

■ Inhaltsverzeichnis

Einleitung	3
Software-Version	3
Diese Bestimmungen dienen Ihrer Sicherheit	4
Warnung vor unbeabsichtigtem Anlaufen	4
Einleitung	6
Verfügbare Dokumentation	7
Technologie	8
Wahl des frequenzumrichters	13
Normale/hohe Überlastmoment-Betriebsart	13
Bestellformular VLT Serie 5000 - Typecode	19
Wahl von Modulen und Zubehör	20
PC-Softwaretools	21
Modbus RTU	21
Produktprogramm	22
Zubehör für die VLT Serie 5000	23
Technische Daten	34
Allgemeine technische Daten	34
Elektrische Daten	40
Sicherungen	57
Cionoral gon	
Maße, Dimensionen	59
Abmessungen	59
Mechanische Installation	62
Mechanische Installation	62
Elektrische Installation	65
Sicherheitserdung	65
Zusätzlicher Schutz (RCD)	65
Elektrische Installation - Netzversorgung	65
Elektrische Installation - Motorkabel	66
Motoranschluß	66
Drehrichtung des Motors	66
Elektrische Installation - Bremskabel	67
Elektrische Installation - Temperaturschalter Bremswiderstand	67
Elektrische Installation - Zwischenkreiskopplung	68
Elektrische Installation - externe 24 Volt-DC-Versorgung	70
Elektrische Installation - Relaisausgänge	70
Elektrische Installation - Steuerkabel	78
Elektrische Installation - Busanschluß	80
Elektrische Installation - EMV-Schutzmaßnahmen	81
Verwendung EMV-gemäßer Kabel	84

Elektrische Installation - Erdung Steuerkabel	85
EMV-Schalter	86
Serielle Kommunikation	89
Steuerwort gemäß FC-Profil	94
Zustandswort gemäß FC-Profil	96
Steuerwort gemäß Feldbusprofil	98
Zustandswort gemäß Feldbus-Profil	99
Telegrambeispiel	101
Anschlußbeispiele	108
Förderband	108
Dosierpumpe	109
Portalkranfahrwerk	111
Drehmomentregelung mit Drehzahlrückführung	112
VLT 5000 Controller	113
PID für die Prozeßregelung	115
PID für die Drehzahlregelung	116
PI-Regler für die Drehmomentregelung (ohne Istwertrückführung)	118
Besondere Bedingungen	119
GalvanischeTrennung (PELV)	119
Extreme Betriebsbedingungen	121
Spitzenspannung am Motor	122
Schalten am Eingang	123
Leistungsreduzierung	124
Thermischer Motorschutz	127
Vibrationen und Erschütterungen	127
Luftfeuchtigkeit	127
Aggressive Umgebungen	128
Wirkungsgrad	129
CE-Zeichen	131
Erforderliche Konformitätsebenen	135
EMV-Immunität	135
Worterklärung	138
Werkseinstellungen	141
Index	150

■ Software-Version

Serie VLT 5000

Projektierungshandbuch Software-Version: 3.8x

Dieses Projektierungshandbuch gilt für alle Frequenzumrichter der Serie VLT 5000 mit Software-Version 3.8x. Software-Versionsnummer: siehe Parameter 624.

CE und C-Kennzeichnung gelten nicht für VLT 5001-5062, 525-600 V-Geräte.

Der Frequenzumrichter steht bei Netzanschluß unter lebensgefährlicher Spannung. Durch unsachgemäße Installation des Motors oder des Frequenzumrichters können ein Ausfall des Gerätes, schwere Personenschäden oder sogar tödliche Verletzungen verursacht werden. Befolgen Sie daher stets die Anweisungen in diesem Handbuch sowie die jeweils gültigen nationalen bzw. internationalen Vorschriften und Sicherheitsbestimmungen.

Installation in großen Höhenlagen: Bei Höhen über 2 km über NN ziehen Sie bitte Danfoss Drives zu PELV (Schutzkleinspannung) zurate.

■ Diese Bestimmungen dienen Ihrer Sicherheit

- Bei Reparaturen muß die Stromversorgung des Frequenzumrichters abgeschaltet werden. Vergewissern Sie sich, daß die Netzversorgung unterbrochen und die erforderliche Zeit verstrichen ist, bevor Sie die Motorund Netzstecker entfernen.
- Die Taste [STOP/RESET] auf dem Bedienfeld des Frequenzumrichters unterbricht nicht das Versorgungsnetz und darf deshalb <u>nicht als Notschalter bzw. Reparaturschalter verwendet werden.</u>
- Es ist dafür Sorge zu tragen, daß gemäß den örtlichen und nationalen Vorschriften eine ordnungsgemäße Erdung des Gerätes erfolgt, der Benutzer gegen Leitungsspannung geschützt und der Motor gegen Überlastung abgesichert ist.
- 4. Der Ableitstrom gegen Erde ist höher als 3,5 mA.
- Ein Überlastungsschutz des Motors ist in der Werkseinstellung <u>nicht</u> enthalten. Wenn diese Funktion gewünscht wird, Parameter 128 auf den Datenwert ETR Abschaltung oder Datenwert ETR Warnung einstellen. <u>Achtung:</u> Diese Funktion wird bei 1,16 x Motor-nennstrom und Motornennfrequenz initialisiert. Für den nordamerikanischen Markt: Die ETR-Funktionen beinhalten Motorüberlastungsschutz der Klasse 20 gemäß NEC.

- 6. Die Stecker für die Motor- und Netzversorgung dürfen nicht entfernt werden, wenn der Frequenzumrichter an die Netzversorgung angeschlossen ist. Vergewissern Sie sich, daß die Netzversorgung unterbrochen und die erforderliche Zeit verstrichen ist, bevor Sie die Motor- und Netzstecker entfernen.
- 7. Beachten Sie bitte, daß der -Frequenzumrichter außer den Spannungseingängen L1, L2 und L3 noch weitere Spannungseingänge wie DC-Zwischenkreiskopplung bzw. externe 24 V-DC-Versorgung haben kann, wenn diese installiert sind. Kontrollieren Sie, daß vor Beginn der Reparaturarbeiten alle Spannungseingänge abgeschaltet sind und die erforderliche Zeit verstrichen ist.

■ Warnung vor unbeabsichtigtem Anlaufen

- Der Motor kann mit einem digitalen Befehl, einem Bus-Befehl, einem Sollwert oder "Ort-Stop" angehalten werden, obwohl der Frequenzumrichter weiter unter Netzspannung steht. Ist ein unbeabsichtigtes Anlaufen des Motors gemäß den Bestimmungen zur Personensicherheit jedoch unzulässig, so sind die oben genannten Stoppfunktionen nicht ausreichend.
- Während der Programmierung des Frequenzumrichters kann der Motor ohne Vorwarnung anlaufen. Daher <u>immer die Stopp-Taste</u> [STOP/RESET] betätigen, bevor Datenwerte geändert werden.
- 3. Ist der Motor abgeschaltet, so kann er automatisch wieder anlaufen, sofern die Elektronik des Frequenzumrichters defekt ist oder falls eine kurzfristige Überlastung oder ein Fehler in der Versorgungsspannung bzw. am Motoranschluß beseitigt wurde.

■ Verwendung an isoliertem Stromnetz

Siehe Abschnitt *EMV-Schalter* bezüglich der Verwendung an einem isolierten Netz.

Es ist wichtig, den Empfehlungen bezüglich der Installation am IT-Netz zu beachten, da ausreichender Schutz der kompletten Anlage erfüllt sein muss. Bei Nichtverwendung entsprechender Überwachungsvorrichtungen für IT-Netz kann Beschädigung auftreten.

Warnung:

Das Berühren spannungsführender Teile - auch nach der Trennung vom Netz - ist lebensgefährlich.

Achten Sie außerdem darauf, dass andere Spannungseingänge, wie z.B. 24 V DC, Zwischenkreiskoppelung (Zusammenschalten eines DC-Zwischenkreises) sowie der Motoranschluss beim kinetischen Speicher ausgeschaltet sind.

VLT 5001 - 5006, 200-240 V:	mindestens 4 Minuten warten
VLT 5008 - 5052, 200-240 V:	mindestens 15 Minuten warten
VLT 5001 - 5006, 380-500 V:	mindestens 4 Minuten warten
VLT 5008 - 5062, 380-500 V:	mindestens 15 Minuten warten
VLT 5072 - 5302, 380-500 V:	mindestens 20 Minuten warten
VLT 5352 - 5552, 380-500 V:	mindestens 40 Minuten warten
VLT 5001 - 5005, 525-600 V	mindestens 4 Minuten warten
VLT 5006 - 5022, 525-600 V:	mindestens 15 Minuten warten
VLT 5027 - 5062, 525-600 V:	mindestens 30 Minuten warten
VLT 5042 - 5352, 525-690 V:	mindestens 20 Minuten warten
VLT 5402 - 5602, 525-690 V:	mindestens 30 Minuten warten

■ Einleitung

Dieses Projektierungshandbuch ist als Hilfsmittel für die Planung einer Anlage oder eines Systems mit Fre-

quenzumrichtern der VLT Serie 5000 gedacht. Technische Publikationen speziell für die Serie VLT 5000: Betriebsanleitung und Projektierungshandbuch.

Betriebsanleitung: Ein Handbuch mit Hinweisen für optimale Installation, Inbetriebnahme und

Wartung.

Projektierungshandbuch: Enthält alle nützlichen Informationen für die Projektierung und vermittelt

gute Einblicke in die Technologie, das Produktprogramm, die technischen

Daten usw.

Die Betriebsanleitung und die darin enthaltene Kurzanleitung werden mit dem Gerät mitgeliefert.

Beim Lesen des Projektierungshandbuchs werden Sie auf verschiedene Symbole stoßen, bei denen besondere Aufmerksamkeit geboten ist:

Es handelt sich um folgende Symbole:

Bezeichnet eine allgemeine Warnung

ACHTUNG!

Bezeichnet einen wichtigen Hinweis

Bezeichnet eine Warnung vor Hochspannung

■ Verfügbare Dokumentation

Nachfolgend eine Übersicht der für den VLT Serie 5000 erhältlichen Dokumentation. Bitte beachten Sie, dass sich von Land zu Land Abweichungen ergeben können.

Lieferumfang de	s VLT:
-----------------	--------

Installationsanleitung Hochleistungsanwendungen MI.90.JX.YY Kommunikation für VLT 5000: VLT 5000 Profibus-Handbuch MG.10.EX.YY VLT 5000 DeviceNet-Handbuch MG.50.MX.YY VLT 5000 Modbus-Handbuch MG.10.EX.YY VLT 5000 Interbus-Handbuch MG.10.EX.YY VLT 5000 Interbus-Handbuch MG.10.EX.YY VLT 5000 Interbus-Handbuch MG.10.EX.YY Anwendungsoptionen für VLT 5000: VLT 5000 SyncPos-Optionshandbuch MG.10.EX.YY VLT 5000 Positionierregler-Handbuch MG.10.EX.YY VLT 5000 SyncPos-Optionshandbuch MG.10.EX.YY VLT 5000 SyncPos-Optionshandbuch MG.10.EX.YY VLT 5000 SyncPornergler-Handbuch MG.10.EX.YY VLT 5000 SyncPos-Optionshandbuch MG.10.EX.YY VLT 5000 SyncPos-Optionshandbuch MG.10.EX.YY VLT 5000 SyncPos-Optionshandbuch MG.10.EX.YY Ringspinnoption MI.50.XX.0Y Wickler und Spannungsregleroption MI.50.XX.0Y MI.50.XX.0Y MI.50.XX.0Y MI.50.XX.0Y MI.50.XX.0Y Bremswiderstände VLT Serie 5000: MI.50.XX.0Y MI	Lieferumfang des VLT:	
Kommunikation für VLT 5000: MG.10.EX.YY VLT 5000 Profibus-Handbuch MG.50.HX.YY VLT 5000 LonWorks-Handbuch MG.50.HX.YY VLT 5000 LonWorks-Handbuch MG.10.MX.YY VLT 5000 Interbus-Handbuch MG.10.MX.YY VLT 5000 Interbus-Handbuch MG.10.DX.YY Anwendungsoptionen für VLT 5000: WLT 5000 Positionierregler-Handbuch MG.50.PX.YY VLT 5000 SyncPos-Optionshandbuch MG.50.PX.YY VLT 5000 Positionierregler-Handbuch MG.50.PX.YY VLT 5000 Synchronregler-Handbuch MG.50.PX.YY VLT 5000 Synchronregler-Handbuch MI.50.XX.0Y Wobble-Funktionsoption MI.50.XX.0Y Wickler- und Spannungsregleroption MI.50.XX.0Y Anleitungen für VLT Serie 5000: MI.50.XX.0Y Zwischenkreiskopplung MI.50.XX.0Y Bremswiderstände-Flachbau VLT 5001-5011 (Nur in englischer und deutscher Sprache) MI.50.XX.0Y LC-Filter MI.50.XX.0Y Encodersignalumrichter 5V TTL-24V DC VLT 5000 (Nur kombiniert Englisch/Deutsch) MI.50.XX.0Y Kühlikörper für VLT Serie 5000 MN.50.XX.0Y Projektierungshandbuch MC.50.CX.0Y	Produkthandbuch	MG.51.AX.YY
VLT 5000 Profibus-Handbuch MG.10.EX.YY VLT 5000 LonWorks-Handbuch MG.50.HX.YY VLT 5000 Modbus-Handbuch MG.10.MX.YY VLT 5000 Interbus-Handbuch MG.10.MX.YY VLT 5000 Interbus-Handbuch MG.10.CX.YY Anwendungsoptionen für VLT 5000: WC.T.5000 SyncPos-Optionshandbuch MG.10.EX.YY VLT 5000 Positionierregler-Handbuch MG.50.PX.YY VLT 5000 Synchronregler-Handbuch MG.50.PX.YY VLT 5000 Synchronregler-Handbuch MG.50.EX.YY Wobble-Funktionsoption MI.50.ZX.0Y Wobble-Funktionsoption MG.50.KX.0Y Anleitungen für VLT Serie 5000: Zwischenkreiskopplung Bremswiderstände VLT 5010 MI.50.XX.0Y Bremswiderstände-Flachbau VLT 5001-5011 (Nur in englischer und deutscher Sprache) MI.50.XX.0Y Bremswiderstände-Flachbau VLT 5001-5011 (Nur in englischer und deutscher Sprache) MI.50.XX.0Y Encodersignalumrichter 5V TTL-24V DC VLT 5000 (Nur kombiniert Englisch/Deutsch) MI.50.XX.0Y Weitere Literatur für VLT 5000: MC.50.CX.0Y Projektierungshandbuch MG.51.BX.YY Intergration eines VLT 5000 Profibus in ein Simatic S5-System MC.50.CX.0Y Intergration eines VLT 5000 Profibus in ein Simatic S7-System </td <td>Installationsanleitung Hochleistungsanwendungen</td> <td>MI.90.JX.YY</td>	Installationsanleitung Hochleistungsanwendungen	MI.90.JX.YY
VLT 5000 DeviceNet-Handbuch MG.50.HX.Y° VLT 5000 LonWorks-Handbuch MG.50.MX.Y° VLT 5000 Interbus-Handbuch MG.10.MX.Y° VLT 5000 Interbus-Handbuch MG.10.OX.Y° Anwendungsoptionen für VLT 5000: VLT 5000 SyncPos-Optionshandbuch MG.10.EX.Y° VLT 5000 Synchronregler-Handbuch MG.50.PX.Y° VLT 5000 Synchronregler-Handbuch MG.50.PX.Y° VLT 5000 Synchronregler-Handbuch MI.50.XX.0° Wobble-Funktionsoption MI.50.XX.0° Wickler- und Spannungsregleroption MG.50.KX.0° Anleitungen für VLT Serie 5000: Zwischenkreiskopplung MI.50.NX.0° Bremswiderstände VLT 5000 MI.90.FX.Y° Bremswiderstände VLT 5000 MI.50.NX.0° ME-S.N.Y° MI.50.NX.0° Weiter Literatur für VLT Serie 5000 MN.50.XX.0° Weitere Literatur für VLT 5000: Projektierungshandbuch MG.51.BX.Y° Integration eines VLT 5000 Profibus in ein Simatic S5-System MC.50.AX.0° Integration eines VLT 5000 Profibus in ein Simatic S7-System MC.50.AX.0° Wahl vor Vorsicherungen MN.50.OX.0° VLT am IT-Netz MN	Kommunikation für VLT 5000:	
VLT 5000 LonWorks-Handbuch MG.50.MX.YV VLT 5000 Modbus-Handbuch MG.10.MX.YV VLT 5000 Interbus-Handbuch MG.10.OX.YV Anwendungsoptionen für VLT 5000: VLT 5000 SyncPos-Optionshandbuch MG.10.EX.YV VLT 5000 Positionierregler-Handbuch MG.50.PX.YV VLT 5000 Synchronregler-Handbuch MI.50.ZX.00 Wobble-Funktionsoption MI.50.JX.00 Wickler- und Spannungsregleroption MG.50.KX.00 Anleitungen für VLT Serie 5000: MI.50.XX.00 Zwischenkreiskopplung MI.50.XX.00 Bremswiderstände VLT 5000 MI.50.XX.00 Bremswiderstände VLT 5000 MI.50.XX.00 MI.50.XX.00 MI.50.XX.00 MI.50.XX.00 Kühlkörper für VLT Serie 5000 MI.50.XX.00 Weitere Literatur für VLT Serie 5000 MI.50.XX.00 Weitere Literatur für VLT 5000: MG.51.BX.YV Intregration eines VLT 5000 Profibus in ein Simatic S5-System MC.50.CX.00 Intregration eines VLT 5000 Profibus in ein Simatic S7-System MC.50.CX.00 Hub-/Senkanwendungen und die VLT Serie 5000 MN.50.XX.00 Sonstiges (nur in englischer Sprache): Schutz gegen elektrische Gefahren MN.90.CX.00	VLT 5000 Profibus-Handbuch	MG.10.EX.YY
VLT 5000 Modbus-Handbuch MG.10.MX.YV VLT 5000 Interbus-Handbuch MG.10.OX.YV Anwendungsoptionen für VLT 5000: WLT 5000 SyncPos-Optionshandbuch MG.10.EX.YV VLT 5000 Positionierregler-Handbuch MG.50.PX.YV VLT 5000 Synchronegler-Handbuch MG.10.NX.VY Ringspinnoption MI.50.ZX.0; Wobble-Funktionsoption MG.50.KX.0; Wickler- und Spannungsregleroption MG.50.KX.0; Anleitungen für VLT Serie 5000: MI.50.NX.0; Zwischenkreiskopplung MI.50.NX.0; Bremswiderstände VLT 5000 MI.90.FX.YV Bremswiderstände-Flachbau VLT 5001-5011 (Nur in englischer und deutscher Sprache) MI.50.NX.0; LC-Filter MI.50.DX.YV Encodersignalumrichter 5V TTL-24V DC VLT 5000 (Nur kombiniert Englisch/Deutsch) MI.50.IX.5 Kühlkörper für VLT Serie 5000: MN.50.XX.0; Weitere Literatur für VLT 5000: Projektierungshandbuch MG.51.BX.Y Intregration eines VLT 5000 Profibus in ein Simatic S5-System MC.50.CX.0; Hub-/Senkanwendungen und die VLT Serie 5000 MN.50.RX.0; Sonstiges (nur in englischer Sprache): Schutz gegen elektrische Gefahren MN.90.CX.0; Wahl von Vorsicherungen	VLT 5000 DeviceNet-Handbuch	MG.50.HX.YY
VLT 5000 Interbus-Handbuch MG.10.0X.Y ² Anwendungsoptionen für VLT 5000: WILT 5000 SyncPos-Optionshandbuch MG.10.EX.Y ² VLT 5000 Positionierregler-Handbuch MG.50.PX.Y ² VLT 5000 Synchronregler-Handbuch MG.10.EX.Y ² VLT 5000 Synchronregler-Handbuch MI.50.ZX.0 ² Wobble-Funktionsoption MI.50.ZX.0 ² Wickler- und Spannungsregleroption MG.50.KX.0 ² Anleitungen für VLT Serie 5000: Zwischenkreiskopplung MI.50.NX.0 ² Bremswiderstände VLT 5000 MI.90.FX.Y ² Bremswiderstände VLT 5000 MI.50.XX.0 ² MI.50.DX.Y ² MI.50.DX.Y ² Encodersignalumrichter 5V TTL-24V DC VLT 5000 (Nur kombiniert Englisch/Deutsch) MI.50.DX.9 ² Kühlkörper für VLT Serie 5000 MN.50.XX.0 ² Weitere Literatur für VLT 5erie 5000 Weitere Literatur für VLT 5000: Projibus in ein Simatic S5-System MC.50.CX.0 ² Intregration eines VLT 5000 Profibus in ein Simatic S7-System MC.50.CX.0 ² Hub-/Senkanwendungen und die VLT Serie 5000 MN.50.RX.0 ² Sonstiges (nur in englischer Sprache): Schutz gegen elektrische Gefahren MN.90.CX.0 ² </td <td>VLT 5000 LonWorks-Handbuch</td> <td>MG.50.MX.YY</td>	VLT 5000 LonWorks-Handbuch	MG.50.MX.YY
Anwendungsoptionen für VLT 5000: MG.10.EX.Y¹ VLT 5000 SyncPos-Optionshandbuch MG.10.EX.Y¹ VLT 5000 Positionierregler-Handbuch MG.50.PX.Y¹ VLT 5000 Synchronregler-Handbuch MG.10.NX.Y¹ Ringspinnoption MI.50.ZX.0² Wobble-Funktionsoption MI.50.JX.0² Wickler- und Spannungsregleroption MG.50.KX.0² Anleitungen für VLT Serie 5000: X Zwischenkreiskopplung MI.50.NX.0² Bremswiderstände VLT 5000 MI.90.FX.Y² Bremswiderstände-Flachbau VLT 5001-5011 (Nur in englischer und deutscher Sprache) MI.50.SX.Y² Encodersignalumrichter 5V TTL-24V DC VLT 5000 (Nur kombiniert Englisch/Deutsch) MI.50.IX.5 Kühlkörper für VLT Serie 5000 MN.50.XX.0² Weitere Literatur für VLT 5000: Weitere Literatur für VLT 5000: Projektierungshandbuch MG.51.BX.Y² Integration eines VLT 5000 Profibus in ein Simatic S5-System MC.50.CX.0² Integration eines VLT 5000 Profibus in ein Simatic S7-System MC.50.AX.0² Hub-/Senkanwendungen und die VLT Serie 5000 MN.50.RX.0² Sonstiges (nur in englischer Sprache): Schutz gegen elektrische Gefahren MN.90.CX.0² <tr< td=""><td>VLT 5000 Modbus-Handbuch</td><td>MG.10.MX.YY</td></tr<>	VLT 5000 Modbus-Handbuch	MG.10.MX.YY
VLT 5000 SyncPos-Optionshandbuch WG.10.EX.YY VLT 5000 Positionierregler-Handbuch MG.50.PX.YY VLT 5000 Synchronregler-Handbuch MG.10.EX.YY VLT 5000 Synchronregler-Handbuch MG.10.EX.YY VLT 5000 Synchronregler-Handbuch MG.10.EX.YY Wobble-Funktionsoption MI.50.ZX.03 Wobble-Funktionsoption MI.50.JX.03 Wickler- und Spannungsregleroption MG.50.KX.03 Anleitungen für VLT Serie 5000: Zwischenkreiskopplung Bremswiderstände VLT 5000 MI.50.EX.YY Bremswiderstände-Flachbau VLT 5001-5011 (Nur in englischer und deutscher Sprache) MI.50.EX.YY Encodersignalumrichter 5V TTL-24V DC VLT 5000 (Nur kombiniert Englisch/Deutsch) MI.50.IX.5 Kühlkörper für VLT Serie 5000 MI.50.IX.5 Kühlkörper für VLT Serie 5000 Weitere Literatur für VLT 5000: Projektierungshandbuch MG.51.EX.YY Integration eines VLT 5000 Profibus in ein Simatic S5-System MC.50.CX.03 Mutb-/Senkanwendungen und die VLT Serie 5000 MN.50.RX.03 Sonstiges (nur in englischer Sprache): Schutz gegen elektrische Gefahren MN.90.GX.03 Wahl von Vorsicherungen VLT am IT-Netz Filtern harmonischer Ströme MN.90.CX.03	VLT 5000 Interbus-Handbuch	MG.10.OX.YY
VLT 5000 Positionierregler-Handbuch MG.50.PX.YYVLT 5000 Synchronregler-Handbuch MG.10.NX.YYRingspinnoption MI.50.ZX.00 Wobble-Funktionsoption MI.50.JX.00 Wickler- und Spannungsregleroption MG.50.KX.00 Anleitungen für VLT Serie 5000: Zwischenkreiskopplung MI.50.NX.00 Bremswiderstände VLT 5000 MI.90.FX.YYRISP MI.50.DX.YYRIPP MI.50.DX.YYR	Anwendungsoptionen für VLT 5000:	
VLT 5000 Synchronregier-Handbuch MG.10.NX.YY Ringspinnoption MI.50.ZX.00 Wobble-Funktionsoption MI.50.JX.00 Wickler- und Spannungsregleroption MG.50.KX.00 Anleitungen für VLT Serie 5000: MI.50.NX.00 Zwischenkreiskopplung MI.50.NX.00 Bremswiderstände VLT 5000 MI.90.FX.YY Bremswiderstände-Flachbau VLT 5001-5011 (Nur in englischer und deutscher Sprache) MI.50.SX.YY LC-Filter MI.50.DX.Y Encodersignalumrichter 5V TTL-24V DC VLT 5000 (Nur kombiniert Englisch/Deutsch) MI.50.IX.5 Kühlkörper für VLT Serie 5000 MN.50.XX.00 Weitere Literatur für VLT 5000: MG.51.BX.YY Intregration eines VLT 5000 Profibus in ein Simatic S5-System MC.50.CX.00 Intregration eines VLT 5000 Profibus in ein Simatic S7-System MC.50.AX.00 Hub-/Senkanwendungen und die VLT Serie 5000 MN.50.RX.00 Sonstiges (nur in englischer Sprache): S Schutz gegen elektrische Gefahren MN.90.GX.00 Wahl von Vorsicherungen MN.90.CX.00 Wahl von Vorsicherungen MN.90.CX.00 Filtern harmonischer Ströme MN.90.FX.00 Handhabung aggressiver Umgebungen MN.90.CX.00	VLT 5000 SyncPos-Optionshandbuch	MG.10.EX.YY
Ringspinnoption MI.50.ZX.03 Wobble-Funktionsoption MI.50.JX.03 Wickler- und Spannungsregleroption MG.50.KX.03 Anleitungen für VLT Serie 5000: Zwischenkreiskopplung MI.50.NX.03 Bremswiderstände VLT 5000 MI.90.FX.Y3 Bremswiderstände-Flachbau VLT 5001-5011 (Nur in englischer und deutscher Sprache) MI.50.SX.Y3 LC-Filter MI.56.DX.Y3 Encodersignalumrichter 5V TTL-24V DC VLT 5000 (Nur kombiniert Englisch/Deutsch) MI.50.IX.5 Kühlkörper für VLT Serie 5000 MN.50.XX.03 Weitere Literatur für VLT 5000: Projektierungshandbuch MG.51.BX.Y3 Integration eines VLT 5000 Profibus in ein Simatic S5-System MC.50.XX.03 Hub-/Senkanwendungen und die VLT Serie 5000 MN.50.RX.03 Sonstiges (nur in englischer Sprache): Schutz gegen elektrische Gefahren MN.90.GX.03 Wahl von Vorsicherungen MN.50.XX.03 WIT-Netz MN.90.CX.03 Filtern harmonischer Ströme MN.90.FX.03 Handhabung aggressiver Umgebungen MN.90.IX.03 GI-TITM-Schütze - VLT®-Frequenzumrichter MN.90.KX.03	VLT 5000 Positionierregler-Handbuch	MG.50.PX.YY
Wobble-Funktionsoption MI.50.JX.02 Wickler- und Spannungsregleroption MG.50.KX.02 Anleitungen für VLT Serie 5000: Zwischenkreiskopplung MI.50.NX.03 Bremswiderstände VLT 5000 MI.90.FX.Y3 Bremswiderstände-Flachbau VLT 5001-5011 (Nur in englischer und deutscher Sprache) MI.50.SX.Y3 LC-Filter MI.56.DX.Y3 Encodersignalumrichter 5V TTL-24V DC VLT 5000 (Nur kombiniert Englisch/Deutsch) MI.50.IX.5 Kühlkörper für VLT Serie 5000 MN.50.XX.03 Weitere Literatur für VLT 5000: Projektierungshandbuch MG.51.BX.Y3 Integration eines VLT 5000 Profibus in ein Simatic S5-System MC.50.XX.03 Hub-/Senkanwendungen und die VLT Serie 5000 MN.50.RX.03 Sonstiges (nur in englischer Sprache): Schutz gegen elektrische Gefahren MN.90.GX.03 Wahl von Vorsicherungen MN.50.OX.03 VLT am IT-Netz MN.90.CX.03 Filtern harmonischer Ströme MN.90.FX.03 Handhabung aggressiver Umgebungen MN.90.IX.03 GI-TITM.Schütze - VLT®-Frequenzumrichter MN.90.KX.03	VLT 5000 Synchronregler-Handbuch	MG.10.NX.YY
MG.50.KX.03 Anleitungen für VLT Serie 5000: Zwischenkreiskopplung MI.50.NX.03 Bremswiderstände VLT 5000 MI.90.FX.YY Bremswiderstände-Flachbau VLT 5001-5011 (Nur in englischer und deutscher Sprache) MI.50.SX.YY LC-Filter MI.56.DX.YY Encodersignalumrichter 5V TTL-24V DC VLT 5000 (Nur kombiniert Englisch/Deutsch) MI.50.IX.5 Kühlkörper für VLT Serie 5000 MN.50.XX.03 Weitere Literatur für VLT 5000: Projektierungshandbuch MG.51.BX.YY Integration eines VLT 5000 Profibus in ein Simatic S5-System MC.50.CX.03 Intregration eines VLT 5000 Profibus in ein Simatic S7-System MC.50.AX.03 Hub-/Senkanwendungen und die VLT Serie 5000 MN.50.RX.03 Sonstiges (nur in englischer Sprache): Schutz gegen elektrische Gefahren MN.90.GX.03 Wahl von Vorsicherungen MN.90.CX.03 Filtern harmonischer Ströme MN.90.FX.03 Handhabung aggressiver Umgebungen MN.90.IX.03 GI-TI TM -Schütze - VLT®-Frequenzumrichter MN.90.KX.03	Ringspinnoption	MI.50.ZX.02
Anleitungen für VLT Serie 5000: Zwischenkreiskopplung MI.50.NX.0: Bremswiderstände VLT 5000 MI.90.FX.Y' Bremswiderstände-Flachbau VLT 5001-5011 (Nur in englischer und deutscher Sprache) MI.50.SX.Y' LC-Filter MI.56.DX.Y' Encodersignalumrichter 5V TTL-24V DC VLT 5000 (Nur kombiniert Englisch/Deutsch) MI.50.IX.5 Kühlkörper für VLT Serie 5000 MN.50.XX.0: Weitere Literatur für VLT 5000: Projektierungshandbuch MG.51.BX.Y' Integration eines VLT 5000 Profibus in ein Simatic S5-System MC.50.CX.0: Intregration eines VLT 5000 Profibus in ein Simatic S7-System MC.50.AX.0: Hub-/Senkanwendungen und die VLT Serie 5000 MN.50.RX.0: Sonstiges (nur in englischer Sprache): Schutz gegen elektrische Gefahren MN.90.GX.0: Wahl von Vorsicherungen MN.90.CX.0: Filtern harmonischer Ströme MN.90.FX.0: Handhabung aggressiver Umgebungen MN.90.IX.0: CI-TI TM -Schütze - VLT®-Frequenzumrichter MN.90.KX.0:	Wobble-Funktionsoption	MI.50.JX.02
Zwischenkreiskopplung Bremswiderstände VLT 5000 Bremswiderstände VLT 5000 MI.90.FX.Y Bremswiderstände-Flachbau VLT 5001-5011 (Nur in englischer und deutscher Sprache) LC-Filter MI.50.DX.Y Encodersignalumrichter 5V TTL-24V DC VLT 5000 (Nur kombiniert Englisch/Deutsch) Kühlkörper für VLT Serie 5000 MN.50.XX.0 Weitere Literatur für VLT 5000: Projektierungshandbuch MG.51.BX.Y Integration eines VLT 5000 Profibus in ein Simatic S5-System MC.50.CX.0 Intregration eines VLT 5000 Profibus in ein Simatic S7-System MC.50.AX.0 Hub-/Senkanwendungen und die VLT Serie 5000 MN.50.RX.0 Sonstiges (nur in englischer Sprache): Schutz gegen elektrische Gefahren MN.90.GX.0 Wahl von Vorsicherungen MN.90.CX.0 Filtern harmonischer Ströme MN.90.FX.0 Handhabung aggressiver Umgebungen MN.90.IX.0 MN.90.IX.0 MN.90.IX.0 MN.90.IX.0	Wickler- und Spannungsregleroption	MG.50.KX.02
Bremswiderstände VLT 5000 MI.90.FX.Y Bremswiderstände-Flachbau VLT 5001-5011 (Nur in englischer und deutscher Sprache) MI.50.SX.Y LC-Filter MI.56.DX.Y Encodersignalumrichter 5V TTL-24V DC VLT 5000 (Nur kombiniert Englisch/Deutsch) MI.50.IX.5 Kühlkörper für VLT Serie 5000 MN.50.XX.0 Weitere Literatur für VLT 5000: Projektierungshandbuch MG.51.BX.Y Integration eines VLT 5000 Profibus in ein Simatic S5-System MC.50.CX.0 Intregration eines VLT 5000 Profibus in ein Simatic S7-System MC.50.AX.0 Hub-/Senkanwendungen und die VLT Serie 5000 MN.50.RX.0 Sonstiges (nur in englischer Sprache): Schutz gegen elektrische Gefahren MN.90.GX.0 Wahl von Vorsicherungen MN.50.OX.0 VLT am IT-Netz MN.90.CX.0 Filtern harmonischer Ströme MN.90.IX.0 Handhabung aggressiver Umgebungen MN.90.IX.0 CI-TI TM -Schütze - VLT®-Frequenzumrichter MN.90.KX.0	Anleitungen für VLT Serie 5000:	
Bremswiderstände-Flachbau VLT 5001-5011 (Nur in englischer und deutscher Sprache) LC-Filter MI.50.DX.YY Encodersignalumrichter 5V TTL-24V DC VLT 5000 (Nur kombiniert Englisch/Deutsch) Kühlkörper für VLT Serie 5000 MN.50.IX.5 Kühlkörper für VLT Serie 5000 Weitere Literatur für VLT 5000: Projektierungshandbuch MG.51.BX.YY Integration eines VLT 5000 Profibus in ein Simatic S5-System MC.50.CX.03 Intregration eines VLT 5000 Profibus in ein Simatic S7-System MC.50.AX.03 Hub-/Senkanwendungen und die VLT Serie 5000 MN.50.RX.03 Sonstiges (nur in englischer Sprache): Schutz gegen elektrische Gefahren MN.90.GX.03 Wahl von Vorsicherungen MN.90.CX.03 Filtern harmonischer Ströme MN.90.FX.03 Handhabung aggressiver Umgebungen MN.90.IX.03 MN.90.IX.03 MN.90.IX.03 MN.90.IX.03 MN.90.IX.03 MN.90.IX.03 MN.90.IX.03 MN.90.IX.03 MN.90.IX.03	Zwischenkreiskopplung	MI.50.NX.02
LC-Filter MI.56.DX.Y\ Encodersignalumrichter 5V TTL-24V DC VLT 5000 (Nur kombiniert Englisch/Deutsch) MI.50.IX.5 Kühlkörper für VLT Serie 5000 MN.50.XX.03 Weitere Literatur für VLT 5000: Projektierungshandbuch MG.51.BX.Y\ Integration eines VLT 5000 Profibus in ein Simatic S5-System MC.50.CX.03 Intregration eines VLT 5000 Profibus in ein Simatic S7-System MC.50.AX.03 Hub-/Senkanwendungen und die VLT Serie 5000 MN.50.RX.03 Sonstiges (nur in englischer Sprache): Schutz gegen elektrische Gefahren MN.90.GX.03 Wahl von Vorsicherungen MN.50.OX.03 VLT am IT-Netz MN.90.CX.03 Filtern harmonischer Ströme MN.90.FX.03 Handhabung aggressiver Umgebungen MN.90.IX.03 CI-TI TM -Schütze - VLT®-Frequenzumrichter MN.90.KX.03	Bremswiderstände VLT 5000	MI.90.FX.YY
Encodersignalumrichter 5V TTL-24V DC VLT 5000 (Nur kombiniert Englisch/Deutsch) MI.50.IX.5 Kühlkörper für VLT Serie 5000 MN.50.XX.03 Weitere Literatur für VLT 5000: Projektierungshandbuch MG.51.BX.Y Integration eines VLT 5000 Profibus in ein Simatic S5-System MC.50.CX.03 Intregration eines VLT 5000 Profibus in ein Simatic S7-System MC.50.AX.03 Hub-/Senkanwendungen und die VLT Serie 5000 MN.50.RX.03 Sonstiges (nur in englischer Sprache): Schutz gegen elektrische Gefahren MN.90.GX.03 Wahl von Vorsicherungen MN.50.OX.03 VLT am IT-Netz MN.90.CX.03 Filtern harmonischer Ströme Handhabung aggressiver Umgebungen MN.90.IX.03 CI-TI TM -Schütze - VLT®-Frequenzumrichter MN.90.KX.03	Bremswiderstände-Flachbau VLT 5001-5011 (Nur in englischer und deutscher Sprache)	MI.50.SX.YY
Weitere Literatur für VLT 5000: Projektierungshandbuch MG.51.BX.YY Integration eines VLT 5000 Profibus in ein Simatic S5-System MC.50.CX.03 Intregration eines VLT 5000 Profibus in ein Simatic S7-System MC.50.AX.03 Hub-/Senkanwendungen und die VLT Serie 5000 MN.50.RX.03 Sonstiges (nur in englischer Sprache): MN.90.GX.03 Schutz gegen elektrische Gefahren MN.90.GX.03 Wahl von Vorsicherungen MN.50.OX.03 VLT am IT-Netz MN.90.CX.03 Filtern harmonischer Ströme MN.90.FX.03 Handhabung aggressiver Umgebungen MN.90.IX.03 CI-TITM-Schütze - VLT®-Frequenzumrichter MN.90.KX.03	LC-Filter	MI.56.DX.YY
Weitere Literatur für VLT 5000: Projektierungshandbuch MG.51.BX.Y° Integration eines VLT 5000 Profibus in ein Simatic S5-System MC.50.CX.0° Intregration eines VLT 5000 Profibus in ein Simatic S7-System MC.50.AX.0° Hub-/Senkanwendungen und die VLT Serie 5000 MN.50.RX.0° Sonstiges (nur in englischer Sprache): MN.90.GX.0° Schutz gegen elektrische Gefahren MN.90.GX.0° Wahl von Vorsicherungen MN.50.OX.0° VLT am IT-Netz MN.90.CX.0° Filtern harmonischer Ströme MN.90.FX.0° Handhabung aggressiver Umgebungen MN.90.IX.0° CI-TI™-Schütze - VLT®-Frequenzumrichter MN.90.KX.0°	Encodersignalumrichter 5V TTL-24V DC VLT 5000 (Nur kombiniert Englisch/Deutsch)	MI.50.IX.51
Projektierungshandbuch Integration eines VLT 5000 Profibus in ein Simatic S5-System Intregration eines VLT 5000 Profibus in ein Simatic S7-System MC.50.AX.02 Hub-/Senkanwendungen und die VLT Serie 5000 MN.50.RX.02 Sonstiges (nur in englischer Sprache): Schutz gegen elektrische Gefahren MN.90.GX.02 Wahl von Vorsicherungen MN.50.OX.02 VLT am IT-Netz Filtern harmonischer Ströme MN.90.FX.02 Handhabung aggressiver Umgebungen MN.90.IX.02 CI-TI TM -Schütze - VLT®-Frequenzumrichter MN.90.KX.02	Kühlkörper für VLT Serie 5000	MN.50.XX.02
Integration eines VLT 5000 Profibus in ein Simatic S5-System Intregration eines VLT 5000 Profibus in ein Simatic S7-System MC.50.AX.03 Hub-/Senkanwendungen und die VLT Serie 5000 MN.50.RX.03 Sonstiges (nur in englischer Sprache): Schutz gegen elektrische Gefahren MN.90.GX.03 Wahl von Vorsicherungen MN.50.OX.03 VLT am IT-Netz Filtern harmonischer Ströme Handhabung aggressiver Umgebungen CI-TI TM -Schütze - VLT®-Frequenzumrichter MC.50.CX.03 MC.50.CX.03 MN.50.CX.03 MN.90.GX.03 MN.90.IX.03 MN.90.IX.03 MN.90.IX.03	Weitere Literatur für VLT 5000:	
Intregration eines VLT 5000 Profibus in ein Simatic S7-System Hub-/Senkanwendungen und die VLT Serie 5000 Sonstiges (nur in englischer Sprache): Schutz gegen elektrische Gefahren Wahl von Vorsicherungen VLT am IT-Netz Filtern harmonischer Ströme Handhabung aggressiver Umgebungen CI-TI TM -Schütze - VLT®-Frequenzumrichter MC.50.AX.02 MN.50.AX.02 MN.90.GX.02 MN.90.GX.02 MN.90.IX.02 MN.90.IX.02 MN.90.IX.03	Projektierungshandbuch	MG.51.BX.YY
Hub-/Senkanwendungen und die VLT Serie 5000 MN.50.RX.02 Sonstiges (nur in englischer Sprache): Schutz gegen elektrische Gefahren MN.90.GX.02 Wahl von Vorsicherungen MN.50.OX.02 VLT am IT-Netz MN.90.CX.02 Filtern harmonischer Ströme MN.90.FX.02 Handhabung aggressiver Umgebungen MN.90.IX.02 CI-TI TM -Schütze - VLT®-Frequenzumrichter MN.90.KX.02	Integration eines VLT 5000 Profibus in ein Simatic S5-System	MC.50.CX.02
Sonstiges (nur in englischer Sprache): Schutz gegen elektrische Gefahren MN.90.GX.03 Wahl von Vorsicherungen MN.50.OX.03 VLT am IT-Netz MN.90.CX.03 Filtern harmonischer Ströme MN.90.FX.03 Handhabung aggressiver Umgebungen MN.90.IX.03 CI-TI TM -Schütze - VLT®-Frequenzumrichter MN.90.KX.03	Intregration eines VLT 5000 Profibus in ein Simatic S7-System	MC.50.AX.02
Schutz gegen elektrische Gefahren MN.90.GX.03 Wahl von Vorsicherungen MN.50.OX.03 VLT am IT-Netz MN.90.CX.03 Filtern harmonischer Ströme MN.90.FX.03 Handhabung aggressiver Umgebungen MN.90.IX.03 CI-TI TM -Schütze - VLT®-Frequenzumrichter MN.90.KX.03	Hub-/Senkanwendungen und die VLT Serie 5000	MN.50.RX.02
Wahl von Vorsicherungen MN.50.OX.02 VLT am IT-Netz MN.90.CX.02 Filtern harmonischer Ströme MN.90.FX.02 Handhabung aggressiver Umgebungen MN.90.IX.02 CI-TI TM -Schütze - VLT®-Frequenzumrichter MN.90.KX.02	Sonstiges (nur in englischer Sprache):	
VLT am IT-Netz MN.90.CX.02 Filtern harmonischer Ströme MN.90.FX.02 Handhabung aggressiver Umgebungen MN.90.IX.02 CI-TI TM -Schütze - VLT®-Frequenzumrichter MN.90.KX.02	Schutz gegen elektrische Gefahren	MN.90.GX.02
Filtern harmonischer Ströme MN.90.FX.02 Handhabung aggressiver Umgebungen MN.90.IX.02 CI-TI TM -Schütze - VLT®-Frequenzumrichter MN.90.KX.02	Wahl von Vorsicherungen	MN.50.OX.02
Handhabung aggressiver Umgebungen MN.90.IX.02 CI-TI TM -Schütze - VLT [®] -Frequenzumrichter MN.90.KX.02	VLT am IT-Netz	MN.90.CX.02
CI-TI TM -Schütze - VLT [®] -Frequenzumrichter MN.90.KX.0	Filtern harmonischer Ströme	MN.90.FX.02
CI-TI TM -Schütze - VLT [®] -Frequenzumrichter MN.90.KX.0	Handhabung aggressiver Umgebungen	MN.90.IX.02
	CI-TI [™] -Schütze - VLT®-Frequenzumrichter	MN.90.KX.02
	VLT®-Frequenzumrichter und UniOP-Bedienkonsolen	MN.90.HX.02

X = Versionsnummer

YY = Sprachversion

■ Steuerverfahren

Ein Frequenzumrichter wandelt eine feste Netzwechselspannung in Gleichspannung um und produziert wiederum aus dieser Gleichspannung eine Wechselspannung mit variabler Amplitude und Frequenz. Spannung und Frequenz des Motors sind somit variabel, was eine stufenlose Drehzahlregelung von Standard-Drehstrommotoren ermöglicht.

1. Netzspannung

3 x 200-240 V AC, 50 / 60 Hz.

3 x 380-500 V AC, 50 / 60 Hz.

3 x 525-600 V AC, 50 / 60 Hz.

3 X 525-690 V AC, 50 / 60 Hz.

2. Gleichrichter

Eine dreiphasige Gleichrichterbrücke, die den Wechselstrom in Gleichstrom umwandelt.

3. Zwischenkreis

Gleichspannung = 1,35 x Netzspannung [V].

4. Zwischenkreisdrosseln

Diese glätten die Zwischenkreisspannung und begrenzen die Belastung des Netzes und der Bauteile (Netztrafo, Leitungen, Sicherungen und Schütze).

5. Zwischenkreiskondensatoren

Diese glätten die Zwischenkreisspannung.

6. Wechselrichter

Umwandlung von Gleichspannung in variable Wechselspannung mit variabler Frequenz.

7. Motorspannung

Variable Wechselspannung, 0 -100% der Versorgungsspannung.

Variable Frequenz: 0,5-132/0,5-1000 Hz.

8. Steuerkarte

Hier sitzt der Computer, der den Wechselrichter steuert. Er erzeugt das Impulsmuster, mit dem die Gleichspannung in eine variable Wechselspannung mit variabler Frequenz umgewandelt wird.

VVC plus Steuerungsprinzip

Der Frequenzwandler verfügt über ein Wechselrichtersteuersystem mit der Bezeichnung VVC^{plus}. Dabei handelt es sich um eine Weiterentwicklung der Voltage Vector Control (VVC), die u.a. aus der Danfoss VT Serie 3000 bekannt ist.

VVC^{plus} regelt einen Induktionsmotor durch Anlegen einer variablen Frequenz und einer dazu passenden Spannung. Ändert sich die Motorlast, so ändern sich dessen Magnetisierung und Drehzahl ebenfalls entsprechend. Daher wird der Motorstrom laufend gemessen und über ein Motormodell werden der jeweilige Spannungsbedarf und der Schlupf des Motors berechnet. Motorfrequenz und -spannung werden so angepaßt, daß der Arbeitspunkt des Motors auch unter sich ständig verändernden Verhältnissen stets optimal bleibt.

Die Entwicklung von VVC^{plus} beruht auf dem Wunsch nach Aufrechterhaltung einer robusten, sensorfreien Regelung, die gegenüber verschiedenen Motorwerten tolerant ist, ohne daß eine Leistungsreduzierung des Motors erforderlich ist.

In erster Linie wurden Strommessung und Motormodell verbessert. Der Strom wird in einen magnetisierenden und einen drehmomentgebenden Teil aufgeteilt und dient so einer wesentlich besseren und schnelleren Ermittlung der tatsächlichen Motorlast. Jetzt können schnelle Lastwechsel kompensiert werden. Volles Drehmoment sowie eine extrem genaue Drehzahlregelung ist jetzt sogar bei niedrigen Drehzahlen oder sogar bei Stillstand möglich.

Im Sondermotor-Modus können Dauermagnet-Synchronmotoren und/oder parallelgeschaltete Motoren eingesetzt werden.

Erreicht werden gute Regeleigenschaften für das Drehmoment, weiche Übergänge auf Stromgrenzbetrieb und ein robuster Kippschutz.

Nach einer automatischen Motoranpassung ist zusammen mit VVC ^{plus} eine sehr präzise Steuerung des Motors gegeben.

Die Vorteile des VVC^{plus} Regelsystems:

- Genaue Drehzahlregelung, jetzt auch bei niedriger Drehzahl
- Schnelles Ansprechen von Signalempfang bis zum vollen Drehmoment an der Motorwelle.
- Guter Ausgleich von Lastsprüngen
- Kontrollierter Übergang von Normalbetrieb auf Stromgrenzbetrieb (und umgekehrt)
- Sicherer Kippschutz im gesamten Drehzahlbereich, auch bei Feldabschwächung
- Weitgehende Toleranz bei schwankenden Motorwerten
- Eine Drehmomentsteuerung, die sowohl den momentgebenden als auch den magnetisierenden Bestandteil des Stroms umfaßt
- Volles Haltemoment (Betrieb mit Istwertrückführung)

Der Frequenzwandler wird serienmäßig mit einer Reihe von eingebauten Komponenten geliefert, die normalerweise extra bestellt werden müssen. Diese integrierten Standardkomponenten (Funkentstörfilter, DC-Spulen, Schirmbügel und serielle Kommunikationsschnittstelle) sparen Platz und vereinfachen die Installation, weil der Frequenzwandler von sich aus ohne Zusatzkomponenten die meisten Anforderungen erfüllt.

<u>Programmierbare Steuereingänge und Signalausgänge in vier Einstellungen</u>

Der Frequenzwandler verwendet eine Digitaltechnik, die eine Programmierung der verschiedenen Steuereingänge und Signalausgänge möglich macht, sowie die Auswahl von vier unterschiedlichen anwenderdefinierten Parametersätzen für alle Parameter.

Für den Benutzer ist es leicht, über das Bedienfeld des Frequenzwandlers oder die RS 485-Benutzerschnittstelle die gewünschten Funktionen einzuprogrammieren.

Schutz gegen Netzstörungen

Der Frequenzwandler ist gegen Netztransienten (Spannungsspitzen) geschützt, die zum Beispiel bei Zuschaltung einer Kompensationsanlage oder beim Durchbrennen von Sicherungen entstehen.

Selbst bei bis zu 10% Unterspannung in der Netzversorgung können Motornennspannung und volles Drehmoment aufrechterhaltern werden.

Geringe Störungen des Netzstroms

Da der Frequenzumrichter standardmäßig Zwischenkreisspulen enthält, gibt es nur eine geringfügige harmonische Netzstörung. Hierdurch ergibt sich ein guter Leistungsfaktor und geringerer Spitzenstrom, und die Belastung der Netzinstallation bleibt gering.

Erweiterter VLT-Schutz

Hochentwickelter VLT-Schutz durch Strommessung in allen drei Motorphasen ergibt sich ein vollständiger Schutz des Frequenzwandlers im Falle von Kurz- oder Erdschlüssen am Motoranschluß.

Dank der ständigen Überwachung der drei Motorphasen ist unbegrenztes Schalten am Motorausgang möglich, z.B. mit einem Schütz.

Eine effektive Überwachung der drei Netzversorgungsphasen sorgt dafür, daß das Gerät bei Auftreten eines Phasenausfalls ausgeschaltet wird. Auf diese Weise läßt sich eine Überlastung des Wechselrichters und der Kondensatoren im Zwischenkreis vermeiden, die ansonsten die Lebensdauer des Frequenzumrichters verringern würde.

Der Frequenzwandler ist serienmäßig mit einem eingebauten Temperaturschutz ausgestattet. Bei thermischer Überlastung sorgt diese Funktion dafür, daß der Wechselrichter ausgeschaltet wird.

Sichere galvanische Trennung

Beim Frequenzwandler werden alle Steuerklemmen sowie die Klemmen 1-5 (AUX Relais) von Kreisläufen versorgt bzw. sind mit solchen verbunden, die die Anforderungn an PELV im Verhältnis zum Netzpotential erfüllen.

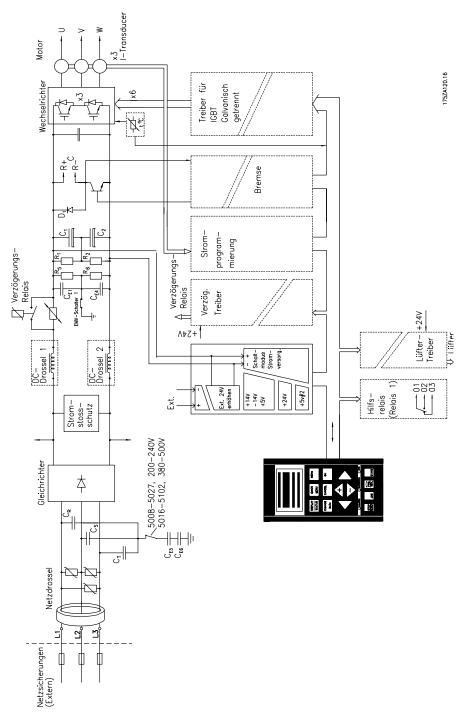
Erweiterter Motorschutz

Der Frequenzwandler besitzt einen integrierten, elektronischen, thermischen Motorschutz.

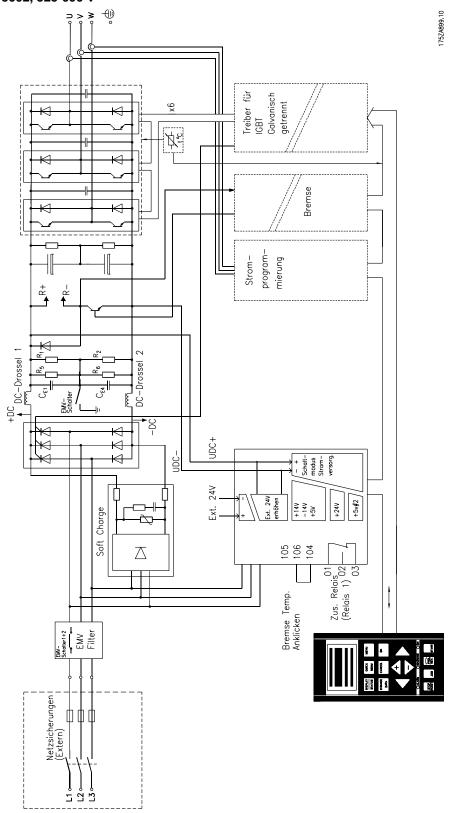
Der Frequenzwandler berechnet die Motortemperatur auf der Basis von Strom, Frequenz und Zeit.

Verglichen mit herkömmlichem Bimetallschutz berücksichtigt der elektronische Schutz bei niedrigen Frequenzen die geringere Kühlung aufgrund der niedrigeren Drehzahl des Lüfters (Motoren mit Eigenbelüftung).

Der thermische Motorschutz ist mit einem normalen Motorschutz vergleichbar.


Um den Motor maximal gegen Überhitzung zu schützen, wenn er z.B. abgedeckt oder zugestellt ist, oder wenn die Lüftung ausfallen sollte, kann ein Thermistor

eingebaut und an den Thermistoreingang des Frequenzumrichters angeschlossen werden (Klemme 53/54), siehe Parameter 128 in der Betriebsanleitung.



■ Prinzipdiagramm für VLT 5001–5027, 200-240 V, VLT 5001–5102 380-500V, VLT 5001–5062 525-600 V

■ Prinzipdiagramm für VLT 5122-5552, 380-500 V und VLT 5042-5602, 525-690 V

Hinweis: Der EMV-Schalter hat bei den 525-690 V-Frequenzumrichtern keine Funktion.

Auswahl des Frequenzumrichters

Die Wahl des richtigen Frequenzumrichters muss aufgrund des jeweiligen Motorstroms bei höchster Belastung der Anlage erfolgen. Der Ausgangsnennstrom I VLT,N muss gleich dem oder höher als der erforderliche Motorstrom sein.

Der Frequenzumrichter ist für vier Netzspannungsbereiche lieferbar: 200-240 V, 380-500 V, 525-600 V und 525-690 V.

■ Normale/hohe Überlastmoment-Betriebsart

Mit dieser Funktion kann der Frequenzumrichter auch bei einem Motor in Übergröße ein Drehmoment von konstant 100% erzeugen.

Die Wahl, ob eine normale oder eine hohe Überlastmomentkennlinie gewünscht wird, erfolgt in Parameter 101.

Hier wählt man auch eine hohe/normale konstante Drehmomentkennlinie (CT) oder eine hohe/normale quadratische Drehmomentkennlinie (VT).

Bei Wahl von hohem Übermomentverhalten können mit einem Motor mit Nennleistung 1 Min. lang bis zu 160 % Drehmoment bei konstantem sowie quadratischem Verhalten erzielt werden.

Bei Wahl von normalen Übermomentverhalten können mit einem Motor in Übergröße 1 Min. lang bis zu 110 % Drehmoment bei konstantem sowie quadratischem Verhalten erzielt werden. Diese Funktion wird besonders bei Pumpen und Lüftern genutzt, da bei derartigen Anwendungen 110 % Drehmoment ausreichend ist.

Der Vorteil der Wahl eines normalen Übermomentverhaltens bei Anschluss eines Motors in Übergröße besteht darin, dass der Frequenzumrichter konstant 100 % Drehmoment erzielen kann. Es ist keine Leistungsreduzierung erforderlich.

ACHTUNG!

Diese Funktion <u>kann nicht</u> für VLT 5001-5006, 200-240 Volt und VLT 5001-5011, 380-500 Volt gewählt werden.

■ Typencode-Bestellnummer

Der Frequenzumrichter der Serie VLT 5000 wird in vielen Ausführungsvarianten angeboten. Gemäß Ihrer Bestellung erhält der Frequenzumrichter eine Bestellnummer, die auch auf dem Typenschild des Gerätes erscheint. Sie könnte z. B. wie folgt aussehen:

VLT5008PT5B20EBR3DLF10A10C0

Das bedeutet, dass der Frequenzumrichter konfiguriert ist als:

- 5,5 kW-Gerät bei 160 % Drehmoment (Position 1-7 VLT 5008)
- Prozesssteuerkarte (Position 8 P)
- 380-500 V Drehstromversorgung (Position 9-10 - T5)
- Buchformat IP20-Schutzart (Position 11-13 -B20)

- Erweiterte Hardwareversion mit Bremse (Position 14-15 EB)
- Eingebauter EMV-Filter (Position 16-17 R3)
- Geliefert mit Display (Position 18-19 DL)
- Eingebaute Profibus-Option (Position 20-22
 F10)
- Eingebauter programmierbarer SyncPos-Regler (Position 23-25 - A10)
- Unbeschichtete Leiterplatten (Position 26-27 C0)

Varianten und Optionen möglich

Im Folgenden finden Sie eine Übersicht der möglichen Varianten, die zusammengestellt werden können. Beziehen Sie sich auf die Beschreibung der Bezeichnung unten.

VLT 5001-5052, 200-240 V-Geräte Typencodebezeichnung: T2

Leistungs	sgröße (kW)	Тур			Gehäuse			Hardw	areausfü	hrung	ı	EMV-Filter	r
Drehi	moment		C00	B20	C20	CN1	C54	ST	SB	EB	R0	R1	R3
110%	160%												
		9-10	11-13	11-13	11-13	11-13	11-13	14-15	14-15	14-15	16-17	16-17	16-17
(0.75	5001		Х	Х		Х	х	Х	Х			Х
	1.1	5002		Х	Х		Х	х	Х	Х			Х
	1.5	5003		Х	Х		Х	х	Х	Х			Х
	2.2	5004		Х	Х		Х	х	Х	Х			х
	3	5005		Х	Х		Х	х	Х	Х			Х
	3.7	5006		Х	Х		Х	Х	Х	Х		Х	
7.5	5.5	5008			Х		Х	Х	Х	Х	Х		Х
11	7.5	5011			Х		Х	Х	Х	Х	Х		Х
15	11	5016			Х		Х	Х	Х	Х	Х		Х
18.5	15	5022			Х		Х	Х	Х	Х	Х		Х
22	18.5	5027			Х		Х	х	Х	Х	х		х
30	22	5032	Х			Х	Х	х	Х	Х	Х	Х	
37	30	5042	Х			Х	Х	х	X	Х	Х	Х Х	
45	37	5052	Х			Х	Х	х	X	Х	х	Х Х	

C00	Kompaktformat IP00	DE	Erweitert mit Bremse, Trennschalter und Sicherungen
B20	Buchformat IP20	DX	Erweitert ohne Bremse, mit Trennschalter und Sicherungen
C20	Kompaktformat IP20	PS	Standard mit 24 V-Stromversorgung
CN1	Kompaktformat NEMA 1	PB	Standard mit 24 V-Stromversorgung, Bremse, Sicherung und Trennschalter
C54	Kompaktformat IP54	PD	Standard mit 24 V-Stromversorgung, Sicherung und Trennschalter
ST	Standard	PF	Standard mit 24 V-Stromversorgung und Sicherung
SB	Standard mit Bremse	R0	Ohne Filter
EB	Erweitert mit Bremse	R1	Filter Klasse A1
EX	Erweitert ohne Bremse	R3	Filter Klasse A1 und B

) 																			
Leistung.	Leistungsgroße (KW)	цур	Genau	Se				Hardwa	Hardwareaustuhrung									EMV-FIITE	er		
Drehmoment 110%	nent 160%		8 00 00	B20	C20	CN T	C54	ST	SB	8	Ä		X	PS	8 8	PD P	H.	2	Æ	23	P6
		9-10	11-13	11-13	11-13 11-13		11-13	14-15	14-15	14-15	14-15 1	14-15 1	14-15 1	14-15	14-15 1	14-15 14	14-15	16-17	16-17	16-17	16-17
	0.75	5001		×	×		×	×	×	×										×	
	1:	5002		×	×		×	×	×	×										×	
	1.5	5003		×	×		×	×	×	×										×	
	2.2	5004		×	×		×	×	×	×										×	
	က	5005		×	×		×	×	×	×										×	
	3.7	5006		×	×		×	×	×	×										×	
	5.5	5008		×	×		×	×	×	×										×	
	7.5	5011		×	×		×	×	×	×									×		
15	11	5016			×		×	×	×	×								×		×	
18.5	15	5022			×		×	×	×	×								×		×	
22	18.5	5027			×		×	×	×	×								×		×	
30	22	5032			×		×	×	×	×								×		×	
37	30	5042			×		×	×	×	×								×		×	
45	37	5052			×		×	×	×	×								×		×	
55	45	5062			×		×	×	×	×								×		×	
75	22	5072			×		×	×	×	×								×		×	
06	75	5102			×		×	×	×	×								×		×	
110	06	5122	×			×	×	×	×	×	×	×	×	×	×	×		×	×		×
132	110	5152	×			×	×	×	×	×	×	×	×	×	×	×		×	×		×
160	132	5202	×			×	×	×	×	×	×	×	×	×	×	×		×	×		×
200	160	5252	×			×	×	×	×	×	×	×	×	×	×	×		×	×		×
250	200	5302	×			×	×	×	×	×	×	×	×	×	×	×		×	×		×
315	250	5352	×			×	×	×	×	×	×	×	×	×	×	×		×	×		
355	315	5452	×			×	×	×	×	×	×	×	×	×	×	×		×	×		
400	355	5502	×			×	×	×	×	×	×	×	×	×	×	×		×	×		
450	400	5552	×			×	×	×	×	×	×	×	×	×	×	×		×	×		
000	Kompaktformat IP00	<u>o</u>						DE	Erweiter	t mit Brer	Erweitert mit Bremse. Trennschalter und Sicherungen	nschalte	und Sic	nerunger							
B20	Buchformat IP20							X	Erweiter	t ohne Br	Erweitert ohne Bremse, mit Trennschalter und Sicherungen	t Trennsc	halter un	d Sicher	naeur						
C20	Kompaktformat IP20	0,						PS	Standar	d mit 24 \	Standard mit 24 V-Stromversorgung	ersorgung	_)						
CN1	Kompaktformat NEMA	MA 1						PB	Standar	d mit 24 \	Standard mit 24 V-Stromversorgung, Bremse, Sicherung und Trennschalter	ersorgung.), Bremse	, Sicher	pun gui	Frennscha	alter				
C54	Kompaktformat IP54	4						Ы	Standar	d mit 24 \	Standard mit 24 V-Stromversorgung, Sicherung und Trennschalter	ersorgung	y, Sichert	_ pun gui	rennsch	alter					
ST	Standard							F	Standar	d mit 24 \	Standard mit 24 V-Stromversorgung und Sicherung	ersorgung	y und Sic	nerung							
SB	Standard mit Bremse	se						R0	Ohne Filter	lter											
EB	Erweitert mit Brems	36						듄	Filter KI	Filter Klasse A1											
EX	Erweitert ohne Bremse	mse						В3	Filter KI	Filter Klasse A1 und B	nd B										
								R6	Filter fü	r Schiffsin	Filter für Schiffsinstallationen	en									

VLT 5001-5062, 525-600 V-Geräte Typencodebezeichnung: T6

Leistungsg	größe (kW)	Тур		Gehäuse		Hardwarea	usführung	EMV-Filter
Drehm	oment		C00	C20	CN1	ST	EB	R0
110%	160%							
		9-10	11-13	11-13	11-13	14-15	14-15	16-17
1.1	0.75	5001		Х		х	х	Х
1.5	1.1	5002		Х		х	х	Х
2.2	1.5	5003		Х		х	х	х
3.0	2.2	5004		Х		х	х	х
4.0	3.0	5005		Х		х	х	х
5.5	4.0	5006		Х		Х	Х	Х
7.5	5.5	5008		Х		х	Х	Х
7.5	7.5	5011		Х		х	Х	Х
15	11	5016		Х		х	Х	Х
18.5	15	5022		Х		х	Х	Х
22	18.5	5027		Х		х	Х	х
30	22	5032		х		х	х	х
37	30	5042		х		х	х	х
45	37	5052		Х		х	х	х
55	45	5062		Х		х	х	х

VLT 5042-5602, 525-690 V-Geräte

Typencodebezeichnung: T7

Leistu	ıngs-	Тур	G	iehäus	se				Hard	warea	usfüh	rung				EMV-	Filter
größe	(kW)																
Dreh	mo-		C00	CN1	C54	ST	SB	EB	EX	DE	DX	PS	РΒ	PD	PF	R0	R1 ¹
me	nt																
110	160																
%	%																
		9-10	11-1	11-1	11-1	14-1	14-1	14-1	14-1	14-1	14-1	14-1	14-1	14-1	14-1	16-1	16-1
			3	3	3	5	5	5	5	5	5	5	5	5	5	7	7
45	37	5042	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ
55	45	5052	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ
75	55	5062	Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ	Х	Χ
90	75	5072	Χ	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Χ
110	90	5102	Χ	Χ	Χ	Х	Х	Х	Χ	Χ	Х	Х	Χ	Χ	Х	Х	Χ
132	110	5122	Χ	Χ	Χ	Х	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ
160	132	5152	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ
200	160	5202	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ
250	200	5252	Χ	X	Χ	Х	X	Х	Χ	Χ	Х	Х	Χ	Х	Χ	Х	Χ
315	250	5302	Χ	Χ	Χ	Χ	X	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ
400	315	5352	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
500	400	5402	Χ	Χ	Χ	Х	X	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	
560	500	5502	Χ	Х	Χ	Х	X	Х	Х	Χ	Х	Х	Х	Х	Χ	Х	
630	560		Х	X	X	Х	X	X	Х	X	X	X	Х	X	X	Х	

1. R1 ist nicht bei Ausführungen DX, PF und PD verfügbar.

Spannung (Position 9-10)

Die Frequenzumrichter sind in drei Nennspannungen erhältlich. Beachten Sie bitte, dass einige Frequenzumrichter mit 500 V-Versorgung einer Motorleistungsgröße von mehr als 400 V entsprechen. Beziehen Sie sich auf die jeweiligen technischen Daten.

 T2 - 200-240 V Dreiphasen-Versorgungsspannung

- T5 380-500 V Dreiphasen-Versorgungsspannung
- T6 525-600 V Dreiphasen-Versorgungsspannung
- T7 525-690 V Dreiphasen-Versorgungsspannung

Gehäusevarianten (Position 11-13)

Buchformatgeräte sind zur Verwendung in Schaltschränken verfügbar. Dank der schmalen Ausführung können viele Geräte in einem Schrank untergebracht

werden. Kompaktgeräte sind zur Befestigung an Wänden oder Maschinen ausgelegt. Geräte höherer Leistung sind auch als IP00-Geräte zur Installation in Schaltschränken verfügbar.

- C00 IP00-Kompaktgehäuse
- B20 IP20-Buchformatgehäuse
- C20 IP20-Kompaktgehäuse
- CN1 NEMA1-Kompaktgehäuse, erfüllt auch IP20/21-Spezifikationen
- C54 IP54-Kompaktgehäuse, erfüllt auch NEMA12-Anforderungen

Hardwareausführungen (Position 14-15)

Die Hardwareausführungen weichen je nach Leistungsgröße ab.

- ST Standardhardware
- SB Standardhardware und zusätzlicher Bremschopper
- EB Erweiterte Hardware (externe 24 V-Versorgung zum Backup der Steuerkarte und Verbindungen zur Zwischenkreiskopplung) und ein zusätzlicher Bremschopper
- EX Erweiterte Hardware (externe 24 V-Versorgung zum Backup der Steuerkarte und Verbindungen zur Zwischenkreiskopplung)
- DE Erweiterte Hardware (externe 24 V-Versorgung zum Backup der Steuerkarte und Verbindungen zur Zwischenkreiskopplung)
 Bremschopper, Trennschalter und Sicherungen
- DX Erweiterte Hardware (externe 24 V-Versorgung zum Backup der Steuerkarte und Verbindungen zur Zwischenkreiskopplung),
 Trennschalter und Sicherungen
- PS Standardhardware mit externer 24 V-Versorgung zum Backup der Steuerkarte
- PB Standardhardware mit externer 24 V-Versorgung zum Backup der Steuerkarte, Bremschopper, Sicherung und Trennschalteroption
- PD Standardhardware mit externer 24 V-Versorgung zum Backup der Steuerkarte, Netzsicherung und Trennschalteroption
- PF Standardhardware mit externer 24 V-Versorgung zum Backup der Steuerkarte und eingebauten Hauptsicherungen

EMV-Filterausführungen (Position 16-17)

Verschiedene EMV-Filterausführungen bieten die Möglichkeit zur Einhaltung von Klasse A1 und Klasse B gemäß EN 55011.

- R0 Keine Filterleistung angegeben
- R1 Konformität mit Filterklasse A1
- R3 Konformität mit Klasse B und A1
- R6 Konformität mit Schiffszulassungen (VLT 5122-5302, 380-500 V)

Konformität hängt von der Kabellänge ab. Beachten Sie bitte, dass einige Leistungsgröße stets ab Werk eingebaute Filter haben.

Display (Position 18-19)

Die Bedieneinheit (Display und Tastatur)

- D0 Kein Display im Gerät (nicht für IP54-Gehäuse sowie IP21 VLT 5352-5552, 380-480 V und VLT 5402 - 5602, 525-690 V möglich)
- DL Display im Lieferumfang des Geräts

Feldbusoption (Position 20-22)

Eine große Auswahl an High Performance-Feldbusoptionen ist verfügbar.

- F0 Keine Feldbusoption eingebaut
- F10 Profibus DP V0/V1 12 MBaud
- F13 Profibus DP V0/FMS 12 MBaud
- F20 Modbus Plus
- F30 DeviceNet
- F40 LonWorks Freie Topologie
- F41 LonWorks 78 kBit/s
- F42 LonWorks 1,25 MBit/s
- F50 Interbus

Anwendungsoptionen (Position 23-25)

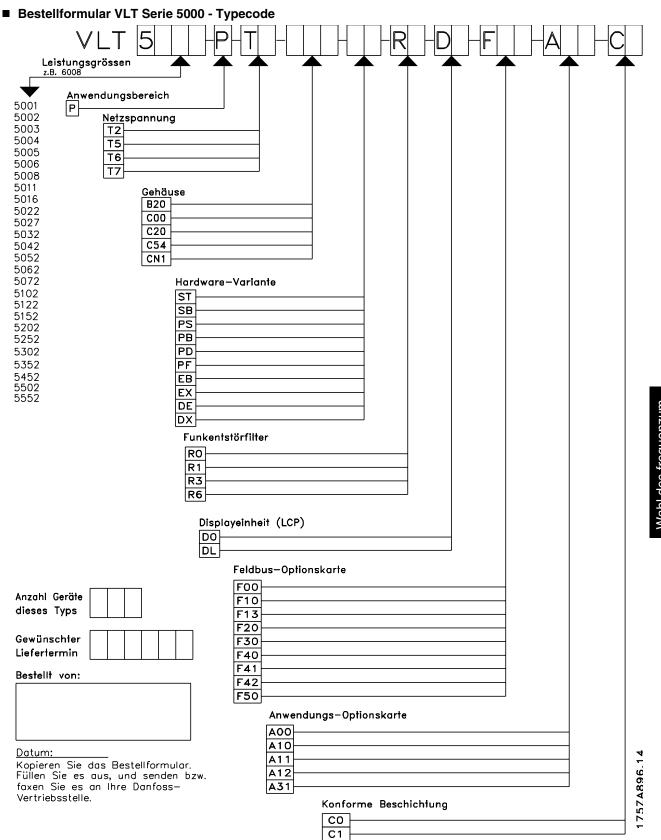
Mehrere Anwendungsoptionen sind verfügbar, um die Funktionalität des Frequenzumrichters zu erweitern.

- A00 Keine Option eingebaut
- A10 programmierbarer SyncPos-Regler (nicht für Modbus Plus und LonWorks möglich)
- A11 Synchronregler (nicht f

 ür Modbus Plus und LonWorks m

 öglich)
- A12 Positionierregler (nicht f

 ür Modbus Plus und LonWorks m


 öglich)
- A31 Zusätzliche Relais 4 Relais für 250
 VAC (nicht für Feldbusoptionen möglich)

Beschichtung (Position 26-27)

Um den Frequenzumrichter in aggressiven Umgebungen besser zu schützen, können beschichtete Leiterplatten bestellt werden.

- C0 Unbeschichtete Platinen (VLT 5352-5552, 380-500 V und VLT 5042-5602, 525-690 V nur mit beschichteten Platinen verfügbar)
- C1 Beschichtete Platinen

■ Wahl von Modulen und Zubehör

Danfoss bietet für den VLT Serie 5000 ein großes Programm an Modulen und Zubehör an.

■ LC-Filtermodul

Das LC-Filter reduziert die Anstiegzeit der Spannung (dU/dt) und den Rippelstrom (ΔI) zum Motor, so daß Strom und Spannung nahezu sinusförmig werden. Das akustische Motorgeräusch fällt somit auf ein Minimum.

Siehe auch Anweisung MI.56.DX.51

■ LCP-Bedieneinheit

Bedieneinheit mit Display und Tastatur zur Programmierung von VLT-Frequenzumrichtern. Als Option für IP-00- und IP-20-Geräte lieferbar.

Schutzart: IP 65.

■ Ferneinbausatz für LCP

Die Option mit einer Fernbedienungsbox ermöglicht ein Verlagern des Displays vom Frequenzwandler, z.B. in die Schaltschranktür.

Technische Daten

Schutzart: IP 65 Front

Max. Kabellänge zwischen VLT und Ein-

heit: 3 m Kommunikation std: RS 422

Siehe auch Anweisung MI.56.AX.51 (IP 20) und MI. 56.GX.52 (IP 54).

■ IP 4x Oberabdeckung

Die IP 4x Oberabdeckung ist ein optionaler Gehäuseteil, der für IP-20-Kompaktgeräte lieferbar ist.

Durch Einsatz der IP 4x Oberabdeckung wird ein IP-20-Gerät so aufgerüstet, daß es die Schutzart IP 4x von oben erfüllt. Dies bedeutet in der Praxis, daß das Gerät an seinen oberen waagerechten Flächen IP 40 erfüllt.

Die Oberabdeckung ist für folgende Kompaktgeräte lieferbar:

VLT Typ 5001-5006 200-240 V

VLT Typ 5001-5011 380-500 V

VLT Typ 5001-5011 525-600 V

■ Klemmenabdeckung

Mit Hilfe einer Klemmenabdeckung ist die Montage eines IP-20-Gerätes des Typs 5008-5052 außerhalb des Schaltschrankes möglich.

Die Klemmenabdeckung ist für folgende Kompaktgeräte lieferbar:

VLT Typ 5008-5027, 200-240 V

VLT Typ 5016-5102, 380-500 V

VLT Typ 5016-5062, 525-600 V

■ Schütze

Danfoss stellt außerdem ein komplettes Produktprogramm an Schützen her.

■ Bremswiderstände

Bremswiderstände werden in Anwendungen verwendet, für die eine hohe Dynamik erforderlich ist oder wenn eine hohe Trägheitsmasse gestoppt werden muss. Der Bremswiderstand wird zum Vernichten der Energie verwendet, siehe auch Anleitungen MI. 50.SX.YY und MI.90.FX.YY.

Oberwellenfilter

Oberwellen beeinflussen die Stromaufnahme nicht unmittelbar, haben aber folgende Auswirkungen:

Höherer von den Geräten zu bewältigender Gesamtstrom

- Erhöhte Last für den Umrichter (in einigen Fällen ist ein größerer Umrichter erforderlich, besonders bei Nachrüstungen)
- Erhöhung der Temperaturverluste im Umrichter und in den Geräten
- In einigen Fällen sind größere Kabel, Schalter und Sicherungen erforderlich.

Höhere Spannungsverzerrung durch stärkeren Strom

 Erhöhte Gefahr der Störung von elektronischen Geräten, die am selben Netz angeschlossen sind

Ein hoher Prozentsatz der Gleichrichterlast von z.B. Frequenzumrichtern führt zur Zunahme der Oberwellen. Die Reduzierung derselben ist erforderlich, um die oben beschriebenen Konsequenzen zu vermeiden. Daher verfügt der Frequenzumrichter standardmäßig über integrierte DC-Spulen, die den Gesamtstrom um ca. 40% auf 40-45%ThiD reduzieren (im Vergleich zu Anlagen ohne Vorrichtungen zur Oberwellenunterdrückung).

In einigen Fällen ist eine weitergehende Unterdrückung erforderlich (z.B. bei Nachrüstung von Frequenzumrichtern). Zu diesem Zweck bietet Danfoss die beiden Oberwellenfilter AHF05 und AHF10 an, mit denen Oberwellen auf ca. 5% bzw. 10% gedrückt werden können. Entnehmen Sie weitere Einzelheiten bitte der Anleitung MG.80.BX.YY.

PC-Softwaretools

PC-Software - MCT 10

Alle Frequenzumrichter sind mit einer seriellen Schnittstelle ausgerüstet. Wir bieten ein PC-Tool für den Datenaustausch zwischen PC und Frequenzumrichter an, die VLT Motion Control Tool Setup-Software MCT.

MCT 10 Konfigurationssoftware

MCT 10 wurde als anwendungsfreundliches interaktives Tool zum Einrichten von Parametern in unseren Frequenzumrichtern entwickelt.

Die MCT 10 Konfigurationssoftware eignet sich für folgende Anwendungen:

- Offline-Planung eines Datenaustauschnetzwerks. MCT 10 enthält eine vollständige Frequenzumrichter-Datenbank
- Online-Inbetriebnahme von Frequenzumrichtern
- Speichern der Einstellungen aller Frequenzumrichter
- Austauschen eines Frequenzumrichters in einem Netzwerk
- Erweiterung bestehender Netzwerke
- Künftig entwickelte Frequenzumrichter werden unterstützt.

MCT 10 Konfigurationssoftwaresupport Profibus DP-V1 über eine Verbindung der Masterklasse 2. Gestattet das Lesen und Schreiben von Parametern in einem Frequenzumrichter online über das Profibus-Netzwerk. Damit entfällt die Notwendigkeit eines gesonderten Datennetzwerks.

Die Module der MCT 10 Konfigurationssoftware

Folgende Module sind im Softwarepaket enthalten:

MCT 10 Konfigurationssoftware

Parameter einstellen

Kopieren zu/von Frequenzumrichtern Dokumentation und Ausdruck von Parametereinstellungen einschl. Diagramme

SyncPos

SyncPos-Programme erstellen

Bestellnummer:

Bestellen Sie Ihre CD mit der MCT 10-Konfigurationssoftware unter der Bestellnummer 130B1000.

MCT 31

Das MCT 31 PC-Tool zur Oberwellenberechnung ermöglicht leichtes Einschätzen der Oberwellenverzerrung in einer bestimmten Anwendung. Berechnet werden können sowohl die Oberwellenverzerrung von Danfoss-Frequenzumrichtern als auch von Frequenzumrichtern von Fremdherstellern mit anderen zusätzlichen OBerwellenreduzierungsmessungen, wie z.B. Danfoss AHF-Filter und 12-18-Pulsgleichrichter.

Bestellnummer:

Bestellen Sie Ihre CD mit dem MCT 10 PC-Tool unter der Bestellnummer 130B1031.

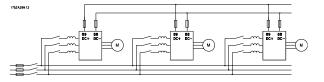
■ Modbus RTU

Das MODBUS RTU (Remote Terminal Unit)-Protokoll ist eine von Modicon in 1979 entwickelte Messagingstruktur, die benutzt wird, um die Master-Slave-/Client-Servier-Kommunikation zwischen intelligenten Geräten herzustellen.

MODBUS wird zum Überwachen und Programmieren von Geräten, zur Kommunikation intelligenter Geräte mit Sensoren und Instrumenten und zur Überwachung von Feldgeräten über PCs und HMIs benutzt.

MODBUS wird häufig in Gas- und Ölanwendungen eingesetzt, aber auch vorteilhaft in Gebäude-, Infrastruktur-, Transport- und Energieanwendungen.

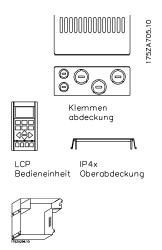
■ Leitungsdrosseln für Load Sharing-Anwendungen

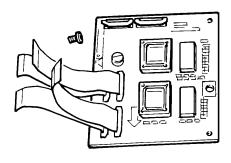

Leitungsdrosseln werden beim Zusammenschluß von Frequenzwandlern zu einer Load Sharing-Anwendung verwendet.

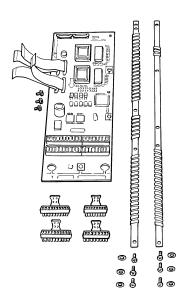
200 -240 V-Geräte

VLT	Nenn	Eingang	Spannung	Induktivität	Bestell-
Тур	leistung bei CT	Strom	abfall		nummer
	[kW]	[A]	[%]	[mH]	
5001	0.75	3.4	1.7	1.934	175U0021
5002	1.10	4.8	1.7	1.387	175U0024
5003	1.50	7.1	1.7	1.050	175U0025
5004	2.20	9.5	1.7	0.808	175U0026
5005	3.0	11.5	1.7	0.603	175U0028
5006	4.0	14.5	1.7	0.490	175U0029
5008	5.5	32.0	1.7	0.230	175U0030
5011	7.5	46.0	1.7	0.167	175U0032
5016	11.0	61.0	1.7	0.123	175U0034
5022	15.0	73.0	1.7	0.102	175U0036
5027	18.5	88.0	1.7	0.083	175U0047

380 -500 V-Geräte


	VLT	Nenn	Eingang	Spannung	Induktivität	Bestell-
	Тур	leistung bei CT	Strom	abfall		nummer
		[kW]	[A]	[%]	[mH]	
5001		0.75	2.3	1	3.196	175U0015
5002		1.1	2.6	1	2.827	175U0017
5003		1.5	3.8	1	1.934	175U0021
5004		2.2	5.3	1	1.387	175U0024
5005		3	7.0	1	1.050	175U0025
5006		4	9.1	1	0.808	175U0026
5008		5.5	12.2	1	0.603	175U0028
5011		7.5	15.0	1	0.490	175U0029
5016		11	32.0	1	0.230	175U0030
5022		15	37.5	1	0.196	175U0031
5027		18.5	44.0	1	0.167	175U0032
5032		22	60.0	1	0.123	175U0034
5042		30	72.0	1	0.102	175U0036
5052		37	89.0	1	0.083	175U0047
5062		45	104.0	1	0.070	175U1009
5072		55	144.6	1	0.051	175U0070
5102		75	174.1	1	0.042	175U0071


Siehe Anleitung MI.50.NX.YY für weitere Informationen.


■ Zubehör für die VLT Serie 5000

IP 20 Bodenabdeckung

Speicheroption

Anwendungsoption

Тур	Beschreibung	Bestellnr.
IP 4x Abdeckung/NEMA 1	Option, VLT 5001-5006, 200-240 V	175Z0928
Klemmenabdeckung ¹⁾		
IP 4x Abdeckung/NEMA 1	Option, VLT 5001-5011, 380-500 V und 525-600 V	175Z0928
Klemmenabdeckung ¹⁾		
NEMA 12 Verbindungsplatte ²⁾	Option, VLT 5001-5006, 200-240 V	175H4195
NEMA 12 Verbindungsplatte ²⁾	Option, VLT 5001-5011, 380-500 V	175H4195
IP20-Klemmenabdeckung	Option, VLT 5008-5016, 200-240 V	175Z4622
IP20-Klemmenabdeckung	Option, VLT 5022-5027, 200-240 V	175Z4623
IP20-Klemmenabdeckung	Option, VLT 5016-5032, 380-500 V und 525-600 V	175Z4622
IP20-Klemmenabdeckung	Option, VLT 5042-5062, 380-500 V und 525-600 V	175Z4623
IP20-Klemmenabdeckung	Option, VLT 5072-5102, 380-500 V	175Z4280
IP20-Bodenabdeckung	VLT 5032-5052, 200 - 240 V	176F1800
Klemmen-Adapterkit	VLT 5032-5052, 200-240 V IP00/NEMA 1 (IP20), ST	176F1805
Klemmen-Adapterkit	VLT 5032-5052, 200-240 V IP00/NEMA 1 (IP20), SB	176F1806
Klemmen-Adapterkit	VLT 5032-5052, 200-240 V IP00/NEMA 1 (IP20), EB	176F1807
Klemmen-Adapterkit	VLT 5032-5052, 200-240 V IP54, ST	176F1808
Klemmen-Adapterkit	VLT 5032-5052, 200-240 V IP54, SB	176F1809
Drehgeberwandler / 5 V TTL-l	_eitungstreiber / 24 V DC	175Z1929

Тур	Beschreibung	Bestell-Nr.
Rittal-TS8-Gehäuse für IP00 3)	Einbausatz für 1800 mm hohes Gehäuse, VLT5122-5152,	176F1824
	380-500 V, VLT 5042-5152, 525-690 V	
Rittal-TS8-Gehäuse für IP00 3)	Einbausatz für 2000 mm hohes Gehäuse, VLT5122-5152,	176F1826
	380-500 V, VLT 5042-5152, 525-690 V	
Rittal-TS8-Gehäuse für IP00 3)	Einbausatz für 1800 mm hohes Gehäuse, VLT5202-5302,	176F1823
	380-500 V, VLT 5202-5352, 525-690 V	
Rittal-TS8-Gehäuse für IP00 3)	Einbausatz für 2000 mm hohes Gehäuse, VLT5202-5302,	176F1825
	380-500 V, VLT 5202-5352, 525-690 V	
Rittal-TS8-Gehäuse für IP00 3)	Einbausatz für 2000 mm hohes Gehäuse, VLT 5352-5552,	176F1850
	380-500 V, VLT 5402-5602, 525-690 V	
Bodenhalterung für IP21- und	Option, VLT 5122-5302, 380-500 V, VLT 5042-5352,	176F1827
IP54-Gehäuse ³⁾	525-690 V	
Netzabschirmungssatz	Schutzartsatz: : VLT 5122-5302, 380-500 V	176F0799
-	VLT 5042-5352, 525-690 V	
	Schutzartsatz: : VLT 5352-5552, 380-500 V, VLT	176F1851
	5402-5602, 525-690 V	

¹⁾ Die IP 4x/NEMA-Abdeckung ist nur für IP20-Geräte im Kompaktformat und für horizontale Flächen gemäß IP 4x bestimmt. Der Bausatz enthält auch eine Verbindungsplatte (UL).

■ Bestellnummern, Steuerkartenoptionen, etc.: LCP:

Тур	Beschreibung	Bestellnr.	
IP 65 LCP-Option	Separates LCP, nur für IP-20-Geräte	175Z0401	
LCP Einbausatz/IP00/IP20/	Einbausatz für LCP, für IP 00/20 Einheiter	175Z0850	einschl. 3 m Kabel
NEMA 1			
LCP Einbausatz IP 54	Einbausatz für LCP, für IP 54 Einheiten	175Z7802	einschl. 3 m Kabel
Kabel für LCP	Separates Kabel	175Z0929	3 m Kabel

LCP: Bedieneinheit mit Display und Tastatur.

Lieferung ohne LCP.

²⁾ NEMA 12 Verbindungsplatte (UL) ist nur für IP54-Kompakteinheiten geeignet.

³⁾ Weitere Informationen: Siehe High Power-Installationsanleitung, MI.90.JX.YY.

- Die obere Abdeckung IP 4xNEMA 1 ist nur für Compact IP 20-Einheiten bestimmt und ist nur für horizontale Flächen geeignet, die IP
- 4x entsprechen. Der Bausatz enthält auch eine Schalplatte (UL).
- 2. NEMA 12 Schalplatte (UL) ist nur für IP 54 Kompakteinheiten geeignet.

Feldbus-Optionen und Zubehör:

Profibus:

		Unbeschichtet	Beschichtet
Тур	Beschreibung	Bestellnr.	Bestellnr.
Profibus Option DP V0/V1	einschl. Speicheroption	175Z0404	175Z2625
Profibus Option DP V0/V1	ohne Speicheroption	175Z0402	
Profibus Option DP V0/FMS	einschl. Speicheroption	175Z3722	175Z3723
Тур	Beschreibung	E	Bestellnr.
Profibus Sub-D9-Stecker	VLT 5001-5027, 200-240 V	1	75Z3568
für IP 20 / IP 00	VLT 5001-5102, 380-500 V		
	VLT 5001-5062, 525-600 V		
	VLT 5032-5052, 200-240 V	1	76F1822
LonWorks:			
LonWorks-Option, freie Topologie	einschl. Speicheroption	176F1500	176F1503
LonWorks-Option, freie Topologie	ohne Speicheroption	176F1512	
LonWorks-Option, 78 KBPS	einschl. Speicheroption	176F1501	176F1504
LonWorks-Option, 78 KBPS	ohne Speicheroption	176F1513	
LonWorks-Option, 1,25 MBPS	Einschl. Speicheroption	176F1502	176F1505
LonWorks-Option, 1,25 MBPS	ohne Speicheroption	176F1514	
DeviceNet:			
DeviceNet-Option	einschl. Speicheroption	176F1580	176F1581
DeviceNet-Option	ohne Speicheroption	176F1584	
Modbus:			
Modbus Plus für Kompakteinheiten	einschl. Speicheroption	176F1551	176F1553
Modbus Plus für Kompakteinheiten	ohne Speicheroption	176F1559	
Modbus Plus für Buchformat-Einheiten	einschl. Speicheroption	176F1550	176F1552
Modbus Plus für Buchformat-Einheiten	ohne Speicheroption	176F1558	
Modbus RTU	Nicht werksseitig montiert	175Z3362	
Interbus:			
Interbus	einschl. Speicheroption	175Z3122	175Z3191
Interbus	ohne Speicheroption	175Z2900	

Anwendungsoptionen:

Programmierbarer SyncPos-Regler	Anwendungsoptionen	175Z0833	175Z3029		
Synchronisierungs-Regler	Anwendungsoptionen	175Z3053	175Z3056		
Positionierungs-Regler	Anwendungsoptionen	175Z3055	175Z3057		
Relaiskarten-Option	Anwendungsoptionen	175Z2500	175Z2901		
Wickeloption	Nicht werksseitig montiert, Software- 175Z3245				
	version 3.40				
Ringspinnoption	Nicht werksseitig montiert, Software- 175Z3463				
	version 3.401				
Wobbeloption	Nicht werksseitig montiert, So	ftware- 175Z3467			
	version 3.401				
Ringspinnoption	version 3.40 Nicht werksseitig montiert, So version 3.401 Nicht werksseitig montiert, So	ftware- 175Z3463			

Optionen können als werksseitig eingebaute Optionen bestellt werden, siehe Bestellinformationen. Informationen über die Feldbus- und Anwendungsoptions-Kompatibilität mit älteren Softwareversionen erhalten Sie bei Ihrem Danfoss-Händler.

Bei Einsatz der Feldbusoptionen ohne Anwendungsoption muss eine Version mit Speicheroption bestellt werden.

■ LC-Filter für den VLT Serie 5000

Wenn ein Motor durch einen Frequenzumrichter gesteuert wird, treten hörbare Resonanzgeräusche vom Motor auf, die durch die Motorkonstruktion bedingt sind. Sie entstehen immer dann, wenn einer der Wechselrichterschalter im Frequenzumrichter aktiviert wird. Die Frequenz der Resonanzgeräusche entspricht daher der Taktfrequenz des Frequenzumrichters.

Für die VLT Serie 5000 kann Danfoss ein LC-Filter liefern, das die akustischen Motorgeräusche dämpft.

Das Filter reduziert die Anstiegzeit der Spannung, die Spitzenspannung UPEAK und den auf den Motor geleiteten Rippelstrom ΔI so daß Strom und Spannung nahezu sinusförmig werden. Das akustische Motorgeräusch wird so auf ein Minimum gesenkt.

Aufgrund des Wellenstroms in den Filterspulen erzeugen diese auch Geräusche. Dieses Problem läßt sich lösen, indem das Filter in einen Schaltschrank o.ä. eingebaut wird.

■ Bestellnummern, LC-Filter

Netzspannung 3 x 200-240 V

Hohes Überlastn	noment					
LC-Filter für	LC-Filter-	Nennstrom	Max. quadr./varia-	Max. Ausgangs-	Verlust-	Bestell-
den VLT-Typ	gehäuse	bei 200 V	bles Drehmoment	frequenz	leistung	nummer
5001-5003	Buchformat IP20	7,8 A	160%	120 Hz		175Z0825
5004-5006	Buchformat IP20	15,2 A	160%	120 Hz		175Z0826
5001-5006	Kompaktformat IP20	15,2 A	160%	120 Hz		175Z0832
5008	Kompaktformat IP00	25 A	160%	60 Hz	85 W	175Z4600
5011	Kompaktformat IP00	32 A	160%	60 Hz	90 W	175Z4601
5016	Kompaktformat IP00	46 A	160%	60 Hz	110 W	175Z4602
5022	Kompaktformat IP00	61 A	160%	60 Hz	170 W	175Z4603
5027	Kompaktformat IP00	73 A	160%	60 Hz	250 W	175Z4604
5032	Kompaktformat IP20	88 A	150 %	60 Hz		175Z4700
5045	Kompaktformat IP20	115 A	150 %	60 Hz	<u>. </u>	175Z4702
5052	Kompaktformat IP20	143 A	150 %	60 Hz		175Z4702
Normales Überla	astmoment					
5008	Kompaktformat IP00	32 A	110%	60 Hz	90 W	175Z4601
5011	Kompaktformat IP00	46 A	110%	60 Hz	110 W	175Z4602
5016	Kompaktformat IP00	61 A	110%	60 Hz	170 W	175Z4603
5022	Kompaktformat IP00	73 A	110%	60 Hz	250 W	175Z4604
5027	Kompaktformat IP00	88 A	110%	60 Hz	320 W	175Z4605
5032	Kompaktformat IP20	115 A	110 %	60 Hz		175Z4702
5042	Kompaktformat IP20	143 A	110 %	60 Hz		175Z4702
5052	Kompaktformat IP20	170 A	110 %	60 Hz		175Z4703

ACHTUNG!

Bei Verwendung von LC-Filtern muss die Taktfrequenz 4,5 kHz betragen (siehe Parameter 411).

Netzspannung 3 x 380-500 V

105" (")	10 511	N1	Max. guadr./va-			Б
LC-Filter für den VLT-Typ	LC-Filter- gehäuse	Nennstrom bei 400/500 V	riables Drehmo-	Max. Ausgangs- frequenz	Verlust- leistung	Bestell- nummer
		704/004	ment	· ·		
5001-5005	Buchformat IP20	7,2 A / 6,3 A	160%	120 Hz		175Z0825
5006-5011	Buchformat IP20	16 A / 14,5 A	160%	120 Hz		175Z0826
5001-5011	Kompaktformat IP20	16 A / 14,5 A	160%	120 Hz		175Z0832
5016	Kompaktformat IP00	24 A / 21,7 A	160%	60 Hz	170 W	175Z4606
5022	Kompaktformat IP00	32 A / 27,9 A	160%	60 Hz	180 W	175Z4607
5027	Kompaktformat IP00	37,5 A / 32 A	160%	60 Hz	190 W	175Z4608
5032	Kompaktformat IP00	44 A / 41,4 A	160%	60 Hz	210 W	175Z4609
5042	Kompaktformat IP00	61 A / 54 A	160%	60 Hz	290 W	175Z4610
5052	Kompaktformat IP00	73 A / 65 A	160%	60 Hz	410 W	175Z4611
5062	Kompaktformat IP20	90 A / 80 A	160 %	60 Hz	400 W	175Z4700
5072	Kompaktformat IP20	106 A / 106 A	160 %	60 Hz	500 W	175Z4701
5102	Kompaktformat IP20	147 A / 130 A	160 %	60 Hz	600 W	175Z4702
5122	Kompaktformat IP20	177 A / 160 A	160 %	60 Hz	750 W	175Z4703
5152	Kompaktformat IP20	212 A / 190 A	160 %	60 Hz	750 W	175Z4704
5202	Kompaktformat IP20	260 A / 240 A	160 %	60 Hz	900 W	175Z4705
5252	Kompaktformat IP20	315 A / 302 A	160 %	60 Hz	1000 W	175Z4706
5302	Kompaktformat IP20	395 A / 361 A	160 %	60 Hz	1100 W	175Z4707
5352	Kompaktformat IP20	480 A / 443 A	160 %	60 Hz	1700 W	175Z3139
5452	Kompaktformat IP20	600 A / 540 A	160 %	60 Hz	2100 W	175Z3140
5502	Kompaktformat IP20	658 A / 590 A	160 %	60 Hz	2100 W	175Z3141
5552	Kompaktformat IP20	745 A / 678 A	160 %	60 Hz	2500 W	175Z3141
Normales Überlas		743 A / 0/0 A	100 /6	00 112	2300 VV	17323142
5016	Kompaktformat IP00	32 A / 27,9 A	110%	60 Hz	180 W	175Z4607
5022	Kompaktformat IP00	37,5 A / 32 A	110%	60 Hz	190 W	175Z4608
5027	Kompaktformat IP00	44 A / 41,4 A	110%	60 Hz	210 W	175Z4608
5032	Kompaktformat IP00	61 A / 54 A	110%	60 Hz	290 W	175Z4609 175Z4610
			110%	60 Hz	410 W	
5042	Kompaktformat IP00	73 A / 65 A				175Z4611
5052	Kompaktformat IP00	90 A / 78 A	110%	60 Hz	480 W	175Z4612
5062	Kompaktformat IP20	106 A / 106 A	110 %	60 Hz	500 W	175Z4701
5072	Kompaktformat IP20	147 A / 130 A	110 %	60 Hz	600 W	175Z4702
5102	Kompaktformat IP20	177 A / 160 A	110 %	60 Hz	750 W	175Z4703
5122	Kompaktformat IP20	212 A / 190 A	110 %	60 Hz	750 W	175Z4704
5152	Kompaktformat IP20	260 A / 240 A	110 %	60 Hz	900 W	175Z4705
5202	Kompaktformat IP20	315 A / 302 A	110 %	60 Hz	1000 W	175Z4706
5252	Kompaktformat IP20	368 A / 361 A	110 %	60 Hz	1100 W	175Z4707
5302	Kompaktformat IP20	480 A / 443 A	110 %	60 Hz	1700 W	175Z3139
5352	Kompaktformat IP20	600 A / 540 A	110 %	60 Hz	2100 W	175Z3140
5452	Kompaktformat IP20	658 A / 590 A	110 %	60 Hz	2100 W	175Z3141
5502	Kompaktformat IP20	745 A / 678 A	110 %	60 Hz	2500 W	175Z3142
5552	Kompaktformat IP20	800 A / 730 A	110%	60 Hz	Bitte wenden Si	e sich an Danfoss.

LC-Filter für VLT 5001-5062, 525-600 V, bitte wenden Sie sich an Danfoss.

ACHTUNG!

Bei Verwendung von LC-Filtern muss die Taktfrequenz 4,5 kHz betragen (siehe Parameter 411).

VLT 5352-5502 LC-Filter können mit 3-kHz-Taktfrequenz betrieben werden. 60°-AVM-Schaltmuster verwenden.

Netzversorgung 3	x 690 V					
160 % Überlastmo-	110 % Überlastmoment	Nennstrom bei 690 V	Max. Ausgangs-	Verlustleistung	Bestellnr, IP00	Bestellnr, IP20
ment	110 % Oberiastinoment	(A)	frequenz (Hz)	(W)	Destellil. IFO0	Destellil. IF20
5042		46	60	240	130B2223	130B2258
5052	5042	54	60	290	130B2223	130B2258
5062	5052	73	60	390	130B2225	130B2260
5072	5062	86	60	480	130B2225	130B2260
5102	5072	108	60	600	130B2226	130B2261
5122	5102	131	60	550	130B2228	130B2263
5152	5122	155	60	680	130B2228	130B2263
5202	5152	192	60	920	130B2229	130B2264
5252	5202	242	60	750	130B2231	130B2266
5302	5252	290	60	1000	130B2231	130B2266
5352	5302	344	60	1050	130B2232	130B2267
5402	5352	400	60	1150	130B2234	130B2269
5502	5402	430	60	420	130B2235	130B2238
5602	5502	530	60	500	130B2236	130B2239
	5602	600	60	570	130B2237	130B2240

dU/dt-Filter für VLT 5000

Die dU/dt-Filter reduzieren dU/dt auf ca. 500 V/s. Diese Filter beschränken keine Störungen und auch nicht USpitze.

ACHTUNG!

Bei Verwendung von dU/dt-Filtern muss die Taktfrequenz 1,5 kHz betragen (siehe Parameter 411).

Netzversorgung 3	x 690 V					
160 % Überlastmo- ment	110 % Überlastmoment	Nennstrom bei 690 V (A)	Max. Ausgangs- frequenz (Hz)	Verlustleistung (W)	Bestellnr. IP00	Bestellnr. IP20
5042		46	60	85	130B2153	130B2187
5052	5042	54	60	90	130B2154	130B2188
5062	5052	73	60	100	130B2155	130B2189
5072	5062	86	60	110	130B2156	130B2190
5102	5072	108	60	120	130B2157	130B2191
5122	5102	131	60	150	130B2158	130B2192
5152	5102	155	60	180	130B2159	130B2193
5202	5152	192	60	190	130B2160	130B2194
5252	5202	242	60	210	130B2161	130B2195
5302	5252	290	60	350	130B2162	130B2196
5352	5302	344	60	480	130B2163	130B2197
5402	5352	400	60	540	130B2165	130B2199
5502	5402	430	60	1600	130B2241	130B2244
5602	5502	530	60	2000	130B2242	130B2245
	5602	600	60	2300	130B2243	130B2246

■ Bremswiderstände, VLT 5001-5052 / 200-240 V

Standard-Bremswiderstände

	10 % Arbeitszyklus				40 % Arbeitszyk	lus
	Widerstand	Leistung	BestNr.	Widerstand	Leistung	BestNr.
VLT	[Ohm]	[kW]		[Ohm]	[kW]	
5001	145	0.065	175U1820	145	0.260	175U1920
5002	90	0.095	175U1821	90	0.430	175U1921
5003	65	0.250	175U1822	65	0.80	175U1922
5004	50	0.285	175U1823	50	1.00	175U1923
5005	35	0.430	175U1824	35	1.35	175U1924
5006	25	0.8	175U1825	25	3.00	175U1925
5008	20	1.0	175U1826	20	3.50	175U1926
5011	15	1.8	175U1827	15	5.00	175U1927
5016	10	2.8	175U1828	10	9.0	175U1928
5022	7	4.0	175U1829	7	10.0	175U1929
5027	6	4.8	175U1830	6	12.7	175U1930
5032	4.7	6	175U1954	Nicht lieferbar	Nicht lieferbar	Nicht lieferbar
5042	3.3	8	175U1955	Nicht lieferbar	Nicht lieferbar	Nicht lieferbar
5052	2.7	10	175U1956	Nicht lieferbar	Nicht lieferbar	Nicht lieferbar

Siehe Anleitung MI.90.FX.YY für weitere Informationen.

Flatpack-Bremswiderstände für Horizontalförderer

VLT-Typ	Motor [kW]	Widerstand	[Ohm] Größe	Bestellnummer	Max. Arbeitszyklus [%]
5001	0.75	150	150 Ω 100 W	175U1005	14.0
5001	0.75	150	150 Ω 200 W	175U0989	40.0
5002	1.1	100	100 Ω 100 W	175U1006	8.0
5002	1.1	100	100 Ω 200 W	175U0991	20.0
5003	1.5	72	72 Ω 200 W	175U0992	16.0
5004	2.2	47	50 Ω 200 W	175U0993	9.0
5005	3	35	35 Ω 200 W	175U0994	5.5
5005	3	35	72 Ω 200 W	2 x 175U0992 ¹	12.0
5006	4	25	50 Ω 200 W	2 x 175U0993 ¹	11.0
5008	5.5	20	40 Ω 200 W	2 x 175U0996 ¹	6.5
5011	7.5	13	27 Ω 200 W	2 x 175U0995 ¹	4.0

1. Bestellung 2 Stück

Montagewinkel für Flatpack-Widerstand 100 W: 175U0011

Montagewinkel für Flatpack-Widerstand 200 W: 175U0009

Einbaurahmen für 1 Widerstand schmal (dünnes Buchformat) 175U0002

Einbaurahmen für 2 Widerstände schmal (dünnes Buchformat) 175U0004

Einbaurahmen für 2 Widerstände breit (dickes Buchformat) 175U0003

Weitere Informationen siehe Anleitung MI.50.BX.YY.

■ Bestellnummern, Bremswiderstände, VLT 5001-5552 / 380-500 V

Standard-Bremswiderstände

	10 % Arbeitszyklus			40 % Arbeitszyklus		
VLT	Widerstand [Ohm]	Leistung [kW]	BestNr.	Widerstand [Ohm]	Leistung [kW]	BestNr.
			175111040			175111040
5001	620	0.065	175U1840	620	0.260	175U1940
5002	425	0.095	175U1841	425	0.430	175U1941
5003	310	0.250	175U1842	310	0.80	175U1942
5004	210	0.285	175U1843	210	1.35	175U1943
5005	150	0.430	175U1844	150	2.0	175U1944
5006	110	0.60	175U1845	110	2.4	175U1945
5008	80	0.85	175U1846	80	3.0	175U1946
5011	65	1.0	175U1847	65	4.5	175U1947
5016	40	1.8	175U1848	40	5.0	175U1948
5022	30	2.8	175U1849	30	9.3	175U1949
5027	25	3.5	175U1850	25	12.7	175U1950
5032	20	4.0	175U1851	20	13.0	175U1951
5042	15	4.8	175U1852	15	15.6	175U1952
5052	12	5.5	175U1853	12	19.0	175U1953
5062	9.8	15	175U2008	9.8	38.0	175U2008
5072	7.3	13	175U0069	5.7	38.0	175U0068
5102	5.7	15	175U0067	4.7	45.0	175U0066
5122 ²⁾	3.8	22	175U1960			
5152 ²⁾	3.2	27	175U1961		,	
5202 ²⁾	2.6	32	175U1962			
5252 ²⁾	2.1	39	175U1963			
5302 ²⁾	1.65	56	2 x 175U1061 ¹⁾			
5352-5552 ²⁾	2.6	72	2 x 175U1062 ^{1) 3)}			

- 1. Bestellung 2 Stück
- 2. Widerstände für 300 Sekundenzyklus gewählt.
- 3. Nennleistung bis VLT 5452 erfüllt, für VLT 5502 und VLT 5552 ist das Drehmoment reduziert.

Siehe Anleitung Ml.90.FX.YY für weitere Informationen.

Flatpack-Bremswiderstände für Horizontalförderer

VLT-Typ	Motor [kW]	Widerstand	[Ohm] Größe	Bestellnummer	Max. Arbeitszyklus [%]
5001	0.75	630	620 Ω 100 W	175U1001	14.0
5001	0.75	630	620 Ω 200 W	175U0982	40.0
5002	1.1	430	430 Ω 100 W	175U1002	8.0
5002	1.1	430	430 Ω 200 W	175U0983	20.0
5003	1.5	320	310 Ω 200 W	175U0984	16.0
5004	2.2	215	210 Ω 200 W	175U0987	9.0
5005	3	150	150 Ω 200 W	175U0989	5.5
5005	3	150	300 Ω 200 W	2 x 175U0985 ¹	12.0
5006	4	120	240 Ω 200 W	2 x 175U0986 ¹	11.0
5008	5.5	82	160 Ω 200 W	2 x 175U0988 ¹	6.5
5011	7.5	65	130 Ω 200 W	2 x 175U0990 ¹	4.0

1. Bestellung 2 Stück

Montagewinkel für Flatpack-Widerstand 100 W: 175U0011 Montagewinkel für Flatpack-Widerstand 200 W: 175U0009

Einbaurahmen für 1 Widerstand schmal (dünnes Buchformat) 175U0002 Einbaurahmen für 2 Widerstände schmal (dünnes Buchformat) 175U0004

Einbaurahmen für 2 Widerstände breit (dickes Buchformat) 175U0003

Weitere Informationen siehe Anleitung MI.50.BX.YY.

Wenden Sie sich für 525-600 V und 525-690 V bitte an Danfoss.

■ Bestellnummern, Oberwellenfilter

Oberwellenfilter dienen zur Reduzierung von Netzoberwellen.

- AHF 010: 10 % Gesamt-Oberwellenverzerrung
- AHF 005: 5 % Gesamt-Oberwellenverzerrung

380-415 V, 50 Hz

I _{AHF,N}	Typischer Motor [kW]	Danfoss-Bestellnumme	er	VLT 5000
	''	AHF 005	AHF 010	
10 A	4, 5.5	175G6600	175G6622	5006, 5008
19 A	7.5	175G6601	175G6623	5011
26 A	11	175G6602	175G6624	5016
35 A	15, 18.5	175G6603	175G6625	5022, 5027
43 A	22	175G6604	175G6626	5032
72 A	30, 37	175G6605	175G6627	5042, 5052
101 A	45. 55	175G6606	175G6628	5062, 5072
144 A	75	175G6607	175G6629	5102
180 A	90	175G6608	175G6630	5122
217 A	110	175G6609	175G6631	5152
289 A	132, 160	175G6610	175G6632	5202, 5252
324 A		175G6611	175G6633	
370 A	200	175G6688	175G6691	5302
Höhere Nennleistung	gen sind bei Parallelschaltung d	der Filtereinheiten möglich.		
434 A	250	Zwei 217 A-Geräte		5352
578 A	315	Zwei 289 A-Geräte		5452
613 A	355	289 A- und 324 A-Geräte		5502
648 A	400	Zwei 324	Zwei 324 A-Geräte	

Bitte beachten Sie, dass die Zuordnung von typischen Danfoss-Frequenzumrichtern und Filtern auf der Basis von 400 V berechnet ist und von einer typischen Motorlast (4- oder 2-Pol-Motor) ausgeht: Die Werte der Serie VLT 5000 basieren auf einer Anwendung mit einem max. Drehmoment von 160 %. Der berechnete Filterstrom kann von den Eingangsnennströmen der Baureihe VLT 5000, die in den jeweiligen Produkthandbüchern angegeben sind, abweichen, da diese Zahlen auf unterschiedlichen Betriebsbedingungen basieren.

440-480 V, 60 Hz

I _{AHF,N}	Typischer Motor [PS]	Danfoss-Bestellnumme	er	VLT 5000
		AHF 005	AHF 010	
19 A	10, 15	175G6612	175G6634	5011, 5016
26 A	20	175G6613	175G6635	5022
35 A	25, 30	175G6614	175G6636	5027, 5032
43 A	40	175G6615	175G6637	5042
72 A	50, 60	175G6616	175G6638	5052, 5062
101 A	75	175G6617	175G6639	5072
144 A	100, 125	175G6618	175G6640	5102, 5122
180 A	150	175G6619	175G6641	5152
217 A	200	175G6620	175G6642	5202
289 A	250	175G6621	175G6643	5252
324 A	300	175G6689	175G6692	5302
370 A	350	175G6690	175G6693	5352
Höhere Nennleistungen sind bei Parallelschaltung der Filtereinheiten möglich.				
506 A	450	217 A- und 289 A-Geräte		5452
578 A	500	Zwei 289 A-Geräte		5502
648 A	600	Zwei 32	4 A-Geräte	5552

Bitte beachten Sie, dass die Zuordnung von typischen Danfoss-Frequenzumrichtern und Filtern auf der Basis von 480 V berechnet ist und von einer typischen Motorlast (4- oder 2-Pol-Motor) ausgeht: Die Werte der Serie VLT 5000 basieren auf einer Anwendung mit einem max. Drehmoment von 160 %. Der berechnete Filterstrom kann von den Eingangsnennströmen der Baureihe VLT 5000, die in den jeweiligen Produkthandbüchern angegeben sind, abweichen, da diese Zahlen auf unterschiedlichen Betriebsbedingungen basieren.

500 V, 50 Hz

I _{AHF,N}	Typischer Motor [kW]	Danfoss-Bestellnumme	r	
	,,	AHF 005	AHF 010	VLT 5000
10 A	4, 5.5	175G6644	175G6656	5006, 5008
19 A	7.5, 11	175G6645	175G6657	5011, 5016
26 A	15, 18.5	175G6646	175G6658	5022, 5027
35 A	22	175G6647	175G6659	5032
43 A	30	175G6648	175G6660	5042
72 A	37, 45	175G6649	175G6661	5052, 5062
101 A	55, 75	175G6650	175G6662	5062, 5072
144 A	90, 110	175G6651	175G6663	5102, 5122
180 A	132	175G6652	175G6664	5152
217 A	160	175G6653	175G6665	5202
289 A	200	175G6654	175G6666	5252
324 A	250	175G6655	175G6667	5302
Höhere Nennleistunge	en sind bei Parallelschaltung o	der Filtereinheiten möglich.		
434 A	315	Zwei 217 A-Geräte		5352
469 A	355	180 A- und 289 A-Geräte 5452		5452
578 A	400	Zwei 289 A-Geräte 5502		5502
648 A	500	Zwei 324 A-Geräte 5552		5552

Bitte beachten Sie, dass die Zuordnung von typischen Danfoss-Frequenzumrichtern und Filtern auf der Basis von 500 V berechnet ist und von einer typischen Motorlast ausgeht. Die Werte der Serie VLT 5000 basieren auf einer Anwendung mit einem Drehmoment von 160 %. Der berechnete Filterstrom kann von den Eingangsnennströmen der Baureihe VLT 5000, die in den jeweiligen Produkthandbüchern angegeben sind, abweichen, da diese Zahlen auf unterschiedlichen Betriebsbedingungen basieren. Entnehmen Sie Angaben zu anderen Kombinationen bitte MG.80.BX.YY.

690 V, 50 Hz

I AHF,N	Typischer Motor (kW)	Bestellnr. AHF 005	Bestellnr. AHF 010	VLT 5000 160%	VLT 5000 110%
43	37, 45	130B2328	130B2293	5042, 5042	5042
72	55, 75	130B2330	130B2295	5062, 5072	5052, 5062
101	90	130B2331	130B2296	5102	5072
144	110, 132	130B2333	130B2298	5122, 5152	5102, 5122
180	160	130B2334	130B2299	5202	5152
217	200	130B2335	130B2300	5252	5202
289	250	130B2331 & 130B2333	130B2301	5302	5252
324	315	130B2333 & 130B2334	130B2302	5352	5302
370	400	130B2334 & 130B2335	130B2304		5352
469	500	130B2333 & 2 x 130B2334	130B2299 & 130B2301	5502	5402
578	560	3 x 130B2334	2 x 130B2301	5602	5502
613	630	3 x 130B2335	130B2301 & 130B2302		5602

■ Allgemeine technische Daten

Netzversorgung	(L1,	L2,	L3):

Versorgungsspannung 200-240-V-Geräte	3 x 200/208/220/230/240 V ±10 %
Versorgungsspannung 380-500-V-Geräte	3 x 380/400/415/440/460/500 V ±10 %
Versorgungsspannung 525-600-V-Geräte	3 x 525/550/575/600 V ±10 %
Versorgungsspannung 525-690-V-Geräte	3 x 525/550/575/600/690 V ±10 %
Netzfrequenz	48-62 Hz +/- 1 %

Siehe Abschnitt Besondere Betriebsbedingungen im Projektierungshandbuch.

Max. Ungleichgewicht der Versorgungsspannung:

VLT 5001-5011, 380-500 V und 525-600 V und VLT 5001-5006,	
200-240 V	±2,0 % der Versorgungsnennspannung
VLT 5016-5062, 380-500 V und 525-600 V und VLT 5008-5027,	
200-240 V	±1,5 % der Versorgungsnennspannung
VLT 5072-5552, 380-500 V und VLT 5032-5052, 200-240 V	±3,0 % der Versorgungsnennspannung
VLT 5042-5602, 525-690 V	±3,0 % der Versorgungsnennspannung
Verzerrungsleistungsfaktor (λ)	0,90 bei Nennlast
Verschiebungs-Leistungsfaktor (cos φ)	nahe Eins (>0,98)
Anzahl Schaltungen am Versorgungseingang L1, L2, L3	ca. 1 x pro Min.

Siehe Abschnitt Besondere Betriebsbedingungen im Projektierungshandbuch.

VLT-Ausgangsdaten (U, V, W):

Ausgangsspannung	0-100 % der Versorgungsspannung
Ausgangsfrequenz VLT 5001-5027, 200-240 V	0-132 Hz, 0-1000 Hz
Ausgangsfrequenz VLT 5032-5052, 200-240 V	0-132 Hz, 0-450 Hz
Ausgangsfrequenz VLT 5001-5052, 380-500 V	0-132 Hz, 0-1000 Hz
Ausgangsfrequenz VLT 5062-5302, 380-500 V	0-132 Hz, 0-450 Hz
Ausgangsfrequenz VLT 5352-5552, 380-500 V	0-132 Hz, 0-300 Hz
Ausgangsfrequenz VLT 5001-5011, 525-600 V	0-132 Hz, 0-700 Hz
Ausgangsfrequenz VLT 5016-5052, 525-600 V	0-132 Hz, 0-1000 Hz
Ausgangsfrequenz VLT 5062, 525-600 V	0-132 Hz, 0-450 Hz
Ausgangsfrequenz VLT 5042-5302, 525-690 V	0-132 Hz, 0-200 Hz
Ausgangsfrequenz VLT 5352-5602, 525-690 V	0-132 Hz, 0-150 Hz
Motornennspannung, 200-240 V-Geräte	200/208/220/230/240 V
Motornennspannung, 380-500 V-Geräte	380/400/415/440/460/480/500 V
Motornennspannung, 525-600 V-Geräte	525/550/575 V
Motornennspannung, 525-690 V-Geräte	525/550/575/690 V
Motornennfrequenz	50/60 Hz
Schalten am Ausgang	Unbegrenzt
Rampenzeiten	0,05-3600 s

Drehmomentkennlinie:

Anlaufmoment, VLT 5001-5027, 200-240 V und VLT 5001-5552, 380-500 V	160 % für 1 Min.
Anlaufmoment, VLT 5032-5052, 200-240 V	150 % für 1 Min.
Anlaufmoment, VLT 5001-5062, 525-600 V	160 % für 1 Min.
Anlaufmoment, VLT 5042-5602, 525-690 V	160 % für 1 Min.
Startmoment	180 % für 0,5 s.
Beschleunigungsmoment	100%
Überlastmoment, VLT 5001-5027, 200-240 V und VLT 5001-5552, 380-500 V,	
VLT 5001-5062, 525-600 V und VLT 5042-5602, 525-690 V	160%
Überlastmoment, VLT 5032-5052, 200-240 V	150%
Haltemoment bei 0 UPM (mit Rückführung)	100%

Die Angaben bzgl. der Drehmomentkennlinie gelten, wenn der Frequenzumrichter mit hohem Überlastmoment (160 %) arbeitet. Bei normalem Überlastmoment (110 %) sind die Werte niedriger.

Bremsung bei hohem Überlastmoment

•	Zykluszeit (s)	Bremsarbeitszyklus bei 100 % Drehmoment	Bremsarbeitszyklus bei Überlastmoment (150/160 %)
200-240 V			
5001-5027	120	Dauerbetrieb	40%
5032-5052	300	10%	10%
380-500 V			
5001-5102	120	Dauerbetrieb	40%
5122-5252	600	Dauerbetrieb	10%
5302	600	40%	10%
5352-5552	600	40 %1)	10 % ²⁾
525-600 V			
5001-5062	120	Dauerbetrieb	40%
525-690 V			
5042-5352	600	40%	10%
5402-5602	600	40 % ³⁾	10 % ⁴⁾

¹⁾ VLT 5502 bei 90 % Drehmoment. Bei 100 % Drehmoment ist der Bremsarbeitszyklus 13 %. Bei Netznennwert von 441-500 V, 100 % Drehmoment, ist der Bremsarbeitszyklus 17 %.

Für VLT 5502 ist das Drehmoment 145 %.

Für VLT 5552 ist das Drehmoment 130 %.

3) VLT 5502 bei 80 % Drehmoment.

VLT 5602 bei 71 % Drehmoment.

4) Basierend auf 300 Sekundenzyklus:

Für VLT 5502 ist das Drehmoment 128 %.

Für VLT 5602 ist das Drehmoment 114 %.

Steuerkarte, Digitaleingänge:

Anzahl programmierbarer Digitaleingänge	8
Klemmennummern	16, 17, 18, 19, 27, 29, 32, 33
Spannungsniveau	0-24 V DC (PNP positive Logik)
Spannungsniveau, logisch 0"	< 5 V DC
Spannungsniveau, logisch 1"	>10 V DC
Max. Spannung am Eingang	28 V DC
Eingangswiderstand, Ri	2 kΩ
Abfragezeit je Eingang	3 ms

Zuverlässige galvanische Trennung: Alle Digitaleingänge sind von der Versorgungsspannung (PELV) galvanisch getrennt. Außerdem können die Digitaleingänge von den anderen Klemmen auf der Steuerkarte getrennt werden, indem eine externe 24 V-DC-Versorgung angeschlossen und Schalter 4 geöffnet wird. VLT 5001-5062, 525-600 V erfüllen PELV nicht.

Steuerkarte, Analogeingänge:

Anzahl programmierbarer analoger Spannungseingänge/The	ermistoreingänge 2
Klemmennummern	53, 54
Spannungsniveau	0 - ±10 V DC (skalierbar)
Eingangswiderstand, R _i	10 kΩ
Anzahl programmierbarer analoger Stromeingänge	1
Klemmennr.	60
Strombereich	0/4 - ±20 mA (skalierbar)
Eingangswiderstand, R _i	200 Ω
Auflösung	10 Bit + Vorzeichen
Genauigkeit am Eingang	max. Abweichung 1 % der Gesamtskala
Abfragezeit je Eingang	3 ms
Klemmennr. Erde	55

VLT 5552 bei 80 % Drehmoment. Bei 100 % Drehmoment ist der Bremsarbeitszyklus 8 %.

²⁾ Basierend auf 300 Sekundenzyklus:

Zuverlässige galvanische Trennung: Alle Analogeingänge sind von der Versorgungsspannung (PELV)* sowie anderen Ein- und Ausgängen galvanisch getrennt.

*VLT 5001-5062, 525-600 V erfüllen PELV nicht.

Steuerkarte, Puls/Drehgeber-Eingang:

Anzahl programmierbarer Puls-/Drehgeber-Eingänge	4	
Klemmennummern	17, 29, 32, 33	
Max. Frequenz an Klemme 17	5 kHz	
Max. Frequenz an Klemme 29, 32, 33	20 kHz (PNP offener Kollektor)	
Max. Frequenz an Klemme 29, 32, 33	65 kHz (Gegentakt)	
Spannungsniveau	0-24 V DC (PNP positive Logik)	
Spannungsniveau, logisch 0"	< 5 V DC	
Spannungsniveau, logisch 1"	>10 V DC	
Max. Spannung am Eingang	28 V DC	
Eingangswiderstand, R _i	2 kΩ	
Abfragezeit je Eingang	3 ms	
Auflösung	10 Bit + Vorzeichen	
Genauigkeit (100-1 kHz), Klemme 17, 29, 33	Max. Abweichung: 0,5 % der Gesamtskala	
Genauigkeit (1-5 kHz) Klemme 17	Max. Abweichung: 0,1 % der Gesamtskala	
Genauigkeit (1-65 kHz), Klemme 29, 33	Max. Abweichung: 0,1 % der Gesamtskala	

Zuverlässige galvanische Trennung: Alle Puls/Drehgeber-Eingänge sind von der Versorgungsspannung (PELV)* galvanisch getrennt. Die Puls-/Drehgeber-Eingänge können außerdem von den übrigen Klemmen der Steuerkarte getrennt werden, indem eine externe 24-V-DC-Versorgung angeschlossen und Schalter 4 geöffnet wird. *VLT 5001-5062, 525-600 V erfüllen PELV nicht.

Steuerkarte, Digital/Puls- und Analogausgänge:

Anzahl programmierbarer Digital- und Analogausgänge	2	
Klemmennummern	42, 45	
Spannungsniveau am Digital-/Pulsausgang	0 - 24 V DC	
Min. Last gegen Erde (Klemme 39) am Digital-/Pulsausgang	600 Ω	
Frequenzbereiche (Digitalausgang dient als Pulsausgang)	0-32 kHz	
Strombereich am Analogausgang	0/4 - 20 mA	
Max. Last gegen Erde (Klemme 39) am Analogausgang	500 Ω	
Genauigkeit am Analogausgang	Max. Abweichung: 1,5 % der Gesamtskala	
Auflösung am Analogausgang	8 Bit	

Zuverlässige galvanische Trennung: Alle Digital- und Analogausgänge sind von der Versorgungsspannung (PELV)* sowie anderen Ein- und Ausgängen galvanisch getrennt.

Steuerkarte, 24-V-DC-Versorgung:

Klemmennummern	12, 13
Max. Last (Kurzschlussschutz)	200 mA
Klemmennummern Erde	20, 39

Zuverlässige galvanische Trennung: Die 24-V-DC-Versorgung ist von der Versorgungsspannung (PELV)* galvanisch getrennt, hat jedoch das gleiche Potential wie die Analogausgänge.

Steuerkarte, RS 485 serielle Kommunikationsschnittstelle:

Sichere galvanische Trennung: Vollständige galvanische Isolierung.

^{*}VLT 5001-5062, 525-600 V erfüllen PELV nicht.

^{*}VLT 5001-5062, 525-600 V erfüllen PELV nicht.

Relaisausgänge: 1)	
Anzahl programmierbarer Relaisausgänge	2
Klemmennummern, Steuerkarte (nur ohmsche Last)	4-5 (Schließer)
Max. Klemmenbelastung (AC1) an 4-5, Steuerkarte	50 V AC, 1 A, 50 VA
Max. Klemmenbelastung (DC1 (IEC 947)) an 4-5, Steuerkarte	25 V DC, 2 A/50 V DC, 1 A, 50 W
Max. Klemmenbelastung (DC1) an 4-5, Steuerkarte bei UL-/cUL-Anwendunger	n 30 V AC, 1 A/42,5 V DC, 1 A
Klemmennummern, Leistungskarte (ohmsche und induktive Last)	1-3 (öffnen), 1-2 (schließen)
Max. Klemmenbelastung (AC1) an 1-3, 1-2, Leistungskarte und Relaiskarte	250 V AC, 2 A, 500 VA
Max. Klemmenbelastung (DC-1 (IEC 947)) an 1-3, 1-2, Leistungskarte	25 V DC, 2 A/50 V DC, 1 A, 50 W
Min. Klemmenleistung (AC/DC) an 1-3, 1-2, Leistungskarte 2	4 V DC, 10 mA/24 V AC, 100 mA

1) Nennwerte für bis zu 300.000 Schaltvorgänge.

Bei induktiven Lasten wird die Anzahl der Schaltvorgänge um 50 % reduziert. Es kann auch der Strom um 50 % reduziert werden, damit 300.000 Schaltvorgänge erreicht werden.

Bremswiderstandsklemmen (nur SB-, EB-, DE- und PB-Geräte):

Klemmennummern	81, 82
----------------	--------

Externe 24-V-Gleichstromversorgung:

Klemmennummern	35, 36
Spannungsbereich	24 V DC ±15% (max. 37 V DC, 10 Sek. lang)
Max. Brummspannung	2 V Gleichstrom
Leistungsaufnahme	15-50 W (50 W beim Einschalten, 20 ms lang)
Min. Vorsicherung	6 Amp

Sichere galvanische Isolierung Vollständige galvanische Isolierung der externen 24 V DC-Stromversorgung besitzt auch der Typ PELV.

Kabellängen, Querschnitte und Stecker:

Max. Motorkabellänge, abgeschirmtes Kabel	150 m
Max. Motorkabellänge, nicht abgeschirmtes Kabel	300 m
Max. Motorkabellänge, abgeschirmtes Kabel VLT 5011, 380-500	0 V 100 m
Max. Motorkabellänge, abgeschirmtes Kabel VLT 5011, 525-600) V
und VLT 5008, normaler Überlastmodus, 525-600 V	50 m
Max. Bremskabellänge, abgeschirmtes Kabel	20 m
Max. Kabellänge Zwischenkreiskopplung, abgeschirmtes Ka-	
bel	25 m vom Frequenzumrichter zur DC-Schiene

Max. Kabelquerschnitt für Motor, Bremse und Zwischenkreiskopplung, siehe Abschnitt "Elektrische Daten".

Max. Kabelquerschnitt für externe 24 V DC-Versorgung

- VLT 5001-5027 200-240 V, VLT 5001-5102, 380-500 V, VLT 5001-5062 525-600 V	4 mm ² /10 AWG
- VLT 5032-5052 200-240 V, VLT 5122-5552, 380-500 V, VLT 5042-5602 525-690 V	2,5 mm ² /12 AWG
Max. Querschnitt für Steuerkabel	1,5 mm ² /16 AWG
Max. Querschnitt für serielle Schnittstelle	1,5 mm ² /16 AWG

Sofern die Einhaltung von UL/cUL erforderlich ist, muss Kupferkabel mit Temperaturklasse 60/75 °C verwendet werden.

(VLT 5001-5062, 380-500 V, 525-600 V und VLT 5001-5027, 200-240 V).

Sofern die Einhaltung von UL/cUL erforderlich ist, muss Kupferkabel mit Temperaturklasse 75 °C verwendet werden. (VLT 5072-5552, 380-500 V, VLT 5032-5052, 200-240 V, VLT 5042-5602, 525-690 V).

Sofern nicht anders angegeben, können die Stecker sowohl für Kupfer- als auch für Alukabel verwendet werden.

Genauigkeit der Displayanzeige (Parameter 009-012):

VL1 - 5000-Pro	njektierungsnandbuch
Motorstrom [6] 0-140 % Belastung max. Ur	ngenauigkeit: ± 2,0 % des Ausgangsnennstroms
	auigkeit: Max. Fehler: ± 5% der Motornenngröße
Leistung [8], Leistung PS [9], 0-90 % Belastung max. L	Jngenauigkeit: ± 5 % der Ausgangsnennleistung
Steuer- und Regelgenauigkeit:	
Frequenzbereich	0 - 1000 Hz
Auflösung der Ausgangsfrequenz	±0.003 Hz
Systemantwortzeit	3 ms
Drehzahl Steuerbereich (ohne Istwertrückführung)	1:100 der Synchrondrehzah
Drehzahl Steuerbereich (mit Istwertrückführung)	1:1000 der Synchrondrehzahl
Drehzahlgenauigkeit (ohne Istwertrückführung)	< 1500 U/Min.: max. Fehler ±7,5 U/Min.
Drehzahlgenauigkeit (mit Istwertrückführung)	< 1500 U/Min.: max. Fehler ±1,5 U/Min.
Drehmoment Steuergenauigkeit (ohne Istwertrückführung)	0-150 U/Min.:
Drehmoment Steuergenauigkeit (mit Drehzahlrückführung)	max. Fehler ±5% des Nenndrehmoments
Alle Angaben basieren auf einem vierpoligen Asynchronmotor.	
Extern:	
Gehäuse (je nach Leistungsgröße)	IP00, IP20, IP21, NEMA 1, IP54
	3 Richtungen für 2 Stunden (IEC 68-2-34/35/36)
Max. relative Feuchtigkeit	93 % (IEC 68-2-3) bei Lagerung/Transport
Max. relative Feuchtigkeit 95 % nicht-konde	ensierend (IEC 721-3-3; Klasse 3K3) bei Betrieb
Aggressive Umgebung (IEC 721-3-3)	Unbeschichtet Klasse 3C2
Aggressive Umgebung (IEC 721-3-3)	Beschichtet Klasse 3C3
Umgebungstemperatur IP20/NEMA 1 (hohes Überlastmoment	
160 %)	Max. 45 °C (24-StdDurchschnitt max. 40 °C)
Umgebungstemperatur IP20/NEMA 1 (normales Überlastmo-	
ment 110 %)	Max. 40 °C (24-StdDurchschnitt max. 35 °C)
Umgebungstemperatur IP54 (hohes Überlastmoment 160 %)	Max. 40 °C (24-StdDurchschnitt max. 35 °C)
Umgebungstemperatur IP54 (normales Überlastmoment 110 %)	Max. 40 °C (24-StdDurchschnitt max. 35 °C)
Umgebungstemperatur IP 20/54 VLT 5011 500 V	Max. 40 °C (24-StdDurchschnitt max. 35 °C
Umgebungstemperatur IP54 VLT 5042-5602, 525-690 V; und	
5122-5552 380-500 V (hohes Überlastmoment 160 %)	Max. 45 °C (24-StdDurchschnitt max. 40 °C)
Leistungsreduzierung bei erhöhter Umgebungstemperatur, siehe	Projektierungshandbuch
Min. Umgebungstemperatur bei Volllast	0 °C
Min. Umgebungstemperatur bei reduzierter Leistung	-10 °C
Temperatur bei Lagerung/Transport	-25 - +65/70°C
Max. Höhe ü. d. Meeresspiegel	1000 m
Leistungsreduzierung bei Höhen über 1000 m ü. d. Meeresspiege	el, siehe Projektierungshandbuch
Geltende EMV-Normen, Störaussendung EN 61	000-6-3, EN 61000-6-4, EN 61800-3, EN 55011
EN 61000-6	-2, EN 61000-4-2, EN 61000-4-3, EN 61000-4-4
Geltende EMV-Normen, Störfestigkeit El	N 61000-4-5, EN 61000-4-6, VDE 0160/1990.12

Siehe Besondere Betriebsbedingungen im Projektierungshandbuch

VLT 5001-5062, 525 - 600 V erfüllen die EMV- und Niederspannungsrichtlinie nicht.

IP54-Geräte sind nicht für die direkte Aufstellung im Freien bestimmt. Die Schutzklasse IP54 bezieht sich nicht auf andere Einwirkungen wie Sonne, Eis, windgeblasener Treibregen. Unter diesen Umständen empfiehlt Danfoss die Installation der Geräte in einem Gehäuse, das für die Umgebungsbedingungen ausgelegt ist. Alternativ wird eine Aufstellung mindestens 0,5 m über der Erdoberfläche und geschützt durch einen Schuppen empfohlen.

Schutzvorrichtungen für Serie VLT 5000:

Ein elektronischer thermischer Motorschutz schützt den Motor gegen Überlast.

Temperaturüberwachung des Kühlkörpers sorgt dafür, dass der Frequenzumrichter abschaltet, wenn die Temperatur 90 °C erreicht (für IP00, IP20 und NEMA 1). Für IP54 wird bei 80 °C abgeschaltet. Ein Übertemperaturzustand kann erst guittiert werden, nachdem die Kühlkörpertemperatur wieder unter 60 °C gesunken ist.

Für die nachstehend aufgeführten Geräte sind die Grenzwerte wie folgt:

- VLT 5122, 380-500 V schaltet bei 75 °C ab. Reset ist möglich, wenn die Temperatur wieder unter 60 °C liegt.
- VLT 5152, 380-500 V schaltet bei 80 °C ab. Reset ist möglich, wenn die Temperatur wieder unter 60 °C liegt.
- VLT 5202, 380-500 V schaltet bei 95 °C ab. Reset ist möglich, wenn die Temperatur wieder unter 65 °C liegt.
- VLT 5252, 380-500 V schaltet bei 95 °C ab. Reset ist möglich, wenn die Temperatur wieder unter 65 °C liegt.
- VLT 5302, 380-500 V schaltet bei 105 °C ab. Reset ist möglich, wenn die Temperatur wieder unter 75 °C liegt.
- VLT 5352-5552, 380-500 V schalten bei 85 °C ab. Reset ist möglich, wenn die Temperatur wieder unter 60 °C liegt.
- VLT 5042-5122, 525-690 V schalten bei 75 °C ab. Reset ist möglich, wenn die Temperatur wieder unter 60 °C liegt.
- VLT 5152, 525-690 V schaltet bei 80 °C ab. Reset ist möglich, wenn die Temperatur wieder unter 60 °C liegt.
- VLT 5202-5352, 525-690 V schalten bei 100 °C ab. Reset ist möglich, wenn die Temperatur wieder unter 70 °C liegt.
- VLT 5402-5602, 525-690 V schalten bei 75 °C ab. Reset ist möglich, wenn die Temperatur wieder unter 60 °C liegt.

Der Frequenzumrichter ist an den Motorklemmen U, V, W gegen Kurzschluss geschützt.

Der Frequenzumrichter ist an den Motorklemmen U, V, W gegen Erdschluss geschützt.

Eine Überwachung der Zwischenkreisspannung gewährleistet, dass der Frequenzumrichter bei zu niedriger und zu hoher Zwischenkreisspannung abschaltet.

Bei fehlender Motorphase schaltet der Frequenzumrichter ab, siehe Parameter 234 Motorphasenüberwachung.

Bei Netzstörungen kann der Frequenzumrichter eine kontrollierte Verzögerung vornehmen.

Bei fehlender Netzphase schaltet der Frequenzumrichter ab, wenn der Motor belastet wird.

■ Elektrische Daten

■ Buchformat und Kompakt, Netzspannung 3 x 200

Laut internationalen Anf	orderungen	VLT-Typ	5001	5002	5003	5004	5005	5006
	Ausgangsstrom	Ivlt,n [A]	3.7	5.4	7.8	10.6	12.5	15.2
		I _{VLT} , MAX (60 s) [A]	5.9	8.6	12.5	17	20	24.3
	Leistung (240 V)	S _{VLT,N} [kVA]	1.5	2.2	3.2	4.4	5.2	6.3
888 ∢⊜>	Typische Leistung an der Welle	P _{VLT,N} [kW]	0.75	1.1	1.5	2.2	3.0	3.7
	Typische Leistung an der Welle	P _{VLT,N} [HP]	1	1.5	2	3	4	5
	Max. Kabelquerschnitt für Moto Bremse und Zwischenkreiskop	,	4/10	4/10	4/10	4/10	4/10	4/10
[0 0]	Eingangsnennstrom	(200 V)I _{L,N} [A]	3.4	4.8	7.1	9.5	11.5	14.5
	Max. Kabel- querschnitt [mm²]/[AWG]²)		4/10	4/10	4/10	4/10	4/10	4/10
	Max. Vorabsicherung	[-]/UL ¹⁾ [A]	16/10	16/10	16/15	25/20	25/25	35/30
	Wirkungsgrad ³⁾		0.95	0.95	0.95	0.95	0.95	0.95
0000	Gewicht IP 20 EB Buchformat	[kg]	7	7	7	9	9	9.5
	Gewicht IP 20 EB Kompakt	[kg]		8 8	8	10	10	10
	Gewicht IP 54 Kompakt	[kg]	11	.5 11.5	11.5	13.5	13.5	13.5
	Verlustleistung bei max. Last.	[W]	58	76	95	126	172	194
A	Schutzart		IP 20/ IP54					

- 1. Für diese Sicherungsart, siehe Abschnitt Sicherungen.
- 2. American Wire Gauge = Amerikanisches Drahtmaß.
- 3. Gemessen mit 30 m abgeschirmtem Motorkabel bei Nennlast und Nennfrequenz.

■ Kompaktformat Netzspannung 3 x 200-240 V

ut internationalen Anfo		VLT-Typ		5008	5011	5016	5022	5027
	Normales Überlastmoment							
	Ausgangsstrom	I _{VLT,N} [A]		32	46	61.2	73	88
		Ivlt, max (60 s) [A]		35.2	50.6	67.3	80.3	96.8
	Leistung (240 V)	S _{VLT,N} [kVA]		13.3	19.1	25.4	30.3	36.6
	Typische Wellenleistung	P _{VLT,N} [kW]		7.5	11	15	18.5	22
	Typische Wellenleistung	P _{VLT,N} [PS]		10	15	20	25	30
	Hohes Überlastmoment (1							
88 6 ₽	Ausgangsstrom	I _{VLT,N} [A]		25	32	46	61.2	73
000		I _{VLT, MAX} (60 s) [A]		40	51.2	73.6	97.9	116.8
	Leistung (240 V)	S _{VLT,N} [kVA]		10	13	19	25	30
	Typische Wellenleistung	P _{VLT,N} [kW]		5.5	7.5	11	15	18.5
	Typische Wellenleistung	PVLT,N [PS]		7.5	10	15	20	25
	Max. Kabelquerschnitt für l	Motor,	IP 54	16/6	16/6	35/2	35/2	50/0
	Bremse und Zwischenkreis [AWG] ^{2) 5)}	skopplung [mm²]/	IP 20	16/6	35/2	35/2	35/2	50/0
	Min. Kabelquerschnitt für M Zwischenkreiskopplung ⁴⁾ [ı			10/8	10/8	10/8	10/8	16/6
	Eingangsnennstrom	(200 V) I _{L,N} [A]		32	46	61	73	88
	Max. Kabelquerschnitt,		IP 54	16/6	16/6	35/2	35/2	50/0
						35/2	35/2	50/0
<u>10</u> 01	Netz [mm²]/[AWG] ^{2) 5)}		IP 20	16/6	35/2			
8 0	Max. Vorsicherungen	[-]/UL ¹⁾ [A]	IP 20	50	35/2 60	80	125	125
8		[-]/UL ¹⁾ [A]	IP 20	-				
	Max. Vorsicherungen Wirkungsgrad ³⁾ Gewicht IP 20 EB	[-]/UL ¹⁾ [A]	IP 20	50	60 0.95 25	80	125	125
	Max. Vorsicherungen Wirkungsgrad ³⁾ Gewicht IP 20 EB Gewicht IP 54	[kg] [kg]	IP 20	50 0.95	60 0.95	80 0.95	125 0.95	125 0.95
0 	Max. Vorsicherungen Wirkungsgrad ³⁾ Gewicht IP 20 EB Gewicht IP 54 Verlustleistung bei max. La-hohes Überlastmoment (160 %)	[kg] [kg] ast. [W]	IP 20	50 0.95 21	60 0.95 25	80 0.95 27	125 0.95 34	125 0.95 36
	Max. Vorsicherungen Wirkungsgrad ³⁾ Gewicht IP 20 EB Gewicht IP 54 Verlustleistung bei max. La-hohes Überlastmoment	[kg] [kg] ast.	IP 20	50 0.95 21 38	60 0.95 25 40	80 0.95 27 53	125 0.95 34 55	125 0.95 36 56

- Den Sicherungstyp finden Sie im Abschnitt Sicherungen
 American Wire Gauge = Amerikanisches Drahtmaß
- 3. Gemessen mit 30 m abgeschirmtem Motorkabel bei Nennlast und Nennfrequenz.
- 4. Der Mindest-Kabelquerschnitt ist der kleinste Kabelquerschnitt, der gemäß IP 20 an die Klemmen angeschlossen werden kann. Befolgen Sie stets die nationalen und örtlichen Vorschriften für den Mindest-Kabelquerschnitt.
- 5. Aluminiumkabel mit Querschnitten über 35 mm² müssen mit einem Al-Cu-Stecker angeschlossen werden.

■ Kompaktformat Netzspannung 3 x 200-240 V

aut internationalen Anford		VLT-Ty	p 5032	5042	5052
	Normales Übermoment (110 %):				
	Ausgangsstrom	I _{VLT,N} [A] (200-230 V		143	170
		IVLT, MAX (60 s) [A] (200-230 V)		158	187
		I _{VLT,N} [A] (231-240 V)		130	154
		IVLT, MAX (60 s) [A] (231-240 V)		143	170
	Ausgang	S _{VLT,N} [kVA] (208 V)	41	52	61
		S _{VLT,N} [kVA] (230 V)	46	57	68
A		S _{VLT,N} [kVA] (240 V)	43	54	64
	Typische Leistung an der Welle	[HP] (208 V)	40	50	60
	Typische Leistung an der Welle	[kW] (230 V)	30	37	45
ᇔ	Hohes Übermoment (160 %):				
990 4 9 0	Ausgangsstrom	I _{VLT,N} [A] (200-230 V)	88	115	143
0000	5 5	IVLT, MAX [A] (200-230 V)	132	173	215
		I _{VLT,N} [A] (231-240 V)	80	104	130
	7	I _{VLT, MAX} [A] (231-240 V)	120	285	195
	Ausgang	S _{VLT,N} [kVA] (208 V)	32	41	52
	3	S _{VLT,N} [kVA] (230 V)	35	46	57
Α.		S _{VLT,N} [kVA] (240 V)	33	43	54
	Typische Leistung an der Welle	[HP] (208 V)		40	50
		[kW] (230 V)		30	37
	Max. Kabelguerschnitt für Motor und Zwi-			120	
	schenkreiskopplung	[AWG] ^{2,4,6}		300 mcm	
		[mm ²] ^{4,6}		25	
	Max. Kabelquerschnitt für Bremse	[AWG] ^{2,4,6}		4	
	Normales Übermoment (110 %):	[AWG]			
	Eingangsnennstrom	I _{L,N} [A] (230 V	/) 1013	126.6	149.9
	Normales Übermoment (150 %):	1E,N [7] (200 V	7 101.0	120.0	170.0
	Eingangsnennstrom	I _{L,N} [A] (230 V)	77 0	101,3	126,6
lo ol	Max. Kabelguerschnitt	[mm ²] ^{4,6}	77,5	120	120,0
	Stromversorgung	[AWG] ^{2,4,6}		300 mcm	
	Min. Kabelquerschnitt für Motor, Strom-			6	
	versorgung,			8	
₫₩₽	Bremse und Zwischenkreiskopplung	[AWG] ^{2,4,6}		0	
0000	Max. Vorsicherungen (Netz) [-]/UL	[A] ¹	150/150	200/200	250/250
		[A]·	150/150		250/250
	Wirkungsgrad ³	AL LÜL LOAG	1000	0,96-0,97	1010
	Verlussleistung	Normales Übermoment [W]		1361	1612
	0.11	Hohes Übermoment [W]		1089	1361
M	Gewicht	IP 00 [kg]		101	101
	Gewicht	IP 20 Nema1 [kg]		101	101
	Gewicht	IP 54 Nema12 [kg]		104	104
	Schutzart	IP 00 / Nema	1 (IP 20) / IF	54	

- Sicherungsart siehe Abschnitt Sicherungen
 American Wire Gauge = Amerikanisches Drahtmaß.
- 3. Gemessen mit 30 m abgeschirmtem Motorkabel bei Nennlast und Nennfrequenz.
- 4. Der maximale Kabelquerschnitt ist der größtmögliche Kabelquerschnitt, der an die Klemmen gelegt werden kann. Der minimale Kabelquerschnitt ist der kleinste zulässige Kabelquerschnitt. Beachten Sie stets die nationalen und örtlichen Vorschriften bezüglich des minimalen Kabelquerschnitts.
- 5. Gewicht ohne Transportbehälter.
- 6. Anschlussbolzen: M8 Bremse M6.

IP 20/

IP 54

VLT® 5000-Projektierungshandbuch

IP 20/

IP 20/

IP 20/

IP 54

■ Buch- und Kompaktformat, Netzspannung 3 x 380

- 500 V

Laut internationalen A	nforderungen	VLT-Typ	5001	5002	5003	5004
8_8	Ausgangsstrom	I _{VLT,N} [A] (380-440 V)	2.2	2.8	4.1	5.6
		I _{VLT} , MAX (60 s) [A] (380-440 V)	3.5	4.5	6.5	9
		I _{VLT,N} [A] (441-500 V)	1.9	2.6	3.4	4.8
988 4ê) 0000		I _{VLT} , MAX (60 s) [A] (441-500 V)	3	4.2	5.5	7.7
0000	Ausgang	S _{VLT,N} [kVA] (380-440 V)	1.7	2.1	3.1	4.3
0000		S _{VLT,N} [kVA] (441-500 V)	1.6	2.3	2.9	4.2
	Typische Leistung an der Welle	P _{VLT,N} [kW]	0.75	1.1	1.5	2.2
	Typische Leistung an der Welle	P _{VLT,N} [HP]	1	1.5	2	3
	Max. Kabelquerschnitt für Motor,		4/10	4/10	4/10	4/10
	Bremse und Zwischenkreiskoppl	ung [mm²]/[AWG]²)	4/10	4/10	4/10	4/10
8 8	Eingangsnennstrom	I _{L,N} [A] (380 V) I _{L,N} [A] (460 V)		2.6 2.5	3.8	5.3 4.8
	Max. Kabelquerschnitt Netz [mm		4/10	4/10	4/10	4/10
	Max. Vorsicherungen [-]/UL ¹⁾ [A]	J//WOJ ·	16/6	16/6	16/10	16/10
<u>4⊕</u> D	Wirkungsgrad ³⁾		0.96	0.96	0.96	0.96
0000	Gewicht IP 20 EB Buchformat [kg	3]	7	7	7	7.5
	Gewicht IP 20 EB Kompaktforma	t [kg]	8	8	8	8.5
	Gewicht IP 54 Kompaktformat [kg	a]	11.5	11.5	11.5	12
	Verlustleistung bei max. Last	[W]	55	67	92	110

Schutzart

- Für diese Sicherungsart, siehe Abschnitt Sicherungen.
 American Wire Gauge = Amerikanisches Drahtmaß.
 Gemessen mit 30 m abgeschirmtem Motorkabel bei Nennlast und Nennfrequenz.

Buch- und Kompaktformat, Netzspannung 3 x 380

ternationalen	Anforderungen	VLT-Typ	5005	5006	5008	5011
	Ausgangsstrom	I _{VLT,N} [A] (380-440 V)	7.2	10	13	16
		IVLT, MAX (60 s) [A] (380-440 V)	11.5	16	20.8	25.6
38 38 30	_	I _{VLT,N} [A] (441-500 V)	6.3	8.2	11	14.5
		I _{VLT} , MAX (60 s) [A] (441-500 V)	10.1	13.1	17.6	23.2
	Ausgang	S _{VLT,N} [kVA] (380-440 V)	5.5	7.6	9.9	12.2
		S _{VLT,N} [kVA] (441-500 V)	5.5	7.1	9.5	12.6
	Typische Leistung an der Welle	P _{VLT,N} [kW]	3.0	4.0	5.5	7.5
	Typische Leistung an der Welle	P _{VLT,N} [HP]	4	5	7.5	10
	Max. Kabelquerschnitt für Mo	otor,	4/10	4/10	4/10	4/10
	Bremse und Zwischenkreisko	opplung [mm²]/[AWG]²)	4/10	4/10	.,,,,,	4/10
S & &	Bremse und Zwischenkreisko	I _{L,N} [A] (380 V)	7	9.1	12.2	15.0
8 8	Eingangsnennstrom	I _{L,N} [A] (380 V) I _{L,N} [A] (460 V)	7 6	9.1 8.3	12.2 10.6	15.0 14.0
8 8	Eingangsnennstrom Max. Kabelquerschnitt Netz [IL,N [A] (380 V) IL,N [A] (460 V) mm²]/[AWG]²)	7 6 4/10	9.1 8.3 4/10	12.2 10.6 4/10	15.0 14.0 4/10
8 8 =	Eingangsnennstrom Max. Kabelquerschnitt Netz [Max. Vorsicherungen [-]/UL ¹⁾	IL,N [A] (380 V) IL,N [A] (460 V) mm²]/[AWG]²)	7 6 4/10 16/15	9.1 8.3 4/10 25/20	12.2 10.6 4/10 25/25	15.0 14.0 4/10 35/30
8 8 = = = = = = = = = = = = = = = = = =	Eingangsnennstrom Max. Kabelquerschnitt Netz [Max. Vorsicherungen [-]/UL ¹⁾ Wirkungsgrad ³⁾	IL,N [A] (380 V) IL,N [A] (460 V) mm²]/[AWG]²) [A]	7 6 4/10 16/15 0.96	9.1 8.3 4/10 25/20 0.96	12.2 10.6 4/10 25/25 0.96	15.0 14.0 4/10 35/30 0.96
8 8 = = = = = = = = = = = = = = = = = =	Eingangsnennstrom Max. Kabelquerschnitt Netz [Max. Vorsicherungen [-]/UL ¹⁾ Wirkungsgrad ³⁾ Gewicht IP 20 EB Buchforma	I _{L,N} [A] (380 V) I _{L,N} [A] (460 V) mm²]/[AWG]²) [A] tt [kg]	7 6 4/10 16/15 0.96 7.5	9.1 8.3 4/10 25/20 0.96 9.5	12.2 10.6 4/10 25/25 0.96 9.5	15.0 14.0 4/10 35/30 0.96 9.5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Eingangsnennstrom Max. Kabelquerschnitt Netz [Max. Vorsicherungen [-]/UL ¹) Wirkungsgrad ³) Gewicht IP 20 EB Buchforma Gewicht IP 20 EB Kompaktfo	IL,N [A] (380 V) IL,N [A] (460 V) mm²]/[AWG]²) [A] tt [kg] rmat [kg]	7 6 4/10 16/15 0.96 7.5 8.5	9.1 8.3 4/10 25/20 0.96 9.5 10.5	12.2 10.6 4/10 25/25 0.96 9.5 10.5	15.0 14.0 4/10 35/30 0.96 9.5 10.5
	Eingangsnennstrom Max. Kabelquerschnitt Netz [Max. Vorsicherungen [-]/UL ¹) Wirkungsgrad ³⁾ Gewicht IP 20 EB Buchforma Gewicht IP 20 EB Kompaktfo Gewicht IP 54 EB Kompaktfo	IL,N [A] (380 V) IL,N [A] (460 V) mm²]/[AWG]²) [A] it [kg] rmat [kg] rmat [kg]	7 6 4/10 16/15 0.96 7.5	9.1 8.3 4/10 25/20 0.96 9.5	12.2 10.6 4/10 25/25 0.96 9.5	15.0 14.0 4/10 35/30 0.96 9.5
	Eingangsnennstrom Max. Kabelquerschnitt Netz [Max. Vorsicherungen [-]/UL ¹) Wirkungsgrad ³) Gewicht IP 20 EB Buchforma Gewicht IP 20 EB Kompaktfo	IL,N [A] (380 V) IL,N [A] (460 V) mm²]/[AWG]²) [A] tt [kg] rmat [kg]	7 6 4/10 16/15 0.96 7.5 8.5	9.1 8.3 4/10 25/20 0.96 9.5 10.5	12.2 10.6 4/10 25/25 0.96 9.5 10.5	15.0 14.0 4/10 35/30 0.96 9.5 10.5

Für diese Sicherungsart, siehe Abschnitt Sicherungen.
 American Wire Gauge = Amerikanisches Drahtmaß.
 Gemessen mit 30 m abgeschirmtem Motorkabel bei Nennlast und Nennfrequenz.

mäß internationalen Anfo		VLT-Typ		5016	5022	5027
	Normales Überlastmoment (110 %):					
	Ausgangsstrom	I _{VLT,N} [A] (380-440 V)		32	37.5	44
		IVLT,MAX (60 s) [A] (380-440 V)		35.2	41.3	48.4
		I _{VLT,N} [A] (441-500 V)		27.9	34	41.4
		I _{VLT,MAX} (60 s) [A] (441-500 V)		30.7	37.4	45.5
60	Ausgang	S _{VLT,N} [kVA] (380-440 V)		24.4	28.6	33.5
=		S _{VLT,N} [kVA] (441-500 V)		24.2	29.4	35.8
4	Typische Wellenleistung	P _{VLT,N} [kW]		15	18.5	22
ᆐ	Typische Wellenleistung	P _{VLT,N} [PS]		20	25	30
88	Hohes Überlastmoment (160 %):					
2	Ausgangsstrom	I _{VLT,N} [A] (380-440 V)		24	32	37.5
		I _{VLT,MAX} (60 s) [A] (380-440 V)		38.4	51.2	60
•		I _{VLT,N} [A] (441-500 V)		21.7	27.9	34
		I _{VLT,MAX} (60 s) [A] (441-500 V)		34.7	44.6	54.4
	Ausgang	S _{VLT,N} [kVA] (380-440 V)		18.3	24.4	28.6
a di		S _{VLT,N} [kVA] (441-500 V)		18.8	24.2	29.4
	Typische Wellenleistung	P _{VLT,N} [kW]		11	15	18.5
	Typische Wellenleistung	P _{VLT,N} [PS]		15	20	25
	Max. Kabelquerschnitt für Motor,	IF	P 54	16/6	16/6	16/6
	Bremse und Zwischenkreiskopplung [mr	n ²]/[AWG] ²⁾	20	16/6	16/6	35/2
	Min. Kabelquerschnitt für Motor,				,	
	Bremse und Zwischenkreiskopplung [mr	n2]/[AWG] ^{2) 4)}		10/8	10/8	10/8
	Eingangsnennstrom	I _{L,N} [A] (380 V)		32	37.5	44
10 01	5 5	I _{L,N} [A] (460 V)		27.6	34	41
	Max. Kabelquerschnitt,	IF	P 54	16/6	16/6	16/6
	Netz [mm ²]/[AWG]	IF	20	16/6	16/6	35/2
	Max. Vorsicherungen	[-]/UL ¹⁾ [A]		63/40	63/50	63/60
4 0 0	Wirkungsgrad ³⁾			0.96	0.96	0.96
0000	Gewicht IP 20 EB	[kg]	_	21	22	27
	Gewicht IP 54	[kg]		41	41	42
	Verlustleistung bei max. Last.	191				
	- hohes Überlastmoment (160 %)	[W]		419	559	655
	- normales Überlastmoment (110 %)	[M]		559	655	768
h		[]		IP 20/	IP 20/	IP 20
	Gehäuse			IP 54	IP 54	IP 54

- Der Abschnitt Sicherungen zeigt die entsprechenden Sicherungstypen
 American Wire Gauge = Amerikanisches Drahtmaß
 Gemessen mit 30 m abgeschirmtem Motorkabel bei Nennlast und Nennfrequenz.
 Der minimale Kabelquerschnitt ist der kleinste Kabelquerschnitt, der gemäß IP 20 an die Klemmen gelegt werden kann. Beachten Sie stets die nationalen und örtlichen Vorschriften bezüglich des minimalen Kabelquerschnitts.

Kompaktformat, Netzversorgung 3 x 380 - 500 V

Gemäß internationalen Anford		VLT-Typ		5032	5042	5052
	Normales Überlastmoment (110 %):					
	Ausgangsstrom	I _{VLT,N} [A] (380-440 V)		61	73	90
		I _{VLT,MAX} (60 s) [A] (380-440 V)		67.1	80.3	99
		I _{VLT,N} [A] (441-500 V)		54	65	78
		I _{VLT,MAX} (60 s) [A] (441-500 V)		59.4	71.5	85.8
	Ausgang	S _{VLT,N} [kVA] (380-440 V)		46.5	55.6	68.6
8		S _{VLT,N} [kVA] (441-500 V)		46.8	56.3	67.5
	Typische Wellenleistung	P _{VLT,N} [kW]		30	37	45
	Typische Wellenleistung	P _{VLT,N} [PS]		40	50	60
888 4@b 0000	Hohes Überlastmoment (160 %):					
0000 0000	Ausgangsstrom	I _{VLT,N} [A] (380-440 V)		44	61	73
	5 5	IVLT,MAX (60 s) [A] (380-440 V)		70.4	97.6	116.8
		I _{VLT,N} [A] (441-500 V)	-	41.4	54	65
		IVLT,MAX (60 s) [A] (441-500 V)		66.2	86	104
	Ausgang	S _{VLT,N} [kVA] (380-440 V)		33.5	46.5	55.6
	0 0	S _{VLT,N} [kVA] (441-500 V)		35.9	46.8	56.3
	Typische Wellenleistung	P _{VLT,N} [kW]		22	30	37
	Typische Wellenleistung	P _{VLT,N} [PS]		30	40	50
	Max. Kabelguerschnitt für Motor,	, t	IP 54	35/2	35/2	50/0
	Bremse und Zwischenkreiskopplung [n	nm²]/[AWG]²) 5)	IP20	35/2	35/2	50/0
	Min. Kabelguerschnitt für Motor,	1. 1				
	Bremse und Zwischenkreiskopplung [n	nm² 1/[AWG1²) 4)		10/8	10/8	16/6
	Eingangsnennstrom	I _{L,N} [A] (380 V)		60	72	89
10 01	gg	I _{L.N} [A] (460 V)		53	64	77
	Max. Kabelguerschnitt		IP 54	35/2	35/2	50/0
	Netz [mm ²]/[AWG] ^{2) 5)}		IP 20	35/2	35/2	50/0
	Max. Vorsicherungen	[-]/UL ¹⁾ [A]		80/80	100/100	125/125
□□□ 4♣Þ □□□□	Wirkungsgrad ³⁾	[7 [7		0.96	0.96	0.96
0000	Gewicht IP 20 EB	[kg]		28	41	42
	Gewicht IP 54	[kg]		54	56	56
	Verlustleistung bei max. Last.	191				
	- hohes Überlastmoment (160 %)	[W]		768	1065	1275
	- normales Überlastmoment (110 %)	[W]		1065	1275	1571
		[**]				
hd	Gehäuse			IP 20/	IP 20/	IP 20/

- 1. Der Abschnitt Sicherungen zeigt die entsprechenden Sicherungstypen
- 2. American Wire Gauge = Amerikanisches Drahtmaß
- Gemessen mit 30 m abgeschirmtem Motorkabel bei Nennlast und Nennfrequenz.
 Der minimale Kabelquerschnitt ist der kleinste Kabelquerschnitt, der gemäß IP 20 an die Klemmen gelegt werden kann. Beachten Sie stets die
- nationalen und örtlichen Vorschriften bezüglich des minimalen Kabelquerschnitts.

 5. Aluminiumkabel mit Querschnitten über 35 mm ² müssen mit einem Al-Cu-Stecker angeschlossen werden.

Kompaktformat, Netzversorgung 3 x 380 - 500 V

mäß internationalen Anfo	orderungen Normales Überlastmoment (110 %):	VLT-Typ		5062	5072	5102
	Ausgangsstrom	I _{VLT.N} [A] (380-440 V)		106	147	177
	Adogangostrom			100	177	177
		I _{VLT,MAX} (60 s) [A] (380-440 V)		117	162	195
		I _{VLT,N} [A] (441-500 V)		106	130	160
		I _{VLT,MAX} (60 s) [A] (441-500 V)		117	143	176
	Ausgang	S _{VLT,N} [kVA] (380-440 V)		80.8	102	123
		S _{VLT,N} [kVA] (441-500 V)		91.8	113	139
<u> </u>	Typische Wellenleistung	P _{VLT,N} [kW] (400 V)		55	75	90
	,,	P _{VLT.N} [PS] (460 V		75	100	125
		P _{VLT,N} [kW] (500 V)		75	90	110
00 00 00 00 00	Hohes Überlastmoment (160 %):	, , ,				
00	Ausgangsstrom	I _{VLT,N} [A] (380-440 V)		90	106	147
		I _{VLT,MAX} (60 s) [A] (380-440 V)		135	159	221
		I _{VLT,N} [A] (441-500 V)		80	106	130
	1	I _{VLT,MAX} (60 s) [A] (441-500 V)		120	159	195
	Ausgang	S _{VLT,N} [kVA] (380-440 V)		68.6	73.0	102
	5 5	S _{VLT,N} [kVA] (441-500 V)		69.3	92.0	113
	Typische Wellenleistung	P _{VLT,N} [kW] (400 V)		45	55	75
		P _{VLT,N} [PS] (460 V		60	75	100
		P _{VLT,N} [kW] (500 V)		55	75	90
	NA 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,		== (==)	150/300	150/30
	Max. Kabelquerschnitt für Motor,		IP 54	$50/0^{5)}$	MCM ⁶⁾	MCM ⁶
		0	1000	(-5)	120/250	120/25
	Bremse und Zwischenkreiskopplung [mr	n² J/[AWG]²)	IP20	50/0 ⁵⁾	MCM ⁵⁾	MCM ⁵
	Min. Kabelquerschnitt für Motor,	2 1/(A)A(O)4)		10/0	05/4	25/4
	Bremse und Zwischenkreiskopplung [mr			16/6	25/4	
	Eingangsnennstrom	I _{L,N} [A] (380 V)		104	145	174
		I _{L,N} [A] (460 V)		104	128	158
8 8	Max. Kabelquerschnitt		IP 54	50/0 ⁵⁾	150/300 MCM	150/30 MCM
	Netz [mm ²]/[AWG] ²⁾		IP 20	50/0 ⁵⁾	120/250 MCM ⁵⁾	120/25 MCM ⁵⁾
□□□ □□□ □□□ □□□ □□□ □□□ □□□ □□□ □□□ □□	Max. Vorsicherungen	[-]/UL ¹⁾ [A]		160/150	225/225	250/25
0000	Wirkungsgrad ³⁾	[] 0= []		>0.97	>0.97	>0.97
	Gewicht IP 20 EB	[kg]		43	54	54
	Gewicht IP 54	[kg]		60	77	77
	Verlustleistung bei max. Last.	[9]			-	
	- hohes Überlastmoment (160 %)	[W]		1122	1058	1467
lsd	- normales Überlastmoment (110 %)	[W]		1322	1467	1766
		()		IP20/	IP20/	IP20/
	Gehäuse			IP 54	IP 54	IP 54

- Der Abschnitt Sicherungen zeigt die entsprechenden Sicherungstypen
 American Wire Gauge = Amerikanisches Drahtmaß
 Gemessen mit 30 m abgeschirmtem Motorkabel bei Nennlast und Nennfrequenz.
- 4. Der minimale Kabelquerschnitt ist der kleinste Kabelquerschnitt, der gemäß IP 20 an die Klemmen gelegt werden kann. Beachten Sie stets die nationalen und örtlichen Vorschriften bezüglich des minimalen Kabelquerschnitts.
- 5. Aluminiumkabel mit Querschnitten über 35 mm ² müssen mit einem Al-Cu-Stecker angeschlossen werden.
- 6. Bremse und Zwischenkreiskopplung: 95 mm² / AWG 3/0

Kompaktformat Netzversorgung 3 x 380-500 V

emäß internationalen A		VLT-Typ	5122	5152	5202	5252	5302
	Normaler Überlaststrom	(110 %):					
	Ausgangsstrom	I _{VLT,N} [A] (380-440 V)	212	260	315	395	480
		IVLT, MAX (60 s) [A] (380-440 V)	233	286	347	434	528
		I _{VLT,N} [A] (441-500 V)	190	240	302	361	443
		I _{VLT, MAX} (60 s) [A] (441-500 V)	209	264	332	397	487
	Ausgang	S _{VLT.N} [kVA] (400 V)	147	180	218	274	333
	3 3	S _{VLT,N} [kVA] (460 V)		191	241	288	353
		S _{VLT,N} [kVA] (500 V)		208	262	313	384
	Typische Wellenleistung	[kW] (400 V)		132	160	200	250
<u>8</u>	,,,	[PS] (460 V)		200	250	300	350
		[kW] (500 V)		160	200	250	315
	Hohes Überlastmoment (
55	Ausgangsstrom	I _{VLT,N} [A] (380-440 V)	177	212	260	315	395
	3	IVLT, MAX (60 s) [A] (380-440 V)		318	390	473	593
	1	I _{VLT,N} [A] (441-500 V)	160	190	240	302	361
		I _{VLT, MAX} (60 s) [A] (441-500 V)	240	285	360	453	542
	Ausgang	S _{VLT,N} [kVA] (400 V)	123	147	180	218	274
	99	S _{VLT,N} [kVA] (460 V)		151	191	241	288
		S _{VLT.N} [kVA] (500 V)		165	208	262	313
	Typische Wellenleistung	[kW] (400 V)		110	132	160	200
	. ypicono rremoniciang	[PS] (460 V)		150	200	250	300
		[kW] (500 V)		132	160	200	250
	Max. Kabelquerschnitt für			x 70		2 x 18	5
	Motor	[AWG] ^{2,4,6}		x 2/0		2 x 350 r	ncm
	Max. Kabelquerschnitt für			x 70		2 x 18	
	Zwischenkreiskopplung und Bremse	[mm²] ^{4,6} [AWG] ^{2,4,6}	2	x 2/0		2 x 350 N	
	Normaler Überlaststrom	(110 %):					
	Eingangsnennstrom	I _{L,N} [A] (380-440 V)	208	256	317	385	467
	3 3	I _{L.N} [A] (441-500 V)		236	304	356	431
	Hohes Überlastmoment (, , , , ,					
8 8	Eingangsnennstrom	I _{L,N} [A] (380-440 V)	174	206	256	318	389
		I _{L,N} [A] (441-500 V)		185	236	304	356
	Max. Kabelguerschnitt	[mm ²] ^{4,6}		x 70		2 x 18	_
	Stromversorgung	[AWG] ^{2,4,6}		x 2/0		2 x 350 N	
0000	Max. Vorsicherungen		000/	350/	450/	500/	630/
	(Netz) [-]/UL	[A] ¹	300	350	400	500	600
	Wirkungsgrad ³				0,9		
	Verlustleistung	Normale Überlast [W]	2619	3309	4163	4977	6107
		Hohe Überlast [W]		2619	3309	4163	4977
	Gewicht	IP00 [kg]		91	112	123	138
	Gewicht	IP21/NEMA1 [kg]		104	125	136	151
	Gewicht	IP54/NEMA12 [kg]		104	125	136	151
	5.51110110	IP00, IP21/NEI					

- 1. Den Sicherungstyp finden Sie im Abschnitt Sicherungen.
- American Wire Gauge = Amerikanisches Drahtmaß.
 Gemessen mit 30 m abgeschirmtem Motorkabel bei Nennlast und Nennfrequenz.
- 4. Der maximale Kabelquerschnitt ist der größtmögliche Kabelquerschnitt, der an die Klemmen gelegt werden kann. Beachten Sie stets die nationalen und örtlichen Vorschriften bezüglich des minimalen Kabelquerschnitts.
- 5. Gewicht ohne Transportbehälter.
- 6. Verbindungsbolzen Stromversorgung und Motor: M10; Bremse und Zwischenkreiskopplung: M8

■ Kompaktformat, Netzversorgung 3 x 380-500 V

emäß internationaler	Anfordarungan	500 V VLT-Typ	5252	5452	5502	5552
eman memanonare	Normaler Überlaststrom	νΕ1-1yp ν(110 %)•	3332	3432	3302	3332
	Normaler Oberiasistron	1 (110 %).	_			
	Ausgangsstrom	I _{VLT,N} [A] (380-440 V)	600	658	745	800
	7.doga.igootioiii	IVLT, MAX (60 s) [A] (380-440				
		V)	660	724	820	880
		I _{VLT,N} [A] (441-500 V)	540	590	678	730
		I _{VLT, MAX} (60 s) [A] (441-500	594	0.40	740	000
		V)	594	649	746	803
	Ausgang	S _{VLT,N} [kVA] (400 V)	416	456	516	554
		Svlt,n [kVA] (460 V)	430	470	540	582
		Svlt,n [kVA] (500 V)	468	511	587	632
- Al	Typische Wellenleistung	[kW] (400 V)		355	400	450
		[PS] (460 V)	450	500	550/600	600
		[kW] (500 V)	355	400	500	530
<u> </u>	Hohes Überlastmoment	(160 %):				
<u>50</u>	Ausgangsstrom	I _{VLT,N} [A] (380-440 V)	480	600	658	695
		IVLT, MAX (60 s) [A] (380-440	720	900	987	1042
		V)				
	7	I _{VLT,N} [A] (441-500 V)		540	590	678
		IVLT, MAX (60 s) [A] (441-500	665	810	885	1017
		V)				
	Ausgang	S _{VLT,N} [kVA] (400 V)		416	456	482
		Svlt,n [kVA] (460 V)		430	470	540
		Svlt,N [kVA] (500 V)		468	511	587
	Typische Wellenleistung	[kW] (400 V)		315	355	400
		[PS] (460 V)		450	500	550
		[kW] (500 V)		355	400	500
	Max. Kabelquerschnitt für			4	x240	
	Motor und Zwischen-	[AWG] ^{2,4,6}			00 MCM	
	kreiskopplung					
	Max. Kabelquerschnitt	[mm²] ^{4,6}			x185	
	für Bremse	[AWG] ^{2,4,6}		2x35	50 MCM	
	Normaler Überlaststrom					
	Eingangsnennstrom	I _{L,N} [A] (380-440 V)		647	733	787
		I _{L,N} [A] (441-500 V)	531	580	667	718
	Hohes Überlastmoment	. ,	_			
IS SI	Eingangsnennstrom	I _{L,N} [A] (380-440 V)		590	647	684
		I _{L,N} [A] (441-500 V)		531	580	667
	Max. Kabelquerschnitt für				x240	
	Stromversorgung	[AWG] ^{2,4,6}		4x50	00 MCM	
0000	Max. Vorsicherungen	ΓΔ1 ¹	700/700	900/900	900/900	900/90
	(Netz) [-]/UL	μ τι τ _ι τι τ	7007700			
	Wirkungsgrad ³				0,98	
	Verlustleistung	Normale Überlast [W]	7630	7701	8879	9428
		Hohe Überlast [W]	6005	6960	7691	7964
	Gewicht	IP00 [kg]	221	234	236	277
	Gewicht	IP21/NEMA1 [kg]		270	272	313
	Gewicht	IP54/NEMA12 [kg]		270	272	313
	Gehäuse	: 01		I und IP54/N		

- 1. Zum Sicherungstyp siehe Abschnitt Sicherungen.
- 2. American Wire Gauge = Amerikanisches Drahtmaß.
- 3. Gemessen mit 30 m abgeschirmtem Motorkabel bei Nennlast und Nennfrequenz.
- 4. Der maximale Kabelquerschnitt ist der größtmögliche Kabelquerschnitt, der an die Klemmen gelegt werden kann. Beachten Sie stets die nationalen und örtlichen Vorschriften zum minimalen Kabelquerschnitt.
- 5. Gewicht ohne Transportbehälter.
- 6. Verbindungsbolzen Stromversorgung, Motor und Zwischenkreiskopplung: M10 (Presskabelschuh), 2xM8 (Kastenklemme), M8 (Bremse)

ut internationalen Anfo	rderungen	VLT-Typ 5	001	5002	5003	5004
	Normales Übermoment (110 %):					
	Ausgangsstrom	I _{VLT,N} [A] (550 V) 2	16	2.9	4.1	5.2
		IVLT, MAX (60 s) [A] (550 V) 2		3.2	4.5	5.7
		I _{VLT,N} [A] (575 V) 2		2.7	3.9	4.9
		IVLT, MAX (60 s) [A] (575 V) 2		3.0	4.3	5.4
	Ausgang	S _{VLT,N} [kVA] (550 V) 2		2.8	3.9	5.0
		S _{VLT,N} [kVA] (575 V) 2		2.7	3.9	4.9
<u> </u>	Typische Leistung an der Welle	P _{VLT,N} [kW] 1		1.5	2.2	3
	Typische Leistung an der Welle	P _{VLT,N} [HP] 1	.5	2	3	4
8 1	Hohes Übermoment (160 %):					
<u>></u>	Ausgangsstrom	I _{VLT,N} [A] (550 V) 1	8	2.6	2.9	4.1
<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		I _{VLT, MAX} (60 s) [A] (550 V) 2		4.2	4.6	6.6
// I		I _{VLT,N} [A] (575 V) 1		2.4	2.7	3.9
	-	I _{VLT, MAX} (60 s) [A] (575 V) 2		3.8	4.3	6.2
	Ausgang	S _{VLT,N} [kVA] (550 V) 1		2.5	2.8	3.9
		S _{VLT,N} [kVA] (575 V) 1		2.4	2.7	3.9
	Typische Leistung an der Welle	P _{VLT,N} [kW] 0		1.1	1.5	2.2
	Typische Leistung an der Welle	P _{VLT,N} [HP] 1		1.5	2	3
	Max. Kabelquerschnitt für Motor, Bremse und Zwischenkreiskopplung [mm	ν ² 1/ΓΛΛΛ(C1 ²) 4	/10	4/10	4/10	4/10
	Bremse und Zwischenkreiskopplung [mm	i j/[AWG] [/]				
	Normales Übermoment (110 %):					
	Eingangsnennstrom	I _{L,N} [A] (550 V) 2	2.5	2.8	4.0	5.1
N AI		I _{L,N} [A] (600 V) 2	1.2	2.5	3.6	4.6
	Hohes Übermoment (160 %):					
	Eingangsnennstrom	I _{L,N} [A] (550 V) 1	.8	2.5	2.8	4.0
		I _{L,N} [A] (600 V) 1	.6	2.2	2.5	3.6
=== 4 ♦ ₽	Max. Kabelquerschnitt Netz [mm²]/[AWG		/10	4/10	4/10	4/10
0000	Max. Vorabsicherung	[-]/UL ¹⁾ [A] 3	3	4	5	6
	Wirkungsgrad 3)		.96	0.96	0.96	0.96
	Gewicht IP 20 EB	[kg] 1	0.5	10.5	10.5	10.5
	Verlustleistung bei max. Last.	[W] 6	3	71	102	129
	Schutzart				20 / Nema 1	

- Art der Sicherungen siehe Abschnitt Sicherungen.
 American Wire Gauge = Amerikanisches Drahtmaß.
 Gemessen mit 30 m abgeschirmtem Motorkabel bei Nennlast und Nennfrequenz.

Kompaktformat, Netzversorgung 3 x 525 - 600 V

aut internationalen Anforder	ungen	VLT-Typ	5005	5006	5008	5011
	Normales Übermoment (110	%):				
	Ausgangsstrom	I _{VLT,N} [A] (550 V)	6.4	9.5	11.5	11.5
		IVLT, MAX (60 s) [A] (550 V)		10.5	12.7	12.7
	_	I _{VLT,N} [A] (575 V)		9.0	11.0	11.0
	_	I _{VLT, MAX} (60 s) [A] (575 V)		9.9	12.1	12.1
	Ausgang	S _{VLT,N} [kVA] (550 V)		9.0	11.0	11.0
		S _{VLT,N} [kVA] (575 V)	6.1	9.0	11.0	11.0
8	Typische Leistung an der Welle	P _{VLT,N} [kW]	4	5.5	7.5	7.5
	Typische Leistung an der Welle	P _{VLT,N} [HP]	5	7.5	10.0	10.0
88 ♦Þ	Hohes Übermoment (160 %):				
1 <u>0000</u>	Ausgangsstrom	I _{VLT,N} [A] (550 V)	5.2	6.4	9.5	11.5
		I _{VLT, MAX} (60 s) [A] (550 V)	8.3	10.2	15.2	18.4
		I _{VLT,N} [A] (575 V)	4.9	6.1	9.0	11.0
		I _{VLT, MAX} (60 s) [A] (575 V)	7.8	9.8	14.4	17.6
	Ausgang	S _{VLT,N} [kVA] (550 V)	5.0	6.1	9.0	11.0
 J		S _{VLT,N} [kVA] (575 V)	4.9	6.1	9.0	11.0
	Typische Leistung an der Welle	P _{VLT,N} [kW]	3	4	5.5	7.5
	Typische Leistung an der Welle	P _{VLT,N} [HP]	4	5	7.5	10
	Max. Kabelquerschnitt für Mo Bremse und Zwischenkreisko		4/10	4/10	4/10	4/10
	Normales Übermoment (110					
	Eingangsnennstrom _	I _{L,N} [A] (550 V)		9.2	11.2	11.2
88		I _{L,N} [A] (600 V)	5.7	8.4	10.3	10.3
	Hohes Übermoment (160 %					
	Eingangsnennstrom	I _{L,N} [A] (550 V)		6.2	9.2	11.2
□□□ □□□ □□□ □□□ □□□ □□□ □□□ □□□		I _{L,N} [A] (600 V)		5.7	8.4	10.3
4 0 000	Max. Kabelquerschnitt Netz [4/10	4/10	4/10	4/10
3333	Max. Vorabsicherung	[-]/UL ¹⁾ [A]		10	15	20
	Wirkungsgrad 3)		0.96	0.96	0.96	0.96
	Gewicht IP 20 EB	[kg]	10.5	10.5	10.5	10.5
	Verlustleistung bei max. Last.	[W]	160	236	288	288
<u>. </u>	Schutzart		IP 20 / N	Nema 1		

- 1. Art der Sicherungen siehe Abschnitt Sicherungen.
- 2. American Wire Gauge = Amerikanisches Drahtmaß.
- 3. Gemessen mit 30 m abgeschirmtem Motorkabel bei Nennlast und Nennfrequenz.

■ Kompaktformat Netzversorgung 3 x 525 - 600 V

t internationalen Anforde		VLT-Typ 50	16 5022	5027
	Normales Übermoment (110 %):	L [A] (FEO.V) 02		0.4
	Ausgangsstrom	I _{VLT,N} [A] (550 V) 23		34 37
		IVLT, MAX (60 s) [A] (550 V) 25		32
		I _{VLT,N} [A] (575 V) 22		32
	A	I _{VLT, MAX} (60 s) [A] (575 V) 24		
Ai	Ausgang	S _{VLT,N} [kVA] (550 V) 22		32
3 📑	Touris de l'aistens en des Wells	S _{VLT,N} [kVA] (575 V) 22		32 22
-1 I	Typische Leistung an der Welle	P _{VLT,N} [kW] 15		
테 	Typische Leistung an der Welle	P _{VLT,N} [HP] 20	25	30
	Hohes Übermoment (160 %):	[[[[[[[[[[[[[[[[[[[[
<u> </u>	Ausgangsstrom	I _{VLT,N} [A] (550 V) 18	23	28
		I _{VLT, MAX} (60 s) [A] (550 V) 29		45
		I _{VLT,N} [A] (575 V) 17	22	27
		IVLT, MAX (60 s) [A] (575 V) 27	35	43
	Ausgang	S _{VLT,N} [kVA] (550 V) 17	22	27
	<u> </u>	S _{VLT,N} [kVA] (575 V) 17	22	27
	Typische Leistung an der Welle	P _{VLT,N} [kW] 11	15	18.5
	Typische Leistung an der Welle	P _{VLT,N} [HP] 15		25
	Max. Kabelquerschnitt für Motor,	16	16	35
	Bremse und Zwischenkreiskopplung [mi		6	2
	Min. Kabelquerschnitt für Motor,	0.5	0.5	10
	Bremse und Zwischenkreiskopplung [mi	m2]/[AWG] ⁴⁾ 20	20	8
	Normales Übermoment (110 %):			
	Eingangsnennstrom	I _{L,N} [A] (550 V) 22	27	33
8		I _{L,N} [A] (600 V) 21	25	30
	Hohes Übermoment (160 %):			
	Eingangsnennstrom	I _{L,N} [A] (550 V) 18	22	27
 	-	I _{L,N} [A] (600 V) 16	21	25
	Max. Kabelquerschnitt,	16	16	35
	Netz [mm ²]/[AWG] ²⁾	6	6	2
	Max. Vorabsicherung	[-]/UL ¹⁾ [A] 30	35	45
	Wirkungsgrad ³⁾	0.9	6 0.96	0.96
	Gewicht IP 20 EB	[kg] 23		30
	Verlustleistung bei max. Last	[W] 576		838
	Schutzart Schutzart	[11] 070		Nema 1

Sicherungsart siehe Abschnitt Sicherungen
 American Wire Gauge = Amerikanisches Drahtmaß.
 Gemessen mit 30 m abgeschirmtem Motorkabel bei Nennlast und Nennfrequenz.
 Der minimale Kabelquerschnitt ist der kleinste Kabelquerschnitt, der gemäß IP 20 an die Klemmen gelegt werden kann. Beachten Sie stets die nationalen und örtlichen Vorschriften bezüglich des minimalen Kabelquerschnitts.

Kompaktformat, Netzversorgung 3 x 525 - 600 V

ıt internationalen Anforderu		VLT-Typ	5032	5042	5052	5062
	Normales Übermoment (110 %):	1 [4] (550.10)	40		05	
	Ausgangsstrom	I _{VLT,N} [A] (550 V)		54	65	81
		I _{VLT, MAX} (60 s) [A] (550 V)		59	72	89
		I _{VLT,N} [A] (575 V)		52	62	77
		I _{VLT, MAX} (60 s) [A] (575 V)		57	68	85
N.	Ausgang	S _{VLT,N} [kVA] (550 V)		51	62	77
 	-	S _{VLT,N} [kVA] (575 V)		52	62	77
<u> </u>	Typische Leistung an der Welle	P _{VLT,N} [kW]		37	45	55
ᆐ	Typische Leistung an der Welle	P _{VLT,N} [HP]	40	50	60	75
## }}	Hohes Übermoment (160 %):					
5	Ausgangsstrom	I _{VLT,N} [A] (550 V)		43	54	65
		I _{VLT, MAX} (60 s) [A] (550 V)	54	69	86	104
		I _{VLT,N} [A] (575 V)	32	41	52	62
		I _{VLT, MAX} (60 s) [A] (575 V)	51	66	83	99
	Ausgang	S _{VLT,N} [kVA] (550 V)	32	41	51	62
		S _{VLT,N} [kVA] (575 V)	32	41	52	62
	Typische Leistung an der Welle	P _{VLT,N} [kW]	22	30	37	45
	Typische Leistung an der Welle	P _{VLT,N} [HP]		40	50	60
	Max. Kabelguerschnitt für Motor,	, <u>, , , , , , , , , , , , , , , , , , </u>	35	50	50	50
	Bremse und Zwischenkreiskopplung	mm ²]/[AWG] ^{2) 5)}	2	1/0	1/0	1/0
	Min. Kabelguerschnitt für Motor,		10	16	16	16
	Bremse und Zwischenkreiskopplung	mm ² 1/[AWG1 ⁴⁾	8	6	6	6
	Normales Übermoment (110 %):	, in the second				
	Eingangsnennstrom	I _{L,N} [A] (550 V)	42	53	63	79
8 8		I _{L.N} [A] (600 V)		49	58	72
	Hohes Übermoment (160 %):	, <u>, , , , , , , , , , , , , , , , , , </u>				
	Eingangsnennstrom	I _{L,N} [A] (550 V)	33	42	53	63
 		I _{L.N} [A] (600 V)		38	49	58
<u>4\$</u> ₽	Max. Kabelguerschnitt	-5.1. 2 (000 1)	35	50	50	50
0000	Netz [mm ²]/[AWG] ^{2) 5)}		2	1/0	1/0	1/0
	Max. Vorabsicherung	[-]/UL ¹⁾ [A]		75	90	100
	Wirkungsgrad ³⁾	[-]/OL / [A]	0.96	0.96	0.96	0.96
	Gewicht IP 20 EB	Fl.~1		48	48	48
		[kg]			1624	
vN	Verlustleistung bei max. Last Schutzart	[VV]	1074	1362	1624 0 / Nema 1	2016

- 1. Sicherungsart siehe Abschnitt Sicherungen
- 2. American Wire Gauge = Amerikanisches Drahtmaß.
- 3. Gemessen mit 30 m abgeschirmtem Motorkabel bei Nennlast und Nennfrequenz.

 4. Der minimale Kabelquerschnitt ist der kleinste Kabelquerschnitt, der gemäß IP 20 an die Klemmen gelegt werden kann. Beachten Sie stets die nationalen und örtlichen Vorschriften bezüglich des minimalen Kabelquerschnitts.
- 5. Aluminiumkabel mit Querschnitten über 35 mm² müssen mit einem Al-Cu-Stecker angeschlossen werden.

■ Netzversorgung 3 x 525 - 690 V

Netzversorgung 3 x 5 Gemäß internationalen Ant		VLT-Typ	5042	5052	5062	5072	5102
somaly internationalon vin	Normales Überlastmome		00 12	0002	0002	0072	0.02
	Ausgangsstrom	I _{VLT,N} [A] (525-550 V)	56	76	90	113	137
		IVLT, MAX (60 s) [A] (525-550		84	99	124	151
		I _{VLT,N} [A] (551-690 V)	54	73	86	108	131
		I _{VLT, MAX} (60 s) [A] (551-690	59	80	95	119	144
	Ausgang	V) S _{VLT,N} [kVA] (550 V)	53	72	86	108	131
	Ausgang	S _{VLT,N} [kVA] (575 V)		73	86	108	130
		S _{VLT,N} [kVA] (690 V)		87	103	129	157
	Typische Wellenleistung	[kW] (550 V)		45	55	75	90
<u> </u>	. ypiconie 11 ciionicianig	[PS] (575 V)		60	75	100	125
		[kW] (690 V)		55	75	90	110
	Hohes Überlastmoment (- 110
	Ausgangsstrom	I _{VLT,N} [A] (525-550 V)	48	56	76	90	113
000	Adogangoonom	IVLT, MAX (60 s) [A] (525-550		90	122	135	170
		I _{VLT,N} [A] (551-690 V)	16	54	73	86	108
		I _{VLT, MAX} (60 s) [A] (551-690		34	73	- 00	100
N N		V)	74	86	117	129	162
	Ausgang	Svlt,n [kVA] (550 V)		53	72	86	108
		Svlt,n [kVA] (575 V)		54	73	86	108
		S _{VLT,N} [kVA] (690 V)	55	65	87	103	129
	Typische Wellenleistung	[kW] (550 V)	30	37	45	55	75
		[PS] (575 V)	40	50	60	75	100
		[kW] (690 V)	37	45	55	75	90
	Max. Kabelquerschnitt für	[mm ²] ^{4,6}			2 x 70)	
	Motor	[AWG] ^{2,4,6}			2 x 2/	0	
	Max. Kabelquerschnitt für	[mm ²] ^{4,6}			2 x 70)	
	Zwischenkreiskopplung und Bremse	[AWG] ^{2,4,6}			2 x 2/	0	
	Normales Überlastmome	nt (110 %):					
	Eingangsnennstrom	I _{L,N} [A] (550 V)		77	89	110	130
		I _{L,N} [A] (575 V)		74	85	106	124
		I _{L,N} [A] (690 V)	58	77	87	109	128
	Hohes Überlastmoment (160 %):					
8 8	Eingangsnennstrom	I _{L,N} [A] (550 V)	53	60	77	89	110
		I _{L,N} [A] (575 V)		58	74	85	106
		I _{L,N} [A] (690 V)	50	58	77	87	109
40 40 0000	Max. Kabelquerschnitt	[mm ²] ^{4,6}			2 x 70)	
0000	Stromversorgung	[AWG] ^{2,4,6}			2 x 2/	0	
	Max. Vorsicherungen (Netz) [-]/UL	[A] ¹	125	160	200	200	250
	Wirkungsgrad ³		0.97	0.97	0.98	0.98	0.9
	Verlustleistung	Normale Überlast [W]		1717	1913	2262	2662
	3	Hohe Überlast [W]		1459	1721	1913	2264
	Gewicht	IP00 [kg]			82		
	Gewicht	IP21/NEMA1 [kg]			96	,	
	Gewicht	IP54/NEMA12 [kg]			96		
		5 ./112.111/112 [119]			~~		

- 1. Zum Sicherungstyp siehe Abschnitt Sicherungen.
- 2. American Wire Gauge = Amerikanisches Drahtmaß.
- 3. Gemessen mit 30 m abgeschirmtem Motorkabel bei Nennlast und Nennfrequenz.

Gehäuse

- 4. Der maximale Kabelquerschnitt ist der größtmögliche Kabelquerschnitt, der an die Klemmen gelegt werden kann. Beachten Sie stets die nationalen und örtlichen Vorschriften zum minimalen Kabelquerschnitt.
- 5. Gewicht ohne Transportbehälter.
- 6. Verbindungsbolzen Stromversorgung und Motor: M10; Bremse und Zwischenkreiskopplung: M8

IP00, IP21/NEMA 1 und IP54/NEMA12

emäß internationalen /	Anforderungen	VLT-Typ	5122	5152	5202	5252	5302	5352
	Normales Überlastmome	nt (110 %):						
	Ausgangsstrom	I _{VLT,N} [A] (525-550 V)	162	201	253	303	360	418
	_	I _{VLT, MAX} (60 s) [A] (525-550 V)	178	221	278	333	396	460
	_	I _{VLT,N} [A] (551-690 V)	155	192	242	290	344	400
	-	I _{VLT, MAX} (60 s) [A]						
		(551-690 V)	171	211	266	319	378	440
	Ausgang	S _{VLT,N} [kVA] (550 V)		191	241	289	343	398
	_	S _{VLT,N} [kVA] (575 V)		191	241	289	343	398
		S _{VLT,N} [kVA] (690 V)		229	289	347	411	478
	Typische Wellenleistung _	[kW] (500 V)		132	160	200	250	315
- 8	<u> </u>	[PS] (575 V)		200	250	300	350	400
		[kW] (690 V)	132	160	200	250	315	400
, ,	Hohes Überlastmoment (
<u> </u>	Ausgangsstrom	I _{VLT,N} [A] (525-550 V)	137	162	201	253	303	360
		I _{VLT, MAX} (60 s) [A] (525-550 V)	206	243	302	380	455	540
	_	I _{VLT,N} [A] (551-690 V)	131	155	192	242	290	344
	_	I _{VLT, MAX} (60 s) [A] (551-690 V)		233	288	363	435	516
	Ausgang	S _{VLT,N} [kVA] (550 V)	131	154	191	241	289	343
	5 5 _	S _{VLT,N} [kVA] (575 V)		154	191	241	289	343
	_	S _{VLT,N} [kVA] (690 V)		185	229	289	347	411
	Typische Wellenleistung	[kW] (500 V)		110	132	160	200	250
	"	[PS] (575 V)		150	200	250	300	350
	_	[kW] (690 V)		132	160	200	250	315
	Max. Kabelquerschnitt	[mm ²] ^{4,6}	2	x 70			x 185	
	für Motor	[AWG] ^{2,4,6}	2	x 2/0		2 x 3	350 MCM	
	Max. Kabelquerschnitt	[mm ²] ^{4,6}	2	x 70		2	x 185	
	für Zwischenkreiskopp- lung und Bremse	[AWG] ^{2,4,6}		x 2/0			350 MCM	
	Normales Überlastmome		-					
	Eingangsnennstrom _	I _{L,N} [A] (550 V)		198	245	299	355	408
	_	I _{L,N} [A] (575 V)		189	234	286	339	390
		I _{L,N} [A] (690 V)	155	197	240	296	352	400
	Hohes Überlastmoment (
8 8	Eingangsnennstrom	I _{L,N} [A] (550 V)		158	198	245	299	355
	=	I _{L,N} [A] (575 V)		151	189	234	286	339
		I _{L,N} [A] (690 V)		155	197	240	296	352
<u>4⇔</u>	Max. Kabelquerschnitt	$[mm^2]^{4,6}$		x 70			x 185	
0000	Stromversorgung	[AWG] ^{2,4,6}	2	x 2/0		2 x 3	350 MCM	
	Max. Vorsicherungen (Netz) [-]/UL	[A] ¹	315	350	350	400	500	550
	Wirkungsgrad ³					0,98		
<u> </u>	Verlustleistung	Normale Überlast [W]	3114	3612	4292	5155	5821	6149
	° –	Hohe Überlast [W]		2952	3451	4275	4875	5185
	Gewicht	IP00 [kg]		91	112	123	138	151
	Gewicht	IP21/NEMA1 [kg]		104	125	136	151	165
	Gewicht	IP54/NEMA12 [kg]		104	125	136	151	165
	Gehäuse	IP00, IP21/NEN						

1. Den Sicherungstyp finden Sie im Abschnitt Sicherungen.

- 2. American Wire Gauge = Amerikanisches Drahtmaß.
- 3. Gemessen mit 30 m abgeschirmtem Motorkabel bei Nennlast und Nennfrequenz.
- 4. Der maximale Kabelquerschnitt ist der größtmögliche Kabelquerschnitt, der an die Klemmen gelegt werden kann. Beachten Sie stets die nationalen und örtlichen Vorschriften bezüglich des minimalen Kabelquerschnitts.
- 5. Gewicht ohne Transportbehälter.
- 6. Verbindungsbolzen Stromversorgung und Motor: M10; Bremse und Zwischenkreiskopplung: M8

■ Kompaktformat, Netzversorgung 3 x 525 - 690 V

emäß internationale		VLT-Typ	5402	5502	5602
	Normaler Überlaststrom (1	10 %):			,
	Ausgangsstrom	I _{VLT,N} [A] (525-550 V)		596	630
		IVLT, MAX (60 s) [A] (525-550 V)		656	693
		I _{VLT,N} [A] (551-690 V)		570	630
		IVLT, MAX (60 s) [A] (551-690 V)	550	627	693
	Ausgang	S _{VLT,N} [kVA] (550 V)	498	568	600
		S _{VLT,N} [kVA] (575 V)	498	568	627
		S _{VLT,N} [kVA] (690 V)	598	681	753
A	Typische Wellenleistung	[kW] (550 V)	400	450	500
3		[PS] (575 V)		600	650
1		[kW] (690 V)		560	630
5	Hohes Überlastmoment (1	60 %):			
<u>></u>	Ausgangsstrom	I _{VLT,N} [A] (525-550 V)	429	523	596
		IVLT, MAX (60 s) [A] (525-550 V)		785	894
	_	I _{VLT,N} [A] (551-690 V)		500	570
		I _{VLT, MAX} (60 s) [A] (551-690 V)		750	855
	Ausgang	S _{VLT,N} [kVA] (550 V)		498	568
a		S _{VLT,N} [kVA] (575 V)		498	568
		S _{VLT,N} [kVA] (690 V)		598	681
	Typische Wellenleistung	[kW] (550 V)		400	450
	Typicone Wellerholdiding	[PS] (575 V)		500	600
		[kW] (690 V)		500	560
	Max. Kabelguerschnitt für	[mm ²] ^{4,6}			- 000
	Motor und Zwischenkreis-	[AWG] ^{2,4,6}		4x240	
	kopplung	[AWG] //		4x500 MCM	
	Max. Kabelquerschnitt	[mm ²] ^{4,6}		2x185	
	für Bremse	[AWG] ^{2,4,6}		2x350 MCM	
	Normaler Überlaststrom (1			ZXOOO IVIOIVI	
	Eingangsnennstrom	I _{L,N} [A] (525-550 V)	504	574	607
	Lingangsheimstrom	I _{L,N} [A] (551-690 V)		549	607
	Hohes Überlastmoment (1		402	343	007
	Eingangsnennstrom	I _{L,N} [A] (525-550 V)	413	504	574
8		I _{L,N} [A] (551-690 V)		482	549
	Max. Kabelquerschnitt für			4x240	J-10
	Stromversorgung	[AWG] ^{2,4,6}		4x500 MCM	
400	Max. Vorsicherungen (Netz)			4X300 WOW	
0000	[-]/UL	[A] ¹	700/700	900/900	900/900
	<u>[-]/OL</u> Wirkungsgrad ³			0,98	
		Normala l'ibaria et [\\/]	7040		0670
	Verlustleistung	Normale Überlast [W]	1243	8727	9673
n		Hohe Überlast [W]	5818	7671	8715
	Gewicht	IP00 [kg]		236	277
	Gewicht	IP21/NEMA1 [kg]		272	313
	Gewicht	IP54/NEMA12 [kg]		272	313
	Gehäuse	IP00, IP21/N	EMA 1 und I	P54/NEMA12	

- 1. Zum Sicherungstyp siehe Abschnitt Sicherungen.
- 2. American Wire Gauge = Amerikanisches Drahtmaß.
- 3. Gemessen mit 30 m abgeschirmtem Motorkabel bei Nennlast und Nennfrequenz.
- 4. Der maximale Kabelquerschnitt ist der größtmögliche Kabelquerschnitt, der an die Klemmen gelegt werden kann. Beachten Sie stets die nationalen und örtlichen Vorschriften zum minimalen Kabelquerschnitt.
- 5. Gewicht ohne Transportbehälter.
- 6. Verbindungsbolzen Stromversorgung, Motor und Zwischenkreiskopplung: M10 (Presskabelschuh), 2xM8 (Kastenklemme), M8 (Bremse)

■ Sicherungen

UL-Konformität

Um den UL/cUL-Zulassungen zu entsprechen, müssen Vorsicherungen gemäß nachstehender Tabelle verwendet werden.

200-240 V

VLT	Bussmann	SIBA	Littel Fuse	Ferraz-Shawmut
5001	KTN-R10	5017906-010	KLN-R10	ATM-R10 oder A2K-10R
5002	KTN-R10	5017906-010	KLN-R10	ATM-R10 oder A2K-10R
5003	KTN-R25	5017906-016	KLN-R15	ATM-R15 oder A2K-15R
5004	KTN-R20	5017906-020	KLN-R20	ATM-R20 oder A2K-20R
5005	KTN-R25	5017906-025	KLN-R25	ATM-R25 oder A2K-25R
5006	KTN-R30	5012406-032	KLN-R30	ATM-R30 oder A2K-30R
5008	KTN-R50	5014006-050	KLN-R50	A2K-50R
5011	KTN-R60	5014006-063	KLN-R60	A2K-60R
5016	KTN-R85	5014006-080	KLN-R80	A2K-80R
5022	KTN-R125	2028220-125	KLN-R125	A2K-125R
5027	KTN-R125	2028220-125	KLN-R125	A2K-125R
5032	KTN-R150	2028220-160	L25S-150	A25X-150
5042	KTN-R200	2028220-200	L25S-200	A25X-200
5052	KTN-R250	2028220-250	L25S-250	A25X-250

380-500 V

	Bussmann	SIBA	Littel Fuse	Ferraz-Shawmut
5001	KTS-R6	5017906-006	KLS-R6	ATM-R6 oder A6K-6R
5002	KTS-R6	5017906-006	KLS-R6	ATM-R6 oder A6K-6R
5003	KTS-R10	5017906-010	KLS-R10	ATM-R10 oder A6K-10R
5004	KTS-R10	5017906-010	KLS-R10	ATM-R10 oder A6K-10R
5005	KTS-R15	5017906-016	KLS-R16	ATM-R16 oder A6K-16R
5006	KTS-R20	5017906-020	KLS-R20	ATM-R20 oder A6K-20R
5008	KTS-R25	5017906-025	KLS-R25	ATM-R25 oder A6K-25R
5011	KTS-R30	5012406-032	KLS-R30	A6K-30R
5016	KTS-R40	5012406-040	KLS-R40	A6K-40R
5022	KTS-R50	5014006-050	KLS-R50	A6K-50R
5027	KTS-R60	5014006-063	KLS-R60	A6K-60R
5032	KTS-R80	2028220-100	KLS-R80	A6K-180R
5042	KTS-R100	2028220-125	KLS-R100	A6K-100R
5052	KTS-R125	2028220-125	KLS-R125	A6K-125R
5062	KTS-R150	2028220-160	KLS-R150	A6K-150R
5072	FWH-220	2028220-200	L50S-225	A50-P225
5102	FWH-250	2028220-250	L50S-250	A50-P250
5122*	FWH-300/170M3017	2028220-315	L50S-300	A50-P300
5152*	FWH-350/170M3018	2028220-315	L50S-350	A50-P350
5202*	FWH-400/170M4012	206xx32-400	L50S-400	A50-P400
5252*	FWH-500/170M4014	206xx32-500	L50S-500	A50-P500
5302*	FWH-600/170M4016	206xx32-600	L50S-600	A50-P600
5352	170M4017	2061032,700		6.9URD31D08A0700
5452	170M6013	2063032,900		6.9URD33D08A0900
5502	170M6013	2063032,900		6.9URD33D08A0900
5552	170M6013	2063032,900		6.9URD33D08A0900

^{*} Von General Electric hergestellte Trennschalter, Kat.- Nr. SKHA36AT0800, mit den nachstehend aufgeführten Rating-Plugs, können zur Erfüllung der UL-Anforderungen verwendet werden:

5122	Rating-Plug-Nr.	SRPK800 A 300
5152	Rating-Plug-Nr.	SRPK800 A 400
5202	Rating-Plug-Nr.	SRPK800 A 400
5252	Rating-Plug-Nr.	SRPK800 A 500
5302	Rating-Plug-Nr.	SRPK800 A 600

525-600 V

	Bussmann	SIBA	Littel Fuse	Ferraz-Shawmut
5001	KTS-R3	5017906-004	KLS-R003	A6K-3R
5002	KTS-R4	5017906-004	KLS-R004	A6K-4R
5003	KT-R5	5017906-005	KLS-R005	A6K-5R
5004	KTS-R6	5017906-006	KLS-R006	A6K-6R
5005	KTS-R8	5017906-008	KLS-R008	A6K-8R
5006	KTS-R10	5017906-010	KLS-R010	A6K-10R
5008	KTS-R15	5017906-016	KLS-R015	A6K-15R
5011	KTS-R20	5017906-020	KLS-R020	A6K-20R
5016	KTS-R30	5017906-030	KLS-R030	A6K-30R
5022	KTS-R35	5014006-040	KLS-R035	A6K-35R
5027	KTS-R45	5014006-050	KLS-R045	A6K-45R
5032	KTS-R60	5014006-063	KLS-R060	A6K-60R
5042	KTS-R75	5014006-080	KLS-R075	A6K-80R
5052	KTS-R90	5014006-100	KLS-R090	A6K-90R
5062	KTS-R100	5014006-100	KLS-R100	A6K-100R

Frequenzumrichter mit 525-600 V (UL) und 525-690 V (CE)

	Bussmann	SIBA	FERRAZ-SHAWMUT
5042	170M3013	2061032,125	6.6URD30D08A0125
5052	170M3014	2061032,16	6.6URD30D08A0160
5062	170M3015	2061032,2	6.6URD30D08A0200
5072	170M3015	2061032,2	6.6URD30D08A0200
5102	170M3016	2061032,25	6.6URD30D08A0250
5122	170M3017	2061032,315	6.6URD30D08A0315
5152	170M3018	2061032,35	6.6URD30D08A0350
5202	170M4011	2061032,35	6.6URD30D08A0350
5252	170M4012	2061032,4	6.6URD30D08A0400
5302	170M4014	2061032,5	6.6URD30D08A0500
5352	170M5011	2062032,55	6.6URD32D08A550
5402	170M4017	2061032,700	6.9URD31D08A0700
5502	170M6013	2063032,900	6.9URD33D08A0900
5602	170M6013	2063032,900	6.9URD33D08A0900

KTS-Sicherungen von Bussmann können KTN-Sicherungen für 240-V-Frequenzumrichter ersetzen. FWH-Sicherungen von Bussmann können FWX-Sicherungen für 240-V-Frequenzumrichter ersetzen.

KLSR-Sicherungen von LITTEL FUSE können KLNR-Sicherungen für 240-V-Frequenzumrichter ersetzen. L50S-Sicherungen von LITTEL FUSE können L25S-Sicherungen für 240-V-Frequenzumrichter ersetzen.

A6KR-Sicherungen von FERRAZ SHAWMUT können A2KR-Sicherungen für 240-V-Frequenzumrichter ersetzen. A50X-Sicherungen von FERRAZ SHAWMUT können A25X-Sicherungen für 240-V-Frequenzumrichter ersetzen.

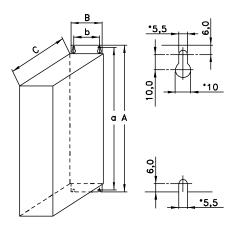
Keine UL-Konformität

Wenn UL/cUL-Zulassung nicht gegeben sein muss, empfehlen wir die oben angegebenen Sicherungen oder:

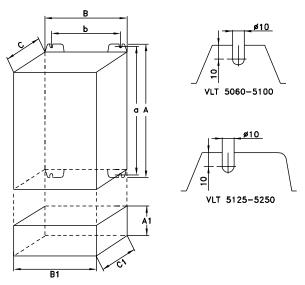
VLT 5001-5027	200-240 V	Typ gG
VLT 5032-5052	200-240 V	Typ gR
VLT 5001-5062	380-500 V	Typ gG
VLT 5072-5102	380-500 V	Typ gR
VLT 5122-5302	380-500 V	Typ gG
VLT 5352-5552	380-500 V	Typ gR
VLT 5001-5062	525-600 V	Typ gG

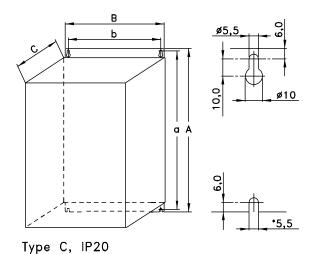
Bei Nichtbeachtung der Empfehlung kann eine unnötige Beschädigung des Frequenzumrichters im Falle einer Fehlfunktion die Folge sein. Sicherungen müssen für den Schutz einer Schaltung ausgelegt sein, die maximal 100.000 A_{rms} (symmetrisch), maximal 500/600 V liefern kann.

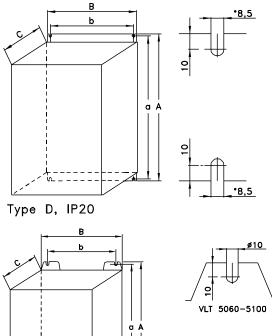
■ Abmessungen

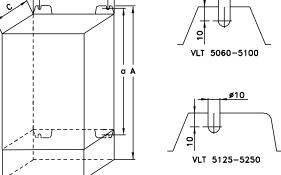

Alle nachstehenden Angaben in mm.

Buchformat IP20 S001 - 5003 200 - 240 V 395 90 260 384 70 5001 - 5003 380 - 500 V 395 395 3130 260 384 70 5004 - 5006 200 - 240 V 5006 - 5011 380 - 500 V 800 370 335 780 270 5122 - 5152 380 - 500 V 1046 408 3731 1001 304 5202 - 5302 380 - 500 V 1327 408 3731 1001 304 5352 - 5552 380 - 500 V 1547 585 4941 1502 304 5352 - 5552 380 - 500 V 1547 585 4941 1502 304 5402 - 5602 525 - 690 V 1547 585 4941 1502 304 5402 - 5602 525 - 690 V 1547 585 4941 1502 304 5402 - 5602 525 - 690 V 1547 585 4941 1502 304 5402 - 5602 525 - 690 V 1547 585 4941 1502 304 5402 - 5602 525 - 690 V 1547 585 4941 1502 304 5402 - 5602 525 - 690 V 387 220 384 200 5001 - 5003 200 - 240 V 5001 - 5002 280 - 500 V 800 242 260 540 200 5016 - 5022 525 - 600 V (NEMA 1) 5011 - 5016 200 - 240 V 5016 - 5022 580 - 500 V (NEMA 1) 5017 - 5016 200 - 240 V 5016 - 5022 580 - 500 V (NEMA 1) 5017 - 5016 200 - 240 V 5027 - 5032 580 - 500 V (NEMA 1) 5017 - 5012 200 - 240 V 5027 - 5032 580 - 500 V (NEMA 1) 5012 502 - 5027 5000 240 V 5042 - 5062 525 - 600 V (NEMA 1) 5072 - 5102 380 - 500 V 5080 V 800 370 335 780 270 5042 - 5062 525 - 600 V (NEMA 1) 5072 - 5102 380 - 500 V 5080 V 5080 370 335 780 270 5042 - 5062 525 - 600 V (NEMA 1) 5072 - 5102 380 - 500 V 5080 380 296 780 270 5042 - 5062 525 - 600 V (NEMA 1) 5072 - 5102 380 - 500 V 5080 370 375 380 500 V 5042 - 5062 525 - 600 V (NEMA 1) 5072 - 5102 380 - 500 V 5080 370 375 380 500 V 5080 380	ab/be	b	а	D	С	В	А	
S001 - 5005 380 - 500 V S00								Buchformat IP20
5001 - 5000 - 200 - 240 V 5006 - 5011 380 - 500 V 5008 - 5011 380 - 500 V 5022 - 5052 200 - 240 V 5032 - 5052 380 - 500 V 1327	100 A	70	384		260	90	305	5001 - 5003 200 - 240 V
March Marc	100 A	70						5001 - 5005 380 - 500 V
South Sout	100 A	70	204		260	120	205	5004 - 5006 200 - 240 V
S032 - 5052 200 - 240 V	100 A	70	304		200	130	393	5006 - 5011 380 - 500 V
S122 - 5152 380 - 500 V								Kompaktformat IP00
S202 - 5302 380 - 500 V	225 B	270	780		335	370	800	5032 - 5052 200 - 240 V
S202 - 5302 380 - 500 V	225 J	304	1001		373 ¹⁾	408	1046	5122 - 5152 380 - 500 V
S352 - 5552 380 - 500 V	225 J							
South Sout	225 I							
S202 - 5352 525 - 690 V	225 J							
Section Sect								
Name	225 J							
Solid Soli	225 I	304	1502		4941)	585	1547	
5001 - 5005 380 - 500 V 395 220 160 384 200 5004 - 5010 1 380 - 500 V 395 220 200 384 200 5001-5011, 525-600 V (IP20 und NEMA 1) 5008 - 5011, 525-600 V (IP20 und NEMA 1) 5016 - 5022, 525 - 600 V (INEMA 1) 5016 - 5022, 525 - 600 V (INEMA 1) 5016 - 5022, 525 - 600 V (INEMA 1) 5011 - 5012, 525 - 600 V (INEMA 1) 5011 - 5012, 525 - 600 V (INEMA 1) 5011 - 5012, 525 - 600 V (INEMA 1) 5022 - 5032, 525 - 600 V (INEMA 1) 5022 - 5032, 525 - 600 V (INEMA 1) 5022 - 5027, 200 - 240 V 800 308 296 780 270 5042 - 5062, 525 - 600 V (INEMA 1) 5022 - 5027, 200 - 240 V 800 370 335 780 370 5042 - 5062, 525 - 600 V (INEMA 1) 5022 - 5027, 200 - 240 V 800 370 335 780 370 5042 - 5062, 525 - 600 V (INEMA 1) 5032 - 5052, 200 - 240 V 800 370 335 780 370 5032 - 5052, 200 - 240 V 954 370 335 780 270 5122 - 5152, 380 - 500 V 1208 420 3731 1154 304 5032 -								
5001 - 5006 200 - 240 V 5006 - 5011 380 - 500 V 5006 - 5011 380 - 500 V 5008 - 5011 380 - 500 V 5016 - 5022 380 - 500 V 5016 - 5022 380 - 500 V 5016 - 5022 380 - 500 V 5017 - 5032 380 - 500 V 5027 - 5032 380 - 500 V 5028 - 5062 5062 5062 600 V (NEMA 1) 5029 - 5042 - 5062 5062 600 V (NEMA 1) 5070 - 5042 - 5062 5062 600 V (NEMA 1) 5071 - 5062 5062 5062 600 V (NEMA 1) 5072 - 5102 380 - 500 V 5032 - 5052 200 - 240 V 5042 - 5162 526 - 690	100 C	200	384		160	220	395	
Source S	100 0	.00						5001 - 5005 380 - 500 V
SOU1-5011, 525-600 V (IP20 und NEMA 1)								5004 - 5006 200 - 240 V
Source S	100 C	200	384		200	220	395	5006 - 5011 380 - 500 V
5016 - 5022 380 - 500 V								5001-5011, 525-600 V (IP20 und NEMA 1)
Solid - 5022, 525 - 600 V (NEMA 1)								5008 200 - 240 V
5011 - 5016 200 - 240 V 5027 - 5032 380 - 500 V 700 242 260 680 200 5027 - 5032, 525 - 600 V (NEMA 1) 5022 - 5027 200 - 240 V 5042 - 5062 380 - 500 V 800 308 296 780 270 5042 - 5062, 525 - 600 V (NEMA 1) 5072 - 5102 380 - 500 V 800 370 335 780 330 Kompaktformat NEMA 1/IP20/IP21 5032 - 5052 200 - 240 V 954 370 335 780 270 5122 - 5152 380 - 500 V 1208 420 373 ¹⁾ 1154 304 5202 - 5302 380 - 500 V 1208 420 373 ¹⁾ 1535 304 5352 - 5552 230 - 500 V 1208 420 373 ¹⁾ 1154 304 5202 - 5302 380 - 500 V 1208 420 373 ¹⁾ 1154 304 5202 - 5352 525 - 690 V 1208 420 373 ¹⁾ 1154 304 5202 - 5352 525 - 690 V 1208 420 373 ¹⁾ 1535 304 5402 - 5602 525 - 690 V 1588 420 373 ¹⁾ 1535 304 5402 - 5602 525 - 690 V 1588 420 373 ¹⁾ 1535 304 5402 - 5602 525 - 690 V 1588 420 373 ¹⁾ 1535 304 55001 - 5003 200 - 240 V 460 282 195 85 260 258 5004 - 5006 200 - 240 V 5006 - 5011 380 - 500 V 810 350 282 195 85 330 258 5008 - 5011 200 - 240 V 5016 - 5027 380 - 500 V 810 350 280 70 560 326 5016 - 5027 380 - 500 V 940 400 280 70 690 375 5032 - 5062 380 - 500 V 940 400 280 70 690 375	200 D	200	540		260	242	560	5016 - 5022 380 - 500 V
5027 - 5032 380 - 500 V 700 242 260 680 200 5027 - 5032, 525 - 600 V (NEMA 1) 800 308 296 780 270 5042 - 5062 380 - 500 V 800 308 296 780 270 5042 - 5062, 525 - 600 V (NEMA 1) 800 370 335 780 330 Kompaktformat NEMA 1/IP20/IP21 5032 - 5052 200 - 240 V 954 370 335 780 270 5122 - 5152 380 - 500 V 1208 420 3731 1154 304 5202 - 5302 380 - 500 V 1588 420 3731 1535 304 5352 - 5552 380 - 500 V 2000 600 4941 - - 5042 - 5152 525 - 690 V 1208 420 3731 1154 304 5202 - 5352 525 - 690 V 1208 420 3731 1535 304 5402 - 5602 525 - 690 V 1588 420 3731 1535 304 5402 - 5602 525 - 690 V 2000 600 4941 - - Kompaktformat IP54/NEMA 12 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5016 - 5022, 525 - 600 V (NEMA 1)</td></t<>								5016 - 5022, 525 - 600 V (NEMA 1)
S027 - 5032, 525 - 600 V (NEMA 1)								5011 - 5016 200 - 240 V
S027 - 5032, 525 - 600 V (NEMA 1)	200 D	200	680		260	242	700	5027 - 5032 380 - 500 V
So22 - 5027 200 - 240 V So42 - 5062 380 - 500 V So542 - 5062 525 - 600 V So542 - 5062 525 - 600 V So542 - 5062 525 - 600 V So542 - 5062 520 - 240 V So542 5062 200 - 240 V So542 5062 300 - 240 V So542 5062 300 - 240 V So542 50542								
5042 - 5062 380 - 500 V								, ,
5042 - 5062, 525 - 600 V (NEMA 1) 5072 - 5102 380 - 500 V 800 370 335 780 330 Kompaktformat NEMA 1/IP20/IP21 5032 - 5052 200 - 240 V 954 370 335 780 270 5122 - 5152 380 - 500 V 1208 420 3731 1154 304 5202 - 5302 380 - 500 V 1588 420 3731 1535 304 5352 - 5552 380 - 500 V 2000 600 4941 5042 - 5152 525 - 690 V 1208 420 3731 1154 304 5202 - 5352 525 - 690 V 1208 420 3731 1154 304 5402 - 5352 525 - 690 V 1208 420 3731 1154 304 5402 - 5352 525 - 690 V 1588 420 3731 1535 304 5402 - 5602 525 - 690 V 2000 600 4941 Kompaktformat IP54/NEMA 12 5001 - 5003 200 - 240 V 460 282 195 85 260 258 5004 - 5006 200 - 240 V 5006 200 - 240 V 5006 - 5011 380 - 500 V 5006 - 5011 380 - 500 V 810 350 280 70 560 326 5016 - 5027 380 - 500 V 810 350 280 70 560 326 5016 - 5027 200 - 240 V 940 400 280 70 690 375 5032 - 5052 200 - 240 V 937 495 421 - 830 374	200 D	70	780		296	308	800	
5072 - 5102 380 - 500 V 800 370 335 780 330 Kompaktformat NEMA 1/IP20/IP21 5032 - 5052 200 - 240 V 954 370 335 780 270 5122 - 5152 380 - 500 V 1208 420 373¹) 1154 304 5202 - 5302 380 - 500 V 2000 600 494¹) - - 5042 - 5152 525 - 690 V 1208 420 373¹) 1154 304 5202 - 5352 525 - 690 V 1588 420 373¹) 1535 304 5402 - 5602 525 - 690 V 2000 600 494¹) - - Kompaktformat IP54/NEMA 12 5001 - 5003 320 - 240 V 460 282 195 85 260 258 5004 - 5006 200 - 240 V 530 282 195 85 330 258 5008 - 5011 380 - 500 V 810 350 280 70 560 326 5016 - 5027 380 - 500 V 810 350 280 70 690 375 5032 - 5062 380 - 500 V 9		•				000		
Name	225 D	830	780		335	370	800	
5032 - 5052 200 - 240 V 954 370 335 780 270 5122 - 5152 380 - 500 V 1208 420 373¹) 1154 304 5202 - 5302 380 - 500 V 1588 420 373¹) 1535 304 5352 - 5552 380 - 500 V 2000 600 494¹) - - 5042 - 5152 525 - 690 V 1208 420 373¹) 1154 304 5202 - 5352 525 - 690 V 1588 420 373¹) 1535 304 5402 - 5602 525 - 690 V 2000 600 494¹) - - Kompaktformat IP54/NEMA 12 5001 - 5003 200 - 240 V 2000 600 494¹) - - 5004 - 5005 380 - 500 V 460 282 195 85 260 258 5004 - 5006 200 - 240 V 530 282 195 85 330 258 5008 - 5011 200 - 240 V 810 350 280 70 560 326 5016 - 5027 380 - 500 V 940 400 280 70 690 375 5032 - 5052 200 - 240 V 937	220 2		700			0,0		
5122 - 5152 380 - 500 V 1208 420 373¹) 1154 304 5202 - 5302 380 - 500 V 1588 420 373¹) 1535 304 5352 - 5552 380 - 500 V 2000 600 494¹) - - 5042 - 5152 525 - 690 V 1208 420 373¹) 1154 304 5202 - 5352 525 - 690 V 1588 420 373¹) 1535 304 5402 - 5602 525 - 690 V 2000 600 494¹) - - - Kompaktformat IP54/NEMA 12 5001 - 5003 200 - 240 V 460 282 195 85 260 258 5004 - 5006 200 - 240 V 530 282 195 85 330 258 5008 - 5011 380 - 500 V 530 282 195 85 330 258 5016 - 5027 380 - 500 V 810 350 280 70 560 326 5016 - 5027 200 - 240 V 940 400 280 70 690 375 5032 - 5052 200 - 240 V 937 495 421 830 374 </td <td>225 E</td> <td>70</td> <td>780</td> <td></td> <td>335</td> <td>370</td> <td>954</td> <td>•</td>	225 E	70	780		335	370	954	•
5202 - 5302 380 - 500 V 1588 420 373¹) 1535 304 5352 - 5552 380 - 500 V 2000 600 494¹) - - 5042 - 5152 525 - 690 V 1208 420 373¹) 1154 304 5202 - 5352 525 - 690 V 2000 600 494¹) - - - Kompaktformat IP54/NEMA 12 5001 - 5003 200 - 240 V 460 282 195 85 260 258 5004 - 5006 200 - 240 V 530 282 195 85 330 258 5008 - 5011 380 - 500 V 530 282 195 85 330 258 5016 - 5027 380 - 500 V 810 350 280 70 560 326 5016 - 5027 200 - 240 V 940 400 280 70 690 375 5032 - 5052 200 - 240 V 937 495 421 830 374	225 J							
5352 - 5552 380 - 500 V 2000 600 494¹) 5042 - 5152 525 - 690 V 1208 420 373¹) 1154 304 5202 - 5352 525 - 690 V 1588 420 373¹) 1535 304 5402 - 5602 525 - 690 V 2000 600 494¹) Kompaktformat IP54/NEMA 12 5001 - 5003 200 - 240 V 460 282 195 85 260 258 5004 - 5006 200 - 240 V 5006 - 5011 380 - 500 V 5008 - 5011 200 - 240 V 810 350 282 195 85 330 258 5016 - 5027 380 - 500 V 810 350 280 70 560 326 5016 - 5027 200 - 240 V 940 400 280 70 690 375 5032 - 5062 380 - 500 V								
5042 - 5152 525 - 690 V 1208 420 373¹) 1154 304 5202 - 5352 525 - 690 V 1588 420 373¹) 1535 304 5402 - 5602 525 - 690 V 2000 600 494¹) - - Kompaktformat IP54/NEMA 12 5001 - 5003 200 - 240 V 460 282 195 85 260 258 5004 - 5005 380 - 500 V 530 282 195 85 330 258 5006 - 5011 380 - 500 V 530 282 195 85 330 258 5008 - 5011 200 - 240 V 810 350 280 70 560 326 5016 - 5027 380 - 500 V 940 400 280 70 690 375 5032 - 5052 200 - 240 V 937 495 421 830 374	225 J	004						
5202 - 5352 525 - 690 V 1588 420 373¹) 1535 304 5402 - 5602 525 - 690 V 2000 600 494¹) - - - Kompaktformat IP54/NEMA 12 5001 - 5003 200 - 240 V 460 282 195 85 260 258 5004 - 5006 200 - 240 V 530 282 195 85 330 258 5008 - 5011 380 - 500 V 530 282 195 85 330 258 5016 - 5027 380 - 500 V 810 350 280 70 560 326 5016 - 5027 200 - 240 V 940 400 280 70 690 375 5032 - 5052 200 - 240 V 937 495 421 - 830 374	225 H							
5402 - 5602 525 - 690 V 2000 600 494¹¹) - - Kompaktformat IP54/NEMA 12 5001 - 5003 200 - 240 V 460 282 195 85 260 258 5004 - 5006 200 - 240 V 530 282 195 85 330 258 5006 - 5011 380 - 500 V 530 282 195 85 330 258 5008 - 5011 200 - 240 V 810 350 280 70 560 326 5016 - 5027 380 - 500 V 940 400 280 70 690 375 5032 - 5052 200 - 240 V 937 495 421 830 374	225 J							
Kompaktformat IP54/NEMA 12 5001 - 5003 200 - 240 V 460 282 195 85 260 258 5004 - 5006 200 - 240 V 530 282 195 85 330 258 5006 - 5011 380 - 500 V 5008 - 5011 200 - 240 V 810 350 280 70 560 326 5016 - 5027 380 - 500 V 940 400 280 70 690 375 5032 - 5052 200 - 240 V 937 495 421 830 374	225 J	304	1535		373 ¹⁾	420	1588	
5001 - 5003 200 - 240 V 460 282 195 85 260 258 5001 - 5005 380 - 500 V 5004 - 5006 200 - 240 V 530 282 195 85 330 258 5006 - 5011 380 - 500 V 5008 - 5011 200 - 240 V 810 350 280 70 560 326 5016 - 5027 380 - 500 V 940 400 280 70 690 375 5032 - 5062 380 - 500 V 937 495 421 830 374	225 H	-	-		494 ¹⁾	600	2000	5402 - 5602 525 - 690 V
5001 - 5005 380 - 500 V 460 282 195 85 260 258 5004 - 5006 200 - 240 V 530 282 195 85 330 258 5008 - 5011 380 - 500 V 810 350 280 70 560 326 5016 - 5027 380 - 500 V 940 400 280 70 690 375 5032 - 5052 200 - 240 V 937 495 421 830 374								Kompaktformat IP54/NEMA 12
5001 - 5005 380 - 500 V 5004 - 5006 200 - 240 V 5006 - 5011 380 - 500 V 5008 - 5011 200 - 240 V 5016 - 5027 380 - 500 V 5016 - 5027 200 - 240 V 5032 - 5062 380 - 500 V 5032 - 5052 200 - 240 V 5032 - 5052 200 - 240 V 5032 - 5052 200 - 240 V 937 495 421 - 830 374	100 -	\	000	0.5	105	000	400	5001 - 5003 200 - 240 V
5004 - 5006 200 - 240 V 530 282 195 85 330 258 5006 - 5011 380 - 500 V 5008 - 5011 200 - 240 V 810 350 280 70 560 326 5016 - 5027 380 - 500 V 940 400 280 70 690 375 5032 - 5062 380 - 500 V 937 495 421 - 830 374	100 F	258	260	85	195	282	460	5001 - 5005 380 - 500 V
5006 - 5011 380 - 500 V 530 282 195 85 330 258 5008 - 5011 200 - 240 V 810 350 280 70 560 326 5016 - 5027 380 - 500 V 940 400 280 70 690 375 5032 - 5062 380 - 500 V 937 495 421 - 830 374	=							
5008 - 5011 200 - 240 V 810 350 280 70 560 326 5016 - 5027 380 - 500 V 940 400 280 70 690 375 5032 - 5062 380 - 500 V 937 495 421 - 830 374	100 F	258	330	85	195	282	530	
5016 - 5027 380 - 500 V 810 350 280 70 560 326 5016 - 5027 200 - 240 V 940 400 280 70 690 375 5032 - 5052 200 - 240 V 937 495 421 - 830 374	_		·					
5016 - 5027 200 - 240 V 940 400 280 70 690 375 5032 - 5052 200 - 240 V 937 495 421 - 830 374	200 F	326	560	70	280	350	810	
5032 - 5062 380 - 500 V 5032 - 5052 200 - 240 V 940 400 280 70 690 375 5032 - 5052 200 - 240 V 937 495 421 - 830 374								
5032 - 5052 200 - 240 V 937 495 421 - 830 374	200 F	375	690	70	280	400	940	
	225 G	274	830	_	421	405	037	
3072 - 3102 300 - 300 V 340 400 300 70 030 375	225 G			70				
E100 E1E0 390 E00 V 1000 400 0701) 11E4 004				70				
5122 - 5152 380 - 500 V 1208 420 373 ¹⁾ - 1154 304	225 J			-				
5202 - 5302 380 - 500 V 1588 420 373 ²⁾ 1535 304	225 J	804	1535					
5352 - 5552 380 - 500 V 2000 600 494 ¹⁾	225 H		-	-	494 ¹⁾	600		
5042 - 5152 525 - 690 V 1208 420 373 ¹⁾ - 1154 304	225 J	304	1154	-	373 ¹⁾	420	1208	5042 - 5152 525 - 690 V
5202 - 5352 525 - 690 V 1588 420 373 ¹⁾ 1535 304	225 J	304	1535		373 ¹⁾	420	1588	5202 - 5352 525 - 690 V
5402 - 5602 525 - 690 V 2000 600 494 ¹⁾	225 H	-	-		494 ¹⁾	600	2000	

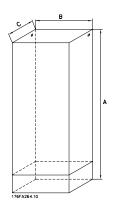

ab: Mindestabstand über dem Gehäuse be: Mindestabstand unter dem Gehäuse 1) Mit Trennschalter zusätzlich 44 mm.

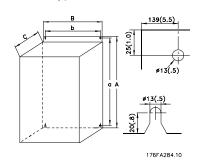

■ Maße, Dimensionen (Forts.)

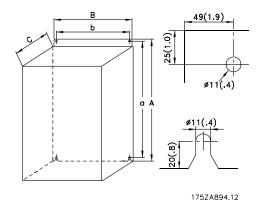



Type A, IP20


Type B, IP00 With option and enclosure IP20


Type E, IP20/NEMA 1 with terminals


Type F, IP54


■ Abmessungen (Forts.)

Typ H, IP20, IP54

Typ I, IP00

Typ J, IP00, IP21, IP54

■ Mechanische Installation

Beachten Sie die für Einbau und Türeinbau geltenden Anforderungen (siehe nachstehende Übersicht). Diese sind zur Vermeidung von schweren Personenund Sachschäden einzuhalten, insbesondere bei der Installation größerer Gerätetypen.

Der Frequenzumrichter $mu\beta$ senkrecht montiert werden.

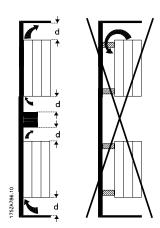
Der Frequenzumrichter wird durch Luftzirkulation gekühlt. Damit das Gerät seine Kühlluft abgeben kann, ist auf einen freien *Mindestabstand* sowohl über als auch unter dem Gerät gemäß Zeichnung unten zu achten.

Damit das Gerät nicht zu warm wird, ist zu gewährleisten, daß die Umgebungstemperatur die für den Frequenzumrichter angegebene max. Temperatur nicht überschreitet, und daß auch der 24-Std.-Durchschnittstemperaturwert nicht überschritten wird. Max. Temperatur und 24-Std.-Durchschnitt entnehmen Sie bitte den Allgemeinen technischen Daten.

Bei Installation des Frequenzumrichters auf unebenen Flächen, z.B. auf einem Rahmen, bitte Anleitung MN. 50.XX.YY beachten.

Bei Umgebungstemperaturen im Bereich 45 °C – 55 °C ist die Leistung des Frequenzumrichters gemäß dem Leistungsreduktionsdiagramm im Projektierungshandbuch zu reduzieren, da ansonsten mit einer Verringerung der Lebensdauer des Frequenzumrichters gerechnet werden muß.

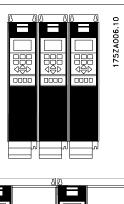
175ZA118.10

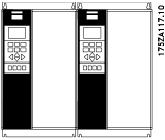


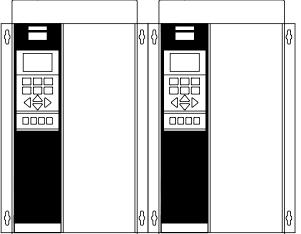
VLT® 5000-Projektierungshandbuch

■ Installation des VLT 5001-5602

Alle Frequenzumrichter müssen so installiert werden, dass eine ausreichende Kühlung gewährleistet ist.

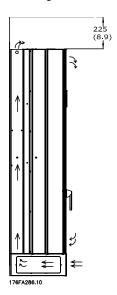

Kühlung




Alle Geräte im Buch- und Kompaktformat erfordern einen Mindestfreiraum über und unter dem Schutzgehäuse.

Nebeneinander/Flansch-an-Flansch

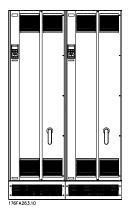
Alle Frequenzumrichter können nebeneinander/ Flansch an Flansch befestigt werden.



	d [mm]	Kommentare
Buchformat		
VLT 5001-5006, 200-240 V	100	Installation auf einer ebenen, vertikalen Oberfläche (keine Abstandshal-
VLT 5001-5011, 380-500 V	100	ter)
Kompaktformat (alle Gehäusetypen)		
VLT 5001-5006, 200-240 V	100	Installation and singraphonon wartikalan Obardianha (kaina Abatandahal
VLT 5001-5011, 380-500 V	100	Installation auf einer ebenen, vertikalen Oberfläche (keine Abstandshal-
VLT 5001-5011, 525-600 V	100	ter)
VLT 5008-5027, 200-240 V	200	
VLT 5016-5062, 380-500 V	200	Installation auf einer ebenen, vertikalen Oberfläche (keine Abstandshal-
VLT 5072-5102, 380-500 V	225	ter)
VLT 5016-5062, 525-600 V	200	
VLT 5032-5052, 200-240 V	225	Installation auf einer ebenen, vertikalen Oberfläche (keine Abstandshal-
VLT 5122-5302, 380-500 V	225	ter)
VLT 5042-5352, 525-690 V	225	IP54-Filtermatten müssen bei Verschmutzung ersetzt werden.
VLT 5352-5552, 380-500 V	225	IP00 über und unter dem Gehäuse
VLT 5402-5602, 525-690 V	225	IP21/IP54 nur über dem Gehäuse

■ Installation von VLT 5352-5552 380-500 V und VLT 5402/5602 525/690 V Kompaktformat NEMA 1 (IP21) und IP54

Kühlung



Alle Geräte der o.g. Baureihen erfordern mindestens 225 mm Freiraum über und unter dem Schutzgehäuse. Die Montage muss an einer senkrechten, ebenen Fläche erfolgen. Dies gilt sowohl für Geräte der Schutzart NEMA 1 (IP21) als auch IP54.

Für den Zugang zum VLT ist mindestens ein Freiraum von 579 mm vor dem Frequenzumrichter erforderlich.

Filtermatten in Geräten der Schutzart IP54 sind abhängig von der Betriebsumgebung regelmäßig auszutauschen.

Nebeneinander

Kompaktformat NEMA 1 (IP21) und IP54

Alle Geräte mit Schutzart NEMA 1 (IP21) und IP54 der o.g. Baureihen können ohne Zwischenräume seitlich nebeneinander installiert werden, da die Geräte keine seitliche Kühlung erfordern

■ Elektrische Installation

Der Frequenzumrichter steht bei Netzanschluss unter gefährlicher Spannung. Eine unsachgemäße Installation des Motors oder des Frequenzumrichters kann schwere Sach- und Körperschäden oder sogar tödliche Verletzungen verursachen. Befolgen Sie daher stets die Anweisungen in diesem Handbuch sowie die örtlichen und nationalen Vorschriften und Sicherheitsbestimmungen.

Das Berühren elektrischer Teile - auch nach der Trennung vom Netz - kann lebensgefährlich sein.

Bei VLT 5001-5006, 200-240 V und 380-500 V mindestens 4 Minuten warten.

Bei VLT 5008-5052, 200-240 V mindestens 15 Minuten warten.

Bei VLT 5008-5062, 380-500 V mindestens 15 Minuten warten.

Bei VLT 5072-5302, 380-500 V mindestens 20 Minuten warten.

Bei VLT 5352-5552, 380-500 V mindestens 40 Minuten warten.

Bei VLT 5001-5005, 525-600 V mindestens 4 Minuten warten.

Bei VLT 5006-5022, 525-600 V mindestens 15 Minuten warten.

Bei VLT 5027-5062, 525-600 V mindestens 30 Minuten warten.

Bei VLT 5042-5352, 525-690 V mindestens 20 Minuten warten.

Dai VII T 5400 5000 505 000 V

Bei VLT 5402-5602, 525-690 V mindestens 30 Minuten warten.

ACHTUNG!

Der Betreiber bzw. Elektroinstallateur ist für eine ordnungsgemäße Erdung und die Einhaltung der jeweils gültigen nationalen und örtlichen Sicherheitsbestimmungen verantwortlich.

■ Hochspannungsprüfung

Eine Hochspannungsprüfung kann durch Kurzschließen der Anschlüsse U, V, W, L_1 , L_2 und L_3 und 1

Sekunde langes Anlegen von max. 2,15 kV DC zwischen diesem Kurzschluß und der Masse erfolgen.

ACHTUNG!

Der Funkentstörschalter muß beim Hochspannungstest geschlossen sein (Position ON) (siehe Abschnitt Funkentstörschalter).

Netz- und Motoranschluß müssen bei einem Hochspannungstest der gesamten Anlage evtl. unterbrochen werden, wenn die Ableitströme zu hoch sind.

■ Sicherheitserdung

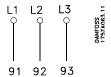
ACHTUNG!

Der Frequenzumrichter weist hohe Ableitströme auf und ist deshalb aus Sicherheitsgründen vorschriftsmäßig zu erden. Benutzen Sie die Erdungsklemme (siehe Abschnitt Elektrische Installation, Leistungskabel), die einen verstärkten Anschluß an Erde ermöglicht.

Beachten Sie die nationalen Sicherheitsvorschriften.

■ Zusätzlicher Schutz (RCD)

Fehlstromschutzschalter, Nullung oder Erdung können ein zusätzlicher Schutz sein, vorausgesetzt, die örtlichen Sicherheitsnormen werden eingehalten.


Bei Erdungsfehlern können Gleichspannungsanteile im Fehlstrom entstehen.

Fehlstromschutzschalter sind ggf. gemäß den örtlichen Vorschriften anzuwenden. Die Schutzschalter müssen zum Schutz von dreiphasigen Geräten mit Gleichrichterbrücke und für kurzzeitiges Ableiten von Impulsstromspitzen im Einschaltmoment geeignet sein.

Siehe auch Abschnitt Besondere Bedingungen im Projektierungshandbuch.

■ Elektrische Installation - Netzversorgung

Der Anschluss an die Netzspannung erfolgt mit drei Phasen an die Klemmen $L_1,\,L_2,\,L_3.$

■ Elektrische Installation - Motorkabel

Ų\$

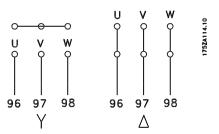
ACHTUNG!

Bei Verwendung eines nicht abgeschirmten Kabels werden bestimmte EMV-Anforderungen nicht erfüllt. Siehe dazu im Projektierungshandbuch.

Zur Einhaltung der EMV-Vorschriften bzgl. Störaussendung muss das Motorkabel abgeschirmt sein, soweit für das betreffende EMV-Filter nicht anders angegeben. Um Störpegel und Ableitströme auf ein Minimum zu reduzieren, ist es wichtig, dass das Motorkabel so kurz wie möglich gehalten wird.

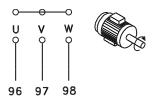
Die Abschirmung des Motorkabels ist mit dem Metallgehäuse des Frequenzumrichters und dem des Motors zu verbinden. Die Abschirmungen über eine möglichst große Oberfläche verbinden (Kabelbügel). Dies wird durch unterschiedliche Montagevorrichtungen in den verschiedenen Frequenzumrichtern ermöglicht.

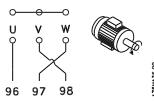
Eine Montage mit verdrillten Abschirmungsenden (sog. Pigtails) ist zu vermeiden, da dies die Wirkung der Abschirmung bei höheren Frequenzen zunichte macht.


Wenn der Kabelschirm unterbrochen werden muss (z. B. um ein Motorschütz oder einen Reparaturschalter zu installieren), muss die Abschirmung an der Unterbrechung mit der geringstmöglichen HF-Impedanz fortgeführt werden (grossflächige Schirmauflage).

Der Frequenzumrichter ist mit einer bestimmten Kabellänge und einem bestimmten Kabelquerschnitt getestet worden. Wird der Kabelquerschnitt erhöht, so erhöht sich auch der kapazitive Widerstand des Kabels - und damit der Ableitstrom - sodass die Kabellänge dann entsprechend verringert werden muss.

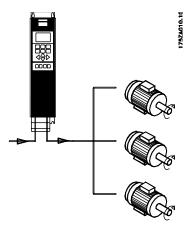
Wenn Frequenzumrichter zusammen mit LC-Filter verwendet werden, um Störgeräusche von einem Motor zu reduzieren, muss die Taktfrequenz entsprechend der LC-Filteranleitung in *Parameter 411* eingestellt werden. Wenn die Taktfrequenz höher als 3 kHz eingestellt wird, so wird der Ausgangsstrom im SFAVM-Modus verringert. Durch Ändern von *Parameter 446* auf 60° AVM-Modus wird die Frequenz, bei der der Strom reduziert wird, nach oben verlagert. Siehe *Projektierungshandbuch*.


■ Motoranschluß


Mit dem VLT Serie 5000 können alle dreiphasigen Standardmotoren eingesetzt werden.

Kleinere Motoren (200/400 V, Δ /Y) werden üblicherweise in Stern, größere Motoren. (400/690 V, Δ /Y) in Dreieck geschaltet.

■ Drehrichtung des Motors


Aus der Werkseinstellung ergibt sich eine Rechtsdrehung, wenn der Ausgang des Frequenzumrichters wie folgt angeschlossen wurde:

Klemme 96 an U-Phase Klemme 97 an V-Phase Klemme 98 an W-Phase

Die Drehrichtung kann durch Vertauschen zweier Phasen des Motorkabels umgekehrt werden.

■ Parallelschaltung von Motoren

Der Frequenzumrichter kann mehrere parallelgeschaltete Motoren steuern. Wenn die Motoren verschiedene Drehzahlen haben sollen, dann müssen Motoren mit unterschiedlichen Nenndrehzahlen eingesetzt werden. Da sich die Drehzahl der Motoren gleichzeitig ändert, bleibt jeweils das Verhältnis zwischen den Nenndrehzahlen im gesamten Bereich gleich.

Der Gesamtstromverbrauch der Motoren darf den maximalen Nenn-Ausgangsstrom I_{VLT,N} des Frequenzumrichters nicht übersteigen.

Bei sehr unterschiedlichen Motorgrößen können beim Anlaufen und bei niedrigen Drehzahlen Probleme auftreten. Das rührt daher, daß der relativ hohe ohmsche Widerstand im Stator kleiner Motoren eine höhere Spannung beim Anlaufen und bei niedrigen Drehzahlen erfordert.

Bei Systemen mit parallelgeschalteten Motoren kann der elektronische Motorschutzschalter (ETR) des Frequenzumrichters nicht als Motorschutz für einzelne Motoren eingesetzt werden. Deshalb ist ein zusätzlicher Motorschutz, z.B. in jedem Motor ein Thermistor (oder individuelle thermische Schutzschalter) erforderlich, der zur Verwendung mit Frequenzumwandlern geeignet ist.

Beachten Sie bitte, daß die Motorkabel jedes Motors einzeln addiert werden müssen und die zulässige Gesamtkabellänge nicht überschritten werden darf.

■ Thermischer Motorschutz

Das elektronische Thermorelais in UL-zugelassenen Frequenzumrichtern ist für Einzelmotorschutz UL-zugelassen, wenn Parameter 128 auf Abschaltung gesetzt ist, und Parameter 105 auf den Nennstrom des Motors programmiert wurde (dem Typenschild des Motors zu entnehmen).

■ Elektrische Installation - Bremskabel

(Nur Standard mit Bremse und erweitert mit Bremse. Typecode: SB, EB, DE, PB).

No.	Funktion
81, 82	Bremswiderstandsklemmen

Das Anschlusskabel für den Bremswiderstand muss abgeschirmt sein. Die Abschirmung ist mittels Kabelbügeln am Frequenzumrichter und dem Metallgehäuse des Bremswiderstandes zu verbinden.

Der Querschnitt des Bremswiderstandskabels ist entsprechend der Nenndaten des verwendeten Bremswiderstands zu bemessen. Weitere Hinweise zur sicheren Installation siehe auch Bremsanleitung MI. 90.FX.YY sowie MI.50.SX.YY.

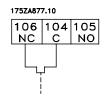
ACHTUNG!

Beachten Sie bitte, dass je nach Versorgungsspannung an den Klemmen Spannungen bis zu 1099 V DC auftreten können.

Elektrische Installation - Temperaturschalter Bremswiderstand

Anzugsmoment: 0,5-0,6 Nm Schraubengröße: M3

Nr.	Funktion
106, 104, 105	Temperaturschalter Bremswider-
	stand



ACHTUNG!

Diese Funktion ist nur bei VLT 5032-5052, 200-240 V, VLT 5122-5552, 380-500 V, und VLT 5042-5602, 525-690 V verfügbar.

Wenn die Temperatur im Bremswiderstand zu hoch wird und der Thermoschalter trennt, bremst der Frequenzumrichter nicht mehr. Anschließend läuft der Motor im Freilauf aus.

Es muss ein öffnender KLIXON-Schalter installiert werden (in Ruhestellung geschlossen). Wenn die Funktion nicht benutzt wird, müssen 106 und 104 kurzgeschlossen werden.

■ Elektrische Installation - Zwischenkreiskopplung

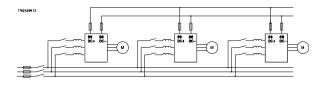
(Nur erweitert mit Typencodes EB, EX, DE, DX).

Nr. Funktion
88, 89 Zwischenkreiskopplung

Klemmen für Zwischenkreiskopplung

175ZA799	175ZA799.10			
88	89			
_	+			

Das Anschlusskabel muss abgeschirmt sein. Die max. Länge zwischen Frequenzumrichter und DC-Sammelschiene beträgt 25 m.


Die Zwischenkreiskopplung ermöglicht einen Lastausgleich beim Zusammenschalten mehrerer Frequenzumrichter über die DC-Zwischenkreise.

ACHTUNG!

Beachten Sie, dass die Spannung an den Klemmen bis zu 1099 V DC betragen kann.

Die Zwischenkreiskopplung ist nur mit Sonderzubehör möglich. Nähere Informationen finden Sie in der Anleitung zur Zwischenkreiskopplung MI.50.NX.XX.

■ Anzugsmomente und Schraubengrößen

Die Tabelle zeigt, mit welchem Anzugsmoment die Klemmen des Frequenzumrichters befestigt werden müssen. Bei VLT 5001-5027 200-240 V, VLT 5001-5102 380-500 V und VLT 5001-5062 525-600 V müssen die Kabel mit Schrauben befestigt werden. Bei VLT 5032-5052 200-240 V, VLT 5122-5552 380-500 V, VLT 5042-5602 525-690 V müssen die Kabel mit Bolzen befestigt werden.

Diese Werte gelten für folgende Klemmen:

Netzklemmen	Nr.	91, 92, 93 L1, L2, L3
Motorklemmen	Nr.	96, 97, 98 U, V, W
Erdungsklemmen	Nr.	94, 95, 99
Bremswiderstandsklemmen		81, 82

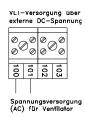
Zwischenkreiskopplung 88, 89

VLT-Typ 200-240 V		Anzugsmo- ment [Nm]	Schrauben-/ Bolzengröße	Werkzeug
5001-5006		0,6	M3	Schlitzschraube
5008	IP20	1,8	M4	Schlitzschraube
5008-5011	IP54	1,8	M4	Schlitzschraube
5011-5022	IP20	3	M5	4-mm-Inbusschlüssel
5016-5022 ³¹⁾	IP54	3	M5	4-mm-Inbusschlüssel
5027		6	M6	4-mm-Inbusschlüssel
5032-5052		11,3	M8 (Bolzen und Stift- schraube)	
380-500 V				
5001-5011		0,6	M3	Schlitzschraube
5016-5022	IP20	1,8	M4	Schlitzschraube
5016-5027	IP54	1,8	M4	Schlitzschraube
5027-5042	IP20	3	M5	4-mm-Inbusschlüssel
5032-5042 ³⁾	IP54	3	M5	4-mm-Inbusschlüssel
5052-5062		6	M6	5-mm-Inbusschlüssel
5072-5102	IP20	15	M6	6-mm-Inbusschlüssel
	IP54 ²⁾	24	M8	8-mm-Inbusschlüssel
5122-5302 ⁴⁾		19	M10-Bolzen	16-mm-Schraubenschlüssel
5352-5552 ⁵⁾		19	M10-Bolzen (Presska- belschuh)	16-mm-Schraubenschlüssel
525-600 V				
5001-5011		0,6	M3	Schlitzschraube
5016-5027		1,8	M4	Schlitzschraube
5032-5042		3	M5	4-mm-Inbusschlüssel
5052-5062		6	M6	5-mm-Inbusschlüssel
525-690 V				
5042-5352 ⁴⁾		19	M10-Bolzen	16-mm-Schraubenschlüssel
5402-5602 ⁵⁾		19	M10-Bolzen (Presska- belschuh)	16-mm-Schraubenschlüssel

¹⁾ Bremsklemmen: 3,0 Nm, Mutter: M6

²⁾ Bremse und Zwischenkreiskopplung: 14 Nm, M6-Inbusschraube

³⁾ IP54 mit EMV - Leitungsklemmen 6 Nm, Schraube: M6 - 5-mm-Inbusschlüssel


⁴⁾ Zwischenkreiskopplungs- und Bremsklemmen: 9,5 Nm; Bolzen M8 5) Bremsklemmen: 9,5 Nm; Bolzen M8

Elektrische Installation - externe Lüfterversorgung

Anzugsmoment 0,5-0,6 Nm Schraubengröße: M3

Bei 5122-5552, 380-500 V, 5042-5602, 525-690 V, 5032-5052, 200-240 V in allen Gehäusetypen erhältlich.

Nur für Geräte des Typs IP54 im Leistungsbereich VLT 5016-5102, 380-500 V sowie VLT 5008-5027, 200-240 VAC. Falls der Frequenzumrichter über den DC-Bus versorgt wird (Zwischenkreiskopplung), werden die integrierten Lüfter nicht mit Wechselstrom versorgt. In diesem Fall ist eine externe Versorgung mit Wechselstrom notwendig.

■ Elektrische Installation - externe 24 Volt-DC-Versorgung

(Nur erweiterte Versionen. Typencode: PS, PB, PD, PF, DE, DX, EB, EX).

Drehmoment: 0,5 - 0,6 Nm Schraubengröße: M3

Nr. Funktion

35, 36 externe 24 V DC-Versorgung

Externe 24 V DC-Versorgung kann als Niederspannungsversorgung zur Steuerkarte und installierten Optionskarten benutzt werden. Dies ermöglicht den vollständigen Betrieb des LCP (einschl. Parametrierung) ohne Anschluss der Netzstromversorgung. Beachten Sie, dass eine Spannungswarnung erfolgt, wenn die 24 V DC angeschlossen wurden; es erfolgt jedoch keine Abschaltung. Wenn die externe 24 V DC-Versorgung gleichzeitig mit der Netzversorgung angeschlossen bzw. eingeschaltet wird, muss in Parameter 120 Startverzögerung eine Zeit von mindestens 200 ms eingestellt werden.

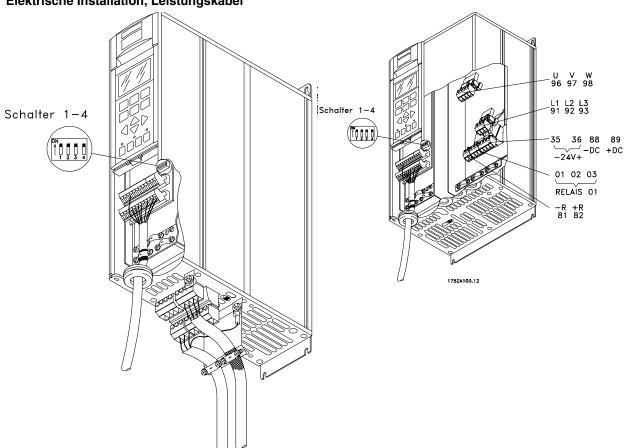
Eine träge Vorsicherung von min. 6 A kann zum Schutz der externen 24 V DC-Versorgung installiert werden. Die Leistungsaufnahme ist 15-50 W je nach der Belastung der Steuerkarte.

ACHTUNG!

Zur Gewährleistung ordnungsgemäßer galvanischer Trennung (gemäß PELV) an den Steuerklemmen des VLT Frequen-

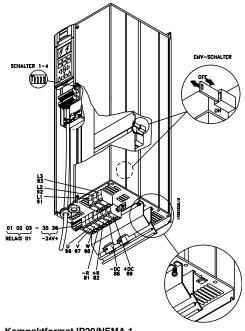
zumrichters eine 24 V DC-Versorgung vom Typ PELV einsetzen.

■ Elektrische Installation - Relaisausgänge


Anzugsmoment: 0,5 - 0,6 Nm

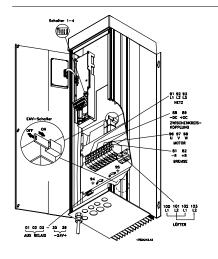
Schraubengröße: M3

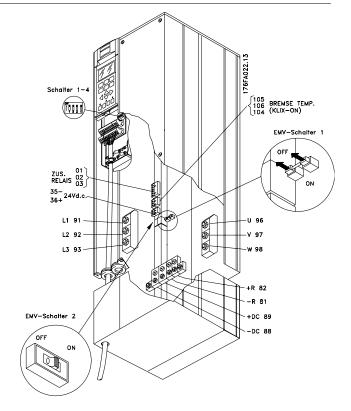
Nr.	Funktion
1-3	Relaisausgang, 1+3 (Öffner), 1+2
	(Schließer) Siehe Parameter 323 in
	der Betriebsanleitung. Siehe auch All-
	gemeine technische Daten.
4, 5	Relaisausgang, 4+5 (Schließer) Siehe
	Parameter 326 in der Betriebsanlei-
	tung.
	Siehe auch. Allgemeine technische Da-
	ten.


Schalter 1-4

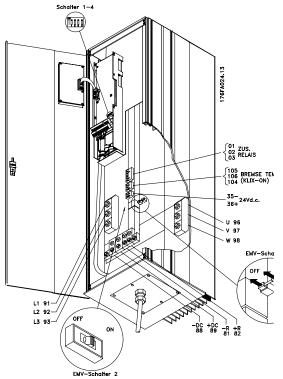
U V W PE 96 97 98 99 L1 L2 L3 91 92 93 35 36 88 89 -24V - DC + DC 01 02 03 RELAIS 01 -R +R 81 82

Kompaktformat IP54 VLT 5001-5006 200-240 V VLT 5001-5011 380-500 V VLT 5001-5011 525-600 V

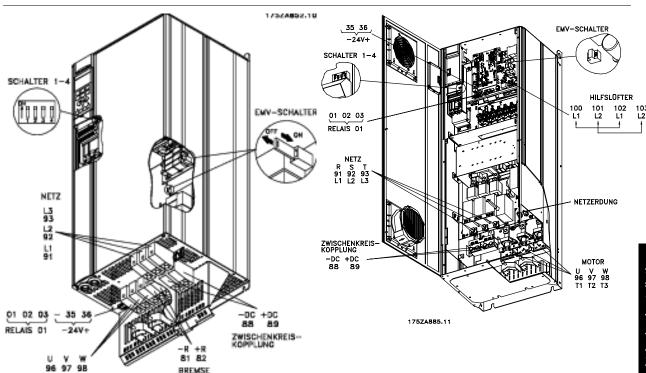

175ZA211.12


Kompaktformat IP20/NEMA 1


Kompaktformat IP20/NEMA 1 VLT 5008-5027 200-240 V VLT 5016-5062 380-500 V VLT 5016-5062 525-600 V

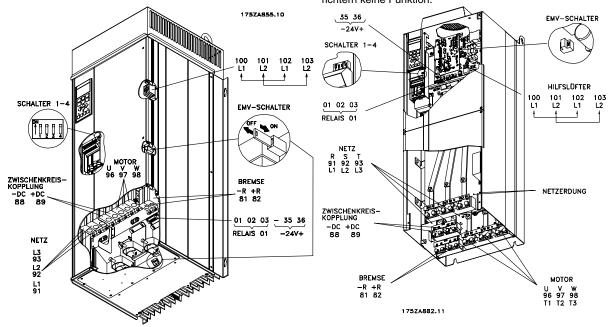


Kompaktformat IP54 VLT 5008-5027 200-240 V VLT 5016-5062 380-500 V



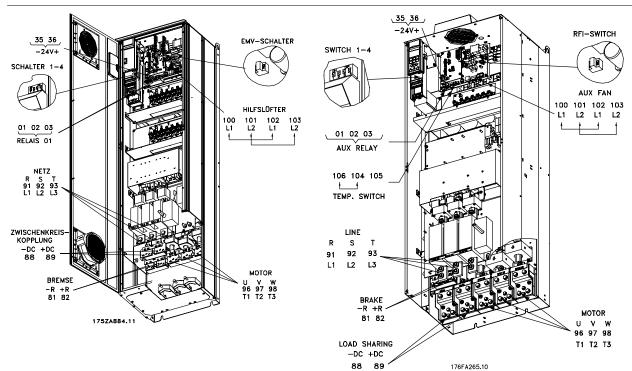
Kompaktformat IP00/NEMA 1 (IP20) VLT 5032-5052 200-240 V

Kompaktformat IP54 VLT 5032-5052 200-240 V

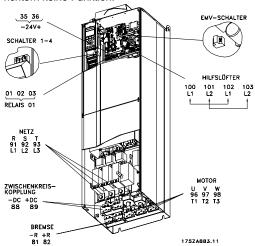


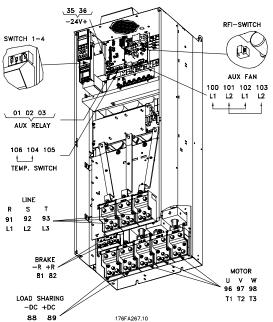
Kompaktformat IP20 VLT 5072-5102 380-500 V

MOTOR


Kompaktformat IP21/IP54 mit Trennschalter und Sicherung VLT 5122-5152 380-500 V, VLT 5042-5152 525-690 V HINWEIS: Der EMV-Schalter hat bei den 525-690 V-Frequenzumrichtern keine Funktion.

Kompaktformat IP54 VLT 5072-5102 380-500 V

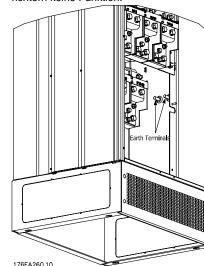

Kompaktformat IP00 ohne Trennschalter und Sicherung VLT 5122-5152 380-500 V, VLT 5042-5152 525-690 V

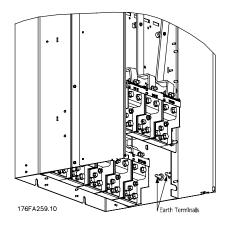

Kompaktformat IP21/IP54 mit Trennschalter und Sicherung VLT 5202-5302 380-500 V, VLT 5202-5352 525-690 V

Hinweis: Der EMV-Schalter hat bei den 525-690 V-Frequenzumrichtern keine Funktion.

Kompaktformat IP00 mit Trennschalter und Sicherung VLT 5202-5302 380-500 V, VLT 5202-5352 525-690 V

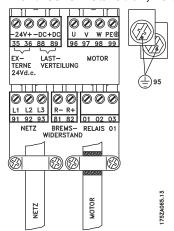
Kompaktformat IP00 mit Trennschalter und Sicherung VLT 5352-5552 380-500 V, VLT 5402-5602 525-690 V

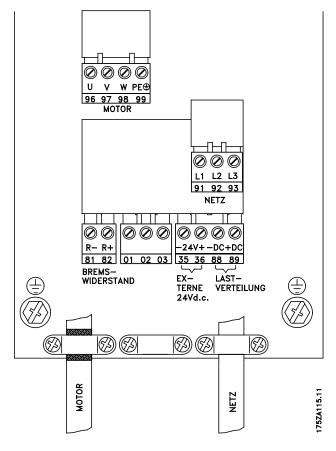

Kompaktformat IP00 ohne Trennschalter und Sicherung VLT 5352-5552 380-500 V, VLT 5402-5602 525-690 V
Hinweis: Der EMV-Schalter hat bei den 525-690 V-Frequenzumrichtern keine Funktion.



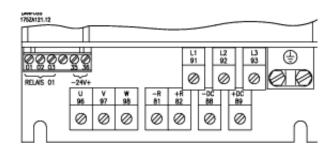
Kompaktformat IP21/IP54 ohne Trennschalter und Sicherung VLT 5352-5552 380-500 V, VLT 5402-5602, 525-690 V

Hinweis: Der EMV-Schalter hat bei den 525-690 V-Frequenzumrichtern keine Funktion.


Position der Erdklemmen, IP21/IP54

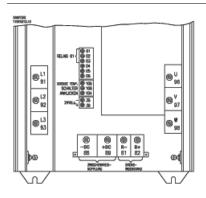


Position der Erdklemmen, IP00

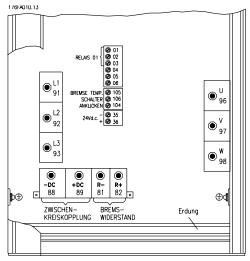


■ Elektrische Installation, Leistungskabel

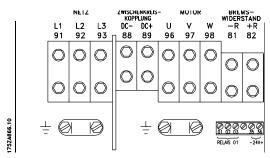
Buchformat VLT 5001-5006 200-240 V VLT 5001-5011 380-500 V Kompaktformat IP54 VLT 5001-5006 200-240 V VLT 5001-5011 380-500 V VLT 5001-5011 525-600 V



Kompaktformat IP00/NEMA 1 VLT 5008-5027 200-240 V VLT 5016-5102 380-500 V VLT 5016-5062 525-600 V

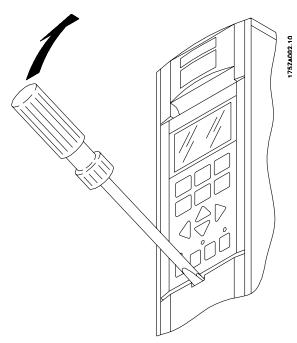


Kompaktformat IP54 VLT 5008-5027 200-240 V VLT 5016-5062 380-500 V



Kompaktformat IP00/NEMA 1 (IP20) VLT 5032-5052 200-240 V

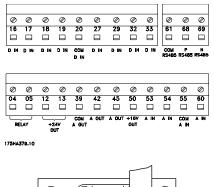
Kompaktformat IP54 VLT 5032-5052 200-240 V

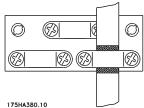


Kompaktformat IP54 VLT 5072-5102 380-500 V

■ Elektrische Installation - Steuerkabel

Alle Steuerleitungsklemmen befinden sich unter der Abdeckplatte des Frequenzumrichters. Die Abdeckplatte kann mit Hilfe eines Schraubendrehers o.ä. entfernt werden (siehe Abb.).




Nach dem Entfernen der Abdeckplatte kann mit der eigentlichen EMV-gemäßen elektrischen Installation begonnen werden. Siehe Zeichnungen im Abschnitt EMV-gemäße Installation.

Anzugsmoment: 0,5 -0,6 Nm

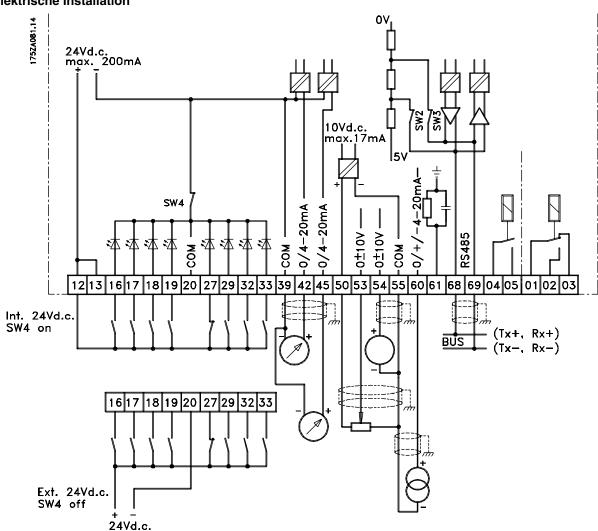
Schraubengröße: M3

Siehe Abschnitt Erdung abgeschirmter Steuerkabel.

Nr.	Funktion
12, 13	Spannungsversorgung für Digitaleingänge. Damit die 24-V-Gleichspannung für die Di-

gitaleingänge verwendbar ist, muß Schalter 4 auf der Steuerkarte geschlossen sein (EIN).

16-33	Digitale Eingänge/Drehgeber-Eingänge
20	Erde für digitale Eingänge
39	Erde für analoge/digitale Ausgänge
42, 45	Analog-/Digitalausgang zur Anzeige von Frequenz, Sollwert, Strom und Drehmoment
50	Versorgungsspannung für Potentiometer und Thermistor 10 V DC
53, 54	Analoger Sollwerteingang, Spannung 0 - ± 10 V
55	Erde für analoge Sollwerteingänge
60	Analoger Sollwerteingang, Strom 0/4-20 mA
61	Abschluß für serielle Kommunikation. Siehe Abschnitt Busanschluß. Dieser Anschluß


68, 69

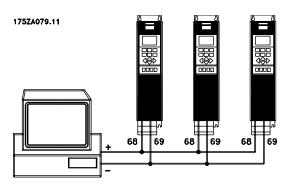
Schnittstelle RS 485, serielle Kommunikation. Wird der Frequenzumrichter an einen Bus angeschlossen, so müssen am ersten und letzten Frequenzumrichter die Schalter 2 und 3 (Schalter 1- 4) geschlossen sein. Bei den übrigen Frequenzumrichtern müssen die Schalter 2 und 3 offen sein. Die Werkseinstellung ist die geschlossene Position ("EIN").

wird normalerweise nicht benutzt.

■ Elektrische Installation

Konvertierung der analogen Eingänge

Stromeingangssignal zu Spannungseingang


0-20 mA 0-10 V	Schließen Sie einen 510-Ohm-Widerstand zwischen
4-20 mA 2-10 V	den Eingangsklemme 53 und 55 (Klemmen 54 und 55)
	an und justieren Sie die Minimal- und Maximalwerte in
	den Parametern 309 und 310 (Parameter 312 und 313).

■ Elektrische Installation - Busanschluß

Die serielle Busverbindung gemäß der Norm RS 485 (zwei Leiter) wird an die Klemmen 68/69 (Signal P und N) des Frequenzumrichters angeschlossen. Signal P ist das positive Potential (TX+, RX+), Signal N das negative (TX-, RX-).

Wenn an denselben Master mehrere Frequenzumrichter angeschlossen werden sollen, hat dies in Parallelschaltung zu erfolgen.

Zur Vermeidung von Potentialausgleichsströmen in der Abschirmung kann die Kabelabschirmung über Klemme 61 geerdet werden, die über ein RC-Glied an Masse verbunden ist.

Busabschluß

Der Bus muß an jedem seiner Endpunkte durch ein Widerstandsnetzwerk abgeschlossen werden. Hierzu sind die Schalter 2 und 3 auf der Steuerkarte auf "ON" zu setzen.

■ DIP Schalter 1-4

Der Dipschalter befindet sich auf der Steuerkarte. Er wird in Zusammenhang mit serieller Kommunikation, Klemme 68 und 69, benutzt.

Die gezeigte Schalterstellung entspricht der Werkseinstellung.

Schalter 1 hat keine Funktion.

Schalter 2 und 3 dienen zum Zu- bzw. Abschalten von Abschluß widerständen für die serielle Kommunikation (RS 485).

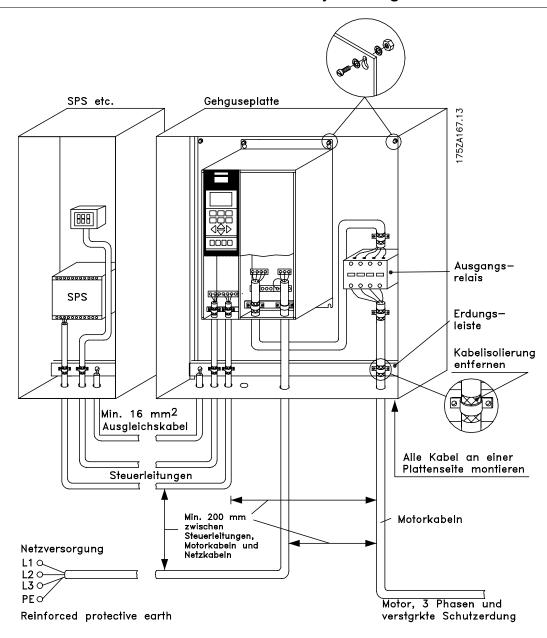
Schalter 4 dient zur Trennung des Massepotentials der internen 24-V DC-Versorgung vom Massepotential einer externen 24-V DC-Versorgung zur Ansteuerung der Digitaleingänge.

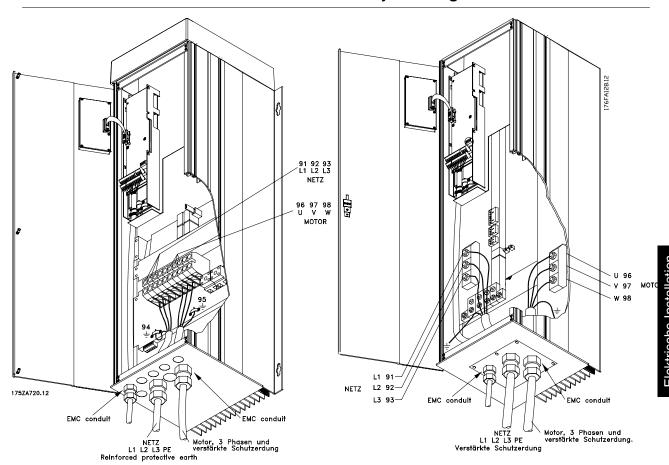
ACHTUNG!

Beachten Sie bitte, daß in der Stellung Aus des Schalters 4 eine externe 24-V DC-Versorgung zur Ansteuerung der Digitaleingänge galvanisch vom Frequenzumrichter getrennt ist.

■ Elektrische Installation - EMV-Schutzmaßnahmen Nachstehend sind Hinweise für eine ordnungsgemäße EMV-Installation von Frequenzumrichtern aufgeführt. Diese Vorgehensweise wird empfohlen, wenn Einhaltung von EN 61000-6-3, EN 61000-6-4, EN 55011 oder EN 61800-3 Erste Umgebung gefordert ist. Wenn die Installation eine Zweite Umgebung nach EN 61800-3 ist, d. h., industrielle Netzwerke oder eine Installation mit eigenem Trafo, darf von diesen Richtlinien abgewichen werden. Hiervon wird jedoch abgeraten. Nähere Einzelheiten siehe auch CE-Zeichen, Emission und EMV-Prüfergebnisse unter Besondere Betriebsbedingungen im Projektierungshandbuch.

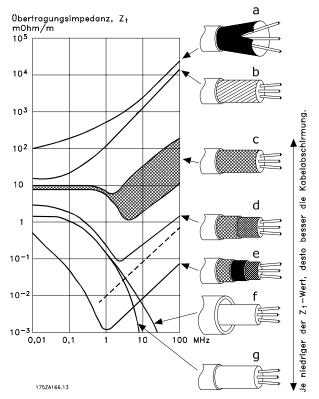
EMV-gerechte elektrische Installation:


- Benutzen Sie nur abgeschirmte/bewehrte Motorkabel und abgeschirmte Steuerkabel. Die Schirmabdeckung muss mindestens 80 % betragen. Das Abschirmungsmaterial muss aus Metall - in der Regel Kupfer, Aluminium, Stahl oder Blei - bestehen. Für das Netzkabel gelten keine speziellen Anforderungen.
- Bei Installationen mit starren Metallrohren sind keine abgeschirmten Kabel erforderlich; das Motorkabel muss jedoch in einem anderen Installationsrohr als die Steuer- und Netzkabel installiert werden. Es ist ein durchgehendes Metallrohr vom Frequenzumrichter bis zum Motor erforderlich. Die Schirmwirkung flexibler Installationsrohre variiert sehr stark; hier sind entsprechende Herstellerangaben einzuholen.
- Abschirmung/Installationsrohr bei Motorund Steuerkabeln beidseitig erden. In einigen Fällen ist es nicht möglich, die Abschirmung an beiden Enden anzuschließen. In diesen Fällen ist es wichtig, die Abschirmung am Frequenzumrichter anzuschließen. Siehe auch Erdung abgeschirmter Steuerkabel.
- Verdrillte Abschirmlitzen (sog. Pigtails) vermeiden. Sie erhöhen die Hochfrequenzimpedanz der Abschirmung und beeinträchtigen so den Abschirmeffekt bei hohen Frequen-


- zen. Statt dessen Schirmbügel oder EMV-Kabelanschlussstutzen verwenden.
- Auf einwandfreien elektrischen Kontakt von der Montageplatte über die Montageschrauben zum Metallgehäuse des Frequenzumrichters achten. Dies gilt jedoch nicht für IP54-Geräte, da diese für Wandmontage bestimmt sind, und VLT 5122-5552, 380-500 V, 5042-5602, 525-690 V und VLT 5032-5052, 200-240 V in IP20/NEMA 1-Gehäuse und IP54/NEMA 12-Gehäuse..
- Zahnscheiben und galvanisch leitfähige Montageplatten verwenden, um einwandfreien elektrischen Kontakt für IP00- und IP20-Installationen zu gewährleisten.
- Nach Möglichkeit in Schaltschränken ebenfalls nur abgeschirmte Motor- und Steuerkabel verwenden.
- Bei IP54-Geräten ist eine unterbrechungsfreie Hochfrequenzverbindung zwischen dem Frequenzumrichter und der Motoreinheit erforderlich.

Die Abbildung zeig ein Beispiel einer EMV-gerechten elektrischen Installation eines IP20-Frequenzumrichters. Der Frequenzumrichter wurde in einem Schrank mit Ausgangsschütz untergebracht und an eine SPS angeschlossen, die in diesem Beispiel in einem separaten Schrank installiert ist. Bei IP54-Geräten und VLT 5032-5052, 200-240 V in IP20/IP21/NEMA 1-Gehäuse werden unter Verwendung von EMV-Installationsrohren abgeschirmte Kabel angeschlossen, um eine korrekte EMV-Leistung zu gewährleisten. Siehe Abbildung. Mit anderen Vorgehensweisen kann ggf. eine ebenso gute EMV-Wirkung erzielt werden, sofern die vorstehenden Hinweise für eine ordnungsgemäße Installation befolgt werden.

Bitte beachten Sie: Wenn die Installation nicht entsprechend dieser Hinweise erfolgt oder wenn unabgeschirmte Kabel und Steuerkabel verwendet werden, sind bestimmte Anforderungen hinsichtlich der Störaussendung nicht erfüllt, wenngleich die Anforderungen an die Störfestigkeit erfüllt sind. Näheres siehe unter *EMV-Prüfergebnisse* im Projektierungshandbuch.



■ Verwendung EMV-gemäßer Kabel

Um die EMV-Immunität der Steuerkabel und die EMV-Emission von den Motorkabeln zu optimieren, empfiehlt sich die Verwendung umflochtener abgeschirmter Kabel.

Die Fähigkeit eines Kabels, ein- und ausstrahlendes elektrisches Störrauschen zu reduzieren, hängt von der Transfer-Impedanz (Z_T) ab. Die Abschirmung von Kabeln ist normalerweise darauf ausgelegt, die Übertragung elektrischen Störrauschens zu mindern, wobei allerdings Abschirmungen mit niedrigerer Transfer-Impedanz (Z_T) wirksamer sind als Abschirmungen mit höherer Transfer-Impedanz (Z_T).

Die Transfer-Impedanz (Z_T) wird von den Kabelherstellern nur selten angegeben. Durch Sichtprüfung und Beurteilung der mechanischen Eigenschaften des Kabels lässt sich die Transfer-Impedanz (Z_T) jedoch meistens einschätzen.

Die Transfer-Impedanz (Z_T) kann anhand folgender Faktoren beurteilt werden:

- Leitfähigkeit des Abschirmungsmaterials.
- Kontaktwiderstand zwischen den einzelnen Abschirmleitern
- Abschirmungsdeckung, d.h. die physische Fläche des Kabels, die durch die Absirmung abgedeckt ist (häufig in Prozent angegeben).
- Art der Abschirmung (geflochten oder gewunden).

Aluminium-ummantelt mit Kupferdraht.

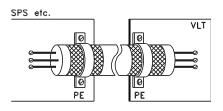
Gewundener Kupferdraht oder bewehrtes Stahldrahtkabel.

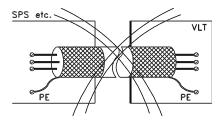
Kupferdraht einlagig, geflochten, mit unterschiedlicher prozentualer Abschirmungsdeckung. Dies ist das typische Danfoss-Referenzkabel.

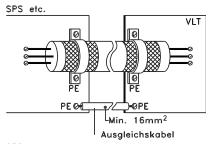
Kupferdraht zweilagig, geflochten.

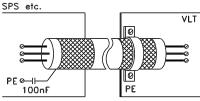
Kupferdraht zweilagig, geflochten, mit einer magnetischen, abgeschirmten/bewehrten Zwischenlage.

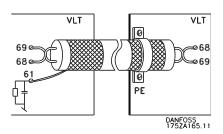
In Kupfer- oder Stahlrohr geführtes Kabel.


Bleikabel mit 1,1 mm Wandstärke.




■ Elektrische Installation - Erdung Steuerkabel


Generell müssen Steuerkabel abgeschirmt und die Abschirmung beidseitig mittels Kabelbügel mit dem Metallgehäuse des Gerätes verbunden sein.


Die Zeichnung unten zeigt, wie eine korrekte Erdung durchzuführen ist, und was in Zweifelsfällen getan werden kann.

Richtiges Erden

Steuerkabel und Kabel der seriellen Kommunikationsschnittstelle beidseitig mit Kabelbügeln montieren, um bestmöglichen elektrischen Kontakt zu gewährleisten.

Falsches Erden

Verzwirbelte Abschirmlitzen (sog. Pigtails) vermeiden, da diese die Schirmimpedanz bei höheren Frequenzen vergrößern.

Sicherung des Erdpotentials zwischen SPS und VLT

Besteht zwischen dem Frequenzumrichter und der SPS (etc.) ein unterschiedliches Erdpotential, so können elektrische Störgeräusche auftreten, die das gesamte System stören können. Das Problem kann durch Anbringen eines Ausgleichskabels gelöst werden, das neben das Steuerkabel gelegt wird. Kabelquerschnitt mindestens 16 mm²

Bei 50/60-Hz-Erdfehlerschleifen

Bei Verwendung sehr langer Steuerkabel können 50/60-Hz-Erdfehlerschleifen auftreten. Diesem Problem kann durch Verbinden des einen Schirmendes an Erde über einen 100-nF-Kondensator (bei möglichst kurzen Leitungen) abgeholfen werden.

Kabel für die serielle Kommunikationsschnittstelle Niederfrequente Störströme zwischen zwei Frequenzumrichtern können eliminiert werden, indem das eine Ende der Abschirmung mit Klemme 61 verbunden wird. Dieser Eingang ist über ein internes RC-Glied mit Erde verbunden. Es empfiehlt sich die Verwendung eines paarweise gewundenen (twisted pair) Kabels, um die Differentialsignalinterferenz zwischen den Leitern zu reduzieren.

■ EMV-Schalter

Erdfreie Netzversorgung:

Wird der Frequenzumrichter von einer isolierten Netzstromquelle (IT-Netz) oder TT/TN-S Netz mit geerdetem Zweig versorgt, so wird empfohlen, den EMV-Schalter auf OFF (AUS) zu stellen¹⁾. Siehe dazu IEC 364-3. Falls optimale EMV-Wirkung benötigt wird, parallele Motoren angeschlossen werden oder das Motorkabel länger als 25 m ist, wird empfohlen, den Schalter in die Stellung ON (EIN) zu stellen.

In der AUS-Stellung sind die internen EMV-Kapazitäten (Filterkondensatoren) zwischen Chassis und Zwischenkreis abgeschaltet, um Schäden am Zwischenkreis zu vermeiden und die Erdkapazitätsströme (gemäß IEC 61800-3) zu verringern.

Beachten Sie bitte auch den Anwendungshinweis *VLT im IT-Netz*, MN.90.CX.02. Es ist wichtig, Erdschluss-Überwachungsgeräte zu verwenden, die zusammen mit Leistungselektronik einsetzbar sind (IEC 61557-8).

ACHTUNG!

Den EMV-Schalter nicht betätigen, wenn das Gerät an das Netz angeschlossen ist. Vergewissern Sie sich bitte, dass die Netzversorgung unterbrochen ist, bevor Sie den EMV-Schalter betätigen.

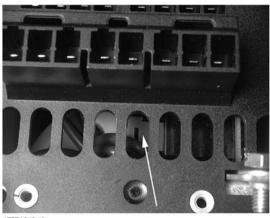
ACHTUNG!

Ein Betrieb mit offenem EMV-Schalter ist nur bei werkseitig eingestellten Taktfrequenzen zulässig.

ACHTUNG!

Der EMV-Schalter schaltet die Kondensatoren galvanisch an Erde an.

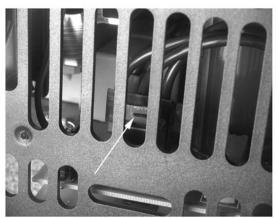
Die roten Schalter werden z. B. mit einem Schraubendreher betätigt. In AUS-Stellung sind die Schalter herausgezogen, in EIN-Stellung sind die Schalter eingedrückt. Die Werkseinstellung ist EIN.



Geerdete Netzversorgung:

Der EMV-Schalter <u>muss</u> auf ON (EIN) gestellt werden, damit der Frequenzumrichter die EMV-Norm erfüllt.

1) Bei VLT 5042-5602, 525-690 V nicht möglich.

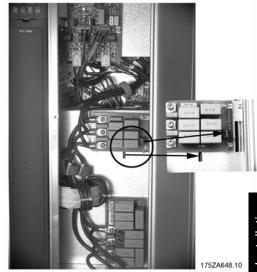

Position von EMV-Schaltern

175ZA649.10

Buchformat IP20

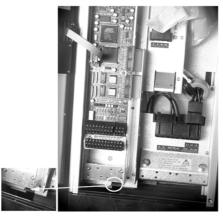
VLT 5001 - 5006 200 - 240 V VLT 5001 - 5011 380 - 500 V

175ZA650.10


Kompaktformat IP20/NEMA 1

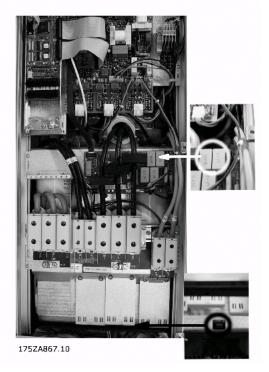
VLT 5001 - 5006 200 - 240 V VLT 5001 - 5011 380 - 500 V

VLT 5001 - 5011 525 - 600 V



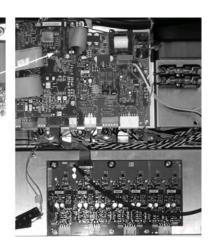
Kompaktformat IP20/NEMA 1 VLT 5008 200 - 240 V VLT 5016 - 5022 380 - 500 V VLT 5016 - 5022 525 - 600 V Kompaktformat IP20/NEMA 1 VLT 5022 - 5027 200 - 240 V VLT 5042 - 5102 380 - 500 V VLT 5042 - 5062 525 - 600 V

Kompaktformat IP20/NEMA 1 VLT 5011 - 5016 200 - 240 V VLT 5027 - 5032 380 - 500 V VLT 5027 - 5032 525 - 600 V


175ZA647.1

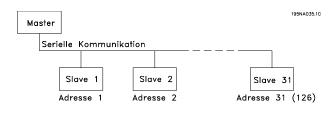
Kompaktformat IP54 VLT 5001 - 5006 200 - 240 V VLT 5001 - 5011 380 - 500 V

Kompaktformat IP54 VLT 5008 - 5011 200 - 240 V VLT 5016 - 5027 380 - 500 V



Kompaktformat IP54 VLT 5072 - 5102 380 - 500 V

175ZA654.10


Alle Gehäusetypen VLT 5122-5552 380 - 500 V

Kompaktformat IP54 VLT 5016 - 5027 200 - 240 V VLT 5032 - 5062 380 - 500 V

■ Serielle Kommunikation

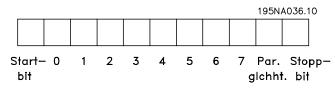
■ Protokolle

Telegrammübermittlung

Steuer- und Antworttelegramme

Die Telegrammübermittlung in einem Master-Slave-System wird vom Master gesteuert. Es können maximal 31 Slaves an einen Master angeschlossen werden, sofern keine Repeater verwendet werden. Werden Repeater verwendet, so können maximal 126 Slaves an einen Master angeschlossen werden.

Der Master sendet kontinuierlich an die Slaves addressierte Steuertelegramme und wartet auf deren Antworttelegramme. Die Antwortzeit eines Slave beträgt maximal 50 ms.


Nur wenn ein Slave ein fehlerfreies, an ihn adressiertes Telegramm empfangen hat, kann er ein Antworttelegramm senden.

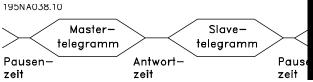
Broadcast

Ein Master kann das gleiche Telegramm gleichzeitig an alle an den Bus angeschlossenen Slaves senden. Bei einer solchen Broadcast-Kommunikation sendet der Slave dem Master keine Antworttelegramme über den richtigen Empfang des Telegramms. Broadcast-Kommunikation erfolgt im Adreßformat (ADR), siehe Telegrammstruktur.

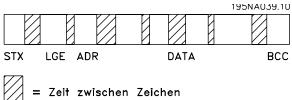

Inhalt eines Byte

Jedes übertragene Byte beginnt mit einem Startbit. Danach werden 8 Datenbits übertragen, was einem Byte entspricht. Jedes Byte wird über ein Paritätsbit abgesichert, das auf "1" gesetzt wird, wenn Paritätsgleichheit gegeben ist (d.h. eine gleiche Anzahl binärer Einsen in den 8 Datenbits und dem Paritätsbit zusammen). Ein Byte endet mit einem Stoppbit und besteht somit insgesamt aus 11 Bits.

■ Telegrammaufbau


Jedes Telegramm beginnt mit einem Startbyte (STX) = 02 Hex, gefolgt von einem Byte zur Angabe der Telegrammlänge (LGE) und einem Byte, das die Adresse des Frequenzumrichters (ADR) angibt). Danach folgt eine Anzahl Datenbytes (variabel, abhängig von der Telegrammart). Das Telegramm schließt mit einem Datensteuerbyte (BCC).

Telegrammtiming


Die Kommunikationsgeschwindigkeit zwischen einem Master und einem Slave hängt von der Baudrate ab. Die Baudrate des Frequenzumrichters muss der des Masters entsprechen und wird in Parameter 501 Baudrate gewählt.

Nach einem Antworttelegramm vom Slave muss eine Pause von mindestens 2 Byte (22 Bit) eingelegt werden, bevor der Master ein neues Telegramm senden kann. Bei einer Baudrate von 9600 Baud muss die Pause mindestens 2,3 ms dauern. Wenn der Master das Telegramm gesendet hat, darf die Antwortzeit des Slave zurück zum Master höchstens 20 ms betragen, und es wird eine Pause von 2 Byte eingelegt.

Pausenzeit, min: 2 Byte Antwortzeit, min: 2 Byte Antwortzeit, max: 2 ms

Die Zeit zwischen den einzelnen Bytes in einem Telegramm darf zwei Bytes nicht überschreiten, und das Telegramm muss innerhalb der 1,5fachen normalen Telegrammzeit übertragen sein. Bei einer Baudrate von 9600 Baud und einer Telegrammlänge von 16 Byte ist das Telegramm nach 27,5 ms übertragen.

Telegrammlänge (LGE)

Die Telegrammlänge ist die Anzahl der Datenbytes plus Adressbyte ADR plus Datensteuerbyte BCC.

Die Länge der Telegramme mit 4 Datenbyte beträgt:

LGE = 4 + 1 + 1 = 6 Byte

Telegramme mit 12 Datenbyte haben folgende Länge: LGE = 12 + 1 + 1 = 14 Byte

Die Länge von Telegrammen, die Texte enthalten, ist 10+n-Byte. 10 stellen die festen Zeichen dar, während das 'n' variabel ist (je nach Textlänge).

Frequenzumrichteradresse (ADR)

Es werden zwei verschiedene Adressformate verwendet, wobei der Adressbereich des Frequenzumrichters entweder 1-31 oder 1-126 ist.

1. Adressformat 1-31

Das Byte für den Adressbereich 1-31 hat folgendes

7 、	6	__ 5	4	3	2	1	0
0	X						

Profil: 195NA040.10

Bit 7 = 0 (Adressformat 1-31 aktiv)

Bit 6 wird nicht verwendet

Bit 5 = 1: Broadcast, Adressbits (0-4) werden nicht benutzt

Bit 5 = 0: Kein Broadcast

Bit 0-4 = Frequenzumrichteradresse 1-31

2. Adressformat 1-126

Das Byte für den Adressbereich 1 - 126 hat folgendes

7	6	5	4	3	2	1	0
1							

Profil:

195NA041.10

195NA042.10

Bit 7 = 1 (Adressformat 1-126 aktiv)

Bit 0-6 = Frequenzumrichteradresse 1-126

Bit 0-6 = 0 Broadcast

Der Slave sendet das Adressbyte in seinem Antworttelegramm an den Master unverändert zurück.

Beispiel:

Schreiben an Frequenzumrichteradresse 22 (16H) im Adressformat 1-31:

7	6	5	4	3	2	1	0
0	0	0	1	0	1	1	0

Datensteuerbyte (BCC)

Das Datensteuerbyte wird in diesem Beispiel erläutert: Bevor das erste Byte im Telegramm empfangen wird, beträgt die errechnete Prüfsumme (BCS) 0.

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0

195NA043.10

Wenn

das erste Byte (02H) empfangen wurde: BCS = BCC EXOR "erstes Byte"

(EXOR = exklusiv-oder)

BCS	= 0 0 0 0 0 0 0 0 (00 H)
	EXOR
1. Byte	= 0 0 0 0 0 0 1 0 (02H)
BCC	= 0 0 0 0 0 0 1 0 (02H)

Jedes nachfolgende Byte wird mit BCS EXOR verknüpft und erzeugt ein neues BCC, z.B.:

BCS	= 0 0 0 0 0 0 1 0 (02H) EXOR
2.Byte	= 1 1 0 1 0 1 1 0 (D6H)
BCC	= 1 1 0 1 0 1 0 0 (D6H)

Datenbytes

Die Struktur der Datenblöcke hängt von der Telegrammart ab. Es gibt drei Telegrammarten, und die Telegrammart gilt sowohl für Steuer- (Master•Slave) als auch Antworttelegramme (Slave•Master). Die drei Telegrammarten sind:

Parameterblock zur Übertragung von Parametern zwischen Master und Slave. Der Datenblock besteht aus 12 Bytes (6 Wörtern) und enthält zudem den Prozeßblock.

195NA044.10

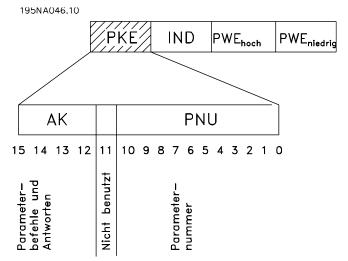
PKE	IND	PWE hoch	PWE niedr	PZD1	PZD2
	Param	Prozes	ssblock		

- Der Prozeßblock besteht aus einem Datenblock mit vier Bytes (2 Wörtern) und enthält:
 - Steuerwort und Sollwert
 - Zustandswort und aktuelle Ausgangsfrequenz (vom Slave zum Master)

PCD1	PCD2
------	------

Prozessblock

 Textblock zum Lesen oder Schreiben von Texten über den Datenblock.


PKE	IND	Ch					Ch	n		PZD2	
		Textblock							Proze	ssblock	(

Parameterbefehle Master⇒Slave Bit Nr. 12 Parameterbefehl 15 14 13 Kein Befehl 0 0 0 0 0 Parameterwert lesen 0 0 0 1 0 Parameterwert in RAM (Wort) schreiben 0 0 1 1 Parameterwert in RAM (Doppelwort) schreiben 1 0 1 Parameterwert in RAM und EEPROM (Doppelwort) schreiben 1 0 Parameterwert in RAM und EEPROM (Wort) schreiben 1 1 Text lesen/schreiben 1

Antv	Antwort Slave⇒Master						
Bit N	٧r.			Antwort			
15	14	13	12				
0	0	0	0	Keine Antwort			
0	0	0	1	Parameterwert übertragen (Wort)			
0	0	1	0	Parameterwert übertragen			
				(Doppelwort)			
0	1	1	1	Befehl kann nicht ausgeführt wer-			
				den			
1	1	1	1	Text übertragen			

Kann der Befehl nicht ausgeführt werden, so sendet der Slave die Antwort: 0111 Befehl kann nicht ausgeführt werden, und gibt eine der folgenden Fehlermeldungen im Parameterwert (PWE) ab:

Parameterbefehle und -antworten (AK).

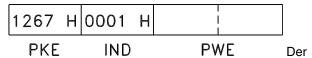
Die Bits Nr. 12-15 dienen zur Übertragung von Parameterbefehlen vom Master zum Slave und der vom Slave bearbeiteten Rückantworten zurück zum Master.

Antwort (0111)	Fehlermeldung
0	Die verwendete Parameternummer
	existiert nicht
1	Kein Schreibzugriff auf den
	definierten Parameter
2	Datenwert überschreitet
	Parameter-Grenzwerte
3	Benutzter Subindex
	existiert nicht
4	Parameter nicht vom Typ Matrix
5	Datentyp paßt nicht zum
	definierten Parameter
17	Der Datenaustausch im definierten
	Para-
	meter ist im aktuellen Modus des Fre-
	quenzumrichters nicht möglich.
	Bestimmte Parameter können nur ge-
	ändert werden, wenn der Motor aus-
	geschaltet ist.
130	Kein Buszugriff auf den
	definierten Parameter
131	Datenänderungen sind nicht möglich,
	da
	die Werkseinstellung gewählt ist.

Parameternummer (PNU)

Die Bits Nr. 0-10 dienen zur Übertragung der Parameternummer. Die Funktion des betreffenden Parameters ist der Parameterbeschreibung im Kapitel Programmierung zu entnehmen.

Index



dex wird zusammen mit der Parameternummer für den Lese-/Schreibzugriff auf Parameter mit einem Index verwendet, z.B. Parameter 615 Fehlercode. Der Index besteht aus 2 Bytes, einem Lowbyte und einem Highbyte, es wird aber nur das Lowbyte als Index benutzt.

Beispiel-Index:

Der erste Fehlercode (Index [1]) in Parameter 615 Fehlercode muß gelesen werden.

PKE = 1267 Hex (lese Parameter 615 Fehlercode.) IND = 0001 Hex - Index Nr. 1.

Frequenzumrichter antwortet im Parameterwertblock (PWE) mit einem Fehlercodewert von 1 - 99. Siehe Übersicht der Warn- und Alarmmeldungen, um den Fehlercode zu identifizieren.

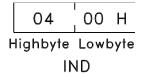
Parameterwert (PWE)

PKE IND

rameterwertblock besteht aus 2 Wörtern (4 Bytes), und der Wert hängt vom definierten Befehl (AK) ab. Verlangt der Master einen Parameterwert, so enthält der PWE-Block keinen Wert.

Soll der Master einen Parameterwert ändern (write), so wird der neue Wert in den PWE-Block geschrieben und zum Slave gesendet.

Antwortet der Slave auf eine Parameteranfrage (read), so wird der aktuelle Parameterwert im PWE-Block an den Master übertragen.


Wenn ein Parameter keinen numerischen Wert enthält, sondern mehrere Datenoptionen, z.B. Parameter 001 Sprache wobei [0] Englisch und [3] Dänisch entspricht, wird der Datenwert durch Eingabe des Werts in den PWE-Block gewählt. Siehe Beispiel - Wahl eines Datenwertes

Über die serielle Schnittstelle können nur Parameter des Datentyps 9 (Textblock) gelesen werden. Parameter 621 - 635 Typenschild ist vom Datentyp 9. Zum Beispiel kann in Parameter 621 Frequenzumrichtertyp die Geräteleistung und Netzspannung gelesen werden.

Wird eine Textkette übertragen (gelesen), so ist die Telegrammlänge variabel, da die Texte unterschiedliche Längen haben. Die Telegrammlänge ist im zweiten Byte (LGE) des Telegramms definiert.

Um einen Text über den PWE-Block lesen zu können, muß der Parameterbefehl (AK) auf 'F' Hex eingestellt werden.

Das Indexzeichen wird verwendet, um anzuzeigen, ob es sich um einen Lese- oder Schreibbefehl handelt. In einem Lesebefehl muß der Index das folgende Format haben:

Einige Frequenzumrichter haben Parameter, in die Text geschrieben werden kann. Um einen Text über den PWE-Block schreiben zu können, muß der Parameterbefehl (AK) auf 'F' Hex gesetzt werden.

Für einen Schreibbefehl muß der Text folgendes Format haben:

05 00 H

Vom Frequenzumrichter unterstützte Datentypen:

Beschreibung
Ganzzahl 16
Ganzzahl 32
Ohne Vorzeichen 8
Ohne Vorzeichen 16
Ohne Vorzeichen 32
Textblock
Bytefolge
Zeitdifferenz
Reserviert
Bitsequenz

Ohne Vorzeichen bedeutet, daß im Telegramm kein Vorzeichen vorkommt.

Beispiel - Schreiben eines Parameterwertes:

Parameter 202 Ausgangsfrequenzgrenze hoch, f_{MAX} soll auf 100 Hz geändert werden. Der Wert muß nach einem Netzausfall wieder aufgerufen werden und wird daher in das EEPROM geschrieben.

PKE = E0CA Hex - Schreiben für Parameter 202 Ausgangsfrequenzgrenze hoch, f_{MAX}

IND = 0000 Hex

 $PWE_{MAX} = 0000 Hex$

PWE_{MIN} = 03E8 Hex - Datenwert 1000 entsprechend 100 Hz, siehe Umrechnung.

I	E0CA	Н	0000	Н	0000	Н	03E8	I	
	PKE		IND	IND		PWE _{high}		PWElow	

Die Antwort des Slave an den Master lautet:

10CA	Н	0000	Н	0000	Н	03E8	Н
PKE		IND		PWE _h	igh	PWE	w

Beispiel - Wahl eines Datenwertes:

Es soll kg/ST [20] in Parameter 416 *Prozeßeinheiten* gewählt werden. Der Wert muß nach einem Netzausfall wieder aufgerufen werden und wird daher in das EEPROM geschrieben.

PKE = E19F Hex - Schreiben für Parameter 416 *Prozeßeinheiten*

IND = 0000 Hex

PWE_{MAX} = 0000 Hex

 $PWE_{MIN} = 0014 \text{ Hex} - Datenoption kg/ST [20]$ wählen

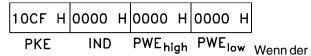
E1A0	Н	0000	Н	0000	Н	0014	Н
PKE		IND		PWE _{hi}	gh	PWElo	w

Die Antwort des Slave an den Master lautet:

PKF		IND				PWE	
11AO	н	0000	н	0000	н	0014	н

Beispiel - Lesen eines Parameterwertes:

Der Wert in Parameter 207 Rampenzeit auf 1 soll ausgelesen werden.


Der Master sendet folgende Anfrage:

PKE = 10CE Hex - Lesen Parameter 207 Rampenzeit auf 1

IND = 0000 Hex

PWE_{MAX} = 0000 Hex

PWE_{MIN} = 0000 Hex

Wert in Parameter 207 Rampenzeit auf 1 10 s ist, ist die Antwort des Slave an den Master:

10CF	Н	0000	Н	0000	Н	000A	I
PKE		IND		PWE high		PWElc	

Umrechnung:

Das Kapitel Werkseinstellungen zeigt die verschiedenen Attribute für jeden Parameter. Da ein Parameterwert nur als Ganzzahl übertragen werden kann, muß ein Umrechnungsfaktor für Dezimalstellen verwendet werden.

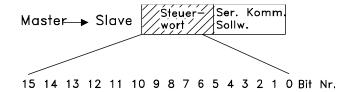
Beispiel:

Parameter 201 Ausgangsfrequenzgrenze niedrig f_{MIN} hat einen Umrechnungsfaktor von 0,1. Wenn Sie die niedrigste Frequenz von 10 Hz voreinstellen möchten, muss der Wert 100 übertragen werden. Der Umrechnungsfaktor 0,1 bedeutet, dass der übertragene Wert mit 0,1 multipliziert wird. Der Wert 100 wird somit als 10,0 erkannt.

Umrechnungstabelle	
Umrechnungs-	Umrechnungs-
index	faktor
74	0,1
2	100
1	10
0	1
-1	0,1
-2	0,01
-3	0,001
-4	0,0001
-5	0,00001

■ Prozeßbytes

Der Block der Prozeßbytes ist in zwei Blöcke mit je 16 Bit aufgeteilt, die immer in der definierten Sequenz kommen.


	195NA066.10
PCD1	PCD2

	PCD 1	PCD 2
Steuertelegramm	Steuerwort	Sollwert
(Master⇒Slave)		
Steuertelegramm	Zustandswort	Aktuelle Ausg
(Slave⇒Master)		frequenz

■ Steuerwort gemäß FC-Profil

Zur Auswahl von FC-Protokoll im Steuerwort muss Parameter 512 *Telegrammprofil* auf *FC-Protokoll* [1] eingestellt werden.

Das Steuerwort dient zum Senden von Befehlen von einem Master (z. B. einem PC) zu einem Slave (Frequenzumrichter).

Bit	Bit = 0	Bit = 1
00	Sollwert externe An-	
	wahl Isb	
01	Sollwert externe An-	
	wahl msb	
02	Gleichspannungs-	Rampe
	bremse	
03	Motorfreilauf	Aktiv
04	Schnellstop	Rampe
05	Ausg. speichern	Rampe möglich
06	Rampenstopp	Start
07	Ohne Funktion	Zurücksetzen
80	Ohne Funktion	Festdrehzahl (Jog)
09	Rampe 1	Rampe 2
10	Daten nicht gültig	Gültig
11	Ohne Funktion	Relais 01 aktiviert
12	Ohne Funktion	Relais 04 aktiviert
13	Satzwahl (Isb)	
14	Parametersatzwahl	
	(msb)	
15	Ohne Funktion	Reversierung

Bit 00/01:

Bit 00/01 dient zur Wahl zwischen den beiden vorprogrammierten Sollwerten (Parameter 215-218 Festsollwert) nach folgender Tabelle:

Festsollwert	Parameter	Bit 01	Bit 00
1	215	0	0
2	216	0	1
3	217	1	0
4	218	1	1

ACHTUNG!

In Parameter 508 Festsollwertwahl wird definiert, wie Bit 00/01 mit der entsprechenden Funktion an den digitalen Eingängen verknüpft ist.

Bit 02, Gleichspannungsbremse:

Bit 02 = '0' führt zu Gleichspannungsbremsung und Stopp. Bremsstrom und Dauer werden in Parameter 125 und 126 eingestellt.

Bit 02 = '1' ergibt 'Rampe'.

Bit 03, Motorfreilauf:

Bit 03 = '0' bewirkt, dass der Frequenzumrichter den Motor sofort abschaltet (die Ausgangstransistoren werden abgeschaltet), so dass der Motor im Freilauf ausläuft.

Bei Bit 03 = '1' kann der Frequenzumrichter den Motor starten, wenn die anderen Startbedingungen erfüllt sind. Hinweis: In Parameter 502 *Motorfreilauf* wird definiert, wie Bit 03 mit der entsprechenden Funktion an einem digitalen Eingang verknüpft ist.

Bit 04, Schnellstopp:

Bit 04 = '0' bewirkt einen Stopp, indem die Motordrehzahl über Parameter 212 Rampenzeit ab, Schnellstopp bis zum Stopp reduziert wird.

Bit 05, Ausgangsfrequenz speichern:

Bei Bit 05 = '0' wird die aktuelle Ausgangsfrequenz (in Hz) gespeichert. Die gespeicherte Ausgangsfrequenz kann nun nur mit den auf *Drehzahl auf* und *Drehzahl ab* programmierten digitalen Eingängen geändert werden.

ACHTUNG!

Wenn Ausgangsfrequenz speichern aktiv ist, kann der Frequenzumrichter nicht über Bit 06 Start oder einen digitalen Eingang gestoppt werden. Der Frequenzumrichter kann nur durch Folgendes gestoppt werden:

- Bit 03 Motorfreilauf
- Bit 02 Gleichspannungsbremse
- Digitaler Eingang programmiert auf Gleichspannungsbremse, Motorfreilauf oder Quittieren und Motorfreilauf.

Bit 06, Rampenstop/Start:

Bit 06 = '0' bewirkt einen Stopp, indem die Motordrehzahl über den entsprechenden Parameter für *Rampenzeit Ab* bis zum Stopp reduziert wird.

Bei Bit 06 = '1' kann der Frequenumrichter den Motor starten, wenn die anderen Startbedingungen erfüllt sind. Hinweis: In Parameter 505 *Start* wird definiert, wie Bit 06 mit der entsprechenden Funktion an einem digitalen Eingang verknüpft ist.

Bit 07, Quittieren:

Bit 07 = '0' bewirkt kein Quittieren.

Bit 07 = '1' bewirkt das Quittieren einer Abschaltung. Quittieren wird auf der ansteigenden Signalflanke aktiviert, d.h. beim Übergang von logisch '0' zu logisch '1'.

Bit 08, Festdrehzahl (Jog):

Bei Bit 08 = '1' wird die Ausgangsfrequenz durch Parameter 213 Frequenz Festdrehzahl - Jog bestimmt.

Bit 09, Auswahl von Rampe 1/2:

Bei Bit 09 = '0' ist Rampe 1 aktiv (Parameter 207/208). Bei Bit 09 = '1' ist Rampe 2 aktiv (Parameter 209/210).

Bit 10, Daten nicht gültig/Daten gültig:

Dient dazu, dem Frequenzumrichter mitzuteilen, ob das Steuerwort benutzt oder ignoriert werden soll. Bei Bit 10 = '0' wird das Steuerwort ignoriert, bei Bit 10 = '1' wird es benutzt. Diese Funktion ist relevant, weil das Steuerwort immer im Telegramm enthalten ist, unabhängig davon, welcher Telegrammtyp benutzt wird; d.h., es ist möglich, das Steuerwort auszuschalten, wenn es im Zusammenhang mit dem Aktualisieren bzw. Lesen von Parametern nicht benutzt werden soll.

Bit 11, Relais 01:

Bei Bit 11 = '0' Relais nicht aktiviert.

Bei Bit 11 = '1' ist Relais 01 aktiviert, vorausgesetzt in Parameter 323 wurde *Steuerwort Bit* gewählt.

Bit 12, Relais 04:

Bei Bit 12 = '0' Relais 04 nicht aktiviert.

Bei Bit 12 = '1' ist Relais 04 aktiviert, vorausgesetzt in Parameter 326 wurde Steuerwort Bit gewählt.

Bit 13/14, Parametersatzwahl:

Mit Bit 13 und 14 werden die vier Menü-Parametersätze entsprechend der folgenden Tabelle gewählt:

Parametersatz	Bit 14	Bit 13
1	0	0
2	0	1
3	1	0
4	1	1

Die Funktion ist nur möglich, wenn in Parameter 004 Aktiver Parametersatz Externe Anwahl gewählt ist.

Hinweis: In Parameter 507 *Parametersatzwahl* wird definiert, wie Bit 13/14 mit der entsprechenden Funktion an den digitalen Eingängen verknüpft ist.

Bit 15 Reversierung:

Bit 15 = '0' bewirkt keine Reversierung.

Bit 15 = '1' bewirkt eine Reversierung.

Hinweis: In der Werkseinstellung ist Reversierung auf Digital in Parameter 506 Reversierung eingestellt. Bit 15 bewirkt eine Reversierung nur dann, wenn entweder Serielle Kommunikation, Logisch oder oder Logisch und gewählt ist.

■ Zustandswort gemäß FC-Profil

Slave — Master Zustands Ausgangsfrequenz

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit Nr. Das Zustandswort dient dazu, einem Master (z. B. einem PC) den Zustand eines Slave (Frequenzumrich-

ters) mitzuteilen. Slave•Master.

,		
Bit	Bit = 0	Bit =1
00	Steuerung nicht bereit	Bereit
01	VLT nicht bereit	Bereit
02	Motorfreilauf	Wirksam
03	Kein Fehler	Abschaltung
04	Reserviert	
05	Reserviert	
06	Reserviert	
07	Keine Warnung	Warnung
80	Drehzahl ≠Sollw.	Drehzahl = Sollw.
09	Ort-Steuerung	Bussteuerung
10	Außerhalb des Bereichs	Frequenz OK
11	Motor dreht nicht	Motor dreht
12	Bremstest OK	Bremstestfehler
13	Spannung OK	Grenze überschritten
14	Moment OK	Grenze überschritten
15		Warnung Übertemp.

Bit 00, Steuerung nicht bereit/bereit:

Bit 00 = "0" bedeutet, dass der Frequenzumrichter wegen Störung abgeschaltet hat.

Bit 00 = "1" bedeutet, dass die Steuerung des Frequenzumrichters bereit ist, aber dass nicht unbedingt eine Versorgung zum Leistungsteil gegeben ist (bei externer 24 V-Versorgung der Steuerung).

Bit 01, FU bereit:

Bit 01 = "1'. Der Frequenzumrichter ist betriebsbereit, aber es liegt ein aktiver Freilaufbefehl über die Digitaleingänge oder die serielle Schnittstelle vor.

Bit 02, Motorfreilauf:

Bit 02 = 0. Der Frequenzumrichter hat den Motor freigegeben.

Bit 02 = "1'. Der Frequenzumrichter kann den Motor starten, wenn ein Startbefehl gegeben wird.

Bit 03, No trip/trip:

Bei Bit 03 = 0" ist der Frequenzumrichter nicht im Fehlermodus.

Bei Bit 03 = "1" hat der Frequenzumrichter abgeschaltet und benötigt ein Reset-Signal, um den Betrieb wieder aufzunehmen.

Bit 04, Nicht benutzt:

Bit 04 wird im Zustandswort nicht benutzt.

Bit 05, Nicht benutzt:

Bit 05 wird im Zustandswort nicht benutzt.

Bit 06, Nicht benutzt:

Bit 06 wird im Zustandswort nicht benutzt.

Bit 07, Keine Warnung/Warnung:

Bei Bit 07 = "0" sind keine Warnungen vorhanden.

Bei Bit 07 = "1" ist eine Warnung vorhanden.

Bit 08, Drehzahl - Sollw./Drehzahl - Sollw.:

Bei Bit 08 = "0" läuft der Motor, die aktuelle Drehzahl ist aber anders als der eingestellte Drehzahlsollwert. Dies kann z. B. bei der Drehzahlzunahme/-abnahme beim Start/Stopp der Fall sein.

Bei Bit 08 = "1" entspricht die aktuelle Motordrehzahl dem eingestellten Drehzahlsollwert.

Bit 09, Ort-Steuerung/Steuerung über serielle Kommunikation:

Bit 09 = "0" bedeutet, dass [STOPP/RESET] am Steuergerät aktiv ist oder dass *Ort-Sollwert* in Parameter 002 *Ort-/Fern-Betrieb* ausgewählt ist Es ist nicht möglich, den Frequenzumrichter über die serielle Schnittstelle zu steuern.

Bei Bit 09 = "1" kann der Frequenzumrichter über die serielle Schnittstelle gesteuert werden.

Bit 10, Nicht im Frequenzbereich:

Bit 10 = "0", wenn die Ausgangsfrequenz den in Parameter 201 *Min. Frequenz* oder Parameter 202 *Max. Frequenz* definierten Wert erreicht hat. Bit 10 = "1" bedeutet, dass sich die Ausgangsfrequenz innerhalb der definierten Grenzwerte befindet.

Bit 11, Motor läuft/läuft nicht:

Bei Bit 11 = "0" läuft der Motor nicht.

Bei Bit 11 = "1" hat der Frequenzumrichter ein Startsignal erhalten bzw. ist die Ausgangsfrequenz größer als 0 Hz.

Bit 12, Bremstest

Bei Bit 12 = "0" war der Bremstest erfolgreich.

Bei Bit 12 = "1" trat beim Bremstest ein Fehler auf.

Bit 13, Spannungswarnung hoch/niedrig:

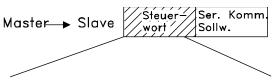
Bei Bit 13 = "0" liegen keine Spannungswarnungen vor.

Bei Bit 13 = "1" ist die Gleichspannung im Zwischenkreis des Frequenzumrichtes zu hoch oder zu niedrig.

Bit 14, Moment OK/Grenze überschritten:

Bei Bit 14 = "0" ist der Motorstrom kleiner als die in Parameter 221 ausgewählte Momentgrenze.

Bei Bit 14 = "1" wurde die in Parameter 221 definierte Momentgrenze überschritten.


Bit 15, Warnung Übertemperatur:

Bei Bit 15 = "0" liegt keine Übertemperaturwarnung

Bei Bit 15 = "1" wurde die Temperaturgrenze im Motor, im Frequenzumrichter oder von einem an einen Digitaleingang angeschlossenen Thermistor überschritten.

■ Steuerwort gemäß Feldbusprofil

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit Nr.

Zur Wahl von *Profidrive* im Steuerwort muß Parameter 512 *Telegrammprofil* auf *Profidrive* [0] eingestellt werden.

Das Steuerwort dient zum Senden von Befehlen von einem Master (z. B. einem PC) zu einem Slave (Frequenzumrichter). Master⇒Slave.

Bit	Bit = 0	Bit = 1
00	AUS 1	EIN 1
01	AUS 2	EIN 2
02	AUS 3	EIN 3
03	Motorfreilauf	
04	Schnellstop	
05	Ausgangsfrequenz	
	speichern	
06	Rampenstopp	Start
07		Zurücksetzen
80		Bus-Festdrehzahl 1
09		Bus-Festdrehzahl 2
10	Daten nicht gültig	Daten nicht gültig
11		Frequenzkorrektur ab
12		Frequenzkorrektur auf
13	Parametersatzwahl	
	(Isb)	
14	Parametersatzwahl	
	(msb)	
15		Reversierung

Bit 00-01-02, OFF1-2-3/ON1-2-3:

Bit 00-01-02 = '0' führt zum Rampenstopp unter Verwendung der Rampenzeiten in den Parametern 207/208 bzw. 209/210.

Ist Relais 123 in Parameter 323 Relaisausgang gewählt, so wird das Ausgangsrelais bei einer Ausgangsfrequenz von 0 Hz aktiviert.

Bei Bit 00-01-02 = '1' kann der Frequenzumrichter den Motor starten, wenn die anderen Startbedingungen erfüllt sind.

Bit 03, Motorfreilauf:

Siehe Beschreibung unter Steuerwort gemäß FC Protocol.

Bit 04, Schnellstopp:

Siehe Beschreibung unter Steuerwort gemäß FC Protocol.

Bit 05, Ausgangsfrequenz speichern:

Siehe Beschreibung unter Steuerwort gemäß FC Protocol.

Bit 06, Rampenstop/Start:

Siehe Beschreibung unter Steuerwort gemäß FC Protocol.

Bit 07, Quittieren:

Siehe Beschreibung unter Steuerwort gemäß FC Protocol.

Bit 08, Festdrehzahl 1:

Bei Bit 08 = '1' wird die Ausgangsfrequenz durch Parameter 509 Bus-Festdrehzahl 1 bestimmt.

Bit 09, Festdrehzahl 2:

Bei Bit 09 = '1' wird die Ausgangsfrequenz durch Parameter 510 Bus-Festdrehzahl 2 bestimmt.

Bit 10, Daten nicht gültig/Daten gültig:

Siehe Beschreibung unter Steuerwort gemäß FC Protocol.

Bit 11, Frequenzkorrektur ab:

Dient zur Reduzierung des Drehzahlsollwertes mit dem Wert in Parameter 219 Frequenzkorrektur Auf/Ab.

Bit 11 = '0' bewirkt keine Änderung des Sollwertes. Bei Bit 11 = '1' wird der Sollwert reduziert.

Bit 12, Frequenzkorrektur auf

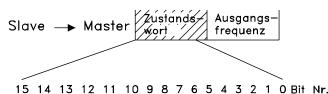
Dient zur Erhöhung des Drehzahlsollwertes mit dem Wert in Parameter 219 *Frequenzkorrektur Auf/Ab*.

Bit 12 = '0' bewirkt keine Änderung des Sollwertes.

Bei Bit 12 = '1' wird der Sollwert erhöht.

Sind sowohl Frequenzkorrektur ab als auchFrequenz-korrektur auf aktiviert (Bits 11 and 12 = '1'), hat Verlangsamen die höchste Priorität, d.h. der Drehzahlsollwert wird verringert.

Bit 13/14, Parametersatzwahl:


Siehe Beschreibung unter Steuerwort gemäß FC Protocol.

Bit 15 Reversierung:

Siehe Beschreibung unter Steuerwort gemäß FC Protocol.

■ Zustandswort gemäß Feldbus-Profil

Das Zustandswort dient dazu, einem Master (z.B. einem PC) den Zustand eines Slave (Frequenzumrichters) mitzuteilen. Slave⇒Master.

Bit	Bit = 0	Bit = 1
00		Steuerung bereit
01		FU bereit
02	Motorfreilauf	
03	Keine Abschaltung	Abschaltung
04	EIN 2	AUS 2
05	EIN 3	AUS 3
06	Start möglich	Start nicht möglich
07		Warnung
08	Drehzahl ≠Sollw.	Drehzahl = Sollw.
09	Ortsteuerung	Ser. Schnittstelle
10	Außerhalb	Frequenzgrenze
	Frequenzbereich	OK
11		Motor läuft
12		
13		Spannungswarnung
14		Stromgrenze
15		Thermische Warnung

Bit 00, Steuerung nicht bereit/Bereit:

Bei Bit 00 = '0' ist Bit 00, 01 oder 02 des Steuerwortes '0' (AUS1, AUS2 oder AUS3), oder der Frequenzumrichter hat abgeschaltet.

Bei Bit 00 = '1' ist der Frequenzumrichter betriebsbereit.

Bit 01, Antrieb bereit:

Siehe Beschreibung unter Zustandswort gemäß FC Protocol.

Bit 02, Motorfreilaufstopp:

Bei Bit 02 = '0' sind die Bits 00, 02 ode 03 im Steuerwort '0' (AUS1, AUS3 oder Motorfreilauf).

Bei Bit 02 = '1' sind die Bits 00, 01, 02 und 03 im Steuerwort '1', und der Frequenzumrichter hat nicht abgeschaltet.

Bit 03, Keine Abschaltung/Abschaltung:

Siehe Beschreibung unter Zustandswort gemäß FC Protocol.

Bit 04, EIN 2/AUS 2:

Bei Bit 04 = '0' ist Bit 01 im Steuerwort = '1'. Bei Bit 04 = '1' ist Bit 01 im Steuerwort = '0'.

Bit 05, EIN 3/AUS 3:

Bei Bit 05 = '0' ist Bit 02 im Steuerwort = '1'. Bei Bit 05 = '1' ist Bit 02 im Steuerwort = '0'.

Bit 06, Start möglich/Start nicht möglich:

Bit 06 = '1' nach Quittierung einer Abschaltung, nach Aktivierung von AUS2 oder AUS3 und nach Netzanschluß. *Start möglich* wird durch Einstellen von Bit 00 im Steuerwort auf '0' quittiert, und Bit 01, 02 und 10 werden auf '1' eingestellt.

Bit 07, Warnung:

Siehe Beschreibung unter Zustandswort gemäß FC Protocol.

Bit 08, Drehzahl:

Siehe Beschreibung unter Zustandswort gemäß FC Protocol.

Bit 09, Keine Warnung/Warnung:

Siehe Beschreibung unter Zustandswort gemäß FC Protocol.

Bit 10, Drehzahl • Sollw./Drehz. = Sollw.:

Siehe Beschreibung unter Zustandswort gemäß FC Protocol.

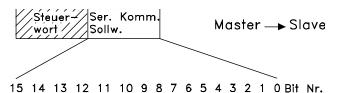
Bit 11, Motor läuft/läuft nicht:

Siehe Beschreibung unter Zustandswort gemäß FC Protocol.

Bit 13, Spannungswarnung hoch/niedrig:

Siehe Beschreibung unter Zustandswort gemäß FC Protocol.

Bit 14, Stromgrenzwert:


Siehe Beschreibung unter Zustandswort gemäß FC Protocol.

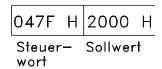
Bit 15, Thermische Warnung:

Siehe Beschreibung unter Zustandswort gemäß FC Protocol.

■ Bussollwert

Der Bussollwert wird in Form eines 16-Bit-Wortes an den Frequenzumrichter übertragen. Der Wert wird in ganzen Zahlen 0 - ±32767 (±200%) übertragen. 16384 (4000 Hex) entspricht 100%.

Der Bussollwert hat folgendes Format: 0-16384 (4000 Hex) • 0-100% (Par. 204 *Minimaler Sollwert* - Par. 205 *Maximaler Sollwert*).

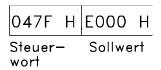

Mit dem Bussollwert kann der Drehsinn geändert werden. Dies erfolgt durch Umrechnung des binären Sollwerts in ein Zweierkomplement. Siehe Beispiel.

Beispiel - Steuerwort und Bussollwert:

Der Frequenzumrichter soll einen Startbefehl erhalten, und der Sollwert soll auf 50% (2000 Hex) des Sollwertbereichs eingestellt werden.

Steuerwort = 047F Hex ⇒Startbefehl.

Sollwert = 2000 Hex ⇒50% Sollwert.



Der Frequenzumrichter soll einen Startbefehl erhalten, und der Sollwert soll auf -50% (-2000 Hex) des Sollwertbereichs eingestellt werden.

Der Sollwert wird erst in ein Einerkomplement umgerechnet, und dann wird binär 1 addiert, um ein Zweierkomplement zu erhalten:

2000 Hex Einerkomplement	0010 0000 0000 0000 0000
Linerkomplement	+ 1
Zweierkomple-	1110 0000 0000 0000 0000
ment	

Steuerwort = 047F Hex ⇒Startbefehl Sollwert = E000 Hex ⇒-50% Sollwert.

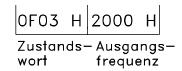
■ Aktuelle Ausgangsfrequenz

Der Wert der aktuellen Ausgangsfrequenz des Fre-

quenzumrichters wird als 16-Bit-Wort übertragen. Der Wert wird in ganzen Zahlen 0 - ±32767 (±200%) übertragen.

16384 (4000 Hex) entspricht 100%.

Die Ausgangsfrequenz hat folgendes Format: 0-16384 (4000 Hex) • 0-100% (Par. 201 Ausgangsfrequenzgrenze niedrig - Par. 202 Ausgangsfrequenzgrenze hoch).


Beispiel - Zustandswort und aktuelle Ausgangsfrequenz

Der Master erhält eine Zustandsmeldung vom Frequenzumrichter, daß die aktuelle Ausgangsfrequenz 50% des Ausgangsfrequenzbereichs beträgt.

Par. 201 Ausgangsfrequenzgrenze niedrig = 0 Hz Par. 202 Ausgangsfrequenzgrenze hoch = 50 Hz

Zustandswort = 0F03 Hex.

Ausgangsfrequenz= 2000 Hex ⇒50% des Frequenzbereichs, entsprechend 25 Hz.

■ Telegrambeispiel

Beispiel 1: Zur Steuerung der Antriebs- und Leseparameter.

Dieses Telegramm liest Parameter 520, Motorstrom.

Telegramm an den Frequenzwandler:

stx	lge	adr	pke		ind		pwe, h	noch	pwe, ł	noch	pcd 1		pcd 2		bcc
02	0E	01	12	80	00	00	00	00	00	00	00	00	00	00	17

Alle Zahlen im Hex-Format

Die Antwort des VLT 5000 entspricht dem obigen Befehl, wobei jedoch *pwe,hoch* und *pwe,niedrig* den tatsächlichen Wert des Parameters 520 mal 100 ent-

halten, d.h. ein tatsächlicher Ausgangsstrom von 5,24 A wird vom Frequenzwadler als 524 angezeigt.

Reaktion vom Frequenzwandler:

stx	lge	adr	pke		ind		pwe, h	noch	pwe, ł	noch	pcd 1		pcd 2		bcc
02	0E	01	22	08	00	00	00	00	02	0C	06	07	00	00	28

Alle Zahlen im Hex-Format

Pcd 1 und pcd 2 aus Beispiel 2 können angewandt und dem Beispiel hinzuaddiert werden, d.h. es ist mög-

lich, gleichzeitig den Antrieb zu steuern und den Stromwert zu lesen.

■ Beispiel 2: Nur zur Steuerung des Antriebs.

Dieses Telegramm stellt das Steuerwort auf 047C Hex (Startbefehl) mit einem Drehzahlsollwert von 2000 Hex (50%) ein.

ACHTUNG!

Parameter 512 wird auf FC-Antrieb eingestellt.

Telegramm an den Frequenzwandler:

stx	lge	adr	pcd 1		pcd 2		bcc
02	06	04	04	7C	20	00	58

Alle Zahlen im Hex-Format

Die Antwort des Frequenzwandlers gibt Aufschluß über den Zustand des Antriebs, als dieser den Befehl erhielt. Durch erneutes Senden des Befehls, ändert sich *pcd1* auf den neuen Status.

Antwort vom Frequenzwandler:

stx	lge	adr	pcd 1		pcd 2		bcc
02	06	04	06	07	00	00	01

Alle Zahlen im Hex-Format

■ Parameter-Beschreibungselemente

Mit Parameter-Beschreibungselemente lesen können die Eigenschaften eines Parameters gelesen werden, wobei es sich z.B. um Name, Werkseinstellung, Konvertierung usw. handeln kann.

Die nachstehende Tabelle zeigt die verfügbaren Parameter-Beschreibungselemente:

Index	Beschreibung
1	Grundeigenschaften
2	Anz. der Elemente (Matrixtypen)
4	Meßeinheit
6	Name
7	Untere Grenze
8	Obere Grenze
20	Werkseinstellung
21	Weitere Eigenschaften

Im folgenden Beispiel wird Parameter-Beschreibungselemente lesen auf Parameter 001, Sprachauswahl angewendet, und das gewünschte Element ist Index 1 *Grundeigenschaften*.

Grundeigenschaften (Index 1):

Der Befehl Grundeigenschaften ist in zwei Teile aufgeteilt, die sich auf Grundverhalten und Datentyp beziehen. Die Grundeigenschaften bringen einen 16-Bit-Wert für den Master in PWE Low.

Das Grundverhalten zeigt z.B. an, ob Text verfügbar ist oder der Parameter eine Matrix als Einzelbit-Information im Highbyte von PWE_{LOW} darstellt.

Der Datentypbereich zeigt an, ob ein Parameter Mit Vorzeichen 16, Ohne Vorzeichen 32 im Lowbyte von PWE_{LOW} ist.

PWE high Grundverhalten:

Bit	Beschreibung
15	Aktiver Parameter
14	Matrix
13	Parameterwert kann nur quittiert werden
12	Parameterwert anders als Werkseinstel-
	lung
11	Text verfügbar
10	Zusätzlicher Text verfügbar
9	Read only
8	Oberer und unterer Grenzwert nicht rele-
	vant
0-7	Datentyp

Aktiver Parameter ist nur bei Kommunikation über Profibus aktiv.

Matrix bedeutet, daß der Parameter eine Matrix darstellt.

Wenn Bit 13 wahr ist, kann der Parameter nur quittiert und es kann nicht in ihn geschrieben werden.

Wenn Bit 12 wahr ist, unterscheidet sich der Parameterwert von der Werkseinstellung.

Bit 11 zeigt an, daß Text verfügbar ist.

Bit 10 zeigt an, daß zusätzlicher Text verfügbar ist. Beispiel: Parameter 001, *Sprachauswahl*, enthält Text für Indexfeld 0, *Englisch*, und für Indexfeld 1, *Deutsch*. Ist Bit 9 wahr, so kann der Parameterwert nur gelesen und nicht geändert werden.

Ist Bit 8 wahr, so spielen die oberen und unteren Grenzen des Parameterwerts keine Rolle.

PWE_{LOW} Datentyp

Dez.	Datentyp
3	Mit Vorzeichen 16
4	Mit Vorzeichen 32
5	Ohne Vorzeichen 8
6	Ohne Vorzeichen 16
7	Ohne Vorzeichen 32
9	Sichtbare Kette
10	Bytekette
13	Zeitdifferenz
33	Reserviert
35	Bitsequenz

Beispiel

In diesem Beispiel liest der Master die Grundeigenschaften in Parameter 001, *Sprachauswahl*. Das folgende Telegramm muß zum Frequenzumrichter gesendet werden:

STX	LGE	ADR	PKE	IND	PWEHIGH	PWE _{LOW}	PCD1	PCD2	BCC
02	0E	01	40 01	00 01	00 00	00 00	XX XX	XX XX	XX

STX = 02 Startbyte

LGE = 0E Länge des übrigen Telegramms
ADR = Sendet zum Frequenzumrichter an
Adresse 1, Danfoss-Format

PKE = 4001; 4 im PKE-Feld zeigt eine Lese-

Parameter-Beschreibung, und 01 Parameternummer 001, Sprachaus-

wahl an.

IND = 0001; 1 zeigt an, daß Grundeigen-

schaften angefordert werden.

Die Antwort des Frequenzumrichters ist:

STX	LGE	ADR	PKE	IND	PWEHIGH	PWELOW	PCD1	PCD2	BCC
02	0E	01	30 01	00 01	00 00	04 05	XX XX	XX XX	XX

PKE = 02 Startbyte IND = 0001; 1 zeigt an,

daß Grundeigenschaften gesendet

werden

PWELOW = 0405; 04 zeigt an, daß Grundeigen-

schaften an Bit 10 Zusätzlichem Text entspricht. 05 ist der Datentyp, der Ohne Vorzeichen 8 entspricht.

Anzahl der Elemente (Index 2):

Diese Funktion gibt die Anzahl der Elemente (Matrix) eines Parameters an. Die Antwort an den Master erfolgt in PWE LOW.

Konvertierung und Meßeinheiten (Index 4):

Der Befehl Konvertierung und Meßeinheiten gibt die Konvertierung eines Parameters und die Meßeinheiten an. Die Antwort an den Master erfolgt in PWE_{LOW}. Der Konvertierungsindex wird im Highbyte von PWE_{LOW} und der Einheitenindex im Lowbyte von PWE_{LOW} angegeben. Beachten Sie, daß der Konvertierungsindex Mit Vorzeichen 8 und der Einheitenindex Ohne Vorzeichen 8 ist, siehe nachstehende Tabellen.

Der Einheitenindex definiert die "Meßeinheit". Der Konvertierungsindex definiert, wie der Wert skaliert werden muß, um die Grunddarstellung der "Meßeinheit" zu erhalten. Die Grunddarstellung entspricht einem Konvertierungsindex von "0".

Beispiel:

Ein Parameter hat einen "Einheitenindex" von 9 und einen "Konvertierungsindex" von 2. Der angezeigte Roh- (Ganzzahl-) Wert ist 23. Dies bedeutet, daß es sich um einen Parameter mit der Einheit "Leistung" handelt, der Rohwert muß mit dem Quadrat von 10 multipliziert werden, und die Einheit ist W. 23 x $10^2 = 2300$ W.

Konvertierungstabelle und Meßeinheiten

Einhei-	Meß-einheit	Bezeichnung	Konvertie-
ten-index			rungs-index
0	Dimensionslos		0
4	Zeit	S	0
		h	74
8	Energie	j	0
		kWh	
9	Leistung	W	0
		kW	3
11	Drehzahl	1/s	0
		1/min (UPM)	67
16	Drehmoment	Nm	0
17	Temperatur	K	0
		°C	100
21	Spannung	V	0
22	Strom	Α	0
24	Verhältnis	%	0
27	Relative Ände-	%	0
	rung		
28	Frequenz	Hz	0

Konvertierungsindex	Konvertierungsfaktor
0	1
1	10
2	100
3	1000
-1	0,1
-2	0,01
-3	0,001
67	1/60
74	3600
75	3600000
100	1

Name (Index 6):

Der Name bringt eine Zeichenkette im ASCII-Format, die den Namen des Parameters angibt.

Beispiel:

In diesem Beispiel liest der Master den Namen von Parameter 001, Sprachauswahl.

Das folgende Telegramm muß zum Frequenzumrichter gesendet werden:

STX	LGE	ADR	PKE	IND	PWEHIGH	PWELOW	PCD1	PCD2	BCC
02	0E	01	40 01	00 06	00 00	00 00	XX XX	XX XX	XX

STX = 02 Startbyte

Die Antwort des Frequenzumrichters ist:

LGE = 0E Länge des übrigen Telegramms
ADR = Sendet zum Frequenzumrichter an
Adresse 1, Danfoss-Format

PKE = 4001; 4 im PKE-Feld zeigt eine Lese-Parameter-Beschreibung, und 01 Parameternummer 001, Sprachaus-

wahl an.

IND = 0006; 6 zeigt an, daß Name ange-

fordert wird.

STX	LGE	ADR	PKE	IND	PVA	PCD1	PCD2	BCC
02	12	01	30 01	00 06	4C41 4E47 5541 4745	XXXX	XXXX	XX

PKE = 3001; 3 ist die Antwort auf Name,

und 01 gibt die Parameternummer

001, Sprachauswahl an.

IND = 00 06; 06 gibt an, daß Name gesen-

det wird.

PVA = 4C 41 4E 47 55 41 47 45

LANGUAGE

Der Parameterwert-Kanal ist nun auf eine sichtbare Zeichenkette eingestellt, die für jeden Buchstaben im Parameternamen ein ASCII-Zeichen bringt.

Untere Grenze (Index 7):

Die Untere Grenze bringt den mindestzulässigen Wert für einen Parameter. Der Datentyp für Untere Grenze entspricht dem des Parameters.

Obere Grenze (Index 8):

Die Obere Grenze bringt den höchstzulässigen Wert für einen Parameter. Der Datentyp für Obere Grenze entspricht dem des Parameters.

Voreinstellungswert (Index 20):

Der Voreinstellungswert bringt den voreingestellten Wert eines Parameters (Werkseinstellung). Der Datentyp für Voreinstellungswert entspricht dem des Parameters.

Zusätzliche Eigenschaften (Index 21):

Der Befehl kann benutzt werden, um einige zusätzliche Informationen zu einem Parameter zu erhalten, z.B. Kein Buszugriff, Abhängigkeit von Leistungseinheit usw. Zusätzliche Eigenschaften bringen eine Antwort in PWE_{LOW}. Wenn ein Bit logisch '1' ist, ist die Bedingung gemäß der nachstehenden Tabelle wahr:

Bit	Beschreibung
0	Spezieller Voreinstellwert
1	Spezielle obere Grenze
2	Spezielle untere Grenze
7	LCP Zugriff LSB
8	LCP Zugriff MSB
9	Kein Buszugriff
10	Std Bus Nur Lesen
11	Profibus Nur Lesen
13	Lauf ändern
15	Abhängigk. von Leistungseinheit

Wenn eines von Bit 0 Spezieller Voreinstellwert, Bit 1 Spezielle obere Grenze und Bit 2 Spezielle untere Grenze wahr ist, so hat der Parameter von der Leistungseinheit abhängige Werte.

Bit 7 und 8 zeigen die Attribute für den LCP-Zugriff, siehe Tabelle.

Bit 8	Bit 7	Beschreibung
0	0	Kein Zugriff
0	1	Nur lesen
1	0	Lesen/schreiben
1	1	Schreiben mit Sperre

Bit 9 gibt Kein Buszugriff an.

Bits 10 und 11 zeigen an, daß dieser Parameter nur über den Bus gelesen werden kann.

Ist Bit 13 wahr, so kann der Parameter beim Motorlauf nicht geändert werden.

Ist Bit 15 wahr, so ist der Parameter von der Leistungseinheit abhängig.

■ Zusatztext

Mit dieser Funktin ist es möglich, zusätzlichen Text zu lesen, wenn Bit 10, *Zusatztext verfügbar*, in den grundlegenden Kenndaten wahr ist.

Zum Lesen des Zusatztextes muss der Parameterbefehl (PKE) auf F hex eingestellt sein, siehe Datenbytes.

Das Indexfeld wird zum Anweisen des zu lesenden Elements benutzt. Gültige Indizes liegen im Bereich von 1 bis 24. Der Index ist nach folgender Gleichung zu berechnen: Index = Parameterwert + 1 (siehe Tabelle unten).

Wert	Index	Text
0	1	English
1	2	Deutsch
2	3	Français
3	4	Dansk
4	5	Espanol
5	6	Italiano

Beispiel:

In diesem Beispiel liest der Master den Zustztext in Parameter 001, *Sprache.* Das Telegramm ist zum Lesen von Datenwert [0] eingestellt, was *English* entspricht. Das folgende Telegramm muss an den VLT-Frequenzumrichter gesendet werden:

STX	LGE	ADR	PKE	IND	PWEHIGH	PWE _{LOW}	PCD1	PCD2	BCC
02	0E	01	F0 01	00 01	00 00	00 00	XX XX	XX XX	XX

STX = 02 Startbyte

LGE= 0E-Länge des restlichen Tele-

gramms

ADR= Senden von VLT-Frequenzumrichter

auf Adresse 1, Danfoss-Format

PKE= F001; F im PKE-Feld gibt Text lesen

an, und 01 gibt Parameternummer

001, Sprache, an.

IND= 0001; 1 gibt an, dass Text für Para-

meterwert [0] erforderlich ist.

Die Antwort vom VLT-Frequenzumrichter lautet:

STX	LGE	ADR	PKE	IND	PVA	PCD1	PCD2	BCC
02	11	01	F0 01	00 01	454E 474C 4953 48	XX XX	XX XX	XX

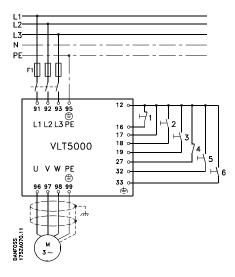
PKE= F001; F ist die Antwort für Textüber-

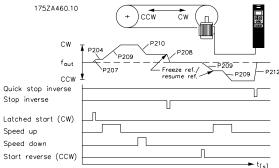
tragung, und 01 gibt Parameternum-

mer 001, Sprache, an.

IND= 0001; 1 gibt an, dass Index [1] ge-

sendet ist.


PVA = 45 4E 47 4C 49 53 48


ENGLISH

Der Parameterwertkanal ist jetzt auf einen sichtbaren String eingestellt, der für jeden Buchstaben im Indexnamen ein ASCII-Zeichen übergibt.

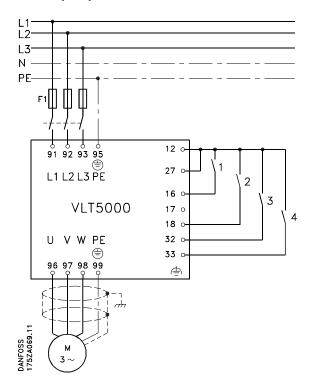
■ Förderband

Ein Förderband soll über die digitalen Eingänge gesteuert werden. Das Förderband wird über Schalter 2 in Rechtsdrehrichtung (im Uhrzeigersinn) und über Schalter 3 in Linksdrehrichtung (entgegen dem Uhrzeigersinn) gestartet.

Der Sollwert erhöht sich, solange Schalter 5 (Drehzahl auf) aktiv ist, und verringert sich, wenn Schalter 6 (Drehzahl ab) aktiv ist.

Ein Anhalten über die Rampe kann mittels Schalter 1, ein Schnellstopp mittels Schalter 4 erfolgen.

- 1. Pulsstopp (invers)
- 2. Pulsstart nach rechts
- 3. Pulsstart nach links
- 4. Schnellstopp
- 5. Drehzahl auf
- 6. Drehzahl ab

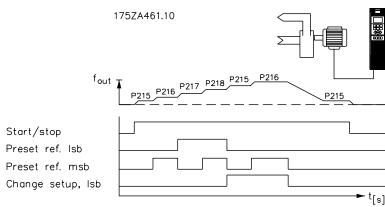

Folgendes ist in der genannten Reihenfolge zu programmieren:

Funktion:	Parameter:	Einstellung:	Datenwert:
Frequenzbereich & Drehrichtung	200	Beide reichtungen, 0-132 Hz	[1]
Min. Sollwert	204	3-10 (Hz)	
Rampenzeit auf 1	207	10-20 Sek.	
Rampenzeit ab 1	208	10-20 Sek.	
Rampenzeit auf 2	209	10-20 Sek.	
Rampenzeit ab 2	210	10-20 Sek.	
Digitaleingang Kl. 16	300	Stopp (invers)	[2]
Digitaleingang Kl. 17	301	Sollwert speichern	[7]
Digitaleingang Kl. 18	302	Pulsstart	[2]
Digitaleingang Kl. 19	303	Start Reversierung	[2]
Digitaleingang Kl. 27	304	Schnellstopp (invers)	[2]

Alle übrigen Einstellungen basieren auf Werkseinstellungen. Die Motordaten (Typenschild) müssen jedoch immer in den Parametern 102-106 eingegeben werden.

■ Dosierpumpe

Eine Dosierpumpe soll mit sechs verschiedenen Drehzahlen arbeiten, die jeweils durch Wechseln zwischen den Festsollwerten bestimmt werden.

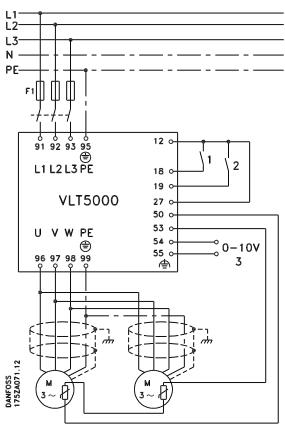

Schalter	Nr.:
Contaitor	

1	3	4	
0	0	0	Festsollwert 1
0	0	1	Festsollwert 2
0	1	0	Festsollwert 3
0	1	1	Festsollwert 4
1	0	0	Festsollwert 5
1	0	1	Festsollwert 6

Wenn Schalter 1 aktiv ist, erfolgt ein Parametersatzwechsel auf Satz 2.

Start/Stopp erfolgt über Schalter 2

- 1. Satzwahl, Isb
- 2. Start/Stopp
- 3. Externer Sollwert, Isb
- 4. Externer Sollwert, msb


Folgendes ist in der genannten Reihenfolge zu programmieren:

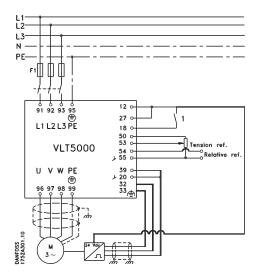
Funktion:	Parameter:	Einstellung:	Datenwert:
Parametersatzbetrieb	004	Externe Anwahl	[5]
Digitaleingang Kl. 16	300	Satzwahl, Isb	[10]
Digitaleingang Kl. 32	306	Externer Sollwert, Isb	[6]
Digitaleingang Kl. 33	307	Externer Sollwert, msb	[6]
Satz kopieren	006	Aus # in Satz 2 kopieren	[2]
Parametersatzprogramm	005	Satz 1	[1]
Max. Sollwert	205	60	
Externer Sollwert 1	215	10%	
Externer Sollwert 2	216	20%	
Externer Sollwert 3	217	30%	
Externer Sollwert 4	218	40%	
Programmiersatz	005	Satz 2	[2]
Max. Sollwert	205	60	
Externer Sollwert 5	215	70%	
Externer Sollwert 6	216	100%	

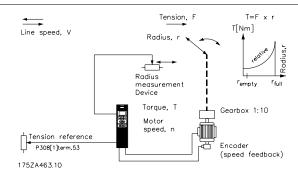
Alle übrigen Einstellungen basieren auf Werkseinstellungen. Die Motordaten (Typenschild) müssen jedoch immer in den Parametern 102-106 eingegeben werden.

■ Portalkranfahrwerk

Ein Portalkranfahrwerk mit zwei gleichen Motoren wird über ein externes Signal von 0-10 V gesteuert. Die Drehrichtung (rechts oder links) wird über Schalter 2 gesteuert, Start/Stopp erfolgt über Schalter 1.

- 1. Start
- 2. Reversierung
- 3. Drehzahlsollwertsignal


Folgendes ist in der genannten Reihenfolge zu programmieren:


Funktion:	Parameter:	Einstellung:	Datenwert:
Drehmomentkennlinie	101	Normale/Besondere Motorkennlinie	[15]
Rotation, Frequenz/Richtung	200	Beide Richtungen, 0-132 Hz	[1]
Analogeingang Kl. 53	308	Thermistor	[4]
Thermischer Motorschutz	128	Warnung Thermistor/Abschaltung	[1] or [2]
		Thermistor	
Analogeingang Kl. 54	311	Sollwert	[1]
Klemme 18, Digitaleingang	302	Start	[1]
Klemme 27, Digitaleingang	304	Motorfreilauf invers	[0]
Klemme 42, Digitaleingang	319	Momentgrenze und Stopp	[27]

Alle übrigen Einstellungen basieren auf Werkseinstellungen. Die Motordaten (Typenschild) müssen jedoch immer in den Parametern 102-106 eingegeben werden.

■ Drehmomentregelung mit Drehzahlrückführung

Eine Wickelmaschine wickelt an einer Rolle Material auf oder ab, und zwar bei konstant bleibender Zugbelastung. Ein Gerät mißt jeweils den Radius der Rolle und stellt das Motordrehmoment so ein, daß die Zugbelastung konstant gehalten wird. Das Meßgerät muß ein nicht-lineares Ausgangssignal haben.

Folgendes ist in der genannten Reihenfolge zu programmieren:

Funktion:	Parameter:	Einstellung:	Datenwert:
Konfiguration	100	Drehmomentregelung mit	
		Drehzahlrückführung	
Rotation, Frequenz/Richtung	200	Beide Richtungen, 0-132 Hz	
Sollwert-/Istwertbereich	203	-Max - +Max	[1]
Minimaler Sollwert	204	auf min. Drehmoment (Nm)	
		einzustellen	
Maximaler Sollwert	205	auf max. Drehmoment (Nm)	
		einzustellen	
Sollwert-Funktion	214	Relativ	[1]
Klemme 32, Drehgeber Eingang A	306	Drehgeber-Istwert, Eingang A	[25]
Klemme 33, Drehgeber Eingang B	307	Drehgeber-Istwert, Eingang B	[24]
Drehgeber-Istwert, Puls/Umdreh.	329	Einzustellen auf Drehgeber-Pulse	
		je Umdreh.	
Klemme 53, Analogeingang	308	Sollwert	[1]
Klemme 54, Analogeingang	311	Relativer Sollwert	[4]
Drehzahl PID Tiefpaßfilter	421	10 ms	

■ VLT 5000 Controller

Der VLT 5000 besitzt drei eingebaute Controller: einen für die Drehzahl-, einen für die Prozeß- und einen für die Drehmomentregelung.

Drehzahlregelung und Prozeßregelung werden von einem PID-Controller versehen, der die Rückführung eines Istwertes auf einen Eingang erfordert. Für die Drehmomentregelung ist ein PI-Controller zuständig, der keine Istwertrückführung erfordert, da das Drehmoment durch den VLT-Frequenzumrichter aufgrund des gemessenen Ausgangsstromes berechnet wird.

Einstellung des Drehzahl- und Prozeß-Controllers
Für beide PID-Controller werden eine Reihe von Einstellungen in denselben Parametern vorgenommen, wobei jedoch die Wahl des Controllertyps dafür maßgebend ist, welche Wahl in den gemeinsamen Parameter getroffen werden muß.

In Parameter 100 Konfiguration erfolgt die Controller-Wahl, und zwar Drehzahlregelung mit Istwertrückführungoder Prozeßregelung mit Istwertrückführung.

Istwertsignal:

Es muß für beide Controller ein Istwertbereich eingestellt werden. Dieser Istwertbereich begrenzt gleichzeitig den möglichen Sollwertbereich, so daß für den Fall, daß alle Sollwerte außerhalb des Istwertbereiches liegen, der Sollwert dahingehend begrenzt wird, daß er innerhalb dieses Bereiches liegt. Der Istwertbereich wird in den zu der Anwendung gehörenden Einheiten eingestellt (Hz, U/Min. (rpm), bar, °C usw.). Für die jeweilige Eingangsklemme wird direkt in einem Parameter eingestellt, ob sie für den Istwert im Zusammen-hang mit einem der Controller benutzt werden soll. Nicht benutzte Eingänge können gesperrt werden, um sicherzustellen, daß sie den Regelvorgang nicht stören. Wurde Istwert an zwei Klemmen gleichzeitig gewählt, so werden die beiden Signale addiert.

Sollwert:

Für beide Controller ist es möglich, vier Festsollwerte einzustellen. Diese sind im Bereich -100% und +100% des maximalen Sollwertes oder der Summe der externen Sollwerte einstellbar. Externe Sollwerte können analoge Signale, Pulssignale und/oder serielle Kommunikation sein.

Alle Sollwerte werden addiert; die Summe ist dann der Sollwert, der für die Regelung wirksam ist.

Es besteht die Möglichkeit, den Soll-/Istwertbereich auf einen bestimmten Bereich zu beschränken, <u>der kleiner als</u> der Istwertbereich ist. Dies kann ein Vorteil sein, wenn vermieden werden soll, daß eine unbeabsichtigte Änderung eines externen Sollwertes dazu führt, daß sich die Sollwerte in der Summe zu weit vom

Idealsollwert entfernen. Der Sollwertbereich wird ebenso wie der Istwertbereich in den zu der jeweiligen Anwendung gehörenden Einheiten eingestellt.

Drehzahlregelung:

Diese PID-Regelung wurde im Hinblick auf den Einsatz in Anwendungen optimiert, bei denen die Konstanthaltung einer bestimmten Motordrehzahl notwendig ist.

Die für den Drehzahl-Controller spezifischen Parameter sind Parameter 417-421.

PID für die Prozeßregelung:

Diese PID-Regelung wurde im Hinblick auf die Prozeßregelung optimiert. Dieser Controller hat keine Vorwärts-Funktion, sondern eine Reihe besonderer Merkmale, die für die Prozeßregelung relevant sind.

Es kann gewählt werden, ob mit Normalregelung gefahren werden soll, bei der bei einer Regelabweichung zwischen Sollwert und Istwert die Drehzahl erhöht wird, oder ob invers gefahren werden soll, d.h. mit einer Senkung der Drehzahl im Falle einer Regelabweichung.

Gewählt werden kann auch, ob auch dann, wenn der VLT Serie 5000 sich im Bereich der Min.- bzw. Max. Frequenz oder der Stromgrenze befindet, der Integrator weiter gegenüber einer Regelabweichung integrieren soll. Befindet sich der VLT Serie 5000 in einem solchen Grenzbereich, so wird jeder Versuch einer Änderung der Motordrehzahl durch diese Grenze blockiert. Die Werkseinstellung wurde so gewählt, daß der Integrator mit dem Integrieren aufhört. Der Integrator wird auf eine Verstärkung initialisiert, die der aktuellen Ausgangsfrequenz entspricht.

Bei bestimmten Anwendungen ist beispielsweise die Messung des Niveaus entweder schwierig oder gänzlich unmöglich. In dem Fall kann es notwendig sein, den Integrator auch dann weiterhin gegen die Regelabweichung integrieren zu lassen, wenn sich die Motordrehzahl nicht ändern läßt. Auf diese Weise fungiert der Integrator als eine Art Zähler. Wenn die Drehzahl aufgrund des aktuellen Istwertes abwärts geändert werden soll, erfolgt durch den Integrator eine Verzögerung. Diese Verzögerung ist abhängig von der Zeit, die der Integrator aufgrund einer zuvor vorhandenen Regelabweichung überkompensiert hat.

Es ist außerdem möglich, eine Startfrequenz zu programmieren; der VLT Serie 5000 aktiviert daraufhin den Controller erst dann, wenn diese Frequenz erreicht ist. Hierdurch ist es beispielsweise möglich, daß in einer Pumpanlage der erforderliche statische Druck schnell aufgebaut wird.

PID für die Prozeßregelung (Forts.):

Proportionalverstärkung, Integrationszeit und Differentiationszeit des Prozeß-Controllers werden in eigens hierfür vorgesehenen Parametern eingestellt, wobei die Einstellbereiche dem Prozeßregelvorgang angepaßt sind.

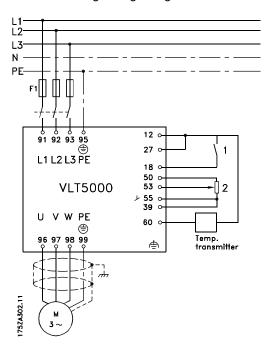
Ebenso wie bei der Drehzahlregelung ist es auch hier möglich, bei sehr schnellen Änderungen einer Regelabweichung zwischen Sollwert und Istwertsignal den Einfluß des Differentiators zu begrenzen.

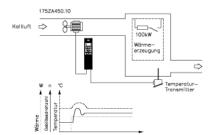
Es gibt auch ein Tiefpaßfilter für den Prozeß-Controller. Dieses kann so eingestellt werden, daß es einen sehr viel größeren Anteil der Rippel des Istwertsignals herausfiltert als das Tiefpaßfilter des Drehzahl-Controllers. Der Grund hierfür ist, daß die meisten Lüftungs- und Pumpanwendungen relativ langsam reagieren, weshalb es ein Vorteil sein kann, im Prozeß-Controller ein möglichst stabiles Signal zu haben.

Die für den Prozeß-Controller spezifischen Parameter sind Parameter 437-444.

<u>Einstellen des Drehmoment-Controllers (ohne Istwert-rückführung):</u>

Diese Regelung wird aktiviert, wenn in Parameter 100 Konfiguration die Drehmomentregelung ohne Istwertrückführung gewählt wurde.


Wenn dieser Modus gewählt wurde, erhält der Sollwert die Einheit Nm.


Die Regelung ist eine PI-Regelung, die keinen Istwert benötigt, da das Drehmoment aufgrund des gemessenen Ausgangsstroms des VLT Serie 5000 berechnet wird. Die Proportionalverstärkung wird als Prozentwert in Parameter 433 eingestellt. Die Proportionalverstärkung und die Integrationszeit werden in Parameter 434 Moment-Integrationszeit eingestellt. Beide sind jedoch bereits ab Werk eingestellt und brauchen normalerweise nicht geändert zu werden.

■ PID für die Prozeßregelung

Nachstehend ein Beispiel für einen Prozeßregler, der in einer Lüftungsanlage eingesetzt wird.

In einer Lüftungsanlage soll mit Hilfe eines 0-10-V-Potentiometers die Temperatur von -5-35°C einstellbar sein. Die eingestellte Temperatur soll konstantgehalten werden. Diesem Zweck soll der eingebaute Prozeßregler dienen.

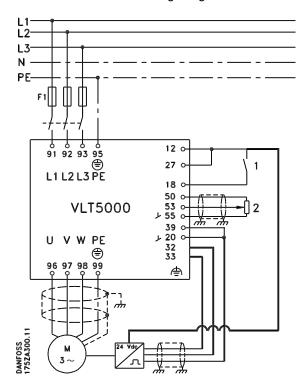
Es handelt sich hier um eine inverse Regelung. Das bedeutet, daß mit steigender Temperatur auch die Drehzahl des Lüfters erhöht wird, um einen stärkeren Luftstrom zu erzeugen. Fällt die Temperatur, so verringert sich auch die Drehzahl.

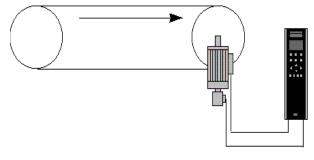
Der Sender wird als Temperatursensor mit einem Funktionsbereich von -10 -40°C, 4-20 mA verwendet. Min./Max. Drehzahl 10/ 50 Hz

ACHTUNG!

Im Beispiel wird ein Sender mit zwei Kabeln gezeigt.

- 1. Start/Stopp
- Temperatur-Referenz -5-35°C, 0-10 V (Sollwert)
- 3. Temperatursender -10-40°C, 4-20 mA (Istwert).


Folgendes ist in der genannten Reihenfolge zu programmieren, siehe Erläuterung der Einstellungen in der Betriebsanleitung:


rung [3] [2]
[2]
L—J
[10]
[1]
[1]

■ PID für die Drehzahlregelung

Hier ein Beispiel für die Programmierung einer VLT Serie 5000 PID-Drehzahlregelung.

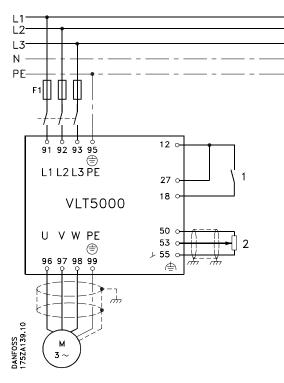
175ZA451.10

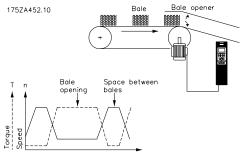
Ein Förderband, auf dem schwere Gegenstände transportiert werden, soll mit einer konstanten Drehzahl laufen, die mit Hilfe eines Potentiometers im Bereich 0-1500 U/Min., 0-10 V eingestellt wird. Die eingestellte Drehzahl mit Hilfe des eingebauten PID-Drehzahlreglers soll konstant gehalten werden.

Es handelt sich hierbei um eine normale Regelung, d.h. bei Erhöhung der Last steigt auch die Frequenz am Förderbandmotor, um die Geschwindigkeit aufrechtzuerhalten. Entsprechend fällt die Frequenz, wenn die Belastung geringer wird.

Als Istwertgeber dient ein Drehgeber mit einer Auflösung von 1024 Pulsen/Umdr. Gegentakt.

- 1. Start/Stopp
- 2. Drehzahlsollwert 0-1500 U/Min., 0-10 V
- 3. Drehgeber 1024 Pulse/Umdr. Gegentakt


Folgendes ist in der genannten Reihenfolge zu programmieren, siehe Erläuterung der Einstellungen in der Betriebsanleitung:


Funktion:	Parameternr.	Einstellung:	Datenwert:
Aktivierung des Prozeßreglers	100	Drehzahlregelung mit Istwertrückfüh-	[1]
		rung	
Istwertsignal (Klemme 60)	314	Istwertsignal	[2]
Klemme 32	306	Istwert inkrementaler Drehgeber,	[24]
		Eingang B	
Klemme 33	307	Istwert inkrementaler Drehgeber,	[25]
		Eingang A	
Min. Istwert	414	0 U/Min.	
Max. Istwert	415	1650 U/Min. (Max. Sollwert + 10%)	
Sollwert (Klemme 53)	308	Sollwert (Werkseinstellung)	[1]
Klemme 53, min. Skalierung	309	0 V (Werkseinstellung)	
Klemme 53, max. Skalierung	310	10 V (Werkseinstellung)	
Min. Sollwert	204	0 U/Min.	
Max. Sollwert	205	1500 U/Min.	
Min. Frequenz	201	0 Hz	
Max. Frequenz	202	75 Hz	
Proportionalverstärkung	417	Anwendungsabhängig	
Integrationszeit	418	Anwendungsabhängig	
Differentiationszeit	419	Anwendungsabhängig	

PI-Regler für die Drehmomentregelung (ohne Istwertrückführung)

Nachstehend ein Beispiel für die Programmierung einer VLT Serie 5000 Drehmomentregelung

Ein Förderband wird zum Vorschub von Ballen zu einer Häckselanlage eingesetzt. Der Vorschub erfolgt mit einer konstanten Kraft unabhängig von der Bandgeschwindigkeit. Bei einer etwaigen Lücke zwischen den Ballen soll das Band schnellstmöglich den nächsten Ballen zur Häckselanlage führen.

- 1. Start/Stopp
- 2. Sollwert [Nm]

Optimierung des Drehmomentreglers

Damit sind die grundlegenden Einstellungen vor-genommen; für die meisten Prozesse ist die Werkseinstellung optimal, so daß es nur in Ausnahmefällen notwendig sein wird, eine Optimierung der *Moment-Proportionalverstärkung* in Parameter 433 und der *Moment-Integrationszeit* in Parameter 434 vorzunehmen.

In den Fällen, in denen eine Änderung der Werkseinstellung erforderlich ist, empfiehlt es sich, Änderungen höchstens um den Faktor +/-2 vorzunehmen.

Istwert

Das Istwertsignal ist ein ermitteltes Drehmoment, das vom VLT-Frequenzumrichter aufgrund der Strommeßwerte berechnet wird.

Sollwert

Der Sollwert ist immer in Nm.

Es kann ein Min.- und ein Max. Sollwert eingestellt werden (Par. 204 und 205), die die Summe aller Sollwerte begrenzen.

Der Sollwertbereich kann den Istwertbereich nicht übersteigen.

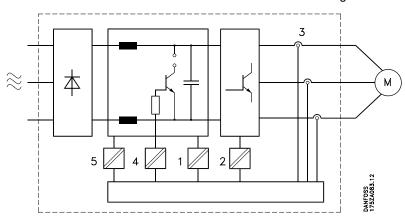
Folgendes ist in der genannten Reihenfolge zu programmieren:

Funktion:	Parameternr.	Einstellung:	Datenwert:
Aktivierung des Prozeßreglers	100	Drehmomentregelung ohne Istwert-	[4]
		rückführung	
Moment-Prop.verstärkung	433	100% (Werkseinstellung)	
Moment-Integrationszeit	434	0.02 sek (Werkseinstellung)	
Sollwert	308	Sollwert (Werkseinstellung)	[1]
Klemme 53, min. Skalierung	309	0 V (Werkseinstellung)	
Klemme 53, max. Skalierung	310	10 V (Werkseinstellung)	
Min. Drehzahl	201	0 Hz	
Max. Drehzahl	202	50 Hz	

■ GalvanischeTrennung (PELV)

PELV ist ein Schutz, der gewährleistet, dass keine hohe Netzspannung oder andere hohe Spannung auftritt. Ein Schutz gegen elektrischen Schlag gilt als gewährleistet, wenn die Stromversorgung vom Typ PELV ist und die Installation gemäß den örtlichen bzw. nationalen Vorschriften für PELV-Versorgungen ausgeführt wurde.

Alle Steuerklemmen und Relaisklemmen 01-03 entsprechen PELV (Protective Extra Low Voltage) (gilt nicht für 525-600-V-Geräte).


Die galvanische (sichere) Trennung wird erreicht, indem die Anforderungen bezüglich erhöhter Isolierung erfüllt und die entsprechenden Kriech-Luftabstände beachtet werden. Die Anforderungen sind in der Norm EN 50178 beschrieben.

Die Bauteile, die die elektrische Trennung gemäß nachstehender Beschreibung bilden, erfüllen ebenfalls die Anforderungen bezüglich erhöhter Isolierung und der entsprechenden Tests gemäß Beschreibung in EN 50178.

Die galvanische Trennung ist an folgenden Punkten vorhanden (vgl. Zeichnung unten:

- Netzteil (SMPS) einschl. Isolation des Signals U_{DC}, das die Zwischenkreisspannung anzeigt.
- 2. Gate-Treiber, die die IGBTs steuern (Triggertransformatoren/Opto-Schalter).
- Stromumformer (Hall-Effekt-Stromtransducer).
- 4. Optokoppler, Bremsmodul.
- 5. Optokoppler, 24 V externe Versorgung.

Galvanische Trennung

■ Ableitströme

Der Ableitstrom zur Erde wird hauptsächlich durch den kapazitiven Widerstand zwischen Motorphasen und Abschirmung des Motorkabels verursacht. Bei Verwendung eines Funkentstörfilters ergibt sich ein zusätzlicher Ableitstrom, da der Filterkreis durch Kondensatoren mit Erde verbunden ist. Die Größe des Ableitstroms ist von folgenden Faktoren (genannt in der Reihenfolge ihrer Priorität) abhängig:

- 1. Länge des Motorkabels
- 2. Motorkabel abgeschirmt oder nicht
- 3. Taktfrequenz
- 4. Funkentstörfilter ja oder nein
- 5. Motor am Standort geerdet oder nicht

Der Ableitstrom ist im Hinblick auf die Sicherheit bei Handhabung und Betrieb des Frequenzumrichters von Bedeutung, wenn dieser (aufgrund eines Fehlers) nicht geerdet ist.

ACHTUNG!

Da der Ableitstrom >3,5 mA beträgt, muß eine verstärkte Erdung angeschlossen werden. Dies ist eine Anforderung zur Einhaltung von EN 50178.

Bei Drehstrom-Frequenzumrichtern dürfen nur Fehlerstromschutzschalter verwendet werden, die für den Schutz gegen Gleichströme geeignet sind (DIN VDE 0664).

RCD-Fehlerstromschutzschalter Typ B erfüllen die Anforderungen der Norm IEC 755-2.

Die folgenden Anforderungen müssen erfüllt werden

- Eignung zum Schutz von Geräten mit einem Gleichstromanteil (DC) im Ableitstrom (Dreiphasen-Gleichrichterbrücke).
- Eignung bei Einschaltung mit pulsförmigen kurzzeitigen Ableitströmen.
- Eignung für hohen Ableitstrom.

■ Extreme Betriebsbedingungen

Kurzschluß

Der Frequenzwandler ist durch eine Strommessung in jeder der drei Motorphasen gegen Kurzschluß geschützt. Ein Kurzschluß zwischen zwei Ausgangsphasen bewirkt einen Überstrom im Wechselrichter. Jedes Schaltelement des Wechselrichters wird jedoch einzeln abgeschaltet, wenn der Kurzschlußstrom den zulässigen Wert überschreitet.

Nach 5-10 s schaltet die Treiberkarte den Wechselrichter aus, und der Frequenzumrichter zeigt einen Fehlercode an, allerdings in Abhängigkeit von der Impedanz und der Motorfrequenz.

Erdungsfehler

Im Falle eines Erdschlusses einer Motorphase, jedoch abhängig von Impedanz und Motorfrequenz, wird der Wechselrichter innerhalb von μs ausgeschaltet.

Schalten am Ausgang

Schalten am Ausgang zwischen Motor und Frequenzwandler ist unbegrenzt möglich. Eine Beschädigung des VLT Serie 5000 durch Schalten am Ausgang ist keinesfalls möglich. Es können allerdings Störmeldungen vorkommen.

Generatorische Überspannung

Die Spannung in den Zwischenkreisen steigt, wenn der Motor als Generator arbeitet. Dies geschieht in zwei Fällen:

 Die Belastung treibt den Motor an (bei konstanter Ausgangsfrequenz vom Frequenzumrichter), d.h. die Energie wird durch die Belastung erzeugt. Bei Verzögerung ("Rampe ab"), wenn das Trägheitsmoment hoch, die Belastung niedrig und die Rampe-ab-Zeit zu kurz ist, um die Energie als Verlust an Frequenzwandler, Motor und Anlage weitergeben zu können.

Der Regler versucht, die Rampe, wenn möglich, zu korrigieren.

Der Wechselrichter wird nach Erreichen eines bestimmten Spannungspegels abgeschaltet, um die Transistoren und die Zwischenkreiskondensatoren zu schützen.

Unterbrechung der Netzversorgung

Während eines Netzausfalls arbeitet der Frequenzwandler weiter, bis die Spannung des Zwischenkreises unter den minimalen Stoppegel abfällt - normalerweise 15% unter der niedrigsten Versorgungs-Nennspannung des Frequenzwandlers.

Die Zeit vor dem Wechselrichterstopp hängt von der Netzspannung vor dem Ausfall sowie von der Motorbelastung ab.

Statische Überlastung

Wird der Frequenzwandler überlastet (Momentgrenze in Parameter 221/222 ist erreicht), so reduziert der Regler die Ausgangsfrequenz, um so die Belastung möglicherweise reduzieren zu können.

Bei extremer Überlastung kann ein Strom erreicht werden, der den Frequenzwandler nach ca. 1,5 Sek. zum Abschalten bringt.

Der Betrieb innerhalb der Momentgrenze kann in Parameter 409 zeitlich begrenzt werden (0-60 Sek.)

■ Spitzenspannung am Motor

Wird im Wechselrichter ein Transistor geöffnet, so steigt die am Motor anliegende Spannung um ein dU/ dt (dV/dt)-Verhältnis an, das von folgenden Faktoren abhängig ist:

- Motorkabel (Typ, Querschnitt, Länge, Länge mit/ohne Abschirmung)
- Induktivität

Die natürliche Induktion verursacht ein Überschwingen der Motorspannung U_{SPITZE}, bevor sie sich auf einem Niveau stabilisiert, das von der Spannung im Zwischenkreis abhängt. Anstiegzeit und Spitzenspannung U_{SPITZE} beeinflussen die Lebensdauer des Motors. Eine zu hohe Spitzenspannung beeinträchtigt vor allem Motoren ohne Phasentrennungspapier in den Wicklungen. Bei kurzen Motorkabeln (wenige Meter) sind Anstiegzeit und Spitzenspannung relativ niedrig. Bei langem Motorkabel (100 m) erhöhen sich Anstiegzeit und Spitzenspannung.

Werden sehr kleine Motoren ohne Phasentrennungspapier eingesetzt, so empfiehlt es sich, dem Frequenzumrichter ein LC-Filter nachzuschalten.

Typische Werte für Anstiegzeit und Spitzenspannung U_{SPITZE}, gemessen an den Motorklemmen zwischen zwei Phasen.

Näherungswerte für unten nicht aufgeführte Kabellängen und Spannungen lassen sich über die folgenden Faustregeln ermitteln:

- Die Anstiegzeit nimmt proportional zur Kabellänge zu/ah
- U_{SPITZE} = DC-Zwischenkreisspannung x 1,9 (DC-Zwischenkreisspannung = Netzspannung x 1,35).

3.
$$dU/dt = \frac{0.8 \times U_{PFAX}}{Risetime}$$

Daten werden gemäß IEC 60034-17 gemessen.

	- 3 -		- 3		
VLT 5001-501	1 / 380-500	V			
	Netz-				
Kabel-	span-		Spitzen-		
länge	nung	Anstiegzeit	spannung	dU/dt	
50 m	500 V	0,5 μs	1230 V	1968 V/µs	
150 m	500 V	1 µs	1270 V	1270 V/µs	
50 m	380 V	0,6 µs	1000 V	1333 V/µs	
150 m	380 V	1,33 µs	1000 V	602 V/µs	

2 / 380-500	V		
Netz-			
span-		Spitzen-	
nung	Anstiegzeit	spannung	dU/dt
380 V	0,27 µs	950 V	2794 V/µs
380 V	0,60 µs	950 V	1267 V/µs
380 V	1,11 µs	950 V	685 V/µs
	Netz- span- nung 380 V 380 V	span- nung Anstiegzeit 380 V 0,27 µs 380 V 0,60 µs	Netz-spannung Spitzenspannung nung Anstiegzeit spannung 380 V 0,27 μs 950 V 380 V 0,60 μs 950 V

VLT 5122-53	02 / 380-50	00 V		
	Netz-			
Kabel-	span-		Spitzen-	
länge	nung	Anstiegzeit	spannung	dU/dt
70 m	400 V	0,34 µs	1040 V	2447 V/µs

VLT 5352-55	552 / 380-5	00 V		
	Netz-			
Kabel-	span-		Spitzen-	
länge	nung	Anstiegzeit	spannung	dU/dt
29 m	500 V	0,71 μs	1165 V	1389 V/µs

VLT 5001	-5011 /	525-600 V		
	Netz-		Spitzen-	
Kabel-	span-	Anstieg-	span-	
länge	nung	zeit	nung	dU/dt
35 m	600 V	0,36 µs	1360 V	3022 V/µs

VLT 5016-50	62 / 525-6	600 V		
	Netz-			
Kabel-	span-		Spitzen-	
länge	nung	Anstiegzeit	spannung	dU/dt
35 m	575 V	0,38 µs	1430 V	3011 V/μs

VLT 5042-5352 / 525-6	200 V			
VL1 3042-3332 / 323-6				
	Netz-		Spitzen-	
Kabel-	span-		span-	
länge	nung	Anstiegzeit	nung	dU/dt
25 m	690 V	0,59 µs	1425	1983 V/µs
25 m	575 V	0,66 µs	1159	1428 V/µs
25 m	690 V ¹⁾	1,72 µs	1329	640 V/µs
1) Mit Danfoss dU/dt-F	ilter	•		•

VLT 5402-	5602 / 525-690) V		
Kabel-	Netz-		Spitzen-	
länge	spannung	Anstiegzeit	spannung	dU/dt
25 m	690 V	0,57 μs	1540	2230 V/µs
25 m	575 V	0,25 μs		2510 V/μs
25 m	690 V ¹⁾	1,13 µs	1629	1150 V/µs
1) Mit Dan	foss dU/dt-Filte	r		•

■ Schalten am Eingang

Das Schalten am Eingang hängt von der jeweiligen Netzspannung ab - und davon, ob Schnellentladung des Zwischenkondensators gewählt wurde. Die nachstehende Tabelle gibt die Zeit zwischen den Einschaltvorgängen an.

Netzspan-	380 V	415 V	460 V	500 V	690 V
nung					
Ohne	48 s	65 s	89 s	117 s	120 s
Schnellent-					
ladung					
Mit Schnell-	74 s	95 s	123 s	158 s	
entladung					

VLT 5502-5602 / 525-690 V

Alle Gehäusetypen: 83 dB(A)

Gemessen in 1 m Abstand vom Gerät bei Volllast.

■ Störgeräusche

Die Störgeräusche vom Frequenzumrichter stammen aus zwei Quellen:

- DC-Zwischenkreisdrosseln
- 2. Eingebauter Kühllüfter

Nachfolgend sind die Werte aufgeführt, die in einem Abstand von 1 m vom Gerät und bei voller Last gemessen wurden:

VLT 5001-5006 200-240 V, VLT 5001-5011 380-500 V

IP20-Geräte: 50 dB(A) IP54-Geräte: 62 dB(A)

VLT 5008-5027 200-240 V, VLT 5016-5102 380-500 V

IP20-Geräte: 61 dB(A)

IP20-Gerät (VLT)

5062-5102): 67 dB(A) IP54-Geräte: 66 dB(A)

VLT 5032-5052 / 200-240 V

IP20/NEMA 1-Geräte: 70 dB(A)
IP54-Geräte: 65 dB(A)

VLT 5122-5302 / 380-500 V

IP21/NEMA 1-Geräte: 73 dB(A) IP54-Geräte: 73 dB(A)

VLT 5352 / 380-500 V

IP00/IP21/NEMA 1-Geräte: 80 dB(A) IP54-Geräte: 80 dB(A)

VLT 5452-5552 / 380-500 V

Alle Gehäusetypen: 83 dB(A)

VLT 5001-5011 / 525-600 V

IP20/NEMA 1-Geräte: 62 dB(A)

VLT 5016-5062 / 525-600 V

IP20/NEMA 1-Geräte: 66 dB(A)

VLT 5042-5352 / 525-690 V

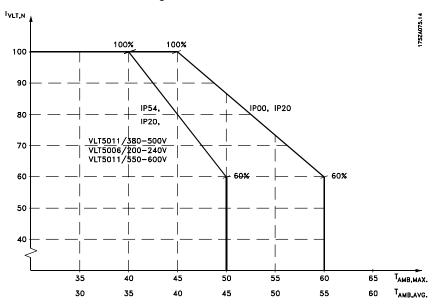
IP21/NEMA 1-Ge- 74 dB(A)

räte:

IP54-Geräte: 74 dB(A)

VLT 5402 / 525-690 V

Alle Gehäusetypen: 80 dB(A)

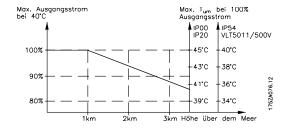


- Leistungsreduzierung
- Leistungsreduzierung wegen erhöhter Umgebungstemperatur

Die Umgebungstemperatur (T_{AMB,MAX}) ist die maximal zulässige Temperatur. Der über 24 Stunden gemes-

sene Durchschnittswert (T_{AMB,AVG}) muss mindestens 5 °C geringer sein.

Wird der Frequenzumrichter bei Temperaturen über 45 °C betrieben, so ist eine Reduzierung des Dauerausgangsstroms notwendig.



- Der Strom von VLT 5122-5552, 380-500 V und VLT 5042-5352, 525-690 V ist über einem Maximum von 45 °C (160 % Überlast) und einem Maximum von 40 °C (110 % Überlast) um 1 %/°C zu reduzieren. Max. Temperatur ist 55 °C.
- Der Strom von VLT 5402-5602, 525-690 V ist über einem Maximum von 45 °C (160 % Überlast) und einem Maximum von 40 °C (110 % Überlast) um 1,5 %/°C zu reduzieren. Max. Temperatur ist 55 °C.
- Leistungsreduzierungbei erhöhtem Luftdruck
 Bei Höhen über 2 km über NN ziehen Sie bitte Danfoss
 Drives zu PELV (Schutzkleinspannung) zurate.

Unterhalb einer Höhe von 1000 m über dem Meeresspiegel ist keine Leistungsreduzierung erforderlich.

Oberhalb einer Höhe von 1.000 m muss die Umgebungstemperatur (T_{AMB}) oder der max. Ausgangsstrom (I_{VLT,MAX}) entsprechend dem unten gezeigten Diagramm reduziert werden:

- Ausgangsstromreduzierung in Abhängigkeit von der Höhe bei T_{AMB} = max. 45°C
- 2. Reduzierung der max. T_{AMB} in Abhängigkeit von der Höhe bei 100% Ausgangsstrom.

Leistungsreduzierung beim Betrieb mit niedriger Drehzahl

Wenn ein Motor an einen Frequenzumrichter angeschlossen ist, muß darauf geachtet werden, daß er ausreichend gekühlt wird.

Im niedrigen Drehzahlbereich kann der Ventilator des Motors Kühlluft nicht in ausreichender Menge zuführen. Dieses Problem tritt immer dann auf, wenn das Lastmoment über die gesamte Regelbandbreite konstant ist (wie z.B. bei einem Förderband). Die verringerte Lüftung ist entscheidend dafür, welche Momenthöhe bei kontinuierlicher Belastung zulässig ist. Soll der Motor kontinuierlich mit einer Drehzahl laufen, die weniger als die Hälfte der Nenndrehzahl beträgt, so muß dem Motor zusätzliche Kühlluft zugeführt werden.

Statt für mehr Kühlung zu sorgen, kann auch der Belastungsgrad des Motors verringert werden, indem man einen größeren Motor einsetzt. Allerdings gibt es

beim Frequenzumrichter, bedingt durch dessen Konstruktionsweise, auch Grenzen dafür, welche Motorgrößen an ihn angeschlossen werden können.

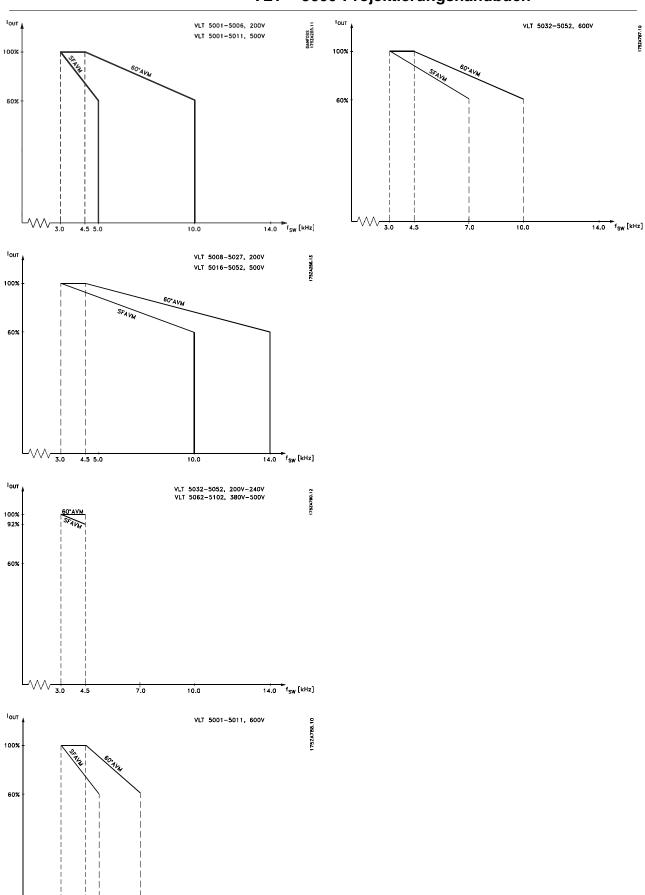
Leistungsreduzierung wegen Installationlanger Motorkabel oder von Kabeln mit größerem Querschnitt

Der Frequenzwandler ist mit 300 m nicht-abgeschirmtem und 150 m abgeschirmten Kabel geprüft.

Der Frequenzwandler ist für den Betrieb mit einem Motorkabel mit Nennquerschnitt ausgelegt. Soll ein Kabel mit größerem Querschnitt eingesetzt werden, so empfiehlt sich eine Reduzierung des Ausgangsstroms um 5% für jede Stufe, um die der Kabelquerschnitt erhöht wird.

(Ein größerer Kabelquerschnitt bedeutet kleineren kapazitiven Widerstand und damit einen erhöhten Ableitstrom gegen Erde).

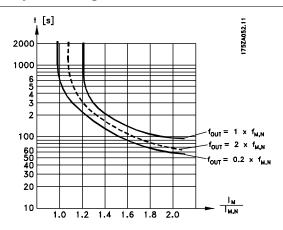
■ Leistungsreduzierung wegen hoher Taktfrequenz


Eine höhere Taktfrequenz (einzustellen in Parameter 411) wird zu höheren Verlusten und stärkerer Wärmebildung in der Elektronik des Frequenzumrichters führen.

Wurde in Parameter 446 *SFAVM* gewählt, so wird der Frequenzumrichter automatisch den Ausgangsnennstrom I_{VLT,N} reduzieren, wenn die Taktfrequenz 3,0 kHz übersteigt.

Wurde 60° AVM gewählt, so wird der Frequenzwandler automatisch die Leistung reduzieren, wenn die Taktfrequenz 4,5 kHz übersteigt. In beiden Fällen erfolgt die Reduzierung linear bis auf 60 % von I_{VLT,N}. Die Tabelle zeigt die für Frequenzumrichter geltenden Werte für min., max. und werkseitig eingestellte Taktfrequenz. Das Schaltmuster kann in Parameter 446, die Taktfrequenz in Parameter 411 geändert werden.

		SFAVM			60 Grad AVM	1
	Min. [kHz]	Max. [kHz]	Werk [kHz]	Min. [kHz]	Max. [kHz]	Werk [kHz]
VLT 5001-5006, 200 V	3.0	5.0	3.0	3.0	10.0	4.5
VLT 5008-5027, 200 V	3.0	10.0	3.0	3.0	14.0	4.5
VLT 5032-5052, 200 V	3.0	4.5	3.0	3.0	4.5	4.5
VLT 5001-5011, 500 V	3.0	5.0	3.0	3.0	10.0	4.5
VLT 5016-5052, 500 V	3.0	10.0	3.0	3.0	14.0	4.5
VLT 5062-5102, 500 V	3.0	4.5	3.0	3.0	4.5	4.5
VLT 5122-5302, 500 V	3.0	3.0	3.0	3.0	4.5	4.5
VLT 5352-5552, 500 V	1.5	2.0	2.0	1.5	3.0	3.0
VLT 5001-5011, 600 V	3.0	5.0	3.0	4.5	7.0	4.5
VLT 5016-5027, 600 V	3.0	10.0	3.0	3.0	14.0	4.5
VLT 5032-5052, 600 V	3.0	7.0	3.0	3.0	10.0	4.5
VLT 5062, 600 V	3.0	4.5	3.0	3.0	4.5	4.5
VLT 5042-5302, 690 V	1.5	2.0	2.0	1.5	3.0	3.0
VLT 5352-5602, 690 V	1.5	1.5	1.5	1.5	2.0	2.0


14.0 f_{SW} [kHz]

10.0

4.5 5.0

■ Thermischer Motorschutz

Die Motortemperatur wird aufgrund des Motorstroms, der Ausgangsfrequenz und der Zeit berechnet. Siehe die Beschreibung von Parameter 128 in der Betriebsanleitung.

■ Vibrationen und Erschütterungen

Der Frequenzwandler wurde mit einem den folgenden Normen entsprechenden Verfahren geprüft:

IEC 68-2-6: Vibration (sinusförmig) - 1970.
IEC 68-2-34: Regellose Vibration, Breitband

- Allgemeine Anforderungen

IEC 68-2-35: Regellose Vibration, Breitband

- Reproduzierbarkeit hoch

IEC 68-2-36: Regellose Vibration, Breitband

- Reproduzierbarkeit mittel

Der Frequenzwandler entspricht den Anforderungen für die Bedingungen für die Montage des Geräts an Wänden und Böden von Werkshallen oder an hieran verschraubten Tafeln.

Luftfeuchtigkeit

Der Frequenzwandler wurde so konstruiert, dass er der Norm IEC 68-2-3, EN 50178 pkt, 9.4.2.2/DIN 40040, Klasse E, bei 40°C entspricht.

■ Aggressive Umgebungen

Wie alle elektronischen Geräte enthält auch ein Frequenzwandler eine Vielzahl mechanischer und elektronischer Bauteile, die alle mehr oder weniger gegen Einflüsse aus der Umgebung empfindlich sind.

Der Frequenzwandler darf daher nicht in Umgebungen installiert werden, deren Atmosphäre Flüssigkeiten, Partikel oder Gase enthält, welche die elektronischen Bauteile beeinflussen oder beschädigen können. Werden in solchen Fällen nicht die erforderlichen Schutzmaßnahmen getroffen, so erhöht dies das Risiko von Ausfällen und verkürzt die Lebensdauer des Frequenzwandlers.

<u>Flüssigkeiten</u> können sich schwebend in der Luft befinden und im Frequenzwandler kondensieren. Darüber hinaus können sie die Korrosion von Komponenten und Metallbauteilen fördern. Dampf, Öl und Salzwasser können ebenfalls zur Korrosion von Komponenten und Metallbauteilen führen. Für solche Umgebungen empfehlen sich Gerätschaften gemäß Schutzart IP 54. Als zusätzlicher Schutz können beschichtete Platinen als Option bestellt werden.

Schwebepartikel, wie z.B. Staub, können zu mechanisch, elektrisch oder thermisch bedingten Ausfällen des Frequenzwandlers führen. Eine Staubschicht auf dem Ventilator des Gerätes ist ein typisches Anzeichen für einen hohen Grad an Schwebepartikeln. In sehr staubiger Umgebung empfehlen sich Gerätschaften gemäß Schutzart IP 54 oder ein Schutzgehäuse für IP-00/20/Nema 1-Geräte.

In Umgebungen mit hohen Temperaturen und viel Feuchtigkeit lösen <u>korrosionsfördernde Gase</u>, z.B. Schwefel, Stickstoff und Chlorgemische, chemische Prozesse aus, die sich auf die Bauteile des Frequenzwandlers auswirken.

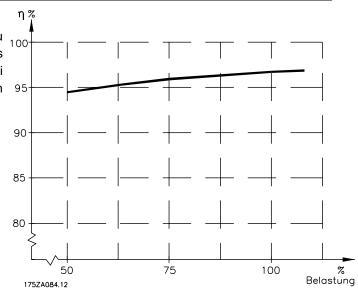
Derartige Prozesse ziehen die elektronischen Bauteile sehr schnell in Mitleidenschaft. In solchen Umgebungen empfiehlt es sich, die Geräte in ein Gehäuse mit Frischluftzufuhr einzubauen, so daß die aggressiven Gase vom Frequenzwandlers ferngehalten werden. Als zusätzlicher Schutz in solchen Bereichen kann eine Beschichtung der gedruckten Schaltungen als Option bestellt werden.

ACHTUNG!

Die Aufstellung eines Frequenzwandlers in aggressiver Umgebung erhöht das Ri-

siko von Ausfällen und verkürzt die Lebensdauer des Gerätes erheblich.

Vor der Installation des Frequenzwandlers muss die Umgebungsluft auf Flüssigkeiten, Partikel und Gase geprüft werden. Dies kann man z.B. tun, indem man bereits vorhandene Installationen am betreffenden Ort näher in Augenschein nimmt. Typische Anzeichen für schädigende atmosphärische Flüssigkeiten sind an Metallteilen haftendes Wasser oder Öl oder Korrosionsbildung an Metallteilen.


Übermäßige Mengen Staub finden sich häufig an Gehäusen und vorhandenen elektrischen Installationen. Ein Anzeichen für aggressive Schwebegase sind Schwarzverfärbungen von Kupferstäben und Kabelenden an vorhandenen Installationen.

Siehe auch Anleitung MN.90.IX.YY

■ Wirkungsgrad

Um den Energieverbrauch so gering wie möglich zu halten, ist es sehr wichtig, den Wirkungsgrad eines Systems zu optimieren. Der Wirkungsgrad sollte bei jeder einzelnen Komponente des Systems so hoch wie möglich sein.

Wirkungsgrad der Serie VLT 5000 (ŋ VLT)

Die Belastung des Frequenzumrichters hat nur eine geringe Auswirkung auf seinen Wirkungsgrad. Der Wirkungsgrad bei Motornennfrequenz f_{M,N} ist nahezu gleich bleibend, ganz gleich, ob der Motor 100 % Nenndrehmoment liefert oder nur 75 %, z. B. bei Teillast.

Das bedeutet auch, dass sich der Wirkungsgrad des Frequenzumrichters auch bei Wahl einer anderen U/f-Kennlinie nicht ändert.

Die U/f-Kennlinie hat allerdings Auswirkungen auf den Wirkungsgrad des Motors.

Der Wirkungsgrad fällt ab, wenn die Taktfrequenz auf einen Wert über 4 kHz (bei VLT 5005 3 kHz) eingestellt wird (Parameter 411). Bei einer Netzspannung von 500 V oder wenn das Motorkabel mehr als 30 m lang ist, verringert sich der Wirkungsgrad ebenfalls geringfügig.

Wirkungsgrad des Motors (ŋ MOTOR)

Der Wirkungsgrad eines an den Frequenzumrichter angeschlossenen Motors hängt von der Sinusform des Stroms ab. Im Allgemeinen kann man sagen, dass der Wirkungsgrad ebenso gut wie beim Netzbetrieb ist. Der Wirkungsgrad des Motors hängt natürlich stark vom Motortyp ab.

Im Bereich von 75-100 % des Nenndrehmoments ist der Wirkungsgrad des Motors nahezu konstant, unabhängig davon, ob er vom Frequenzumrichter gesteuert oder direkt am Netz betrieben wird.

Bei kleineren Motoren beeinflusst die betreffende U/f-Kennlinie den Wirkungsgrad nicht nennenswert. Bei Motoren von über 11 kW ergeben sich jedoch deutliche Unterschiede.

In der Regel hat die Taktfrequenz bei kleinen Motoren kaum Einfluss auf den Wirkungsgrad. Bei Motoren ab 11 kW verbessert sich der Wirkungsgrad (um 1-2 %).

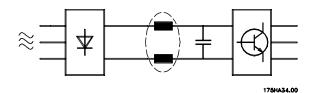
Dies kommt daher, dass die Sinusform des Motorstroms bei hoher Taktfrequenz nahezu optimal ist.

Systemwirkungsgrad (ŋ SYSTEM)

Zur Berechnung des Systemwirkungsgrades muss der Wirkungsgrad der Serie VLT 5000 (n VLT) mit dem Wirkungsgrad des Motors (n MOTOR) multipliziert werden: $\eta_{SYSTEM} = \eta VLT \times \eta_{MOTOR}$

$$\eta_{SYSTEM} = \eta VLI \times \eta_{MOTOR}$$

Aufgrund des Diagramms auf dieser Seite lässt sich der Wirkungsgrad des Systems bei verschiedenen Belastungen errechnen.


■ Netzstörung/Oberwellen

Frequenzumrichter nehmen vom Netz einen nicht sinusförmigen Strom auf, der den Eingangsstrom I_{RMS} erhöht. Ein nicht sinusförmiger Strom kann mit Hilfe einer Fourier-Analyse in Sinusströme mit verschiedenen Frequenzen zerlegt werden, d. h. in verschiedene Oberwellenströme I_N mit einer Grundfrequenz von 50 Hz:

Oberwellenströme	I ₁	l ₅	I_7
Hz	50 Hz	250 Hz	350 Hz

Die Oberwellen tragen nicht direkt zur Leistungsaufnahme bei, sie erhöhen jedoch die Wärmeverluste in der Installation (Transformator, Kabel). Bei Anlagen mit einem relativ hohen Prozentsatz an Gleichrichterbelastung ist es deshalb wichtig, die Oberwellenströme auf einem niedrigen Pegel zu halten, um eine Überlastung des Transformators und hohe Temperaturen in den Kabeln zu vermeiden.

Oberwellenströme können eventuell Kommunikationsgeräte stören, die an denselben Transformator angeschlossen sind, oder Resonanzen in Verbindung mit Blindstromkompensationsanlagen verursachen.

Oberwellenströme verglichen mit dem RMS-Eingangsstrom:

	Eingangsstrom
I _{RMS}	1.0
I ₁	0.9
I ₅	0.4
I ₇	0.2
I ₁₁₋₄₉	< 0,1

Der Leistungsfaktor gibt an, wie stark ein Frequenzumrichter das Versorgungsnetz belastet. Dies reduziert normalerweise den Eingangsstrom I_{RMS} um 40 %.

Die resultierende Spannungsverzerrung durch Oberwellenströme in der Netzversorgung hängt von der Höhe der Oberwellenströme, multipliziert mit der Impedanz der betreffenden Frequenz ab. Die gesamte Spannungsverzerrung THD wird aus den einzelnen Spannungsoberwellen nach folgender Formel berechnet:

THD% =
$$\frac{\sqrt{U\frac{2}{5} + U\frac{2}{7} + \dots + U\frac{2}{N}}}{U_1} (U_N\% \text{ von } U)$$

Siehe auch Anwendungshinweis MN.90.FX.02.

■ Leistungsfaktor

Der Leistungsfaktor ist das Verhältnis zwischen I_1 und I_{RMS} .

Der Leistungsfaktor einer 3-Phasen-Versorgung ist definiert als:

Leistungs – faktor =
$$\frac{\sqrt{3} \times U \times I_1 \times cos\phi_1}{\sqrt{3} \times U \times I_{RMS}}$$

 $\frac{I_1 \times cos\phi_1}{I_{RMS}} = \frac{I_1}{I_{RMS}} da cos \phi = 1$

Der Leistungsfaktor gibt an, wie stark ein Frequenzumrichter das Versorgungsnetz belastet.

Je niedriger der Leistungsfaktor, desto höher der I_{RMS} (Eingangsstrom) bei gleicher Leistung.

Darüber hinaus weist ein hoher Leistungsfaktor darauf hin, dass die Oberwellenbelastung sehr niedrig ist.

$$I_{RMS} = \sqrt{I_{\frac{1}{1}}^2 + I_{\frac{5}{5}}^2 + I_{\frac{7}{7}}^2 + \dots + I_{\frac{7}{n}}^2}$$

■ CE-Zeichen

Was ist das CE-Zeichen?

Sinn und Zweck des CE-Zeichens ist ein Abbau von technischen Hindernissen beim Handel innerhalb der EFTA und der EU. Die EU hat das CE-Zeichen als einfache Kennzeichnung der Übereinstimmung eines Produkts mit den entsprechenden EU-Richtlinien eingeführt. Über die Spezifikationen oder Qualitäten eines Produktes sagt das CE-Zeichen nichts aus. Frequenzwandler fallen unter drei EU-Richtlinien:

Maschinenrichtlinie (98/37/EWG)

Unter diese ab 1. Januar 1995 geltende Richtlinie fallen alle Maschinen und Geräte mit kritischen beweglichen Teilen. Da ein Frequenzwandler überwiegend ein elektrisches Gerät ist, fällt er nicht unter die Maschinenrichtlinie. Wird ein Frequenzwandler jedoch für den Einsatz in einer Maschine geliefert, so liefern wir Informationen zu Sicherheitsaspekten des Frequenzwandlers. Wir informieren in Form der Herstellererklärung.

Die Niederspannungs-Richtlinie (73/23/EEC)

Frequenzwandler müssen das CE-Zeichen gemäß der Niederspannungs-Richtlinie tragen, die am 1. Januar 1997 in Kraft trat. Die Richtlinie gilt für alle elektrischen Geräte und Ausrüstungen, die in den Bereichen 50 - 1000 Volt Wechselspannung und 75 - 1500 Volt Gleichspannung betrieben werden. Danfoss nimmt die CE-Kennzeichnung gemäß der Richtlinie vor und liefert auf Wunsch eine Konformitätserklärung.

The EMV-Richtlinie (89/336/EEC)

EMV ist die Abkürzung für Elektromagnetische Verträglichkeit. Elektromagnetische Verträglichkeit bedeutet, daß die gegenseitigen elektronischen Störungen zwischen verschiedenen Bauteilen bzw. Geräten so gering sind, daß sie die Funktion der Geräte nicht beeinflussen.

Die EMV-Richtlinie trat am 1. Januar 1996 in Kraft. Danfoss nimmt die CE-Kennzeichnung in Übereinstimmung mit der Richtlinie vor und liefert auf Wunsch eine Konformitätserklärung. Dieses Handbuch gibt detaillierte Hinweise für eine EMV-gerechte Installation. Wir spezifizieren außerdem die Normen, denen unsere verschiedenen Produkte entsprechen. Wir bieten die in den Spezifikationen angegebenen Filter und weitere Unterstützung zum Erzielen einer optimalen EMV an.

In der großen Mehrzahl der Anwendungsfälle werden Frequenzumrichter von Fachleuten als komplexes Bauteil eingesetzt, das Teil eines größeren Geräts, Systems bzw. Installation ist. Es sei darauf hingewiesen, daß der Installateur die Verantwortung für die endgültigen EMV-Eigenschaften des Geräts, Systems bzw. Installation trägt.

■ Was fällt unter die Richtlinien

In den in der EU geltenden "Guidelines on the Application of Council Directive 89/336/EEC" werden drei typische Situationen genannt, in denen Frequenzumrichter eingesetzt werden. Für jede dieser Anwendungssituationen wird angegeben, ob sie unter die EMV-Richtlinie fällt und der CE-Kennzeichnung bedarf:

- Der Frequenzumrichter wird direkt an den Endkunden abgegeben, z.B. einen Baumarkt. Der Endkunde ist nicht sachkundig. Er installiert selbst den VLT-Frequenzumrichter, z.B. für ein Heimwerker- oder Haushaltsgerät o.ä. Für derartige Anwendungen bedarf der Frequenzum-richter der CE-Kennzeichnung gemäß der EMV-Richtlinie.
- 2. Der Frequenzumrichter ist zur Installation in einer Anlage vorgesehen, die von Fachleuten aufgebaut wird. Es kann sich beispielsweise um eine Produk-tionsanlage oder eine Heiz- oder Lüftungsanlage handeln, die von Fachleuten konstruiert und eingebaut wird. Weder der VLT-Frequenzumrichter noch die fertige Anlage bedürfen einer CE-Kennzeichnung nach der EMV-Richtlinie. Die Anlage muß jedoch die grundlegenden Anforderungen der EMV-Richtlinie erfüllen. Dies kann der Anlagenbauer durch den Einsatz von Bauteilen, Geräten und Systemen sicherstellen, die gemäß der EMV-Richtlinie CE-gekennzeichnet sind.
- 3. Der Frequenzumrichter wird als Teil eines Kom-plettsystems verkauft. Das System wird als Gesamt-Funktionseinheit angeboten, z.B. eine Klima-anlage. Das gesamte System muß gemäß der EMV-Richtlinie CE-gekennzeichnet sein. Dies kann der Hersteller des Systems entweder durch den Einsatz gemäß EMV-Richtlinie CE-gekenn-zeichneter Bauteile oder durch Überprüfung der EMV-Leistungsmerkmale des Systems gewährleisten. Entscheidet sich der Hersteller dafür, nur CEgekennzeichnete Bauteile einzusetzen, so braucht das Gesamtsystem nicht getestet zu werden.

Danfoss VLT-Frequenzumrichter und das CE-Zeichen

Das CE-Zeichen ist eine gute Sache, wenn es seinem eigentlichen Zweck entsprechend eingesetzt wird: der Vereinfachung des Handelsverkehrs innerhalb von EU und EFTA.

Allerdings kann das CE-Zeichen viele verschiedene Spezifikationen abdecken. Anders gesagt: Man muß ggf. genau prüfen, was das Zeichen abdeckt. In der Tat kann es sich um sehr unterschiedliche Spe-zifikationen handeln.

Aus diesem Grund kann ein CE-Zeichen einem Installateur auch durchaus ein falsches Sicherheitsgefühl vermitteln, wenn ein Frequenzum-richter als Bauteil eines Systems oder Gerätes ein-gesetzt wird.

Die CE-Kennzeichnung unserer Frequenzumrichter erfolgt nach der Niederspannungsrichtlinie, d.h. solange der Frequenzumrichter einwandfrei installiert ist, garantieren wir, daß er die Bestimmungen der Niederspannungsrichtlinie erfüllt. Zur Bestätigung, daß unsere CE-Kennzeichnung der Niederspannungsrichtlinie entspricht, stellen wir eine Konformitätserklärung aus.

Das CE-Zeichen gilt auch für die EMV-Richtlinie unter der Voraussetzung, daß die Hinweise der Betriebsanleitung zur EMV-gemäßen Installation und Filterung befolgt wurden. Auf dieser Grundlage wurde eine Konformitätserklärung gemäß EMV-Richtlinie ausgestellt.

Für die EMV-gemäße Installation findet sich in der Betriebsanleitung eine ausführliche Installationsanleitung. Außer-dem ist angegeben, welche Normen unsere jeweiligen Produkte einhalten.

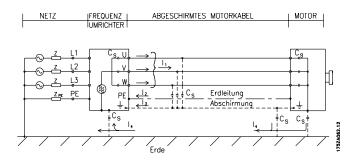
Wir bieten die in den Spezifikationen aufgeführten Filter an und stehen generell für Beratung zur Verfügung, damit EMV-mäßig das beste Ergebnis erzielt wird.

■ Übereinstimmung mit der EMV-Richtlinie 89/336/ EWG

In den weitaus meisten Fällen wird der VLT Frequenzumrichter von professionellen Fachleuten eingesetzt, und zwar als eine komplexe Komponente als Bestandteil eines größeren Gerätes, Systems oder einer Installation. Dazu der Hinweis, daß die endgültigen EMV-Eigenschaften des Gerätes, Systems oder der Installation im Zuständigkeitsbereich des Installateurs liegen. Als Hilfe für den Installateur hat Danfoss EMV-Installationsanleitungen für das Power Drive System ausgearbeitet. Die für Power-Drive-Systeme angege-

benen Standards und Prüfniveaus werden unter der Voraussetzung eingehalten,daß die Hinweise zur EMV-gerechten Installation befolgt wurden, siehe den Abschnitt "Elektrische Installation".

■ Generelle Aspekte bzgl. EMV-Emission


Elektrische Störungen vom Kabelnetz im Bereich 150 kHz-30 MHz sind in der Regel strahlungsgebunden. Störungen vom Antriebssystem, 30 MHz-1 GHz, werden bei Frequenzen unter ca. 50 MHz durch den Wechselrichter, das Motorkabel und das Motorsystem erzeugt. Funkstörungen über 50 MHz (strahlungsgebunden) werden insbesondere durch die Steuerelektronik erzeugt.

Wie in der untenstehenden Skizze dargestellt, werden aufgrund der Ableitfähigkeit im Motorkabel in Verbindung mit hohem dU/dt von der Motorspannung Störungen erzeugt.

Der Einsatz abgeschirmter Motorkabel erhöht den Ableitstrom I1 (siehe Abb. unten). Das rührt daher, daß abgeschirmte Kabel im Vergleich zu nicht abgeschirmten Kabeln eine höhere Ableitfähigkeit haben. Wird der Störstrom nicht gefiltert, so führt dies im Funk-störbereich unter ca. 5 MHz zu erhöhten Störungen im Netz. Da der Verluststrom (I₁) über die Abschirmung (I₃) zurück zum Gerät transportiert wird, (I₄) verbleibt gemäß der nachfolgenden Zeichnung im Prinzip nur ein schwaches elektromagnetisches Feld (₄) vom abgeschirmten Motorkabel.

Die Abschirmung verringert zwar die ausstrahlenden Störungen, erhöht jedoch die Niederfrequenzstörungen am Netz. Die Motorkabel-Abschirmung muss an das VLT-Gehäuse sowie an das Motorgehäuse angeschlossen sein. Dies geschieht am besten durch die Verwendung von integrierten Schrimbügeln, um verdrehte Abschirmungsenden (Pigtails) zu vermeiden. Diese erhöhen die Abschirmungsimpedanz bei höheren Frequenzen, wodurch der Abschirmungseffekt reduziert und der Verluststrom erhöht werden (I₄).

Wenn abgeschirmte Kabel für Profibus, Standardbus, Relais, Steuerkabel, Signalschnittstelle und Bremse verwendet werden, ist die Abschirmung an beiden Enden des Schutzgehäuses zu montieren. In gewissen Fällen wird jedoch eine Unterbrechung der Abschirmung erforderlich sein, um Stromschleifen zu vermeiden.

In den Fällen, in denen eine Anbringung der Abschirmung an einer Montageplatte für den VLT-Frequenzwadler vorgesehen ist, sollte diese Montageplatte aus Metall gefertigt sein, weil die Abschirmströme zum Gerät zurückgeführt werden müssen. Außerdem sollte stets ein guter elektrischer Kontakt von der Montageplatte durch die Montageschrauben zur Masse des VLT-Frequenzwandlers gewährleistet sein.

Bezüglich der Installation ist die Verwendung nicht abgeschirmter Kabel generell weniger kompliziert als die Verwendung abgeschirmter Kabel. Um das Störungsniveau des gesamten Systems (Frequenzwandler + Installation) so weit wie möglich zu reduzieren ist es wichtig, daß die Motorkabel und etwaige Bremsleitungen so kurz wie möglich gehalten werden. Kabel mit empfindlichem Signalniveau dürfen nicht gemeinsam mit Motorkabeln und Bremsleitungen verlegt werden. Interferenzen von mehr als 50 MHz (in der Luft) werden besonders von der Regelelektronik erzeugt.

ACHTUNG!

Bei Verwendung nicht-abgeschirmter Kabel sind bestimmte emissionsbezogene Anforderungen nicht erfüllt; die immunitätsbezogenen Anforderungen sind jedoch erfüllt.

■ Erforderliche Konformitätsebenen

Norm / Umfeld	Erste Umgebun	ıg	Zweite Umgebung	Zweite Umgebung	
	Wohnungen, Go	ewerbe und Leichtin-	Industrieumfeld		
	dustrie				
	Geleitet	Ausgestrahlt	Geleitet	Ausgestrahlt	
EN 61000-6-3	Klasse B	Klasse B			
EN 61000-6-4			Klasse A-1	Klasse A-1	
EN 61800-3 (eingeschränkt)	Klasse A-1	Klasse A-1	Klasse A-2	Klasse A-2	
EN 61800-3 (uneingeschränkt)	Klasse B	Klasse B	Klasse A-1	Klasse A-1	

EN 55011: Grenzwerte und Messverfahren für

Funkstörungen von Industrie-, Forschungs- und medizinischen Hochfre-

quenzgeräten (ISM).

Klasse A-1: In industrieller Umgebung eingesetzte

Geräte. Uneingeschränkte Verteilung.

Klasse A-2: In industrieller Umgebung eingesetzte

Geräte. Eingeschränkte Verteilung.

Klasse B: In Umgebungen mit öffentlichem Ver-

sorgungsnetz (Wohnung, Gewerbe, leichte Industrie) eingesetzte Geräte).

Uneingeschränkte Verteilung.

■ EMV-Immunität

Um die Immunität gegenüber Störungen durch andere zugeschaltete elektrische Geräte zu dokumentieren, wurden die nachfolgenden Störfestigkeitsprüfungen durchgeführt, und zwar mit einem System bestehend aus VLT-Frequenzumrichter (mit Optionen, falls relevant), abgeschirmtem Steuerkabel und Steuerkasten mit Potentiometer, Motorkabel und Motor.

Die Prüfungen wurden nach den folgenden Fachgrundnormen durchgeführt:

- EN 61000-4-2 (IEC 61000-4-2): Elektrostatische Entladungen (ESD)Simulation elektrostatischer Entladungen von Menschen.
- EN 61000-4-3 (IEC 61000-4-3): Elektromagnetisches Einstrahlfeld, amplitudenmoduliertSimulation der Auswirkungen von Radar- und Funkgeräten sowie mobiler Kommunikation.
- EN 61000-4-4 (IEC 61000-4-4): Schnelle transiente elektrische Störgrößen/Burst

Simulation von Störungen, die durch Ein- und Ausschalten von Schützen, Relais oder ähnlichen Elementen hervorgerufen werden.

- EN 61000-4-5 (IEC 61000-4-5): Stoßspannungen (Surge-Transienten) Simulation von Spannungsstößen, z. B. herbeigeführt durch Blitzeinschlag in der Nähe der Anlage.
- VDE 0160 Klasse W2 Prüfimpuls: Netztransienten Simulation von hochenergetischen Transienten, hervorgerufen durch das Durchbrennen einer Hauptsicherung oder das Schalten von Kondensatoren zur Leistungsfaktorkorrektur usw.
- EN 61000-4-6 (IEC 61000-4-6): HF-Gleichtakt Simulation der Auswirkung von Funksendegeräten, die an Verbindungskabel angeschlossen sind.

Siehe folgende EMV-Störfestigkeitstabelle.

Störfestigkeit, (Fortsetzung)							
Fachgrundnorm	Burst IEC 61000-4-4	Stoßspannung IEC 61000-4-5	ESD IEC 61000-4-2	Abgestrahlte elektromagnetische Felder IEC 61000-4-3	Netz- verzerrung VDE 0160	HF-Gleichtakt- spannung IEC 61000-4-6	
Abnahmekriterium	В	В	В	4		4	
Port-Anschluss	ΟĞ	DM			CM	CM	
Netz	OK	Q			ð	OK	
Motor	OK					OK	
Steuerleitungen	OK	Š				Š	
Anwendungs- und Feldbus-Optionen	OK	Š				Š	
Signalschnittstelle <3m	OK						
Gehäuse			X	OK		QK	
Zwischenkreiskopplung	ÖK					Š	
Standardbus	OK	Š				Š	
Bremse	NO.					Š	
Externe 24 V DC	OK	λO				QK	
DM: Differenzmodus							
CCC: Kapazitive Schellenkopplung							
DCN: Galvanisches Kopplungsnetz							V
							L

Grundanforderungen	Burst	Stoßspannung	ESD	Abgestrahlte elektromagnetische Felder	Netz-	HF-Gleichtak
	IEC 61000-4-4	IEC 61000-4-5	IEC 61000-4-2	IEC 61000-4-3	verzerrung VDE 0160	spannung IEC 61000-4-
Netz	4kV/5 kHz/DCN	2 KV/2Ω 4 KV/12Ω			2,3 × U _N ²⁾	10 VRMS
Motor	4kV/5 kHz/CCC					10 VRMS
Steuerleitungen	2kV/5 kHz/CCC	2 KV/2Ω¹)				10 VRMS
Anwendungs- und Feldbus-Optionen	2kV/5 kHz/CCC	2 KV/2Ω¹)				10 VRMS
Signalschnittstelle <3 m	1kV/5 kHz/CCC					10 VRMS
Gehäuse			8 KV AD 6 KV CD	10 V/m		
Zwischenkreiskopplung	4kV/5 kHz/CCC					10 VRMS
Standardbus	2kV/5 kHz/CCC	− 4 kV/2Ω¹)				10 VRMS
Bremse	4kV/5 kHz/CCC					10 VRMS
Externe 24 V DC	2kV/5 kHz/CCC	− 4 kV/2Ω¹)				10 VRMS
DM: Differenzmodus CM: Gleichtakt						
CCC: Kapazitive Schellenkopplung DCN: Galvanisches Konntringsnetz						

2. 2,3 x U_N: max. Prüfimpuls 380 V_{AC}: Klasse 2/1250 V_{SPITZE}, 415 V_{AC}: Klasse 1/1350 V_{SPITZE}

1. Einkopplung auf Kabelschirm

■ Worterklärung

VLT:

I_{VLT.MAX}

Der maximale Ausgangsstrom.

Ivlt,n

Der Ausgangsnennstrom, den der Frequenzumrichter liefern kann.

UVLT MAX

Die maximale Ausgangsspannung.

Ausgang:

ΙN

Der dem Motor zugeführte Strom.

Uм

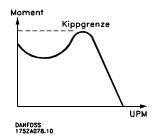
Die dem Motor zugeführte Spannung.

 f_M

Die dem Motor zugeführte Frequenz.

fjog

Die dem Motor zugeführte Frequenz, wenn die Festdrehzahlfunktion (über die digitalen Klemmen oder die Tastatur) aktiviert wird.


fMIN

Die dem Motor zugeführte Minimalfrequenz.

 f_{MAX}

Die dem Motor zugeführte Maximalfrequenz.

Kippmoment:

η_{VLT}

Der Wirkungsgrad des VLT Frequenzumrichters ist definiert als das Verhältnis zwischen Leistungsabgabe und Leistungsaufnahme.

Eingang:

Betriebsbefehle:

Mit Hilfe des LCP (= Local Control Panel = Bedienfeld) und der digitalen Eingänge kann der angeschlossene Motor gestartet und gestoppt werden. Die Funktionen sind in zwei Gruppen mit folgenden Prioritäten aufgeteilt:

Gruppe 1 Quittieren, Freilaufstopp, Quittie-

ren und Freilaufstopp, Schnellstopp, DC-Bremse, Stopp und

"Stop"-Taste

Gruppe 2 Start, Pulsstart, Reversierung,

Start Reversierung, Festdrehzahl

und Ausgang speichern

Gruppe 1 wird auch als Einschaltsperrbefehle bezeichnet. Der Unterschied zwischen Gruppe 1 und Gruppe 2 besteht darin, daß in Gruppe 1 alle Stoppsignale aufgehoben sein müssen, damit der Motor anlaufen kann. Daraufhin kann der Motor durch ein einzelnes Startsignal der Gruppe 2 gestartet werden. Ein als Gruppe 1 abgegebener Stoppbefehl ergibt die Displayanzeige STOP.

Ein als Gruppe 2 abgegebener fehlender Startbefehl ergibt die Displayanzeige STAND BY.

Einschaltsperrbefehl:

Ein Stoppbefehl, der der Gruppe 1 der Betriebsbefehle angehört, siehe dieses.

Stoppbefehl

Siehe Betriebsbefehle.

Motor:

 $I_{M,N}$

Nennstrom des Motors (Typenschildangaben).

fм,N

Nennfrequenz des Motors (Typenschildangaben).

UM,N

Nennspannung des Motors (Typenschildangaben).

 $P_{M,N}$

Nennleistung, die der Motor aufnimmt (Typenschildangaben).

 $n_{M,N}$

Nenndrehzahl des Motors (Typenschildangaben).

Тмк

Das Nenndrehmoment (Motor)

Sollwerte:

Festsollwert:

Ein fest definierter Sollwert, der von -100% bis +100% des Sollwertbereichs eingestellt werden kann. Es gibt vier Festsollwerte, die über die digitalen Klemmen wählbar sind.

Analogsollwert:

Ein den Eingängen 53, 54 oder 60 zugeführtes Signal. Spannung (Klemme 53, 54) oder Strom (Klemme 60).

Pulssollwert:

Ein den digitalen Eingängen (Klemme 17 oder 29) zugeführtes Signal.

Binärsollwert:

Der seriellen Kommunikationsschnittstelle zugeführtes Signal.

Ref_{MIN}

Der niedrigste Wert, den das Sollwertsignal haben kann. Einstellung in Parameter 204.

RefMAX

Der höchste Wert, den das Sollwertsignal haben kann. Einstellung in Parameter 205.

Sonstiges:

ELCB:

Erdschlußtrennschalter.

Isb:

Niedrigstwertiges Bit.

Wird für die serielle Kommunikation benutzt.

msb

Höchstwertiges Bit.

Wird für die serielle Kommunikation benutzt.

PID:

Der PID-Regler sorgt durch Anpassung der Ausgangsfrequenz an wechselnde Belastungen für die Aufrechterhaltung der gewünschten Prozeßleistung (Druck, Temperatur usw.).

Abschaltung:

Ein Zustand, der in verschiedenen Situationen eintritt, z.B. bei Überlastung des Frequenzumrichters. Eine Abschaltung kann durch Betätigen von Reset aufgehoben werden. In einigen Fällen erfolgt die Aufhebung automatisch.

Abschaltsperre:

Ein Zustand, der in verschiedenen Situationen eintritt, z.B. bei Überlastung des Frequenzumrichters. Eine Abschaltsperre kann durch Unterbrechen der Netzversorgung und erneutes Starten des Frequenzumrichters aufgehoben werden.

Initialisierung:

Durch Vornahme einer Initialisierung wird der Frequenzumrichter wieder auf Werkseinstellung gebracht

Setup (Parametersätze):

Es gibt vier Setups, in denen Parameter hinterlegt werden können. Es kann zwischen den vier Parametersätzen hin- und hergewechselt werden, und man kann einen Satz editieren (bearbeiten), während ein anderer Satz aktiv ist.

LCP:

Das Bedienfeld, welches eine komplette Schnittstelle zur Bedienung und Programmierung des VLT Serie 5000 darstellt. Das Bedienfeld ist abnehmbar und kann mit Hilfe eines zugehörigen Montagebausatzes bis zu 3 m vom Frequenzumrichter entfernt, z.B. in einer Schalttafelfront, angebracht werden.

VVC plus

Im Vergleich zu herkömmlichen Spannungs- bzw. Frequenzverhältnissen bietet VVC^{plus} eine verbesserte Dynamik und Stabilität bei der Änderung von Drehzahlsollwerten und Belastungsmomenten.

Schlupfausgleich:

Normalerweise wird die Drehzahl des Motors von der Belastung beeinflußt. Eine solche Belastungsabhängigkeit ist nicht wünschenswert, weshalb der Frequenzumrichter den Schlupf ausgleicht, indem er die Frequenz unter Berücksichtigung des gemessenen Effektivstroms erhöht.

Thermistor:

Ein temperaturabhängiger Widerstand, angeordnet an einem Ort, wo man die Temperatur überwachen möchte (VLT oder Motor).

Analoge Eingänge:

Analoge Eingänge können zur Programmierung bzw. Steuerung diverser Funktionen eines Frequenzumrichters benutzt werden.

Es gibt zwei Arten von analogen Eingängen:

Stromeingang, 0 - 20 mA

Spannungseingang, 0 - 10 V DC.

Analoge Ausgänge:

Es gibt zwei analoge Ausgänge, die ein Signal von 0-20 mA, 4-20 mA oder ein skalierbares Signal liefern können.

Digitale Eingänge:

Digitale Eingänge können zur Programmierung bzw. Steuerung diverser Funktionen eines Frequenzumrichters benutzt werden.

Digitale Ausgänge:

Es gibt vier digitale Ausgänge, von denen zwei einen Relaisschalter aktivieren. Die Ausgänge können ein 24-V-DC-Signal (max. 40 mA) liefern.

Bremswiderstand:

Der Bremswiderstand kann die bei generatorischer Bremsung erzeugte Bremsleistung aufnehmen. Diese generatorische Bremsleistung erhöht die Zwischenkreisspannung. Ein Bremschopper sorgt für die Abgabe der Leistung an den Bremswiderstand beim Überschreiten eines bestimmten Zwischenkreisspannungslevels.

Impulsgeber:

Ein externer, digitaler Impulsgeber, der für Rückmeldungen, z.B. der Motordrehzahl, benutzt wird. Der Geber wird für Anwendungen eingesetzt, bei denen eine sehr hohe Genauigkeit der Drehzahlsteuerung verlangt wird.

AWG:

Bedeutet American Wire Gauge (amerikanische Maßeinheit für Kabelquerschnitt).

Manuelle Initialisierung:

Tasten [CHANGE DATA] + [MENU] + [OK] gleichzeitig gedrückt halten, um eine manuelle Initialisierung vorzunehmen.

60° AVM

Schaltmuster unter der Bezeichnung $60^{\circ}\underline{A}$ synchrone \underline{V} ektor \underline{M} odulation.

SFAVM

Schaltmuster unter der Bezeichnung \underline{S} tator \underline{F} lux orientierte \underline{A} synchrone \underline{V} ektor \underline{M} odulation.

Automatische Motoranpassung, AMA:

Automatischer Motoranpassungsalgorithmus, der die elektrischen Parameter für den Motor im Stillstand bestimmt.

On-line/off-line Parameter:

Online-Parameter werden sofort nach Änderung des Datenwertes aktiviert. Offline-Parameter werden erst dann aktiviert, wenn an der Bedieneinheit OK eingegeben wurde.

VT-Kennlinie:

Variable Drehmomentkennlinie; wird für Kreiselpumpen und Lüfter angewandt.

CT-Kennlinie:

Konstante Drehmomentkennlinie; wird für alle Anwendungen, z.B. Förderbänder und Krananwendungen eingesetzt. Die CT-Kennlinie wird nicht bei Pumpen und Lüftern benutzt.

MCM:

Steht für Mille Circular Mil, d.h. die amerikanische Maßeinheit für den Kabelquerschnitt. 1 MCM • 0.5067 mm².

■ Werkseinstellungen

				Änderun-	4 Par.	Konvertie-	
PNU	Parameter	Werkseinstellung	Bereich	gen	Sätze	rungs-	daten
#	Beschreibung			während de	es Betriebs	Index	Тур
001	Sprache	Englisch		Ja	Nein	0	5
002	Ort-/Fernsteuerung	Fernsteuerung		Ja	Ja	0	5
003	Ort-Sollwert	000.000		Ja	Ja	-3	4
004	Aktiver Parametersatz	Parametersatz 1		Ja	Nein	0	5
005	Programm Aufbau	Aktiver Parameter-		Ja	Nein	0	5
		satz					
006	Kopieren von Parametersätzen	Keine Kopie		Nein	Nein	0	5
007	Bedienfeldkopie	Keine Kopie		Nein	Nein	0	5
800	Displayskalierung der Motorfre-	1	0.01 - 500.00	Ja	Ja	-2	6
	quenz						
009	Displayzeile 2	Frequenz [Hz]		Ja	Ja	0	5
010	Displayzeile 1.1	Sollwert [%]		Ja	Ja	0	5
011	Displayzeile 1.2	Motorstrom [A]		Ja	Ja	0	5
012	Displayzeile 1.3	Leistung [kW]		Ja	Ja	0	5
013	Sollwert ORT Modus	Ort digitale Steue-		Ja	Ja	0	5
		rung/wie Par. 100					
014	Ort Stopp	Wirksam		Ja	Ja	0	5
015	Taster JOG Festdrehzahl	Blockiert		Ja	Ja	0	5
016	Taster Reversierung	Blockiert		Ja	Ja	0	5
017	Taster Reset	Wirksam		Ja	Ja	0	5
018	Eingabesperre	Wirksam		Ja	Ja	0	5
019	Betriebszustand bei Netzeinschal-	Zwangsstopp mit ge-		Ja	Ja	0	5
	tung, Ortsteuerung	speichertem Sollwert					
027	Warnanzeige	Warnung in Zeile 1/2		Ja	Nein	0	5

Änderungen während des Betriebs:

"Ja" bedeutet, dass Parameter geändert werden können während der Frequenzumrichter in Betrieb ist. "Nein" bedeutet, dass der Frequenzumrichter gestoppt werden muss, bevor eine Änderung vorgenommen werden kann.

4 Parametersätze:

"Ja" bedeutet, dass der Parameter in jedem der vier Parametersätze individuell programmiert werden kann, d. h., der gleiche Parameter kann vier verschiedene Datenwerte haben. "Nein" bedeutet, dass der Datenwert in allen vier Parametersätzen gleich ist.

Konv. Index:

Die Zahl bezieht sich auf eine Umrechnungszahl, die beim Schreiben oder Lesen mit einem Frequenzumrichter benutzt werden muss.

Konvertierungsindex	Konvertierungsfaktor
74	0.1
2	100
1	10
0	1
-1	0.1
-2	0.01
-3	0.001
-4	0.0001

Datentyp:

Anzeige von Typ und Länge des Telegramms.						
Datentyp	Beschreibung					
3	Ganzzahl 16					
4	Ganzzahl 32					
5	Ohne Vorzeichen 8					
6	Ohne Vorzeichen 16					
7	Ohne Vorzeichen 32					
9	Textblock					

				Ände-	4 Par.	Konvertie-	
PNU	Parameter	Werkseinstellung	Bereich	rungen	Sätze	rungs-	dater
#	Beschreibung			während triebs	des Be-	Index	Тур
100	Konfiguration	Drehzahlregelung, Steuerung		Nein	Ja	0	5
101	Drehmomentkennlinie	Hoch - konstantes Moment		Ja	Ja	0	5
102	Motorleistung	Abhängig vom Gerät	0,18 - 600 kW	Nein	Ja	1	6
103	Motorspannung	Abhängig vom Gerät	200 - 600 V	Nein	Ja	0	6
104	Motorfrequenz	50 Hz / 60 Hz		Nein	Ja	0	6
105	Motorstrom	Abhängig vom Gerät	0.01-I _{VLT.MAX}	Nein	Ja	-2	7
106	Motorbemessungsdrehzahl	Abhängig vom Gerät	100 - 60000 UPM	Nein	Ja	0	6
107	Automatische Motoranpassung, AMA	Motoranpassung aus		Nein	Nein	0	5
108	Statorwiderstand	Abhängig vom Gerät		Nein	Ja	-4	7
109	Statorreaktanz	Abhängig vom Gerät		Nein	Ja	-2	7
110	Motormagnetisierung bei 0 UPM	100 %	0 - 300 %	Ja	Ja	0	6
111	Eckfrequenz für Motormagnetisierung bei 0 UPM	1,0 Hz	0,1 - 10,0 Hz	Ja	Ja	-1	6
112	-						
113	Lastausgleich bei niedriger Dreh- zahl	100 %	0 - 300 %	Ja	Ja	0	6
114	Lastausgleich bei hoher Drehzahl	100 %	0 - 300 %	Ja	Ja	0	6
115	Schlupfausgleich	100 %	-500 - 500 %	Ja	Ja	0	3
116	Zeitkonstante für Schlupfausgleich	0,50 s	0,05 - 1,00 s	Ja	Ja	-2	6
117	Resonanzdämpfung	100 %	0 - 500 %	Ja	Ja	0	6
118	Zeitkonstante für Resonanzdämp- fung	5 ms	5 - 50 ms	Ja	Ja	-3	6
119	Hohes Startmoment	0,0 s	0,0 - 0,5 s	Ja	Ja	-1	5
120	Startverzögerung	0,0 s	0,0 - 10,0 s	Ja	Ja	-1	5
121	Startfunktion	Zeitverzögerung Motorfrei- lauf		Ja	Ja	0	5
122	Funktion bei Stopp	Motorfreilauf		Ja	Ja	0	5
123	Mindestfrequenz zur Aktivierung der Stoppfunktion	0,0 Hz	0,0 - 10,0 Hz	Ja	Ja	-1	5
124	Gleichspannungshaltestrom	50 %	0 - 100 %	Ja	Ja	0	6
125	Gleichspannungsbremsstrom	50 %	0 - 100 %	Ja	Ja	0	6
126	Gleichspannungsbremszeit	10,0 s	0,0 - 60,0 s	Ja	Ja	-1	6
127	Startfreqenz für Gleichstrombremsen	Aus	0,0-Par. 202	Ja	Ja	-1	6
128	Thermischer Motorschutz	Kein Motorschutz		Ja	Ja	0	5
129	Externe Motorbelüftung	Nein		Ja	Ja	0	5
130	Startfrequenz	0,0 Hz	0,0 - 10,0 Hz	Ja	Ja	-1	5
131	Startspannung	0,0 V	0,0-Par. 103	Ja	Ja	-1	6
145	Minimale Gleichspannungsbrems- zeit	0 s	0 - 10 s	Ja	Ja	-1	6

				Änderun-		Konvertie-	
PNU	Parameter	Werkseinstellung	Bereich	gen	Sätze	rungs-	daten
#	Beschreibung		während des Be-			Index	Тур
				triebs			
200	Ausgangsfrequenz Bereich/Rich-	0-132 Hz, eine Richtung		Nein	Ja	0	5
	tung						
201	Ausgangsfrequenzgrenze niedrig		0,0 - f _{MAX}	Ja	Ja	-1	6
202	Ausgangsfrequenzgrenze hoch	66 / 132 Hz	f _{MIN} - Par. 200	Ja	Ja	-1	6
203	Sollwert-/Istwertbereich	min - max		Ja	Ja	0	5
204	Minimaler Sollwert	0.000	-100.000,000-Soll _{MAX}	Ja	Ja	-3	4
205	Maximaler Sollwert	50.000	Soll _{MIN} -100,000.000	Ja	Ja	-3	4
206	Rampentyp	Linear		Ja	Ja	0	5
207	Rampenzeit Auf 1	Abhängig vom Gerät	0.05 - 3600	Ja	Ja	-2	7
208	Rampenzeit Ab 1	Abhängig vom Gerät	0.05 - 3600	Ja	Ja	-2	7
209	Rampenzeit auf 2	Abhängig vom Gerät	0.05 - 3600	Ja	Ja	-2	7
210	Rampenzeit ab 2	Abhängig vom Gerät	0.05 - 3600	Ja	Ja	-2	7
211	Rampenzeit Festdrehzahl - Jog	Abhängig vom Gerät	0.05 - 3600	Ja	Ja	-2	7
212	Rampenzeit Ab, Schnellstopp	Abhängig vom Gerät	0.05 - 3600	Ja	Ja	-2	7
213	Jog Frequenz	10,0 Hz	0,0 - Par. 202	Ja	Ja	-1	6
214	Sollwert-Funktion	zum Sollwert addierend		Ja	Ja	0	5
215	Fester Sollwert 1	0.00 %	- 100.00 - 100.00 %	Ja	Ja	-2	3
216	Fester Sollwert 2	0.00 %	- 100.00 - 100.00 %	Ja	Ja	-2	3
217	Fester Sollwert 3	0.00 %	- 100.00 - 100.00 %	Ja	Ja	-2	3
218	Fester Sollwert 4	0.00 %	- 100.00 - 100.00 %	Ja	Ja	-2	3
219	Frequenzkorrektur Auf/Ab	0.00 %	0.00 - 100 %	Ja	Ja	-2	6
220							
221	Momentgrenze für motorischen Betrieb	160 %	0,0 % - xxx %	Ja	Ja	-1	6
222	Momentgrenze für motorischen Betrieb	160 %	0,0 % - xxx %	Ja	Ja	-1	6
223	Warnung: Strom unterer Grenz- wert	0,0 A	0,0 - Par. 224	Ja	Ja	-1	6
224	Warnung: Strom oberer Grenz- wert	IVLT,MAX	Par. 223 - Ivlt,max	Ja	Ja	-1	6
225	Warnung: Unterfrequenz	0,0 Hz	0.0 - Par. 226	Ja	Ja	-1	6
226	Warnung: Frequenz oberer	132,0 Hz	Par. 225 - Par. 202	Ja	Ja	-1	6
	Grenzwert	102,0112	1 al. 220	ou	ou	•	Ü
227	Warnung: Istwert unterer Grenz-	-4000.000	-100.000,000 - Par. 228	Ja		-3	4
228	wert Warnung: Istwert oberer Grenz-	4000.000	Par. 227 - 100,000.000	Ja		-3	4
	wert		•	_			
229	Frequenzausblendung, Band- breite	AUS	0 - 100 %	Ja	Ja	0	6
230	Frequenzausblendung 1	0,0 Hz	0,0 - Par. 200	Ja	Ja	-1	6
231	Frequenzausblendung 2	0,0 Hz	0,0 - Par. 200	Ja	Ja	-1	6
232	Frequenzausblendung 3	0,0 Hz	0,0 - Par. 200	Ja	Ja	-1	6
233	Frequenzausblendung 4	0,0 Hz	0,0 - Par. 200	Ja	Ja	-1	6
234	Motorphasenüberwachung	Wirksam		Ja	Ja	0	5
	· · · · · · · · · · · · · · · · · · ·						

					4 Par.	Konvertie-	
	Parameter	Werkseinstellung	Bereich	rungen		rungs-	daten
#	Beschreibung				nd des Be-	Index	Тур
200	Vlamma 16 Fingana	Düelkoetzung		triebs	lo.	0	
300	Klemme 16, Eingang Klemme 17, Eingang	Rücksetzung		Ja	Ja Ja	0	5 5
301 302	Klemme 17, Eingang Klemme 18 Start, Eingang	Sollwert speichern Start		Ja Ja	Ja Ja	0	5
						0	5
303 304	Klemme 19, Eingang Klemme 27, Eingang	Reversierung Motorfreilauf invers		Ja	Ja Ja	0	5 5
304	Klemme 27, Eingang Klemme 29, Eingang	Festdrehzahl (Jog)		Ja Ja	Ja Ja	0	5
306	Klemme 32, Eingang Klemme 32, Eingang	Parametersatzwahl, msb/Dreh-		Ja Ja	Ja Ja	0	5 5
300	Riemine 32, Lingang	zahl auf		Ja	Ja	U	5
307	Klemme 33, Eingang	Parametersatzwahl, lsb/Dreh-		Ja	Ja	0	5
007	Menine 66, Engang	zahl ab		υα	υα	O	5
308	Klemme 53, Analogeingang Span-	Sollwert		Ja	Ja	0	5
000	nung	Conwert		ou	ou	Ü	J
309	Klemme 53, min. Skalierung	0,0 V	0,0 - 10,0 V	Ja	Ja	-1	5
310	Klemme 53, max. Skalierung	10.0 V	0,0 - 10,0 V	Ja	Ja	-1	5
311	Klemme 54, Analogeingang Span-	Ohne Funktion	-,,-	Ja	Ja	0	5
	nung					-	-
312	Klemme 54, min. Skalierung	0,0 V	0,0 - 10,0 V	Ja	Ja	-1	5
313	Klemme 54, max. Skalierung	10,0 V	0,0 - 10,0 V	Ja	Ja	-1	5
314	Klemme 60, Analogeingang Strom	Sollwert	, ,	Ja	Ja	0	5
315	Klemme 60, min. Skalierung	0,0 mA	0,0 - 20,0 mA	Ja	Ja	-4	5
316	Klemme 60, max. Skalierung	20,0 mA	0,0 - 20,0 mA	Ja	Ja	-4	5
317	Zeit nach Sollwertfehler	10 s	1 - 99 s	Ja	Ja	0	5
318	Funktion nach Sollwertfehler	Aus		Ja	Ja	0	5
319		0-I _{MAX} Þ 0-20 mA		Ja	Ja	0	5
320	Klemme 42, Ausgang, Impulsskalie-	5000 Hz	1 - 32000 Hz	Ja	Ja	0	6
001	rung	0 1 0 00 1			1-		_
321	Klemme 45, Ausgang	0 - f _{MAX} Þ 0-20 mA	4 0000011-	Ja	Ja	0	5 6
322	Klemme 45, Ausgang, Impulsskalie-	5000 HZ	1 - 32000 Hz	Ja	Ja	0	ь
323	rung Relais 01, Ausgang	Bereit keine thermische War-		Ja	Ja	0	5
323	helais 01, Ausgarig	nung		Ja	Ja	U	5
324	Relais 01, ANZUG Verzögerung	0,00 s	0,00 - 600 s	Ja	Ja	-2	6
325	Relais 01, AUS-Verzögerung	0,00 s	0,00 - 600 s	Ja	Ja	-2	6
326	Relais 04, Ausgang	Bereit - Fernsteuerung	0,00 000 0	Ja	Ja	0	5
327	Puls-Sollwert, max. Frequenz	5000 Hz		Ja	Ja	0	6
328	Puls-Istwert, max. Frequenz	25.000 Hz		Ja	Ja	0	6
329	Encoder Istwert Puls/Umdreh.	1024 Pulse/Umdreh.	1 - 4096 Pulse/	Ja	Ja	0	6
0_0			Umdreh.	•	•		Ū
330	Sollwert speichern/Ausgangsfunkti-	Ohne Funktion		Ja	Nein	0	5
	on						-
345	Auszeit nach Encoderverlust	1 s	0 - 60 s	Ja	Ja	-1	6
346	Encoder-Verlustfunktion	AUS		Ja	Ja	0	5
357	Klemme 42, Ausgang Mindestskalie-		000 - 100%	Ja	Ja	0	6
	rung						
358	Klemme 42, Ausgang Höchstskalie-	100%	000 - 500%	Ja	Ja	0	6
	rung						
359	Klemme 45, Ausgang Mindestskalie-	0 %	000 - 100%	Ja	Ja	0	6
	rung						
360	Klemme 45, Ausgang Höchstskalie-	100%	000 - 500%	Ja	Ja	0	6
	rung						
361	Encoder-Verlustschwelle	300%	000 - 600 %	Ja	Ja	0	6

PN U	Parameter	Werkseinstellung	Bereich	Ände- rungen	4-Setup (4-Par. Sätze)		Daten
#	Beschreibung	Werksemstellung	Dereich		des Be-		typ
400	Bremsfunktion/Überspannungssteue- rung	Deaktiviert		Ja	Nr.	0	5
401	Bremswiderstand, Ohm	Geräteabhängig		Ja	Nr.	-1	6
	Bremsleistungsgrenze, kW	Geräteabhängig		Ja	Nr.	2	6
403	Leistungsüberwachung	Ein		Ja	Nr.	0	5
	Bremswiderstand Test	Deaktiviert		Ja	Nr.	0	5
	Quittierungsart	Manuell Taster		Ja	Ja	0	5
	Maximale Wiedereinschaltzeit	5 s	0 - 10 s	Ja	Ja	0	5
	Netzausfall	Ohne Funktion		Ja	Ja	0	5
	Schnellentladung	Blockiert		Ja	Ja	0	5
	Zeitverzögerung Momentgrenze	Deaktiviert	0 - 60 s	Ja	Ja	0	5
	Zeitverzögerung Überspannung	Geräteabhängig	0-35 s	Ja	Ja	0	5
	Taktfrequenz	Geräteabhängig	1,5-14 kHz	Ja	Ja	2	6
	Ausgangsfrequenz in Abhängigkeit von der Umschaltfrequenz			Ja	Ja	0	5
	Faktor Übermodulation	Ein		Ja	Ja	-1	5
	Minimaler Istwert	0.000	-100.000,000 - Istw _{MAX}	Ja	Ja	-3	4
	Displaywert bei hohem Istwert	1500.000	Istw _{MIN} - 100.000,000	Ja	Ja	-3	4
	Prozesseinheit	%		Ja	Ja	0	5
417	PID-Drehzahl-Proportionalverstärkung	0.015	0.000 - 0.150	Ja	Ja	-3	6
418	PID-Drehzahl-Integrationszeit	8 ms	2,00 - 999,99 ms		Ja	-4	7
419	PID-Drehzahl-Differentiationszeit	30 ms	0,00 - 200,00 ms	Ja	Ja	-4	6
420	PID Drehzahl DiffVerstärkung	5.0	5.0 - 50.0	Ja	Ja	-1	6
421	PID Drehzahl Tiefpassfilter	10 ms	5 - 200 ms	Ja	Ja	-4	6
422	U0-Spannung bei 0 Hz	20,0 V	0,0 - Parame- ter 103	Ja	Ja	-1	6
423	U1-Spannung	Parameter 103	0,0 - Uvlt, max	Ja	Ja	-1	6
424	F1-Frequenz	Parameter 104	0,0 - Parame- ter 426	Ja	Ja	-1	6
425	U2-Spannung	Parameter 103	0,0 - Uvlt, max	Ja	Ja	-1	6
426	F2-Frequenz	Parameter 104	Par. 424 - Par. 428	Ja	Ja	-1	6
427	U3-Spannung	Parameter 103	0,0 - U _{VLT, MAX}	Ja	Ja	-1	6
	F3-Frequenz	Parameter 104	Par. 426 - Par. 430	Ja	Ja	-1	6
429	U4-Spannung	Parameter 103	0,0 - Uvlt, max	Ja	Ja	-1	6

PN			Ände-	4 Par.	Konvertie-	
U Parameter	Werkseinstellung	Bereich		Sätze	rungs-	daten
# Beschreibung			während	l des Be-	Index	Тур
			triebs			
430 F4-Frequenz	Parameter 104	426 - Par.	Ja	Ja	-1	6
431 U5-Spannung	Parameter 103	.0 - U _{VLT,MAX}	Ja	Ja	-1	6
432 F5-Frequenz	Parameter 104	Par. 426 - 1000 Hz	Ja	Ja	-1	6
433 Moment-Prop.verstärkung	100%	0 (Aus) - 500%	Ja	Ja	0	6
434 Moment-Integrationszeit	0,02 s	0,002 - 2,000 s	Ja	Ja	-3	7
437 Prozess PID normal/invers Regelung	Normal		Ja	Ja	0	5
438 Prozess PID Anti-Windup	Ein		Ja	Ja	0	5
439 Prozess PID Startfrequenz	Parameter 201	f _{min} - fmax	Ja	Ja	-1	6
440 Prozess PID Proportionalverstärkung	0.01	0.00 - 10.00	Ja	Ja	-2	6
441 Prozess PID Integrationszeit	9999,99 s (AUS)	0,01 - 999,99 s	Ja	Ja	-2	7
442 Prozess PID Differentiationszeit	0,00 s (AUS)	0,00 - 10,00 s	Ja	Ja	-2	6
443 Prozess PID Diff.verstärk.grenze	5.0	5.0 - 50.0	Ja	Ja	-1	6
444 Prozess PID Tiefpassfilterzeit	0.01	0.01 - 10.00	Ja	Ja	-2	6
445 Motoranfangschaltung	Blockiert		Ja	Ja	0	5
446 Schaltmuster	SFAVM		Ja	Ja	0	5
447 Drehmomentausgleich	100%	-100 - +100%	Ja	Ja	0	3
448 Drehzahlverhältnis	1	0.001 - 100.000	Nein	Ja	-2	4
449 Reibungsverlust	0%	0 - 50%	Nein	Ja	-2	6
450 Netzspannung bei Netzausfall	Abhängig vom Gerät	Abhängig vom Gerät	Ja	Ja	0	6
453 Drehzahlverhältnis mit Istwertrückfüh-	1	0.01-100	Nein	Ja	0	4
rung						
454 Pausenzeit-Kompensation	Ein		Nein	Nein	0	5
455 Frequenzbereichüberwachung	Wirksam				0	5
457 Phasenfehlerfunktion	Abschaltung		Ja	Ja	0	5
483 Dynamische Zwischenkreiskompensati-			Nein	Nein	0	5
on						

			•				
		Werkseinstel-		Änderun-	4 Par.	Konvertie-	
PNU	Parameter	lung	Bereich	gen	Sätze	rungs-	daten
#	Beschreibung			während o	des Be-	Index	Тур
				triebs			
500	Adresse	1	0 - 126	Ja	Nein	0	6
501	Baudrate	9600 BAUD		Ja	Nein	0	5
502	Motorfreilauf	Logisch ODER		Ja	Ja	0	5
503	Schnellstopp	Logisch ODER		Ja	Ja	0	5
504	Gleichspannungsbremse	Logisch ODER		Ja	Ja	0	5
505	Start	Logisch ODER		Ja	Ja	0	5
506	Reversierung	Logisch ODER		Ja	Ja	0	5
507	Parametersatzwahl Festdrehzahlwahl-Jog	Logisch ODER		Ja	Ja	0	5
508 509	Bus-Festdrehzahl 1	Logisch ODER	0.0 Daramatar 000	Ja	Ja Ja	<u>0</u> -1	6
510	Bus-Festdrehzahl 2	10,0 Hz 10,0 Hz	0,0 - Parameter 202 0,0 - Parameter 202	Ja Ja	Ja Ja	<u>-1</u> -1	6
511	Bus-restuterizatii 2	10,0 П2	0,0 - Parameter 202	Ja	Ja	-1	0
512	Tologrammprofil	FC-Antrieb		Nein	Ja	0	5
512	Telegrammprofil Bus-Timeoutzeit	1 s	1 -99 s	Ja	Ja	0	5
514	Bus-Timeoutzeit Bus-Timeoutfunktion	Aus	1-33 5	Ja Ja	Ja	0	5
515	Datenanzeige: Sollwert %	Aus		Nein	Nein	-1	3
516	Datenanzeige: Sollwert Einheit			Nein	Nein	-3	4
517	Datenanzeige: Istwert			Nein	Nein	-3	4
518	Datenanzeige: Frequenz			Nein	Nein	-1	6
519	Datenanzeige: Frequenz x Skalierung			Nein	Nein	-2	7
520	Datenanzeige: Strom			Nein	Nein	-2	7
521	Datenanzeige: Drehmoment			Nein	Nein	-1	3
522	Datenanzeige: Leistung, kW			Nein	Nein	-1	7
523	Datenanzeige: Leistung, PS			Nein	Nein	-2	7
524	Datenanzeige: Motorspannung			Nein	Nein	-1	6
525	Datenanzeige: Zwischenkreisspannung			Nein	Nein	0	6
526	Datenanzeige: Thermischer Motorschutz			Nein	Nein	0	5
527	Datenanzeige: Temp. VLT			Nein	Nein	0	5
528	Datenanzeige: Digitaler Eingang			Nein	Nein	0	5
529	Datenanzeige: Klemme 53,			Nein	Nein	-2	3
	analoger Eingang						
530	Datenanzeige: Klemme 54,			Nein	Nein	-2	3
	analoger Eingang						
531	Datenanzeige: Klemme 60,			Nein	Nein	-5	3
	analoger Eingang						
532	Datenanzeige: Puls-Sollwert			Nein	Nein	-1	7
533	Datenanzeige: Ext. Sollwert %			Nein	Nein	-1	3
534	Datenanzeige: Zustandswort, binär			Nein Nein	Nein	0	6
535	Datenanzeige: Bremsleistung/2 min				Nein	2	6
536	Datenanzeige: Bremsleistung/s			Nein Nein	Nein	0	5
537 538	Datenanzeige: Kühlkörpertemperatur			Nein	Nein	0	7
539	Datenanzeige: Alarmwort, binär Datenanzeige: VLT-Steuerwort, binär			Nein	Nein Nein	0	6
540	Datenanzeige: Warnwort 1			Nein	Nein	0	7
541	Datenanzeige: Warnwort 2			Nein	Nein	0	7
553	Displaytext 1			Nein	Nein	0	9
554	Displaytext 2			Nein	Nein	0	9
557	Datenanzeige: Motor UPM			Nein	Nein	0	4
558	Datenanzeige: Motordrehzahl x Skalie-	<u> </u>		Nein	Nein	-2	4
	rung					_	•
580	Definierter Parameter			Nein	Nein	0	6
581	Definierter Parameter			Nein	Nein	0	6
582	Definierter Parameter			Nein	Nein	0	6
	· · · · · · · · · · · · · · · · · · ·						

				Ände-	4 Par.	Konvertie-	
PNU	Parameter	Werkseinstellung	Bereich	rungen		rungs-	daten
#	Beschreibung				des Be-	Index	Тур
				triebs			
600	Betriebsdaten: Betriebsstunden			Nein	Nein	74	7
601	Betriebsdaten: Motorlaufstunden			Nein	Nein	74	7
602	Betriebsdaten: KWh-Zähler			Nein	Nein	1	7
603	Betriebsdaten: Anzahl Einschaltungen			Nein	Nein	0	6
604	Betriebsdaten: Anzahl Temperaturüberschreitungen			Nein	Nein	0	6
605	Betriebsdaten: Anzahl Überspannungen			Nein	Nein	0	6
606	Datenprotokoll: Digitaler Eingang			Nein	Nein	0	5
607	Datenprotokoll: Busbefehle			Nein	Nein	0	6
608	Datenprotokoll: Buszustandswort			Nein	Nein	0	6
609	Datenprotokoll: Sollwert			Nein	Nein	-1	3
610	Datenprotokoll: Istwert			Nein	Nein	-3	4
611	Datenprotokoll: Motorfrequenz			Nein	Nein	-1	3
612	Datenprotokoll: Motorspannung			Nein	Nein	-1	6
613	Datenprotokoll: Motorstrom			Nein	Nein	-2	3
614	Datenprotokoll: Zwischenkreisspannung			Nein	Nein	0	6
615	Fehlerprotokoll: Fehlercode			Nein	Nein	0	5
616	Fehlerprotokoll: Zeit			Nein	Nein	-1	7
617	Fehlerprotokoll: Wert			Nein	Nein	0	3
618	Quittieren des kWh-Zählers	Kein Quittieren		Ja	Nein	0	5
619	Quittieren des Betriebsstundenzählers	Kein Quittieren		Ja	Nein	0	5
620	Betriebsart Normale Funktion	Normale Funktion		Nein	Nein	0	5
621	Typenschild: VLT-Typ			Nein	Nein	0	9
622	Typenschild: Leistungsteil			Nein	Nein	0	9
623	Typenschild: VLT-Bestellnummer			Nein	Nein	0	9
624	Typenschild: Software-Version Nr.			Nein	Nein	0	9
625	Typenschild: LCP-Identifikationsnr.			Nein	Nein	0	9
626	Typenschild: Datenbank-Identifikationsnr.			Nein	Nein	-2	9
627	Typenschild: Leistungsteil-Identifikationsnummer			Nein	Nein	0	9
628	Typenschild: Anwendungsoption, Typ			Nein	Nein	0	9
629	Typenschild: Anwendungsoption, Bestell Nr.			Nein	Nein	0	9
630	Typenschild: Kommunikationsoption, Typ			Nein	Nein	0	9
631	Typenschild: Kommunikationsoption, Bestell Nr.			Nein	Nein	0	9
	21						

PNU #	Parameter- beschreibung	Werks- einstellung	Bereich	Änderung während des Be- triebs	4 PSätze änderbar	Konvertier. Index	Daten- typ
700	Relais 6, Funktion	VLT bereit		Ja	Ja	0	5
701	Relais 6, EIN Verzögerung	0 Sek.	0,00-600 Sek.	Ja	Ja	-2	6
702	Relais 6, AUS Verzögerung	0 Sek.	0,00-600 Sek.	Ja	Ja	-2	6
703	Relais 7, Funktion	Motor dreht		Ja	Ja	0	5
704	Relais 7, EIN Verzögerung	0 Sek.	0,00-600 Sek.	Ja	Ja	-2	6
705	Relais 7, AUS Verzögerung	0 Sek.	0,00-600 Sek.	Ja	Ja	-2	6
706	Relais 8, Funktion	Netz EIN		Ja	Ja	0	5
707	Relais 8, EIN Verzögerung	0 Sek.	0,00-600 Sek.	Ja	Ja	-2	6
708	Relais 8, AUS Verzögerung	0 Sek.	0,00-600 Sek.	Ja	Ja	-2	6
709	Relais 9, Funktion	Störung		Ja	Ja	0	5
710	Relais 9, EIN Verzögerung	0 Sek.	0,00-600 Sek.	Ja	Ja	-2	6
711	Relais 9, AUS Verzögerung	0 Sek.	0,00-600 Sek.	Ja	Ja	-2	6

■ Index

A		Genauigkeit der Displayanzeige (Parameter 009-012)	3
Ableitströme	119	Grundeigenschaften	10
Abmessungen	59		
Aggressive Umgebungen	128	Н	
Allgemeine technische Daten	34	Hochspannungsprüfung	6
Allgemeine Warnung	4	hohem Übermomentverhalten	1
Anstiegzeit	122		
Anwendungsoptionen	26	•	
Anzahl der Elemente	104	I	
Anzugsmomente und Schraubengrößen	69	Interbus	2
Ausgangsdaten	34	IT-Netz	8
Ausgleichskabels	85		
		K	
D			
В		Kabellängen	3
Bremswiderstand	37	Klemmenabdeckung	2
Bremswiderstände	20	Konvertierung und Meßeinheiten	10
Bremswiderstände	30	Kühlung	6
		Kühlung	6
C			
		L	
CE-Zeichen	131	LC Eilter	2
		LC-Filter	2
D		LC-Filter	2
— Datenbytes	01	Leistungsfaktor	13
DeviceNet	91	Leistungsreduzierung wegen erhöhter Umgebungstemperatur	12
Diese Bestimmungen dienen Ihrer Sicherheit	25	Leistungsreduzierung wegen hoher Taktfrequenz	12
¥	4	Leistungsreduzierungbei erhöhtem Luftdruck	12
DIP Schalter 1-4 Dokumentation	80	Leitungsdrosseln	2
	7	LonWorks	2
Drehmomentkennlinie Drehrichtung des Motors	34	Luftfeuchtigkeit	12
Distinctioning des Motors	66		
_		M	
E		MCT 10	2
Einleitung	6	Mechanische Installation	6
Einzelmotorschutz	67	Modbus	2
Elektrische Installation	65	Motoranschluß	6
Elektrische Installation	79	Motorkabel	8
Elektrische Installation - Bremskabel	67		
Elektrische Installation - Busanschluß	80	M	
Elektrische Installation - EMV-Schutzmaßnahmen	81	N	
Elektrische Installation - Erdung Steuerkabel	85	Name	10
Elektrische Installation - externe 24 Volt-DC-Versorgung	70	Netz- und Motoranschluß	6
Elektrische Installation - externe Lüfterversorgung	70	Netzspannung	4
Elektrische Installation - Motorkabel	66	Netzstörung/Oberwellen	13
Elektrische Installation - Netzversorgung	65	Netzversorgung (L1, L2, L3):	3
Elektrische Installation - Relaisausgänge	70	normalen Übermomentverhalten	1
Elektrische Installation - Steuerkabel	78		
Elektrische Installation - Temperaturschalter Bremswiderstand	67	0	
Elektrische Installation, Leistungskabel	71		
EMV-Prüfergebnisse	134	Obere Grenze	10
EMV-Schalter	86	Oberwellenfilter	2
Erden	85	Oberwellenfilter	3
Externe 24 V DC-Versorgung	70		
Externe 24-V-DC-Versorgung	37	Р	
			_
_		Parallelschaltung von Motoren	6
F		Parameter-Beschreibungselemente	10
FC-Profil	94	PC-Softwaretools	2
FC-Protokoll	94	Prinzipdiagramm	1
Feldbusprofil	98	Prinzipdiagramm	1
		Profibus	2
G		Profibus DP-V1	2
G		Protokolle	8
GalvanischeTrennung (PELV)	110		

_	
R	
Relaisausgänge:	37
Relaisausgänge:	37
RS 485	80
S	
Schirmbügel	81
Schutzvorrichtungen für Serie VLT 5000:	39
Schutzvorrichtungen für Serie VLT 5000:	39
serielle Kommunikationsschnittstelle	85
Sicherheitserdung	65
Sicherungen	57
Spitzenspannung	122
SPS	85
Steuer- und Regelgenauigkeit	38
Steuerkabel	81
Steuerkarte, 24-V-DC-Versorgung	36
Steuerkarte, Analogeingänge	35
Steuerkarte, Digital/Puls- und Analogausgänge	36
Steuerkarte, Digitaleingänge:	35
Steuerkarte, Puls/Drehgeber-Eingang	36
Steuerkarte, RS 485 serielle Kommunikationsschnittstelle:	36
Steuerwort	94
Steuerwort	98
Störgeräusche	123
т	
•	00
Telegrammaufbau	89
Telegrammübermittlung	89
Thermischer Motorschutz	67
Typecode	19 13
Typencode-Bestellnummer	10
U	
Umgebung	38
	2
Unbeabsichtigtes Anlaufen Untere Grenze	106
Officie dicize	100
V	
- Verwendung EMV-gemäßer Kabel	84
Vibrationen und Erschütterungen	127
VLT-Ausgangsdaten (u, v, w):	34
Voreinstellungswert	106
347	
W	
Warnung vor unbeabsichtigtem Anlaufen	4
Werkseinstellungen	141
Worterklärung	138
Z	
Zusätzliche Eigenschaften	106
Zusatztext	107
Zustandswort	96
Zustandswort	99
Zwischenkreiskopplung	68