Product group	1-3	FC 302
Drive series	4-6	FC 302
Power rating	8-10	37-560 kW
Phases	11	Three phases (T)
Mains voltage	11-	T 5: 380-500 V AC
r lains voitage	12	T 7: 525-690 V AC
Enclosure	13-	E00: IP00/Chassis
2.10.000.0	15	C00: IP00/Chassis w/ stainless steel
	15	back channel
		E0D: IP00/Chassis, D3 P37K-P75K, T7
		COD: IPOO/Chassis w/ stainless steel
		back channel, D3 P37K-P75K, T7
		E21: IP 21/ NEMA Type 1
		E54: IP 54/ NEMA Type 12
		E2D: IP 21/ NEMA Type 1, D1 P37K-
		P75K, T7
		E5D: IP 54/ NEMA Type 12, D1 P37K-
		P75K, T7
		E2M: IP 21/ NEMA Type 1 with mains
		shield
		E5M: IP 54/ NEMA Type 12 with mains
		shield
RFI filter	16-	H2: RFI filter, class A2 (standard)
	17	H4: RFI filter class A1 ¹⁾
		H6: RFI filter Maritime use ²⁾
Brake	18	B: Brake IGBT mounted
		X: No brake IGBT
		R: Regeneration terminals (E frames
		only)
Display	19	G: Graphical Local Control Panel LCP
		N: Numerical Local Control Panel (LCP)
		X: No Local Control Panel (D frames
		IP00 and IP 21 only)
Coating PCB	20	C: Coated PCB
		X. No coated PCB (D frames
		380-480/500 V only)
Mains option	21	X: No mains option
		3: Mains disconnect and Fuse
		5: Mains disconnect, Fuse and Load sharing
		7: Fuse
		A: Fuse and Load sharing
		D: Load sharing
Adaptation	22	Reserved
Adaptation	22	Reserved
Software re-		Actual software
lease	24-	Actual Soltware
Software lan-		
	20	
guage		

2) Consult factory for applications requiring maritime certification

٦

Ordering type	code frar	
Description	Pos	Possible choice
Des du stranger	1.2	FC 202
Product group Drive series	1-3 4-6	FC 302 FC 302
Power rating	8-10	450 - 1200 kW
Phases	11	Three phases (T)
Mains voltage	11-	T 5: 380-500 V AC
Enclosure	12 13-	T 7: 525-690 V AC E21: IP 21/ NEMA Type 1
LICIOSULE	15	E54: IP 54/ NEMA Type 12
		L2X: IP21/NEMA 1 with cabinet light &
		IEC 230V power outlet
		L5X: IP54/NEMA 12 with cabinet light &
		IEC 230V power outlet L2A: IP21/NEMA 1 with cabinet light &
		NAM 115V power outlet
		L5A: IP54/NEMA 12 with cabinet light &
		NAM 115V power outlet
		H21: IP21 with space heater and ther- mostat
		H54: IP54 with space heater and ther-
		mostat
		R2X: IP21/NEMA1 with space heater,
		thermostat, light & IEC 230V outlet
		R5X: IP54/NEMA12 with space heater, thermostat, light & IEC 230V outlet
		R2A: IP21/NEMA1 with space heater,
		thermostat, light, & NAM 115V outlet
		R5A: IP54/NEMA12 with space heater,
DET Chan	10	thermostat, light, & NAM 115V outlet
RFI filter	16- 17	H2: RFI filter, class A2 (standard) H4: RFI filter, class A1 ^{2, 3)}
	11/	HE: RCD with Class A2 RFI filter ²⁾
		HF: RCD with class A1 RFI filter ^{2, 3)}
		HG: IRM with Class A2 RFI filter ²⁾
		HH: IRM with class A1 RFI filter ^{2, 3)}
		HJ: NAMUR terminals and class A2 RFI
		filter ¹⁾ HK: NAMUR terminals with class A1 RFI
		filter ^{1, 2, 3}
		HL: RCD with NAMUR terminals and
		class A2 RFI filter ^{1, 2)}
		HM: RCD with NAMUR terminals and
		class A1 RFI filter ^{1, 2, 3}
		HN: IRM with NAMUR terminals and class A2 RFI filter ^{1, 2)}
		HP: IRM with NAMUR terminals and
		class A1 RFI filter ^{1, 2, 3)}
Brake	18	B: Brake IGBT mounted
		X: No brake IGBT
		R: Regeneration terminals
		M: IEC Emergency stop pushbutton (with Pilz safety relay) ⁴)
		N: IEC Emergency stop pushbutton
		with brake IGBT and brake terminals ⁴⁾
		P: IEC Emergency stop pushbutton with
Disalar	10	regeneration terminals ⁴)
Display Coating BCR	19	G: Graphical Local Control Panel LCP
Coating PCB Mains option	20	C: Coated PCB X: No mains option
	21	3 ² : Mains disconnect and Fuse
		5 ²): Mains disconnect, Fuse and Load
		sharing
		7: Fuse
		A: Fuse and Load sharing
		D: Load sharing E: Mains disconnect, contactor &
		fuses ²⁾
		F: Mains circuit breaker, contactor &
		fuses ²)
		G: Mains disconnect, contactor, load-
		sharing terminals & fuses ²⁾
		H: Mains circuit breaker, contactor,
		loadsharing terminals & fuses ²) J: Mains circuit breaker & fuses ²)
		K: Mains circuit breaker & fuses 27
		terminals & fuses ²⁾

Description	Pos	Possible choice
Power Terminals & Motor Starters	22	X: No option E 30 A, fuse-protected power terminals F: 30A, fuse-protected power terminals & 2.5-4 A manual motor starter G: 30A, fuse-protected power terminals & 4-6.3 A manual motor starter H: 30A, fuse-protected power terminals & 6.3-10 A manual motor starter J: 30A, fuse-protected power terminals & 10-16 A manual motor starter K: Two 2.5-4 A manual motor starters L: Two 4-6.3 A manual motor starters M: Two 6.3-10 A manual motor starters N: Two 10-16 A manual motor starters
Auxiliary 24V Supply & Exter- nal Temperature Monitoring	23	X: No option H: 5A, 24V power supply (customer use) J: External temperature monitoring G: 5A, 24V power supply (customer use) & external temperature monitoring
Software release	24- 27	Actual software
Software lan- guage	28	

MCB 113 Extended Relay Card and MCB 112 PTC Thermistor Card required for NAMUR terminals
 F3 and F4 frames only
 380-480/500 V only
 Requires contactor

Description	Pos	ons (all frame sizes) Possible choice
A options	29-	AX: No A option
	30	A0: MCA 101 Profibus DP V1 (stand-
		ard)
		A1: MCA 101 Profibus DP V1 (with
		top-entry)
		A4: MCA 104 DeviceNet (standard)
		A4: MCA 104 DeviceNet (with top-
		entry)
		A6: MCA 105 CANOpen (standard)
		A6: MCA 105 CANOpen (with top-
		entry)
		AN: MCA 121 Ethernet IP
		AT: MCA 113 Profibus converter
		VLT3000
D .::	24	AY: MCA 123 Ethernet PowerLink
B options	31- 32	BX: No option
	32	BK: MCB 101 General purpose I/O
		option BR: MCB 102 Encoder option
		BU: MCB 103 Resolver option
		BP: MCB 105 Relay option
		BZ: MCB 108 Safety PLC Interface
		B2: MCB 112 PTC Thermistor Card
C0 options	33-	CX: No option
	34	C4: MCO 305, Programmable Mo-
		tion Controller.
C1 options	35	X: No option
		R: MCB 113 Ext. Relay Card
C option software	36-	XX: Standard controller
	37	10: MCO 350 Synchronizing control
		11: MCO 351 Positioning control
		12: MCO 352 Center winder
D options	38-	DX: No option
	39	D0: DC back-up
		D0: MCB 107 Ext. 24 V back-up

MG.33.BB.02 - $\mathsf{VLT}^{\circledast}$ is a registered Danfoss trademark

5.2.1 Ordering Numbers: Options and Accessories

Гуре	Description	Orde	ring no.
Miscellaneous hardware			
DC link connector	Terminal block for DC link connection on frame size A2/A3	130B1064	
P 21/4X top/TYPE 1 kit	Enclosure, frame size A1: IP21/IP 4X Top/TYPE 1	130B1121	
P 21/4X top/TYPE 1 kit	Enclosure, frame size A2: IP21/IP 4X Top/TYPE 1	130B1122	
P 21/4X top/TYPE 1 kit	Enclosure, frame sizeA3: IP21/IP 4X Top/TYPE 1	130B1123	
ICF 101 IP21 Kit	IP21/NEMA 1 enclosure Top Cover A2	130B1132	
ICF 101 IP21 Kit	IP21/NEMA 1 enclosure Top Cover A3	130B1133	
ICF 108 Backplate	A5 IP55/ NEMA 12	130B1098	
ICF 108 Backplate	B11 IP21/ IP55/ NEMA 12	130B3383	
ICF 108 Backplate	B2 IP21/ IP55/ NEMA 12	130B3397	
ICF 108 Backplate	C1 IP21/ IP55/ NEMA 12	130B3910	
ICF 108 Backplate	C2 IP21/ IP55/ NEMA 12	130B3911	
ICF 108 Backplate	A5 IP66/ NEMA 4x Stainless steel	130B3242	
1CF 108 Backplate	B1 IP66/ NEMA 4x Stainless steel	130B3434	
ICF 108 Backplate	B2 IP66/ NEMA 4x Stainless steel	130B3465	
1CF 108 Backplate	C1 IP66/ NEMA 4x Stainless steel	130B3468	
ICF 108 Backplate	C2 IP66/ NEMA 4x Stainless steel	130B3491	
Profibus top entry	Top entry for D and E frame, enclosure type IP 00 and IP21	176F1742	
Profibus D-Sub 9	D-Sub connector kit for IP20, frame sizes A1, A2 and A3	130B1112	
rofibus screen plate	Profibus screen plate kit for IP20, frame sizes A1, A2 and A3	130B0524	
erminal blocks	Screw terminal blocks for replacing spring loaded terminals	10001111	
	1 pc 10 pin 1 pc 6 pin and 1 pc 3 pin connectors	130B1116	
JSB Cable Extension for A5/ B1		130B1155	
JSB Cable Extension for B2/ C1/		130B1156	
ootmount frame for flat pack res		175U0085	
Footmount frame for flat pack res		175U0088	
ootmount frame for 2 flat pack r		175U0087	
Footmount frame for 2 flat pack r		175U0086	
Ordering numbers for Duct Coolin	g kits, NEMA 3R kits, Pedestal kits, Input Plate Option kits and Mains Shield	can be found in s	section <i>High Pa</i>
Options			
.CP			
CP 101	Numerical Local Control Panel (NLCP)	130B1124	
CP 102	Graphical Local Control Panel (GLCP)	130B1107	
.CP cable	Separate LCP cable, 3 m	175Z0929	
CP kit, IP21	Panel mounting kit including graphical LCP, fasteners, 3 m cable and gasket		
CP kit, IP21	Panel mounting kit including graphical LCP, fasteners and gasket	130B1114	
CP kit, IP21			
	ranel mounting kit for all LCFS including fasteners, 5 m cable and gasket		Cashad
Options for Slot A	Dus Characterian DD 1/0/1/1	Uncoated	Coated
MCA 101	Profibus option DP V0/V1	130B1100	130B120
4CA 104	DeviceNet option	130B1102	130B120
MCA 105	CANopen	130B1103	130B120
ICA 113	Profibus VLT3000 protocol converter	130B1245	
Options for Slot B			
Options for Slot B	General purpose Input Output option	130B1125	130B121
Dptions for Slot B 4CB 101	General purpose Input Output option	130B1125 130B1115	130B121
Dptions for Slot B MCB 101 MCB 102	Encoder option	130B1115	130B120
Options for Slot B MCB 101 MCB 102 MCB 103	Encoder option Resolver option	130B1115 130B1127	130B120 130B122
Options for Slot B 4CB 101 4CB 102 4CB 103 4CB 103 4CB 105	Encoder option Resolver option Relay option	130B1115 130B1127 130B1110	130B120 130B122 130B121
Options for Slot B 4CB 101 4CB 102 4CB 103 4CB 103 4CB 105 4CB 108	Encoder option Resolver option Relay option Safety PLC interface (DC/DC Converter)	130B1115 130B1127	130B120 130B122 130B121 130B122
Deptions for Slot B 4CB 101 4CB 102 4CB 103 4CB 105 4CB 105 4CB 108 4CB 112	Encoder option Resolver option Relay option	130B1115 130B1127 130B1110	130B120 130B122 130B121
Options for Slot B 4CB 101 4CB 102 4CB 103 4CB 105 4CB 108 4CB 112 Options for C0	Encoder option Resolver option Relay option Safety PLC interface (DC/DC Converter) ATEX PTC Thermistor Card	130B1115 130B1127 130B1110 130B1120	130B120 130B122 130B121 130B122
Options for Slot B 4CB 101 4CB 102 4CB 103 4CB 105 4CB 108 4CB 112 Options for C0 4ounting kit for frame size A2 and	Encoder option Resolver option Relay option Safety PLC interface (DC/DC Converter) ATEX PTC Thermistor Card d A3 (40 mm for one C option)	130B1115 130B1127 130B1110 130B1120 130B7530	130B120 130B122 130B121 130B122
ACB 101 ACB 101 ACB 102 ACB 103 ACB 105 ACB 105 ACB 108 ACB 112 Options for C0 Aounting kit for frame size A2 and Aounting kit for frame size A2 and	Encoder option Resolver option Relay option Safety PLC interface (DC/DC Converter) ATEX PTC Thermistor Card	130B1115 130B1127 130B1110 130B1120 130B7530 130B7531	130B120 130B122 130B121 130B122
Deptions for Slot B 4CB 101 4CB 102 4CB 103 4CB 105 4CB 105 4CB 105 4CB 112 Options for C0 4ounting kit for frame size A2 and 4ounting kit for frame size A5	Encoder option Resolver option Relay option Safety PLC interface (DC/DC Converter) ATEX PTC Thermistor Card d A3 (40 mm for one C option) d A3 (60 mm for C0 + C1 option)	130B1115 130B1127 130B110 130B1120 130B7530 130B7531 130B7532	130B120 130B122 130B121 130B122
Deptions for Slot B 4CB 101 4CB 102 4CB 103 4CB 105 4CB 105 4CB 112 Options for C0 4CD 112 Options for C0 4CD 112 Options for C0 4CD 112 00000000000000000000000000000000000	Encoder option Resolver option Relay option Safety PLC interface (DC/DC Converter) ATEX PTC Thermistor Card d A3 (40 mm for one C option) d A3 (60 mm for C0 + C1 option) D. E and F2 and 3 (except B3)	130B1115 130B1127 130B1110 130B1120 130B7530 130B7531 130B7532 130B7533	130B120 130B122 130B121 130B122
Deptions for Slot B ACB 101 ACB 102 ACB 103 ACB 103 ACB 105 ACB 105 ACB 112 Options for CO Aounting kit for frame size A2 an- Aounting kit for frame size A2 an- Aounting kit for frame size A2 an- Aounting kit for frame size A5 Aounting kit for frame size B3 (40)	Encoder option Resolver option Relay option Safety PLC interface (DC/DC Converter) ATEX PTC Thermistor Card d A3 (40 mm for one C option) d A3 (60 mm for C0 + C1 option) D. E and F2 and 3 (except B3) D mm for one C option)	130B1115 130B1127 130B110 130B1120 130B7530 130B7531 130B7532	130B120 130B122 130B121 130B122
Deptions for Slot B MCB 101 MCB 102 MCB 103 MCB 105 MCB 105 MCB 108 MCB 112 Options for C0 Mounting kit for frame size A2 and	Encoder option Resolver option Relay option Safety PLC interface (DC/DC Converter) ATEX PTC Thermistor Card d A3 (40 mm for one C option) d A3 (60 mm for C0 + C1 option) D. E and F2 and 3 (except B3) D mm for one C option)	130B1115 130B1127 130B1110 130B1120 130B7530 130B7531 130B7532 130B7533	130B120 130B122 130B121 130B122
ACB 101 ACB 102 ACB 103 ACB 103 ACB 105 ACB 105 ACB 112 Options for CO Aounting kit for frame size A2 an- Aounting kit for frame size A2 an- Aounting kit for frame size A2 an- Aounting kit for frame size A5 Aounting kit for frame size B3 (40	Encoder option Resolver option Relay option Safety PLC interface (DC/DC Converter) ATEX PTC Thermistor Card d A3 (40 mm for one C option) d A3 (60 mm for C0 + C1 option) D. E and F2 and 3 (except B3) D mm for one C option)	130B1115 130B1127 130B1110 130B1120 130B7530 130B7531 130B7532 130B7533 130B7533	130B120 130B122 130B121 130B122
Deptions for Slot B ACB 101 ACB 102 ACB 103 ACB 105 ACB 105 ACB 105 ACB 105 ACB 112 Options for CO Aounting kit for frame size A2 and Aounting kit for frame size A2 and Aounting kit for frame size A3 Aounting kit for frame size B3 (40 Aounting kit for frame size B3 (4	Encoder option Resolver option Relay option Safety PLC interface (DC/DC Converter) ATEX PTC Thermistor Card d A3 (40 mm for one C option) d A3 (60 mm for C0 + C1 option) D. E and F2 and 3 (except B3) 0 mm for one C option) 0 mm for C0 + C1 option)	130B1115 130B1127 130B1110 130B1120 130B7530 130B7531 130B7532 130B7533 130B7533 130B1413 130B1414	130B120 130B122 130B121 130B122 130B113
Options for Slot B 4CB 101 4CB 102 4CB 103 4CB 105 4CB 105 4CB 112 Options for C0 40unting kit for frame size A2 and 40unting kit for frame size A2 and 40unting kit for frame size A5 40unting kit for frame size B, C, I 4000000000000000000000000000000000000	Encoder option Resolver option Relay option Safety PLC interface (DC/DC Converter) ATEX PTC Thermistor Card d A3 (40 mm for one C option) d A3 (60 mm for C0 + C1 option) D. E and F2 and 3 (except B3) 0 mm for one C option) 0 mm for C0 + C1 option) Programmable Motion Controller	130B1115 130B1127 130B1120 130B120 130B7530 130B7531 130B7533 130B7533 130B1413 130B1134	130B120 130B122 130B121 130B122 130B113
Deptions for Slot B 4CB 101 4CB 102 4CB 103 4CB 105 4CB 105 4CB 105 4CB 112 Options for C0 4Ounting kit for frame size A2 and 4Ounting kit for frame size A2 and 4Ounting kit for frame size A3 4Ounting kit for frame size B3 (40 4Ounting kit for frame size B3 (40 Coptions for C1 4CO 305 4CO 350	Encoder option Resolver option Relay option Safety PLC interface (DC/DC Converter) ATEX PTC Thermistor Card d A3 (40 mm for one C option) d A3 (60 mm for C0 + C1 option) D. E and F2 and 3 (except B3) 0 mm for one C option) 0 mm for C0 + C1 option) Programmable Motion Controller Synchronizing controller	130B1115 130B1127 130B1120 130B7530 130B7531 130B7531 130B7533 130B7533 130B1413 130B1414 130B1134 130B1152	130B120 130B122 130B121 130B122 130B113 130B113 130B123 130B123 130B125
Deptions for Slot B ACB 101 ACB 102 ACB 103 ACB 103 ACB 105 ACB 105 ACB 112 Options for C0 Aounting kit for frame size A2 and Aounting kit for frame size A3 Aounting kit for frame size B3 (40 Aounting kit for frame size B3 (40 Options for C1 ACO 305 ACO 351	Encoder option Resolver option Relay option Safety PLC interface (DC/DC Converter) ATEX PTC Thermistor Card d A3 (40 mm for one C option) d A3 (60 mm for C0 + C1 option) D. E and F2 and 3 (except B3) D mm for one C option) D mm for C0 + C1 option) Programmable Motion Controller Synchronizing controller Positioning controller	130B1115 130B1127 130B1120 130B7530 130B7531 130B7531 130B7532 130B7533 130B1413 130B1414 130B1134 130B1152 130B1153	130B120 130B122 130B121 130B122 130B113 130B123 130B123 130B125 120B125
Deptions for Slot B ACB 101 ACB 102 ACB 103 ACB 105 ACB 105 ACB 105 ACB 112 Options for CO Aounting kit for frame size A2 and Aounting kit for frame size A2 and Aounting kit for frame size A2 and Aounting kit for frame size A3 Aounting kit for frame size B3 (40 Aounting kit for frame size B3 (40 Aounti	Encoder option Resolver option Relay option Safety PLC interface (DC/DC Converter) ATEX PTC Thermistor Card d A3 (40 mm for one C option) d A3 (60 mm for C0 + C1 option) D. E and F2 and 3 (except B3) D mm for one C option) D mm for C0 + C1 option) Programmable Motion Controller Synchronizing controller Positioning controller Center Winder Controller	130B1115 130B1127 130B1120 130B7530 130B7531 130B7532 130B7533 130B7533 130B1413 130B1414 130B1134 130B1152 130B1153 130B1153	130B120 130B122 130B121 130B122 130B113 130B113 130B123 130B125 120B125 130B116
Deptions for Slot B ICB 101 ICB 102 ICB 103 ICB 105 ICB 105 ICB 105 ICB 112 Options for CO Iounting kit for frame size A2 and Iounting kit for frame size A2 and Iounting kit for frame size A3 Iounting kit for frame size B3 (40 Iounting kit for frame size B3 (40 Options for C1 ICO 305 ICO 350 ICO 351 ICO 352 ICB 113	Encoder option Resolver option Relay option Safety PLC interface (DC/DC Converter) ATEX PTC Thermistor Card d A3 (40 mm for one C option) d A3 (60 mm for C0 + C1 option) D. E and F2 and 3 (except B3) D mm for one C option) D mm for C0 + C1 option) Programmable Motion Controller Synchronizing controller Positioning controller	130B1115 130B1127 130B1120 130B7530 130B7531 130B7531 130B7532 130B7533 130B1413 130B1414 130B1134 130B1152 130B1153	130B120 130B122 130B121 130B122 130B113 130B123 130B123 130B125 120B125
ACB 101 ACB 102 ACB 103 ACB 105 ACB 105 ACD 305 ACO 350 ACO 351 ACO 352 ACD 152 ACD	Encoder option Resolver option Relay option Safety PLC interface (DC/DC Converter) ATEX PTC Thermistor Card d A3 (40 mm for one C option) d A3 (60 mm for C0 + C1 option) D. E and F2 and 3 (except B3) 0 mm for one C option) 0 mm for c0 + C1 option) Programmable Motion Controller Synchronizing controller Positioning controller Center Winder Controller Extended Relay Card	130B1115 130B1127 130B1120 130B120 130B7530 130B7531 130B7532 130B7533 130B1413 130B1414 130B1134 130B1152 130B1153 130B1165 130B1164	130B120 130B122 130B121 130B122 130B113 130B123 130B123 130B125 120B125 130B16 130B126
Deptions for Slot B 4CB 101 4CB 102 4CB 103 4CB 105 4CB 105 4CB 105 4CB 112 Options for C0 4CD 112 Options for C0 4CD 112 Options for C0 4CD 112 00000000000000000000000000000000000	Encoder option Resolver option Relay option Safety PLC interface (DC/DC Converter) ATEX PTC Thermistor Card d A3 (40 mm for one C option) d A3 (60 mm for C0 + C1 option) D. E and F2 and 3 (except B3) D mm for one C option) D mm for C0 + C1 option) Programmable Motion Controller Synchronizing controller Positioning controller Center Winder Controller	130B1115 130B1127 130B1120 130B7530 130B7531 130B7532 130B7533 130B7533 130B1413 130B1414 130B1134 130B1152 130B1153 130B1153	130B120 130B122 130B121 130B122 130B113 130B113 130B123 130B125 120B125 130B116
Deptions for Slot B ACB 101 ACB 102 ACB 103 ACB 105 ACB 105 ACB 105 ACB 112 Options for C0 Aounting kit for frame size A2 and Aounting kit for frame size A2 and Aounting kit for frame size A3 Aounting kit for frame size B3 (40 Aounting kit for frame size B3 (40 Aounti	Encoder option Resolver option Relay option Safety PLC interface (DC/DC Converter) ATEX PTC Thermistor Card d A3 (40 mm for one C option) d A3 (60 mm for C0 + C1 option) D. E and F2 and 3 (except B3) 0 mm for one C option) D mm for C0 + C1 option) Programmable Motion Controller Synchronizing controller Positioning controller Center Winder Controller Extended Relay Card 24 V DC back-up	130B1115 130B1127 130B1120 130B7530 130B7531 130B7531 130B7533 130B1413 130B1414 130B1134 130B1152 130B1153 130B1165 130B1164 130B1108	130B120 130B122 130B121 130B122 130B113 130B123 130B123 130B125 120B125 130B16 130B126
Deptions for Slot B ACB 101 ACB 102 ACB 103 ACB 105 ACB 105 ACB 105 ACB 112 Options for CO Aounting kit for frame size A2 an- Aounting kit for frame size A3 Aounting kit for frame size B3 (40 Aounting kit for frame size B3 (40 Aounti	Encoder option Resolver option Relay option Safety PLC interface (DC/DC Converter) ATEX PTC Thermistor Card d A3 (40 mm for one C option) d A3 (60 mm for C0 + C1 option) D. E and F2 and 3 (except B3) 0 mm for one C option) 0 mm for c0 + C1 option) Programmable Motion Controller Synchronizing controller Positioning controller Center Winder Controller Extended Relay Card	130B1115 130B1127 130B1120 130B120 130B7530 130B7531 130B7532 130B7533 130B1413 130B1414 130B1134 130B1152 130B1153 130B1165 130B1164	130B120 130B122 130B121 130B122 130B113 130B123 130B123 130B125 120B125 130B16 130B126
Options for Slot B 4CB 101 4CB 102 4CB 103 4CB 105 4CB 105 4CB 108 4CB 112 Options for C0 Mounting kit for frame size A2 an- Mounting kit for frame size A5 Mounting kit for frame size B3 (40 MC0 305 MC0 305 MC0 350 MC0 351 MCB 113 Dption for Slot D MCB 107 External Options Ethernet IP PC Software	Encoder option Resolver option Relay option Safety PLC interface (DC/DC Converter) ATEX PTC Thermistor Card d A3 (40 mm for one C option) d A3 (60 mm for C0 + C1 option) D. E and F2 and 3 (except B3) D mm for one C option) D mm for C0 + C1 option) Programmable Motion Controller Synchronizing controller Positioning controller Center Winder Controller Extended Relay Card 24 V DC back-up Ethernet master	130B1115 130B1127 130B1120 130B7530 130B7531 130B7532 130B7533 130B7533 130B1134 130B1134 130B1152 130B1153 130B1153 130B1165 130B1164 130B1108	130B120 130B122 130B121 130B122 130B113 130B123 130B123 130B125 120B125 130B16 130B126
Options for Slot B ACB 101 ACB 102 ACB 103 ACB 105 ACB 107 Aounting kit for frame size A2 an- Aounting kit for frame size A5 Aounting kit for frame size B3 (40 Acounting kit for frame size B3 (40 Aounting kit for frame size B3 (40 Acounting kit for frame size B3 (40	Encoder option Resolver option Relay option Safety PLC interface (DC/DC Converter) ATEX PTC Thermistor Card d A3 (40 mm for one C option) d A3 (60 mm for C0 + C1 option) D. E and F2 and 3 (except B3) D mm for one C option) D mm for C0 + C1 option) D mm for C0 + C1 option) Programmable Motion Controller Synchronizing controller Positioning controller Center Winder Controller Extended Relay Card 24 V DC back-up Ethernet master MCT 10 set-up software - 1 user	130B1115 130B1127 130B1120 130B7530 130B7531 130B7532 130B7533 130B7533 130B1413 130B1134 130B1152 130B1153 130B1153 130B1165 130B1164 175N2584 130B1000	130B120 130B122 130B121 130B122 130B113 130B123 130B123 130B125 120B125 130B16 130B126
Options for Slot B ACB 101 ACB 102 ACB 103 ACB 105 ACB 107 Aounting kit for frame size A2 an Aounting kit for frame size A5 (4) Aounting kit for frame size B3 (4) Acounting kit for frame size B3 (4) Aco 305 ACO 351 Aco 352 Aco 113 Dption for Slot D AcB 107 External Options C	Encoder option Resolver option Relay option Safety PLC interface (DC/DC Converter) ATEX PTC Thermistor Card d A3 (40 mm for one C option) d A3 (60 mm for C0 + C1 option) D. E and F2 and 3 (except B3) D mm for one C option) D mm for c0 + C1 option) D mm for C0 + C1 option) Programmable Motion Controller Synchronizing controller Positioning controller Center Winder Controller Extended Relay Card 24 V DC back-up Ethernet master MCT 10 set-up software - 1 user MCT 10 set-up software - 5 users	130B1115 130B1127 130B1120 130B7530 130B7531 130B7532 130B7533 130B7533 130B1134 130B1134 130B1152 130B1153 130B1153 130B1165 130B1164 130B1108	130B120 130B122 130B121 130B122 130B113 130B123 130B123 130B125 120B125 130B16 130B126
Options for Slot B ACB 101 ACB 102 ACB 103 ACB 105 ACB 105 ACB 105 ACB 105 ACB 105 ACB 105 ACB 107 AOunting kit for frame size A2 an- Aounting kit for frame size A2 an- Aounting kit for frame size A2 an- Aounting kit for frame size A5 Aounting kit for frame size B3 (40 Aounting kit for frame size B3 (40 Aounting kit for frame size B3 (40 Aconting kit for frame size B3 (40 Acounting kit	Encoder option Resolver option Relay option Safety PLC interface (DC/DC Converter) ATEX PTC Thermistor Card d A3 (40 mm for one C option) d A3 (60 mm for C0 + C1 option) D. E and F2 and 3 (except B3) D mm for one C option) D mm for C0 + C1 option) D mm for C0 + C1 option) Programmable Motion Controller Synchronizing controller Positioning controller Center Winder Controller Extended Relay Card 24 V DC back-up Ethernet master MCT 10 set-up software - 1 user	130B1115 130B1127 130B1120 130B7530 130B7531 130B7532 130B7533 130B7533 130B1413 130B1134 130B1152 130B1153 130B1153 130B1165 130B1164 175N2584 130B1000	130B120 130B122 130B121 130B122 130B113 130B123 130B123 130B125 120B125 130B16 130B126
Options for Slot B 4CB 101 4CB 102 4CB 103 4CB 105 4CB 112 Options for C0 Aounting kit for frame size A2 an Aounting kit for frame size A5 Aounting kit for frame size B3 (40 Act 350 Act 10 Act 10 Act 10	Encoder option Resolver option Relay option Safety PLC interface (DC/DC Converter) ATEX PTC Thermistor Card d A3 (40 mm for one C option) d A3 (60 mm for C0 + C1 option) D. E and F2 and 3 (except B3) D mm for one C option) D mm for c0 + C1 option) D mm for C0 + C1 option) Programmable Motion Controller Synchronizing controller Positioning controller Center Winder Controller Extended Relay Card 24 V DC back-up Ethernet master MCT 10 set-up software - 1 user MCT 10 set-up software - 5 users	130B1115 130B1127 130B1120 130B120 130B7530 130B7531 130B7532 130B7533 130B1413 130B11414 130B1152 130B1153 130B1153 130B1165 130B1164 130B1108 175N2584 130B1000 130B1001	130B120 130B122 130B121 130B122 130B113 130B123 130B123 130B125 120B125 130B16 130B126
Options for Slot B 4CB 101 4CB 102 4CB 103 4CB 105 4CB 112 Options for C0 Aounting kit for frame size A2 andounting kit for frame size A5 Aounting kit for frame size B3 (40 Acto 355 Acto 355 Acto 351 Acto 352 Acto 10 Acto 10 Acto 10 Acto 10 Acto 10 Acto 10	Encoder option Resolver option Relay option Safety PLC interface (DC/DC Converter) ATEX PTC Thermistor Card d A3 (40 mm for one C option) d A3 (60 mm for C0 + C1 option) D. E and F2 and 3 (except B3) D mm for one C option) D. E and F2 and 3 (except B3) D mm for C0 + C1 option) Programmable Motion Controller Synchronizing controller Positioning controller Center Winder Controller Extended Relay Card 24 V DC back-up Ethernet master MCT 10 set-up software - 1 user MCT 10 set-up software - 5 users MCT 10 set-up software - 25 users	130B1115 130B1127 130B1120 130B120 130B7530 130B7531 130B7531 130B7533 130B1413 130B1414 130B1134 130B1153 130B1165 130B1164 130B1108 175N2584 130B1000 130B1000 130B1002 130B1003	130B120 130B122 130B121 130B122 130B113 130B123 130B123 130B125 120B125 130B16 130B126
Options for Slot B 1CB 101 1CB 102 1CB 103 1CB 105 1CB 105 1CB 105 1CB 105 1CB 105 1CB 105 1CB 112 Options for CO 10unting kit for frame size A2 andounting kit for frame size A2 andounting kit for frame size A5 10unting kit for frame size B3 (40 1000 S50 1000 S52 1010 S60 1010 100 1010 100 1010 100 1010 100 1010 100 1010 100	Encoder option Resolver option Relay option Safety PLC interface (DC/DC Converter) ATEX PTC Thermistor Card d A3 (40 mm for one C option) d A3 (60 mm for C0 + C1 option) D. E and F2 and 3 (except B3) D mm for one C option) D mm for C0 + C1 option) Programmable Motion Controller Synchronizing controller Positioning controller Center Winder Controller Extended Relay Card 24 V DC back-up Ethernet master MCT 10 set-up software - 1 user MCT 10 set-up software - 5 users MCT 10 set-up software - 25 users MCT 10 set-up software - 50 users	130B1115 130B1127 130B1120 130B7530 130B7531 130B7532 130B7532 130B7533 130B1413 130B1134 130B1152 130B1153 130B1153 130B1165 130B1164 130B1108 130B1001 130B1000 130B1002 130B1003 130B1004	130B120 130B122 130B121 130B122 130B113 130B123 130B123 130B125 120B125 130B16 130B126
Options for Slot B 4CB 101 4CB 102 4CB 103 4CB 105 4CB 112 Options for C0 Aounting kit for frame size A2 an Aounting kit for frame size A5 Aounting kit for frame size B3 (40 Act 350 Act 10 Act 10 Act 10	Encoder option Resolver option Relay option Safety PLC interface (DC/DC Converter) ATEX PTC Thermistor Card d A3 (40 mm for one C option) d A3 (60 mm for C0 + C1 option) D. E and F2 and 3 (except B3) D mm for one C option) D. E and F2 and 3 (except B3) D mm for C0 + C1 option) Programmable Motion Controller Synchronizing controller Positioning controller Center Winder Controller Extended Relay Card 24 V DC back-up Ethernet master MCT 10 set-up software - 1 user MCT 10 set-up software - 5 users MCT 10 set-up software - 25 users	130B1115 130B1127 130B1120 130B120 130B7530 130B7531 130B7531 130B7533 130B1413 130B1414 130B1134 130B1153 130B1165 130B1164 130B1108 175N2584 130B1000 130B1000 130B1002 130B1003	130B120 130B122 130B121 130B122 130B113 130B123 130B123 130B125 120B125 130B16 130B126

Туре	Description	Orde	ring no.
Spare Parts			
Control board FC 302	Coated version	-	130B1109
Control board FC 301	Coated version	-	130B1126
Fan A2	Fan, frame size A2	130B1009	-
Fan A3	Fan, frame size A3	130B1010	-
Fan option C		130B7534	-
Backplate A5	Backplate for frame size A5	130B1098	
Connectors FC 300 Profibus	10 pieces Profibus connectors	130B1075	
Connectors FC 300 DeviceNet	10 pieces DeviceNet connectors	130B1074	
Connectors FC 302 10 pole	10 pieces 10 pole spring loaded connectors	130B1073	
Connectors FC 301 8 pole	10 pieces 8 pole spring loaded connectors	130B1072	
Connectors FC 300 5 pole	10 pieces 5 pole spring loaded connectors	130B1071	
Connectors FC 300 RS485	10 pieces 3 pole spring loaded connectors for RS 485	130B1070	
Connectors FC 300 3 pole	10 pieces 3 pole connectors for relay 01	130B1069	
Connectors FC 302 3 pole	10 pieces 3 pole connectors for relay 02	130B1068	
Connectors FC 300 Mains	10 pieces mains connectors IP20/21	130B1067	
Connectors FC 300 Mains	10 pieces mains connctors IP 55	130B1066	
Connectors FC 300 Motor	10 pieces motor connectors	130B1065	
Connectors FC 300 Brake DC bus	10 pieces brake/load sharing connectors	130B1073	
Accessory bag A1	Accessory bag, frame size A1	130B1021	
Accessory bag A5	Accessory bag, frame size A5 (IP55)	130B1023	
Accessory bag A2	Accessory bag, frame size A2/A3	130B1022	
Accessory bag B1	Accessory bag, frame size B1	130B2060	
Accessory bag B2	Accessory bag, frame size B2	130B2061	
Accessory bag MCO 305		130B7535	

5.2.2 Ordering Numbers: Accessory Bags

Туре	Description	Ordering no.
Accessory Bags		
Accessory bag A1	Accessory bag, frame size A1	130B1021
Accessory bag A2/A3	Accessory bag, frame size A2/A3	130B1022
Accessory bag A5	Accessory bag, frame size A5	130B1023
Accessory bag A1–A5	Accessory bag, frame size A1-A5 Brake and load sharing connector	130B0633
Accessory bag B1	Accessory bag, frame size B1	130B2060
Accessory bag B2	Accessory bag, frame size B2	130B2061
Accessory bag B3	Accessory bag, frame size B3	130B0980
Accessory bag B4	Accessory bag, frame size B4, 18.5-22 kW	130B1300
Accessory bag B4	Accessory bag, frame size B4, 30 kW	130B1301
Accessory bag C1	Accessory bag, frame size C1	130B0046
Accessory bag C2	Accessory bag, frame size C2	130B0047
Accessory bag C3	Accessory bag, frame size C3	130B0981
Accessory bag C4	Accessory bag, frame size C4, 55 kW	130B0982
Accessory bag C4	Accessory bag, frame size C4, 75 kW	130B0983

FC 301/ Pmotor							HC 301/FC 302						
						Selected	Selected resistor						
					Standard IP 20				Aluminiun	Aluminium Housed (Flatpack) IP65	ack) IP65	Marrie Handler	
			Duty Cycle 10%	cle 10%			Duty Cycle 40%					Max. torque load [%]	~[0%] neol:
FC 302	tor R _{min}	Rbr,nom ^c	Rrec	P _{br max}	Order no.	Rrec	P _{br max}	Order no.	R _{rec} per item	Duty cycle	Order no.	FC 301	FC 302
	v] [Ω]	[Ŋ]	[2]	[kw]	175Uxxxx	[Ŋ]	[kW]	175Uxxxx	[Ŋ]	%	175Uxxxx		
PK25 0.25		466.7	425	0.095	1841	425	0.430	1941	430Ω/100W	40	1002	145	160
		315.3	310	0.250	1842	310	0.800	1942	330Ω/100W	27	1003	145	160
PK37 0.37	17 284	315.3	310	0.250	1842	310	0.800	1942	310Ω/200W	55	0984	145	160
	5 190	211.0	210	0.285	1843	210	1.350	1943	220Ω/100W	20	1004	145	160
PK55 0.55		211.0	210	0.285	1843	210	1.350	1943	210Ω/200W	37	0987	145	160
	5 139	154.0	145	0.065	1820	145	0.260	1920	150Ω/100W	14	1005	145	160
PK75 0.75		154.0	I	-	ı	1	1	1	150Ω/200W	27	0989	145	160
P1K1 1.1	1 90	104.4	06	0.095	1821	06	0.430	1921	1000/100W	10	1006	145	160
P1K1 1.1	1 90	104.4	I	-	1		1	1	100Ω/200W	19	0991	145	160
P1K5 1.5		75.7	65	0.250	1822	65	0.800	1922	72 <u>0</u> /200W	14	0992	145	160
	2 46	51.0	50	0.285	1823	50	1.00	1923	50Ω/200W	10	6600	145	160
P3K0 3		37.0	35	0.430	1824	35	1.35	1924	35Ω/200W	2	0994	145	160
P3K0 3		37.0	I		1	-	-	1	72 <u>0</u> /200W	14	2X0992 ^a	145	160
P3K7 3.7	7 25	29.6	25	0.800	1825	25	3.00	1925	60Ω/200W	11	2X0996 ^a	145	160
		19.7	20	1	1826	20	3.5	1926	-	-	I	158	158
P7K5 7.5	5 13	14.3	15	2	1827	15	5	1927	-	-	I	153	153
P11K 11	6 1	9.6	10	2.8	1828	10	6	1928	-	1	I	154	154
		7.0	7	4	1829	7	10	1929	-	-	I	150	150
P18K 18.5	5 5.3	5.7	9	4.8	1830	6	12.7	1930		-	I	150	150
	2 4.2	5.0	4.7	9	1954	4.7	-	1	-	-	-	150	150
	2.9	3.7	3.3	8	1955	3.3		1	-	-	1	150	150
P37K 37		3.0	2.7	10	1956	2.7	1	1	1	'	I	150	150
^a Order two pieces, resistors must be connected in parallel	tors must be connec	sted in parallel.											
^b Max. load with the resistor in Danfoss standard program.	stor in Danfoss stand	dard program.											
^c R _{br,nom} is the nominal (recommended) resistor value that ensures a brake power on motor	ecommended) resist	tor value that ens	ures a brake po		shaft of 145% / 160% for 1 minute.	(160% for 1 m	ninute.						

Danfoss

MG.33.BB.02 - $\mathsf{VLT}^{\circledast}$ is a registered Danfoss trademark

Ordering Numbers: Brake Resistors Mains 380-500 V / 380-480 V	oers: Brake R V / 380-480	esistors V					FC 301	FC 301/FC 302							
							Selected	Selected resistor							
						Standard IP 20				Aluminium	Aluminium Housed (Flatpack) IP65	ack) IP65	Max touc	dr 102 local o	
				Duty Cycle 10%	de 10%			Duty Cycle 40%					Ivlax. torqu	Max. torque Ioau [%]	
FC 301/ FC 302	P _{motor}	R _{min}	R _{br,nom} c	Rrec	P _{br max}	Order no.	Rrec	Pbr max	Order no.	R _{rec} per item	Duty cycle	Order no.	FC 301	FC 302	
	[kW]	[Ŋ]	[Ŋ]	[ß]	[kw]	175Uxxxx	[Ŋ]	[kW]	175Uxxxx	[Ŋ]	%	175Uxxxx			
PK37	0.37	620	1360.2	620	0.065	1840	830	0.450	1976	830Ω/100W	20	1000	137	160	
PK55	0.55	620	915.0	620	0.065	1840	830	0.450	1976	830Ω/100W	20	1000	137	160	
PK75	0.75	601	667.6	620	0.065	1840	620	0.260	1940	620Ω/100W	14	1001	137	160	
PK75	0.75	601	667.6	T	1	1	T	T	I	620Ω/200W	40	0982	137	160	
P1K1	1.1	408	452.8	425	0.095	1841	425	0.430	1941	430Ω/100W	8	1002	137	160	
P1K1	1.1	408	452.8	T	-	-	1	Т	-	430Ω/200W	20	0983	137	160	
P1K5	1.5	297	330.4	310	0.250	1842	310	0.800	1942	310Ω/200W	16	0984	137	160	
P2K2	2.2	200	222.6	210	0.285	1843	210	1.35	1943	210Ω/200W	6	0987	137	160	
P3K0	m	145	161.4	150	0.430	1844	150	2.00	1944	150Ω/200W	5.5	0989	137	160	
P3K0	m	145	161.4	T	ı	,		ı	ı	300Ω/200W	12	2X0985 ^a	137	160	
P4K0	4	108	119.6	110	0.600	1845	110	2.40	1945	240Ω/200W	11	2X0986 ^a	137	160	
P5K5	5.5	77	86.0	80	0.850	1846	80	3.00	1946	160Ω/200W	6.5	2X0988 ^a	137	160	
P7K5	7.5	56	62.4	65	1.0	1847	65	4.50	1947	130Ω/200W	4	2X0990 ^a	137	160	
P11K	11	38	42.1	40	1.8	1848	40	5.00	1948	80Ω/240W	6	2X0090 ^a	137	160	
P15K	15	27	30.5	30	2.8	1849	30	9.30	1949	72Ω/240W	9	2X0091 ^a	137	160	
P18K	18.5	22	24.5	25	3.5	1850	25	12.70	1950					160	
P22K	22	18	20.3	20	4.0	1851	20	13.00	1951					160	
P30K	30	13.5	14.9	15	5.0	1852	15	16	1952					160	
P37K	37	108	12.0	12	6.0	1853	12	19	1953					150	
P45K	45	9.8	10.5	9.8	15	2008	9.8	38	2007					150	
P55K	55	7.3	8.6	7.3	13	6900	7.3	38	0068					150	
P75K	75	5.7	6.2	6.0	15	0067	6.0	45	0066					150	
P90K	90	3.6	5.2	3.8	22	1960	3.8	75	2x0072					150	
P110	110	3.0	4.2	3.2	27	1961	3.2	06	2x0073					150	
P132	132	2.5	3.5	2.6	32	1962	2.6	112	2x0074					150	
P160	160	2.0	2.9	2.1	39	1963	2.1	135	3x0075					150	
P200	200	1.6	2.3	3.3	56	2×1061	3.3								
P250	250	1.2	1.9	2.6	72	2x1062	2.6								
P315	315	1.2	1.5	2.6	72	2x1062	2.6								
P355-P800	355-800	1.2	1.3	2.6	72	2x1062	2.6								
^a Order two pieces, resistors must be connected in parallel	ss, resistors mu	ist be connecte	d in parallel.												
^b Max. load with the resistor in Danfoss standard program.	the resistor in I	Danfoss standa	rd program.												
^c R _{br,nom} is the nominal (recommended) resistor value that ensures a brake power on motor shaft of 137% / 160% for 1 minute.	minal (recomm	nended) resisto	r value that ens	ures a brake p	ower on motor	shaft of 137% /	' 160% for 1 n	ninute.							
															_

5 How to Order

5

<u>Danfoss</u>

Mains 525 - 690 V						FC 301/FC 302			
						Selected resistor			
						Standard IP 20			
				Duty Cycl	Duty Cycle 10% ^{a)}			Duty Cycle 40% ^{b)}	
FC 301/ FC 302	Pmotor	R _{min}	Rbr,nom	Rrec	Ppeak	Order no.	Rrec	Pbr max	Order no.
	[kW]	[<u>Ω]</u>	[IJ]	[<u></u> Ω]	[kW]	130Bxxxx	[IJ]	[kW]	130Bxxxx
ZK	37	20.9	23.5	22	52	2118	22	32	2118
P45K	45	17.1	19.3	18	64	2119	18	39	2119
P55K	55	14.3	15.8	15	76	2120	15	47	2120
P75K	75	10.5	11.5	11	104	2121	11	64	2121
S	06	8.6	9.6	9.1	126	2122	9.1	77	2122
P110	110	7.1	7.8	7.5	153	2123	7.5	63	2123
32	132	5.9	6.5	6.2	185	2124	6.2	113	2124
60	160	4.8	5.4	5.1	224	2125	5.1	137	2125
P200	200	3.7	4.3	7.8	147	2x2126 ^{c)}	7.8	06	2x2126 ^{c)}
20	250	3.1	3.4	6.6	173	2x2127 c)	6.6	106	2x2127 c)
15	315	2.6	2.7	5.4	212	2x2128 ^{c)}	5.4	130	2x2128 ^{c)}
55	355	1.9	2.4	4			4		
00	400	1.9	2.2	4			4		
P500	500	1.9	2.0	4			4		
P560-P1M0	560-1000	1.9	2.0	4			4		
10% duty cycle base	^{a)} 10% duty cycle based on 160% braking torque for 30 seconds during 300 second cyr	ue for 30 seconds duri	ng 300 second cycles.						
40% duty cycle base	^{b)} 40% duty cycle based on 100% braking torque for 240 seconds during 600 second cy	ue for 240 seconds dur	ring 600 second cycles.						
c) Order two reciptors as listed	Latad								

MG.33.BB.02 - $\mathsf{VLT}^{\circledast}$ is a registered Danfoss trademark

Danfoss

5.2.3 Ordering Numbers: Harmonic Filters

Harmonic filters are used to reduce mains harmonics.

- AHF 010: 10% current distortion
- AHF 005: 5% current distortion

IAHF,N	Typical Motor Used [kW]	Danfoss orde	ering number	Frequency converter size
		AHF 005	AHF 010	Frequency converter size
10	1.1 - 4	175G6600	175G6622	P1K1 - P4K0
19	5.5 - 7.5	175G6601	175G6623	P5K5 - P7K5
26	11	175G6602	175G6624	P11K
35	15 - 18.5	175G6603	175G6625	P15K - P18K
43	22	175G6604	175G6626	P22K
72	30 - 37	175G6605	175G6627	P30K - P37K
101	45 - 55	175G6606	175G6628	P45K - P55K
144	75	175G6607	175G6629	P75K
180	90	175G6608	175G6630	P90K
217	110	175G6609	175G6631	P110
289	132	175G6610	175G6632	P132
324	160	175G6611	175G6633	P160
370	200	175G6688	175G6691	P200
506	250	175G6609 + 175G6610	175G6631 + 175G6632	P250
613	315	175G6610 + 175G6611	175G6632 + 175G6633	P315
648	355	175G6611 + 175G6611	175G6633 + 175G6633	P355
694	400	175G6611 + 175G6688	175G6633 + 175G6691	P400

IAHF,N	Typical Motor Used [HP]	Danfoss orde	ering number	
		AHF 005	AHF 010	Frequency converter size
19	10 - 15	175G6612	175G6634	P11K
26	20	175G6613	175G6635	P15K
35	25 - 30	175G6614	175G6636	P18K - P22K
43	40	175G6615	175G6637	P30K
72	50 - 60	175G6616	175G6638	P37K - P45K
101	75	175G6617	175G6639	P55K
144	100 -125	175G6618	175G6640	P75K - P90K
180	150	175G6619	175G6641	P110
217	200	175G6620	175G6642	P132
289	250	175G6621		
324		175G6689 175G6692		
370	300	175G6690	175G6693	P200
434	350	175G6620 + 175G6620	175G6642 + 175G6642	P250
578	450 - 500	175G6621 + 175G6621	175G6643 + 175G6643	P315 - P355
694	550/600	175G6689 + 175G6690	175G6692 + 175G6693	P400

Matching the frequency converter and filter is pre-calculated based on 400V/480V and on a typical motor load (4 pole) and 160 % torque.

IAHF,N	500 V Typical Motor	Danfoss orde	ering number	Frequency convert-	525 V Typical Motor	Frequency converter
	Used [kW]	AHF 005	AHF 010	er size, 380-500 V	Used [kW]	size, 525-690 V
10	1.1 - 7.5	175G6644	175G6656	PK75 - P5K5		
19	11 - 15	175G6645	175G6657	P7K5 - P11K		
26	18.5 - 22	175G6646	175G6658	P15K - P18K		
35	30	175G6647	175G6659	P22K		
43	37	175G6648	175G6660	P30K		
72	45 - 55	175G6649	175G6661	P37K - P45K	30 - 45	P37K - P55K
101	75	175G6650	175G6662	P55K	55	P75K
144	90 - 110	175G6651	175G6663	P75K - P90K	75 - 90	P90K - P110
180	132	175G6652	175G6664	P110	110	P132
217	160	175G6653	175G6665	P132	132	P160
289	200	175G6654	175G6666	P160	160 - 200	P200 - P250
324	250	175G6655	175G6667	P200		
		175G6652 +	175G6664 +			
360		175G6652	175G6664		250	P315
		175G6652 +	175G66641 +			
397		175G6653	175G6665		300	P355
		175G6653 +	175G6665 +			
434		175G6653	175G6665		315	P400
		175G6653 +	175G6665 +			
506	355	175G6654	175G6666	P315	400	P500
		175G6654 +	175G6666 +			
578	400	175G6654	175G6666	P355	450	P560
		175G6655 +	175G66967 +			
648	500	175G6655	175G6667	P400	500	P630

IAHF,N	Typical Motor Used [kW]	Danfoss orde	ering number	
		AHF 005	AHF 010	Frequency converter size
43	37	130B2328	130B2293	P37K
72	45 - 55	130B2330	130B2295	P45K - P55K
101	75 - 90	130B2331	130B2296	P90K
144	110	130B2333	130B2298	P110
180	132	130B2334	130B2299	P132
217	160	130B2335	130B2300	P160
289	200 - 250	130B2333 + 130B2333	130B2301	P200 - P250
324		130B2334 + 130B2335	130B2302	
370	315 - 355	130B2334 + 130B2334	130B2304	P315 - P355
397	400	130B2334 + 130B2335	130B2299 + 130B2300	P400
506	500	2X 130B2333 + 130B2335	130B2300 + 130B2301	P500
578	560	2X 130B2334 + 130B2335	130B2301 + 130B2301	P560
613	630	130B2334 + 2X 130B2335	130B2301 + 130B2302	P630
740	710		130B2304 + 130B2304	P710

Matching the frequency converter and filter is pre-calculated based on 525V/690V and on a typical motor load (4 pole) and 160 % torque.

5.2.4 Ordering Numbers: Sine Wave Filter Modules, 200-500 VAC

Rated filter current at	Minimum switching	Maximum output	Part No. IP20	Part No. IP00	Frequency conve	erter size	
50Hz	frequency [kHz]	frequency [Hz]	Part NO. 1P20	Part NO. 1PUU	200-240V	380-440V	441-500V
2,5	5	120	130B2439	130B2404	PK25 - PK37	PK37 - PK75	PK37 - PK75
4,5	5	120	130B2441	130B2406	PK55	P1K1 - P1K5	P1K1 - P1K5
8	5	120	130B2443	130B2408	PK75 - P1K5	P2K2 - P3K0	P2K2 - P3K0
10	5	120	130B2444	130B2409		P4K0	P4K0
17	5	120	130B2446	130B2411	P2K2 - P4K0	P5K5 - P7K5	P5K5 - P7K
24	4	60	130B2447	130B2412	P5K5	P11K	P11K
38	4	60	130B2448	130B2413	P7K5	P15K - P18K	P15K - P18
48	4	60	130B2307	130B2281	P11K	P22K	P22K
62	3	60	130B2308	130B2282	P15K	P30K	P30K
75	3	60	130B2309	130B2283	P18K	P37K	P37K
115	3	60	130B2310	130B2284	P22K - P30K	P45K - P55K	P55K - P75I
180	3	60	130B2311	130B2285	P37K - P45K	P75K - P90K	P90K - P110
260	3	60	130B2312	130B2286		P110 - P132	P132
410	3	60	130B2313	130B2287		P160 - P200	P160 - P200
480	3	60	130B2314	130B2288		P250	P250
660	2	60	130B2315	130B2289		P315 - P355	P315 - P35
750	2	60	130B2316	130B2290		P400	P400 - P450
880	2	60	130B2317	130B2291		P450 - P500	P500 - P560
1200	2	60	130B2318	130B2292		P560 - P630	P630 - P710
1500	2	60	2X 130B2317	2X 130B2291		P710 - P800	P800

NB!

Matching the frequency converter and filter is pre-calculated based on 400V/480V and on a typical motor load (4 pole) and 160 % torque.

When using Sine-wave filters, the switching frequency should comply with filter specifications in par. 14-01 Switching Frequency.

5.2.5 Ordering Numbers: Sine-Wave Filter Modules, 525-690 VAC

Mains supply 3 x 525 to 600/ 690 V

Rated filter current	Minimum switching	Maximum output	Part No. IP20	Part No. IP00	Frequency converter	size
at 50Hz	frequency [kHz]	frequency [Hz]	Part NO. 1P20	Part NO. 1P00	525-600V	525-690V
13	2	60	130B2341	130B2321	PK75 - P7K5	
28	2	60	130B2342	130B2322	P11K - P18K	
45	2	60	130B2343	130B2323	P22K - P30K	P37K
76	2	60	130B2344	130B2324	P37K - P45K	P45K - P55K
115	2	60	130B2345	130B2325	P55K - P75K	P75K - P90K
165	2	60	130B2346	130B2326		P110 - P132
260	2	60	130B2347	130B2327		P160 - P200
303	2	60	130B2348	130B2329		P250
430	1,5	60	130B2370	130B2341		P315 - P400
530	1,5	60	130B2371	130B2342		P500
660	1,5	60	130B2381	130B2337		P560 - P630
765	1,5	60	130B2382	130B2338		P710
940	1,5	60	130B2383	130B2339		P800 - P900
1320	1,5	60	130B2384	130B2340		P1M0

Matching the frequency converter and filter is pre-calculated based on 525V/690V and on a typical motor load (4 pole) and 160 % torque.

NB! When using Sine-wave filters, the switching frequency should comply with filter specifications in par. 14-01 *Switching Frequency*.

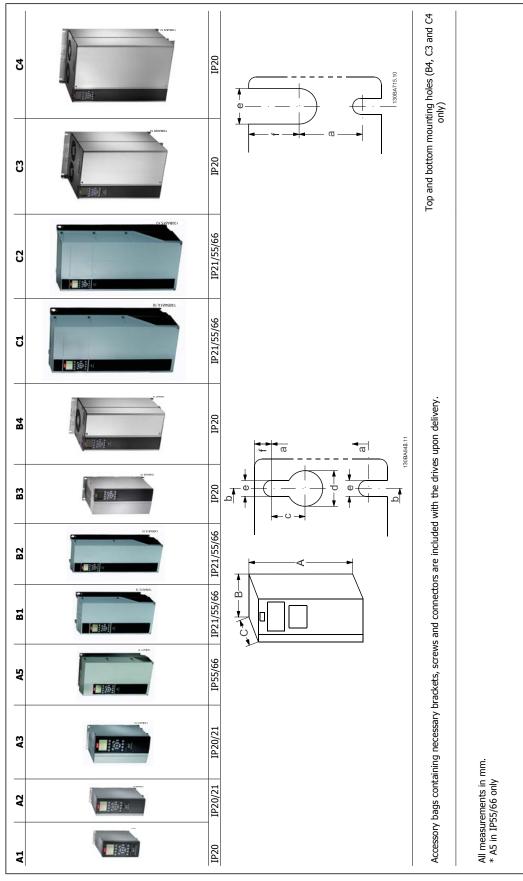
5.2.6 Ordering Numbers: du/dt Filters, 380-480/500 VAC

Mains supply 3x380-500 V

Rated filter current at 50 Hz	Minimum switching frequency	Maximum output frequency	Dart No. ID20	Part No. IP00	Frequency co	onverter size
	[kHz]	[Hz]	Fall NO. 1F20	Fait NO. 1FUU	380-440V	441-500V
24	4	60	130B2396	130B2385	P11K	P11K
45	4	60	130B2397	130B2386	P15K - P22K	P15K - P22K
75	3	60	130B2398	130B2387	P30K - P37K	P30K - P37K
110	3	60	130B2399	130B2388	P45K - P55K	P45K - P55K
182	3	60	130B2400	130B2389	P75K - P90K	P75K - P90K
280	3	60	130B2401	130B2390	P110 - P132	P110 - P132
400	3	60	130B2402	130B2391	P160 - P200	P160 - P200
500	3	60	130B2277	130B2275	P250	P250
750	2	60	130B2278	130B2276	P315 - P400	P315 - P450
910	2	60	130B2405	130B2393	P450 - P500	P500 - P560
1500	2	60	130B2407	130B2394	P560 - P800	P630 - P800

5.2.7 Ordering Numbers: du/dt Filters, 525-690 VAC

Mains supply 3x525-690 V


Dated filter surrent at CO Us	Minimum switching frequency	Maximum output frequency			Frequency co	nverter size
Rated filter current at 50 Hz	[kHz]	[Hz]	Part No. 1P20	Part No. IP00	525-600V	525-690V
28	3	60	130B2423	130B2414	P11K - P18K	
45	2	60	130B2424	130B2415	P22K - P30K	P37K
75	2	60	130B2425	130B2416	P37K - P45K	P45K - P55K
115	2	60	130B2426	130B2417	P55K - P75K	P75K - P90K
165	2	60	130B2427	130B2418		P110 - P132
260	2	60	130B2428	130B2419		P160 - P200
310	2	60	130B2429	130B2420		P250
430	1,5	60	130B2238	130B2235		P315 - P400
530	1,5	60	130B2239	130B2236		P500
630	1,5	60	130B2274	130B2280		P560 - P630
765	1,5	60	130B2430	130B2421		P710
1350	1,5	60	130B2431	130B2422		P800 - P1M0

6 Mechanical Installation - Frame Size A, B and Danfoss

 $\ensuremath{\mathsf{MG.33.BB.02}}$ - $\ensuremath{\mathsf{VLT}^{\circledast}}$ is a registered Danfoss trademark

6 Mechanical Installation - Frame Size A, B and C

6.1 Mechanical Installation

Frame Size		A1	4	A2	A3	m	A5	B1	B2	B 3	B4	5	8	C	2
Rated Power 200-240 V	r 200-240 V	0.25-1.5	0.2	0.25-3	3.7	2	0.25-3.7	5.5-7.5	11	5.5-7.5	11-15	15-22	30-37	18.5-22	30-37
[kw]	380-480/500 V	0.37-1.5	0.37	0.37-4.0		7.5	0.37-7.5	11-15	18.5-22	11-15	18.5-30	30-45	55-75	37-45	55-75
	525-600 V		0.75	0.75-4.0	5.5-	7.5	0.75-7.5	11-15	18.5-22	11-15	18.5-30	30-45	55-90	37-45	55-90
Ы		20	20	21	20	21	55/66	21/ 55/66	21/55/66	20	20	55/66	55/66	20	20
NEMA		Chassis	Chassis	Type 1	Chassis	lassis Type 1	Type 12	Type 1/Type 12	Type 1/Type 12	Chassis	Chassis	В	È	Chassis	Chassis
Height															
Height of back plate	<pre>< A</pre>	200 mm	268 mm	375 mm	268 mm	375 mm	420 mm	480 mm	650 mm	399 mm	520 mm	680 mm	770 mm	550 mm	660 mm
Height with de	Height with de-coupling plate A	316 mm	374 mm		374 mm	1	ı	1	ı	420 mm	595 mm			630 mm	800 mm
Distance beth holes	Distance between mounting a holes	190 mm	257 mm	350 mm	257 mm	350 mm	402 mm	454 mm	624 mm	380 mm	495 mm	648 mm	739 mm	521 mm	631 mm
Width															
Width of back plate	plate B	75 mm	90 mm	90 mm	130 mm	130 mm	242 mm	242 mm	242 mm	165 mm	230 mm	308 mm	370 mm	308 mm	370 mm
Width of back option	Width of back plate with one C B option		130 mm	130 mm	170 mm	170 mm	242 mm	242 mm	242 mm	205 mm	230 mm	308 mm	370 mm	308 mm	370 mm
Width of back options	Width of back plate with two C B options		150 mm	150 mm	190 mm	190 mm	242 mm	242 mm	242 mm	225 mm	230 mm	308 mm	370 mm	308 mm	370 mm
Distance betr holes	between mounting _b	60 mm	70 mm	70 mm	110 mm	110 mm	215 mm	210 mm	210 mm	140 mm	200 mm	272 mm	334 mm	270 mm	330 mm
Depth															
Depth without option A/B			205 mm	207 mm		207 mm	195 mm	260 mm	260 mm	249 mm	242 mm	310 mm	335 mm	333 mm	333 mm
With option A/B	/B	222 mm	220 mm	222 mm	220 mm	222 mm	195 mm	260 mm	260 mm	262 mm	242 mm	310 mm	335 mm	333 mm	333 mm
Screw holes															
	U	6.0 mm	8.0 mm	8.0 mm	8.0 mm	8.0 mm	8.25 mm	12 mm	12 mm	8 mm		12.5 mm	12.5 mm		
	p	ø8 mm	ø11 mm	ø11 mm		ø11 mm	ø12 mm	ø19 mm	ø19 mm	12 mm		ø19 mm	ø19 mm		
	e	ø5 mm	ø5.5 mm	ø5.5 mm	ø5.5 mm	ø5.5 mm	ø6.5 mm	ø9 mm	ø9 mm	6.8 mm	8.5 mm	ø9 mm	ø9 mm	8.5 mm	8.5 mm
	Ŧ	5 mm	9 mm	9 mm	9 mm	mm	9 mm	9 mm	9 mm	7.9 mm	15 mm	9.8 mm	9.8 mm	17 mm	17 mm
Max weight		2.7 kg	4.9 kg	5.3 kg	6.6 kg	7.0 kg	13.5/14.2 kg	23 kg	27 kg	12 kg	23.5 kg	45 kg	65 kg	35 kg	50 kg

6.1.1 Mechanical mounting

All IP20 Frame Sizes as well as IP21/ IP55 Frame Sizes except A1*, A2 and A3 allow side-by-side installationOpen Chassis, Nema 12, and Nema 4 drives can be mounted side-by-side..

If the IP 21 Enclosure kit is used on frame size A1, A2 or A3, there must be a clearance between the drives of min. 50 mm.

For optimal cooling conditions allow a free air passage above and below the frequency converter. See table below.

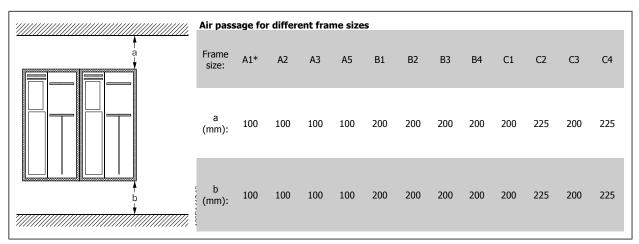


Table 6.1: * FC 301 only!

- 1. Drill holes in accordance with the measurements given.
- 2. You must provide screws suitable for the surface on which you want to mount the frequency converter. Retighten all four screws.

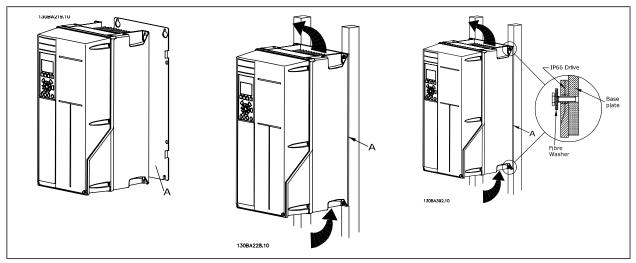


Table 6.1: Mounting frame sizes A5, B1, B2, B3, B4, C1, C2, C3 and C4 on a non-solid back wall, the drive must be provided with a back plate A due to insufficient cooling air over the heat sink.

6.1.2 Safety Requirements of Mechanical Installation

Pay attention to the requirements that apply to integration and field mounting kit. Observe the information in the list to avoid serious damage or injury, especially when installing large units.

The frequency converter is cooled by means of air circulation.

To protect the unit from overheating, it must be ensured that the ambient temperature *does not exceed the maximum temperature stated for the frequency converter* and that the 24-hour average temperature *is not exceeded.* Locate the maximum temperature and 24-hour average in the paragraph *Derating for Ambient Temperature.*

If the ambient temperature is in the range of 45 °C - 55 ° C, derating of the frequency converter will become relevant, see *Derating for Ambient Temperature*.

The service life of the frequency converter is reduced if derating for ambient temperature is not taken into account.

Mounting

6

- Mount the filter vertically with the output (motor side) at the bottom
- Do not mount the filter close to other heating elements or heat sensitive material (such as wood)
- Filter can be side-mounted with the frequency converter. There is no requirement for spacing between the filter and frequency converter.

6.1.3 Field Mounting

For field mounting the IP 21/IP 4X top/TYPE 1 kits or IP 54/55 units are recommended.

7 Mechanical Installation - Frame Size D, E and F

7.1 Pre-installation

7.1.1 Planning the Installation Site

NB!

Before performing the installation it is important to plan the installation of the frequency converter. Neglecting this may result in extra work during and after installation.

Select the best possible operation site by considering the following (see details on the following pages, and the respective Design Guides):

- Ambient operating temperature
- Installation method
- How to cool the unit
- Position of the frequency converter
- Cable routing
- Ensure the power source supplies the correct voltage and necessary current
- Ensure that the motor current rating is within the maximum current from the frequency converter
- If the frequency converter is without built-in fuses, ensure that the external fuses are rated correctly.

7.1.2 Receiving the Frequency Converter

When receiving the frequency converter please make sure that the packaging is intact, and be aware of any damage that might have occurred to the unit during transport. In case damage has occurred, contact immediately the shipping company to claim the damage.

7.1.3 Transportation and Unpacking

Before unpacking the frequency converter it is recommended that it is located as close as possible to the final installation site. Remove the box and handle the frequency converter on the pallet, as long as possible.

NB!

The card box cover contains a drilling master for the mounting holes in the D frames. For the E size, please refer to section *Mechanical Dimensions* later in this chapter.

Illustration 7.1: Mounting Template

7.1.4 Lifting

Always lift the frequency converter in the dedicated lifting eyes. For all D and E2 (IP00) frames, use a bar to avoid bending the lifting holes of the frequency converter.

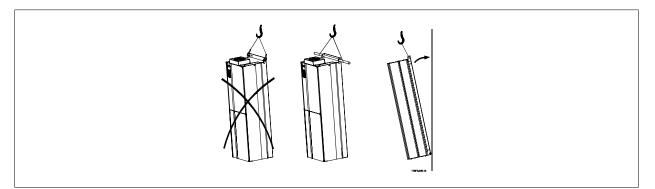


Illustration 7.1: Recommended lifting method, frame sizes D and E .

NB!

The lifting bar must be able to handle the weight of the frequency converter. See *Mechanical Dimensions* for the weight of the different frame sizes. Maximum diameter for bar is 25 cm (1 inch). The angle from the top of the drive to the lifting cable should be 60 degrees or greater.

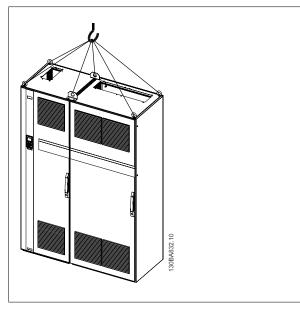


Illustration 7.1: Recommended lifting method, frame size F1.

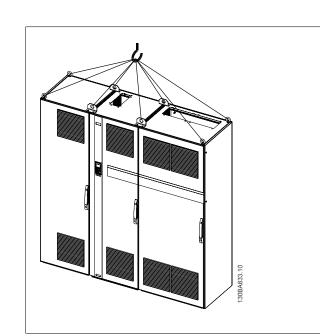


Illustration 7.1: Recommended lifting method, frame size F3.

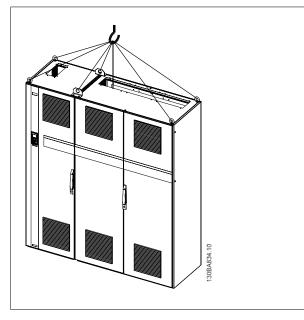
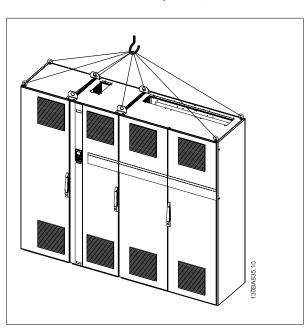
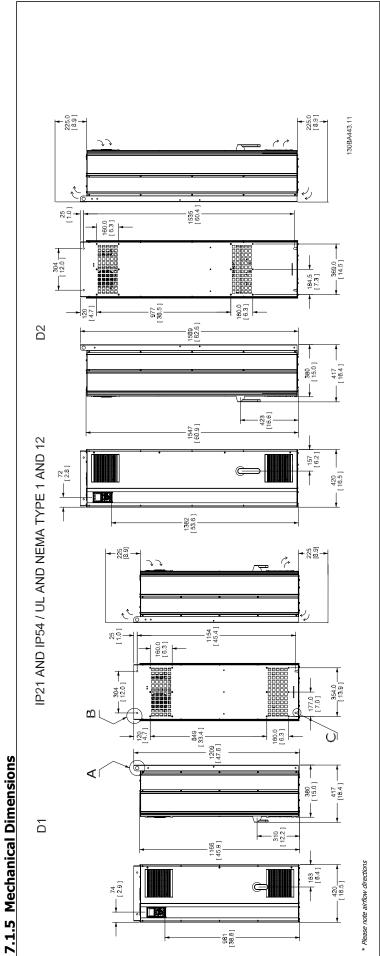
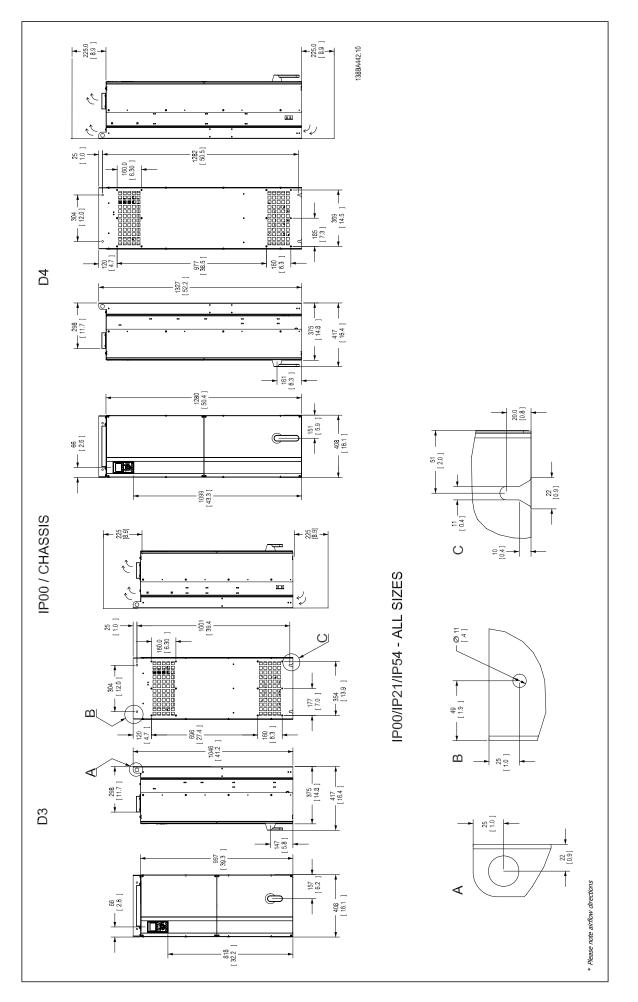


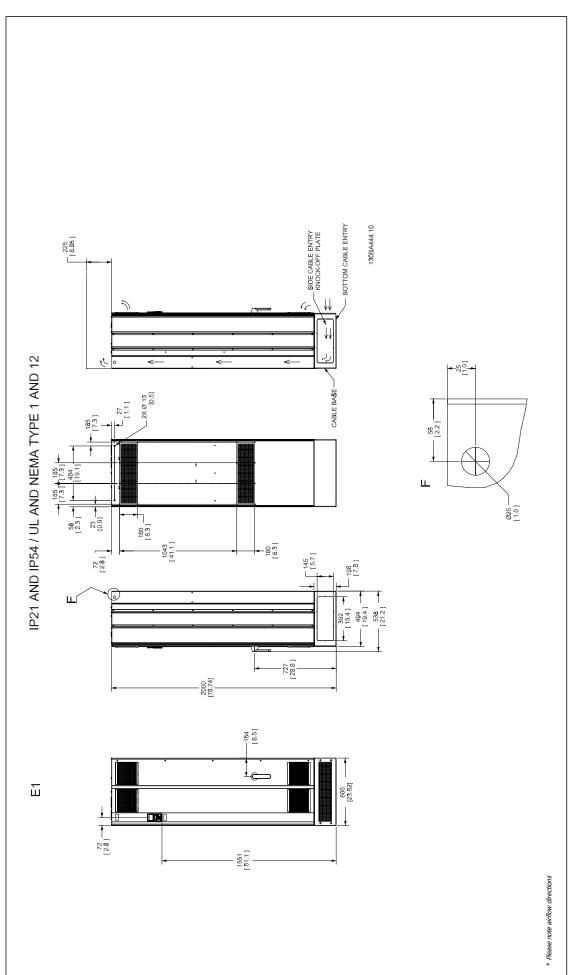
Illustration 7.1: Recommended lifting method, frame size F2.



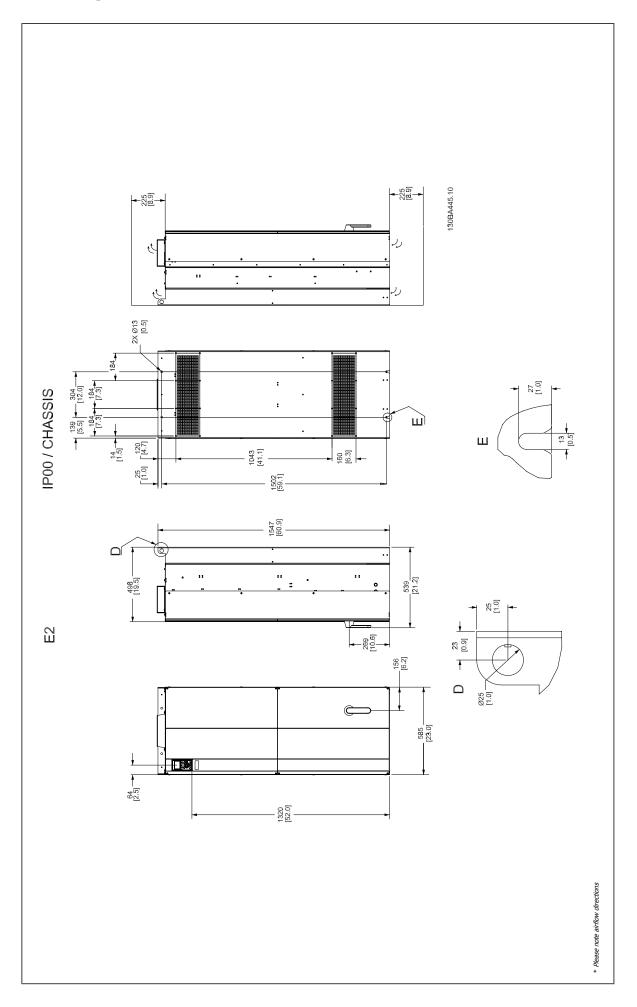

Illustration 7.1: Recommended lifting method, frame size F4.

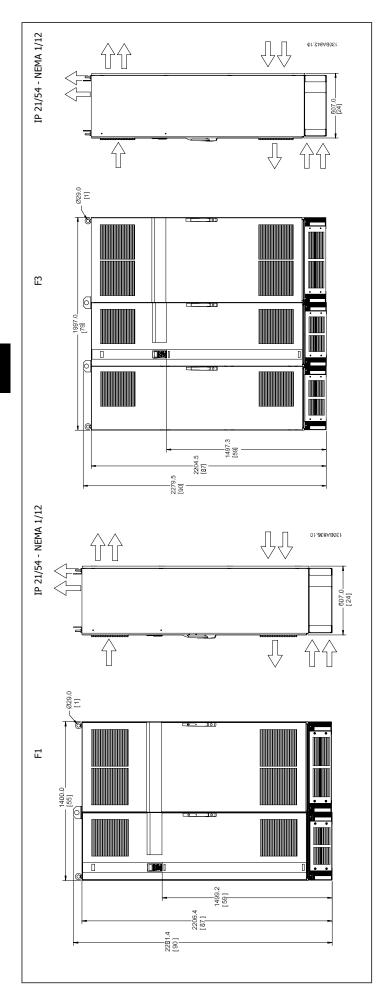
NB!


Note the plinth is provided in the same packaging as the frequency converter but is not attached to F1-F4 frames during shipment. The plinth is required to allow airflow to the drive to provide proper cooling. The F frames should be positioned on top of the plinth in the final installation location. The angle from the top of the drive to the lifting cable should be 60 degrees or greater.



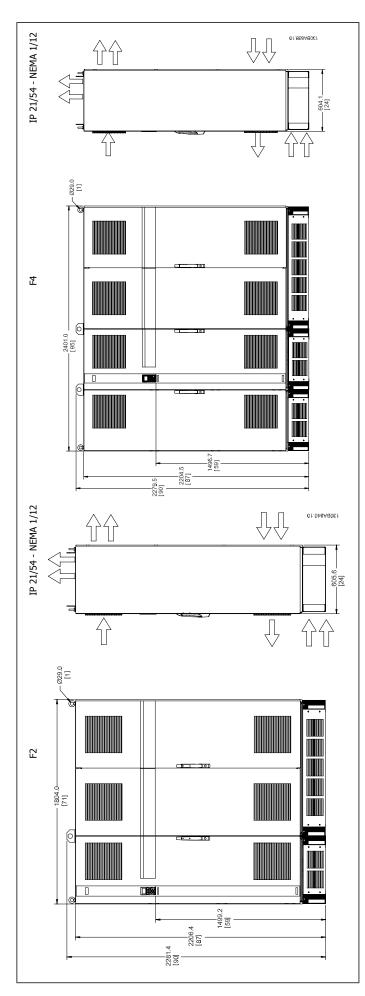
MG.33.BB.02 - $\mathsf{VLT}^{\circledast}$ is a registered Danfoss trademark




MG.33.BB.02 - $\mathsf{VLT}^{\texttt{®}}$ is a registered Danfoss trademark

7

110


7 Mechanical Installation - Frame Size D, E and Danfoss

7

FC 300 Design Guide

Danfoss 7 Mechanical Installation - Frame Size D, E and F

			Mechanic	al dimension	s , frame size	D	
Frame size	Frame size		1	C)2	D3	D4
		(380 - 37 - 1	10 kW 500 V) 32 kW 690 V)	00 V) (380 - 500 V) 2 kW 160 - 315 kW 90 V) (525-690 V)		90 - 110 kW (380 - 500 V) 37 - 132 kW (525-690 V)	132 - 200 kW (380 - 500 V) 160 - 315 kW (525-690 V)
IP		21	54	21	54	00	00
NEMA		Type 1	Type 12	Type 1	Type 12	Chassis	Chassis
Shipping dimen- sions	Height	650 mm	650 mm	650 mm	650 mm	650 mm	650 mm
	Width	1730 mm	1730 mm	1730 mm	1730 mm	1220 mm	1490 mm
	Depth	570 mm	570 mm	570 mm	570 mm	570 mm	570 mm
Drive dimensions	Height	1209 mm	1209 mm	1589 mm	1589 mm	1046 mm	1327 mm
	Width	420 mm	420 mm	420 mm	420 mm	408 mm	408 mm
	Depth	380 mm	380 mm	380 mm	380 mm	375 mm	375 mm
	Max weight	104 kg	104 kg	151 kg	151 kg	91 kg	138 kg

Frame size		E1	E2	F1	F2	F3	F4
		250 - 400 kW (380 - 500 V) 355 - 560 kW (525-690 V)	250 - 400 kW (380 - 500 V) 355 - 560 kW (525-690 V)	450 - 630 kW (380 - 500 V) 630 - 800 kW (525-690 V)	710 - 800 kW (380 - 500 V) 900 - 1000 kW (525-690 V)	450 - 630 kW (380 - 500 V) 630 - 800 kW (525-690 V)	710 - 800 kW (380 - 500 V) 900 - 1000 kW (525-690 V)
IP		21, 54	00	21, 54	21, 54	21, 54	21, 54
NEMA		Type 12	Chassis	Type 12	Type 12	Type 12	Type 12
Shipping di- mensions	Height	840 mm	831 mm	2324 mm	2324 mm	2324 mm	2324 mm
	Width	2197 mm	1705 mm	1569 mm	1962 mm	2159 mm	2559 mm
	Depth	736 mm	736 mm	927 mm	927 mm	927 mm	927 mm
Drive di- mensions	Height	2000 mm	1547 mm	2204	2204	2204	2204
	Width	600 mm	585 mm	1400	1800	2000	2400
	Depth	494 mm	498 mm	606	606	606	606
	Max weight	313 kg	277 kg	1004	1246	1299	1541

7.2 Mechanical Installation

Preparation of the mechanical installation of the frequency converter must be done carefully to ensure a proper result and to avoid additional work during installation. Start taking a close look at the mechanical drawings at the end of this instruction to become familiar with the space demands.

7.2.1 Tools Needed

To perform the mechanical installation the following tools are needed:

- Drill with 10 or 12 mm drill
- Tape measure
- Wrench with relevant metric sockets (7-17 mm)
- Extensions to wrench
- Sheet metal punch for conduits or cable glands in IP 21/Nema 1 and IP 54 units
- Lifting bar to lift the unit (rod or tube max. Ø 25 mm (1 inch), able to lift minimum 400 kg (880 lbs)).
- Crane or other lifting aid to place the frequency converter in position
- A Torx T50 tool is needed to install the E1 in IP21 and IP54 enclosure types.

7.2.2 General Considerations

Space

Ensure proper space above and below the frequency converter to allow airflow and cable access. In addition space in front of the unit must be considered to enable opening of the door of the panel.

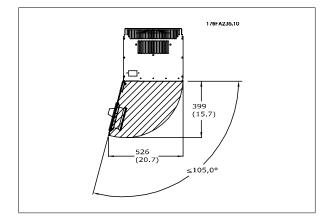


Illustration 7.1: Space in front of IP21/IP54 enclosure type, frame size D1 and D2 .

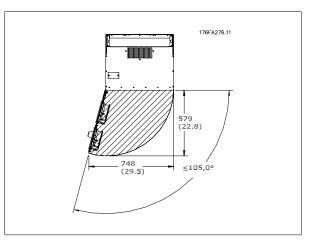


Illustration 7.1: Space in front of IP21/IP54 enclosure type, frame size E1.

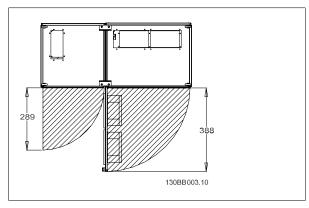


Illustration 7.1: Space in front of IP21/IP54 enclosure type, frame size F1.

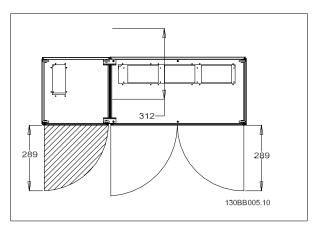


Illustration 7.1: Space in front of IP21/IP54 enclosure type, frame size F2.

NB!

Airflow direction, see Mechanical Dimensions on previous pages

Wire access

Ensure that proper cable access is present including necessary bending allowance. As the IP00 enclosure is open to the bottom cables must be fixed to the back panel of the enclosure where the frequency converter is mounted, i.e. by using cable clamps.

NB!

All cable lugs/ shoes must mount within the width of the terminal bus bar

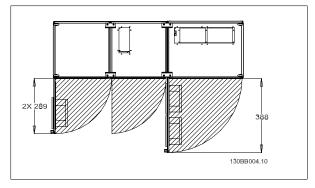


Illustration 7.1: Space in front of IP21/IP54 enclosure type, frame size F3.

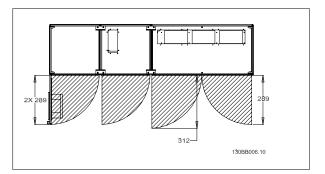


Illustration 7.1: Space in front of IP21/IP54 enclosure type, frame size F4.

7.2.3 Terminal locations - frame size D

Take the following position of the terminals into consideration when you design for cables access.

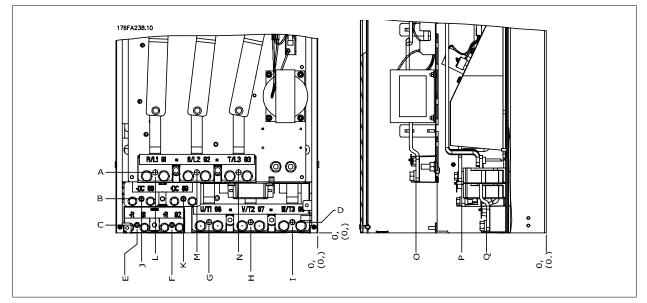


Illustration 7.1: Position of power connections, frame size D3 and D4

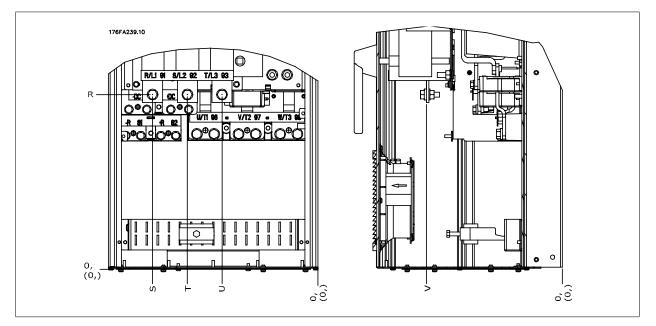


Illustration 7.1: Position of power connections with disconnect switch, frame size D1 and D2

Be aware that the power cables are heavy and hard to bend. Consider the optimum position of the frequency converter for ensuring easy installation of the cables.

NB!

All D frames are available with standard input terminals or disconnect switch. All terminal dimensions can be found in table on next page.

	<u>IP 21 (NEMA 1)</u>	/ IP 54 (NEMA 12)	<u>IP 00</u>	Chassis
	Frame size D1	Frame size D2	Frame size D3	Frame size D4
Α	277 (10.9)	379 (14.9)	119 (4.7)	122 (4.8)
В	227 (8.9)	326 (12.8)	68 (2.7)	68 (2.7)
С	173 (6.8)	273 (10.8)	15 (0.6)	16 (0.6)
D	179 (7.0)	279 (11.0)	20.7 (0.8)	22 (0.8)
E	370 (14.6)	370 (14.6)	363 (14.3)	363 (14.3)
F	300 (11.8)	300 (11.8)	293 (11.5)	293 (11.5)
G	222 (8.7)	226 (8.9)	215 (8.4)	218 (8.6)
н	139 (5.4)	142 (5.6)	131 (5.2)	135 (5.3)
Ι	55 (2.2)	59 (2.3)	48 (1.9)	51 (2.0)
J	354 (13.9)	361 (14.2)	347 (13.6)	354 (13.9)
К	284 (11.2)	277 (10.9)	277 (10.9)	270 (10.6)
L	334 (13.1)	334 (13.1)	326 (12.8)	326 (12.8)
М	250 (9.8)	250 (9.8)	243 (9.6)	243 (9.6)
Ν	167 (6.6)	167 (6.6)	159 (6.3)	159 (6.3)
0	261 (10.3)	260 (10.3)	261 (10.3)	261 (10.3)
Р	170 (6.7)	169 (6.7)	170 (6.7)	170 (6.7)
Q	120 (4.7)	120 (4.7)	120 (4.7)	120 (4.7)
R	256 (10.1)	350 (13.8)	98 (3.8)	93 (3.7)
S	308 (12.1)	332 (13.0)	301 (11.8)	324 (12.8)
т	252 (9.9)	262 (10.3)	245 (9.6)	255 (10.0)
U	196 (7.7)	192 (7.6)	189 (7.4)	185 (7.3)
V	260 (10.2)	273 (10.7)	260 (10.2)	273 (10.7)

Table 7.1: Cable positions as shown in drawings above. Dimensions in mm (inch).

7.2.4 Terminal Locations - frame size E

Terminal locations - E1

Take the following position of the terminals into consideration when designing the cable access.

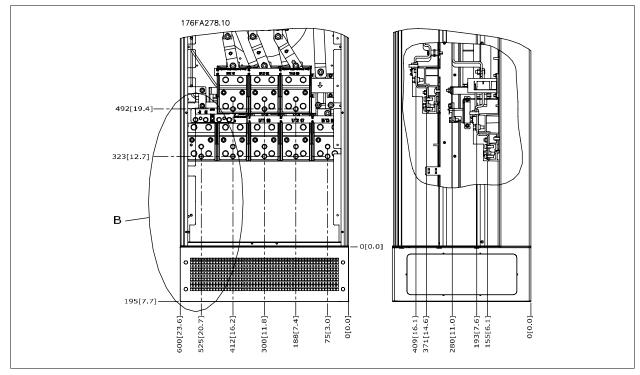


Illustration 7.1: IP21 (NEMA Type 1) and IP54 (NEMA Type 12) enclosure power connection positions

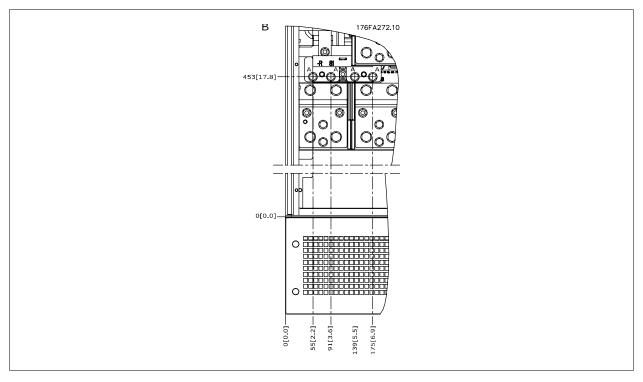


Illustration 7.1: IP21 (NEMA type 1) and IP54 (NEMA type 12) enclosure power connection positions (detail B)

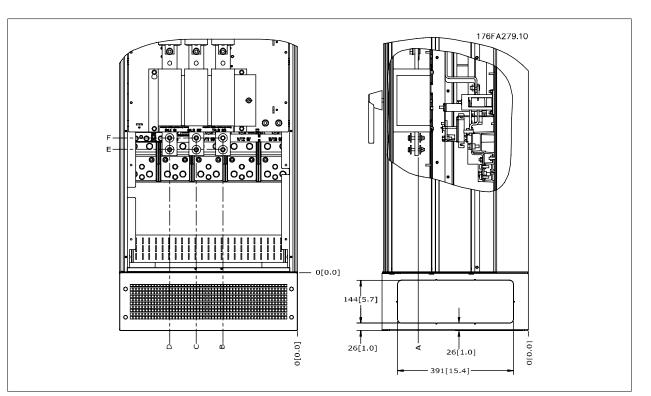


Illustration 7.1: IP21 (NEMA type 1) and IP54 (NEMA type 12) enclosure power connection position of disconnect switch

Frame size	UNIT TYPE	DIMENSION	FOR DISCONN	IECT TERMINA	L		
	IP54/IP21 UL AND NEMA1/NEMA12						
E1	250/315 kW (400V) AND 355/450-500/630 KW (690 V)	381 (15.0)	253 (9.9)	253 (9.9)	431 (17.0)	562 (22.1)	N/A
	315/355-400/450 kW (400V)	371 (14.6)	371 (14.6)	341 (13.4)	431 (17.0)	431 (17.0)	455 (17.9)

Terminal locations - E2

Take the following position of the terminals into consideration when designing the cable access.

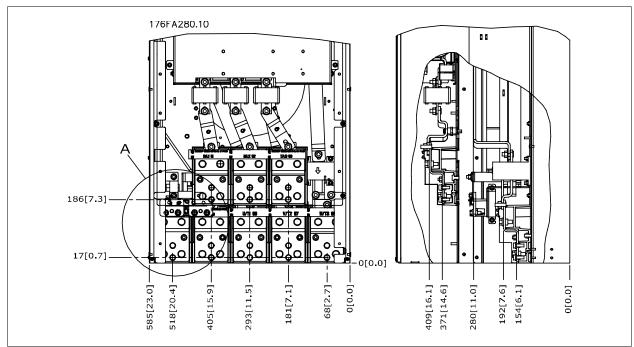


Illustration 7.1: IP00 enclosure power connection positions

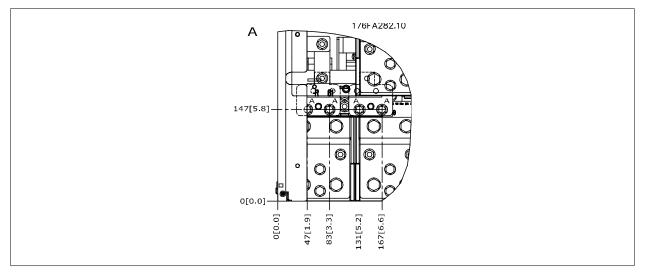


Illustration 7.1: IP00 enclosure power connection positions

7

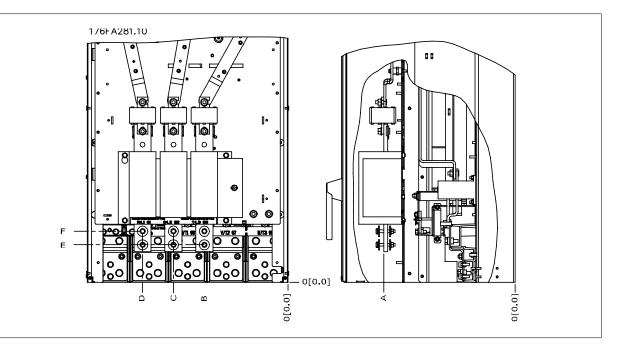
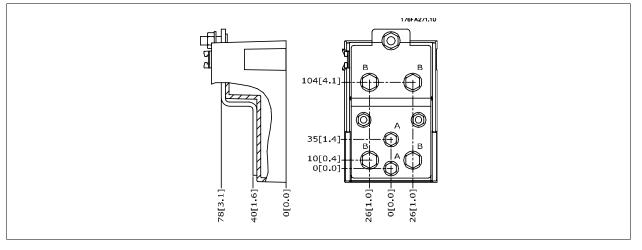



Illustration 7.1: IP00 enclosure power connections positions of disconnect switch

Note that the power cables are heavy and difficult to bend. Consider the optimum position of the frequency converter for ensuring easy installation of the cables.

Each terminal allows use of up to 4 cables with cable lugs or use of standard box lug. Earth is connected to relevant termination point in the drive.

Illustration 7.1: Terminal in details

NB!

Power connections can be made to positions A or B

Frame size	UNIT TYPE	DIMENSION	FOR DISCONN	ECT TERMINA	L		
	IPOO/CHASSIS	Α	В	С	D	E	F
E2	250/315 kW (400V) AND 355/450-500/630 KW (690 V)	381 (15.0)	245 (9.6)	334 (13.1)	423 (16.7)	256 (10.1)	N/A
	315/355-400/450 kW (400V)	383 (15.1)	244 (9.6)	334 (13.1)	424 (16.7)	109 (4.3)	149 (5.8)

NB!

7.2.5 Terminal Locations - frame size F

The F frames have four different sizes, F1, F2, F3 and F4. The F1 and F2 consist of an inverter cabinet on the right and rectifier cabinet on the left. The F3 and F4 have an additional options cabinet left of the rectifier cabinet. The F3 is an F1 with an additional options cabinet. The F4 is an F2 with an additional options cabinet.

Terminal locations - frame size F1 and F3

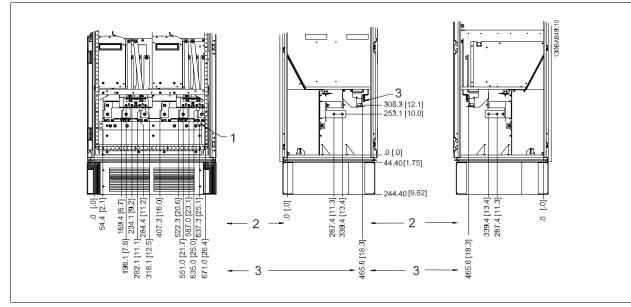


Illustration 7.1: Terminal locations - Inverter Cabinet - F1 and F3 (front, left and right side view)

1) Earth ground bar

2) Motor terminals

3) Brake terminals

Terminal locations - frame size F2 and F4

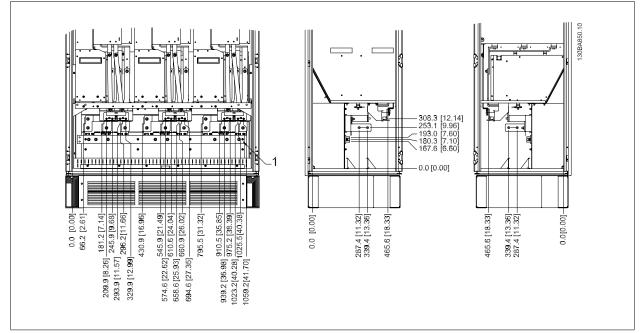


Illustration 7.1: Terminal locations - Inverter Cabinet - F2 and F4 (front, left and right side view) 1) Earth ground bar

Terminal locations - Rectifier (F1, F2, F3 and F4)

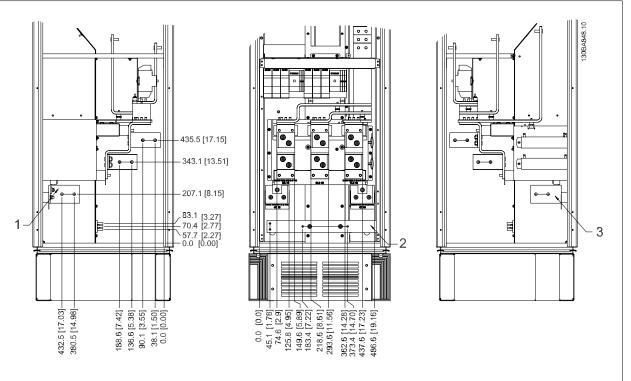


Illustration 7.1: Terminal locations - Rectifier (Left side, front and right side view)

1) Loadshare Terminal (-)

2) Earth ground bar

3) Loadshare Terminal (+)

Terminal locations - Options Cabinet (F3 and F4)

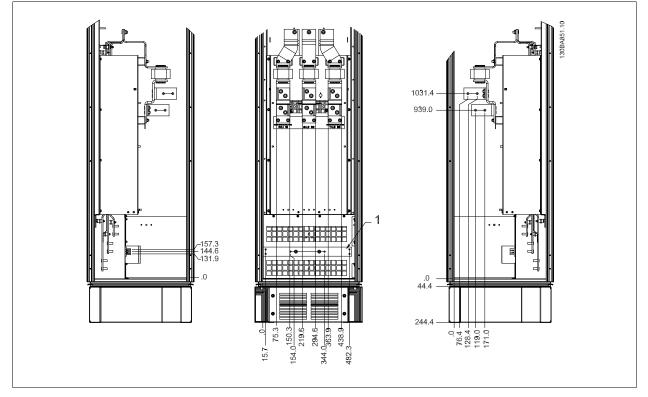


Illustration 7.1: Terminal locations - Options Cabinet (Left side, front and right side view) 1) Earth ground bar

Terminal locations - Options Cabinet with circuit breaker/ molded case switch (F3 and F4)

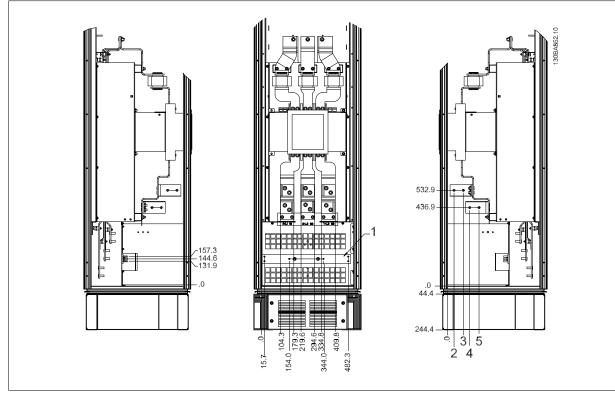


Illustration 7.1: Terminal locations - Options Cabinet with circuit breaker/ molded case switch (Left side, front and right side view) 1) Earth ground bar

7.2.6 Cooling and Airflow

NB!

Cooling

Cooling can be obtained in different ways, by using the cooling ducts in the bottom and the top of the unit, by taking air in and out the back of the unit or by combining the cooling possibilities.

Duct cooling

A dedicated option has been developed to optimize installation of IP00/chassis frame frequency converters in Rittal TS8 enclosures utilizing the fan of the frequency converter for forced air cooling of the backchannel. The air out the top of the enclosure could but ducted outside a facility so the heat loses from the backchannel are not dissipated within the control room reducing air-conditioning requirements of the facility. Please see *Installation of Duct Cooling Kit in Rittal enclosures*, for further information.

Back cooling

The backchannel air can also be ventilated in and out the back of a Rittal TS8 enclosure. This offers a solution where the backchannel could take air from outside the facility and return the heat loses outside the facility thus reducing air-conditioning requirements.

A doorfan(s) is required on the Rittal cabinet to remove the loses not contained in the backchannel of the drive. The minimum doorfan(s) airflow required at the drive maximum ambient for the D3 and D4 is $391 \text{ m}^3/\text{h}$ (230 cfm). The minimum doorfan(s) airflow required at the drive maximum ambient for the E2 is $782 \text{ m}^3/\text{h}$ (460 cfm). If the ambient is below maximum or if additional components, heat loses, are added within the enclosure a calculation must be made to ensure the proper airflow is provided to cool the inside of the Rittal enclosure.

Airflow

The necessary airflow over the heat sink must be secured. The flow rate is shown below.

7 Mechanical Installation - Frame Size D, E and Danford

Enclosure protection	Frame size	Door fan / Top fan airflow	Airflow over heatsink
IP21 / NEMA 1	D1 and D2	170 m ³ /h (100 cfm)	765 m ³ /h (450 cfm)
IP54 / NEMA 12	E1	340 m ³ /h (200 cfm)	1444 m ³ /h (850 cfm)
IP21 / NEMA 1	F1, F2, F3 and F4	700 m ³ /h (412 cfm)*	985 m ³ /h (580 cfm)
IP54 / NEMA 12	F1, F2, F3 and F4	525 m ³ /h (309 cfm)*	985 m ³ /h (580 cfm)
IP00 / Chassis	D3 and D4	255 m ³ /h (150 cfm)	765 m ³ /h (450 cfm)
	E2	255 m ³ /h (150 cfm)	1444 m ³ /h (850 cfm)
* Airflow per fan. Frame size F co	ntain multiple fans.		

Table 7.1: Heatsink Air Flow

لا	NB! The far	n runs for the following reasons:
$\langle O \rangle$	1.	АМА
	2.	DC Hold
	3.	Pre-Mag
	4.	DC Brake
	5.	60% of nominal current is exceeded
	6.	Specific heatsink temperature exceeded (power size dependent).
	Once th	ne fan is started it will run for minimum 10 minutes.

7.2.7 Installation on the Wall - IP21 (NEMA 1) and IP54 (NEMA 12) Units

This only applies to frame sizes D1 and D2 . It must be considered where to install the unit.

Take the relevant points into consideration before you select the final installation site:

- Free space for cooling
- Access to open the door
- Cable entry from the bottom

Mark the mounting holes carefully using the mounting template on the wall and drill the holes as indicated. Ensure proper distance to the floor and the ceiling for cooling. A minimum of 225 mm (8.9 inch) below the frequency converter is needed. Mount the bolts at the bottom and lift the frequency converter up on the bolts. Tilt the frequency converter against the wall and mount the upper bolts. Tighten all four bolts to secure the frequency converter against the wall.

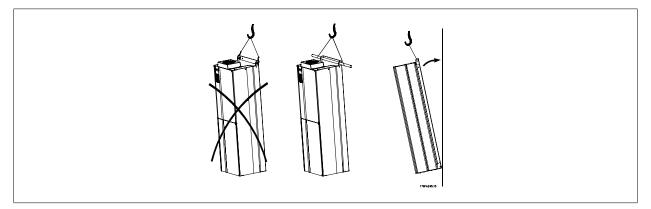
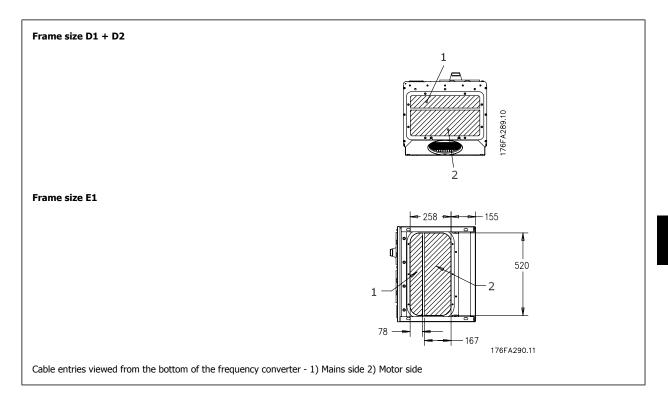
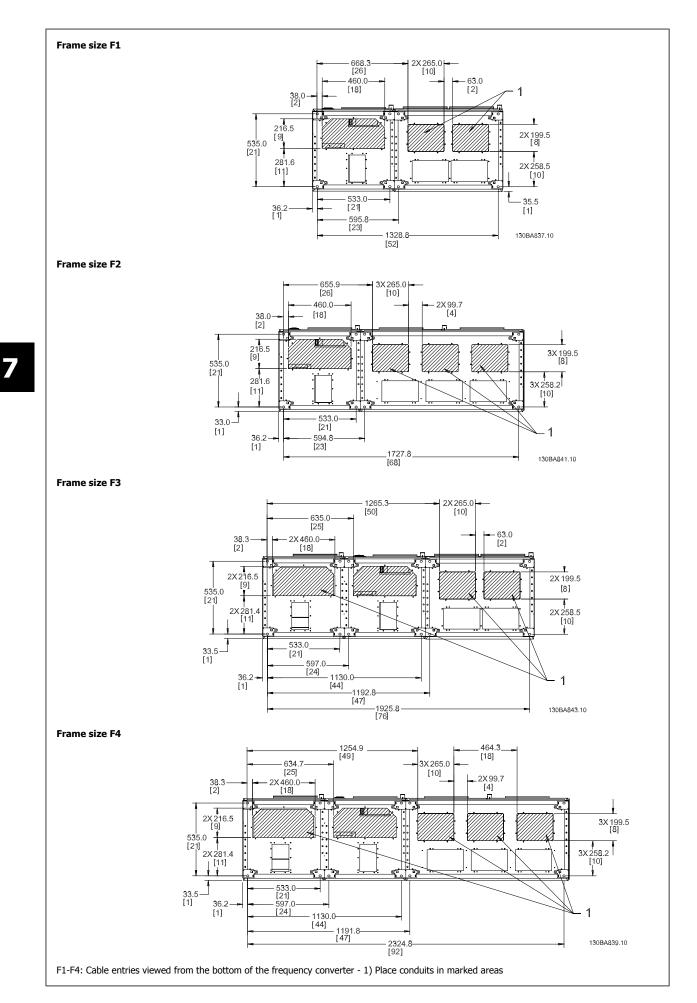



Illustration 7.1: Lifting method for mounting drive on wall


7.2.8 Gland/Conduit Entry - IP21 (NEMA 1) and IP54 (NEMA12)

Cables are connected through the gland plate from the bottom. Remove the plate and plan where to place the entry for the glands or conduits. Prepare holes in the marked area on the drawing.

The gland plate must be fitted to the frequency converter to ensure the specified protection degree, as well as ensuring proper cooling of the unit. If the gland plate is not mounted, it may trip the unit.

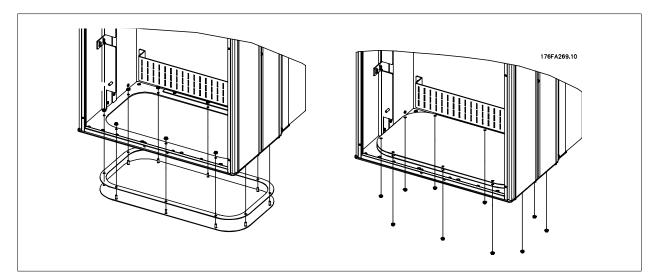


Illustration 7.1: Mounting of bottom plate, Frame size E1.

The bottom plate of the E1 frame can be mounted from either in- or outside of the enclosure, allowing flexibility in the installation process, i.e. if mounted from the bottom the glands and cables can be mounted before the frequency converter is placed on the pedestal.

7.2.9 IP21 Drip shield installation (frame size D1 and D2)

To comply with the IP21 rating, a separate drip shield is to be installed as explained below:

- Remove the two front screws
- Insert the drip shield and replace screws
- Torque the screws to 5,6 Nm (50 in-lbs)

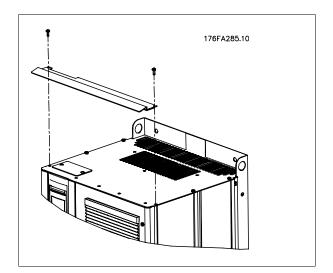


Illustration 7.1: Drip shield installation.

Danfoss

MG.33.BB.02 - $\text{VLT}^{\textcircled{R}}$ is a registered Danfoss trademark

8 Electrical Installation

8.1 Connections- Frame sizes A, B and C

NB! Cables General

All cabling must comply with national and local regulations on cable cross-sections and ambient temperature. Copper (60/75°C) conductors are recommended.

Aluminium Conductors

Terminals can accept aluminium conductors but the conductor surface has to be clean and the oxidation must be removed and sealed by neutral acidfree Vaseline grease before the conductor is connected.

Furthermore the terminal screw must be retightened after two days due to softness of the aluminium. It is crucial to keep the connection a gas tight joint, otherwise the aluminium surface will oxidize again.

Frame size	p Torque 200 - 240 V	380 - 500 V	525 - 690 V	Cable for:	Tightening up torque
A1	0.25-1.5 kW	0.37-1.5 kW	-	Mains, Brake resistor, load sharing, Motor	
42	0.25-2.2 kW	0.37-4 kW	0.75-4 kW	cables	
43	3-3.7 kW	5.5-7.5 kW	5.5-7.5 kW		
45	3-3.7 kW	5.5-7.5 kW	0.75-7.5 kW	_	
B1	5.5-7.5 kW	11-15 kW	-	Mains, Brake resistor, load sharing, Motor	1.8 Nm
	515 715 101	11 15 80		cables	
				Relay	0.5-0.6 Nm
				Earth	2-3 Nm
B2	11 kW	18.5-22 kW	-	Mains, Brake resistor, load sharing cables	4.5 Nm
				Motor cables	4.5 Nm
				Relay	0.5-0.6 Nm
				Earth	2-3 Nm
B3 5.5-7.5 kW	11-15 kW	-	Mains, Brake resistor, load sharing, Motor cables	1.8 Nm	
				Relay	0.5-0.6 Nm
				Earth	2-3 Nm
B4 11-15 kW	18.5-30 kW	-	Mains, Brake resistor, load sharing, Motor	4.5 Nm	
				cables	
				Relay	0.5-0.6 Nm
				Earth	2-3 Nm
C1	15-22 kW	-22 kW 30-45 kW	-	Mains, Brake resistor, load sharing cables	10 Nm
				Motor cables	10 Nm
				Relay	0.5-0.6 Nm
				Earth	2-3 Nm
C2	30-37 kW	55-75 kW	-	Mains, motor cables	14 Nm (up to 95 mm ²)
					24 Nm (over 95 mm ²)
				Load Sharing, brake cables	14 Nm
				Relay	0.5-0.6 Nm
				Earth	2-3 Nm
C3	18.5-22 kW	30-37 kW	-	Mains, Brake resistor, load sharing, Motor cables	10 Nm
				Relay	0.5-0.6 Nm
				Earth	2-3 Nm
C4	37-45 kW	55-75 kW	-	Mains, motor cables	14 Nm (up to 95 mm ²)
					24 Nm (over 95 mm ²)
				Load Sharing, brake cables	14 Nm
				Relay	0.5-0.6 Nm
				Earth	2-3 Nm

8.1.1 Removal of Knockouts for Extra Cables

- 1. Remove cable entry from the frequency converter (Avoiding foreign parts falling into the frequency converter when removing knockouts)
- 2. Cable entry has to be supported around the knockout you intend to remove.
- 3. The knockout can now be removed with a strong mandrel and a hammer.
- 4. Remove burrs from the hole.
- 5. Mount Cable entry on frequency converter.

NB!

8.1.2 Connection to Mains and Earthing

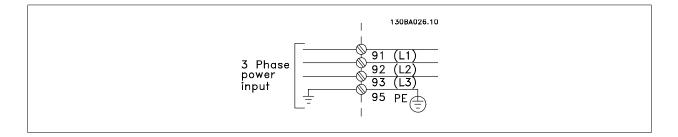
The plug connector for power is plugable on frequency converters up to 7.5 kW.

- 1. Fit the two screws in the de-coupling plate, slide it into place and tighten the screws.
- 2. Make sure the frequency converter is properly earthed. Connect to earth connection (terminal 95). Use screw from the accessory bag.
- 3. Place plug connector 91(L1), 92(L2), 93(L3) from the accessory bag onto the terminals labelled MAINS at the bottom of the frequency converter.
- 4. Attach mains wires to the mains plug connector.
- 5. Support the cable with the supporting enclosed brackets.

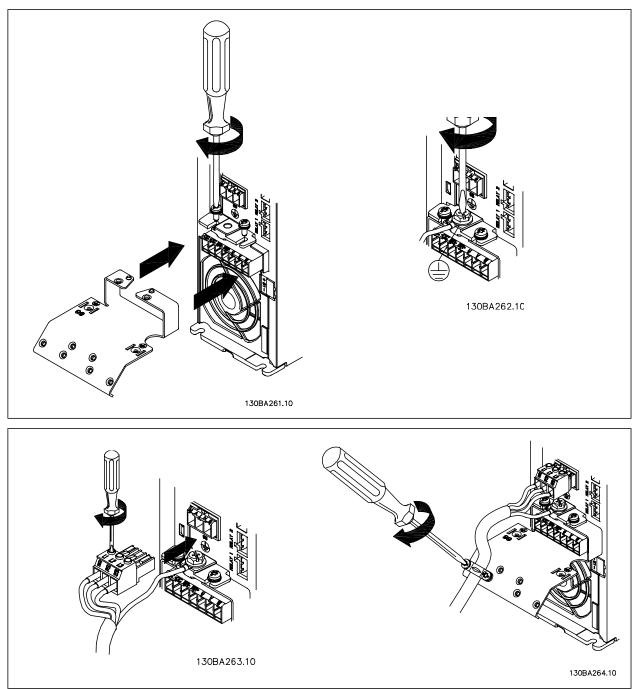
NB!

Check that mains voltage corresponds to the mains voltage of the name plate.

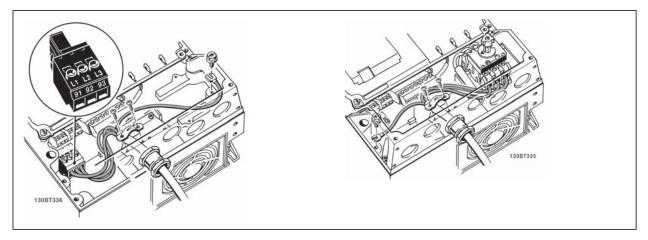
8


IT Mains

Do not connect 400 V frequency converters with RFI-filters to mains supplies with a voltage between phase and earth of more than 440 V.


The earth connection cable cross section must be at least 10 mm² or 2 x rated mains wires terminated separately according to EN 50178.

The mains connection is fitted to the mains switch if this is included.


Mains connection for Frame sizes A1, A2 and A3:

8

Mains connector frame size A5 (IP 55/66)

When disconnector is used (frame size A5) the PE must be mounted on the left side of the drive.

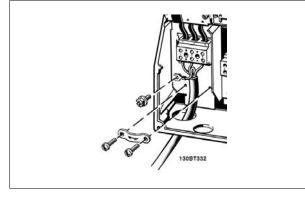


Illustration 8.1: Mains connection frame sizes B1 and B2 (IP 21/NEMA Type 1 and IP 55/66/ NEMA Type 12).

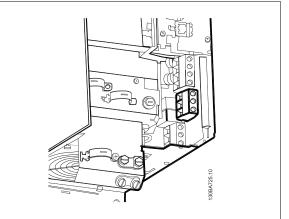


Illustration 8.2: Mains connection frame size B3 (IP20).

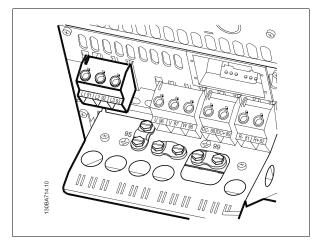


Illustration 8.3: Mains connection frame size B4 (IP20).

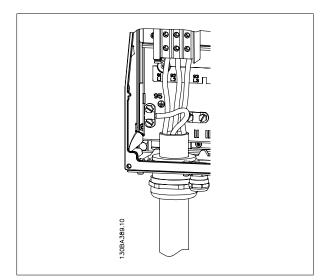


Illustration 8.4: Mains connection frame size C1 and C2 (IP 21/ NEMA Type 1 and IP 55/66/ NEMA Type 12).

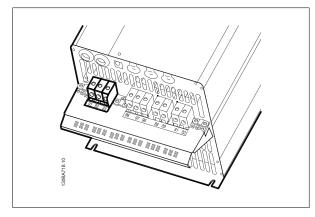


Illustration 8.5: Mains connection frame size C3 (IP20).

Usually the power cables for mains are unshielded cables.

8.1.3 Motor Connection

NB!

Motor cable must be screened/armoured. If an unscreened/unarmoured cable is used, some EMC requirements are not complied with. Use a screened/armoured motor cable to comply with EMC emission specifications. For more information, see *EMC Test Results*.

and and and and and and and and

Illustration 8.6: Mains connection frame size C4 (IP20).

See section General Specifications for correct dimensioning of motor cable cross-section and length.

Screening of cables: Avoid installation with twisted screen ends (pigtails). They spoil the screening effect at higher frequencies. If it is necessary to break the screen to install a motor isolator or motor contactor, the screen must be continued at the lowest possible HF impedance. Connect the motor cable screen to both the decoupling plate of the frequency converter and to the metal housing of the motor.

Make the screen connections with the largest possible surface area (cable clamp). This is done by using the supplied installation devices in the frequency converter.

If it is necessary to split the screen to install a motor isolator or motor relay, the screen must be continued with the lowest possible HF impedance.

Cable-length and cross-section: The frequency converter has been tested with a given length of cable and a given cross-section of that cable. If the cross-section is increased, the cable capacitance - and thus the leakage current - may increase, and the cable length must be reduced correspondingly. Keep the motor cable as short as possible to reduce the noise level and leakage currents.

Switching frequency: When frequency converters are used together with Sine-wave filters to reduce the acoustic noise from a motor, the switching frequency must be set according to the Sine-wave filter instruction in par. 14-01 *Switching Frequency*.

- 1. Fasten decoupling plate to the bottom of the frequency converter with screws and washers from the accessory bag.
- 2. Attach motor cable to terminals 96 (U), 97 (V), 98 (W).
- 3. Connect to earth connection (terminal 99) on decoupling plate with screws from the accessory bag.
- 4. Insert plug connectors 96 (U), 97 (V), 98 (W) (up to 7.5 kW) and motor cable to terminals labelled MOTOR.
- 5. Fasten screened cable to decoupling plate with screws and washers from the accessory bag.

All types of three-phase asynchronous standard motors can be connected to the frequency converter. Normally, small motors are star-connected (230/400 V, Y). Large motors are normally delta-connected (400/690 V, Δ). Refer to the motor name plate for correct connection mode and voltage.

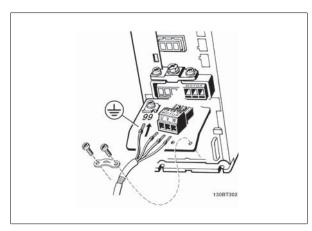


Illustration 8.7: Motor connection for A1, A2 and A3

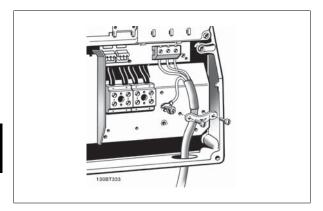


Illustration 8.9: Motor connection for frame size B1 and B2 (IP 21/ NEMA Type 1, IP 55/ NEMA Type 12 and IP66/ NEMA Type 4X)

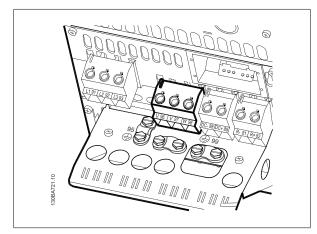


Illustration 8.11: Motor connection for frame size $\mathsf{B4}$.

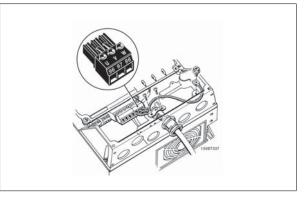


Illustration 8.8: Motor connection for frame size A5 (IP 55/66/NEMA Type 12)

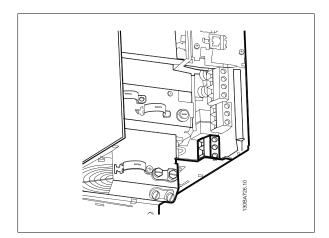


Illustration 8.10: Motor connection for frame size B3.

Danfoss

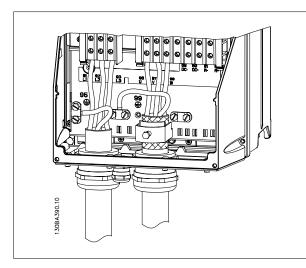


Illustration 8.12: Motor connection frame size C1 and C2 (IP 21/ NEMA Type 1 and IP 55/66/ NEMA Type 12)

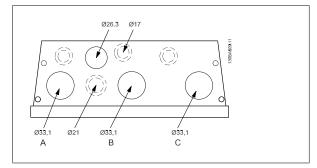


Illustration 8.14: Cable entry holes for frame size B1. The suggested use of the holes are purely recommendations and other solutions are possible.

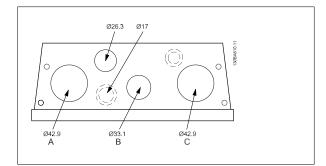


Illustration 8.15: Cable entry holes for frame size B2. The suggested use of the holes are purely recommendations and other solutions are possible.

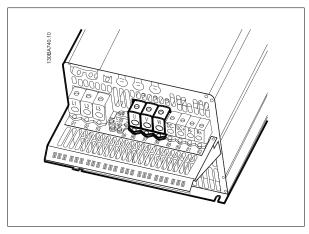


Illustration 8.13: Motor connection for frame size C3 and C4.

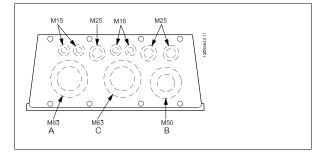
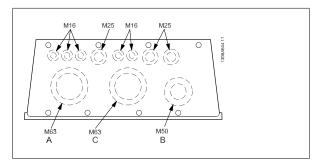
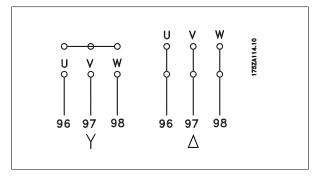


Illustration 8.16: Cable entry holes for frame size C1. The suggested use of the holes are purely recommendations and other solutions are possible.




Illustration 8.17: Cable entry holes for frame size C2. The suggested use of the holes are purely recommendations and other solutions are possible.

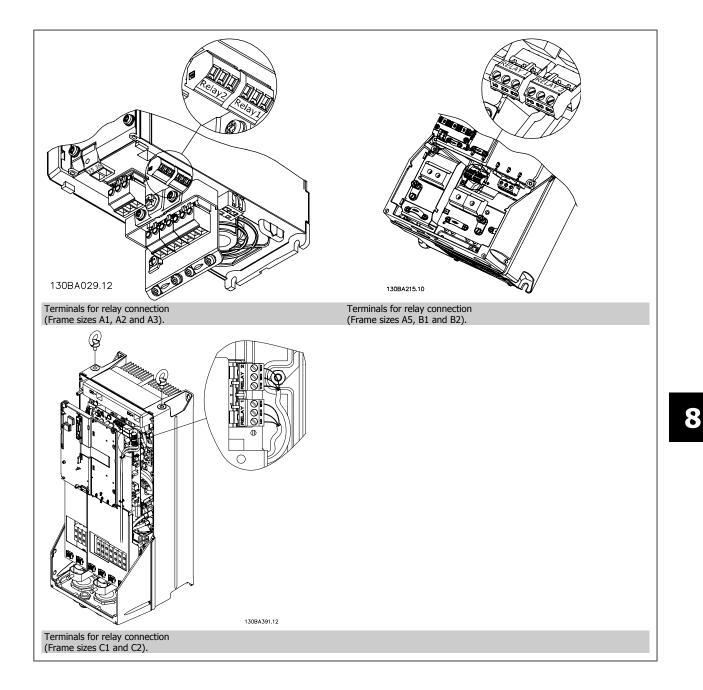
Term. no.	96	97	98	99	
	U	V	W	PE ¹⁾	Motor voltage 0-100% of mains voltage.
					3 wires out of motor
	U1	V1	W1	PE ¹⁾	Delta-connected
	W2	U2	V2	PC-7	6 wires out of motor
	U1	V1	W1	PE ¹⁾	Star-connected U2, V2, W2
					U2, V2 and W2 to be interconnected separately.

¹⁾Protected Earth Connection

<u>Danfoss</u>

FC 300 Design Guide

NB!


In motors without phase insulation paper or other insulation reinforcement suitable for operation with voltage supply (such as a frequency converter), fit a Sinewave filter on the output of the frequency converter.

8.1.4 Relay Connection

To set relay output, see par. group 5-4* Relays.

01 - 03	break (normally closed)
04 - 05	make (normally open)
04 - 06	break (normally closed)
	04 - 05

8.2 Connections - Frame sizes D, E and F

8.2.1 Torque

When tightening all electrical connections it is very important to tighten with the correct torque. Too low or too high torque results in a bad electrical connection. Use a torque wrench to ensure correct torque

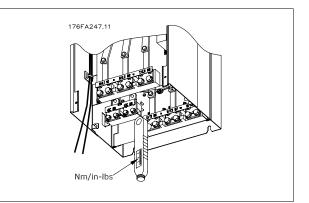


Illustration 8.18: Always use a torque wrench to tighten the bolts.

Frame size	Terminal	Torque	Bolt size	
D1, D2, D3 and D4	Mains	10 Nm (169 in lbs)	M10	
	Motor	19 Nm (168 in-lbs)	M10	
	Load sharing	9.5 (84 in-lbs)	M8	
	Brake	3.3 (84111 48)	110	
E1 and E2	Mains			
	Motor	19 NM (168 in-lbs)	M10	
	Load sharing			
	Brake	9.5 (84 in-lbs)	M8	
F1, F2, F3 and F4	Mains	10 Nm (169 in lbs)	M10	
	Motor	19 Nm (168 in-lbs)	M10	
	Load sharing	19 Nm (168 in-lbs)	M10	
	Brake	9.5 Nm (84 in-lbs)	M8	
	Regen	19 Nm (168 in-lbs)	M10	

Table 8.1: Torque for terminals

8.2.2 Power Connections

NB!

Cabling and Fusing

Cables General

All cabling must comply with national and local regulations on cable cross-sections and ambient temperature. Copper (75°C) conductors are recommended.

The power cable connections are situated as shown below. Dimensioning of cable cross section must be done in accordance with the current ratings and local legislation. See the *Specifications section* for details.

For protection of the frequency converter, the recommended fuses must be used or the unit must be with built-in fuses. Recommended fuses can be seen in the tables of the fuse section. Always ensure that proper fusing is made according to local regulation.

The mains connection is fitted to the mains switch if this is included.

8

5

NB!

The motor cable must be screened/armoured. If an unscreened/unarmoured cable is used, some EMC requirements are not complied with. Use a screened/armoured motor cable to comply with EMC emission specifications. For more information, see *EMC specifica-tions* in the *Design Guide*.

See section General Specifications for correct dimensioning of motor cable cross-section and length.

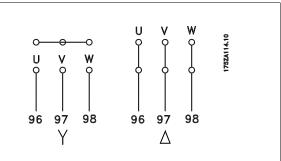
Screening of cables:

Avoid installation with twisted screen ends (pigtails). They spoil the screening effect at higher frequencies. If it is necessary to break the screen to install a motor isolator or motor contactor, the screen must be continued at the lowest possible HF impedance.

Connect the motor cable screen to both the de-coupling plate of the frequency converter and to the metal housing of the motor.

Make the screen connections with the largest possible surface area (cable clamp). This is done by using the supplied installation devices within the frequency converter.

Cable-length and cross-section:


The frequency converter has been EMC tested with a given length of cable. Keep the motor cable as short as possible to reduce the noise level and leakage currents.

Switching frequency:

When frequency converters are used together with Sine-wave filters to reduce the acoustic noise from a motor, the switching frequency must be set according to the instruction in par. 14-01 *Switching Frequency*.

Term. no.	96	97	98	99	
	U	V	W	PE ¹⁾	Motor voltage 0-100% of mains voltage.
					3 wires out of motor
	U1	V1	W1	PE ¹⁾	Delta-connected
	W2	U2	V2	PE-/	6 wires out of motor
	U1	V1	W1	PE ¹⁾	Star-connected U2, V2, W2
					U2, V2 and W2 to be interconnected separately.

¹⁾Protected Earth Connection

NB!

In motors without phase insulation paper or other insulation reinforcement suitable for operation with voltage supply (such as a frequency converter), fit a Sinewave filter on the output of the frequency converter.

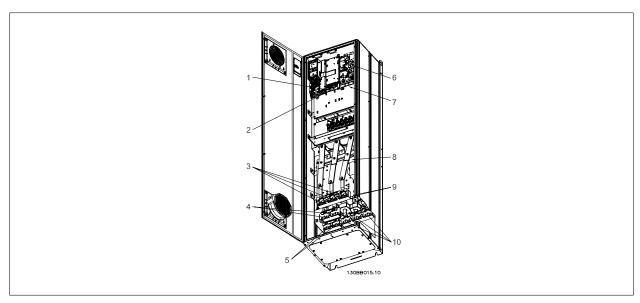


Illustration 8.19: Compact IP 21 (NEMA 1) and IP 54 (NEMA 12), frame size D1

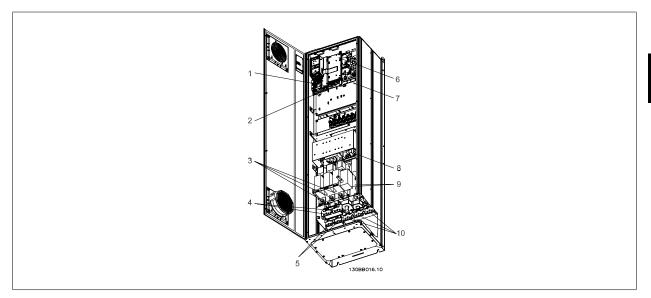


Illustration 8.20: Compact IP 21 (NEMA 1) and IP 54 (NEMA 12) with disconnect, fuse and RFI filter, frame size D2

1)	AUX Re	AUX Relay			5)	Brake					
	01	02	03			-R	+R				
	04	05	06			81	82				
2)	Temp S	p Switch			6)	SMPS Fuse (see fuse tables for part number)					
	106	104	105		7)	AUX Fan	1				
3)	Line					100	101	102	103		
	R	S	т			L1	L2	L1	L2		
	91	92	93		8)	Fan Fuse (see fuse tables for part number)					
	L1	L2	L3		9)	Mains gr	ound				
4)	Load sharing				10)	Motor					
	-DC	+DC				U	V	W			
	88	89				96	97	98			
						T1	T2	Т3			

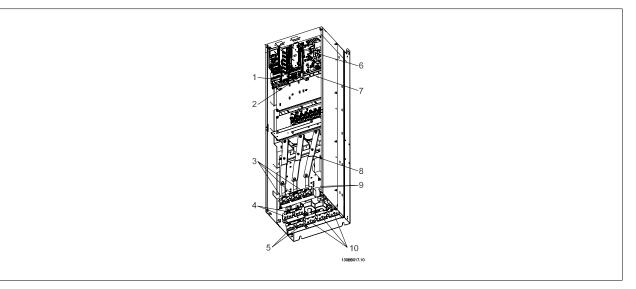


Illustration 8.21: Compact IP 00 (Chassis), frame size D3

8

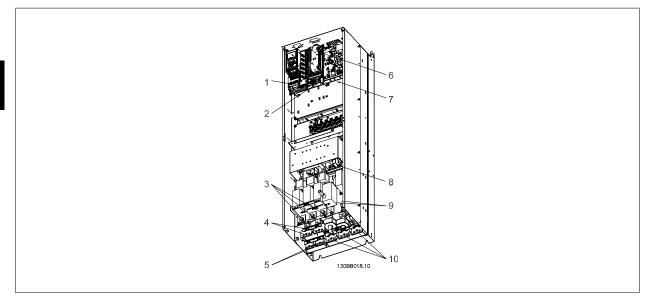


Illustration 8.22: Compact IP 00 (Chassis) with disconnect, fuse and RFI filter, frame size D4

1)	AUX Re	elay		5)	Brake						
	01	02	03		-R	+R					
	04	05	06		81	82					
2)	Temp S	Switch		6)	SMPS Fuse (see fuse tables for part number)						
	106	104	105	7)	AUX Fan						
3)	Line				100	101	102	103			
	R	S	Т		L1	L2	L1	L2			
	91	92	93	8)	Fan Fuse (see fuse tables for part number)						
	L1	L2	L3	9)	Mains ground						
4)	Load s	haring		10)	Motor						
	-DC	+DC			U	V	W				
	88	89			96	97	98				
					T1	T2	Т3				

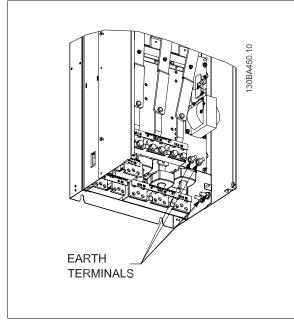


Illustration 8.23: Position of earth terminals IP00, frame sizes D

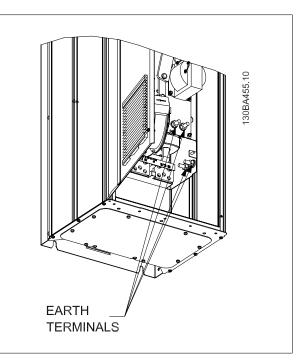


Illustration 8.24: Position of earth terminals IP21 (NEMA type 1) and IP54 (NEMA type 12)

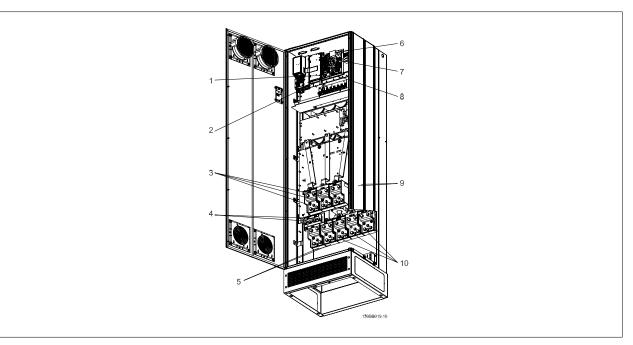


Illustration 8.25: Compact IP 21 (NEMA 1) and IP 54 (NEMA 12) frame size E1

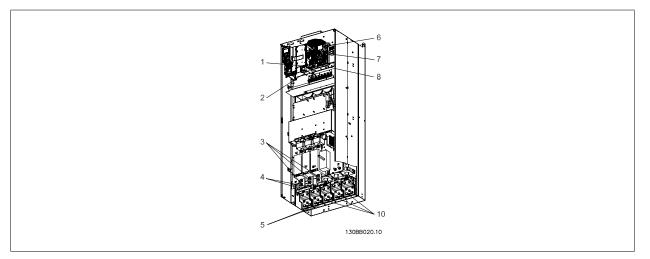


Illustration 8.26: Compact IP 00 (Chassis) with disconnect, fuse and RFI filter, frame size E2

1)	AUX Re	elay		5)	Load sha	aring			
	01	02	03		-DC	+DC			
	04	05	06		88	89			
2)	Temp S	Switch		6)	SMPS Fu	se (see	fuse ta	bles for part number)	
	106	104	105	7)	Fan Fuse	e (see fi	use tabl	es for part number)	
3)	Line			8)	AUX Fan				
	R	S	т		100	101	102	103	
	91	92	93		L1	L2	L1	L2	
	L1	L2	L3	9)	Mains gr	ound			
4)	Brake			10)	Motor				
	-R	+R			U	v	W		
	81	82			96	97	98		
					T1	T2	Т3		

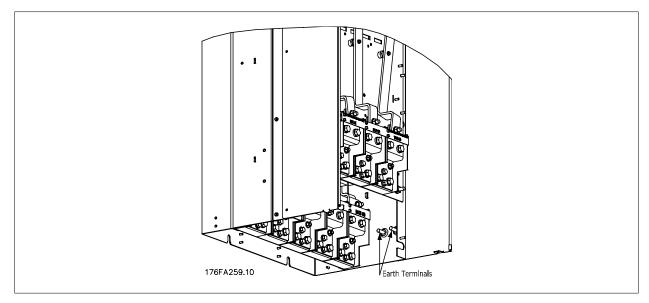
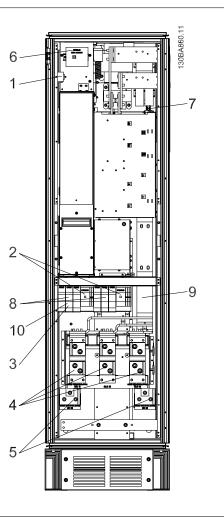



Illustration 8.27: Position of earth terminals IP00, frame sizes E

Illustration 8.28: Rectifier Cabinet, frame size F1, F2, F3 and F4

1)	24 V DC, 5 A	5)	Loadsharing
	T1 Output Taps		-DC +DC
	Temp Switch		88 89
	106 104 105	6)	Control Transformer Fuses (2 or 4 pieces). See fuse tables for part numbers
2)	2) Manual Motor Starters		SMPS Fuse. See fuse tables for part numbers
3)	30 A Fuse Protected Power Terminals	8)	Manual Motor Controller fuses (3 or 6 pieces). See fuse tables for part numbers
4)	Line	9)	Line Fuses, F1 and F2 frame (3 pieces). See fuse tables for part numbers
	R S T	10)	30 Amp Fuse Protected Power fuses
	L1 L2 L3		

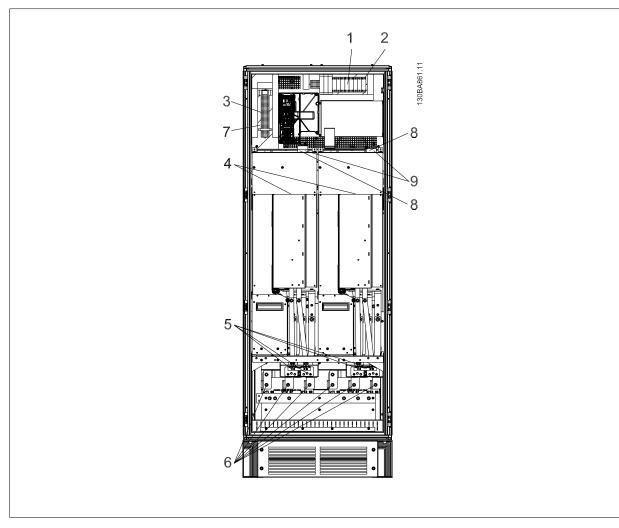
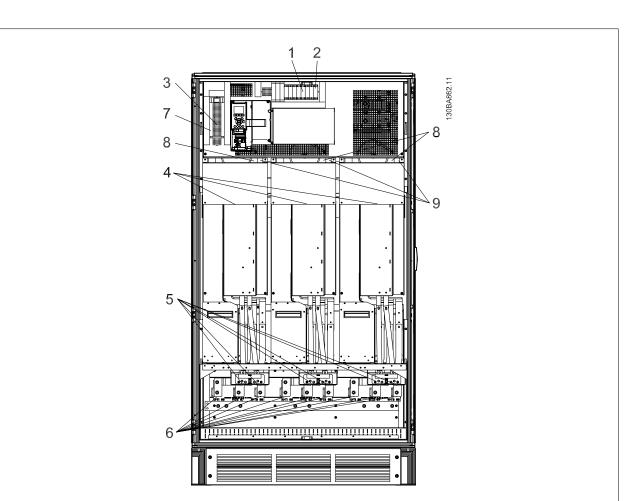



Illustration 8.29: Inverter Cabinet, frame size F1 and F3

1)	Extern	al Ter	nperat	ture Monitoring	6)	Motor				
2)	AUX R	elay				U	V	W		
	01	02	03			96	97	98		
	04	05	06			T1	T2	Т3		
3)	NAMU	ર			7)	NAMUR I	Fuse. Se	ee fuse tab	les for part numbers	
4)	AUX Fa	an			8)	Fan Fuse	es. See f	fuse tables	for part numbers	
	100	101	102	103	9)	SMPS Fu	ses. Se	e fuse table	es for part numbers	
	L1	L2	L1	L2						
5)	Brake									
	-R	+R								
	81	82								

8

<u>Danfoss</u>

Illustration 8.30: Inverter Cabinet, frame size F2 and F4

1)	Extern	al Tei	mpera	ture Monitoring	6)	Motor		
2)	AUX R	elay				U	V	W
	01	02	03			96	97	98
	04	05	06			T1	T2	Т3
3)	NAMU	R			7)	NAMUR F	use. Se	ee fuse tables for part numbers
4)	AUX F	an			8)	Fan Fuse	s. See t	fuse tables for part numbers
	100	101	102	103	9)	SMPS Fus	ses. See	e fuse tables for part numbers
	L1	L2	L1	L2				
5)	Brake							
	-R	+R						
	81	82						

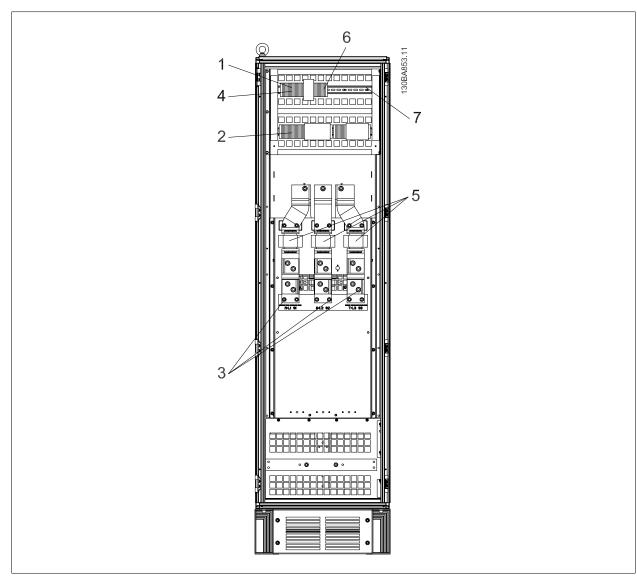


Illustration 8.31: Options Cabinet, frame size F3 and F4

2) R	,	Terminal M Terminal	4) 5)	Safety Relay Coil Fuse with PILS Relay See fuse tables for part numbers Line Fuses, F3 and F4 (3 pieces)
	R S	Т		See fuse tables for part numbers
ç	91 92	93	6)	Contactor Relay Coil (230 VAC). N/C and N/O Aux Contacts
L	L1 L2	L3	7)	Circuit Breaker Shunt Trip Control Terminals (230 VAC or 230 VDC)

8

151

8.2.3 Shielding against Electrical Noise

Before mounting the mains power cable, mount the EMC metal cover to ensure best EMC performance.

NOTE: The EMC metal cover is only included in units with an RFI filter.

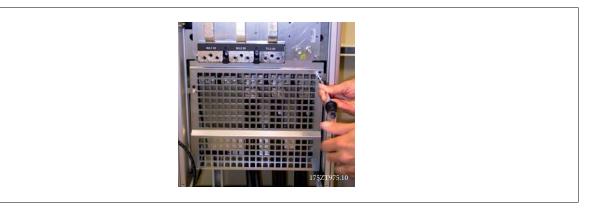


Illustration 8.32: Mounting of EMC shield.

8.2.4 External Fan Supply

In case the frequency converter is supplied by DC or if the fan must run independently of the power supply, an external power supply can be applied. The connection is made on the power card.

100, 101 Auxiliary supply S, T	
102, 103 Internal supply S, T	

The connector located on the power card provides the connection of line voltage for the cooling fans. The fans are connected from factory to be supplied form a common AC line (jumpers between 100-102 and 101-103). If external supply is needed, the jumpers are removed and the supply is connected to terminals 100 and 101. A 5 Amp fuse should be used for protection. In UL applications this should be LittleFuse KLK-5 or equivalent.

8

Danfoss

8.3 Fuses

Branch circuit protection:

In order to protect the installation against electrical and fire hazard, all branch circuits in an installation, switch gear, machines etc., must be short-circuited and overcurrent protected according to national/international regulations.

Short-circuit protection:

The frequency converter must be protected against short-circuit to avoid electrical or fire hazard. Danfoss recommends using the fuses mentioned below to protect service personnel and equipment in case of an internal failure in the drive. The frequency converter provides full short-circuit protection in case of a short-circuit on the motor output.

Overcurrent protection:

Provide overload protection to avoid fire hazard due to overheating of the cables in the installation. The frequency converter is equipped with an internal overcurrent protection that can be used for upstream overload protection (UL-applications excluded). See par. 4-18 *Current Limit*. Moreover, fuses or circuit breakers can be used to provide the overcurrent protection in the installation. Overcurrent protection must always be carried out according to national regulations.

Non UL compliance

If UL/cUL is not to be complied with, we recommend using the following fuses, which will ensure compliance with EN50178: In case of malfunction, not following the recommendation may result in unnecessary damage to the frequency converter.

	Max. fuse size ¹⁾	Voltage	Туре
К25-К75	10A	200-240 V	type gG
1K1-2K2	20A	200-240 V	type gG
3K0-3K7	32A	200-240 V	type gG
5K5-7K5	63A	380-500 V	type gG
11K	80A	380-500 V	type gG
15K-18K5	125A	380-500 V	type gG
22K	160A	380-500 V	type aR
30K	200A	380-500 V	type aR
37K	250A	380-500 V	type aR

1) Max. fuses - refer to national/international regulations to select an appropriate fuse size.

	Max. fuse size ¹⁾	Voltage	Туре
K37-1K5	10A	380-500 V	type gG
2K2-4K0	20A	380-500 V	type gG
5K5-7K5	32A	380-500 V	type gG
11K-18K	63A	380-500 V	type gG
22K	80A	380-500 V	type gG
30K	100A	380-500 V	type gG
37K	125A	380-500 V	type gG
45K	160A	380-500 V	type aR
55K-75K	250A	380-500 V	type aR

P90 - P200	380 - 500 V	type gG
P250 - P400	380 - 500 V	type gR

UL Compliance

The fuses below are suitable for use on a circuit capable of delivering 100,000 Arms (symmetrical), 240V, or 480V, or 500V, or 600V depending on the drive voltage rating. With the proper fusing the drive Short Circuit Current Rating (SCCR) is 100,000 Arms.

200-240 V

	Bussmann	Bussmann	Bussmann	Bussmann	Bussmann	Bussmann
kW	Type RK1	Type J	Туре Т	Type CC	Type CC	Type CC
K25-K37	KTN-R05	JKS-05	JJN-06	FNQ-R-5	KTK-R-5	LP-CC-5
K55-1K1	KTN-R10	JKS-10	JJN-10	FNQ-R-10	KTK-R-10	LP-CC-10
1K5	KTN-R15	JKS-15	JJN-15	FNQ-R-15	KTK-R-15	LP-CC-15
2K2	KTN-R20	JKS-20	JJN-20	FNQ-R-20	KTK-R-20	LP-CC-20
3K0	KTN-R25	JKS-25	JJN-25	FNQ-R-25	KTK-R-25	LP-CC-25
3K7	KTN-R30	JKS-30	JJN-30	FNQ-R-30	KTK-R-30	LP-CC-30
5K5	KTN-R50	KS-50	JJN-50	-	-	-
7K5	KTN-R60	JKS-60	JJN-60	-	-	-
11K	KTN-R80	JKS-80	JJN-80	-	-	-
15K-18K5	KTN-R125	JKS-150	JJN-125	-	-	-

	SIBA	Littel fuse	Ferraz- Shawmut	Ferraz- Shawmut
kW	Type RK1	Type RK1	Type CC	Type RK1
K25-K37	5017906-005	KLN-R05	ATM-R05	A2K-05R
K55-1K1	5017906-010	KLN-R10	ATM-R10	A2K-10R
1K5	5017906-016	KLN-R15	ATM-R15	A2K-15R
2K2	5017906-020	KLN-R20	ATM-R20	A2K-20R
3K0	5017906-025	KLN-R25	ATM-R25	A2K-25R
3K7	5012406-032	KLN-R30	ATM-R30	A2K-30R
5K5	5014006-050	KLN-R50	-	A2K-50R
7K5	5014006-063	KLN-R60	-	A2K-60R
11K	5014006-080	KLN-R80	-	A2K-80R
15K-18K5	2028220-125	KLN-R125	-	A2K-125R

	Bussmann	SIBA	Littel fuse	Ferraz- Shawmut
kW	Type JFHR2	Type RK1	JFHR2	JFHR2
22K	FWX-150	2028220-150	L25S-150	A25X-150
30K	FWX-200	2028220-200	L25S-200	A25X-200
37K	FWX-250	2028220-250	L25S-250	A25X-250

KTS-fuses from Bussmann may substitute KTN for 240 V frequency converters.

FWH-fuses from Bussmann may substitute FWX for 240 V frequency converters.

KLSR fuses from LITTEL FUSE may substitute KLNR fuses for 240 V frequency converters.

L50S fuses from LITTEL FUSE may substitute L50S fuses for 240 V frequency converters.

A6KR fuses from FERRAZ SHAWMUT may substitute A2KR for 240 V frequency converters.

A50X fuses from FERRAZ SHAWMUT may substitute A25X for 240 V frequency converters.

380-500 V, frame sizes A, B and C

	Bussmann	Bussmann	Bussmann	Bussmann	Bussmann	Bussmann
kW	Type RK1	Type J	Туре Т	Type CC	Type CC	Type CC
K37-1K1	KTS-R6	JKS-6	JJS-6	FNQ-R-6	KTK-R-6	LP-CC-6
1K5-2K2	KTS-R10	JKS-10	JJS-10	FNQ-R-10	KTK-R-10	LP-CC-10
3K0	KTS-R15	JKS-15	JJS-15	FNQ-R-15	KTK-R-15	LP-CC-15
4K0	KTS-R20	JKS-20	JJS-20	FNQ-R-20	KTK-R-20	LP-CC-20
5K5	KTS-R25	JKS-25	JJS-25	FNQ-R-25	KTK-R-25	LP-CC-25
7K5	KTS-R30	JKS-30	JJS-30	FNQ-R-30	KTK-R-30	LP-CC-30
11K	KTS-R40	JKS-40	JJS-40	-	-	-
15K	KTS-R50	JKS-50	JJS-50	-	-	-
18K	KTS-R60	JKS-60	JJS-60	-	-	-
22K	KTS-R80	JKS-80	JJS-80	-	-	-
30K	KTS-R100	JKS-100	JJS-100	-	-	-
37K	KTS-R125	JKS-150	JJS-150	-	-	-
45K	KTS-R150	JKS-150	JJS-150	-	-	-

	SIBA	Littel fuse	Ferraz- Shawmut	Ferraz- Shawmut
kW	Type RK1	Type RK1	Туре СС	Type RK1
K37-1K1	5017906-006	KLS-R6	ATM-R6	A6K-6R
1K5-2K2	5017906-010	KLS-R10	ATM-R10	A6K-10R
3K0	5017906-016	KLS-R15	ATM-R15	A6K-15R
4K0	5017906-020	KLS-R20	ATM-R20	A6K-20R
5K5	5017906-025	KLS-R25	ATM-R25	A6K-25R
7K5	5012406-032	KLS-R30	ATM-R30	A6K-30R
11K	5014006-040	KLS-R40	-	A6K-40R
15K	5014006-050	KLS-R50	-	A6K-50R
18K	5014006-063	KLS-R60	-	A6K-60R
22K	2028220-100	KLS-R80	-	A6K-80R
30K	2028220-125	KLS-R100	-	A6K-100R
37K	2028220-125	KLS-R125	-	A6K-125R
45K	2028220-160	KLS-R150	-	A6K-150R

	Bussmann	Bussmann	Bussmann	Bussmann
kW	JFHR2	Туре Н	Туре Т	JFHR2
55K	FWH-200	-	-	-
75K	FWH-250	-	-	-

	SIBA	Littel fuse	Ferraz- Shawmut	Ferraz- Shawmut
kW	Type RK1	JFHR2	JFHR2	JFHR2
55K	2028220-200	L50S-225	-	A50-P225
75K	2028220-250	L50S-250		A50-P250

Ferraz-Shawmut A50QS fuses may be substituted for A50P fuses.

170M fuses shown from Bussmann use the -/80 visual indicator. -TN/80 Type T, -/110 or TN/110 Type T indicator fuses of the same size and amperage may be substituted.

525 - 600V, frame sizes A, B and C

	Bussmann	Bussmann	Bussmann	Bussmann	Bussmann	Bussmann
kW	Type RK1	Type J	Type T	Type CC	Type CC	Type CC
K75-1K5	KTS-R-5	JKS-5	JJS-6	FNQ-R-5	KTK-R-5	LP-CC-5
2K2-4K0	KTS-R10	JKS-10	JJS-10	FNQ-R-10	KTK-R-10	LP-CC-10
5K5-7K5	KTS-R20	JKS-20	JJS-20	FNQ-R-20	KTK-R-20	LP-CC-20

	SIBA	Littel fuse	Ferraz- Shawmut
kW	Type RK1	Type RK1	Type RK1
K75-1K5	5017906-005	KLSR005	A6K-5R
2K2-4K0	5017906-010	KLSR010	A6K-10R
5K5-7K5	5017906-020	KLSR020	A6K-20R

	Bussmann	SIBA	Ferraz- Shawmut
kW	JFHR2	Type RK1	Type RK1
Р37К	170M3013	2061032.125	6.6URD30D08A0125
P45K	170M3014	2061032.160	6.6URD30D08A0160
P55K	170M3015	2061032.200	6.6URD30D08A0200
P75K	170M3015	2061032.200	6.6URD30D08A0200
P90K	170M3016	2061032.250	6.6URD30D08A0250

380-500 V, frame sizes D, E and F

The fuses below are suitable for use on a circuit capable of delivering 100,000 Arms (symmetrical), 240V, or 480V, or 500V, or 600V depending on the drive voltage rating. With the proper fusing the drive Short Circuit Current Rating (SCCR) is 100,000 Arms.

Size/ Type	Bussmann E1958 JFHR2**	Bussmann E4273 T/JDDZ**	SIBA E180276 RKI/JDDZ	LittelFuse E71611 JFHR2**	Ferraz- Shawmut E60314 JFHR2**	Bussmann E4274 H/JDDZ**	Bussmann E125085 JFHR2*	Internal Option Bussmann
P90K	FWH- 300	JJS- 300	2028220- 315	L50S-300	A50-P300	NOS- 300	170M3017	170M3018
P110	FWH- 350	JJS- 350	2028220- 315	L50S-350	A50-P350	NOS- 350	170M3018	170M3018
P132	FWH- 400	JJS- 400	206xx32- 400	L50S-400	A50-P400	NOS- 400	170M4012	170M4016
P160	FWH- 500	JJS- 500	206xx32- 500	L50S-500	A50-P500	NOS- 500	170M4014	170M4016
P200	FWH- 600	JJS- 600	206xx32- 600	L50S-600	A50-P600	NOS- 600	170M4016	170M4016

Table 8.2: Frame size D, Line fuses, 380-500 V

Size/Type	Bussmann PN*	Rating	Ferraz	Siba
P250	170M4017	700 A, 700 V	6.9URD31D08A0700	20 610 32.700
P315	170M6013	900 A, 700 V	6.9URD33D08A0900	20 630 32.900
P355	170M6013	900 A, 700 V	6.9URD33D08A0900	20 630 32.900
P400	170M6013	900 A, 700 V	6.9URD33D08A0900	20 630 32.900

Table 8.3: Frame size E, Line fuses, 380-500 V

Size/Type	Bussmann PN*	Rating	Siba	Internal Bussmann Option
P450	170M7081	1600 A, 700 V	20 695 32.1600	170M7082
P500	170M7081	1600 A, 700 V	20 695 32.1600	170M7082
P560	170M7082	2000 A, 700 V	20 695 32.2000	170M7082
P630	170M7082	2000 A, 700 V	20 695 32.2000	170M7082
P710	170M7083	2500 A, 700 V	20 695 32.2500	170M7083
P800	170M7083	2500 A, 700 V	20 695 32.2500	170M7083

Table 8.4: Frame size F, Line fuses, 380-500 V

Size/Type	Bussmann PN*	Rating	Siba
P450	170M8611	1100 A, 1000 V	20 781 32.1000
P500	170M8611	1100 A, 1000 V	20 781 32.1000
P560	170M6467	1400 A, 700 V	20 681 32.1400
P630	170M6467	1400 A, 700 V	20 681 32.1400
P710	170M8611	1100 A, 1000 V	20 781 32.1000
P800	170M6467	1400 A, 700 V	20 681 32.1400

Table 8.5: Frame size F, Inverter module DC Link Fuses, 380-500 V

*170M fuses from Bussmann shown use the -/80 visual indicator, -TN/80 Type T, -/110 or TN/110 Type T indicator fuses of the same size and amperage may be substituted for external use

**Any minimum 500 V UL listed fuse with associated current rating may be used to meet UL requirements.

525-690 V, frame sizes D, E and F

	Bussmann		SIBA	Ferraz-Shawmut	Internal
Size/Type	E125085	Amps	E180276	E76491	Option
	JFHR2		JFHR2	JFHR2	Bussmann
P37K	170M3013	125	2061032.125	6.6URD30D08A0125	170M3015
P45K	170M3014	160	2061032.16	6.6URD30D08A0160	170M3015
P55K	170M3015	200	2061032.2	6.6URD30D08A0200	170M3015
P75K	170M3015	200	2061032.2	6.6URD30D08A0200	170M3015
P90K	170M3016	250	2061032.25	6.6URD30D08A0250	170M3018
P110	170M3017	315	2061032.315	6.6URD30D08A0315	170M3018
P132	170M3018	350	2061032.35	6.6URD30D08A0350	170M3018
P160	170M4011	350	2061032.35	6.6URD30D08A0350	170M5011
P200	170M4012	400	2061032.4	6.6URD30D08A0400	170M5011
P250	170M4014	500	2061032.5	6.6URD30D08A0500	170M5011
P315	170M5011	550	2062032.55	6.6URD32D08A550	170M5011

Table 8.6: Frame size D, 525-690 V

Size/Type	Bussmann PN*	Rating	Ferraz	Siba
P355	170M4017	700 A, 700 V	6.9URD31D08A0700	20 610 32.700
P400	170M4017	700 A, 700 V	6.9URD31D08A0700	20 610 32.700
P500	170M6013	900 A, 700 V	6.9URD33D08A0900	20 630 32.900
P560	170M6013	900 A, 700 V	6.9URD33D08A0900	20 630 32.900

Table 8.7: Frame size E, 525-690 V

Size/Type	Bussmann PN*	Rating	Siba	Internal Bussmann Option
P630	170M7081	1600 A, 700 V	20 695 32.1600	170M7082
P710	170M7081	1600 A, 700 V	20 695 32.1600	170M7082
P800	170M7081	1600 A, 700 V	20 695 32.1600	170M7082
P900	170M7081	1600 A, 700 V	20 695 32.1600	170M7082
P1M0	170M7082	2000 A, 700 V	20 695 32.2000	170M7082

Table 8.8: Frame size F, Line fuses, 525-690 V

Size/Type	Bussmann PN*	Rating	Siba
P630	170M8611	1100 A, 1000 V	20 781 32. 1000
P710	170M8611	1100 A, 1000 V	20 781 32. 1000
P800	170M8611	1100 A, 1000 V	20 781 32. 1000
P900	170M8611	1100 A, 1000 V	20 781 32. 1000
P1M0	170M8611	1100 A, 1000 V	20 781 32. 1000

Table 8.9: Frame size F, Inverter module DC Link Fuses, 525-690 V

*170M fuses from Bussmann shown use the -/80 visual indicator, -TN/80 Type T, -/110 or TN/110 Type T indicator fuses of the same size and amperage may be substituted for external use.

Suitable for use on a circuit capable of delivering not more than 100 000 rms symmetrical amperes, 500/600/690 Volts maximum when protected by the above fuses.

Supplementary fuses

Frame size	Bussmann PN*	Rating
D, E and F	КТК-4	4 A, 600 V

Table 8.10: SMPS Fuse

Size/Type	Bussmann PN*	LittelFuse	Rating
P90K-P250, 380-500 V	KTK-4		4 A, 600 V
P37K-P400, 525-690 V	KTK-4		4 A, 600 V
P315-P800, 380-500 V		KLK-15	15A, 600 V
P500-P1M0, 525-690 V		KLK-15	15A, 600 V

Table 8.11: Fan Fuses

	Size/Type	Bussmann PN*	Rating	Alternative Fuses
2.5-4.0 A Fuse	P450-P800, 380-500 V	LPJ-6 SP or SPI	6 A, 600 V	Any listed Class J Dual Ele- ment, Time Delay, 6A
	P630-P1M0, 525-690 V	LPJ-10 SP or SPI	10 A, 600 V	Any listed Class J Dual Ele- ment, Time Delay, 10 A
4.0-6.3 A Fuse	P450-P800, 380-500 V	LPJ-10 SP or SPI	10 A, 600 V	Any listed Class J Dual Ele- ment, Time Delay, 10 A
	P630-P1M0, 525-690 V	LPJ-15 SP or SPI	15 A, 600 V	Any listed Class J Dual Ele- ment, Time Delay, 15 A
6.3 - 10 A Fuse	P450- P800600HP-1200HP, 380-500 V	LPJ-15 SP or SPI	15 A, 600 V	Any listed Class J Dual Ele- ment, Time Delay, 15 A
	P630-P1M0, 525-690 V	LPJ-20 SP or SPI	20 A, 600 V	Any listed Class J Dual Ele- ment, Time Delay, 20A
10 - 16 A Fuse	P450-P800, 380-500 V	LPJ-25 SP or SPI	25 A, 600 V	Any listed Class J Dual Ele- ment, Time Delay, 25 A
	P630-P1M0, 525-690 V	LPJ-20 SP or SPI	20 A, 600 V	Any listed Class J Dual Ele- ment, Time Delay, 20 A

Table 8.12: Manual Motor Controller Fuses

Frame size	Bussmann PN*	Rating	Alternative Fuses
F	LPJ-30 SP or SPI	30 A, 600 V	Any listed Class J Dual Element, Time Delay, 30 A

Table 8.13: 30 A Fuse Protected Terminal Fuse

Frame size	Bussmann PN*	Rating	Alternative Fuses
F	LPJ-6 SP or SPI	6 A, 600 V	Any listed Class J Dual Element, Time
			Delay, 6 A

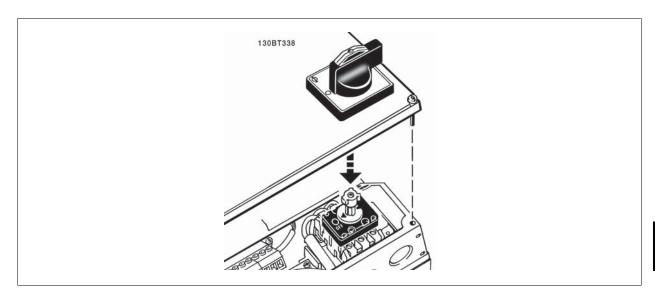
Table 8.14: Control Transformer Fuse

Frame size	Bussmann PN*	Rating
F	GMC-800MA	800 mA, 250 V

Table 8.15: NAMUR Fuse

Frame size	Bussmann PN*	Rating	Alternative Fuses
F	LP-CC-6	6 A, 600 V	Any listed Class CC, 6 A

Table 8.16: Safety Relay Coil Fuse with PILS Relay



8.4 Disconnectors, circuit breakers and contactors

8.4.1 Mains Disconnectors

Assembling of IP55 / NEMA Type 12 (A5 housing) with mains disconnector

Mains switch is placed on left side on frame sizes B1, B2, C1 and C2. Mains switch on A5 frames is placed on right side

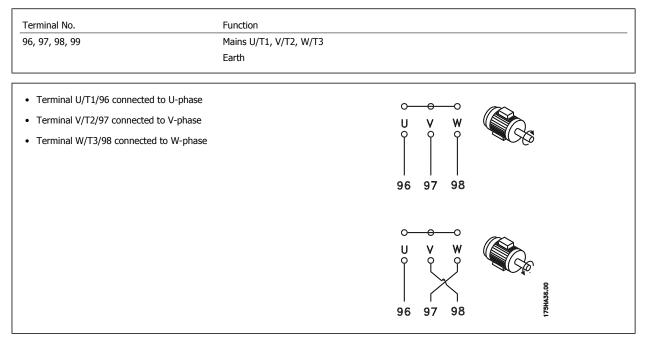
Туре:
Kraus&Naimer KG20A T303
Kraus&Naimer KG64 T303
Kraus&Naimer KG64 T303
Kraus&Naimer KG100 T303
Kraus&Naimer KG105 T303
Kraus&Naimer KG160 T303
Kraus&Naimer KG250 T303

8.4.2 Mains disconnectors - frame size D, E and F

Frame size	Power & Voltage	Туре
D1/D3	P90K-P110 380-500V & P90K-P132 525-690V	ABB OETL-NF200A
D2/D4	P132-P200 380-500V & P160-P315 525-690V	ABB OETL-NF400A
E1/E2	P250 380-500V & P355-P560500HP-750HP 525-690V	ABB OETL-NF600A
E1/E2	P315-P400 380-500V	ABB OETL-NF800A
F3	P450 380-500V & P630-P710 525-690V	Merlin Gerin NPJF36000S12AAYP*
F4	P500-P630 380-500V & P800 525-690V	Merlin Gerin NRK36000S20AAYP*
F4	P710-P800 380-500V & P900-P1M0 525-690V	Merlin Gerin NRK36000S20AAYP*

8.4.3 F frame circuit breakers

Frame size	Power & Voltage	Туре
F3	P450 380-500V & P630-P710 525-690V	Merlin Gerin NPJF36120U31AABSCYP*
F4	P500-P630 380-500V & P800 525-690V	Merlin Gerin NRJF36200U31AABSCYP*
F4	P710 380-500V & P900-P1M0 525-690V	Merlin Gerin NRJF36200U31AABSCYP*
F4	P800 380-500V	Merlin Gerin NRJF36250U31AABSCYP*
* Drive SCCR rating	maybe less than 100 kA when this option is added. See the	drive label for SCCR rating.


8.4.4 F frame mains contactors

Frame size	Power & Voltage	Туре
F3	P450-P500 380-500V & P630-P800 525-690V	Eaton XTCE650N22A*
F3	P560 380-500V	Eaton XTCE820N22A*
F3	P630380-500V	Eaton XTCEC14P22B*
F4	P900 525-690V	Eaton XTCE820N22A*
F4	P710-P800 380-500V & P1M0 525-690V	Eaton XTCEC14P22B*
* Drive SCCR rating	maybe less than 100 kA when this option is added. See the	drive label for SCCR rating.

8.5 Additional motor information

8.5.1 Motor cable

The motor must be connected to terminals U/T1/96, V/T2/97, W/T3/98. Earth to terminal 99. All types of three-phase asynchronous standard motors can be used with a frequency converter unit. The factory setting is for clockwise rotation with the frequency converter output connected as follows:

The direction of rotation can be changed by switching two phases in the motor cable or by changing the setting of par. 4-10 *Motor Speed Direction*. Motor rotation check can be performed using par. 1-28 *Motor Rotation Check* and following the steps shown in the display.

F frame Requirements

F1/F3 requirements: Motor phase cable quantities must be 2, 4, 6, or 8 (multiples of 2) to obtain equal amount of wires attached to both inverter module terminals. The cables are required to be equal length within 10% between the inverter module terminals and the first common point of a phase. The recommended common point is the motor terminals.

F2/F4 requirements: Motor phase cable quantities must be 3, 6, 9, or 12 (multiples of 3) to obtain equal amount of wires attached to each inverter module terminal. The wires are required to be equal length within 10% between the inverter module terminals and the first common point of a phase. The recommended common point is the motor terminals.

Output junction box requirements: The length, minimum 2.5 meters, and quantity of cables must be equal from each inverter module to the common terminal in the junction box.

If a retrofit applications requires unequal amount of wires per phase please consult the factory for requirements.

8.5.2 Motor Thermal Protection

NRI

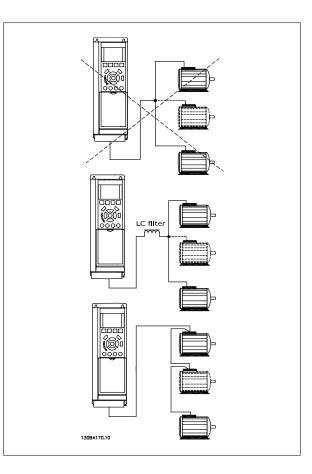
The electronic thermal relay in the frequency converter has received UL-approval for single motor protection, when par. 1-90 *Motor Thermal Protection* is set for *ETR Trip* and par. 1-24 *Motor Current* is set to the rated motor current (see motor name plate).

For thermal motor protection it is also possible to use the MCB 112 PTC Thermistor Card option. This card provides ATEX certificate to protect motors in explosion hazardous areas, Zone 1/21 and Zone 2/22. Please refer to the *Design Guide* for further information.

8.5.3 Parallel Connection of Motors

The frequency converter can control several parallel-connected motors. The total current consumption of the motors must not exceed the rated output current I_{INV} for the frequency converter.

This is only recommended when U/f is selected in par. 1-01 *Motor Control Principle*.



NB! Installations with cables connected in a common joint as in illustration 1 is only recommended for short cable lengths.

S

NB!

When motors are connected in parallel, par. 1-02 *Flux Motor Feedback Source* cannot be used, and par. 1-01 *Motor Control Principle* must be set to *Special motor characteristics (U/f)*.

Problems may arise at start and at low RPM values if motor sizes are widely different because small motors' relatively high ohmic resistance in the stator calls for a higher voltage at start and at low RPM values.

8 Electrical Installation

<u>Danfoss</u>

The electronic thermal relay (ETR) of the frequency converter cannot be used as motor protection for the individual motor of systems with parallelconnected motors. Provide further motor protection by e.g. thermistors in each motor or individual thermal relays. (Circuit breakers are not suitable as protection).

8.5.4 Motor Insulation

For motor cable lengths \leq the maximum cable length listed in the General Specifications tables the following motor insulation ratings are recommended because the peak voltage can be up to twice the DC link voltage, 2.8 times the mains voltage, due to transmission line effects in the motor cable. If a motor has lower insulation rating it recommended to use a du/dt or sine wave filter.

Nominal Mains Voltage U _N ≤ 420 V	Motor Insulation Standard U _{LL} = 1300 V
420 V < U _N ≤ 500 V	Reinforced $U_{LL} = 1600 V$
$500 \text{ V} < \text{U}_{\text{N}} \le 600 \text{ V}$	Reinforced $U_{LL} = 1800 V$
$600 \text{ V} < \text{U}_{\text{N}} \le 690 \text{ V}$	Reinforced $U_{LL} = 2000 V$

8.5.5 Motor Bearing Currents

All motors installed with FC302 90kW or higher power drives should have NDE (Non-Drive End) insulated bearings installed to eliminate circulating bearing currents. To minimize DE (Drive End) bearing and shaft currents proper grounding of the drive, motor, driven machine, and motor to the driven machine is required.

Standard Mitigation Strategies:

- 1. Use an insulated bearing
- 2. Apply rigorous installation procedures
 - Ensure the motor and load motor are aligned
 - Strictly follow the EMC Installation guideline
 - Reinforce the PE so the high frequency impedance is lower in the PE than the input power leads
 - Provide a good high frequency connection between the motor and the frequency converter for instance by screened cable which has a 360° connection in the motor and the frequency converter
 - Make sure that the impedance from frequency converter to building ground is lower that the grounding impedance of the machine. This can be difficult for pumps
 - Make a direct earth connection between the motor and load motor
- 3. Lower the IGBT switching frequency
- 4. Modify the inverter waveform, 60° AVM vs. SFAVM
- 5. Install a shaft grounding system or use an isolating coupling
- 6. Apply conductive lubrication
- 7. Use minimum speed settings if possible
- 8. Try to ensure the line voltage is balanced to ground. This can be difficult for IT, TT, TN-CS or Grounded leg systems
- 9. Use a dU/dt or sinus filter

Danfoss

8.6 Control cables and terminals

8.6.1 Access to Control Terminals

All terminals to the control cables are located underneath the terminal cover on the front of the frequency converter. Remove the terminal cover by means of a screwdriver (see illustration).

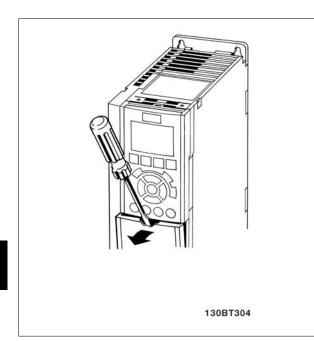


Illustration 8.34: Frame sizes A5, B1, B2, C1 and C2

Illustration 8.33: Frame sizes A1, A2, A3,B3, B4, C3 and C4

8.6.2 Control cable routing

Tie down all control wires to the designated control cable routing as shown in the picture. Remember to connect the shields in a proper way to ensure optimum electrical immunity.

Fieldbus connection

8

Connections are made to the relevant options on the control card. For details see the relevant fieldbus instruction. The cable must be placed to the left inside the frequency converter and tied down together with other control wires (see picture).

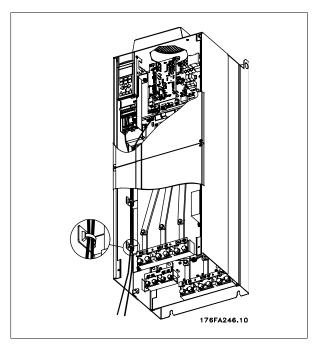


Illustration 8.35: Wire path for control wiring.

MG.33.BB.02 - VLT $^{\ensuremath{\mathbb{R}}}$ is a registered Danfoss trademark

164

FC 300 Design Guide

Danfoss

In the IP 00 (Chassis) and IP 21 (NEMA 1) units it is also possible to connect the fieldbus from the top of the unit as shown on the picture to the right. On the IP 21 (NEMA 1) unit a cover plate must be removed. Kit number for fieldbus top connection: 176F1742

Illustration 8.36: Top connection for fieldbus.

Installation of 24 Volt external DC Supply Torque: 0.5 - 0.6 Nm (5 in-lbs) Screw size: M3

No.	Function
35 (-), 36 (+)	24 V external DC supply

24 VDC external supply can be used as low-voltage supply to the control card and any option cards installed. This enables full operation of the LCP (including parameter setting) without connection to mains. Please note that a warning of low voltage will be given when 24 VDC has been connected; however, there will be no tripping.

Use 24 VDC supply of type PELV to ensure correct galvanic isolation (type PELV) on the control terminals of the frequency converter.

8.6.3 Control Terminals

Control Terminals, FC 301

Drawing reference numbers:

- 1. 8 pole plug digital I/O.
- 2. 3 pole plug RS485 Bus.
- 3. 6 pole analog I/O.
- 4. USB Connection.

Control Terminals, FC 302

Drawing reference numbers:

- 1. 10 pole plug digital I/O.
- 2. 3 pole plug RS485 Bus.
- 3. 6 pole analog I/O.
- 4. USB Connection.

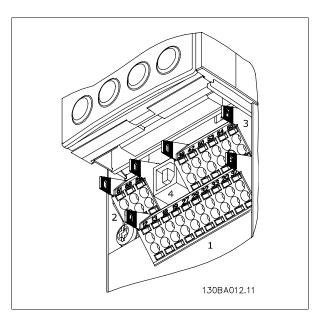


Illustration 8.37: Control terminals (all frame sizes)

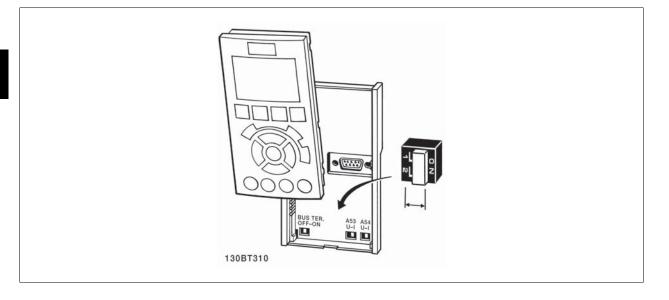
8.6.4 Switches S201, S202, and S801

Switches S201 (A53) and S202 (A54) are used to select a current (0-20 mA) or a voltage (-10 to 10 V) configuration of the analog input terminals 53 and 54 respectively.

Switch S801 (BUS TER.) can be used to enable termination on the RS-485 port (terminals 68 and 69).

See drawing Diagram showing all electrical terminals in section Electrical Installation.

Default setting:

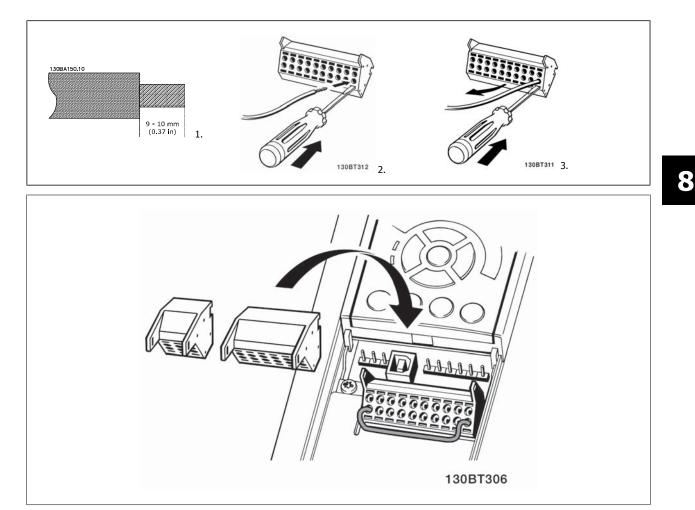

S201 (A53) = OFF (voltage input)

S202 (A54) = OFF (voltage input)

S801 (Bus termination) = OFF

When changing the function of S201, S202 or S801 be careful not to use force for the switch over. It is recommended to remove the LCP fixture (cradle) when operating the switches. The switches must not be operated with power on the frequency converter.

8.6.5 Electrical Installation, Control Terminals

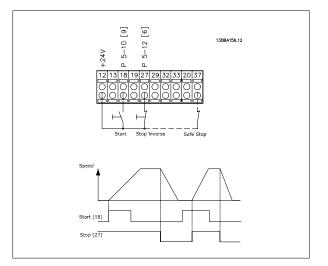

To mount the cable to the terminal:

- 1. Strip insulation of 9-10 mm
- 2. Insert a screwdriver¹⁾ in the square hole.
- 3. Insert the cable in the adjacent circular hole.
- 4. Remove the screw driver. The cable is now mounted to the terminal.

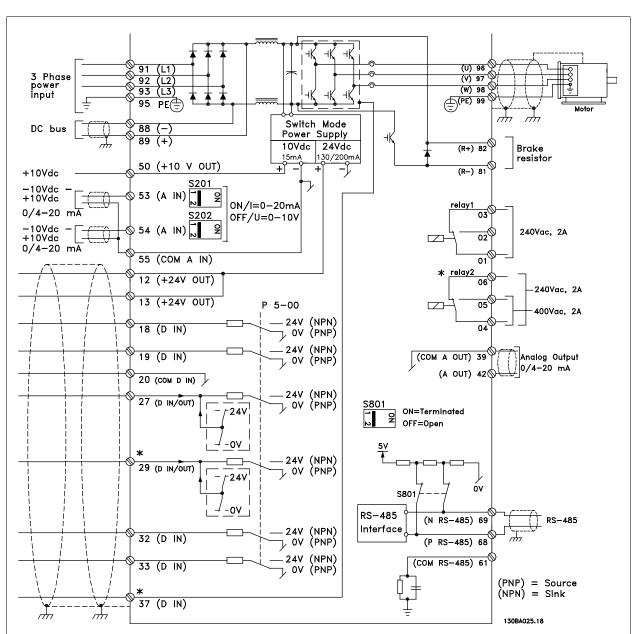
To remove the cable from the terminal:

- 1. Insert a screwdriver¹⁾ in the square hole.
- 2. Pull out the cable.

¹⁾ Max. 0.4 x 2.5 mm



8.6.6 Basic Wiring Example


- 1. Mount terminals from the accessory bag to the front of the frequency converter.
- Connect terminals 18, 27 and 37 (FC 302 only) to +24 V (terminal 12/13)

Default settings:

- 18 = Start, par. 5-10 Terminal 18 Digital Input [9]
- 27 = Stop inverse, par. 5-12 Terminal 27 Digital Input [6]
- 37 = safe stop inverse

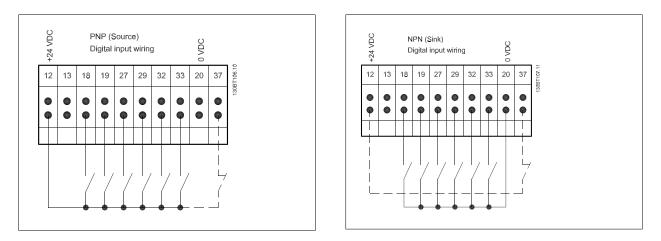
8.6.7 Electrical Installation, Control Cables

Illustration 8.38: Diagram showing all electrical terminals without options.

A = analog, D = digital

Terminal 37 is used for Safe Stop. For instructions on Safe Stop installation please refer to the section *Safe Stop Installation* of the Design Guide. * Terminal 37 is not included in FC 301 (Except FC 301 A1, which includes Safe Stop).

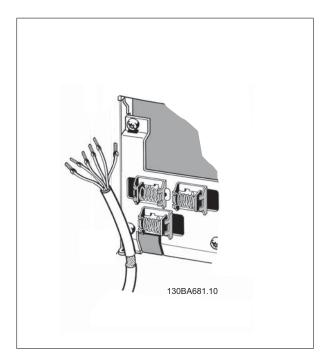
Relay 2 and Terminal 29, have no function in FC 301.


Very long control cables and analogue signals may in rare cases and depending on installation result in 50/60 Hz earth loops due to noise from mains supply cables.

If this occurs, it may be necessary to break the screen or insert a 100 nF capacitor between screen and chassis.

The digital and analogue inputs and outputs must be connected separately to the common inputs (terminal 20, 55, 39) of the frequency converter to avoid ground currents from both groups to affect other groups. For example, switching on the digital input may disturb the analog input signal.

<u>Danfoss</u>


Input polarity of control terminals

NB! Control cables must be screened/armoured.

See section entitled *Earthing of Screened/Armoured Control Cables* for the correct termination of control cables.

8.6.8 Relay Output

Relay 1

- Terminal 01: common
- Terminal 02: normal open 240 V AC
- Terminal 03: normal closed 240 V AC

Relay 2 (Not FC 301)

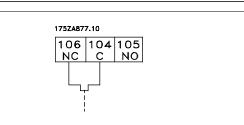
- Terminal 04: common
- Terminal 05: normal open 400 V AC
- Terminal 06: normal closed 240 V AC

Relay 1 and relay 2 are programmed in par. 5-40 *Function Relay*, par. 5-41 *On Delay, Relay*, and par. 5-42 *Off Delay, Relay*.

Additional relay outputs by using option module MCB 105.

Torque: 0.5-0.6 Nm (5 in-lbs) Screw size: M3

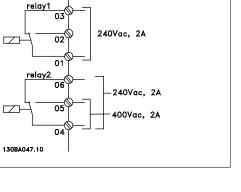
This input can be used to monitor the temperature of an externally connected brake resistor. If the input between 104 and 106 is established, the frequency converter will trip on warning / alarm 27, "Brake IGBT". If the connection is closed between 104 and 105, the frequency converter will trip on warning / alarm 27, "Brake IGBT".


Normally closed: 104-106 (factory installed jumper) Normally open: 104-105

 Terminal No.
 Function

 106, 104, 105
 Brake resistor temperature switch.

If the temperature of the brake resistor gets too high and the thermal switch drops out, the frequency converter will stop braking. The motor will start coasting. A KLIXON switch must be installed that is `normally closed'. If this function is not used, 106 and 104 must be short-circuited together.


8.7 Additional Connections

8.7.1 DC bus connection

The DC bus terminal is used for DC back-up, with the intermediate circuit being supplied from an external source.

Terminal numbers used: 88, 89

Please contact Danfoss if you require further information.

8

8.7.2 Load Sharing

Terminal No.	Function
88, 89	Loadsharing

The connection cable must be screened and the max. length from the frequency converter to the DC bar is limited to 25 metres (82 feet). Load sharing enables linking of the DC intermediate circuits of several frequency converters.

Please note that voltages up to 1099 VDC may occur on the terminals. Load Sharing calls for extra equipment and safety considerations. For further information, see load sharing Instructions MI.50.NX.YY.

Please note that mains disconnect may not isolate the frequency converter due to DC link connection

8.7.3 Installation of Brake Cable

The connection cable to the brake resistor must be screened and the max. length from the frequency converter to the DC bar is limited to 25 metres (82 feet).

 Connect the screen by means of cable clamps to the conductive back plate on the frequency converter and to the metal cabinet of the brake resistor.

No.	Function
81, 82	Brake resistor terminals

2. Size the brake cable cross-section to match the brake torque.

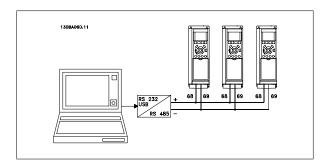
See Brake instructions, MI.90.FX.YY and MI.50.SX.YY for more information about safe installation.

If a short circuit in the brake IGBT occurs, prevent power dissipation in the brake resistor by using a mains switch or contactor to disconnect the mains for the frequency converter. Only the frequency converter shall control the contactor.

Please note that voltages up to 1099 VDC, depending on the supply voltage, may occur on the terminals.

Frame size F Requirements

NB!


The brake resistor(s) must be connected to the brake terminals in each inverter module.

8.7.4 RS 485 Bus Connection

One or more frequency converters can be connected to a control (or master) using the RS485 standardized interface. Terminal 68 is connected to the P signal (TX+, RX+), while terminal 69 is connected to the N signal (TX-,RX-).

If more than one frequency converter is connected to a master, use parallel connections.

In order to avoid potential equalizing currents in the screen, earth the cable screen via terminal 61, which is connected to the frame via an RC-link.

Bus termination

The RS485 bus must be terminated by a resistor network at both ends. For this purpose, set switch S801 on the control card for "ON". For more information, see the paragraph *Switches S201, S202, and S801*.

NB!

Communication protocol must be set to FC MC 8-30 Protocol.

8.7.5 How to Connect a PC to the frequency converter

To control the frequency converter from a PC, install the MCT 10 Set-up Software.

The PC is connected via a standard (host/device) USB cable, or via the RS485 interface as shown in the section *Bus Connection* in the Programming Guide.

NB!

The USB connection is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals. The USB connection is connected to protection earth on the frequency converter. Use only isolated laptop as PC connection to the USB connector on the frequency converter.

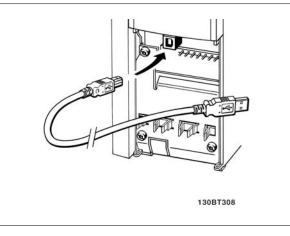


Illustration 8.39: USB connection.

8.7.6 The FC 300 PC Software

Data storage in PC via MCT 10 Set-Up Software:

- 1. Connect a PC to the unit via USB com port
- 2. Open MCT 10 Set-up Software
- 3. Select in the "network" section the USB port
- 4. Choose "Copy"
- 5. Select the "project" section
- 6. Choose "Paste"
- 7. Choose "Save as"

All parameters are now stored.

8.8.1 High Voltage Test

Data transfer from PC to drive via MCT 10 Set-Up Software:

- 1. Connect a PC to the unit via USB com port
- 2. Open MCT 10 Set-up software
- 3. Choose "Open"- stored files will be shown
- 4. Open the appropriate file
- 5. Choose "Write to drive"

All parameters are now transferred to the drive.

A separate manual for MCT 10 Set-up Software is available.

Carry out a high voltage test by short-circuiting terminals U, V, W, L₁, L₂ and L₃. Energize maximum 2.15 kV DC for 380-500V frequency converters and 2.525 kV DC for 525-690V frequency converters for one second between this short-circuit and the chassis.

8

NB! When running high voltage tests of the entire installation, interrupt the mains and motor connection if the leakage currents are too high.

8.8.2 Earthing

The following basic issues need to be considered when installing a frequency converter, so as to obtain electromagnetic compatibility (EMC).

- Safety earthing: Please note that the frequency converter has a high leakage current and must be earthed appropriately for safety reasons. Apply local safety regulations.
- High-frequency earthing: Keep the earth wire connections as short as possible.

Connect the different earth systems at the lowest possible conductor impedance. The lowest possible conductor impedance is obtained by keeping the conductor as short as possible and by using the greatest possible surface area.

The metal cabinets of the different devices are mounted on the cabinet rear plate using the lowest possible HF impedance. This avoids having different HF voltages for the individual devices and avoids the risk of radio interference currents running in connection cables that may be used between the devices. The radio interference will have been reduced.

In order to obtain a low HF impedance, use the fastening bolts of the devices as HF connection to the rear plate. It is necessary to remove insulating paint or similar from the fastening points.

8.8.3 Safety Earth Connection

The frequency converter has a high leakage current and must be earthed appropriately for safety reasons acording to EN 50178.

The earth leakage current from the frequency converter exceeds 3.5 mA. To ensure a good mechanical connection from the earth cable to the earth connection (terminal 95), the cable cross-section must be at least 10 mm2 or 2 rated earth wires terminated separately.

Danfoss

8.9 EMC-correct Installation

8.9.1 Electrical Installation - EMC Precautions

The following is a guideline to good engineering practice when installing frequency converters. Follow these guidelines to comply with EN 61800-3 *First environment*. If the installation is in EN 61800-3 *Second environment*, i.e. industrial networks, or in an installation with its own transformer, deviation from these guidelines is allowed but not recommended. See also paragraphs *CE Labelling, General Aspects of EMC Emission* and *EMC Test Results*.

Good engineering practice to ensure EMC-correct electrical installation:

- Use only braided screened/armoured motor cables and braided screened/armoured control cables. The screen should provide a minimum coverage of 80%. The screen material must be metal, not limited to but typically copper, aluminium, steel or lead. There are no special requirements for the mains cable.
- Installations using rigid metal conduits are not required to use screened cable, but the motor cable must be installed in conduit separate from the control and mains cables. Full connection of the conduit from the drive to the motor is required. The EMC performance of flexible conduits varies a lot and information from the manufacturer must be obtained.
- Connect the screen/armour/conduit to earth at both ends for motor cables as well as for control cables. In some cases, it is not possible to connect the screen in both ends. If so, connect the screen at the frequency converter. See also *Earthing of Braided Screened/Armoured Control Cables*.
- Avoid terminating the screen/armour with twisted ends (pigtails). It increases the high frequency impedance of the screen, which reduces its effectiveness at high frequencies. Use low impedance cable clamps or EMC cable glands instead.
- Avoid using unscreened/unarmoured motor or control cables inside cabinets housing the drive(s), whenever this can be avoided.

Leave the screen as close to the connectors as possible.

The illustration shows an example of an EMC-correct electrical installation of an IP 20 frequency converter. The frequency converter is fitted in an installation cabinet with an output contactor and connected to a PLC, which is installed in a separate cabinet. Other ways of doing the installation may have just as good an EMC performance, provided the above guide lines to engineering practice are followed.

If the installation is not carried out according to the guideline and if unscreened cables and control wires are used, some emission requirements are not complied with, although the immunity requirements are fulfilled. See the paragraph *EMC test results*.

8 Electrical Installation

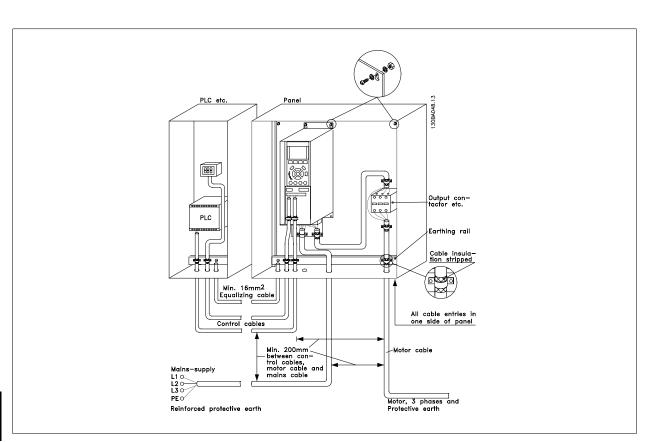


Illustration 8.40: EMC-correct electrical installation of a frequency converter in cabinet.

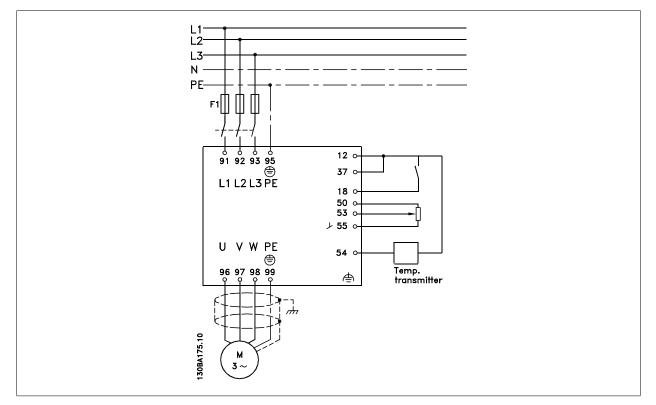
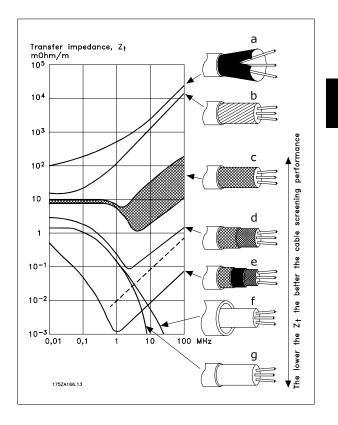


Illustration 8.41: Electrical connection diagram.

8.9.2 Use of EMC-Correct Cables

Danfoss recommends braided screened/armoured cables to optimise EMC immunity of the control cables and the EMC emission from the motor cables.

The ability of a cable to reduce the in- and outgoing radiation of electric noise depends on the transfer impedance (Z_T). The screen of a cable is normally designed to reduce the transfer of electric noise; however, a screen with a lower transfer impedance (Z_T) value is more effective than a screen with a higher transfer impedance (Z_T).


Transfer impedance (Z_T) is rarely stated by cable manufacturers but it is often possible to estimate transfer impedance (Z_T) by assessing the physical design of the cable.

Transfer impedance (Z_T) can be assessed on the basis of the following factors:

- The conductibility of the screen material.
- The contact resistance between the individual screen conductors.
- The screen coverage, i.e. the physical area of the cable covered by the screen often stated as a percentage value.
- Screen type, i.e. braided or twisted pattern.
- a. Aluminium-clad with copper wire.
- b. Twisted copper wire or armoured steel wire cable.
- c. Single-layer braided copper wire with varying percentage screen coverage.

This is the typical Danfoss reference cable.

- d. Double-layer braided copper wire.
- e. Twin layer of braided copper wire with a magnetic, screened/ armoured intermediate layer.
- f. Cable that runs in copper tube or steel tube.
- g. Lead cable with 1.1 mm wall thickness.

8

8.9.3 Earthing of Screened/Armoured Control Cables

Generally speaking, control cables must be braided screened/armoured and the screen must be connected by means of a cable clamp at both ends to the metal cabinet of the unit.

The drawing below indicates how correct earthing is carried out and what to do if in doubt.

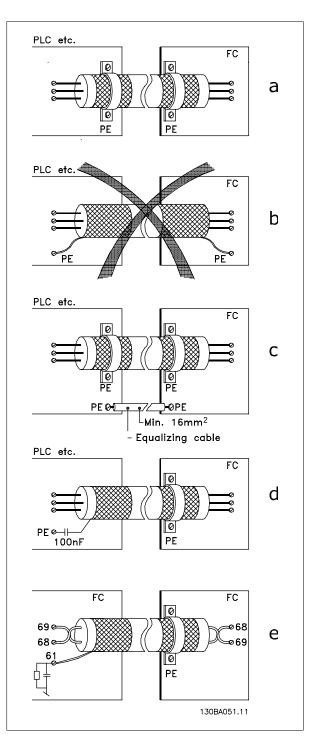
a. Correct earthing

Control cables and cables for serial communication must be fitted with cable clamps at both ends to ensure the best possible electrical contact.

b. Wrong earthing

Do not use twisted cable ends (pigtails). They increase the screen impedance at high frequencies.

c. Protection with respect to earth potential between PLC and


If the earth potential between the frequency converter and the PLC (etc.) is different, electric noise may occur that will disturb the entire system. Solve this problem by fitting an equalising cable, next to the control cable. Minimum cable cross-section: 16 mm^2 .

d. For 50/60 Hz earth loops

If very long control cables are used, 50/60 Hz earth loops may occur. Solve this problem by connecting one end of the screen to earth via a 100nF capacitor (keeping leads short).

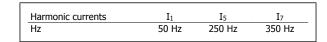
e. Cables for serial communication

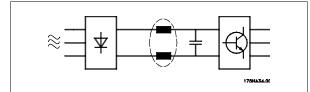
Eliminate low-frequency noise currents between two frequency converters by connecting one end of the screen to terminal 61. This terminal is connected to earth via an internal RC link. Use twisted-pair cables to reduce the differential mode interference between the conductors.

8.9.4 RFI Switch

Mains supply isolated from earth

If the frequency converter is supplied from an isolated mains source (IT mains, floating delta and grounded delta) or TT/TN-S mains with grounded leg, the RFI switch is recommended to be turned off (OFF)¹⁾ via par. 14-50 *RFI Filter*. For further reference, see IEC 364-3. In case optimum EMC performance is needed, parallel motors are connected or the motor cable length is above 25 m, it is recommended to set par. 14-50 *RFI Filter* to [ON]. ¹⁾ Not available for 525-600/690 V frequency converters.


In OFF, the internal RFI capacities (filter capacitors) between the chassis and the intermediate circuit are cut off to avoid damage to the intermediate circuit and to reduce the earth capacity currents (according to IEC 61800-3).


Please also refer to the application note VLT on IT mains, MN.90.CX.02. It is important to use isolation monitors that are capable for use together with power electronics (IEC 61557-8).

8.10.1 Mains Supply Interference/Harmonics

A frequency converter takes up a non-sinusoidal current from mains, which increases the input current I_{RMS} . A non-sinusoidal current is transformed by means of a Fourier analysis and split up into sine-wave currents with different frequencies, i.e. different harmonic currents I $_{\text{N}}$ with 50 Hz as the basic frequency:

The harmonics do not affect the power consumption directly but increase the heat losses in the installation (transformer, cables). Consequently, in plants with a high percentage of rectifier load, maintain harmonic currents at a low level to avoid overload of the transformer and high temperature in the cables.

8

Some of the harmonic currents might disturb communication equipment connected to the same transformer or cause resonance in connection with power-factor correction batteries.

Harmonic currents compared to the RMS input current:

NB!

	Input current
IRMS	1.0
I ₁	0.9
I ₅	0.4
I ₇	0.2
I ₁₁₋₄₉	< 0.1

To ensure low harmonic currents, the frequency converter is equipped with intermediate circuit coils as standard. This normally reduces the input current I _{RMS} by 40%.

The voltage distortion on the mains supply depends on the size of the harmonic currents multiplied by the mains impedance for the frequency in question. The total voltage distortion THD is calculated on the basis of the individual voltage harmonics using this formula:

$$THD \% = \sqrt{U_5^2 + U_7^2 + \dots + U_N^2}$$

(U_N% of U)

8.11.1 Residual Current Device

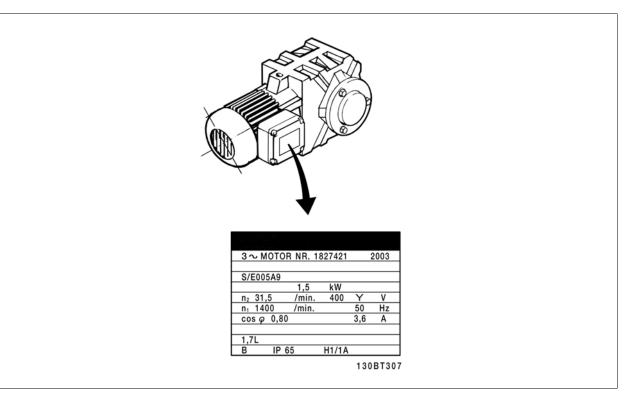
You can use RCD relays, multiple protective earthing or earthing as extra protection, provided that local safety regulations are complied with.

If an earth fault appears, a DC content may develop in the faulty current.

If RCD relays are used, you must observe local regulations. Relays must be suitable for protection of 3-phase equipment with a bridge rectifier and for a brief discharge on power-up see section *Earth Leakage Current* for further information.

8.12 Final Setup and Test

8.12.1 Final Set-Up and Test


To test the set-up and ensure that the frequency converter is running, follow these steps.

Step 1. Locate the motor name plate

NB!

The motor is either star- (Y) or delta- connected (Δ). This information is located on the motor name plate data.

Step 2. Enter the motor name plate data in this parameter list. To access this list first press the [QUICK MENU] key then select "Q2 Quick Setup".

1.	par. 1-20 Motor Power [kW]	
	par. 1-21 Motor Power [HP]	
2.	par. 1-22 Motor Voltage	
3.	par. 1-23 Motor Frequency	
4.	par. 1-24 Motor Current	
5.	par. 1-25 Motor Nominal Speed	

Step 3. Activate the Automatic Motor Adaptation (AMA)

Performing an AMA will ensure optimum performance. The AMA measures the values from the motor model equivalent diagram.

- 1. Connect terminal 37 to terminal 12 (if terminal 37 is available).
- 2. Connect terminal 27 to terminal 12 or set par. 5-12 Terminal 27 Digital Input to 'No function'.
- 3. Activate the AMA par. 1-29 Automatic Motor Adaptation (AMA).
- 4. Choose between complete or reduced AMA. If a Sine-wave filter is mounted, run only the reduced AMA, or remove the Sine-wave filter during the AMA procedure.
- 5. Press the [OK] key. The display shows "Press [Hand on] to start".
- 6. Press the [Hand on] key. A progress bar indicates if the AMA is in progress.

Stop the AMA during operation

1. Press the [OFF] key - the frequency converter enters into alarm mode and the display shows that the AMA was terminated by the user.

Successful AMA

- 1. The display shows "Press [OK] to finish AMA".
- 2. Press the [OK] key to exit the AMA state.

Unsuccessful AMA

- 1. The frequency converter enters into alarm mode. A description of the alarm can be found in the Warnings and Alarms chapter.
- 2. "Report Value" in the [Alarm Log] shows the last measuring sequence carried out by the AMA, before the frequency converter entered alarm mode. This number along with the description of the alarm will assist you in troubleshooting. If you contact Danfoss for service, make sure to mention number and alarm description.

NB! Unsu

Unsuccessful AMA is often caused by incorrectly registered motor name plate data or a too big difference between the motor power size and the frequency converter power size.

Step 4. Set speed limit and ramp times

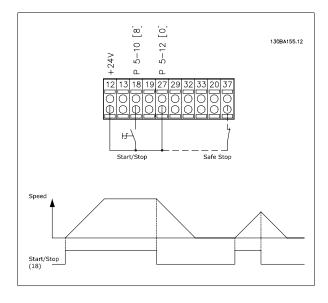
par. 3-02 *Minimum Reference* par. 3-03 *Maximum Reference*

Table 8.17: Set up the desired limits for speed and ramp time.

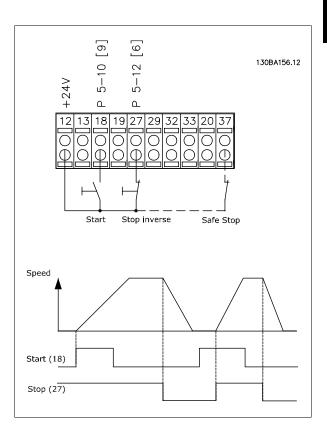
par. 4-11 *Motor Speed Low Limit [RPM]* or par. 4-12 *Motor Speed Low Limit [Hz]* par. 4-13 *Motor Speed High Limit [RPM]* or par. 4-14 *Motor Speed High Limit [Hz]*

par. 3-41 *Ramp 1 Ramp up Time* par. 3-42 *Ramp 1 Ramp Down Time*

<u>Danfoss</u>


MG.33.BB.02 - $\text{VLT}^{\textcircled{8}}$ is a registered Danfoss trademark

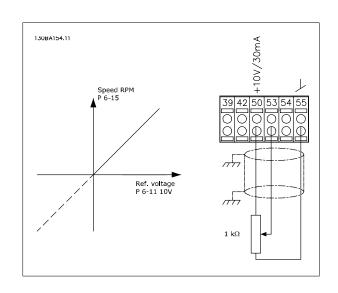
9 Application Examples


9.1.1 Start/Stop

Terminal 18 = par. 5-10 *Terminal 18 Digital Input* [8] *Start* Terminal 27 = par. 5-12 *Terminal 27 Digital Input* [0] *No operation* (Default *coast inverse*) Terminal 37 = Safe stop (where available!)

9.1.2 Pulse Start/Stop

Terminal 18 = par. 5-10 *Terminal 18 Digital Input*Latched start, [9] Terminal 27= par. 5-12 *Terminal 27 Digital Input*Stop inverse, [6] Terminal 37 = Safe stop (where available!)



9.1.3 Potentiometer Reference

Voltage reference via a potentiometer:

Reference Source 1 = [1] *Analog input 53* (default) Terminal 53, Low Voltage = 0 Volt Terminal 53, High Voltage = 10 Volt Terminal 53, Low Ref./Feedback = 0 RPM Terminal 53, High Ref./Feedback = 1500 RPM Switch S201 = OFF (U)

9.1.4 Encoder Connection

The purpose of this guideline is to ease the set-up of encoder connection to the frequency converter. Before setting up the encoder the basic settings for a closed loop speed control system will be shown.

9.1.5 Encoder Direction

The direction of encoder is determined by which order the pulses are entering the drive. <u>Clockwise</u> direction means channel A is 90 electrical degrees before channel B. <u>Counter Clockwise</u> direction means channel B is 90 electrical degrees before A. The direction determined by looking into the shaft end.

9.1.6 Closed Loop Drive System

A drive system consist usually of more elements such as:

- MotorAdd
- (Gearbox) (Mechanical Brake)
- FC 302 AutomationDrive
- Encoder as feed-back system
- Brake resistor for dynamic braking
- Transmission
- Load

Applications demanding mechanical brake control will usually need a brake resistor.

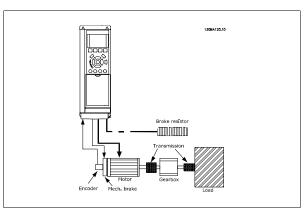
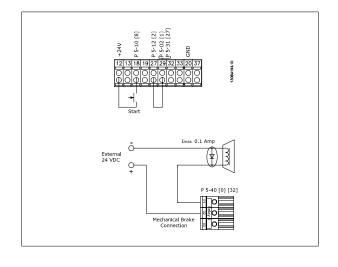


Illustration 9.1: Basic Set-up for FC 302 Closed Loop Speed Control

9.1.7 Programming of Torque Limit and Stop

In applications with an external electro-mechanical brake, such as hoisting applications, it is possible to stop the frequency converter via a 'standard' stop command and simultaneously activate the external electro-mechanical brake.

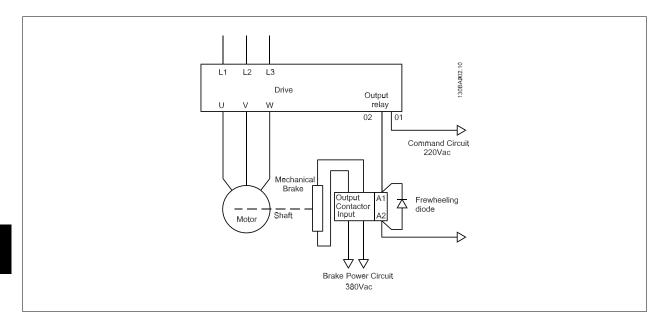

The example given below illustrates the programming of frequency converter connections.

The external brake can be connected to relay 1 or 2, see paragraph *Control of Mechanical Brake*. Program terminal 27 to Coast, inverse [2] or Coast and Reset, inverse [3], and program terminal 29 to Terminal mode 29 Output [1] and Torque limit & stop [27].

Description:

If a stop command is active via terminal 18 and the frequency converter is not at the torque limit, the motor ramps down to 0 Hz. If the frequency converter is at the torque limit and a stop command is activated, terminal 29 Output (programmed to Torque limit and stop [27]) is activated. The signal to terminal 27 changes from 'logic 1' to 'logic 0', and the motor starts to coast, thereby ensuring that the hoist stops even if the frequency converter itself cannot handle the required torque (i.e. due to excessive overload).

- Start/stop via terminal 18 par. 5-10 *Terminal 18 Digital Input* Start [8]
- Quickstop via terminal 27 par. 5-12 *Terminal 27 Digital Input* Coasting Stop, Inverse [2]
- Terminal 29 Output
 par. 5-02 *Terminal 29 Mode* Terminal 29 Mode Output [1]
 par. 5-31 *Terminal 29 Digital Output* Torque Limit & Stop [27]
- Relay output [0] (Relay 1)
 par. 5-40 *Function Relay* Mechanical Brake Control [32]


9.1.8 Advanced Mechanical Brake Control for Hoisting Applications

1. The vertical movement

In the vertical movement, the key point is that the load must be held, stopped, controlled (raised, lowered) in a perfectly safe mode during the entire operation.

Because the frequency converter is not a safety device, the crane/lift designer (OEM) must decide on the type and number of safety devices (e.g. speed switch, emergency brakes etc.) to be used, in order to be able to stop the load in case of emergency or malfunction of the system, according to relevant national crane/lift regulations.

2. Connecting the mechanical brake to the frequency converter

- The electromagnetic disc brake works by the action of a set of springs and is released when applying voltage to the brake coil.
- This means the motor will brake automatically in case of voltage failure, as a significant safety feature.
- Whenever a mechanical brake is present, it is strongly recommended to use an external contactor, to take over switching on/off the brake.
- Because of inverse voltage peaks during switch on/off, it is recommended to use a diode block mounted on the contactor's coil, for protection of the frequency converter.
- The contact 01-02 in the frequency converter stays normally open, so the output is not energized.
- When the START condition comes from the command circuit, the drive closes the 01-02 contact according to the programmed brake logic. The output is now energized until STOP condition occurs.
- If the frequency converter is in alarm or fault condition, the output relay immediately cuts in.

3. The control parameters

9

In open loop structure, the relevant (active) parameters to controlling the mechanical brake output relay are:

- par. 5-40 Function Relay or par. 5-41 On Delay, Relay. Mechanical brake control: activates the output brake relay function
- par. 2-20 *Release Brake Current*. When the START condition is present, the motor current is increased to the set value (closed to the nominal motor current), in order to produce enough torque to hold the load during the brake release.
- par. 2-21 Activate Brake Speed [RPM]. By setting this parameter the mechanical brake will be engaged over a rotating shaft. Recommended value is ½ of the slip. If the value is too high, the mechanical system will be exposed to shocks at every stop. If the value is too small, the torque (current) might be insufficient to holding the load at zero speed. When STOP condition is present, the motor is ramping down to zero speed (mechanical brake is still open), and at the set value (rpm) engages (closes down) the mechanical brake.
- par. 2-22 Activate Brake Speed [Hz]. Linked to par. 2-21. Automatically adjusted according to the par. 2-21 value.

- par. 2-23 Activate Brake Delay. The shaft is held at zero speed with full holding torque. This function ensures that the mechanical brake has locked the load before the motor enters coast mode.
- par. 2-24 Stop Delay. Allows successive starting without applying the mechanical brake. (e.g. reversing)
- par. 2-25 Brake Release Time. The time needed by the brake to be open/closed.

In closed loop structure, the parameter dependency is:

- par. 5-40 Function Relay or par. 5-41 On Delay, Relay
- par. 1-72 Start Function: Hoist Mechanical Brake
- par. 2-25 Brake Release Time
- par. 2-26 Torque Ref. Sets the torque to be applied against the closed mechanical brake before release.
- par. 2-27 Torque Ramp Time
- par. 2-28 Gain Boost Factor. Compensates the "push back" when the speed controller takes over the torque controller.

9.1.9 Automatic Motor Adaptation (AMA)

AMA is an algorithm to measure the electrical motor parameters on a motor at standstill. This means that AMA itself does not supply any torque. AMA is useful when commissioning systems and optimising the adjustment of the frequency converter to the applied motor. This feature is particularly used where the default setting does not apply to the connected motor.

par. 1-29 *Automatic Motor Adaptation (AMA)* allows a choice of complete AMA with determination of all electrical motor parameters or reduced AMA with determination of the stator resistance Rs only.

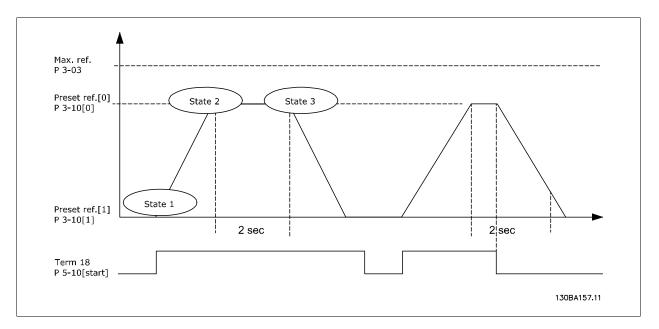
The duration of a total AMA varies from a few minutes on small motors to more than 15 minutes on large motors.

Limitations and preconditions:

- For the AMA to determine the motor parameters optimally, enter the correct motor nameplate data in par. 1-20 *Motor Power [kW]* to par. 1-28 *Motor Rotation Check*.
 - For the best adjustment of the frequency converter, carry out AMA on a cold motor. Repeated AMA runs may lead to a heating of the motor, which results in an increase of the stator resistance, Rs. Normally, this is not critical.
- AMA can only be carried out if the rated motor current is minimum 35% of the rated output current of the frequency converter. AMA can be carried out on up to one oversize motor.
- It is possible to carry out a reduced AMA test with a Sine-wave filter installed. Avoid carrying out a complete AMA with a Sine-wave filter. If an overall setting is required, remove the Sine-wave filter while running a total AMA. After completion of the AMA, reinsert the Sine-wave filter.
- If motors are coupled in parallel, use only reduced AMA if any.
- Avoid running a complete AMA when using synchronous motors. If synchronous motors are applied, run a reduced AMA and manually set the extended motor data. The AMA function does not apply to permanent magnet motors.
- The frequency converter does not produce motor torque during an AMA. During an AMA, it is imperative that the application does not force the motor shaft to run, which is known to happen with e.g. wind milling in ventilation systems. This disturbs the AMA function.

9.1.10 Smart Logic Control Programming

A new useful facility in FC 300 is the Smart Logic Control (SLC).


In applications where a PLC is generating a simple sequence the SLC may take over elementary tasks from the main control. SLC is designed to act from event sent to or generated in the frequency converter. The frequency converter will then perform the pre-programmed action.

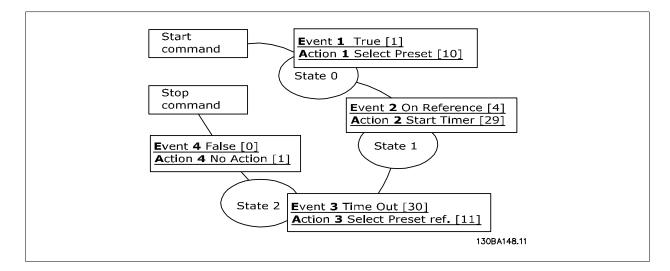
9.1.11 SLC Application Example

One sequence 1:

Start – ramp up – run at reference speed 2 sec – ramp down and hold shaft until stop.

Set the ramping times in par. 3-41 Ramp 1 Ramp Up Time and par. 3-42 Ramp 1 Ramp Down Time to the wanted times

 $t_{ramp} = \frac{t_{acc} \times n_{norm} (par. 1 - 25)}{ref[RPM]}$


Set term 27 to *No Operation* (par. 5-12 *Terminal 27 Digital Input*) Set Preset reference 0 to first preset speed (par. 3-10 *Preset Reference* [0]) in percentage of Max reference speed (par. 3-03 *Maximum Reference*). Ex.: 60%

Set preset reference 1 to second preset speed (par. 3-10 *Preset Reference* [1] Ex.: 0 % (zero). Set the timer 0 for constant running speed in par. 13-20 *SL Controller Timer* [0]. Ex.: 2 sec.

Set Event 1 in par. 13-51 *SL Controller Event* [1] to *True* [1] Set Event 2 in par. 13-51 *SL Controller Event* [2] to *On Reference* [4] Set Event 3 in par. 13-51 *SL Controller Event* [3] to *Time Out 0* [30] Set Event 4 in par. 13-51 *SL Controller Event* [1] to *False* [0]

Set Action 1 in par. 13-52 *SL Controller Action* [1] to *Select preset 0* [10] Set Action 2 in par. 13-52 *SL Controller Action* [2] to *Start Timer 0* [29] Set Action 3 in par. 13-52 *SL Controller Action* [3] to *Select preset 1* [11] Set Action 4 in par. 13-52 *SL Controller Action* [4] to *No Action* [1]

Set the Smart Logic Control in par. 13-00 *SL Controller Mode* to ON.

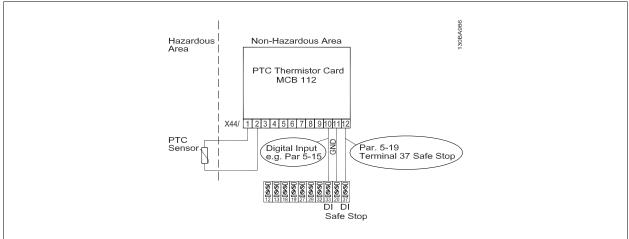
Start / stop command is applied on terminal 18. If stop signal is applied the frequency converter will ramp down and go into free mode.

9.1.12 MCB 112 PTC Termistor Card

The following two examples show the possibilities, when using the VLT® PTC Thermistor Card MCB 112.

Connection of MCB 112

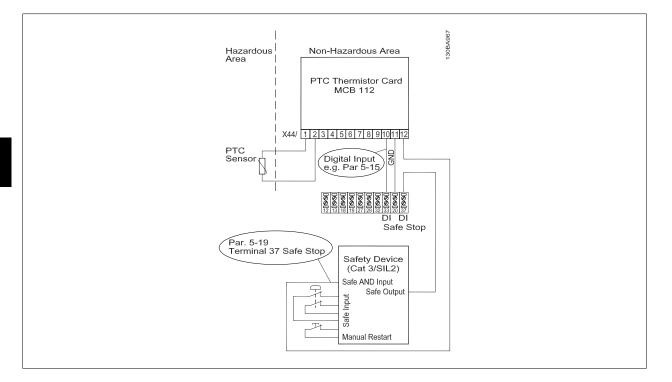
Terminals X44/1 and X44/2 (T1 and T2) are used to connect the motor's PTC with the option card. X44/12 is connected with Safe Stop terminal 37 of the FC 302. The ground terminal X44/11 is connected to the common terminal 20 of the FC 302.


Additionally, X44/ 10 is connected to a digital input of the FC 302. This digital input can be terminal 33, but this is only an example - any other digital input could be used instead. The use of this signal allows the drive to determine, which source has activated the Safe Stop, as other components can be connected to the Safe Stop terminal 37 of the FC 302 at the same time.

NB!

If X44/ 10 is not connected to a digital input of the FC 302 this will not cause a malfunction. The drive will still coast, but the LCP is only able to show "SafeStop [A68]", i.e. it will not be clear from where Safe Stop was activated. For easier and quicker troubleshooting, it is therefore recommended to connect X44/ 10 to a digital input of the FC 302.

Standard use



Prog	gramming example 1	
Par.	5-19 Terminal 37 Safe S	itop
[4]	PTC 1 Alarm	In case the motor temperature is too high or in case of a PTC failure, the MCB 112 activates the Safe Stop of the FC 302 (Safe Stop terminal 37 goes LOW (active) and digital input 33 goes HIGH (active)). This parameter decides the consequence of the Safe Stop. With this choice the FC 302 coasts and "PTC 1 SafeStop [A71]" is displayed in the LCP. The drive must be manually reset from LCP, digital input or fieldbus when the conditions of the PTC are acceptable again (temperature of motor has dropped)
Par.	5-15 Terminal 33 Digita	l Input
[80]	PTC Card 1	Connects the Digital Input of terminal 33 in the FC 302 to the MCB 112 which makes it possible for the MCB 112 to indicate when Safe Stop has been activated from here

Alternatively, par. 5-19 could be set to selection [5] (PTC 1 Warning), what means an automatic restart when the conditions of the PTC circuit have returned to acceptable. The choice depends on customer demands.

Combination with other component using Safe Stop

Prog	gramming example 2	
Par.	5-19 Terminal 37 Safe S	top
[6]	PTC 1 & Relay Alarm	In case the motor temperature is too high or in case of a PTC failure, the MCB 112 activates the Safe Stop of the FC 302 (Safe Stop terminal 37 goes LOW (active) and digital input 33 goes HIGH (active)). This parameter decides the consequence of the Safe Stop. With this choice the FC 302 coasts and "PTC 1 SafeStop [A71]" is displayed in the LCP. The drive must be manually reset from LCP, digital input or fieldbus when the conditions of the PTC are acceptable again (temperature of motor has dropped). An emergency stop can also activate the Safe Stop of the FC 302 (Safe Stop terminal 37 goes LOW (active) but digital input 33 is not triggered by MCB 112 X44/ 10 as the MCB 112 did not need to activate the Safe Stop, hence digital input 33 remains HIGH (inactive)).
Par.	5-15 Terminal 33 Digita	l Input
[80]	PTC Card 1	Connects the Digital Input of terminal 33 in the FC 302 to the MCB 112 which makes it possible for the MCB 112 to indicate when Safe Stop has been activated from here

Alternatively, par. 5-19 could be set to [7] (PTC 1 & Relay Warning), what means an automatic restart when the conditions of the PTC circuit and/ or emergency stop circuit have returned to normal. The choice depends on customer demands. Also, the setting of parameter 5-19 could be [8] (PTC 1 & Relay A/W) or [9] (PTC 1 & Relay W/A), which are combinations of alarm and warning. The choice depends on the customer needs.

Selection [4] – [9] in par. 5-19 will only be visible in case the MCB 112 is plugged into the B-option slot.

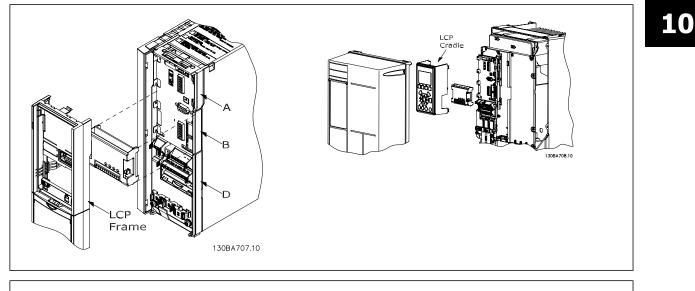
Please see *Parameter settings for external safety device in combination with MCB 112* in the *Introduction to FC 300* section for more information about the combination.

<u>Danfoss</u>

10 Options and Accessories

Danfoss offers a wide range of options and accessories for VLT AutomationDrive.

10.1.1 Mounting of Option Modules in Slot A


Slot A position is dedicated to Fieldbus options. For further information, see separate operating instructions.

10.1.2 Mounting of Option Modules in Slot B

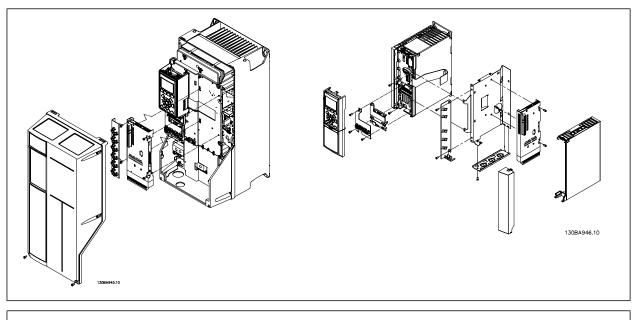
The power to the frequency converter must be disconnected.

It is strongly recommended to make sure the parameter data is saved (i.e. by MCT10 software) before option modules are inserted/removed from the drive.

- Remove the LCP (Local Control Panel), the terminal cover, and the LCP frame from the frequency converter.
- Fit the MCB10x option card into slot B.
- Connect the control cables and relieve the cable by the enclosed cable strips.
 * Remove the knock out in the extended LCP frame, so that the option will fit under the extended LCP frame.
- Fit the extended LCP frame and terminal cover.
- Fit the LCP or blind cover in the extended LCP frame.
- Connect power to the frequency converter.
- Set up the input/output functions in the corresponding parameters, as mentioned in the section General Technical Data.

Frame sizes A2, A3 and B3

Frame sizes A5, B1, B2, B4, C1, C2, C3 and C4

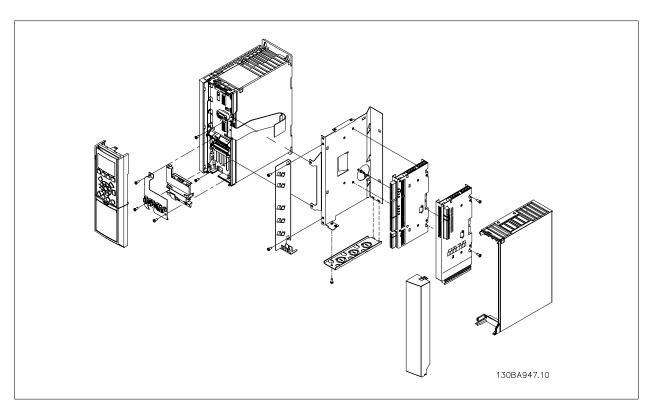


10.1.3 Mounting of Options in Slot C

The power to the frequency converter must be disconnected.

It is strongly recommended to make sure the parameter data is saved (i.e. by MCT10 software) before option modules are inserted/removed from the drive.

When installing a C option, a mounting kit is required. Please refer to the *How to Order* section for a list of ordering numbers. The installation is illustrated using MCB 112 as an example. For more information on installation of MCO305, see separate operating instructions.



Frame sizes A2, A3 and B3

Frame sizes A5, B1, B2, B4, C1, C2, C3 and C4

If both C0 and C1 options are to be installed, the installation is carried out as shown below. Note that this is only possible for frame sizes A2, A3 and B3.

Danfoss

Illustration 10.1: Frame sizes A2, A3 and B3

10.2 General Purpose Input Output Module MCB 101

MCB 101 is used for extension of digital and analog inputs and outputs of FC 301 and FC 302.

Contents: MCB 101 must be fitted into slot B in the VLT AutomationDrive.

- MCB 101 option module
- Extended fixture for LCP
- Terminal cover

MCE Ger	31 iera	01 al I	Pu	rpo	ose	ΞI	/0			C S slo		ies
SW.					_							xxxx
	COM	DIN7	DIN8	01N9	GND(1)	DOUT3	DOUT4	A0UT2	24V	GND(2)	AIN3	AIN4
X30,	1	2	3	4	5	6	7	8	9	10	11	12

10.2.1 Galvanic Isolation In The MCB 101

Digital/analog inputs are galvanically isolated from other inputs/outputs on the MCB 101 and in the control card of the drive. Digital/analogue outputs in the MCB 101 are galvanically isolated from other inputs/outputs on the MCB 101, but not from these on the control card of the drive.

If the digital inputs 7, 8 or 9 are to be switched by use of the internal 24 V power supply (terminal 9) the connection between terminal 1 and 5 which is illustrated in the drawing has to be established.

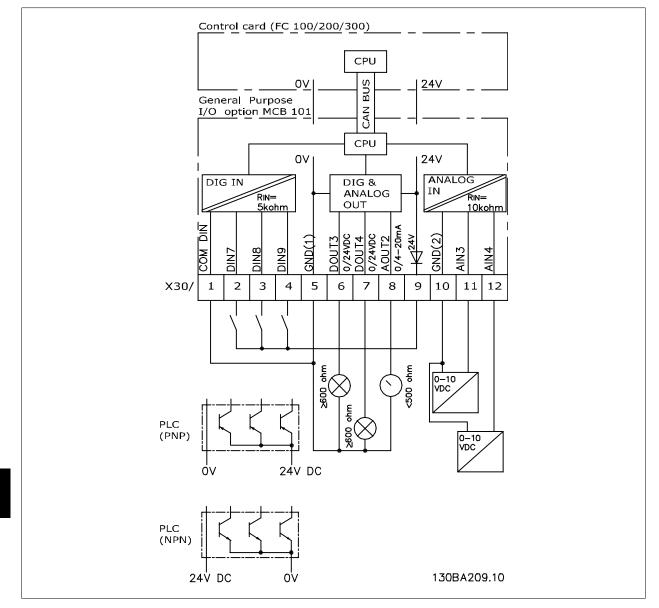


Illustration 10.2: Principle Diagram

10.2.2 Digital inputs - Terminal X30/1-4

Digital input:	
Number of digital inputs	3
Terminal number	X30.2, X30.3, X30.4
Logic	PNP or NPN
Voltage level	0 - 24 V DC
Voltage level, logic'0' PNP (GND = 0 V)	< 5 V DC
Voltage level, logic'1' PNP (GND = 0 V)	> 10 V DC
Voltage level, logic '0' NPN (GND = 24V)	< 14 V DC
Voltage level, logic '1' NPN (GND = 24 V)	> 19 V DC
Maximum voltage on input	28 V continous
Pulse frequency range	0 - 110 kHz
Duty cycle, min. pulse width	4.5 ms
Input impedance	> 2 kΩ

10.2.3 Analog inputs - Terminal X30/11, 12:

Analog input:	
Number of analog inputs	2
Terminal number	X30.11, X30.12
Modes	Voltage
Voltage level	0 - 10 V
Input impedance	> 10 kΩ
Max. voltage	20 V
Resolution for analog inputs	10 bit (+ sign)
Accuracy of analog inputs	Max. error 0.5% of full scale
Bandwidth	FC 301: 20 Hz/ FC 302: 100 Hz

10.2.4 Digital outputs - Terminal X30/6, 7:

Digital output:	
Number of digital outputs	2
Terminal number	X30.6, X30.7
Voltage level at digital/frequency output	0 - 24 V
Max. output current	40 mA
Max. load	≥ 600 Ω
Max. capacitive load	< 10 nF
Minimum output frequency	0 Hz
Maximum output frequency	≤ 32 kHz
Accuracy of frequency output	Max. error: 0.1 % of full scale

10.2.5 Analog output - Terminal X30/8:

Analog output:	
Number of analog outputs	1
Terminal number	X30.8
Current range at analog output	0 - 20 mA
Max. load GND - analog output	500 Ω
Accuracy on analog output	Max. error: 0.5 % of full scale
Resolution on analog output	12 bit

Danfoss

10.3 Encoder Option MCB 102

The encoder module can be used as feedback source for closed loop Flux control (par. 1-02 *Flux Motor Feedback Source*) as well as closed loop speed control (par. 7-00 *Speed PID Feedback Source*). Configure encoder option in parameter group 17-xx

Used	for	:

- VVC^{plus} closed loop
- Flux Vector Speed controlFlux Vector Torque control
- Permanent magnet motor

Supported encoder types:

Incremental encoder: 5 V TTL type, RS422, max. frequency: 410 kHz

Incremental encoder: 1Vpp, sine-cosine

Hiperface® Encoder: Absolute and Sine-Cosine (Stegmann/SICK)

EnDat encoder: Absolute and Sine-Cosine (Heidenhain) Supports version 2.1

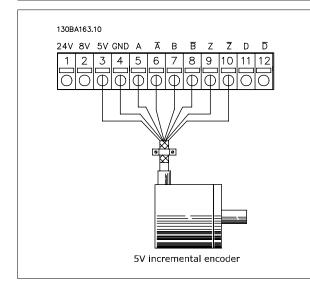
SSI encoder: Absolute

Encoder monitor:

The 4 encoder channels (A, B, Z, and D) are monitored, open and short circuit can be detected. There is a green LED for each channel which lights up when the channel is OK.

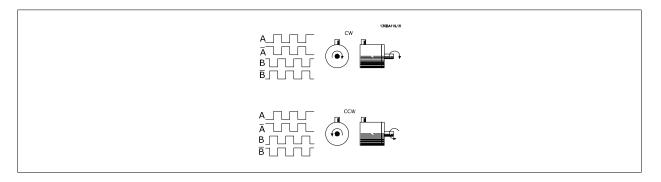
] NB!

The LEDs are only visible when removing the LCP. Reaction in case of an encoder error can be selected in par. 17-61 *Feedback Signal Monitoring*. None, Warning or Trip.


When the encoder option kit is ordered separately the kit includes:

- Encoder module MCB 102
- Enlarged LCP fixture and enlarged terminal cover

The encoder option does not support FC 302 frequency converters manufactured before week 50/2004. Min. software version: 2.03 (par. 15-43 *Software Version*)

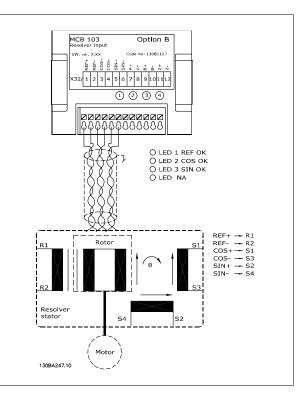


Connector Designa- tion X31	(please refer to	SinCos Encoder Hiperface® (please refer to Graphic B)	EnDat Encoder	SSI Encoder	Description
1	NC			24 V	24 V Output (21-25 V, I _{max} :125 mA)
2	NC	8 Vcc			8 V Output (7-12 V, I _{max} : 200 mA)
3	5 VCC		5 Vcc	5 V	5 V Output (5 V ± 5%, I _{max} : 200 mA)
4	GND		GND	GND	GND
5	A input	+COS	+COS	A input	A input
6	A inv input	REFCOS	REFCOS	A input inv.	A inv input
7	B input	+SIN	+SIN	B input	B input
8	B inv input	REFSIN	REFSIN	B input inv.	B inv input
9	Z input	+Data RS485	Clock out	Clock out	Z input OR +Data RS485
10	Z inv input	-Data RS485	Clock out inv.	Clock out inv.	Z input OR -Data RS485
11	NC	NC	Data in	Data in	Future use
12	NC	NC	Data in inv.	Data in inv.	Future use

Max. cable length 150 m.

10.4 Resolver Option MCB 103

MCB 103 Resolver option is used for interfacing resolver motor feedback to VLT AutomationDrive. Resolvers are used basically as motor feedback device for Permanent Magnet brushless synchronous motors.


When the Resolver option is ordered separately the kit includes:

- Resolver option MCB 103
- Enlarged LCP fixture and enlarged terminal cover

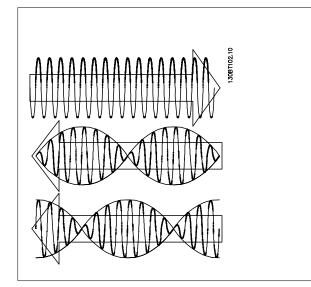
Selection of parameters: 17-5x resolver Interface.

MCB 103 Resolver Option supports a various number of resolver types.

Resolver specificat	
Resolver Poles	par. 17-50 <i>Poles</i> : 2 *2
Resolver Input Volt- age	par. 17-51 <i>Input Voltage</i> : 2.0 – 8.0 Vrms *7.0Vrms
Resolver Input Fre- quency	par. 17-52 <i>Input Frequency</i> : 2 – 15 kHz *10.0 kHz
Transformation ratio	par. 17-53 <i>Transformation Ratio</i> : 0.1 – 1.1 *0.5
Secondary input volt- age	Max 4 Vrms
Secondary load	Αpp. 10 kΩ

NB!

The resolver option MCB 103 can only be used with rotor-supplied resolver types. Stator-supplied resolvers cannot be used.



10

LED 1 is on when the reference signal is OK to resolver

- LED 2 is on when Cosinus signal is OK from resolver
- LED 3 is on when Sinus signal is OK from resolver

The LEDs are active when par. 17-61 *Feedback Signal Monitoring* is set to *Warning* or *Trip*.

FC 300 Design Guide

NB!

NB!

NB!

Set-up example

In this example a Permanent Magnet (PM) Motor is used with resolver as speed feedback. A PM motor must usually operate in flux mode. Wiring:

The max cable length is 150 m when a twisted pair type of cable is used.

Resolver cables must be screened and separated from the motor cables.

The screen of the resolver cable must be correctly connected to the de-coupling plate and connected to chassis (earth) on the motor side.

Always use screened motor cables and brake chopper cables.

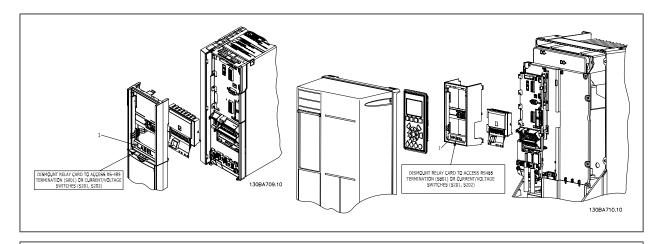
Adjust following parameters:	
par. 1-00 Configuration Mode	Speed closed loop [1]
par. 1-01 Motor Control Principle	Flux with feedback [3]
par. 1-10 Motor Construction	PM, non salient SPM [1]
par. 1-24 <i>Motor Current</i>	Nameplate
par. 1-25 Motor Nominal Speed	Nameplate
par. 1-26 Motor Cont. Rated Torque	Nameplate
AMA is not possible on PM motors	
par. 1-30 Stator Resistance (Rs)	Motor data sheet
par. 1-37 d-axis Inductance (Ld)	Motor data sheet (mH)
par. 1-39 <i>Motor Poles</i>	Motor data sheet
par. 1-40 Back EMF at 1000 RPM	Motor data sheet
par. 1-41 Motor Angle Offset	Motor data sheet (Usually zero)
par. 17-50 Poles	Resolver data sheet
par. 17-51 <i>Input Voltage</i>	Resolver data sheet
par. 17-52 Input Frequency	Resolver data sheet
par. 17-53 Transformation Ratio	Resolver data sheet
par. 17-59 Resolver Interface	Enabled [1]

10.5 Relay Option MCB 105

The MCB 105 option includes 3 pieces of SPDT contacts and must be fitted into option slot B.

Max terminal load (AC-1) ¹⁾ (Resistive load)	240 V AC 2A
Max terminal load (AC-15) ¹⁾ (Inductive load @ cos\ 0.4)	240 V AC 0.2 A
Max terminal load (DC-1) ¹⁾ (Resistive load)	24 V DC 1 A
Max terminal load (DC-13) ¹⁾ (Inductive load)	24 V DC 0.1 A
Min terminal load (DC)	5 V 10 mA
Max switching rate at rated load/min load	6 min ⁻¹ /20 sec ⁻¹

1) IEC 947 part 4 and 5


When the relay option kit is ordered separately the kit includes:

- Relay Module MCB 105
- Enlarged LCP fixture and enlarged terminal cover
- Label for covering access to switches S201, S202 and S801
- Cable strips for fastening cables to relay module

The relay option does not support FC 302 frequency converters manufactured before week 50/2004.

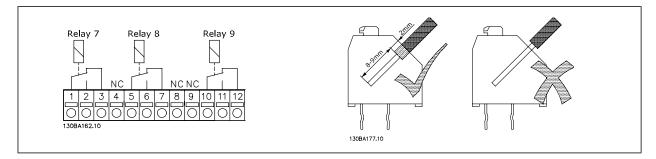
Min. software version: 2.03 (par. 15-43 Software Version).

A2-A3-B3

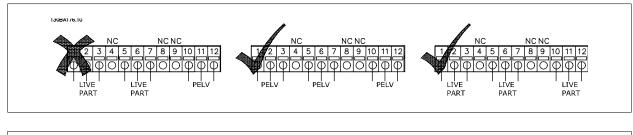
A5-B1-B2-B4-C1-C2-C3-C4

¹⁾ **IMPORTANT !** The label MUST be placed on the LCP frame as shown (UL approved).

How to add the MCB 105 option:


- The power to the frequency converter must be disconnected.
- The power to the live part connections on relay terminals must be disconnected.
- Remove the LCP, the terminal cover and the LCP fixture from the frequency converter.
- Fit the MCB 105 option in slot B.
- Connect the control cables and fasten the cables with the enclosed cable strips.
- Make sure the length of the stripped wire is correct (see the following drawing).
- Do not mix live parts (high voltage) with control signals (PELV).
- Fit the enlarged LCP fixture and enlarged terminal cover.
- Replace the LCP.

NB!


- Connect power to the frequency converter.
- Select the relay functions in par. 5-40 Function Relay [6-8], par. 5-41 On Delay, Relay [6-8] and par. 5-42 Off Delay, Relay [6-8].

Array [6] is relay 7, array [7] is relay 8, and array [8] is relay 9

Do not combine 24/ 48 V systems with high voltage systems.

10.6 24 V Back-Up Option MCB 107

External 24 V DC Supply

An external 24 V DC supply can be installed for low-voltage supply to the control card and any option card installed. This enables full operation of the LCP (including the parameter setting) without connection to mains.

External 24 V DC supply specification:

Input voltage range	24 V DC ±15 % (max. 37 V in 10 s)
Max. input current	2.2 A
Average input current for FC 302	0.9 A
Max cable length	75 m
Input capacitance load	< 10 uF
Power-up delay	< 0.6 s
The inputs are protected.	

Terminal numbers:

Terminal 35: - external 24 V DC supply.

Terminal 36: + external 24 V DC supply.

Follow these steps:

- 1. Remove the LCP or Blind Cover
- 2. Remove the Terminal Cover
- 3. Remove the Cable Decoupling Plate and the plastic cover underneath
- 4. Insert the 24 V DC Back-up External Supply Option in the Option Slot
- 5. Mount the Cable Decoupling Plate
- 6. Attach the Terminal Cover and the LCP or Blind Cover.

When MCB 107, 24 V back-up option is supplying the control circuit, the internal 24 V supply is automatically disconnected.

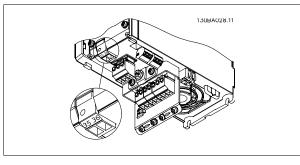
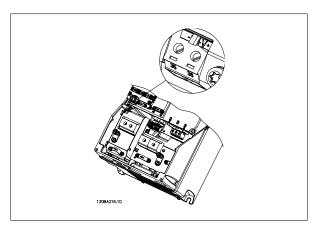
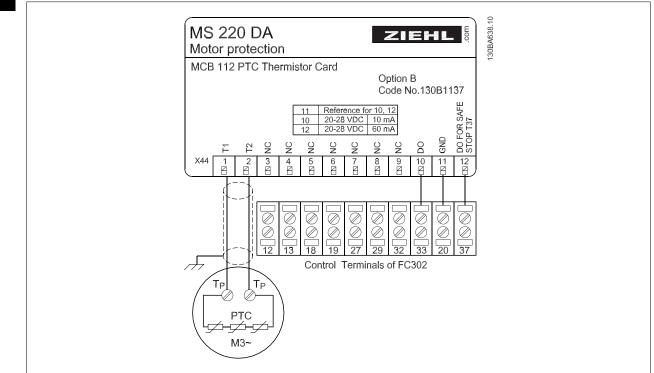


Illustration 10.3: Connection to 24 V back-up supply on frame sizes A2 and A3.




Illustration 10.4: Connection to 24 V back-up supply on frame sizes A5, B1, B2, C1 and C2.

10.7 MCB 112 VLT® PTC Thermistor Card

The MCB 112 option makes it possible to monitor the temperature of an electrical motor through a PTC thermistor input. It is a B-option for FC 302 with Safe Stop.

For information on mounting and installation of the option, please see *Mounting of Option Modules in Slot B* earlier in this section. See also chapter *Application Examples* for different application possibilities.

X44/ 1 and X44/ 2 are the thermistor inputs, X44/ 12 will enable safe stop of the FC 302 (T-37) if the thermistor values make it necessary and X44/ 10 will inform the FC 302 that a request for Safe Stop came from the MCB 112 in order to ensure a suitable alarm handling. One of the Digital Inputs of the FC 302 (or a DI of a mounted option) must be set to PCT Card 1 [80] in order to use the information from X44/ 10. par. 5-19 *Terminal 37 Safe Stop* Terminal 37 Safe Stop functionality (default is Safe Stop Alarm).

ATEX Certification with FC 302

The MCB 112 has been certified for ATEX which means that the FC 302 together with the MCB 112 can now be used with motors in potentially explosive atmospheres. See the Operating Instructions for the MCB 112 for more information.

Electrical Data

PTC compliant with DIN 44081 and DIN 44082	
Number	16 resistors in series
Shut-off value	3.3 Ω 3.65 Ω 3.85 Ω
Reset value	1.7 Ω 1.8 Ω 1.95 Ω
Trigger tolerance	± 6°C
Collective resistance of the sensor loop	< 1.65 Ω
Terminal voltage	\leq 2.5 V for R \leq 3.65 Ω , \leq 9 V for R $= \infty$
Sensor current	≤ 1 mA
Short circuit	20 Ω ≤ R ≤ 40 Ω
Power consumption	60 mA
Testing conditions:	
EN 60 947-8	
Measurement voltage surge resistance	6000 V
Overvoltage category	III
Degree of pollution	2
Measurement isolation voltage Vbis	690 V
Reliable galvanis isolation until Vi	500 V
Perm. ambient temperature	-20°C +60°C
	EN 60068-2-1 Dry heat
Moisture	5 95%, no condensation permissible
EMC resistance	EN61000-6-2
EMC emissions	EN61000-6-4
Vibration resistance	10 1000 Hz 1.14g
Shock resistance	50 g
Safety system values:	
EN 61508, ISO 13849 for Tu = 75°C ongoing	
Category	2
SIL	2 for maintenance cycle of 2 years
	1 for maintenance cycle of 3 years
HFT	0
PFD (for yearly functional test)	4.10 *10 ⁻³
SFF	90%
$\lambda_{s} + \lambda_{DD}$	8515 FIT
λ _{DU}	932 FIT

Danfoss

10.8 MCB 113 Extended Relay Card

The MCB 113 adds 7 digital inputs, 2 analogue outputs and 4 SPDT relays to the standard I/O of the drive for increased flexibility and to comply with the German NAMUR NE37 recommendations.

The MCB 113 is a standard C1-option for the Danfoss VLT® AutomationDrive and is automatically detected after mounting.

For information on mounting and installation of the option, please see Mounting of Option Modules in Slot C1 earlier in this chapter

NB!

The MCB 113 can be used in all frame sizes. It can be installed at the same time as an MCO 305 (+ fan) in frame size A2, A3 and B3 (bookstyle), but not in the other frame sizes. Note that MCO305 cannot control the MCB 113.

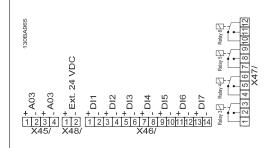


Illustration 10.5: Electrical connections of MCB 113

MCB 113 can be connected to an external 24V on X58/ in order to ensure galvanical isolation between the VLT® AutomationDrive and the option card. If galvanical isolation is not needed, the option card can be supplied through internal 24V from the drive.

NB!

NB!

It is OK to combine 24 V signals with high voltage signals in the relays as long as there is one unused relay in-between.

To setup MCB 113, use Par. groups 5-1* (Digital input), 6-7* (Analog output 3), 6-8* (Analog output 4), 14-8* (Options), 5-4* (Relays) and 16-6* (Inputs and Outputs).

In par. 5-4* Array [2] is relay 3, array [3] is relay 4, array [4] is relay 5 and array [5] is relay 6

Electrical Data

Relays:	
Numbers	4 SPDT
Load at 250VAC/ 30VDC	8 A
Load at 250VAC/ 30VDC with $\cos \varphi = 0.4$	3.5 A
Over voltage category (contact-earth)	III
Over voltage category (contact-contact)	ΙΙ
Combination of 250 V and 24 V signals	Possible with one unused relay in-between
Maximum thru-put delay	10 ms
Isolated from ground/ chassis for use on IT mains systems	
Digital Inputs:	
Numbers	7
Range	0/24V
Mode	PNP/ NPN

Input impedance	4 kW
Low trigger level	6.4 V
High trigger level	17 V
Maximum thru-put delay	10 ms
Analogue Outputs:	
Numbers	2
Range	0/4 -20mA
Resolution	11bit
Linearity	<0.2%
Analogue Outputs:	
Numbers	2
Range	0/4 -20mA
Resolution	11bit
Linearity	<0.2%
EMC:	
EMC	IEC 61000-6-2 and IEC 61800-3 regarding Immunity of BURST, ESD, SURGE and Conducted Immunity

10.9 Brake Resistors

10.9.1 Brake Resistors

In applications where the motor is used as a brake, energy is generated in the motor and send back into the frequency converter. If the energy can not be transported back to the motor it will increase the voltage in the converter DC-line. In applications with frequent braking and/or high inertia loads this increase may lead to an over voltage trip in the converter and finally a shut down. Brake resistors are used to dissipate the excess energy resulting from the regenerative braking. The resistor is selected in respect to its ohmic value, its power dissipation rate and its physical size. Danfoss offers a wide variety of different resistors that are specially designed to our frequency converters. See the section Control with brake function for the dimensioning of brake resistors. Code numbers can be found in the section *How to order*.

10.10 Remote Mounting Kit for LCP

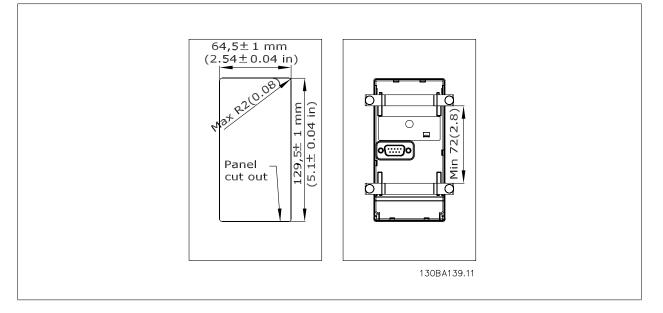
10.10.1 Remote mounting Kit for LCP

The Local Control Panel can be moved to the front of a cabinet by using the remote build in kit. The enclosure is the IP65. The fastening screws must be tightened with a torque of max. 1 Nm.

Ordering no. 130B1113	Ordering no. 130B1114
Therefore, a mean set of the set	Illustration 10.7: LCP Kit with numerical LCP, fasternes and gasket.
LCP Kit without LCP is also available. Ordering number: 130B1117 For IP55 units the ordering number is 130B1129.	

Technical data

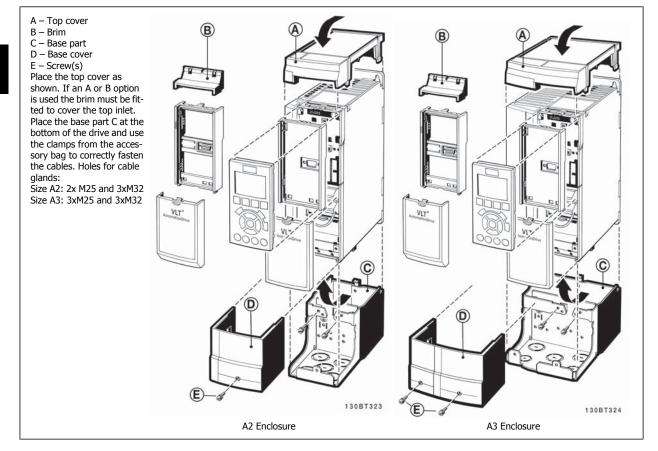
Communication std:


Max. cable length between and unit:

Enclosure:

IP 65 front

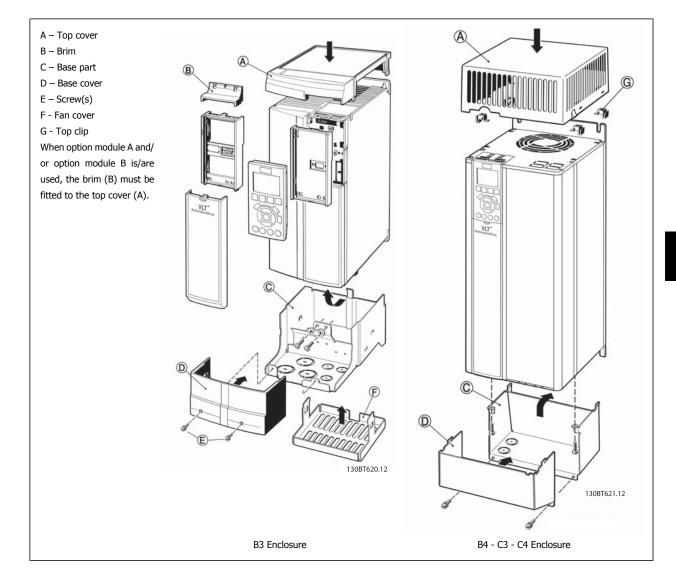
3 m RS 485



10.11 IP21/IP 4X/ TYPE 1 Enclosure Kit

IP 20/IP 4X top/ TYPE 1 is an optional enclosure element available for IP 20 Compact units. If the enclosure kit is used, an IP 20 unit is upgraded to comply with enclosure IP 21/ 4X top/TYPE 1.

The IP 4X top can be applied to all standard IP 20 FC 30X variants.



Dimensions

Dimensions			
Enclosure	Height (mm)	Width (mm)	Depth (mm)
type	А	В	C*
A2	372	90	205
A3	372	130	205
B3	475	165	249
B4	670	255	246
C3	755	329	337
C4	950	391	337
* If option A	/B is used, the de	pth will increase	(see section Me-
chanical Dime	ensions for details)		

10.12 Sine-wave Filters

When a motor is controlled by a frequency converter, resonance noise will be heard from the motor. This noise, which is the result of the design of the motor, arises every time an inverter switch in the frequency converter is activated. The frequency of the resonance noise thus corresponds to the switching frequency of the frequency converter.

For the FC 300, Danfoss can supply a Sine-wave filter to dampen the acoustic motor noise.

The filter reduces the ramp-up time of the voltage, the peak load voltage U_{PEAK} and the ripple current ΔI to the motor, which means that current and voltage become almost sinusoidal. Consequently, the acoustic motor noise is reduced to a minimum.

The ripple current in the Sine-wave Filter coils, will also cause some noise. Solve the problem by integrating the filter in a cabinet or similar.

10.13 High Power Options

10.13.1 Installation of Duct Cooling Kit in Rittal Enclosures

This section deals with the installation of IP00 / chassis enclosed frequency converters with duct work cooling kits in Rittal enclosures. In addition to the enclosure a 200 mm base/plinth is required.

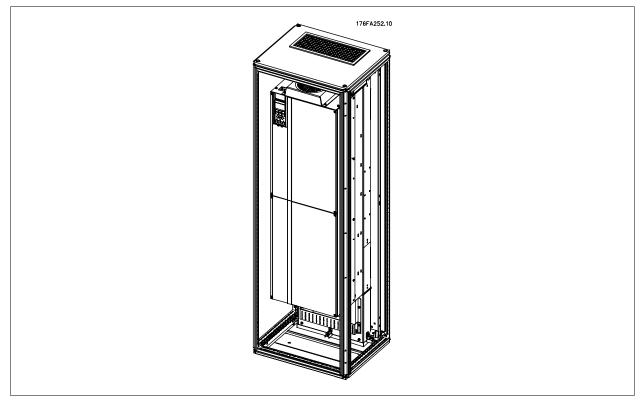


Illustration 10.9: Installation of IP00 in Rittal TS8 enclosure.

The minimum enclosure dimension is:

- D3 and D4 frame: Depth 500 mm and width 600 mm.
- E2 frame: Depth 600 mm and width 800 mm.

The maximum depth and width are as required by the installation. When using multiple frequency converters in one enclosure it is recommended that each drive is mounted on its own back panel and supported along the mid-section of the panel. These duct work kits do not support the "in frame" mounting of the panel (see Rittal TS8 catalogue for details). The duct work cooling kits listed in the table below are suitable for use only with IP 00 / Chassis frequency converters in Rittal TS8 IP 20 and UL and NEMA 1 and IP 54 and UL and NEMA 12 enclosures.

For the E2 frames it is important to mount the plate at the absolute rear of the Rittal enclosure due to the weight of the frequency converter.

NB!

A doorfan(s) is required on the Rittal cabinet to remove the loses not contained in the backchannel of the drive. The minimum doorfan(s) airflow required at the drive maximum ambient for the D3 and D4 is 391 m 3 /h (230 cfm). The minimum doorfan(s) airflow required at the drive maximum ambient for the E2 is 782 m 3 /h (460 cfm). If the ambient is below maximum or if additional components, heat loses, are added within the enclosure a calculation must be made to ensure the proper airflow is provided to cool the inside of the Rittal enclosure.

Ordering Information

Rittal TS-8 Enclosure	Frame D3 Kit Part No.	Frame D4Kit Part No.	Frame E2 Part No.
1800 mm	176F1824	176F1823	Not possible
2000 mm	176F1826	176F1825	176F1850
2200 mm			176F0299

Kit Contents

- Ductwork components
- Mounting hardware
- Gasket material
- Delivered with D3 and D4 frame kits:
 - 175R5639 Mounting templates and top/bottom cut out for Rittal enclosure.
- Delivered with E2 frame kits:
 - 175R1036 Mounting templates and top/bottom cut out for Rittal enclosure.

All fasteners are either:

- 10 mm, M5 Nuts torque to 2.3 Nm (20 in-lbs)
- T25 Torx screws torque to 2.3 Nm (20 in-lbs)

∬ _____NB!

Please see the Duct Kit Instruction Manual, 175R5640, for further information

External ducts

If additional duct work is added externally to the Rittal cabinet the pressure drop in the ducting must be calculated. Use the charts below to derate the frequency converter according to the pressure drop.

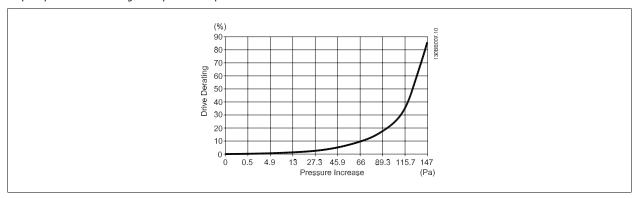


Illustration 10.10: D Frame Derating vs. Pressure Change Drive air flow: 450 cfm (765 m3/h)

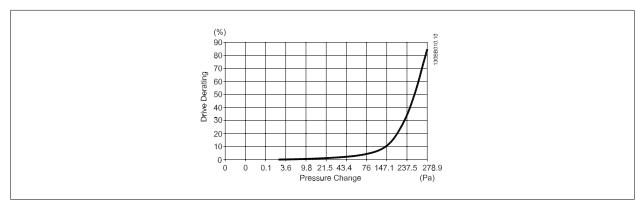


Illustration 10.11: E Frame Derating vs. Pressure Change (Small Fan), P250T5 and P355T7-P400T7 Drive air flow: 650 cfm (1105 m3/h)

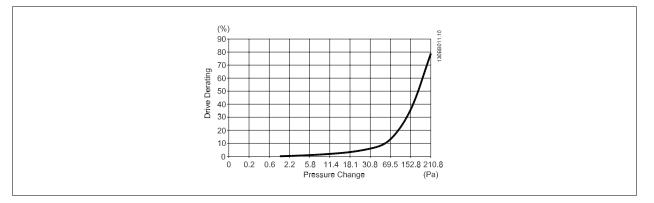


Illustration 10.12: E Frame Derating vs. Pressure Change (Large Fan), P315T5-P400T5 and P500T7-P560T7 Drive air flow: 850 cfm (1445 m3/h)

10.13.2 Outside installation/ NEMA 3R kit for Rittal enclosures

This section is for the installation of NEMA 3R kits available for the frequency converter frames D3, D4 and E2. These kits are designed and tested to be used with IP00/ Chassis versions of these frames in Rittal TS8 NEMA 3R or NEMA 4 enclosures. The NEMA-3R enclosure is an outdoor enclosure that provides a degree of protection against rain and ice. The NEMA-4 enclosure is an outdoor enclosure that provides a greater degree of protection against weather and hosed water.

The minimum enclosure depth is 500 mm (600 mm for E2 frame) and the kit is designed for a 600 mm (800 mm for E2 frame) wide enclosure. Other enclosure widths are possible, however additional Rittal hardware is required. The maximum depth and width are as required by the installation.

The current rating of drives in D3 and D4 frames are de-rated by 3%, when adding the NEMA 3R kit. Drives in E2 frames require no derating

NB!

NB!

A doorfan(s) is required on the Rittal cabinet to remove the loses not contained in the backchannel of the drive. The minimum doorfan(s) airflow required at the drive maximum ambient for the D3 and D4 is 391 m^3/h (230 cfm). The minimum doorfan(s) airflow required at the drive maximum ambient for the E2 is 782 m^3/h (460 cfm). If the ambient is below maximum or if additional components, heat loses, are added within the enclosure a calculation must be made to ensure the proper airflow is provided to cool the inside of the Rittal enclosure.

Ordering information

Frame size D3: 176F4600 Frame size D4: 176F4601 Frame size E2: 176F1852

Kit contents:

- Ductwork components
- Mounting hardware
- 16 mm, M5 torx screws for top vent cover
- 10 mm, M5 for attaching drive mounting plate to enclosure
- M10 nuts to attach drive to mounting plate
- Gasket material

Torque requirements:

- 1. M5 screws/ nuts torque to 20 in-lbs (2.3 N-M)
- 2. M6 screws/ nuts torque to 35 in-lbs (3.9 N-M)
- 3. M10 nuts torque to 170 in-lbs (20 N-M)
- 4. T25 Torx screws torque to 20 in-lbs (2.3 N-M)

10.13.3 Installation on pedestal

This section describes the installation of a pedestal unit available for the frequency converters frames D1 and D2. This is a 200 mm high pedestal that allows these frames to be floor mounted. The front of the pedestal has openings for input air to the power components.

The frequency converter gland plate must be installed to provide adequate cooling air to the control components of the frequency converter via the door fan and to maintain the IP21/NEMA 1 or IP54/NEMA 12 degrees of enclosure protections.

Illustration 10.13: Drive on pedestal

There is one pedestal that fits both frames D1 and D2. Its ordering number is 176F1827. The pedestal is standard for E1 frame.

Required Tools:

- Socket wrench with 7-17 mm sockets
- T30 Torx Driver

Torques:

- M6 4.0 Nm (35 in-lbs)
- M8 9.8 Nm (85 in-lbs)
- M10 19.6 Nm (170 in-lbs)

Kit Contents:

- Pedestal parts
- Instruction manual

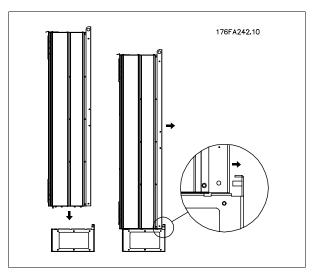


Illustration 10.14: Mounting of drive to pedestal.

<u>Danfoss</u>

Install the pedestal on the floor. Fixing holes are to be drilled according to this figure:

Mount the drive on the pedestal and fix it with the included bolts to the

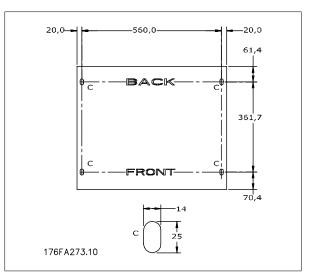


Illustration 10.15: Drill master for fixing holes in floor.

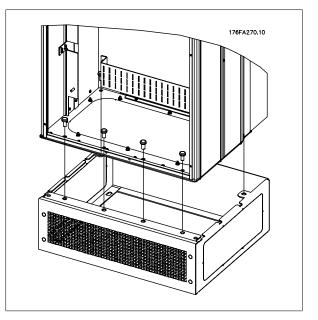


Illustration 10.16: Mounting of drive to pedestal

NB!

pedestal as shown on the illustration.

Please see the Pedestal Kit Instruction Manual, 175R5642, for further information.

10.13.4 Input plate option

NB!

This section is for the field installation of input option kits available for frequency converters in all D and E frames. Do not attempt to remove RFI filters from input plates. Damage may occur to RFI filters if they are removed from the input plate.

Where RFI filters are available, there are two different type of RFI filters depending on the input plate combination and the RFI filters interchangeable. Field installable kits in certain cases are the same for all voltages.

	380 - 480 V 380 - 500 V	Fuses	Disconnect Fuses	RFI	RFI Fuses	RFI Disconnect Fuses
D1	All D1 power sizes	176F8442	176F8450	176F8444	176F8448	176F8446
D2	All D2 power sizes	176F8443	176F8441	176F8445	176F8449	176F8447
E1	/ 202: 315 kW FC 302: 250 kW	176F0253	176F0255	176F0257	176F0258	176F0260
	/ 202: 355 - 450 kW FC 302: 315 - 400 kW	176F0254	176F0256	176F0257	176F0259	176F0262

	525 - 600 V	Fuses	Disconnect Fuses	RFI	RFI Fuses	RFI Disconnect
	525 - 690 V					Fuses
D1	: 75 kW	175L8829	175L8828	175L8777	NA	NA
	FC202: 45-90 kW					
	FC302: 37-75 kW					
	/ 302: 90-132 kW	175L8442	175L8445	175L8777	NA	NA
	FC202: 110-160 kW					
D2	All D2 power sizes	175L8827	175L8826	175L8825	NA	NA
E1	/ 302: 355-400 kW	176F0253	176F0255	NA	NA	NA
	FC202: 450-500 kW					
	: 450-500 kW	176F0254	176F0258	NA	NA	NA
	FC202: 560-630 kW					
	FC302: 500-560 kW					

Kit contents

- Input plate assembled
- Instruction sheet 175R5795
- Modification Label
- Disconnect handle template (units w/ mains disconnect)

Cautions

- Frequency converter contains dangerous voltages when connected to line voltage. No disassembly should be attempted with power applied
- Electrical parts of the frequency converter may contain dangerous voltages even after the mains have been disconnected.
 Wait a minimum of 15 minutes after disconnecting the mains before touching any internal components to ensure that capacitors have fully discharged
- The input plates contain metal parts with sharp edges. Use hand protection when removing and reinstalling.
- E1 frame input plates are heavy (20-35 kg depending on configuration). It is recommended that the disconnect switch be removed from input plate for easier installation and be reinstalled on the input plate after the input plate has been installed on the drive

NB! For further information, please see the Instruction Sheet, *175R5795*

10.13.5 Installation of Mains Shield for frequency converters

This section is for the installation of a mains shield for the frequency converter series with D1, D2 and E1 frames. It is not possible to install in the IP00/ Chassis versions as these have included as standard a metal cover. These shields satisfy VBG-4 requirements.

Ordering numbers:

Frames D1 and D2 : 176F0799 Frame E1: 176F1851

Torque requirements

M6 - 35 in-lbs (4.0 N-M)

M8 - 85 in-lbs (9.8 N-M)

NB!

M10 - 170 in-lbs (19.6 N-M)

10

For further information, please see the Instruction Sheet, 175R5923

10.13.6 Frame size F Panel Options

Space Heaters and Thermostat

Mounted on the cabinet interior of frame size F frequency converters, space heaters controlled via automatic thermostat help control humidity inside the enclosure, extending the lifetime of drive components in damp environments.

Cabinet Light with Power Outlet

A light mounted on the cabinet interior of frame size F frequency converters increase visibility during servicing and maintenance. The housing the light includes a power outlet for temporarily powering tools or other devices, available in two voltages:

- 230V, 50Hz, 2.5A, CE/ENEC
- 120V, 60Hz, 5A, UL/cUL

Transformer Tap Setup

If the Cabinet Light & Outlet and/or the Space Heaters & Thermostat are installed Transformer T1 requires it taps to be set to the proper input voltage. A 380-500 V380-480 V drive will initially be set to the 525 V tap and a 525-690 V drive will be set to the 690 V tap to insure no overvoltage of secondary equipment occurs if the tap is not changed prior to power being applied. See the table below to set the proper tap at terminal T1 located in the rectifier cabinet. For location in the drive, see illustration of rectifier in the *Power Connections* section.

Input Voltage Range	Tap to Select	
380V-440V	400V	
441V-490V	460V	
491V-550V	525V	
551V-625V	575V	
626V-660V	660V	
661V-690V	690V	

NAMUR Terminals

NAMUR is an international association of automation technology users in the process industries, primarily chemical and pharmaceutical industries in Germany. Selection of this option provides terminals organized and labeled to the specifications of the NAMUR standard for drive input and output terminals. This requires MCB 112 PTC Thermistor Card and MCB 113 Extended Relay Card.

RCM (Residual Current Monitor)

Designed for monitoring residual leakage current to ground on supply mains (TN and TT systems), the RCM requires an external measuring transformer (supplied and installed by customer). Two relays (N.O. or N.C.) allow separate setpoints for pre-warning (50% of alarm threshold) and alarm conditions.

- Integrated into the drive's safe-stop circuit
- LED bar graph indicator of residual leakage current level
- Fault memory
- TEST / RESET button

Insulation Resistance Monitor (IRM)

Designed for monitoring of insulation resistance between system conductors and ground in ungrounded supply mains or mains with connection to ground through a high impedance (such as IT systems). Two individually adjustable relays (N.O. or N.C.) allow separate setpoints for pre-warning and alarm conditions.

- Integrated into the drive's safe-stop circuit
- LC display of insulation resistance
- Fault Memory
- INFO, TEST, and RESET buttons

IEC Emergency Stop with Pilz Safety Relay

Includes a redundant 4-wire emergency-stop pushbutton mounted on the front of the enclosure and a Pilz relay that monitors it in conjunction with the drive's safe-stop circuit and the mains contactor located in the options cabinet.

Manual Motor Starters

Provide 3-phase power for electric blowers often required for larger motors. Power for the starters is provided from the load side of any supplied contactor, circuit breaker, or disconnect switch. Power is fused before each motor starter, and is off when the incoming power to the drive is off. Up to two starters are allowed (one if a 30-amp, fuse-protected circuit is ordered). Integrated into the drive's safe-stop circuit. Unit features include:

- Operation switch (on/off)
- Short-circuit and overload protection with test function
- Manual reset function

30-Amp, Fuse-Protected Terminals

- 3-phase power matching incoming mains voltage for powering auxiliary customer equipment
- Not available if two manual motor starters are selected
- Terminals are off when the incoming power to the drive is off
- Power for the fused protected terminals will be provided from the load side of any supplied contactor, circuit breaker, or disconnect switch.

24 VDC Power Supply

- 5 amp, 120 W, 24 VDC
- Protected against output overcurrent, overload, short circuits, and overtemperature
- For powering customer-supplied accessory devices such as sensors, PLC I/O, contactors, temperature probes, indicator lights, and/or other electronic hardware
- Diagnostics include a dry DC-ok contact, a green DC-ok LED, and a red overload LED

External Temperature Monitoring

Designed for monitoring temperatures of external system components, such as the motor windings and/or bearings. Eight signal inputs are each brought to individual modules, each configurable for a different type of signal. Modules can communicate with one another and can be monitored via a fieldbus network (requires the purchase of a separate module/bus coupler). Integrated into the drive's safe-stop circuit.

Possible input signal types:

- RTD inputs (including Pt100), 3-wire or 4-wire
- Thermocouple

Additional features:

- One universal output, configurable for either analog voltage or analog current
- Two output relays (N.O.)
- Dual-line LC display and LED dignostics
- Sensor lead wire break, short-circuit, and incorrect polarity detection

In addition to the eight universal inputs described above, two dedicated Thermistor Motor Protection Modules are also included. Features include:

- One Type A PTC Thermistors input per module (2 modules total*)
- Fault diagnostics for wire breakage or short-circuits of sensor leads
- ATEX/UL/CSA certification

 \ast Note: A third thermistor input can be provided by the PTC Thermistor Option Card MCB 112, if necessary

11 RS-485 Installation and Set-up

11.1 RS-485 Installation and Set-up

11.1.1 Overview

RS-485 is a two-wire bus interface compatible with multi-drop network topology, i.e. nodes can be connected as a bus, or via drop cables from a common trunk line. A total of 32 nodes can be connected to one network segment.

Network segments are divided up by repeaters. Please note that each repeater functions as a node within the segment in which it is installed. Each node connected within a given network must have a unique node address, across all segments.

Terminate each segment at both ends, using either the termination switch (S801) of the frequency converters or a biased termination resistor network. Always use screened twisted pair (STP) cable for bus cabling, and always follow good common installation practice.

Low-impedance ground connection of the screen at every node is very important, including at high frequencies. This can be achieved by connecting a large surface of the screen to ground, for example by means of a cable clamp or a conductive cable gland. It may be necessary to apply potentialequalizing cables to maintain the same ground potential throughout the network, particularly in installations where there are long lengths of cable. To prevent impedance mismatch, always use the same type of cable throughout the entire network. When connecting a motor to the frequency converter, always use screened motor cable.

Cable: Screened twisted pair (STP) Impedance: 120 Ohm Cable length: Max. 1200 m (including drop lines) Max. 500 m station-to-station

11.1.2 Network Connection

Connect the frequency converter to the RS-485 network as follows (see also diagram):

- 1. Connect signal wires to terminal 68 (P+) and terminal 69 (N-) on the main control board of the frequency converter.
- 2. Connect the cable screen to the cable clamps.

NB!

Screened, twisted-pair cables are recommended in order to reduce noise between conductors.

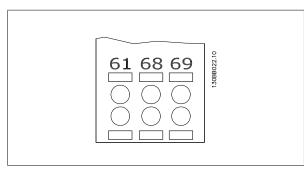


Illustration 11.1: Network Terminal Connection

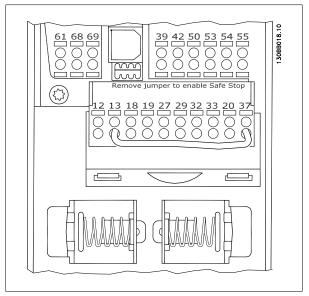
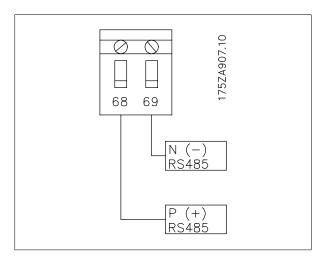


Illustration 11.2: Control card terminals

۶Ę I

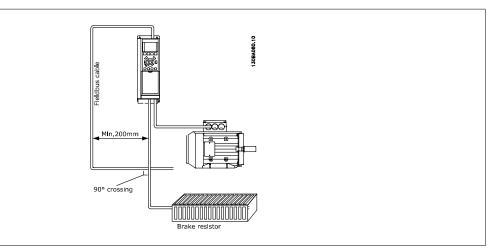

11.1.3 RS 485 Bus Termination

NB!

Use the terminator dip switch on the main control board of the frequency converter to terminate the RS-485 bus.

The factory setting for the dip switch is OFF.

Terminator Switch Factory Setting


11.1.4 EMC Precautions

NB!

The following EMC precautions are recommended in order to achieve interference-free operation of the RS-485 network.

Relevant national and local regulations, for example regarding protective earth connection, must be observed. The RS-485 communication cable must be kept away from motor and brake resistor cables to avoid coupling of high frequency noise from one cable to another. Normally a distance of 200 mm (8 inches) is sufficient, but keeping the greatest possible distance between the cables is generally recommended, especially where cables run in parallel over long distances. When crossing is unavoidable, the RS-485 cable must cross motor and brake resistor cables at an angle of 90 degrees.

The FC protocol, also referred to as FC bus or Standard bus, is the Danfoss standard fieldbus. It defines an access technique according to the masterslave principle for communications via a serial bus.

One master and a maximum of 126 slaves can be connected to the bus. The individual slaves are selected by the master via an address character in the telegram. A slave itself can never transmit without first being requested to do so, and direct message transfer between the individual slaves is not possible. Communications occur in the half-duplex mode.

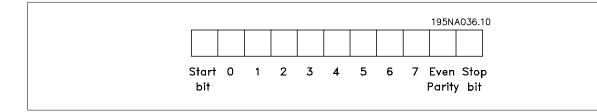
The master function cannot be transferred to another node (single-master system).

Danfoss

The physical layer is RS-485, thus utilizing the RS-485 port built into the frequency converter. The FC protocol supports different telegram formats; a short format of 8 bytes for process data, and a long format of 16 bytes that also includes a parameter channel. A third telegram format is used for texts.

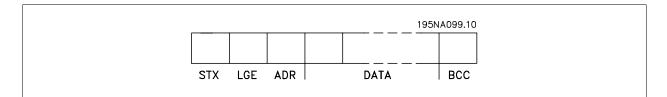
11.3 Network Configuration

11.3.1 FC 300 Frequency Converter Set-up


Set the following parameters to enable the FC protocol for the frequency converter.

Parameter Number	Setting
par. 8-30 Protocol	FC
par. 8-31 Address	1 - 126
par. 8-32 FC Port Baud Rate	2400 - 115200
par. 8-33 Parity / Stop Bits	Even parity, 1 stop bit (default)

11.4 FC Protocol Message Framing Structure - FC 300


11.4.1 Content of a Character (byte)

Each character transferred begins with a start bit. Then 8 data bits are transferred, corresponding to a byte. Each character is secured via a parity bit, which is set at "1" when it reaches parity (i.e. when there is an equal number of 1's in the 8 data bits and the parity bit in total). A character is completed by a stop bit, thus consisting of 11 bits in all.

11.4.2 Telegram Structure

Each telegram begins with a start character (STX)=02 Hex, followed by a byte denoting the telegram length (LGE) and a byte denoting the frequency converter address (ADR). A number of data bytes (variable, depending on the type of telegram) follows. The telegram is completed by a data control byte (BCC).

11.4.3 Telegram Length (LGE)

The telegram length is the number of data bytes plus the address byte ADR and the data control byte BCC.

The length of telegrams with 4 data bytes is	LGE = 4 + 1 + 1 = 6 bytes
The length of telegrams with 12 data bytes is	LGE = 12 + 1 + 1 = 14 bytes
The length of telegrams containing texts is	10 ¹⁾ +n bytes

¹⁾ The 10 represents the fixed characters, while the "n" is variable (depending on the length of the text).

11.4.4 Frequency Converter Address (ADR)

Two different address formats are used. The address range of the frequency converter is either 1-31 or 1-126.

Address format 1-31:
 Bit 7 = 0 (address format 1-31 active)
 Bit 6 is not used
 Bit 5 = 1: Broadcast, address bits (0-4) are not used
 Bit 5 = 0: No Broadcast
 Bit 0-4 = Frequency converter address 1-31

2. Address format 1-126:
Bit 7 = 1 (address format 1-126 active)
Bit 0-6 = Frequency converter address 1-126
Bit 0-6 = 0 Broadcast

The slave returns the address byte unchanged to the master in the response telegram.

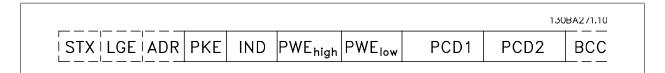
11.4.5 Data Control Byte (BCC)

The checksum is calculated as an XOR-function. Before the first byte in the telegram is received, the Calculated Checksum is 0.

11.4.6 The Data Field

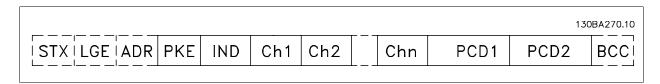
The structure of data blocks depends on the type of telegram. There are three telegram types, and the type applies for both control telegrams (master=>slave) and response telegrams (slave=>master).

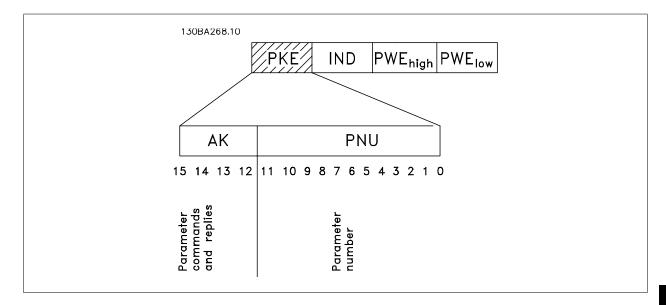
The three types of telegram are:


Process block (PCD):

- The PCD is made up of a data block of four bytes (2 words) and contains:
- Control word and reference value (from master to slave)
- Status word and present output frequency (from slave to master).

Parameter block:


The parameter block is used to transfer parameters between master and slave. The data block is made up of 12 bytes (6 words) and also contains the process block.


Text block:

The text block is used to read or write texts via the data block.

11.4.7 The PKE Field

The PKE field contains two sub-fields: Parameter command and response AK, and Parameter number PNU:

Bits no. 12-15 transfer parameter commands from master to slave and return processed slave responses to the master.

Bit no.				Parameter command	
15	14	13	12		
0	0	0	0	No command	
0	0	0	1	Read parameter value	
0	0	1	0	Write parameter value in RAM (word)	
0	0	1	1	Write parameter value in RAM (double word)	
1	1	0	1	Write parameter value in RAM and EEprom (double word)	
1	1	1	0	Write parameter value in RAM and EEprom (word)	
1	1	1	1	Read/write text	

Respons	e slave ⇒ma	aster		
Bit no.				Response
15	14	13	12	
0	0	0	0	No response
0	0	0	1	Parameter value transferred (word)
0	0	1	0	Parameter value transferred (double word)
0	1	1	1	Command cannot be performed
1	1	1	1	text transferred

If the command cannot be performed, the slave sends this response:

0111 Command cannot be performed

- and issues the following fault report in the parameter value (PWE):

PWE low (Hex)	Fault Report
0	The parameter number used does not exit
1	There is no write access to the defined parameter
2	Data value exceeds the parameter's limits
3	The sub index used does not exit
4	The parameter is not the array type
5	The data type does not match the defined parameter
11	Data change in the defined parameter is not possible in the frequency converter's present mode. Certain parameters
	can only be changed when the motor is turned off
82	There is no bus access to the defined parameter
83	Data change is not possible because factory setup is selected

11.4.8 Parameter Number (PNU)

Bits no. 0-11 transfer parameter numbers. The function of the relevant parameter is defined in the parameter description in the Programming Guide.

11.4.9 Index (IND)

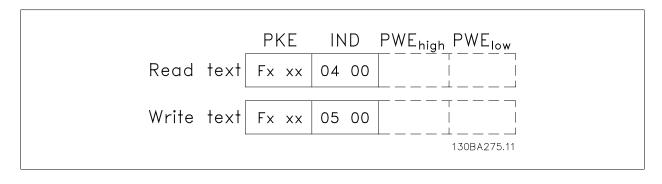
The index is used together with the parameter number to read/write-access parameters with an index, e.g. par. 15-30 *Alarm Log: Error Code*. The index consists of 2 bytes, a low byte and a high byte.

NB! Only the low byte is used as an index.

11.4.10 Parameter Value (PWE)

The parameter value block consists of 2 words (4 bytes), and the value depends on the defined command (AK). The master prompts for a parameter value when the PWE block contains no value. To change a parameter value (write), write the new value in the PWE block and send from the master to the slave.

When a slave responds to a parameter request (read command), the present parameter value in the PWE block is transferred and returned to the master. If a parameter contains not a numerical value but several data options, e.g. par. 0-01 *Language* where [0] corresponds to English, and [4] corresponds to Danish, select the data value by entering the value in the PWE block. See Example - Selecting a data value. Serial communication is only capable of reading parameters containing data type 9 (text string).


par. 15-40 FC Type to par. 15-53 Power Card Serial Number contain data type 9.

For example, read the unit size and mains voltage range in par. 15-40 *FC Type*. When a text string is transferred (read), the length of the telegram is variable, and the texts are of different lengths. The telegram length is defined in the second byte of the telegram, LGE. When using text transfer the index character indicates whether it is a read or a write command.

To read a text via the PWE block, set the parameter command (AK) to 'F' Hex. The index character high-byte must be "4".

Some parameters contain text that can be written to via the serial bus. To write a text via the PWE block, set the parameter command (AK) to 'F' Hex. The index characters high-byte must be "5".

11.4.11 Data Types Supported by FC 300

Unsigned means that there is no operational sign in the telegram.

Data types	Description
3	Integer 16
4	Integer 32
5	Unsigned 8
6	Unsigned 16
7	Unsigned 32
9	Text string
10	Byte string
13	Time difference
33	Reserved
35	Bit sequence

11.4.12 Conversion

The various attributes of each parameter are displayed in the section Factory Settings. Parameter values are transferred as whole numbers only. Conversion factors are therefore used to transfer decimals.

par. 4-12 *Motor Speed Low Limit [Hz]* has a conversion factor of 0.1. To preset the minimum frequency to 10 Hz, transfer the value 100. A conversion factor of 0.1 means that the value transferred is multiplied by 0.1. The value 100 is thus perceived as 10.0.

Conversion index	Conversion factor	
74	0.1	
2	100	
1	10	
0	1	
-1	0.1	
-2	0.01	
-3	0.001	
-4	0.0001	
-5	0.00001	

11.4.13 Process Words (PCD)

The block of process words is divided into two blocks of 16 bits, which always occur in the defined sequence.

PCD 1	PCD 2
Control telegram (master⇒slave Control word)	Reference-value
Control telegram (slave ⇒master) Status word	Present outp. frequency

227

The telegram will look like this:

PKE

PKE

130BAU92.10

1308AU93.10

PWE_{high} PWE_{low}

PWE_{high} PWE_{low}

11.5 Examples

11.5.1 Writing a parameter value

Change par. 4-14 *Motor Speed High Limit [Hz]* to 100 Hz. Write the data in EEPROM.

PKE = E19E Hex - Write single word in par. 4-14 *Motor Speed High Limit [Hz]*

IND = 0000 Hex

PWEHIGH = 0000 Hex

PWELOW = 03E8 Hex - Data value 1000, corresponding to 100 Hz, see Conversion.

Note: par. 4-14 *Motor Speed High Limit [Hz]* is a single word, and the parameter command for write in EEPROM is "E". Parameter number 4-14 is 19E in hexadecimal.

The response from the slave to the master will be:

11.5.2 Reading a parameter value

Read the value in par. 3-41 Ramp 1 Ramp Up Time

PKE = 1155 Hex - Read parameter value in par. 3-41 *Ramp 1 Ramp Up Time* IND = 0000 Hex PWEHIGH = 0000 Hex PWELOW = 0000 Hex

If the value in par. 3-41 *Ramp 1 Ramp Up Time* is 10 s, the response from the slave to the master will be:

						130BAUS	94.10
1155	Н	0000	Н	0000	Н	0000	Н
PKE		IND		PWEhi	gh	PWElc	w

E19E H 0000 H 0000 H 03E8 H

119E H 0000 H 0000 H 03E8 H

IND

IND

						130BA20	37.10
1155	Н	0000	Н	0000	Н	03E8	н
PKE		IND		PWE _{hi}	gh	PWE	

NB! 3E8 Hex corresponds to 1000 decimal. The conversion index for par. 3-41 Ramp 1 Ramp Up Time is -2, i.e. 0.01.

Danfoss

11.6 Modbus RTU Overview

11.6.1 Assumptions

These operating instructions assume that the installed controller supports the interfaces in this document and that all the requirements stipulated in the controller, as well as the frequency converter, are strictly observed, along with all limitations therein.

11.6.2 What the User Should Already Know

The Modbus RTU (Remote Terminal Unit) is designed to communicate with any controller that supports the interfaces defined in this document. It is assumed that the user has full knowledge of the capabilities and limitations of the controller.

11.6.3 Modbus RTU Overview

Regardless of the type of physical communication networks, the Modbus RTU Overview describes the process a controller uses to request access to another device. This includes i.a. how it will respond to requests from another device, and how errors will be detected and reported. It also establishes a common format for the layout and contents of message fields.

During communications over a Modbus RTU network, the protocol determines how each controller will learn its device address, recognise a message addressed to it, determine the kind of action to be taken, and extract any data or other information contained in the message. If a reply is required, the controller will construct the reply message and send it.

Controllers communicate using a master-slave technique in which only one device (the master) can initiate transactions (called queries). The other devices (slaves) respond by supplying the requested data to the master, or by taking the action requested in the query.

The master can address individual slaves, or can initiate a broadcast message to all slaves. Slaves return a message (called a response) to queries that are addressed to them individually. No responses are returned to broadcast queries from the master. The Modbus RTU protocol establishes the format for the master's query by placing into it the device (or broadcast) address, a function code defining the requested action, any data to be sent, and an error-checking field. The slave's response message is also constructed using Modbus protocol. It contains fields confirming the action taken, any data to be returned, and an error-checking field. If an error occurs in receipt of the message, or if the slave is unable to perform the requested action, the slave will construct an error message and send it in response, or a time-out will occur.

11.6.4 Frequency Converter with Modbus RTU

The frequency converter communicates in Modbus RTU format over the built-in RS-485 interface. Modbus RTU provides access to the Control Word and Bus Reference of the frequency converter.

The Control Word allows the Modbus master to control several important functions of the frequency converter:

- Start
- Stop of the frequency converter in various ways:
 - Coast stop Quick stop DC Brake stop
- Normal (ramp) stop
- Reset after a fault trip
- Run at a variety of preset speeds
- Run in reverse
- Change the active set-up
- Control the frequency converter's built-in relay

The Bus Reference is commonly used for speed control. It is also possible to access the parameters, read their values, and where possible, write values to them. This permits a range of control options, including controlling the setpoint of the frequency converter when its internal PI controller is used.

11.7 Network Configuration

To enable Modbus RTU on the frequency converter, set the following parameters:

Parameter Number	Parameter name	Setting
8-30	Protocol	Modbus RTU
8-31	Address	1 - 247
8-32	Baud Rate	2400 - 115200
8-33	Parity/Stop bits	Even parity, 1 stop bit (default)

11.8 Modbus RTU Message Framing Structure

11.8.1 Frequency Converter with Modbus RTU

The controllers are set up to communicate on the Modbus network using RTU (Remote Terminal Unit) mode, with each 8-bit byte in a message containing two 4-bit hexadecimal characters. The format for each byte is shown below.

Start bit	Data bit							Stop/	Stop	
									parity	

Coding System	8-bit binary, hexadecimal 0-9, A-F. Two hexadecimal characters contained in each 8-bit field of the
	message
Bits Per Byte	1 start bit
	8 data bits, least significant bit sent first
	1 bit for even/odd parity; no bit for no parity
	1 stop bit if parity is used; 2 bits if no parity
Error Check Field	Cyclical Redundancy Check (CRC)

11.8.2 Modbus RTU Message Structure

The transmitting device places a Modbus RTU message into a frame with a known beginning and ending point. This allows receiving devices to begin at the start of the message, read the address portion, determine which device is addressed (or all devices, if the message is broadcast), and to recognise when the message is completed. Partial messages are detected and errors set as a result. Characters for transmission must be in hexadecimal 00 to FF format in each field. The frequency converter continuously monitors the network bus, also during 'silent' intervals. When the first field (the address field) is received, each frequency converter or device decodes it to determine which device is being addressed. Modbus RTU messages addressed to zero are broadcast messages. No response is permitted for broadcast messages. A typical message frame is shown below.

Typical Modbus RTU Message Structure

Start	Address	Function	Data	CRC check	End
T1-T2-T3-T4	8 bits	8 bits	N x 8 bits	16 bits	T1-T2-T3-T4

11.8.3 Start / Stop Field

Messages start with a silent period of at least 3.5 character intervals. This is implemented as a multiple of character intervals at the selected network baud rate (shown as Start T1-T2-T3-T4). The first field to be transmitted is the device address. Following the last transmitted character, a similar period of at least 3.5 character intervals marks the end of the message. A new message can begin after this period. The entire message frame must be transmitted as a continuous stream. If a silent period of more than 1.5 character intervals occurs before completion of the frame, the receiving device flushes the incomplete message and assumes that the next byte will be the address field of a new message. Similarly, if a new message begins prior to 3.5 character intervals after a previous message, the receiving device will consider it a continuation of the previous message. This will cause a time-out (no response from the slave), since the value in the final CRC field will not be valid for the combined messages.

11.8.4 Address Field

The address field of a message frame contains 8 bits. Valid slave device addresses are in the range of 0 - 247 decimal. The individual slave devices are assigned addresses in the range of 1 - 247. (0 is reserved for broadcast mode, which all slaves recognize.) A master addresses a slave by placing the slave address in the address field of the message. When the slave sends its response, it places its own address in this address field to let the master know which slave is responding.

11.8.5 Function Field

The function field of a message frame contains 8 bits. Valid codes are in the range of 1-FF. Function fields are used to send messages between master and slave. When a message is sent from a master to a slave device, the function code field tells the slave what kind of action to perform. When the slave responds to the master, it uses the function code field to indicate either a normal (error-free) response, or that some kind of error occurred (called an exception response). For a normal response, the slave simply echoes the original function code. For an exception response, the slave returns a code that is equivalent to the original function code with its most significant bit set to logic 1. In addition, the slave places a unique code into the data field of the response message. This tells the master what kind of error occurred, or the reason for the exception. Please also refer to the sections *Function Codes Supported by Modbus RTU* and *Exception Codes*.

11.8.6 Data Field

The data field is constructed using sets of two hexadecimal digits, in the range of 00 to FF hexadecimal. These are made up of one RTU character. The data field of messages sent from a master to slave device contains additional information which the slave must use to take the action defined by the function code. This can include items such as coil or register addresses, the quantity of items to be handled, and the count of actual data bytes in the field.

11.8.7 CRC Check Field

Messages include an error-checking field, operating on the basis of a Cyclical Redundancy Check (CRC) method. The CRC field checks the contents of the entire message. It is applied regardless of any parity check method used for the individual characters of the message. The CRC value is calculated by the transmitting device, which appends the CRC as the last field in the message. The receiving device recalculates a CRC during receipt of the message and compares the calculated value to the actual value received in the CRC field. If the two values are unequal, a bus time-out results. The error-checking field contains a 16-bit binary value implemented as two 8-bit bytes. When this is done, the low-order byte of the field is appended first, followed by the high-order byte. The CRC high-order byte is the last byte sent in the message.

11.8.8 Coil Register Addressing

In Modbus, all data are organized in coils and holding registers. Coils hold a single bit, whereas holding registers hold a 2-byte word (i.e. 16 bits). All data addresses in Modbus messages are referenced to zero. The first occurrence of a data item is addressed as item number zero. For example: The coil known as 'coil 1' in a programmable controller is addressed as coil 0000 in the data address field of a Modbus message. Coil 127 decimal is addressed as coil 007EHEX (126 decimal).

Holding register 40001 is addressed as register 0000 in the data address field of the message. The function code field already specifies a 'holding register' operation. Therefore, the '4XXXX' reference is implicit. Holding register 40108 is addressed as register 006BHEX (107 decimal).

11

Coil Number	Description		Signal Direction		
1-16	Frequency convert	er control word (see table below)	Master to slave		
17-32	Frequency convert	Frequency converter speed or set-point reference Range 0x0 – 0xFFFF (-200% ~200%) Master to sl			
33-48	Frequency converter status word (see table below) Slave to master				
49-64	Open loop mode: converter feedbac	Slave to master			
65	Parameter write co	ontrol (master to slave)	Master to slave		
	0 =	Parameter changes are written to the RAM of the frequency con- verter			
	1 =	Parameter changes are written to the RAM and EEPROM of the frequency converter.			
66-65536	Reserved				

Coil	0	1			
01	Preset reference LSB				
02	Preset reference MSB				
03	DC brake	No DC brake			
04	Coast stop	No coast stop			
05	Quick stop	No quick stop			
06	Freeze freq.	No freeze freq.			
07	Ramp stop	Start			
08	No reset	Reset			
09	No jog	Jog			
10	Ramp 1	Ramp 2			
11	Data not valid	Data valid			
12	Relay 1 off	Relay 1 on			
13	Relay 2 off	Relay 2 on			
14	Set up LSB				
15	Set up MSB				
16	No reversing	Reversing			
Freque	Frequency converter control word (FC profile)				

Coil	0	1
33	Control not ready	Control ready
34	Frequency converter not ready	Frequency converter ready
35	Coasting stop	Safety closed
36	No alarm	Alarm
37	Not used	Not used
38	Not used	Not used
39	Not used	Not used
40	No warning	Warning
41	Not at reference	At reference
42	Hand mode	Auto mode
43	Out of freq. range	In frequency range
44	Stopped	Running
45	Not used	Not used
46	No voltage warning	Voltage warning
47	Not in current limit	Current limit
48	No thermal warning	Thermal warning
Freque	ency converter status wor	d (FC profile)

11

	Holding registers
Register Number	Description
00001-00006	Reserved
00007	Last error code from an FC data object interface
00008	Reserved
00009	Parameter index*
00100-00999	000 parameter group (parameters 001 through 099)
01000-01999	100 parameter group (parameters 100 through 199)
02000-02999	200 parameter group (parameters 200 through 299)
03000-03999	300 parameter group (parameters 300 through 399)
04000-04999	400 parameter group (parameters 400 through 499)
49000-49999	4900 parameter group (parameters 4900 through 4999)
500000	Input data: Frequency converter control word register (CTW).
50010	Input data: Bus reference register (REF).
50200	Output data: Frequency converter status word register (STW).
50210	Output data: Frequency converter main actual value register (MAV).

 \ast Used to specify the index number to be used when accessing an indexed parameter.

11.8.9 How to Control the Frequency Converter

This section describes codes which can be used in the function and data fields of a Modbus RTU message. For a complete description of all the message fields please refer to the section *Modbus RTU Message Framing Structure*.

11.8.10 Function Codes Supported by Modbus RTU

Modbus RTU supports use of the following function codes in the function field of a message:

Function	Function Code
Read coils	1 hex
Read holding registers	3 hex
Write single coil	5 hex
Write single register	6 hex
Write multiple coils	F hex
Write multiple registers	10 hex
Get comm. event counter	B hex
Report slave ID	11 hex

Function	Function Code	Sub-function code	Sub-function
Diagnostics	8	1	Restart communication
		2	Return diagnostic register
		10	Clear counters and diagnostic register
		11	Return bus message count
		12	Return bus communication error count
		13	Return bus exception error count
		14	Return slave message count

11.8.11 Modbus Exception Codes

For a full explanation of the structure of an exception code response, please refer to the section Modbus RTU Message Framing Structure, Function Field.

		Modbus Exception Codes
Code	Name	Meaning
1	Illegal function	The function code received in the query is not an allowable action for the server (or slave). This may be because the function code is only applicable to newer devices, and was not implemented in the unit selected. It could also indicate that the server (or slave) is in the wrong state to process a request of
2	Illegal data address	 this type, for example because it is not configured and is being asked to return register values. The data address received in the query is not an allowable address for the server (or slave). More specifically, the combination of reference number and transfer length is invalid. For a controller with 100 registers, a request with offset 96 and length 4 would succeed, a request with offset 96 and length 5 will generate exception 02.
3	Illegal data value	A value contained in the query data field is not an allowable value for server (or slave). This indicates a fault in the structure of the remainder of a complex request, such as that the implied length is incorrect. It specifically does NOT mean that a data item submitted for storage in a register has a value outside the expectation of the application program, since the Modbus protocol is unaware of the sig- nificance of any particular value of any particular register.
4	Slave device failure	An unrecoverable error occurred while the server (or slave) was attempting to perform the requested action.

Danfoss

11.9 How to Access Parameters

11.9.1 Parameter Handling

The PNU (Parameter Number) is translated from the register address contained in the Modbus read or write message. The parameter number is translated to Modbus as (10 x parameter number) DECIMAL.

11.9.2 Storage of Data

The Coil 65 decimal determines whether data written to the frequency converter are stored in EEPROM and RAM (coil 65 = 1) or only in RAM (coil 65 = 0).

11.9.3 IND

The array index is set in Holding Register 9 and used when accessing array parameters.

11.9.4 Text Blocks

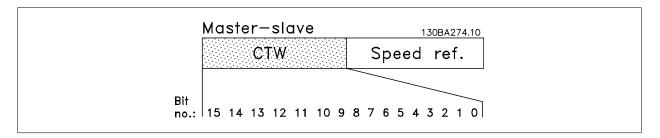
Parameters stored as text strings are accessed in the same way as the other parameters. The maximum text block size is 20 characters. If a read request for a parameter is for more characters than the parameter stores, the response is truncated. If the read request for a parameter is for fewer characters than the parameter stores, the response is space filled.

11.9.5 Conversion Factor

The different attributes for each parameter can be seen in the section on factory settings. Since a parameter value can only be transferred as a whole number, a conversion factor must be used to transfer decimals. Please refer to the *Parameters section*.

11.9.6 Parameter Values

Standard Data Types


Standard data types are int16, int32, uint8, uint16 and uint32. They are stored as 4x registers (40001 – 4FFFF). The parameters are read using function 03HEX "Read Holding Registers." Parameters are written using the function 6HEX "Preset Single Register" for 1 register (16 bits), and the function 10HEX "Preset Multiple Registers" for 2 registers (32 bits). Readable sizes range from 1 register (16 bits) up to 10 registers (20 characters).

Non standard Data Types

Non standard data types are text strings and are stored as 4x registers (40001 – 4FFFF). The parameters are read using function 03HEX "Read Holding Registers" and written using function 10HEX "Preset Multiple Registers." Readable sizes range from 1 register (2 characters) up to 10 registers (20 characters).

11.10 Danfoss FC Control Profile

11.10.1 Control Word According to FC Profile(par. 8-10 *Control Profile* = FC profile)

Bit	Bit value = 0	Bit value = 1
00	Reference value	external selection lsb
01	Reference value	external selection msb
02	DC brake	Ramp
03	Coasting	No coasting
04	Quick stop	Ramp
05	Hold output frequency	use ramp
06	Ramp stop	Start
07	No function	Reset
08	No function	Jog
09	Ramp 1	Ramp 2
10	Data invalid	Data valid
11	No function	Relay 01 active
12	No function	Relay 02 active
13	Parameter set-up	selection lsb
14	Parameter set-up	selection msb
15	No function	Reverse

Explanation of the Control Bits

Bits 00/01

Bits 00 and 01 are used to choose between the four reference values, which are pre-programmed in par. 3-10 *Preset Reference* according to the following table:

Programmed ref. value	Par.	Bit 01	Bit 00	
1	par. 3-10 Preset Reference [0]	0	0	
2	par. 3-10 Preset Reference [1]	0	1	
3	par. 3-10 Preset Reference [2]	1	0	
4	par. 3-10 Preset Reference [3]	1	1	

NB!

Make a selection in par. 8-56 *Preset Reference Select* to define how Bit 00/01 gates with the corresponding function on the digital inputs.

Bit 02, DC brake:

Bit 02 = '0' leads to DC braking and stop. Set braking current and duration in par. 2-01 *DC Brake Current* and par. 2-02 *DC Braking Time*. Bit 02 = '1' leads to ramping.

Bit 03, Coasting:

Bit 03 = '0': The frequency converter immediately "lets go" of the motor, (the output transistors are "shut off") and it coasts to a standstill. Bit 03 = '1': The frequency converter starts the motor if the other starting conditions are met.

Make a selection in par. 8-50 Coasting Select to define how Bit 03 gates with the corresponding function on a digital input.

Bit 04, Quick stop:

Bit 04 = '0': Makes the motor speed ramp down to stop (set in par. 3-81 Quick Stop Ramp Time.

Bit 05, Hold output frequency

NB!

NB!

Bit 05 = '0': The present output frequency (in Hz) freezes. Change the frozen output frequency only by means of the digital inputs (par. 5-10 Terminal 18 Digital Input to par. 5-15 Terminal 33 Digital Input) programmed to Speed up and Slow down.

If Freeze output is active, the frequency converter can only be stopped by the following:

- Bit 03 Coasting stop
- Bit 02 DC braking
- Digital input (par. 5-10 Terminal 18 Digital Input to par. 5-15 Terminal 33 Digital Input) programmed to DC braking, Coasting stop, or Reset and coasting stop.

Bit 06, Ramp stop/start:

Bit 06 = '0': Causes a stop and makes the motor speed ramp down to stop via the selected ramp down parameter. Bit 06 = '1': Permits the frequency converter to start the motor, if the other starting conditions are met.

NB!

Make a selection in par. 8-53 Start Select to define how Bit 06 Ramp stop/start gates with the corresponding function on a digital input.

Bit 07, Reset: Bit 07 = '0': No reset. Bit 07 = '1': Resets a trip. Reset is activated on the signal's leading edge, i.e. when changing from logic '0' to logic ′1′.

Bit 08, Jog:

Bit 08 = '1': The output frequency is determined by par. 3-19 Jog Speed [RPM].

Bit 09, Selection of ramp 1/2:

Bit 09 = "0": Ramp 1 is active (par. 3-41 Ramp 1 Ramp Up Time to par. 3-42 Ramp 1 Ramp Down Time). Bit 09 = "1": Ramp 2 (par. 3-51 Ramp 2 Ramp Up Time to par. 3-52 Ramp 2 Ramp Down Time) is active.

Bit 10, Data not valid/Data valid:

Tell the frequency converter whether to use or ignore the control word. Bit 10 = '0': The control word is ignored. Bit 10 = '1': The control word is used. This function is relevant because the telegram always contains the control word, regardless of the telegram type. Thus, you can turn off the control word if you do not want to use it when updating or reading parameters.

Bit 11, Relay 01:

Bit 11 = "0": Relay not activated. Bit 11 = "1": Relay 01 activated provided that Control word bit 11 is chosen in par. 5-40 Function Relay.

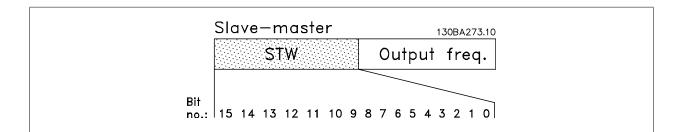
Bit 12, Relay 04:

Bit 12 = "0": Relay 04 is not activated. Bit 12 = "1": Relay 04 is activated provided that Control word bit 12 is chosen in par. 5-40 Function Relay.

Bit 13/14, Selection of set-up:

Use bits 13 and 14 to choose from the four menu set-ups according to the shown table: .

Set-up	Bit 14	Bit 13	
1	0	0	
2	0	1	
3	1	0	
4	1	1	


The function is only possible when *Multi Set-Ups* is selected in par. 0-10 *Active Set-up*.

П	NB!
N	Make a selection in par. 8-55 Set-up Select to define
\mathcal{O}	how Bit 13/14 gates with the corresponding function
	on the digital inputs.

Bit 15 Reverse:

Bit 15 = '0': No reversing. Bit 15 = '1': Reversing. In the default setting, reversing is set to digital in par. 8-54 *Reversing Select*. Bit 15 causes reversing only when Ser. communication, Logic or or Logic and is selected.

11.10.2 Status Word According to FC Profile (STW) (par. 8-10 Control Profile = FC profile)

Bit	Bit = 0	Bit = 1	
00	Control not ready	Control ready	
01	Drive not ready	Drive ready	
02	Coasting	Enable	
03	No error	Trip	
04	No error	Error (no trip)	
05	Reserved	-	
06	No error	Triplock	
07	No warning	Warning	
08	Speed ≠ reference	Speed = reference	
09	Local operation	Bus control	
10	Out of frequency limit	Frequency limit OK	
11	No operation	In operation	
12	Drive OK	Stopped, auto start	
13	Voltage OK	Voltage exceeded	
14	Torque OK	Torque exceeded	
15	Timer OK	Timer exceeded	

Explanation of the Status Bits

Bit 00, Control not ready/ready:

Bit 00 = '0': The frequency converter trips. Bit 00 = '1': The frequency converter controls are ready but the power component does not necessarily receive any power supply (in case of external 24 V supply to controls).

Bit 01, Drive ready:

Bit 01 = '1': The frequency converter is ready for operation but the coasting command is active via the digital inputs or via serial communication.

Bit 02, Coasting stop:

Bit 02 = '0': The frequency converter releases the motor. Bit 02 = '1': The frequency converter starts the motor with a start command.

Bit 03, No error/trip:

Bit 03 = '0' : The frequency converter is not in fault mode. Bit 03 = '1': The frequency converter trips. To re-establish operation, enter [Reset].

Bit 04, No error/error (no trip):

237

<u>Danfoss</u>

Bit 04 = '0': The frequency converter is not in fault mode. Bit 04 = "1": The frequency converter shows an error but does not trip.

11

Bit 05, Not used: Bit 05 is not used in the status word.

Bit 06, No error / triplock:

Bit 06 = '0': The frequency converter is not in fault mode. Bit 06 = "1": The frequency converter is tripped and locked.

Bit 07, No warning/warning:

Bit 07 = '0': There are no warnings. Bit 07 = '1': A warning has occurred.

Bit 08, Speed ≠ reference/speed = reference:

Bit 08 = '0': The motor is running but the present speed is different from the preset speed reference. It might e.g. be the case when the speed ramps up/down during start/stop. Bit 08 = '1': The motor speed matches the preset speed reference.

Bit 09, Local operation/bus control:

Bit 09 = '0': [STOP/RESET] is activate on the control unit or *Local control* in par. 3-13 *Reference Site* is selected. You cannot control the frequency converter via serial communication. Bit 09 = '1' It is possible to control the frequency converter via the fieldbus/ serial communication.

Bit 10, Out of frequency limit:

Bit 10 = '0': The output frequency has reached the value in par. 4-11 *Motor Speed Low Limit [RPM]* or par. 4-13 *Motor Speed High Limit [RPM]*. Bit 10 = "1": The output frequency is within the defined limits.

Bit 11, No operation/in operation:

Bit 11 = '0': The motor is not running. Bit 11 = '1': The frequency converter has a start signal or the output frequency is greater than 0 Hz.

Bit 12, Drive OK/stopped, autostart:

Bit 12 = '0': There is no temporary over temperature on the inverter. Bit 12 = '1': The inverter stops because of over temperature but the unit does not trip and will resume operation once the over temperature stops.

Bit 13, Voltage OK/limit exceeded:

Bit 13 = '0': There are no voltage warnings. Bit 13 = '1': The DC voltage in the frequency converter's intermediate circuit is too low or too high.

Bit 14, Torque OK/limit exceeded:

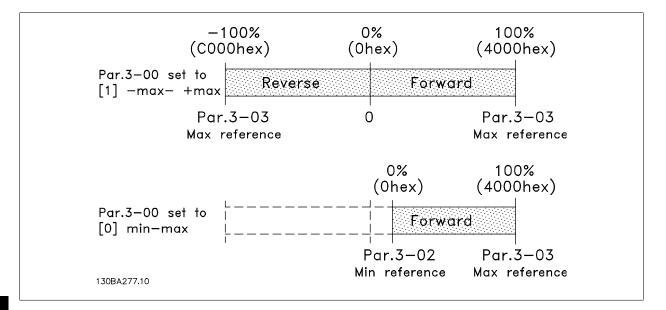
Bit 14 = '0': The motor current is lower than the torque limit selected in par. 4-18 *Current Limit*. Bit 14 = '1': The torque limit in par. 4-18 *Current Limit* is exceeded.

Bit 15, Timer OK/limit exceeded:

Bit 15 = '0': The timers for motor thermal protection and thermal protection are not exceeded 100%. Bit 15 = '1': One of the timers exceedes 100%.

NB!

All bits in the STW are set to '0' if the connection between the Interbus option and the frequency converter is lost, or an internal communication problem has occurred.



11.10.3 Bus Speed Reference Value

Speed reference value is transmitted to the frequency converter in a relative value in %. The value is transmitted in the form of a 16-bit word; in integers (0-32767) the value 16384 (4000 Hex) corresponds to 100%. Negative figures are formatted by means of 2's complement. The Actual Output frequency (MAV) is scaled in the same way as the bus reference.

Master-slave	16bit	
CTW	Speed ref.	
Slave-master		
STW	Actual output freg.	
	130BA276.10	

The reference and MAV are scaled as follows:

i fi

11.10.4 PROFIdrive Control Profile

This section describes the functionality of the control word and status word in the PROFIdrive profile. Select this profile by setting par. 8-10 *Control Word Profile*.

11.10.5 Control Word according to PROFIdrive Profile (CTW)

```
The Control word is used to send commands from a master (e.g. a PC) to a slave.
```

<u>Danfoss</u>

Bit	Bit = 0	Bit = 1
00	OFF 1	ON 1
01	OFF 2	ON 2
02	OFF 3	ON 3
03	Coasting	No coasting
04	Quick stop	Ramp
05	Hold frequency output	Use ramp
06	Ramp stop	Start
07	No function	Reset
08	Jog 1 OFF	Jog 1 ON
09	Jog 2 OFF	Jog 2 ON
10	Data invalid	Data valid
11	No function	Slow down
12	No function	Catch up
13	Parameter set-up	Selection lsb
14	Parameter set-up	Selection msb
15	No function	Reverse

Explanation of the Control Bits

Bit 00, OFF 1/ON 1

Normal ramp stop using the ramp times of the actual selected ramp.

Bit 00 = "0" leads to the stop and activation of the output relay 1 or 2 if the output frequency is 0 Hz and if [Relay 123] has been selected in par. 5-40 *Function Relay*.

When bit 00 = "1", the frequency converter is in State 1: "Switching on inhibited".

Please refer to the PROFIdrive State Transition Diagram, at the end of this section.

Bit 01, OFF 2/ON 2

Coasting stop

When bit 01 = "0", a coasting stop and activation of the output relay 1 or 2 occurs if the output frequency is 0 Hz and if [Relay 123] has been selected in par. 5-40 *Function Relay*.

When bit 01 = "1", the frequency converter is in State 1: "Switching on inhibited". Please refer to the PROFIdrive State Transition Diagram, at the end of this section.

Bit 02, OFF 3/ON 3

Quick stop using the ramp time of par. 3-81 *Quick Stop Ramp Time.* When bit 02 = "0", a quick stop and activation of the output relay 1 or 2 occurs if the output frequency is 0 Hz and if [Relay 123] has been selected in par. 5-40 *Function Relay.*

When bit 02 = "1", the frequency converter is in State 1: "Switching on inhibited".

Please refer to the PROFIdrive State Transition Diagram, at the end of this section.

Bit 03, Coasting/No coasting

Coasting stop Bit 03 = "0" leads to a stop. When bit 03 = "1", the frequency converter can start if the other start conditions are satisfied.

The selection in par. 8-50 *Coasting Select* Coasting select determines how bit 03 is linked with the corresponding function of the digital inputs.

<u>Bit 04, Quick stop/Ramp</u> Quick stop using the ramp time of par. 3-81 *Quick Stop Ramp Time.* When bit 04 = "0", a quick stop occurs.

When bit 04 = "1", the frequency converter can start if the other start conditions are satisfied.

NB!

The selection in par. 8-51 Quick Stop Select determines how bit 04 is linked with the corresponding function of the digital inputs.

Bit 05, Hold frequency output/Use ramp

NB!

When bit 05 = "0", the current output frequency is being maintained even if the reference value is modified.

When bit 05 = "1", the frequency converter can perform its regulating function again; operation occurs according to the respective reference value.

Bit 06, Ramp stop/Start

Normal ramp stop using the ramp times of the actual ramp as selected. In addition, activation of the output relay 01 or 04 if the output frequency is 0 Hz if Relay 123 has been selected in par. 5-40 *Function Relay*. Bit 06 = "0" leads to a stop. When bit 06 = "1", the frequency converter can start if the other start conditions are satisfied.

The selection in par. 8-53 Start Select determines how bit 06 is linked with the corresponding function of the digital inputs.

Bit 07, No function/Reset

Reset after switching off. Acknowledges event in fault buffer. When bit 07 = "0", no reset occurs. When there is a slope change of bit 07 to "1", a reset occurs after switching off.

Bit 08, Jog 1 OFF/ON

Activation of the pre-programmed speed in par. 8-90 Bus Jog 1 Speed. JOG 1 is only possible if bit 04 = "0" and bit 00 - 03 = "1".

Bit 09, Jog 2 OFF/ON

Activation of the pre-programmed speed in par. 8-91 Bus Jog 2 Speed. JOG 2 is only possible if bit 04 = "0" and bit 00 - 03 = "1".

Bit 10, Data invalid/valid

Is used to tell the frequency converter whether the control word is to be used or ignored. Bit 10 = "0" causes the control word to be ignored, Bit 10 = "1" causes the control word to be used. This function is relevant, because the control word is always contained in the telegram, regardless of which type of telegram is used, i.e. it is possible to turn off the control word if you do not wish to use it in connection with updating or reading parameters.

Bit 11, No function/Slow down

Is used to reduce the speed reference value by the amount given in par. 3-12 *Catch up/slow Down Value* value. When bit 11 = "0", no modification of the reference value occurs. When bit 11 = "1", the reference value is reduced.

Bit 12, No function/Catch up

Is used to increase the speed reference value by the amount given in par. 3-12 Catch up/slow Down Value.

When bit 12 = "0", no modification of the reference value occurs.

When bit 12 = "1", the reference value is increased.

```
If both - slowing down and accelerating - are activated (bit 11 and 12 = "1"), slowing down has priority, i.e. the speed reference value will be reduced.
```

Bits 13/14, Set-up selection

Bits 13 and 14 are used to choose between the four parameter set-ups according to the following table:

FC 300 Design Guide

Danfoss

ſ

The function is only possible if *Multi Set-up* has been chosen in par. 0-10 *Active Set-up*. The selection in par. 8-55 *Set-up Select* determines how bits 13 and 14 are linked with the corresponding function of the digital inputs. Changing set-up while running is only possible if the set-ups have been linked in par. 0-12 *This Set-up Linked to*.

	Set-up	Bit 13	Bit 14
	1	0	0
	2	1	0
	3	0	1
	4	1	1
l	L		

Bit 15, No function/Reverse

Bit 15 = "0" causes no reversing.

Bit 15 = "1" causes reversing.

Note: In the factory setting reversing is set to *digital* in par. 8-54 *Reversing Select*.

NB!

Bit 15 causes reversing only when *Ser. communication, Logic or* or *Logic and* is selected.

Danfoss

11.10.6 Status Word according to PROFIdrive Profile (STW)

The Status word is used to notify a master (e.g. a PC) about the status of a slave.

Bit	Bit = 0	Bit = 1
00	Control not ready	Control ready
01	Drive not ready	Drive ready
02	Coasting	Enable
03	No error	Trip
04	OFF 2	ON 2
05	OFF 3	ON 3
06	Start possible	Start not possible
07	No warning	Warning
08	Speed ≠ reference	Speed = reference
09	Local operation	Bus control
10	Out of frequency limit	Frequency limit ok
11	No operation	In operation
12	Drive OK	Stopped, autostart
13	Voltage OK	Voltage exceeded
14	Torque OK	Torque exceeded
15	Timer OK	Timer exceeded

Explanation of the Status Bits

Bit 00, Control not ready/ready

When bit 00 = "0", bit 00, 01 or 02 of the Control word is "0" (OFF 1, OFF 2 or OFF 3) - or the frequency converter is switched off (trip). When bit 00 = "1", the frequency converter control is ready, but there is not necessarily power supply to the unit present (in the event of external 24 V supply of the control system).

Bit 01, VLT not ready/ready

Same significance as bit 00, however, there is a supply of the power unit. The frequency converter is ready when it receives the necessary start signals.

Bit 02, Coasting/Enable

When bit 02 = "0", bit 00, 01 or 02 of the Control word is "0" (OFF 1, OFF 2 or OFF 3 or coasting) - or the frequency converter is switched off (trip). When bit 02 = "1", bit 00, 01 or 02 of the Control word is "1"; the frequency converter has not tripped.

Bit 03, No error/Trip

When bit 03 = "0", no error condition of the frequency converter exists. When bit 03 = "1", the frequency converter has tripped and requires a reset signal before it can start.

Bit 04, ON 2/OFF 2

When bit 01 of the Control word is "0", then bit 04 = "0". When bit 01 of the Control word is "1", then bit 04 = "1".

Bit 05, ON 3/OFF 3

When bit 02 of the Control word is "0", then bit 05 = "0". When bit 02 of the Control word is "1", then bit 05 = "1".

Bit 06, Start possible/Start not possible

If PROFIdrive has been selected in par. 8-10 *Control Word Profile*, bit 06 will be "1" after a switch-off acknowledgement, after activation of OFF2 or OFF3, and after switching on the mains voltage. Start not possible will be reset, with bit 00 of the Control word being set to "0" and bit 01, 02 and 10 being set to "1".

<u>Bit 07, No warning/Warning</u> Bit 07 = "0" means that there are no warnings. Bit 07 = "1" means that a warning has occurred.

Bit 08, Speed ≠ reference / Speed = reference

When bit 08 = "0", the current speed of the motor deviates from the set speed reference value. This may occur, for example, when the speed is being changed during start/stop through ramp up/down.

When bit 08 = "1", the current speed of the motor corresponds to the set speed reference value.

Bit 09, Local operation/Bus control

Bit 09 = "0" indicates that the frequency converter has been stopped by means of the stop button on the control panel, or that [Linked to hand] or [Local] has been selected in par. 3-13 *Reference Site*.

When bit 09 = "1", the frequency converter can be controlled through the serial interface.

Bit 10, Out of frequency limit/Frequency limit OK

When bit 10 = "0", the output frequency is outside the limits set in par. 4-52 *Warning Speed Low* and par. 4-53 *Warning Speed High*. When bit 10 = "1", the output frequency is within the indicated limits.

Bit 11, No operation/Operation

When bit 11 = "0", the motor does not turn. When bit 11 = "1", the frequency converter has a start signal, or the output frequency is higher than 0 Hz.

Bit 12, Drive OK/Stopped, autostart

When bit 12 = "0", there is no temporary overloading of the inverter.

When bit 12 = "1", the inverter has stopped due to overloading. However, the frequency converter has not switched off (trip) and will start again after the overloading has ended.

Bit 13, Voltage OK/Voltage exceeded

When bit 13 = "0", the voltage limits of the frequency converter are not exceeded. When bit 13 = "1", the direct voltage in the intermediate circuit of the frequency converter is too low or too high.

Bit 14, Torque OK/Torque exceeded

When bit 14 = "0", the motor torque is below the limit selected in par. 4-16 *Torque Limit Motor Mode* and par. 4-17 *Torque Limit Generator Mode*. When bit 14 = "1", the limit selected in par. 4-16 *Torque Limit Motor Mode* or par. 4-17 *Torque Limit Generator Mode* is exceeded.

Bit 15, Timer OK/Timer exceeded

When bit 15 = "0", the timers for the thermal motor protection and thermal frequency converter protection have not exceeded 100%. When bit 15 = "1", one of the timers has exceeded 100%.

Index

2

24 Vdc Power Supply 21	<u>ə</u>
3	

5	
30-amp, Fuse-protected Terminals	219

A

Abbreviations	6
Access To Control Terminals	164
Accessory Bags	92
Acoustic Noise	74
Aggressive Environments	14
Air Humidity	14
Airflow	125
Ama	180, 187
Analog Inputs	8
Analog Inputs	71
Analog Inputs - Terminal X30/11, 12	197
Analog Output	72
Analog Output - Terminal X30/8	197
Automatic Adaptations To Ensure Performance	86
Automatic Motor Adaptation	187
Automatic Motor Adaptation (ama)	180

В

Back Cooling	125
Basic Wiring Example	168
Brake Function	44
Brake Power	8, 44
Brake Resistor	41
Brake Resistor Cabling	46
Brake Resistor Temperature Switch	171
Brake Resistors	207
Brake Resistors	207
Break-away Torque	

С

Cable Clamp	178
Cable Clamps	175
Cable Lengths And Cross Sections	69
Cable Positions	118
Cable-length And Cross-section:	142
Cabling	140
Catch Up / Slow Down	24
Ce Conformity And Labelling	13
Coasting	237
Coasting	6, 236
Conducted Emission	38
Connection To Mains	132
Constant Torque Applications (ct Mode)	85
Control Cables	175
Control Cables	170
Control Cables	169
Control Card Performance	73
Control Card, +10 V Dc Output	73
Control Card, 24 V Dc Output	72
Control Card, Rs 485 Serial Communication	72
Control Card, Usb Serial Communication	74
Control Characteristics	73
Control Terminals	165, 167
Control Word	235
Control Word According To Profidrive Profile (ctw)	240

FC 300 Design Guide

Cooling	85
Cooling	125
Cooling Conditions	103

D

Dc Brake	235
Dc Bus Connection	171
Dead Band	26
Dead Band Around Zero	26
Decoupling Plate	135
Definitions	6
Derating For Ambient Temperature And Igbt Switching Frequency	79
Derating For Low Air Pressure	84
Derating For Running At Low Speed	85
Devicenet	5, 91
Digital Inputs - Terminal X30/1-4	196
Digital Inputs:	70
Digital Output	72
Digital Outputs - Terminal X30/6, 7	197
Disposal Instruction	13
Drip Shield Installation	129
Drive Configurator	87
Duct Cooling	125
Duct Work Cooling Kits	211

Е

Earth Leakage Current	174
Earth Leakage Current	40
Earthing	178
Earthing	174
Earthing Of Screened/armoured Control Cables	178
Efficiency	74
Electrical Installation	167, 169
Electrical Installation - Emc Precautions	175
Electrical Terminals	169
Electro-mechanical Brake	185
Emc Directive 89/336/eec	14
Emc Test Results	38
Emission Requirements	38
Encoder Feedback	19
Equalising Cable,	178
Etr	162
External 24 V Dc Supply	203
External Fan Supply	152
External Temperature Monitoring	219
Extreme Running Conditions	47

F

Fc Profile	235
Fieldbus Connection	164
Floor Mounting	216
Flux	20, 21
Freeze Output	6
Freeze Reference	24
Frequency Converter With Modbus Rtu	229
Function Codes Supported By Modbus Rtu	233
Fuse Tables	155
Fuses - Non UI Compliance	153
Fusing	140

G

General Aspects Of Emc Emissions	37
General Considerations	115
General Warning	5
Gland/conduit Entry - Ip21 (nema 1) And Ip54 (nema12)	127

Н

	50
High Voltage Test	174
Hoist Mechanical Brake	45
Hold Output Frequency	236
How To Control The Frequency Converter	233

Ι

Iec Emergency Stop With Pilz Safety Relay	219
Immunity Requirements	39
Index (ind)	226
Installation Of 24 Volt External Dc Supply	165
Installation On Pedestal	215
Installation On The Wall - Ip21 (nema 1) And Ip54 (nema 12) Units	126
Insulation Resistance Monitor (irm)	219
Intermediate Circuit	44, 47, 74, 75
Internal Current Control In Vvcplus Mode	22
Ip 21/type 1 Enclosure Kit	208
It Mains	179

J

Jog	6
Jog	236

K

Kit Contents	212

L

Leakage Current	40
Lifting	106
Load Sharing	172
Local (hand On) And Remote (auto On) Control	1

Μ

Mains Disconnectors	159
Mains Drop-out	48
Mains Supply	10
Mains Supply	53, 61, 62, 63
Mains Supply (I1, L2, L3)	69
Mains Supply Interference	179
Manual Motor Starters	219
Mechanical Brake	44
Mechanical Dimensions	114
Mechanical Dimensions	101, 108
Mechanical Installation	115
Mechanical Mounting	103
Modbus Exception Codes	233
Moment Of Inertia	47
Motor Cable	160
Motor Cables	175
Motor Connection	135
Motor Feedback	21
Motor Name Plate	180
Motor Output	69
Motor Parameters	187
Motor Phases	47
Motor Protection	70, 162
Motor Thermal Protection	239
Motor Thermal Protection	48, 161
Motor Voltage	75
Motor-generated Over-voltage	47

Ν

Name Plate Data	180
Namur	218
Network Connection	221
Non UI Compliance	153

0

Ordering Ordering Form Type Code	212 88
Ordering Form Type Code	88
	07
Ordering Numbers	87
Ordering Numbers: Brake Resistors	92
Ordering Numbers: Du/dt Filters, 380-480/500 Vac	98
Ordering Numbers: Du/dt Filters, 525-690 Vac	99
Ordering Numbers: Harmonic Filters	96
Ordering Numbers: Options And Accessories	91
Ordering Numbers: Sine Wave Filter Modules, 200-500 Vac	
Ordering Numbers: Sine-wave Filter Modules, 525-690 Vac	98
Output Performance (u, V, W)	69

Ρ

-	
Parameter Values	234
Pedestal Installation	216
Pelv - Protective Extra Low Voltage	39
Planning The Installation Site	105
Plc	178
Potentiometer Reference	184
Power Connections	140
Process Pid Control	32
Profibus	5, 91
Programming Of Torque Limit And Stop	185
Protection	15, 39, 40, 153
Protection And Features	70
Protection Mode	12
Protocol Overview	222
Pulse Start/stop	183
Pulse/encoder Inputs	72

R

Radiated Emission	38
Rated Motor Speed	
Rcd	9, 40
Rcm (residual Current Monitor)	219
Receiving The Frequency Converter	105
Reference Limits	25
Relay Connection	138
Relay Outputs	72
Removal Of Knockouts For Extra Cables	131
Required Tools:	215
Residual Current Device	40, 179
Rfi Switch	179
Rise Time	75
Rs 485 Bus Connection	172
Rs-485	221

S

Safe Stop	48
Safety Earth Connection	174
Safety Precautions	11
Safety Requirements Of Mechanical Installation	104
Scaling Of Analog And Pulse References And Feedback	26
Scaling Of Preset References And Bus References	25
Screened/armoured	170
Screening Of Cables:	142

Serial Communication	8, 73, 178
Short Circuit (motor Phase – Phase)	47
Side-by-side Installation	103
Sine-wave Filter	138, 142, 210
Sine-wave Filters	209
Smart Logic Control	46
Software Versions	91
Space	115
Space Heaters And Thermostat	218
Speed Pid	19, 20
Speed Pid Control	29
Start/stop	183
Static Overload In Vvcplus Mode	48
Status Word	237
Status Word According To Profidrive Profile (stw)	244
Surroundings	73
Switches S201, S202, And S801	166
Switching Frequency:	142
Switching On The Output	47
Synchronous Motor Speed	7

Т

Telegram Length (Ige)	223
Terminal Locations	119
Terminal Locations - Frame Size D	2
The Emc Directive (89/336/eec)	13
The Low-voltage Directive (73/23/eec)	13
The Machinery Directive (98/37/eec)	13
Thermistor	9
Torque	140
Torque Characteristics	69
Torque Control	19
Torque For Terminals	140

U

Unpacking	105
Usb Connection	165
Use Of Emc-correct Cables	177

V

Variable (quadratic) Torque Applications (vt)	85
Vibration And Shock	15
Voltage Level	70
Voltage Reference Via A Potentiometer	184
Vvcplus	9, 20

W

What Is Ce Conformity And Labelling?	13
What Is Covered	13
Wire Access	116